243 Existence and Asymptotic Behavior of Singular Solutions Jann-Long Chern In this paper we consider the quasilinear elliptic equation $$ \text {div}(|\nabla u|^{m-2}\nabla u)+f(u)=0 \eqno (1) $$ where $n>m\ge 2$. We obtain a necessary and sufficient condition for the existence of positive radial solutions $u=u(r)$ on $[{r_0}, \infty)$, where $r_0 > 0$. If $f$ satisfies the further condition then Eq. $(1)$ possesses infinitely many singular ground state solutions $u(r)$ satisfying $u(r)\sim r^{-{(n-m)}\over {m-1}}$ at $\infty $ and $u(r)\sim r^{-{(n-m)}\over m}$ at $r=0$. 0