tuse histogram and normalize results - cosmo - front and backend for Markov-Chain Monte Carlo inversion of cosmogenic nuclide concentrations
(HTM) git clone git://src.adamsgaard.dk/cosmo
(DIR) Log
(DIR) Files
(DIR) Refs
(DIR) README
(DIR) LICENSE
---
(DIR) commit 6728f85140437a9c1e2020adbc0d5899e748655d
(DIR) parent 07d26edb640d2c3fd9a20b97c8f60bb2f05f01be
(HTM) Author: Anders Damsgaard <anders.damsgaard@geo.au.dk>
Date: Mon, 9 Nov 2015 13:24:10 +0100
use histogram and normalize results
Diffstat:
M matlab/generate_plots.m | 5 ++---
1 file changed, 2 insertions(+), 3 deletions(-)
---
(DIR) diff --git a/matlab/generate_plots.m b/matlab/generate_plots.m
t@@ -209,9 +209,8 @@ for i1 = 1:M % for each model parameter
%subplot(5,2,isub)
subplot(M,Nwalkers,isub)
%Nhistc=histc(Ss{iwalk}.ms(i1,:),xbins{i1});
- Nhistc = histcounts(Ss{iwalk}.ms(i1,:),xbins{i1});
- bar(xbins{i1},Nhistc,'histc')
-
+ %bar(xbins{i1},Nhistc,'histc')
+ histogram(Ss{iwalk}.ms(i1,:), xbins{i1}, 'Normalization', 'probability');
if i1 == 1
title(['MCMC walker ' num2str(iwalk)])