

DOES

Programming the
Macintosh™ User

Interface -·

CIRCl ==;;::::::===;==:;:::::====

UN' ---t--l!.---=-=-F-~JV-4-~ou..--- ----

:7

7
I ~7 ~

c-1.! B7
.....

~

18
l8S

I
~

-- - --= J ----"--+---+---+------
0' n:oe=mc:::--;o, 1=-nc. ~ 38·2!;;;;93 __ _L__ __ _l__ __

~-\J r--

).

Also by Henry Simpson

Design of User-Friendly Programs for Small Computers ·

Programming the IBM PC User Interface

Programming the
Macintosh TM User

Interface

Henry Simpson
'H

McGraw-Hill Book Company
New York St. Louis San Francisco Auckland Bogota

Hamburg Johannesburg London Madrid
Mexico Montreal New Delhi Panama

Paris Sao Paulo Singapore
Sydney Tokyo Toronto

Llbrary of Congress Cataloging-in-Publication Data

Simpson, Henry.
Programming the Macintosh" user interface.

Bibliography: p.
Includes index.
1. Macintosh (Computer)-Programming. I. Title.

QA76.8.M3S57 1986 005.265 85-23651
ISBN 0-07-057320-4

Copyright © 1986 by McGraw-Hill, Inc. All rights reserved. Printed
in the United States of America. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher.

1234567890 DOC/DOC 8932109876

ISBN 0-07-057320-4

The editors for this book were Stephen G. Guty and Susan Killikelly,
the designer was Naomi Auerbach, and the production supervisor was
Sara L. Fliess .
It was set in Primer by T. C. Systems.

Printed and bound by R. R. Donnelley & Sons, Inc.

A SORT OF A SONG

Let the snake wait under
his weed
and the writing
be of words, slow and quick, sharp
to strike, quiet to wait,
sleepless.
-through metaphor to reconcile
the people and the stones/
Compose. (No ideas
but in things) Invent!
Saxifrage is my flower that splits
the rocks.

William Carlos Williams

Contents

Preface xiii

1. Introduction

The Macintosh Programming Challenge
Mastering Hardware and Software 1
Getting the "Macintosh Mind-set" 2

Program-Development Strategies 4
User Documentation 5
Program-Development Tools 6

Lisa, 512K Fat Mac, Macintosh Plus, and External Drives 7
Written Documentation s

The Apple Certified Developer Program 10

2. The Macintosh User Interface

Defining a User Interface 11

User-Computer Dialogs 12
Computer-Initiated Versus User-Initiated Dialogs 13
Ease of Learning and Use Versus Power and Speed 14
Control Versus Data-Entry Dialogs 15
Event-Driven Programs 15
Elements of the Macintosh User Interface 20

A Walk Through a Typical Macintosh Dialog 21
Key Characteristics of Good Macintosh Programs 26

How to Design an Unfriendly Macintosh Program 28

1

11

3. Rationale Underlying the Macintosh User Interface 29

Characteristics of the Human Operator 29
Types of Operators 29
Human Information Processing and Memory 31
Pattern Recognition 35
User Skill and Experience 36
Cognitive Models 37

User Characteristics and the Macintosh User Interface 38

vii

viii Contents

4. Examples of Macintosh Programs

Graphics Examples-MacPaint and DaVinci 41
MacPaint 41
DaVinci 45

A Spreadsheet-Multiplan 49
Program Start-up 50
Moving Around the Work Space 52
Entering Information into Cells 53
Accessing Help Information 57
Some Conclusions 57

A Word-Processor-Word 57
Program Start-up 58
Screen and Window Organization 58
Entering and Marking Text 62
Edit Menu 62
Character, Paragraph, and Document Menus 63
Search Menu 65
The Bigger Picture 65

A Database-Helix 66
An Introduction to Database Programs 66
Helix Icons 67
Program Start-up-Application Icon 67
Collection and Relation Icons 67
Creating Fields 69
Defining Calculations 69
Designing Forms 72
Accessing the Database 73

Two Instructional Programs-MacCoach and MacType 74
MacCoach 75
MacType 77

A Few Afterthoughts 80

5. User-Interface Design Principles
Define the Users 82
Minimize the Operator's Work 83
Keep the Program Simple 83
Be Consistent 84
Minimize Demands on Human Memory 84
Minimize Modes 85
Use Graphics 85
Use a Metaphor 86
Manage Errors 86
Make the Program Forgiving 87
Provide Adequate User Documentation 87

40

82

Follow Prevailing Design Conventions and Human-Factors Guidelines 87

6. Macintosh User-Interface Conventions 89
Information Display 89

Classes of Information Displayed 89
Graphics and Program Entities 92
Windows 93

User Input 97

Mouse and Keyboard Philosophy 98
Mouse and Pointer 98
Mouse Actions 99
Text Editing 101
Working with Arrays 105

Program Control 101
Application Menus 108
Standard Menus 110
Symbolic Control Devices 114
Dialog Boxes 116
Alerts and Alert Boxes 117

7. Human-Factors Guidelines

Information Display 119
Use of Language 119
Icon Design 123
The Presentation of Numeric Information 124
Common Display Conventions 126

User Input 129
The Input Process 129
Prompting 129
Data Input 131
Error Testing 132
Editing 134

8. Paths to Macintosh Program Development

Programming-Language Overview 135
Evolution of Macintosh Languages 135
The BASICs 137
The Pascals 138
C, FORTH, and Lisp 138
Assembler 139
Language Selection 139
Language Benchmarks 140

Macintosh Program Organization 141
Linear Versus Event-Driven Programs 141
Numbered Lines and Other Bugaboos 143
The J. S. Bach and Pipe Organ Metaphor 143
Lessons in Structure, Names, Events . 144
The Use of Doing It 144

The User-Interface Toolbox 144
Software Overview 145
Resource Manager 146
QuickDraw and the Font Manager 146
Event Manager 147
Window Manager 147
Control, Menu, and Dialog Managers 147
TextEdit 148
Scrap Manager 148
Desk Manager 148
Package Manager 148
Toolbox Utilities 148

Contents ix

119

135

x Contents

9. The BASICS
Macintosh BASIC 150

General Characteristics 150
Language Features 150
Program-Development Environment 153
Input-Output and the User-Interface Toolbox 156

Microsott BASIC 158
General Characteristics 158
Language Features 159
Program-Development Environment 161
Input-Output and the User-Interface Toolbox 163

True BASIC 169
General Characteristics 169
Language Features 169
Program-Development Environment 173
Input-Output and the User-Interface Toolbox 176

1 O. The Pascals
Macintosh Pascal 180

General Characteristics 180
Program-Development Environment 180
Input-Output and the User-Interface Toolbox 185

UCSD Pascal 187
General Characteristics 187
Program-Development Environment 187
Input-Output and the User-Interface Toolbox 190

11. C, FORTH, and Lisp
Hippo-C, Mac C, Aztec C 192

General Characteristics 192
Hippo-C Program-Development Environment 194
Mac C Program-Development Environment 198
Aztec C Program-Development Environment 198
Input-Output and the User-Interface Toolbox 198

MacFORTH 198
General Characteristics 198
Program-Development Environment 199
Input-Output and the User-Interface Toolbox 202

ExperLisp 202
General Characteristics 202
Program-Development Environment 202
Input-Output and the User-Interface Toolbox 204

12. Assembly-Language Programming: The Macintosh

149

179

192

68000 Development System 206

System Overview 206
Program-Development Environment 208

Editor 208
Assembler 210
Linker 212

Executive 212
Resource Compiler (RMaker) 213
Debuggers 214

Input-Output and the User-Interface Toolbox 215

Blbllography 21&

Index 221

Contents xi

Preface

This book was written for programmers who want to develop effective software
for the Apple Macintosh or Macintosh Plus computer. The book provides an
introduction to Macintosh program design and development, illustrates tech­
niques for effective user-interface design, and discusses the various program­
development environments and languages available.

The book has two main objectives. The first is to mark a path to program design
and development. A key to Macintosh program design is to understand its user
interface. The first few chapters examine that interface closely- what it consists
of, guidelines for using it effectively in programs, the rationale underlying its
design, and model applications. The book also outlines a suggested program­
development strategy, and discusses the importance of user documentation to
support your programs.

The second objective is to sketch the Macintosh program-development terrain­
the program-development environments, the programming languages available,
the Macintosh Toolbox-to help you decide which best suits your needs as a
programmer. Thus, the book contains chapters on the various common lan­
guages-the BASICs, the Pascals, Cs, FORTH, Lisp, and Assembler.

The book assumes that you own or have ready access to a Macintosh computer,
are familiar with such common applications as MacWrite and MacPaint, and
understand Macintosh user-interface concepts such as the Finder, windows,
dialog and alert boxes, controls, pull-down menus, and the use of the mouse.
Actually, these are not strict requirements, since the user interface is described
in detail in this book. However, readers who are familiar with these basics will
find the discussion easier to follow.

I assume that most readers of this book are programmers, although they may
vary in the hardware they use, their programming language of choice, and their
programming skill and experience. I think that most of what the book covers will
be of interest to all readers . If you use a 128K Macintosh and program in BASIC,

· you may want to skip the chapters on Pascal, C, FORTH, Lisp, and Assembler,
but everything else in the book will still be useful. Likewise, if you program with
some other language, focus on the relevant material. On the other hand, I suspect
that many readers are skilled with or simply curious about several languages;
hence, this book provides an abundance of such material.

xiii

xiv Preface

Although this book contains examples of program code in several of the avail­
able Macintosh languages, it is not a book on how to program in any specific
language. The code examples are given mainly for illustrative purposes. Rather
than show you how to program in, say, MacPascal, this book focuses on interface
design and program development, and the concepts presented apply universally
to all languages.

The best programs written for the Macintosh are both easy to learn and easy to
use. Those of us who have been around computers for a while have seen friends
who once avoided computers embrace the Macintosh. It is one of the ironies of
programming that writing Macintosh programs that appeal to such users is ex­
tremely difficult. This book is intended to make the task somewhat easier.

The book consists of twelve chapters. The first seven focus mainly on the
Macintosh user interface, present information relating to effective user-interface
design, and are important to all designers. Chapters 8 through 12 deal with
programming languages, and you will probably want to be selective in reading
them. The table of contents tells the story, and I suggest that you review it to get
an overview of the book before proceeding. I think that the best strategy for
reading the book is to start at the beginning and read straight through to the end,
selecting the specific language chapters that interest you.

This book would not have been possible without the help of many individuals
and software companies. The people offered their opinions, advice , and expertise.
Special thanks to Richard Duran for his thoughts on the Macintosh user inter­
face, and to John Doner for his expertise on programming languages and pro­
gram-development environments. Thanks to the following firms for answering
questions and making review software available: American Training Interna­
tional, Apple Computer, Consulair Corporation, Continental Software, Creative
Solutions, Desktop Software, ExperTelligence, Hayden Software, Hippopotamus
Software, Intermatrix, Living Videotext, Manx Software, Micro-Besst, Microsoft
Corporation, Odesta, Palantir, Penguin Software, Softech Microsystems, and
True BASIC. Finally, thanks to Marley Graham of Personal Electronics for mak­
ing the Macintosh 68000 development system available.

Henry Simpson

Chapter

1
Introduction

This chapter provides an introduction to Macintosh program design and develop­
ment. Topics covered are the Macintosh programming challenge, program-devel­
opment strategies, user documentation, program-development tools, and the
Apple Certified Developer Program.

The Macintosh Programming Challenge

The Macintosh poses two main challenges to the programmer. The first is to tap
the hardware and software potential of the machine itself. The second is to
develop and employ the mind-set necessary to create programs that capitalize on
what is unique about the Macintosh. The first challenge is mainly technical­
learning how to use the various bells and whistles built into your Macintosh. The
second is more philosophical or qualitative-deciding what makes an effective
Macintosh program and then creating your program accordingly.

Mastering Hardware and Software

The Macintosh uses a 32-bit MC 68000 microprocessor, a state-of-the-art device
more powerful than processors previously used in microcomputers. It combines a
powerful instruction set, high speed,and the ability to address large amounts of
memory, making it the appropriate heart for an advanced microcomputer. If the
Macintosh had been created with a more conventional user interface (e.g., an
IBM PC look-alike), the MC 68000 would ensure it higher speed and more power
than competing machines. But it is not that simple, because the Macintosh is a
new kind of microcomputer.

Obviously, the Macintosh user interface is different, and different in several
ways. The video display is bit-mapped and always in a graphic display mode, even
when presenting text. Governing all is the Finder, on which computer files and
functions are represented as concrete objects. Use of the keyboard is minimized,
and a mouse is used to point at objects in the Finder or within the windows of the
application. Menus are used extensively, reducing the need to memorize com­
mands. "Just point and click," says the user interface. It also says "no need to

2 Programming the Macintosh User Interface

type," and it says "pictures rather than words." It says some more subtle things as
well, such as "concrete rather than abstract," "consistency across applications,"
and "intuitive." (Chapter 2 discusses the user interface more fully, and Chapter 4
illustrates several effective Macintosh programs.)

As you know or may have surmised, what the interface says is not accidental,
but the result of conscious design decisions that came from several years of
research into how people interact with computers and how the user interface
should be designed to make that interaction both simple and painless. (The
rationale underlying the Macintosh user interface is covered in Chapter 3.)

Yet, programming the Macintosh is quite challenging. Several different pro­
gramming languages are available-BASIC, Pascal , C, FORTH, Lisp, Assem­
bler-even COBOL and Fortran. The Macintosh Toolbox provides various func­
tions and procedures to aid the programmer, but there are more than 500
features- comprising a veritable second programming language to master. Tool­
box features available vary with the language used. High-level languages such as
BASIC provide Toolbox access through a limited range of function and procedure
calls built into the language; this makes programming easy but limits what can be
done. Assembler opens the Toolbox fully but poses a formidable programming
challenge and is not for amateurs or the fainthearted. Intermediate-level lan­
guages such as C and FORTH vary in what they can do depending upon the
particular language implementation. (The main Macintosh programming lan­
guages and their capabilities are described in detail in Chapters 8 through 12.)

However, one thing is clear: the easier a language is to use, the less it can do.
As politicians are fond of saying, there is no free lunch. If you are serious about
developing full-featured Macintosh applications , you will find that programming
the Macintosh will test your skills, tenacity, and patience.

Getting the "Macintosh Mind-set"

The first challenge in programming the Macintosh-making effective use of the
hardware and software potential of the machine itself-is quite demanding. Yet,
in many ways this is simpler than the second challenge, i.e., developing the ··
mind-set necessary to capitalize on what is unique about the Macintosh. What is
this mind-set, anyway, and why should it be difficult to develop?

The key to the mind-set is to have the user's needs drive design. In other
words, Macintosh software is designed from the start to be user-friendly. It can be
argued that all software should be user-friendly, regardless of the computer, but
the case is particularly acute for the Macintosh. The main reason is that the
typical Macintosh user has expectations about how Macintosh programs should
work. These expectations emerge from the way that most commercial Macintosh
programs do work. The case could also be made that the typical Macintosh user
has less computer sophistication than the typical user of other microcomputers,
although this generalization is a little dangerous. The bottom line is that Macin­
tosh programs-much more than those for other computers-need to be very
user-oriented, friendly , tolerant of operator errors, and so forth . Basically, there is
a higher standard of "friendliness" for Macintosh programs than for programs for,
say, your Apple II, IBM PC, or Compupro. The Macintosh programmer must have
the mind-set necessary to develop such programs.

Introduction 3

Of course, a programmer can develop Macintosh programs without it. The
programmer can simply ignore the Macintosh user interface and create programs
that look and work like those of other computers. Doing this is against the spirit of
the machine, and you would hardly expect any sane programmer to create pro­
grams this way, at least not consciously. Unfortunately, it may be difficult to
avoid. The way that programmers learn to program and their previous experience
with programs are in some ways hostile to developing the Macintosh mind-set.

If you are doubtful or uncertain, consider your previous programming experi­
ences. (If you lack such experiences, read along as if you didn't.) Consider, for
example, the timesharing system or Apple II or IBM PC or another personal
computer that first introduced you to interactive programming. Most personal
computer users taught themselves how to program in the BASIC language on a
sort of trial-and-error basis while sitting before their computers. Most fledgling
computer scientists learned on timesharing systems with Pascal. Though these
learning environments obviously differ, they tend to produce similar conceptions
of what a program is and how it is created.

The language i~ learned in a step-by-step manner. The programmer learns first
what the simple programming statements and commands are, next how to com­
bine them to accomplish more complex functions, and eventually how to build
program modules. Eventually, at a higher level of abstraction, programs are con­
structed. The novice programmer tends to think of a program as consisting of so
many lines of code. The expert tends to think in terms of higher-level entities­
procedures, modules , subprograms, functional blocks-consisting of many lines
of code. Learning to program is in this sense like learning to speak; as skill
increases, the focus shifts from meaningful sounds (i.e., phonemes) to words, to
sentences, and on to larger blocks of ideas. To put it another way, the program­
ming language is typically learned in a "bottom-up" fashion.

Once the language is mastered, the programmer applies it in problem solving.
Often, the program will be designed in a way that mimics the way the language
was learned. The program will be designed in a bottom-up fashion and created
step by step, with very little thought for the ultimate user and user needs. It is
quite natural for programmers to create programs this way, and quite deadly. It is
natural because little in a programmer's training and experience equips the pro­
grammer with the knowledge and skills necessary to anticipate what will work
best for users. The most common misconce~tion is for the programmer to assume
that the user will be like the programmer. This is obviously wrong in the majority
of cases. Bottom-up design is deadly because it takes the user into account last,
making the user interface the consequence rather than the driving force behind
program design.

The Macintosh mind-set seems to say several different things . The first thing it
says is "user first, technical matters second." Other things it says are "top-down
design," "know thy user," and "beware old habits and ideas."

If this discussion has left you feeling a little anxious , then it has served its
purpose, namely, to raise your consciousness about some technical and philo­
sophical issues relating to Macintosh program design. The bottom line is that
programming the Macintosh is unlike programming other microcomputers. Not
only does it require more technical skill, but it also requires a commitment to
certain ideas relating to the user interface. More details in later chapters; stay
tuned.

4 Programming the Macintosh User Interface

This section introduced some of the issues addressed in separate chapters later
in the book. Chapters 2 through 6 focus on the Macintosh user interface. They
will help you understand what the interface is, what underlies it, and how to
capitalize on it effectively in your own programs. Chapter 7 presents human­
factors guidelines that apply to all programs, regardless of the computer used.
Chapter 8 discusses paths to program development, Macintosh program organi­
zation, and the Toolbox (which some programmers regard as a Pandora's box); it
is intended to help you select the program-development path most suited to your
interests and needs. Chapters 9 through 12 then describe some of those paths in
detail (BASIC , Pascal, C, FORTH, Lisp, and Assembler).

Program-Development Strategies

One can design and develop computer programs in many different ways. The
approach used usually reflects the programmer's training, experience, and per­
sonality. At one extreme is a programmer such as the mellow Rousseau, who gets
a glint in his eye and then dashes immediately to his Macintosh and types in the
first line of code, the second, third, and so on, until he runs out of inspiration, at
which time he pauses, and waits for the muse to visit with a new idea. Program­
mer Rousseau believes that the program will reveal itself in its own time and that
there is no use in attempting to discipline or force the matter. Sometimes pro­
grammer Rousseau creates wonderful, inspired programs, although more often
he creates only fragments . His friends say that he has never met a deadline. They
say this with respect and awe, for they tend to regard Rousseau as a genius who is
not fully appreciated by the "real" world.

At the other extreme is a programmer such as the tense Lochstep, who believes
that careful planning solves all problems. Programmer Lochstep is big on flow­
charts, PERT charts, GANTT charts , spreadsheets, and every other kind of plan­
ning tool. Her motto is that programming is 90 percent planning and 10 percent
doing; she does not acknowledge the existence of a thing called inspiration.
When a design task is assigned to her (she seldom dreams up ideas of her own),
she holds a meeting, collects ideas, and then prepares a program-development
plan defining dates and deliverables. She develops her program in a stepwise
fashion, without deviating from her plan. She meets her deadlines , and her
program does everything required by the plan, but nothing more. Her programs
are generally disappointing.

There is , of course, a middle ground between these extremes. Programming
requires both inspiration and planning-a bit of both Rousseau and Loch step. (If
you have any momentary doubts about the inspiration part, just consider the
wonders of MacPaint; and if you have any doubts about planning, consider Lo­
tus's Jazz.) And because of the strong user orientation of the Macintosh, it re­
quires a fair dose of top-down programming and outside-in design as well. Out­
side-in design is a systematic approach to program design. The "outside" in the
name stands for the program's displays, i.e., screens, windows, and printed re­
ports. "Inside" stands for the inner workings of the program-what drives those
displays. Outside-in design works in the order indicated-outside first, inside
second. Since the method starts with what the user will see, it is a user-oriented
approach to design and an effective way to design user-friendly programs.

Introduction 5

System outputs

Figure 1·1 Outside in design starts with system outputs-screens and printed reports­
and later focuses on the system internal workings required to generate these outputs. (From
Simpson , Programming the IBM PC User Interface, copyright 1985, by permission of
McGraw-Hill Book Company.)

The Macintosh user often thinks of a program as consisting of a series of
screens, or windows. One screen-the Finder-is where the program starts , sort
of a home base, another window is used to enter data, others to review computed
results, and so on. Clearly, the content of individual windows, and the way the
windows are organized, will have a significant impact on how effectively the
operator can use the program. During program design, windows are one of the
first-if not the first-things to consider.

When you begin design with a program's displays, you are performing outside­
in design (Figure 1-1). This type of design focuses first on the design of screens,
windows, and printed reports, and later on the design of the parts of the program
required to produce those displays. Opposed to this is the more traditional ap­
proach of inside-out design, which involves designing a program's innards first
and later designing its user interface (Figure 1-2). Outside-in design generally
produces better programs for the simple reason that operator needs drive design.

User Documentation

User documentation is the documentation that comes with a computer program.
It is aimed at program users and intended to help them develop the confidence
and skills needed to use the program effectively. The most common form of user
documentation is the written user's manual-for example, the manual for the
MacWrite word-processing program. User documentation also comes in other
forms, such as help windows within a program, or in the form of a tape-recorded
"guided tour" such as comes with the Macintosh itself.

The user documentation for the Macintosh and for the MacPaint and
MacWrite programs is very good-far better than the documentation provided
with the typical microcomputer program for, say, your Apple II or IBM PC. The

6 Programming the Macintosh User Interface

System outputs

System
internal

workings

Figure 1-2 Inside-out design starts with the internal workings of the system and later
focuses on the system outputs-screens and printed reports- which can be generated.
(From Simpson, Programming the IBM PC User Interface, copyright 1985, by permission of
McGraw-Hill Book Company.)

quality and uniqueness of this documentation have received little note in the
press or elsewhere-being overshadowed by the flash of the computer they sup­
port-but they are very noteworthy. This documentation-like the Macintosh
user interface-says certain things. It says, "build confidence," "learn by doing,"
"show, don't just tell, " and "keep it short and simple."

The simplicity of the documentation-like that of the Macintosh-is decep­
tive. Just as making the Macintosh appear simple to the user requires something
very sophisticated beneath the surface, the apparent simplicity of the documenta­
tion belies its underlying sophistication. Apple's documentation models are good
ones to examine closely, for they are excellent examples of the genre.

A detailed discussion of user documentation is beyond the scope of the present
book. Bear in mind its importance nonetheless. The quality of the documentation
you provide with your completed program may influence its success as much as
the quality of the program it explains; this is not an exaggeratibn. The days of
incomplete, poorly written, badly organized documentation have passed, and
nearly everyone who writes programs for the Macintosh has gotten the word.
Thus, work as hard on your documentation as you do on your program.

The general quality of the documentation provided with commercial Macintosh
applications is quite high; strive to meet the same quality standard in the docu­
mentation you prepare. The user's manuals provided by Apple with its own
programs provide good examples to emulate, as does the documentation that goes
with the programs surveyed in Chapter 4.

Program-Development Tools

To develop programs for the Macintosh, you will need a computer (Macintosh or
Lisa), a programming language, and certain written documentation.

Introduction 7

Lisa, 512K Fat Mac, Macintosh Plus, and External Drives

In the early days of the Macintosh, most Macintosh software was developed on a
Lisa in Lisa Pascal or Assembler, then cross-compiled for use on a Macintosh.
Many developers still create Macintosh programs in this way, although the trend
is now toward development directly on the Macintosh. This book does not discuss
Lisa-based development because most developers are moving away from it. The
various programming languages available on the Macintosh have proliferated
greatly since the Macintosh was introduced in early 1984 (see Chapter 8 for
details). Moreover, the Lisa is no longer being produced and is available only on
the resale markets.

In fact, there are significant advantages to developing directly on the Macin­
tosh; these include lower initial cost, a greater degree of compatibility, and a
wider choice of programming languages. The disadvantages up to now have been
the smaller memory of the Macintosh as compared with the Lisa, and more
restricted programming-development environments. Truth is, these disadvan­
tages have now all but evaporated. For example, UCSD Pascal (see Chapter 10) is
capable of most of what Lisa Pascal can do, and the Macintosh 68000 develop­
ment system opens the same doors for assembly-language programming as its
Lisa counterpart (including the use of two linked computers to aid .debugging­
see Chapter 12). A number of high-level, easy-to-use hobbyist or hacker lan­
guages (e.g., three different BASICs, MacPascal) are also available, as are several
intermediate-level professional languages (several C's, FORTH, Lisp), which
open new avenues to serious programming efforts.

(On the other hand, if you already own a Lisa, the Lisa Pascal or Assembler
options remain open and viable, and you can use most of the Macintosh lan­
guages via the MacWorks programming environment. Virtually all of this book
applies equally to programming efforts on a Lisa.)

This book assumes that the reader has a Macintosh and probably an Imagewri­
ter printer. If it is a l 28K Macintosh, recognize that it has serious limitations as a
program-development environment and consider upgrading it to 512K or, prefer­
ably, to a Macintosh Plus configuration. (Note, however, that all the languages
that are discussed in this book except ExperLisp can be used on a 128K ma­
chine.) A 128K machine can be used to program in most of the languages, but the
amount of memory that is left after the language itself is in memory is surpris­
ingly small. For example, when Microsoft BASIC is loaded, only about 13K of
memory is left over for program and variable storage. This is enough for creating
your Super-Pong game, but forget about your analysis of variance, your stock
market data-base program, or your econometric model. It seems a joke to have so
little memory available in such a powerful computer-the equivalent of having a
1-gallon gas tank in your Ferrari.

Another obvious matter is the requirement for two disk drives. The epitome of
inconvenience is to have a 128K machine and one disk drive. This dynamic duo
may take dozens of disk swaps to copy the contents of one diskette to another.
One user with this combination reported requiring fifty swaps and 20 minutes to
transfer 270K of data. No programmer should be wasting time with this kind of
mindless drudgery. A Fat Mac with a single drive is less of a problem, since a
single disk swap is all that is usually required. However, the second drive elimi-

8 Programming the Macintosh User Interface

nates the need to do any swapping. Moreover, the second drive can be used
during program development to store additional program or data files.

A hard disk is highly desirable for serious developers. It provides much greater
storage capacity and quicker file access than your standard diskette drives . If you
spend several hours each week doing program-development work, give it serious
consideration. Time is money, as they say, and the time you save by having a
hard disk is shekels in your purse.

Written Documentation

This section discusses some magazines and books that every Macintosh program­
mer should know about. The documentation falls into the categories of maga­
zines, books, and Apple's Inside Macintosh (1984) package.

Magazines. Several magazines carry articles of potential interest to the Macin­
tosh programmer. You should (and perhaps already do) subscribe to them.

The best of the general-interest computing magazines is BYTE. BYTE covers
the entire microcomputer field-every issue contains articles dealing with sev­
eral computers, languages, program-development concepts, and the like. The
articles are technical and aimed primarily at programmers. Although the maga­
zine does not focus specifically on the Macintosh, it has carried several technical
articles on Macintosh hardware, languages, and software.

Dr. Dobbs Journal is another good but general, technically oriented magazine
that frequently carries information of interest to Macintosh program developers.

At this writing, the most popular Macintosh magazine is Macworld. Macworld
is aimed at users rather than programmers and contains limited information
relating to Macintosh programming. However, it will probably be of interest to
most Macintosh programmers. Another popular user-oriented Macintosh maga­
zine is Macazine.

Mactutm; is a new, technically oriented magazine for Macintosh programmers.
At this writing, it is one of the most relevant of the lot for serious developers. If
you cannot find it on newsstands, request it by mail:

Mactutor
P.O. Box 846
Placentia, CA 92670

Apple Computer publishes a newsletter called putside Macintosh (formerly
called Floating in the Heap), which is available to developers . This contains news
and technical information of interest to the serious developer. If you are inter­
ested, you should be able to get a copy from an Apple Certified Developer (see
below) or from your Macintosh user's group. If all else fails , request it from Apple
at the following address:

Macintosh Technical Support
Apple Computer
20525 Mariani Avenue MS 2-T
Cupertino, CA 95014

The contents of the newsletter are also posted in Compuserve's Macintosh
section.

Introduction 9

Several other magazines carry useful information on the Macintosh, and the
fact that they are not listed here is not meant to slight them. Check the magazine
racks and computer stores.

Books. As this book is being written, surprisingly few books have been pub­
lished on Macintosh programming. If you are interested in MacBASIC, MacPas­
cal, or the Toolbox, review the Hayden Macintosh library, which presently in­
cludes books on these subjects. The books-among the first on Macintosh
programming-are excellent. (Be sure to check Stephen Chemicoffs two-volume
masterpiece, Macintosh Revealed.) But new books are published every week, so
check your bookstore and book reviews in computer magazines to discover others.

Inside Macintosh. Inside Macintosh is a two-volume manual written by Apple
for Macintosh programmers. It was initially released in two separate loose-leaf
volumes (at a cost of $150) but is now available in a compact, single-volume
"telephone-book" version for $79.95 (a price drop that made some early buyers
gasp). It can be purchased from or ordered by computer stores handling Apple
products, or ordered directly from Apple Computer or Addison-Wesley Publishing
Company.

Inside Macintosh is not for everybody. It is highly technical and aimed mainly
at those who write programs in Pascal, Assembler, or other languages that make
direct calls to the Toolbox. (BASIC and MacPascal programmers don't really need
it-see below.)

Volume 1 deals primarily with software, and volume 2 with hardware. Topics
covered in volume 1 include the user interface, memory management, use of
assembly language, the Resource Manager, QuickDraw, the Font Manager, Tool­
box Event Manager, Window Manager, Control Manager, Menu Manager, TextE­
dit, Dialog Manager, Desk Manager, Scrap Manager, and Toolbox utilities . Topics
covered in volume 2 include printing, the Memory Manager, Segment Loader,
Operating-System Event Manager, File Manager, Device Manager, Disk Driver,
Sound Driver, Serial Driver, Vertical Retrace Manager, System Error Handler,
and operating-system utilities.

If you think that the contents sound complex, you're right. The manual is hefty
and intimidating. It will tum a fledgling programmer into a computerphobe or
give an inveterate hacker hours of reading enjoyment and programming plea­
sure. Do you need Inside Macintosh? If you intend to program in BASIC or
MacPascal, probably not, since those languages don't presently provide access to
the inner workings of the Macintosh documented by the manual. If you intend to
program your Macintosh in C, FORTH, Lisp, or Assembler, probably yes. Like­
wise, if you intend to use a Lisa to program in Lisa Pascal or Assembler, then you
need both the manual and the MacWorks programming environment, and proba-

t3 bly already know it and have them.
tr If in doubt, get the telephone-book version. These days, $79.95 for a manual as
<i: impressive as Inside Macintosh is small change. Even if you find that you don't
Ct. need it, you can let your kid sit on it while playing the piano, put it up on your J bookshelf beside the Knuth to impress your friends, or cut a section out of the

middle for storing your valuables. That's utility.
::::> .
CJ)

10 Programming the Macintosh User Interface

The Apple Certified Developer Program

The Apple Certified Developer Program began shortly after the introduction of
the Macintosh. Its announced goals are to attract and support developers to create
high-quality software for Apple computers. Apple Computer, Inc., promises to
help certified developers target the marketplace and to provide them with pro­
gram-development tools and technical support. The support takes the form of
Apple-sponsored conferences and seminars, classes, discounts on hardware and
software products (averaging about 40 percent), and fast, high-level technical
support via telephone and electronic mail.

If this sounds nice, it is. Unfortunately, becoming a certified developer is
somewhat more difficult than joining the auto club and, on the achievement
scale, is more like getting into Harvard medical school. If you are interested,
request an application from the following:

Apple Computer, Inc.
Developer Relations MIS 23-AF
20525 Mariani Avenue
Cupertino, CA 95014

Only Apple has a tally of the exact number of certified developers. The number
is probably in the hundreds-mainly individuals and firms with a proven track
record of brtnging successful Apple software products to the marketplace. The
program will probably be of greatest interest and value to the professional soft­
ware developer not the hobbyist or part-time programmer.

Chapter

2
The Macintosh User Interface

The Macintosh forces us to reexamine traditional ways of thinking about certain
computer-related concepts. Among these are the notions of the user interface and
the user-computer dialog. With traditional computer systems it is fairly easy to
say what each means and where one leaves off and the other begins; with the
Macintosh it is not. Thus, this chapter starts by attempting to define these two
rather amorphous terms. The chapter then takes a walk through an actual Macin­
tosh dialog, points out some of its features, and contrasts it with more traditional
dialogs . The section following highlights key features of "good" Macintosh pro­
grams. Macintosh programs are not inherently friendly , as the final section­
which tells how to develop an unfriendly Macintosh application-will show.

Defining a User Interface

The term "user interface" is the current version of several earlier terms, the most
ancient of which is "man-machine interface." The old term was originated during
World War II by researchers working on "man-machine systems" such as sonars
and radars. These researchers observed that operator and hardware-for exam­
ple, a sonar and the sailor using it- could be thought of as a system, the compo­
nents of which interacted across time. This viewpoint seemed to make more
sense than thinking of the two in isolation, since it was observed that even the
best hardware was of little value if its operator lacked operating skills , alertness,
or motivation, or was otherwise unable to use the hardware effectively.

The term "man-machine interface" fell into disfavor for its sexist connotations
and has more recently been replaced by other terms. In the computer realm, the
most popular term used by researchers has been "human-computer interface";
system designers and programmers have generally preferred the shorter and
simpler "user interface." We'll use the latter.

While the concept of a user interface seems quite self-evident, most people
who use the term are unable to define it precisely. It has been suggested that one
way to locate the interface geographically is to proceed outward from the com­
puter's central processor until you bump into a human being, at which point you
supposedly have found it. In most cases, this would lead you to a video display

11

12 Programming the Macintosh User Interface

and to the conclusion that the interface is the display itself. This is only partially
correct, since the idea of an interface is broader.

To be more specific, the user interface is the site of interaction between user
and computer. In general, the interaction involves inputs from the user and
outputs from the computer. In most conventional computers, the inputs are
made by keyboard, and the outputs appear on a video display, where they are
viewed by the user. Since other input and output devices may be used, the user
interface may include them. For example, the Macintosh user interface uses a
mouse for input and a printer as well as a video display for output. Hence, its
interface includes these elements. The interface may be extended to include
other input and output devices-such as light pen, plotter, etc.-as necessary. It
is possible to extend the user interface some distance beyond the computer. For
example, someone who laughs at your MacPaint attempt at minimalist art (vari­
ous shades of dark gray and black) is arguably "interfacing" with the computer,
although not at firsthand. For most purposes, such distant interfacing can be
safely ignored.

The definition of a user interface as the devices used for input and output is
simple, but it remains incomplete. Consider that there is nothing about the
definition that would distinguish between a Macintosh and any other computer
with a video display and mouse. Yet most of us would acknowledge the unique­
ness of the Macintosh user interface. What's missing?

The missing element is software. Software-or more precisely, programmabil­
ity-is what makes computers different from other machines with interfaces.
Your electric toaster has a simple interface-consisting of slots-that is used for
both input and output. Your television set has a set of controls and both audio and
video output. Your Macintosh has hardware input and output devices, but the
interaction between you and computer is controlled by the software used. That
software decides what effects control actions will have and what will be presented
on displays, and it governs every other aspect of the interaction between you and
the computer.

The user interface, then, consists of both hardware and software. And what
makes the Macintosh unique-when you look beyond the cleverness of its hard­
ware design-is the way most of its software enables a particular type of user­
computer dialog to occur. Which brings us , conveniently, to the next buzzword.

User-Computer Dialogs

A dialog is a two-way conversation. People have these with one another, and some
writers and schizophrenics have them with themselves. Ordinarily two parties
are involved, and communication goes in two directions.

Likewise, a user-computer dialog involves a type of two-way conversation. With
the Macintosh, the user positions the mouse, points at something, and clicks the
mouse button with an index finger. This is one statement in the user's side of the
dialog. The Macintosh, in turn , responds to what it has been told and does
something. This is its side of the dialog. The interaction continues in this way,
with variations, as the two participants in the dialog-user and Macintosh- play
their roles. Eventually, the user will accomplish the intended goal, grow tired, or

The Macintosh User Interface 13

decide for other reasons to quit, ending the dialog. Alternatively, the Macintosh
may die from a power failure , hardware fault , or software defect or error, quitting
before being told to. In general, the Macintosh waits to be told before exiting the
cognitive world.

The Macintosh dialog (illustrated in greater detail later in this chapter) is one
type of user-computer dialog, and a fairly rare one. To aid our understanding of it,
let us examine the characteristics of dialogs more generally; by doing this, we'll
see what is both common and unusual about Macintosh dialogs.

Computer-Initiated Versus
User-Initiated Dialogs

One of the main ways to classify dialogs is as either computer-initiated or user­
initiated. In any conversation, one participant must start things rolling and keep
them on the right track. The initiator is the one who talks first , and generally the
one who asks questions . In a user-computer dialog, this may be either the user or
the computer.

Conventional menu-driven programs are classified as computer-initiated, since
the computer continuously prompts the user with menus that implicitly ask the
question , "Which one of these things do you want me to do next?" Such programs
are often constructed like networks , with the menus acting as nodes or crossroads
between different subprograms or functions (Figure 2-1). Menus may also be
used locally, for example , to control the scale or other characteristics of a graphics
display.

Figure 2-1 The control structure of many conventional menu-driven programs may be
represented as a network in which the menus are nodes and each menu option links the
menu either to another menu or to a subprogram. (Fram Simpson, Design of User-Friendly
Programs for Small Computers, copyright 1985, by permission of McGraw-Hill Book Cam­
pany.)

14 Programming the Macintosh User Interface

Another form of computer-initiated dialog is question and answer. Here, the
computer displays a question, such as "ls the color red or blue? (R/B)." Based on
the response to the question, the computer will perform a function or pose an­
other question. This type of dialog might be used for something as simple as
finding out whether to send output to video display or printer, or as complex as
finding the way through a decision tree in an artificial-intelligence program.

Menu selection and question-and-answer dialogs are similar and, to a certain
extent, interchangeable. In each case, the user is asked a question and responds ,
and the computer acts accordingly. The alternative to such computer prompting
is to have the user tell the computer directly what should be done, using a form of
user-initiated dialog. User-initiated dialogs are commonly used with minicompu­
ters and mainframes and with many advanced microcomputer programs. Typi­
cally, such dialogs require the user to type in sequences of commands, with each
command consisting of some combination of the following:

Words. Names of programs, displays, or computer functions to be performed.

Letters, mnemonics, or abbreviations. These represent the names of pro­
grams, displays, or computer functions .

Logical or mathematical expressions.

Programlike languages. For example, simple, English language-like com­
mands to execute functions.

Action codes. Short combinations of characters that tell the computer to per­
form certain functions.

Command languages. Formal languages like those used for programming.

The simplest form of user-initiated dialog would consist of the user typing the
name of a display and having that display appear. Most advanced word-process­
ing programs and the text editors used to create program code entail user-initi­
ated dialogs. Many advanced database programs are also user-initiated.

Ease of Learning and Use Versus
Power and Speed

What is the significance of the distinction between computer-initiated and user­
initiated dialogs?

The main thing is that these two classes of dialogs vary in terms of (1) ease of
learning and use and (2) power and speed. In general, programs with computer­
initiated dialogs are the easiest to learn and use, and those with user-initiated
dialogs the most powerful and fastest. There are exceptions to this rule, of course,
and good and bad examples of either type of dialog break the rule, but in general it
holds true.

If you must choose between ease of learning and use, and power and speed,
which do you pick?

The decision should be based upon the type of user, frequency of use, and the
type of application. Ease of learning and use are most important for naive or
occasional users. Power and speed are most important for expert users or those

The Macintosh User Interface 15

who use a program frequently. Recognize that most Macintosh users fall into the
first category-naive or occasional users. Hence, most Macintosh software
should be (and is) optimized for ease of learning and use. Power and speed are
good things, but a preoccupation with either is unhealthy, as any number of
programmers and teenage drivers have discovered. A powerful, fast program has
no value if it is difficult to learn or the user cannot remember how to use it
properly.

While the rule given above generally holds true, it is based mainly on perfor­
mance with computers having non-Macintosh user interfaces. Because of some
of the unique features of the Macintosh interface- such as the ability to show
and scroll through display windows-computer-initiated Macintosh dialogs tend
to pick up both power and speed in other ways, and so the cost of using such
dialogs is reduced. More on this later.

Control Versus Data-Entry Dialogs

Another common way to classify dialogs is as control or data-entry dialogs. The
dialog types described above- e.g., menus , binary choices, command lan­
guages-are of the control type and are used to tell the computer what to do next.
A data-entry dialog is used to enter data into a computer's database. For example,
when a prompt such as the following appears on a computer's video display,

Please t ype in your l ast name:

the computer expects you to type in data that it will store in memory for use later.
Control and data-entry dialogs may be computer-initiated or user-initiated. For

example, an advanced database program may allow the user to enter data by
typing in some coded combination of classification codes, separators, and the data
itself; the data could later be accessed analogously (Figure 2-2a). Alternatively, a
computer-initiated database program might require the user to enter data via a
data-entry screen , with prompts for each entry , and later access the data via
a recall screen used for entering a search specification (Figure 2-2b).

The distinction between control and data-entry dialogs is somewhat artificial,
and occasionally it collapses. For example, the data entries made in a database
search specification are both data and control entries . They are obviously the
former, but also the latter, since they define the action that the computer will
perform next. Although this distinction has obvious limitations, it is useful in
structuring thought about dialogs .

Event-Driven Programs

Related to the ideas of computer-initiated and user-initiated dialogs is that of
event-driven programs. An event-driven program shares qualities of each. Such a
program allows the user to perform most program functions without changing the
program's state or mode. The opposite of this is a program that requires the user
to put the program into a particular state or mode to perform a specific function.

A simple analogy is to a (hypothetical) department of motor vehicles. This
department performs three functions: (1) registers new vehicles, (2) changes

16 Programming the Macintosh User Interface

c ata : /Nachos/t.25/3/

(al

DATA INPUT SCREEN

1. Pro duct name C2-12 char.>: Nachos

2. Price ($1-999.99): $ 1.25

3. Number of units Cl - 999>: s

MESSAGES

VERIFICATION: Do you warit to edi t"' <y/r, J _

lb)

Figure 2·2 Data input may be regarded as user-initiated when the user is given little
prompting and controls what is entered. For example, in Figure 2-2a, the user types in the
desired entries, separated by slashes. Alternatively, data input that is fully prompted and
whose content is under the control of the computer may be regarded as computer-initiated.
For example, in Figtire 2-2b, the user types entries into a predefined form. (From Simpson,
Programming the IBM PC User Interface, copyright 1985, by permission of McGraw-Hill
Book Campany.)

The Macintosh User Interface 17

registrations following a sale, and (3) deactivates the registrations of vehicles no
longer in service. Honest Virgil, who owns both a new-car dealership and a used­
car lot, frequently visits the department office for all three functions. He does not
like it very much because he must stand in three separate lines, and it takes all
day to complete his business (Figure 2-3). First, he registers all the new vehicles
he obtained from his distributor. Next, he goes to another line and waits to
transfer registrations on the cars he has sold that week. Finally, he goes to a third
line, the one for deactivating the $50 trade-ins he took on p1inciple, which will be
converted to scrap metal. Honest Virgil would like it much more if he could get
into a single line and do all of his business at once. As it is, he must go to three
separate places to perform the three separate functions of his business.

Honest Virgil's functions are much like those performed by many computer
programs that store and manipulate data, namely, to add, modify, and delete data
in a database. The database might contain words (as in a word processor such as
Mac Write), graphics (as in a graphics-manipulation program such as MacPaint),
a bibliography of publications in computer science (as in a database program
such as Microsoft File), or even a list of vehicle registrations and their status.

Department of Motor Vehicles

New Vehicle

Registration

Change of

Registration

Deact ivation of

Registration

Figure 2-3 Honest Virgil, the used-car dealer, must wait in three lines to perform three
separate functions; he'd rather get in one line and do everything in one place.

18 Programming the Macintosh User Interface

It seems fairly obvious to us that Honest Virgil is right about the idea of doing
all of his business in one place. It would certainly make things easier for him.
Likewise, computer programs that permit this type of integration of function are
generally easier for people to use.

For example, it is generally easier to use a word processor that permits you to
add characters, modify them, and delete them without changing mode than to
use one that does require this. Most modern word-processing programs and text
editors work this way. Generally, the user can type in characters through the
keyboard. If a mistake is made, the backspace key can be used to remove the
error, or if the error is more than a few characters long, a block of text can be
overtyped or deleted and then retyped. In general, separate modes for input
(adding data), modification (changing data), and deletion (removing data) have
been replaced by a single mode that users don 't much think about.

It seems quite obvious and necessary that programs should work this way,
although this realization has only recently begun to have an impact on how
computer programs are designed. Word processors and text editors are particu­
larly good examples of the evolution in thinking in this area, and so let us look
back a little in history. Ten years ago, there was no mass-market word-processing
program, and most word processing-if you want to call it that-was done with
text editors on minicomputers and mainframes. Many of these editors were line­
oriented and had several different modes. To enter a line, the user would put the
system into Insert mode. This permitted entry, but no backspacing or deletion. To
make a deletion, the user would exit Insert mode and enter Delete mode. The
character or word to be deleted would then be located-usually be defining a
search-and-replacement set-and an execute command would be given. Alterna­
tively, the entire line could be deleted by identifying the line by number or
moving the line into the edit area. Some editors also included overwrite modes,
enabling the user to replace part or all of an existing line with a new one.

Such editors-with all the work they entail-may seem unthinkable today, and
it is true that they have almost completely disappeared-at least in microcompu­
ter applications. The UNIX line editor-still widely used by college students and
others-works much like this. And if you have programmed in Apple's version of
UCSD Pascal, recall for a moment how its editor works . Fortunately, we can
expect such editors to fade and eventually disappear.

Why, we wonder now, have such awful editors survived so long? There are
hardware reasons, of course-since the line editor with all of its limitations is
very much a consequence of the Teletype terminal used with early computer
systems--;.but that is not the only reason. Such editors continued to be used long
after they could have been improved upon , which suggests that the main factor
was inertia-and lack of imagination among those writing the text-editing pro­
grams. (Picture a computer science professor addressing a freshman. "What do
you mean you don't like UNIX! It was designed by experts. It's easy, once you
know it.") It was not until the microcomputer revolution exposed these programs
to the mass marketplace-and to critical users who were unbiased by previous
experience (put another way, they didn't know anything)-that the poor design
of the editors was acknowledged.

Text editors are but one example of the way that programs have been reshaped
to reflect the events they attempt to manipulate. The general movement has been

The Macintosh User Interface 19

to increase the integration among program functions and thereby reduce the
effort and complexity of performing program tasks. In the limit, this leads to the
integration of separate applications, as in programs such as Lotus's Jazz, which
combines a word processor, spreadsheet, and database, and permits the user to

manipulate data across applications using common methods. Apple Computer's
magic buzzword for this concept is "modeless interaction." Apple encourages
Macintosh program developers to eliminate modes altogether, if possible. The
Macintosh supports this concept in many ways, with its Finder, standardized
pull-down menus, ability to cut and paste, and other user-interface features.
(Modeless interaction is discussed in greater detail in Chapter 8.)

Modeless interaction should be viewed as an ideal rather than an absolute
requirement. It is achievable to a high degree in many applications. In others,
clever design may reduce the heavy hand that modes often lay on using the
application. Bill Atkinson's MacPaint program is a case in point. The MacPaint
canvas (Figure 2-4) permits the user to create drawings with various drawing
instruments (e.g. , pencil, paintbrush, spray can); to create figures; to fill areas; to
vary line widths; to modify the drawings by selective erasure, movement, expan­
sion, and rotation ; and to delete all or part of a drawing. The three common
functions-add, modify, and delete-are all readily accessible. Yet the functions
are not called out by name. Instead, the user simply activates the icon for the
drawing instrument or function desired. Technically, modes exist, but the user is
not consciously aware of them. The continuous presence of the drawing options

r s File Edit Goodies Font FontSize Style

'-....({}

D Ill
oe
oe
~­a «

Bridge/Gate

.,

Figure 2-4 The MacPaint canvas continuously presents the available drawing options in a
palette on the left of the screen and reduces the impact of modes. (Gate from DaVinci
Landscapes Series, copyright 1984, by pennission of Hayden Publishing Company.)

20 Programming the Macintosh User Interface

on the border of the canvas reduces the need for the user to remember what
options are available and the option currently active.

Elements of the Macintosh User Interface

The Macintosh user interface is composed of both hardware and software ele­
ments. The hardware consists of the keyboard and mouse, used for input, and the
video display, printer, and other output devices, used for presenting output. The
hardware is straightforward.

The software elements are standard building blocks used to construct applica­
tions. They are "standard" in the literal sense that the Toolbox ROM (see Chapter
8) has built-in routines for creating and accessing them, and in the doctrinal
sense that Apple Computer has specified how the elements should be used in
applications and strongly encourages programmers to follow the specification.
These elements consist of an operating system, the Finder, standard control
actions (i.e., ways of using the mouse), icons, windows, graphics, text-editing
methods, pull-down menus, dialog and alert boxes, and symbolic control devices.
(The elements are described in detail in Chapter 6.)

The aperating system and Finder are universal across applications. They estab­
lish a standard way of activating, relocating, duplicating, and disposing of system
files, which are represented as icons. A file is activated by double-clicking with
the mouse, moved by dragging, disposed of by dragging to the Wastebasket, etc.
Icons are graphic, symbolic representations of files , applications , or program
functions; they may be activated, moved, deactivated, or otherwise manipulated
in standard ways.

Windows are used to display information or-by including data-input fields­
to input data. They have headings and may display graphics (including icons) or
text or both. By clicking, pushing, or dragging, windows may be opened, moved,
resized, scrolled through, or closed. Many applications can display multiple win­
dows. Text may be presented in windows in a variety of standard type fonts and
sizes. The QuickDraw features of the Toolbox may be used to display lines of
varying widths and standard figures (e .g. , circles, rectangles , rounded rectan­
gles, arcs) and to fill closed areas or the background with various patterns. The
TextEdit features of the Toolbox enable editing to be done in a standard way (e.g.,
cut, copy, paste, undo, etc.).

Pull-down menus are used to enter commands and are activated by clicking on
the menu bar, moving the pointer down to the desired item, and releasing the
mouse button. Standard menus-such as Apple, Edit, and File-are used in
standard ways across applications. In addition, custom menus that resemble and
work like standard menus may be created and used within an application.

Dialog boxes are small windows containing text-entry fields or symbolic control
devices into which the user enters information. Alert boxes alert the user to
conditions requiring immediate action and are disposed of by clicking on a button
signifying acknowledgment. Symbolic control devices include check boxes, but­
tons, dials, and custom controls.

There you have it, more or less. Now, combine these hardware and software
elements with the idea of modeless interaction, and you have a pretty good
picture of the user interface.

The Macintosh User Interface 21

Well, perhaps. The idea of the interface still remains a little vague because it is
not a static thing, consisting of parts, but a dynamic one that only takes on real
meaning in an application. To illustrate, let us take a walk through a typical
dialog.

A Walk Through a Typical Macintosh Dialog

Let us examine a typical Macintosh dialog, step by step. As we make the tour, we
will pause from time to time to observe and comment on the features of the
Macintosh dialog and how they differ from the features of more traditional dia­
logs, on more traditional (i.e. , non-Macintosh) computers. The description that
follows is based on a program called MacBeams, which is used by engineering
professionals to analyze structural beams. The program is simple, and you
needn't be an engineer to understand how it works. It was written in Microsoft
BASIC and illustrates what can be done with BASIC on the Macintosh.

We begin by turning on the Macintosh and inserting the MacBeams disk. The
disk drive whirs, and after a few seconds the disk icon and label appear on the
right of the screen and the Finder displays the icons and labels for that disk
(Figure 2-5). The Finder is arranged as we last left it. The application remem­
bered the locations of the icons, which were arranged previously for maximum
convenience in using the program.

The first step is so simple that at first it seems to defy analysis. But it illustrates
several important ways in which the start-up of a Macintosh dialog differs from
that of more traditional dialogs . Most important is that the program goes immedi-

r- s File Edit Ulew Speciol
.,

Q 0
MACBEAMS MacBeams Demo

Figure 2-5 MacBeams desktop.

22 Programming the Macintosh User Interface

ately into an active, graphically interpretable state. We can view the Finder,
observe what it contains, and choose what to do next. If the icons are unfamiliar,
we can read their labels to determine their contents. Second, the Finder has a
memory, and it is sized, located, and arranged as we last left it.

(In a more traditional program, it would be necessary to display the directory to
determine disk contents. Generally, the directory would be displayed by typing in
an operating-system-level command-such as DIR-and the resulting listing
would display all files on the disk, in list order, including many that would
probably not be of interest in using the program. We would have to read the
directory, interpret it, and locate the particular file of interest. Alternatively , a
traditional "turnkey" system would begin execution of the main program immedi­
ately, without displaying the disk directory.)

We decide to execute the MacBeams program. To do this, we use the mouse to
position the pointer over the MacBeams icon and we double-click to activate the
program. Although MacBeams was written in BASIC, it is not necessary first to
activate the BASIC language; the system does this for us. After a few seconds, the
first screen of the main program (Figure 2-6) appears.

(In a more traditional program it would be necessary first to activate BASIC and
then to type in a RUN command, followed by the program name, surrounded by
quotation marks.)

The main selection screen of MacBeams is typical of Macintosh programs
generally in that it is graphic. It is typical of the best Macintosh programs in that
it uses a clever metaphor-a notebook, complete with rings and index tabs-that

MocD.,umsTlt

PROFESSIONAL AND EDUCATIONA
PROGRAMS IN
• Aircraft
•Mechanical
•Civil
• Slruolunl
•Marine

APPL IC AT IONS

.,

PACKAGE HENU.

COMMON CASE
EL FOUND
SEMI NF
COMPRESSION
TENSION
TORQUE
CROSS-SECT ION

CLICK YOUR CHOICE

Figure 2-6 First screen of main program of MacBeams. It looks like a notebook, complete
with rings and index tabs.

,. .S File Edit Control

Simple beam -
.. _. llhdl!t - '.

ti ansuet se toadtlf~_,-

Version 1.01

V. Rezn i tsky, PhD
E. Vi shneve tsk•J, PhD !I (~~~

1·1 i cro-BESST, Inc .
©Copyright 1984

The Macintosh User Interface

- Shears
- Moments
- Slopes
- Displacements

of Beam under
Trnnsuerse loading.

23

.,

Figure 2-7 Opening a "page" of the MacBeams notebook by selecting an index tab reveals
information about the subprogram.

is concrete and immediately obvious to the user. We know, without being told,
how to "open" this notebook and get at what is inside. Pages are numbered, and
we know that we can tum pages backward and forward to move through the book.
The notebook has a title page and seven tabs-which equate to menu options.
We select the top index tab with the mouse, and the notebook opens to the page
(Figure 2-7), revealing information about the subprogram. We click OK at the
lower right of the notebook, and the notebook opens to the next 2 facing pages,
revealing another set of index tabs on the right. We can back up to the previous
page by clicking on the BK tab at lower left.

(A traditional program, if menu-driven, would display a menu instead of the
notebook, and options would be selected from it by typing in numbers or letters.
To get to the program of interest, it would be necessary to work through several
layers of menus. Generally, prompting and help information would not be pro­
vided with the menus; the user would be expected to know or to obtain this
information from written documentation. In a non-menu-driven version of this
program, the particular subprogram would be selected directly by typing in its
name, abbreviation, or code.)

By paging through the notebook, we eventually reach an option-selection form
with an explanatory graphic at the top and three yes-no options below (Figure
2-8). We select the desired options by clicking them with the mouse. When
through, we click the Continue bar at the lower right. This leads to a data-entry
screen (Figure 2-9). We make entries in this screen by typing them in through
the keyboard. As the entries require mathematical data, we may wish to select the

24 Programming the Macintosh User Interface

~ a file Edit Control

Figure 2-8 An option-selection form in MacBeams.

a File Edit Control

SEGl1ENT NUMBER

Segment length (L)

Dislribuled Load ('vi\) (Left) 0

Di;\ribu\ed Leo•d ('w'2) (Right) 0
Left Poinl Load (P) 0

figure 2·9 MacBeams data-entry screen.

segment

subsegment
I I I I

' ' ·-·-· ~- · --~''l

:!:~:
-...~

The Macintosh User Interface 25

r s File £dit Control
.,

IN2

SEGMENT LENGTH Ii. LOAD SPECIFICATION

SEGMENT NUMBER

Segment length (L)

Distributed Load ('vi 1) (Left)

Distributed Load (\'12) (Right)

Left Point Load (P)

Point lcoad at righ\ support

Left Point Moment (M)

Figure 2-10 Use of Calculator with MacBeams data-entry screen.

Calculator from the Apple menu and use it while making entries (Figure 2-10).
During data entry, we are free to use the normal Macintosh editing functions­
selection with mouse, cut-and-paste editing, etc.-that we are familiar with from
other Macintosh applications.

(In a traditional program, data entry might occur in any one of several different
ways. For example, a series of scrolling prompts might be presented, and the
result calculated and displayed. A more sophisticated program might use data­
entry screens similar to those in the Macintosh program. However, such a pro­
gram would not permit windowing-and the use of a device such as the Macin­
tosh Calculator. Editing of previous entries would probably not occur in a
standardized way that was familiar from other applications. Though there are
common ways to do things in traditional programs, there are no built-in stan­
dards; different programs tend to do the same things in different ways.)

After we have made all necessary entries, the program performs the required
calculations and displays the result (Figure 2-11). To make another calculation,
we page back, make new entries , and calculate another solution. Eventually, to
quit, we return to the Finder. We then perform routine housekeeping-saving or
disposing of relevant files, rearranging the Finder, and ejecting the disk.

(A traditional program will calculate and then display the results. However,
recalculation for a new data set requires a type of backtracking that is done
differently in different programs, likewise for exiting the subprogram and return­
ing to the main program. Traditional programs do not have standard ways to do
these things, although hierarchical menu structures are commonly used. House­
keeping chores such as storing or deleting files may be done within the pro-

26 Programming the Macintosh User Interface

~ s file Edit Control

E Common Cose

GLOBAL EXTREME VALUES

'
Q!j.!4J.!ff;jill@mtilll•itill41rllll&•

MAX 1 1 + 16.610+00
Shear

MIN 1 2 -20.f.l9D+OO

MAX 1 1 + 15.000-02
Moment

MIN 1 2 -15 000-02

'
MAX 1 2 + 13.270+03

Slope
t11N 1 1 -12.770+03

MAX 1 2 + 11.400-09
Oi spl.

MIN 1 1 +0.000+00

·I car1cE-l I fo in~ut I main diaQraml main dah I
bl]

''""'·'·"''""'"· t-;).Xi(~,.- .. v1.o:v:C.W~xv>:\.l'X.);~-:.:-»:(*X;f"~~Y.< :d~.''' ~ , >»;0lc:j.,'(,(>(j·N;-:-,:-:-~)ifi-.~-O: ."<' •• .,~);;;,,.,- ,,VX».,v,.;.,:~:?V,.,-.; ;.:>: ~ .~,·»~':",:'.-'I':" '.«•·:-:.:·;:

Figure 2-11 Result of calculations made with MacBeams.

gram-again, in program-specific ways-or may require the user to exit the
program and use operating-system-level commands to accomplish them.)

Key Characteristics of Good
Macintosh Programs

This tour has demonstrated several things. One of the most important is the
degree to which Macintosh applications can (and should) permit transfer of
knawledge from one application to another. It is not inherently easier or faster to
use the Macintosh than it is to use a computer with a more traditional operating
system, but it is certainly easier to use a new program if it works like an old one
we already know. This is also true of such Macintosh features as cut-and-paste
editing, file handling, windowing, and familiar tools such as the Calculator. In
short, once we have learned these tools in one program, we can use them in
another without giving the matter a second thought.

The tour has also demonstrated some more subtle things about a typical Macin­
tosh dialog.

First, it tends to be concrete rather than abstract. The concreteness is exempli­
fied at the outer level by the desktop metaphor itself, which makes the relevant
programs and files into concrete objects that are represented as icons. The con­
creteness also extends (or should extend) into the working program via a relevant

The Macintosh User Interface 27

metaphor. MacBeams does this by using the notebook metaphor. Other Macin­
tosh programs do it in other ways.

Concurrent with and supporting this concreteness is the strong reliance in
Macintosh programs on icons and graphics. Graphics are used even when not
absolutely necessary- to support text or to illustrate something that would otherc
wise be abstract. Icons in the Finder are graphics of the first sort. The illustrative
beam over the instructions in Figure 2-8 is a graphic of the second sort.

A good Macintosh program makes things visible rather than invisible. It shows
the user what is happening in the program, and it provides immediate feedback.

In general, Macintosh programs make the minimum possible use of the key­
board and enable the user to point and click rather than type. This saves key­
strokes, and makes the application easier for nontypists . There is more to the
matter than this , however. Research has shown that the mouse enables the user
to "reach into the screen" of the Macintosh more easily than does any other type
of input device . (It is not the best input device for everything, but it is the best
one for "point and click" use.) It is a very rapid and accurate pointing device­
more so than cursor keys, light pens, track balls, or other devices (see Chapter 3).
The user is not required to lift a device and point at the screen or to monitor
carefully the current location of the pointer on the screen.

Which brings us to another point. Good Macintosh programs tend to allow the
user to choose things rather than call them by name out of the blue. Various
features make this possible. One is the reliance on menus , which display the
available program options or functions. Another is the use of controls presented
on screens, such as those at the bottom of Figure 2-11 , which permit the user to
move ahead or back up simply by clicking the choice. Allowing the user to choose
can and should work during data entry also. The programmer can have the
computer fill in commonly used entries as defaults , rather than require the user
to remember or invent an entry to make. Good Macintosh programs do not rely on
the user's memory; instead, they provide helpful reminders.

Good Macintosh programs tend to be interactive rather than sequence- or batch­
oriented. For example, MacBeams permits the user to enter data, modify it,
compute new results, try again , and so on, in an iterative fashion. The alternative
to this is to make entries, compute results, and then back up and start over again.
Interactivity is an ideal and can seldom be achieved fully . Most spreadsheet
programs are highly interactive and perhaps represent the limit of this idea.
Programs such as MacBeams, which involve separate screens for program setup,
data entries, and results , are somewhat less interactive. In general, the more
interactive, the better-and the less interactive, the worse.

There are various other ways in which Macintosh programs can be made more
effective-by simplicity, consistency, minimization of the work required to ac­
complish the task, and so on. In fact, these principles, like that of interactivity,
are ideals to seek in programs on all computers. (More on this in Chapter 5.)

If good Macintosh programs have these qualities , then it follows that bad
Macintosh programs lack them. Is it possible to create a bad Macintosh program?
You know the answer already. For the exercise, let us consider how we might
create one. What we create may, like Lucifer, serve as an example to remember
and thereby avoid.

28 Programming the Macintosh User Interface

How to Design an Unfriendly
Macintosh Program

Let us redesign MacBeams to make it unfriendly.
We'll start with the ground rule that it will not work like other Macintosh

applications. We'll use the Finder at the start of the program, but once past that,
the user will be in strange territory. We'll make the program icon obscure-an
empty box. Once the user clicks this , the program loads, but the mouse no longer
does anything; the user is required to type in all entries through the keyboard.

The program's first screen is a blank, untitled Window, but a blinking cursor
marks where the user is to type in a program-calling code that must be recalled
from memory. If the user simply presses the Return key, or types in an invalid
entry, the program crashes. (Our contrary thinking is that a crash is deserved if
the user has not read the user's manual enough to know what the valid entries
are.)

If the user enters a correct program-calling code, then the program enters a
Setup mode. The user is prompted to "Enter setup parameters ," using special
codes and separating them by slash marks. Again , if this is not done correctly, the
program crashes. The user then enters the code to enter Data Entry mode.

In Data Entry mode, the program prompts the user to make data entries;
however, it is not possible to use cut-and-paste editing or other Macintosh fea­
tures. Instead, the numbers must be typed in correctly the first time. When the
entries are completed, the results are computed and displayed immediately, in
numeric form.

And after the results have been displayed, the program returns by itself to the
Finder. After all, the user should know what he or she is doing and get it right the
first time.

You get the idea. Ridiculous , of course, isn't it? Think again. People have
written Macintosh programs that work in similar ways , or not much better. Keep
old Lucifer in mind.

Chapter

3
Rationale Underlying the
Macintosh User Interface

This chapter examines the basis of the Macintosh user interface in terms of
human perception, information processing, and other factors. The first section
discusses characteristics of the user that influence performance while using
computers. The second summarizes user-interface features-desktop metaphor,
icons and graphics, mouse, windows, and menus- and relates them back to the
user. The chapter should extend your understanding of the Macintosh user inter­
face and thereby help you design better programs- and avoid writing ones that
undercut the spirit of the Macintosh user interface.

The Macintosh and Lisa-and their close first cousin the Xerox Star-hit the
commercial marketplace fairly recently. However, they are the end products of an
evolution in which psychologists and computer scientists worked closely. These
computers-much more than any others in the history of computing-reflect an
awareness of the way that human operators perceive and process information.
Program designers such as yourself should develop a similar awareness.

Incidentally, this chapter often refers to program users as "operators," the label
commonly used by researchers. The two terms are interchangeable, and no dis­
tinction is intended or implied.

Characteristics of the Human Operator

This section discusses four common types of operators, human information pro­
cessing and memory, pattern recognition , learning and experience, the power law
of practice, transfer of training, and cognitive models.

Types of Operators

You must make certain assumptions about your audience before writing a pro­
gram. This is always a little dangerous , but it is inescapable. One way to approach
the problem is with operator stereotypes. Stereotypes are not real operators , but
they mark the extremes of the operator population and are useful as starting
points. Four stereotypes are presented here: computer professionals, profession­
als without computer experience, naive users, and skilled clerks (Figure 3-1).

29

30 Programming the Macintosh User Interface

Professionals
without Computer
computer professionals
experience

~
<ii
" ·c:

£

" ~

Naive Skilled
users clerks

Computer skill

Figure 3-1 One way to categorize operators is in terms of their relative technical and
computer skills. The four extremes are marked by the operator types shown in this graph.
(Fram Simpson, Programming the IBM PC User Interface, copyright 1985, by permission of
McGraw-Hill Book Company.)

Computer professionals. Computer professionals have done much program­
ming, usually in many different languages. They understand software design
concepts. They also understand computer hardware-the interplay among CPU,
memory, and input-output (1/0) devices. They are intelligent, well-educated, and
highly motivated.

Computer professionals are not intimidated by software, and if a particular
program does not work quite as they would wish, they will want to customize it to
suit their own needs. These are the kinds of people who call up the programmer
and want to know the file structure so that they can modify it for their own
purposes.

They have little patience. They like programs to be fast. Most of them care less
about user-friendliness than about finding ways to speed up their use of the
program.

These users are not typical of the Macintosh user population. Unless you are
writing a specialized program aimed specifically at this audience, you would be
best advised to target one of the other groups described below.

Professionals without computer experience. Most Macintosh users fall into
this category. They are intelligent and well-educated, and they know that a com­
puter can help them do their jobs better. Typically, they do not have technical
training in computer science, programming, or a scientific discipline. They may
use their Macintosh to manage a stock portfolio, calculate a budget, plan a pro­
ject, or perform other analysis, planning, or management functions.

Unlike computer professionals, these users lack computer expertise-they do
not have a particularly good understanding of what is happening inside their
Macintosh. They also lack broad experience in using different types of programs.

Rationale Underlying the Macintosh User Interface 31

However, li ke compu ter professionals, they lack patience, set high standards
for program petformance, and are intolerant of program errors. Since they lack
technical expertise, they are in no position to modify programs that do not work
properly. Instead, they will return them to the dealer, the program's author, or
some other un fortunate individual whom they hold responsible for a bad product.
You can hardly blame them.

Such users are not interested in knowing any more about the computer than
necessary . You cannot expect them to read documentation or to follow written
directions. They will ignore prompts and enter data of inappropriate type, format,
length , and other characteristics. They will break all the rules. In most cases, this
is the best audience to keep in mind when you write programs for the Macintosh.

Naive users. Naive users know next to nothing about computers or about how
computer programs are supposed to work. They seldom use programs. You
should assume that their first exposure to a program is in your program-that
they have never used a program before. Naive users are children and adults who
have little or no exposure to computers in their daily lives. When they sit down
before a Macintosh , it is usually to play a game or to use some simple home or
entertainment program.

The most that you can assume about this audience is that they know how to
turn their Macintosh on and off. The programmer must therefore manage the
user-compu ter interaction very carefully. Every step of the interaction must be
guided with menus or detailed on-screen explanations. Every possible error must
be trapped. This audience is even more likely to make careless errors than are
professionals without computer experience. Along these lines, Murphy's Law
comes to mind: If something can be done incorrectly, the naive user will do it.

Skilled clerks. Skilled clerks are not programmers, but they use a microcompu­
ter for several hours per week and develop very strong user skills. Users falling
into this class are word-processing operators, data-entry clerks, and others who
use a program freq uently enough to master it. These operators do not have a high
degree of computer sophistication , but they do become highly skilled. They are
like computer professionals in their interest in speed. They quickly grow impa­
tient with features, designed for less experienced operators , which tend to slow
them down. Skilled clerks are expert operators but not programmers. In a sense,
they are what naive users or professionals without computer experience can
develop into after several years of experience.

One of the fi rst steps in designing a program-if not the first step-is to
determine the types of operators who will be using the program. Operator type is
then factored into the design process (see Chapter 5).

Human Information Processing and Memory

The design of the Macintosh user interface reflects an awareness of certain
properties of human information processing and memory. For example, multiple
windows compensate, in part, for limitations of human short-term memory. The
present section examines this and other human information-processing and
memory limitations by exploring what goes on inside an operator who is seated

32 Programming the Macintosh User Interface

Sensation

Perception

Long - term Short - term
memory

~---i Integration

Figure 3-2 Human information processing involves several stages: Incoming information
must first be sensed, which is done preconsciously. Next, sensation is integrated into a
conscious awareness of the stimulus; perception occurs. Active, deliberate processing be­
gins with short-term memory, in which an interplay occurs between incoming information
and the contents of long-term memory, and meaning is assigned. Eventually, the informa­
tion becomes fully integrated, and the operator responds to it. (From Simpson, Design of
User-Friendly Programs for Small Computers, copyright 1985, by permission of McGraw­
Hill Book Company.)

before a computer and viewing information on its video display. A sequence of
actions occurs as the operator monitors the computer display. This sequence is
illustrated in Figure 3-2 and described below.

Note that human beings are generally regarded as single-channel processors.
They are able to switch their attention quickly among tasks but incapable of true
parallel processing.

When information appears on the display, light waves travel though the air and
affect the operator's sensory apparatus-the eyes and the part of the brain that
senses light. This is the act of sensation. If the operator is not attending to the
display, then sensation does not occur. Sensation is not conscious, but it is
required before any conscious awareness of the information can exist.

Following sensation is the act of perception. Perception amounts to the ii:itegra­
tion of sensation into some meaningful awareness-that light has been seen,
sound has been heard, something has been felt-though meaning has not yet
been assigned. Perception is influenced by learning and by what has happened to
the individual in the past. It is also influenced by the state of arousal and fatigue.

Active, deliberate processing commences with short-term memory. The term
"short-term memory" is something of a misnomer. This "memory" is really much
more like a processing buffer. That is , as new information enters , old information
is displaced. Short-term memory does not retain information for long; during
normal processing, its content is lost after about 15 seconds. It is a site at which
there is an interplay between information coming in from the senses and long­
term memory; the information is processed, and the human being makes sense
of it.

Short-term memory has been studied extensively, and what is known about it

Rationale Underlying the Macintosh User Interface 33

is important to program designers such as yourself. Here are some of its key
properties. First, the contents of short-term memory are what you are currently
attending to, not recent events. Second, the contents of short-term memory are
constantly updated, as in a buffer. Old information is shifted out as new informa­
tion enters. Third, the capacity of short-term memory is well defined and surpris­
ingly limited. A review by G. A. Miller puts its capacity at about seven items, plus
or minus two, i.e ., between five and nine items. More recent studies suggest that
it is smaller, perhaps as little as three items.

Consider how the limitations of short-term memory may influence an opera­
tor's ability to use a computer program. The main things to bear in mind are that
short-term memory (1) has a small capacity and (2) loses information quickly.
You cannot inundate an operator with a lot of information and expect that infor­
mation to be retained. The operator has serious, built-in limitations that make
this impossible.

The information coming in through the sensory channel must be decoded and
integrated. For example, sound vibrations must be converted to phonemes, to
words, to sentences, to meanings-in other words, go through a series of trans­
formations involving an interplay between short- and long-term memory.

Long-term memory contains all the information that a person has encoded
throughout a lifetime. In practical terms, it seems to have unlimited capacity. If
short-term memory is like a processing buffer, then long-term memory is more
like permanent disk storage. Many researchers model long-term memory as a
network in which each concept is located at a node and accessed through links
that correspond to relevant semantic categories. For example, if somebody asks
you to name all the bearded men you personally know, you can access the rele­
vant information via two cues: "bearded" and "men." In general, the more cues
provided, and the more concrete the cues, the more likely you are to access the
appropriate node, i.e., memory trace.

Information may be encoded in long-term memory to various degrees. The
more "deeply" the information is encoded, the more readily accessible it is.

Information may be encoded in more than one form. For example, you may
encode a concept in terms of its name, its graphic form, both , or in other ways.
The more different ways the concept is encoded, the easier it is to retrieve from
memory. For example, you will have better luck remembering about historical
figures if you know both their names and what they looked like than if you know
simply their names.

Information retrieval is also influenced by a factor called the encoding specific­
ity principle. In simple terms, this principle states that you associate certain cues
with information when you store it in long-term memory. To retrieve it , you must
use some or all of those same cues. For example, if you see a large, ·threatening
insect crawling up your leg, and a knowledgeable friend informs you that it is a
"green, wall-eyed spider wasp," you will store this knowledge-if you are not
distracted-using the cues "large insect," "green," "wasp," "wall-eyed spider
wasp," and perhaps "creepy-crawly" and some other cues . At some later point in
time, you may retrieve information about the wasp using any of these cues or
their combinations. But the more cues provided, and the more closely they match
the encoding cues, the better recognition will be.

The encoding specificity principle has some important implications. Concrete
objects-such as wasps-can be defined in terms of fewer cues than abstract

34 Programming the Macintosh User Interface

ones. You cannot readily define an abstract idea such as Truth in terms of a few
concrete properties. (Here's a challenge: design the Finder icon for the· True
BASIC programming language; see Chapter 9 for the solution.) This means that
concreteness makes it easier to learn and later to recall a concept. Consider how
this relates to the Macintosh user interface. First, most Macintosh program enti­
ties are represented in concrete form, e.g., as icons, graphics, windows, symbolic
controls, etc. Second, their appearance remains consistent within and across
applications; e.g., the Finder is always the Finder, the Edit menu always the Edit
menu, etc. Obviously, these factors aid retrieval of information concerning the
purpose and function of each entity.

In extracting information from long-term memory, the operator may be re­
quired either to recall or to recognize it. In a recall task, the operator is presented
with a request for information . For example, "Name all your friends whose names
begin with A." In a recognition task, the operator is presented with information
and must determine whether or not it is familiar. Recognition tasks are easier
than recall tasks because the operator does not have to organize and conduct a
memory search. This is one of the reasons that menu-driven programs are easier
for inexperienced operators to use than are programs that require operators to use
commands that they have memorized (see Chapter 2). The menu poses a simple
recognition task, but command-driven programs require that commands be re­
called from memory.

Eventually, operators deal at the conscious level with information that has
worked its way through their processing system. They may ignore it, maintain it
in short-term memory, or make a response . But note that before the operator can
act on the information at the conscious level, a good deal of earlier, preconscious
processing and filtering must occur. In short, presenting the operator with infor­
mation does not guarantee that the operator will ever deal with that information
consciously. We need only consider the limitations of the human information
processor to see why this is true . Here is a summary of those basic limitations:

• Single-channel processing

• Need to focus on display to sense information

• Perception governed by attention, which in turn depends upon state of arousal
and fatigue

• Short-term memory capacity of roughly seven items

• Information lost through decay in about 15 seconds

• ·Retrieval of information from long-term memory influenced by:
Information coding
Encoding specificity
Concreteness of concept
Recognition versus recall task

The human information processing model described above is a highly con­
densed and simplified version of the model generally used by cognitive psycholo­
gists. For a more complete and detailed version of this model, refer to Card,
Moran, and Newell's book The Psychology of Human-Computer Interaction
(1983).

Rationale Underlying the Macintosh User Interface 35

Pattern Recognition

- Human beings are capable of recognizing familiar patterns almost instanta­
neously. An example of this in everyday experience is the recognition of faces . All
of us have learned and know literally thousands of faces-of family members,
friends, celebrities, teachers , and so on . At least two things about this are striking.
First, recognition generally occurs almost instantly. Second, we seldom make
mistakes.

An enormous amount of research has been done on pattern recognition, and
the theory builders have yet to explain it fully. Aside from theory, however,
human performance in recognizing patterns tells us some important things.
First, patterns do not have to be analyzed to be interpreted. When you turn a
corner and see someone's face, you do not go through a deliberate process of
noting hair color, shape of nose , distance between eyes, facial coloring, and so
forth. The face is apprehended as a whole, and instantly interpreted. One theory
of pattern recognition-template matching-likens recognition to matching a
shape with an overlay. The theory has serious limitations-particularly in ex­
plaining people's ability to recognize a pattern as the same under different condi­
tions-bu t is a useful metaphor.

Pattern recognition is interesting in its own right and also when contrasted
with how people process certain other kinds of information. For example, most
people will read a mathematical equation character by character, from left to
right. On the other hand, a mathematician who works regularly with common
expressions and functions may read the entire equation at once, like a word or
pattern. This is also true of reading lines of programming code.

Similarly, when you see the following,

dlgehkij

each character must be read separately, since the letters together do not form a
word. However, if the following characters are presented,

dirigible

they form a word, which is apprehended as a pattern. The point is that certain
familiar entities-faces, letters , words , and so on-may, with experience and
skill, be apprehended as patterns. Since pattern recognition occurs much more
rapidly than serial processing, it enables a person to perform such wonders as
reading 300 to 400 words per minute.

Think about that for a moment. Reading 300 words per minute requires you to
read 5 words per second. If the average word contains 7 letters, that means
plowing through 35 letters per second. Skilled readers do not, of course, do this.
Instead, they recognize the words. Paradoxically, a reader can recognize words
more rapidly than individual letters.

This also tells you something about why it is better not to abbreviate words that
you want people to recognize. An abbreviation-unless it is a very familiar one
that is itself recognized as a word-requires the reader to interpret its characters
serially, instead of relying on the built-in pattern recognizer. This takes more
time and more work, and it is more likely to cause errors.

36 Programming the Macintosh User Interface

Icons can-if designed properly-be processed by the operator as patterns. For
example, the icons in the MacPaint palette (see Figure 2-4) are immedtately _
recognizable representations of common objects. If designed improperly-with
an ambiguous or unfamiliar form-they require slow, conscious, deliberate pro­
cessing (icon design is discussed in detail in Chapter 7). Likewise, the Finder
(which represents a desktop), the MacBeams notebook (see Chapter 2), and other
graphic representations of concrete objects may be processed as patterns. (The
use of icons, graphics, and metaphors is discussed in greater detail in Chapter 5.)

User Skill and Experience

No two operators are completely alike. They may vary by what type they are (i.e.,
how closely they fit one or more stereotypes), how they process information, what
they know, and in various other ways. Not only are they not alike, but any specific
operator is a moving target. An operator may be a very sophisticated user with one
program, but a complete novice with others. Performance also depends upon the
operator's knowledge and skill in the particular subject area of the program.
Operators- like anyone who learns anything-change as they learn and gain
experience. The novice operator today may become an expert tomorrow.

The power law of practice. Given all of these factors, it is still possible to
determine the general shape of the user learning curve, i.e., the graph showing
the effect of practice upon performance. User performance is generally measured
in terms of speed, accuracy, number of tasks accomplished, and similar variables.
(As performance improves, errors generally decrease, and so errors are an inverse
measure of performance.) Practice is generally specified in terms of elapsed time,
trial number, or related variables. The power law of practice states that perfor­
mance improves with practice in a predictable way. Card, Moran, and Newell
(1979) have shown that user learning curves are power functions of this general
form:

where T = elapsed time
B = scaling constant
N = trial number
a = exponent for the particular task

The factors in the equation vary based on the task and subject, but the general
form of the function is fairly universal. The exponent a is commonly between 0.2
and 0.4 , although it may be smaller or larger. For example, in a research study,
Card, English, and Burr (1978) found that the relevant factors for performance in
using the mouse are the following:

B = 2.20
a= 0.13

Hence, this equation can be used to estimate pointing time on successive trials
with the mouse:

T = 2.20N - 01 3

Rationale Underlying the Macintosh User Interface 37

As_you may have guessed, speed using a mouse is not the important point here.
Rather, it is that the power function is widely applicable and can be used as a
model for thinking about how an operator's performance will improve with prac­
tice. Most of the improvement occurs early, and performance tends to level out
later on. A whole family of curves can be plotted with a power function. The
shapes of the curves are determined by the exponent, a, and, as noted, this varies
with the task and subject.

Transfer of training. Transfer of training refers to the degree to which skills
developed in one domain can be transferred to another. For example, when you
climb into a rental car at an airport, you face the transfer-of-training problem
directly. If you have driven similar cars, there is a high degree of transfer, and
you can get going and move into traffic without a hitch ; your learning curve will
be steep. If the car is unfamiliar-if, for example, you have rented a Porsche
Turbo Carrera and have never driven one before-then there is less transfer and
your learning curve will not rise as fast.

Most automobiles work in similar ways, and you can expect a high degree of
transfer among them. Complications arise, however, when the usual ways of
doing things are changed. For example, suppose you rent the car in London, and
the steering wheel is on the right, gearshift on the left, and you must drive on the
left side of the road. This takes getting used to, and it can result in negative
transfer-a serious degradation of performance resulting from a contradiction in
expectations of how things should work.

The principles of the power law of practice and transfer of training apply to the
use of computer programs. Their relevance to the Macintosh user interface is
fairly obvious. First, the power law of practice means that skill improves predict­
ably with practice. Second, the transfer-of-training principle means that you can
expect a certain amount of either positive or negative transfer among applica­
tions. The more similar the applications, the more positive transfer is possible.
Since the Macintosh has many interface features built in , it is obviously a ma­
chine designed for optimal transfer of training. Alternatively, if the application
does not work in the usual way (for a Macintosh), then negative transfer may
occur.

Bottom line: it is perilous to design Macintosh applications that do not work in
the usual way. "Usual" in this context means that the application makes use of
such Macintosh features as the Finder, icons and graphics , the mouse, windows,
pull-down menus , dialog and alert boxes, and other Macintosh conventions.
(For more information on these conventions, see Chapter 6, where they are
spelled out in detail.)

Cognitive Models

A cognitive model is a person's representation of something in the external world.
Since phenomena are many and varied, people's models of them can take many
different forms.

One type of cognitive model is a mental map that helps you find your way
around the physical world of your daily life. On this map are the locations of your
home, the place you work, the grocery store, and so forth. You built up this map
through practice and probably do not think about it. However, you become very

38 Programming the Macintosh User Interface

conscious of the need for such an internal representation-or an actual, paper
map-when you visit an unfamiliar area and get lost.

Using a computer program involves many of the same processes as finding
your way around unfamiliar geography. A typical program consists of several
subprograms that are linked together with a control structure. The subprograms
may allow various types of data entry, display, file manipulation , and so forth.
Before operators can use such a program effectively, they must know their desti­
nation (the subprograms they want to use) and what streets to turn on (control
actions) to get there. They will have to check signs (display indications of current
subprogram, status, etc.), make decisions, make incorrect turns , and so forth ,
until they get to their destination . There is an orientation problem in using a
computer program, just as in moving about physical geography.

Computer programs can ease orientation considerably by providing the opera­
tor with landmarks that provide locational or status cues such as meaningful
window titles and field labels. Alternatively, a program can be written in such a
way that the user will often get lost and feel as if he or she has just been
blindfolded and dropped into an alien landscape. The important point is that
users do not know automatically how to get from point a to point bin a program.
This must be learned, and the power law of practice tells us that this takes time.

In addition to mental maps, people seem to possess and use internal models of
how things work. The accuracy and completeness of these models vary with the
individual and the device. It follows that people form models of how computers
and computer programs work, and that these are often incomplete and inaccu­
rate. The Macintosh goes a long way toward easing the user's burden by provid­
ing a simple model-the desktop Finder-at the outer edges of most applications.
The user can adopt this model and use it instead of inventing one. Other simple
models-such as cutting and pasting-work (or should work) within most appli­
cations. Again, these reduce the burden on the user.

Cognitive models and mental maps are useful metaphors for describing how
people seem to represent the world, although they should not be taken too liter­
ally. However, they are useful in considering the user's needs when designing a
computer program.

User Characteristics and the Macintosh
User Interface

The previous section offered insight into the user and suggested how user char­
acteristics are reflected by the interface. This section maps the territory more
completely by discussing each aspect of the Macintosh user interface-desktop
metaphor, icons and graphics, mouse, windows, and menus-and relating it back
to the program user.

The desktop metaphor-the literal desktop with its graphic representations of
application files, file folders , wastebasket, and other features-does several
things for the user. Perhaps the most obvious of these is that it offers itself as a
concrete model of how the computer and its application are organized and may be
manipulated. From the user's viewpoint, the two elements-computer and appli­
cation-are fully integrated and indistinguishable. It is not necessary to do some

Rationale Underlying the Macintosh User Interface 39

things at one level-such as issue operating-system commands-and do other
things at another level-such as enter application-specific commands. Short of
inserting and removing diskettes, the user interacts only with one computing
entity, at one level.

The desktop is a concre.te representation, and it combines both graphics and
text. The user does not have to query the program to determine what programs
and files are available-they are portrayed in symbolic form. The user can select
by moving the pointer with the mouse and clicking. These properties ease the
burden on both short- and long-term memory. The graphic forms used-particu­
larly icons-can with practice be recognized using the operator's built-in pattern
recognizer.

Pull-down menus also ease the user's memory burden. The user does not have
to remember names or commands to type in. Instead, menu bars can be activated
to display the menus, and the relevant option can be selected by clicking.

Windows support the user in several different ways. First, they offer the user
greater flexibility in accomplishing a task, and thereby reduce work. Since several
windows can be displayed simultaneously, or quickly paged among, the user does
not have to change mode or move about the program to accomplish related tasks
(refer to discussions of modeless interaction in Chapters 2 and 8). A by-product of
this is that the burden on short-term memory is reduced. If the user does not
remember what was on the previous window, that window can be activated and
reviewed.

Then there is the mouse. Not everyone likes the mouse, and it is probably the
most-often criticized aspect of the Macintosh. Was it a mistake? The best answer
to this is found in the research literature. Card, Moran, and Newell (1983) sum­
marized the findings of their own and others' research on various pointing de­
vices (mouse, light pen, light gun, cursor keys, step keys) by stating that the
mouse is both faster and more accurate than other devices investigated. To be
fair, research did not test the stylus and graphics tablet or the track ball. However,
these devices are generally put to specialized uses- the stylus for drawing, and
the track ball for , well, tracking. The stylus probably is better than the mouse for
drawing, but not better for pointing and selection. The track ball probably is better
for tracking; however, tracking is not required in most Macintosh programs, and
the mouse is better, again, for selection.

Chapter

4
Examples of
Macintosh Programs

This chapter describes selected features of seven different Macintosh programs.
The programs do things in clever and creative ways and can serve as models for
program designers and programmers. The chapter does not critically review these
programs, nor does it claim that they do everything in the best possible way.
Rather, it describes program features that may inspire you. Later chapters of this
book refer back to many of these programs to illustrate design points.

All the programs shown work nicely, and some work elegantly (you decide
which ones). However, they were selected from the still fairly limited base of
Macintosh software, and other, better programs of each type may eventually
appear. Concrete examples are always useful to designers, since they offer a
touchstone that is more tangible than the often abstract design principles (such
as those in Chapter 5) that guide design.

The first four sections cover the most common types of programs used on the
Macintosh-graphics, spreadsheet, word processor, and database. The first sec­
tion discusses the graphics program MacPaint (Apple). This much-imitated pro­
gram is one of the best written for the Macintosh, and its apparent simplicity
belies its clever design. Some folks regard it as the model Macintosh application.
It is well worth close, careful examination. The first section also discusses
DaVinci (Hayden) a graphics tool kit that uses the MacPaint drawing environ­
ment. The second section discusses the spreadsheet program Multiplan (Micro­
soft) in both its MS DOS and Macintosh versions. The contrast between the two
in both simplicity and ease of use is striking. The third section discusses the
word-processing program Word (Microsoft). The fourth section discusses the
database program Helix (Odesta). The fifth section examines two instructional
programs. The first, MacCoach (American Training International), is a tutorial for
the Macintosh novice and is designed to increase user knowledge and basic skills
in using the Macintosh. The second, MacType (Palantir), is a typing tutor de­
signed to develop typing skills. The final section, titled "A Few Afterthoughts,"
sums up some of the features that made the good programs good and describes
some of the features of software clinkers that kept them out of the chapter.

40

Examples of Macintosh Programs 41

Some readers will note the absence of an example of a complex, multifaceted
program such as Jazz (Lotus); it seems unlikely that most readers will attempt to
develop one, and a brief survey such as this cannot do one justice, hence the
focus on more "conventional" (in the Macintosh sense) programs.

Graphics Examples-MacPaint and DaVinci

MacPaint

MacPaint is one of the most popular and easy to use Macintosh programs. It has
probably done more to dispel computerphobia than any other program ever writ­
ten. Kids and computer-naive adults alike are able to sit down with this program
and use it with little or no instruction. If Pulitzers were given for software,
MacPaint would certainly rate one. Yet its apparent simplicity is deceptive; it is a
very powerful program that performs many different graphics functions with an
apparent modelessness that has not been equaled by more conventional graphics
programs. Let us take a closer look.

MacPaint is initiated in the usual way, by selecting the MacPaint icon (or a
previously created MacPaint application) from the Finder. The MacPaint screen
(Figure 4-1) then appears. The palette on the left edge of the screen contains
twenty icons, the lower left corner a series of lines, and the bottom edge thirty­
eight boxes with patterns.

,.
• File Edit Goodies Font FontSize Style

P .-,
' ' ·-·

,g

o•
o•
o• c:?.
a ..

v-

-

~D

Figure 4·1 MacPaint screen.

untitled

,

42 Programming the Macintosh User Interface

Polm Trees

(a)

Palm Trees

(b)

Figure 4-2 MacPaint figure movement operations with (a) lasso and (b) hand . (Palm trees
from DaVinci Landscapes series, copyright 1984, by permission of Hayden Publishing Com­
pany.)

Note that the only text on the screen consists of the names of pull-down menus
(top), the screen title , and the capital A in one of the icon boxes; most drawing
and graphics-manipulation functions can be pe1formed without reading any­
thing.

Note also that the twenty graphics icons are not categorized or hierarchically
organized, although they perform several different classes of functions. The
lasso, dotted box, and hand are used for figure movement (Figure 4-2a and b); the
dotted box alone, to select a portion of the screen for a graphics operation; the

Examples of Macintosh Programs 43

~D untitled

The A icon is se lected to permit text entry

Figure 4-3 Selecting the A icon pennits text entry.

capital A, to enter text (Figure 4-3); the bucket, to fill an area (Figure 4-4); the
spray can, paintbrush, and pencil, to draw (Figure 4-5); the line, to draw a line
between two points; the eraser, to erase (Figure 4-6); the boxes, ellipses, etc., to
draw the specified figure (Figure 4-7). The organization of these icons encour­
ages the user to think of them as of the same ilk, rather than to make artificial
distinctions based on mode or function. (A mode-minded designer would proba­
bly have done this screen quite differently-see below.)

The main graphics functions-specified by the icons on the left edge of the
screen-are constrained by the selected line widths and patterns on the lower

untitled

Figure 4·4 Use of paint bucket to fill an area.

44 Programming the Macintosh User Interface

fa.int
?~

untitled

'J
.......... .

.

.
,,

Figure 4-5 Rank amateur's attempt to illustrate drawing with spray can (upper), paintbrush
(middle) and pencil Oower).

edge of the screen and may be further constrained with the Goodies menu. The
patterns are generated by drawing instruments and used for fill ; they govern the
format of the dots laid down on the screen . The Goodies menu enables the user
to, among other things, lay down an invisible grid to aid in making the drawing
symmetrical, edit the pattern, change brush shape, and create mirror images
while drawing.

Further, the Edit menu has special options to enable the outlined part of the
drawing to be inverted, filled , flipped sideways, or rotated (Figure 4-8a and b).

Treetops I

•
Figure 4·6 Use of eraser to erase part of image. (Treetops from DaVinci Landscapes series,
copyright 1984, by pennission of Hayden Publishing Company.)

Examples of Macintosh Programs 45

untitled

D D 0

•
Figure 4-7 Three standard MacPaint figures-rectangle, rounded rectangle, ellipse-in
open and filled forms.

The only thing MacPaint has approaching a formal mode is FatBits, which
enables a portion of the drawing to be expanded for manipulation at the pixel
level (Figure 4-9).

MacPaint has several implicit modes in terms of the particular graphics func­
tion being performed, the active drawing pattern, the line width, and so forth , but
its features are exercised in a way that is seemingly modeless. Consider how this
program might otherwise have been designed. A mode-minded designer might
have designed the program with hierarchical modes-with graphics versus text
mode at the top; Insert, Edit, or Delete mode at the next level; Setup mode to
specify drawing pattern and line width; and so forth.

DaVinci

DaVinci is a set of graphics tools designed by Image Bank Software, Inc. , and
published by Hayden. The tools work with the MacPaint graphics program. The
set includes several different images and fonts that allow the user to build sophis­
ticated designs with the graphic building blocks in each program. What follows is
a description of one of these tools-Commercial Interiors-which is used to
design floor plans. Other tools in the set enable the design of building exteriors,
landscapes, and the construction components of buildings. Da Vinci is more than
a collection of drawing elements. It is a design-creation kit that enables the rapid
construction of accurate drawings.

The Commercial Interiors kit permits drawings to be constructed in three
scales, corresponding to I/16 inch, l/s inch, and l/4 inch per foot. It includes 450
design elements, or templates, which can be used in constructing plans. The
DaVinci disk contains more elements than can be stored on a single disk-along
with MacPaint and other required files-and so the user must first select the
design elements needed and transfer them to a working disk.

46 Programming the Macintosh User Interface

,.

p
0 A
~ l'-m

i!i tJ
""-.. g

D II
0 •
0 •

Cut
Copy
Poste
Cleor

lnuert
Fill

:!CH
3€C
:ICU

Trace Edges :ICE
Flip Horizontal
Flip Uertlcol

FontSlze Style

F ountolns/F ences

(a)

Fountoins/Fences

(b)

.,

Figure 4·8 MacPaint Edit menu with (a) selection of Rotate option and (b) result of rotation
on figure . (Fountain from DaVinci Landscapes series, copyright 1984, by permission of
Hayden Publishing Company.)

=o

• .,..
• • •

••
•

Examples of Macintosh Programs 47

r ount11ins/F ences

• • • • • • • • •• • • • •• • • • •• • • •• •• ••••••• • •• •• • • ••

• • •

• • • • • • • • • •••••••• ••• •• • •••• • • • ••••• •••• • •• •• • •• • •• • • • •• • • ••• • • • • •• • • • • • • •• • • • •

•

•• ••••••••••••••••

• • • •
• • • •

Figure 4-9 FatBits expansion of top of fountain shown in Figure 4-Sa. (Fountain from
DaVinci Landscapes series, copyright 1984, by permission of Hayden Publishing Company.)

The first step in creating a drawing is to open the MacPaint program, which is
done in the usual way. When the MacPaint canvas appears, the File menu is
accessed and the Open option selected; this displays the file options available
(Figure 4-10). A scaling file such as 1/16

11 Layout is then selected to initiate the
application.

The next steps are to use the Font menu to select the Office font, and the
FontSize menu to select font (i.e., design element) size. At l/ 15 inch scale, 24-
point design elements permit the standard 8112 x 11 inch page to be used to plan
offices containing up to 20,000 square feet. The A icon on the left side of the
MacPaint screen is then selected. The Office font consists of design elements
rather than alphanumeric characters, and these can be typed in directly through
the keyboard. Different design elements are generated , depending upon whether
keys are unshifted (Figure 4-11) or shifted (Figure 4-12).

The design is created by using predefined design elements available through
the keyboard in combination with MacPaint drawing tools. Parts of the drawing

C:omputers
Desks
Drnftlng rm.
Fiie equip.

M1M§iM

C:11ncel

;

! C:ommerci11I...
I
! Eject

I i Drlue
!

Figure 4-10 The first step in using DaVinci's Commercial Interiors kit is to open a scaling
file , e.g., 1/16 inch layout.

48 Programming the Macintosh User Interface

Figure 4-11 Lowercase office. DaVinci Commercial Interiors design elements with un­
shifted keyboard . (From DaVinci Commercial Interiors, copyright 1984, by permission of
Hayden Publishing Company.)

can be moved, selectively erased, rotated, cut and pasted with the Clipboard,
stored in the Scrapbook-in sum, manipulated like any other MacPaint draw­
ings. The user can readily combine Da Vinci's design elements into larger graphic
entities to be used later.

The design elements available through the keyboard are scaled. For example,
for the setup described above, the elements called from the unshifted q, w, e, and
r keys correspond to 10-foot office spacing, and each space-bar press moves 2 feet .
Such scaling enables designs to be created very quickly through the keyboard .
Wall thicknesses are the same as medium-width MacPaint lines, and lines can be
drawn to fill in any empty spaces. A visible measuring scale can also be presented
on the screen for use when the drawing is resized or when unscaled elements
(such as MacPaint-drawn lines) are added. Figure 4-13 shows a typical floor plan
created using the unshifted keyboard and MacPaint lines.

Once the floor plan has been designed, it can be filled with furniture design
elements available through the shifted keyboard (see Figure 4-1 2). Figure 4-1 4
shows the floor plan with furniture added.

A program such as this will not replace the architect or designer, but adds a
powerful tool to their repertoire, one that can do much that graphic design sys-

Figure 4-12 Uppercase office. DaVinci Commercial Interiors design elements with shifted
keyboard. (From DaVinci Commercial Interiors, copyright 1984, by permission of Hayden
Publishing Company.)

Examples of Macintosh Programs 49

~o Unfurnished Office

1.-. 11 ___ _

Figure 4·13 Floor plan created with DaVinci Commercial Interiors kit.

terns costing several thousands of dollars can do. It also proves-to skeptics who
regard MacPaint as useful for little more than doodling-that MacPaint can
become a very practical design tool.

A Spreadsheet-Multiplan

Multiplan is one of the most popular spreadsheet programs, and it has been
published for several different computers. The Macintosh version makes effec­
tive use of Macintosh features and is more than a straight translation of an earlier

~[Furnished Office

Q1~~~~
~~ ~E 0

L.-. IL.ii -----

Figure 4-14 Floor plan and furniture created with DaVinci Commercial Interiors kit. (From
DaVinci Commercial Interiors, copyright 1984, by permission of Hayden Publishing Com­
pany.)

~'
50 .Programming the Macintosh User Interface

version; it is interesting to compare Macintosh Multiplan with Multiplan for pre­
Macintosh computers. This section makes the comparison by examining Multi­
plan for both the Macintosh and for the IBM PC (and other MS DOS computers).

Multiplan can do many different things. This discussion focuses on just four
functions: starting up the program, moving around the work space, entering
information into cells, and accessing help information. Each function is de­
scribed first for the Macintosh version of the program and then for the MS DOS
version.

Program Start-up

Macintosh Multiplan is initiated in the usual way, by selecting the Multiplan icon
from the Finder. The Multiplan screen (Figure 4-15) then appears. An old appli­
cation can be loaded from disk at that point by using the Open option on the File
menu. The screen has the standard Apple, File, and Edit menus, as well as four
program-specific menus-Select, Format, Options, and Calculate. Each of these
four menus permits the user to perform a different class of functions on the
spreadsheet.

The current location of the active cell is indicated by row and column coordi­
nates (for example, Rl C 1 means row 1, column 1) below the menu bar, on the left
side of the screen. To the right is a blinking cursor that marks the input field;
whatever is typed in will be assigned to the active cell in the spreadsheet. The
active cell is shown graphically on the spreadsheet with inverse video. Spread­
sheet column numbers are marked across the top, and row numbers down the left

,.

II
• File Edit Select Formot Option~ Colculote

.,

R1C1 II I II
Untitled

2 3 1 5 6

2 :::w
3 : : : :

: .1!11

. ·· ·· ·········· ···· ············· :::::: 5
6

7
8
9
10

II
12

.. : : ··············· ······· ······· ···· ········ · !!!I!!
: :

·· ····:················· ·>· ..n.······· ··· ···
... : : :v.

: : . .

.•.... mm
........... 11111f

:i:::: ······:·· ······· ····· ····:
mm :··· :

···················: :::::::: .:: ::: ::: ::::::::::::::::::: :::: :::::: :::::::: ······ ········:::: ::::::::::::. :::: · iiiiii
13 : : • • • ~llll1 . .

Figure 4-15 Macintosh Multiplan screen.

Examples of Macintosh Programs 51

2 3 4 5 5 7

2
3
4

5
5
7
8
'3

1lil
11
12
13
14
15
15
17
18
1'3
20

COMMAND : Alpha Blank Cc•py Delete Edit Fc•rrnat Gc•to Help Insert Lock Mc1ve
Name Opt i ons Print Quit Sort Transfer Value Window Xternal

Se l ect c•pt i c•r1 or t y pe comma nd letter
R1Cl 100% Free Multiplan: TEMP

Figure 4-16 MS DOS Multiplan screen.

edge. The familiar scroll bars at the bottom and right edge of the screen permit
the (approximately) 6 x 15 cell screen window to be moved anywhere about the
spreadsheet. Note that the cells are marked by dotted lines and clearly separated.
At first glance, the screen looks clean and uncluttered, and many of its functions
are self-evident to an experienced Macintosh user.

MS DOS Multiplan is initiated by bringing up DOS and then typing in the
abbreviation MP and pressing the Return key. The Multiplan screen (Figure
4-16) then appears. The columns and rows are marked by numbers along the top
and left edge of the screen, but unlike the Macintosh screen, there are no dotted
lines to outline individual cells. A single, twenty-option menu appears at the
bottom of the screen. Below the menu is a prompt. The bottom line contains row
and column coordinates, an input field, the percent of free memory available , and
the application name.

The screen is clean and uncluttered, but the long menu is intimidating. It is
worth' dwelling on this for a moment, and contrasting it with the pull-down menu
approach used in the Macintosh version of the program. Because the MS DOS
program lacks pull-down menus, all main options were put into a single menu .
This leads to three problems. First, the menu is long, and takes a long time to
scan. Second, menu options are not categorized or classified; they are simply
listed. A listing such as this implies that Alpha (used before typing in an alphanu­
meric cell entry) is the same class of thing as, say, Transfer (used in moving data
to or from the spreadsheet) . Third , since menu options are commonly selected by
typing in the first letter of their name, each option must start with a different
letter, and this forces some nonideal names. For example, to save a spreadsheet
to disk, the Transfer option is first selected, and then the Save option is selected
from the menu that next appears. It seems much more natural to save a file by

52 Programming the Macintosh User Interface

typing in an S. However, doing this from the main menu calls the Sort option,
which can wreak havoc on the spreadsheet. One realizes after using this program
for a while that, although it has menus, it is not truly a menu-driven program.
Rather, the menus are there just as reminders. To use the program effectively,
the user must type in command sequences that call submenus and issue relevant
directives.

Moving Around the Work Space

Before an entry can be made in a cell, that cell must be moved to and acHvated.
With the Macintosh, the mouse is used to place the pointer (a cross) on the
desired cell (see Figure 4-15). If the cell is not visible, the scroll bars at right and
bottom are used to reposition the window, or to jump to another part of the work
sheet (Figure 4-17).

With the MS DOS version, cursor keys are used to position the highlight to a
visible cell. If the cell is not visible, cursor keys may be used to scroll to it. For
distant moves, the GOTO option of the main menu is activated, and then the cell
numeric coordinates are typed in (Figure 4-18). This brings to light one of the
inconsistencies of the program. Cursor keys are active on the work sheet but not
on the menu. Thus, to jump from field to field of the menu , the Tab key or space
bar must be pressed. Having the program operate this way makes it possible to
move about both work sheet and menu without changing modes , but it requires
that certain keys be assigned program-specific ways of operating. Learning the

,.

II
• File Edit Select Format Options Calculate

.,

RICI II 11

2
3
4
5
6
7
8
9

Un titted
25 26 27 28 29 30

......

.

10

: ! : ::: : :::::::::::: :::: :: ::::::::::::: : ~::::::::::::::::::::::::: : : : :::::::::j:::::: ::: :::: :::::: :: :::::::: :::::::: iJl!';

·········· · · ···· ··~······· · · · ········~··· · ··· · · ···· · ·· ··:···· · ····· · · · ·····~······ ·· ··· · ··· · ··~·· · ··· · ·· · · · · ··· · · m~!l ! ! ········:· ·····:. ·················:······ ··~ ··············:······· !!:!!!
.. : : : : : :::::: 15

Figure 4-17 Macintosh Multiplan: Use of horizontal scroll bar to jump to another part of
spreadsheet.

Examples of Macintosh Programs 53

·#1 26 27 28 2'3 31 32
1
2
3
4
5
5

8
'3

10
II
12
13
14
15
15
17
18
1'3
20

GOTO row : I col1.tr.n-1: 27

E Y1ter a r11.1rnber
n!C27 '391- Free Multiplan: TEMP

Figure 4-18 MS DOS Multiplan: Use of typed-in coordinates to jump to another part of
spreadsheet.

rules is not difficult, but the situation is not ideal; this is a typical case of tailoring
the user interface to the application, in contrast to the Macintosh version of the
program, which does just the opposite.

Entering Information into Cells

The cells of a work sheet most commonly contain words, numbers, or formulas.
For illustration purposes, let us consider how these three elements are entered.

With the Macintosh, the desired cell is activated, the entry-word or num­
ber-is typed in, and then the mouse button or Return key is pressed (Figure
4-19). Entries appear in the cell as they are typed in at the keyboard. The entry
may be formatted using options on the Format menu. Format may be extended to
other cells by clicking on the first (anchoring) cell and extending the selection
and then selecting the appropriate Format option (see Figure 4-20).

With the MS DOS version of Multiplan, words and numbers are entered differ­
ently. The first step is to activate the desired cell. To enter words, you select the
Alpha option of the main menu and you type in the entry (Figure 4-21). To enter
a number, you select the Value option. In each case, the entry does not appear in
the cell until after the Return key has been pressed. A given entry may be
formatted by selecting the Format option of the main menu, which in tum calls a
formatting menu . Format options are selected from this menu by positioning the
highlight to the appropriate block and then typing in the appropriate letter. For­
mat options, cell contents, or both may be copied by selecting the Copy option
from the main menu ; this calls a submenu that enables the user to type in the
range of cells, by row or column, that is to be copied to (Figure 4-22).

54 Programming the Macintosh User Interface

r s File Edit Select Formot Options Colculote
.,

jj R1C1 l®l 1ncome II

3
1
5

Un ti tied

2 3 1 5 6

.....
. : : : ;i:::: ~ ~ : : mm

······· ···· ···· ·· ·: ······· ··· ··· ·····:······ ··· ····· ····: ·· ······ ··· ··· ·· ··:········ ·········· ··· ··········· ... ·:·:::

" " " .. " " .. " .. i .. " .. " " " " " .. ! . " " . " . " " ~ " " . : " " " " .. " " " " . .!'i.:
··· ·················· ·········· ···························· ··· ··· ················· ···· ::::;:

s ~ ~ , : : mm
· · · · · · · · · · · · · · · · · · ~ · · · · · · · · · · · · · · · · · · : · · · · · · · · · · · · · · · · · · ~ · · · · · · · · · · · · · · · · · : · [I! Ill
.•.•.•. . .. :•....... : ... ~ . . .•......... . : : . ii~:::

..... [ljjji . .
··· ···· ···· ·········· ····· ···································· ··· ······· ·················

7
8
9

! ~: : :.. ~ !!·j;i
12 :-- ~ : > mm

13
... : i ; ~ :m::

. p : : ~ ;
. ·· ············· ···

. i~Wi
.

Figure 4-19 Macintosh Multiplan: Entry of word .

r S File Edit Select Options Colculote

10
11
12
13

R1C 1 Generol
Dollor
Percent

1----=2'-I No Declmol
Declmol
Scientific
Dor Groph

Number Of Declmols ...

Align Left XF

5 6

....•.•••••.•.•. •.•.•....••.•....• .••.•. HHH ·:::::

......................... !~m
···: ········· . ···· .. · • •.•.•.•.•. •....... il\lH
. ~mH

Align center 31:G ·· iijU mmilll_ ; !i!i''

....... ~ ········· ·· ·· ······· ·· :~1~:·
.............. ___ .. ·-·---···--······--.. ··· ___ .,.,_.,.,,, iii!ii

... ~ iiim

... : . . . • . • . . . • . • . ~=~:i: Commas

.. : }

._c..,.0_1u_m_n_w_1d_t..,.h._ .. __ _, .. . : ;m::
11 : : !!!ii!
15 : : . :

Figure 4-20 Macintosh Multiplan formatting with Format menu and selected cells.

.,

Examples of Macintosh Programs 55

2 3 4 5 6

3
4
5
6
7
8
'3

10
11
12
13
14
15
16
17
18
1'3
20

ALPHA: Ir1come

Enter text (r10 d•:ruble q1.1 1:ites)
RlCl '3'3;1. Free i"'lult iplan: TEiTIP

Figure 4·21 MS DOS Multiplan: Entry of word with Alpha option of main menu .

Ill
1
2
:;
4
5
6
7
8
'3

10
11
12
13
14
15
15
17
18
1'3
20

2 3 4 5 6

Income

Salaries
Materials
Overhead

Profit

FORMAT cells: R1Cl:R7Cl alig nment : De~ Ctr Gen Left Right -

7

forMat code:CDef)Cont Ex p Fix Gen Int$* ;I. - #of decimals:
Select option
RlCl "lncc•me" '3'31- Free M1..1ltiplaY1: TEMP

Figure 4·22 MS DOS Multiplan: Copying a format to a range of cells.

7

56 Programming the Macintosh User Interface

,.
File Edit Select Format Options Cnlculote

.,

II R7C2 l@I cR(-6)C-RHJC-R(-J)C- R(-2)C

Untitled

II

2
3
1
5
6
7
8
9

2 3 1 5 6
Income: 5000 ······ ················ ········· ··· ·········· ········· ·· ········ ···· ········ ··- ······· ········ · ········· ····· ··· ···· ···· ············· ··· ······ ···· ·············· ···· ······ ···· ····· ··· ····· ······ ·· ···· ······ ······

..... ~a.l_at.i.~~: ~~.9.~ .. : : : :......... ;;;:;:

.. . ~.a.t.er,)~!~: ~ .. : : : : iii\\:

.... g.~.~r.~.~.~~ : ... ~ .. ~?.9.~ .. : : : :........... . mm

:: :::::::fr?:i(t8_ ••1.1: :::::::::::::::::\.::: ::::::::::::::::::: :::: ::::::::: :::_:::::::::::::::::: mm . . . I
••••.• ' • ' ••.• • ' ••• ~ .••.••.••••• •• ••.• ; •• •.••••.••.•••••• ~ ••.•••. •. .• •• ••••• ~ ..•••. ...• ... •...• ~ • • • • • . • • • • iliiH

10
11

.............. :.··· ··· ··· ··· ···· ··: : : : mm
. ~

····· ····· ······ ··:····· ·· ·· ···· ·····:···· ··············:·· ·· · ·· · ·· ········:········ ·· ·· ······: · ·· ····· · ···· ····· i:im
• • •••••••••••••• • • : •• • ••••• •• • ••• • ••• : •• •• • • • • ••••• •• ••• : •••• •• •••• • ••••••• : •••••••• • •••••••• • : • • ••••• ••• I • • • • • • • H~ii:

12 : ;... : \······ .. ·· ·· ····· ·\····· ·· 11111:

13 ········ ···· ··· ···:··················: ·· ········· ··· ····:· ··········· ··· ··· :······ ············:· ····· · ·· ·· ·· ···· · ;';':: 11 i!ii[i
15 ··· ·· ····· ········:··· ···· .. ·········: ···· ····· ··· ··· ···:··· ·· .. ·· ······ ···:····· ·············:· .. ·············

Figure 4-23 Macintosh Multiplan: Entering a formula.

'fl

1
2
3
4
5
6
7
8
'3

1111
11
12
13
14
15
16
17
18
1'3
2111

2 3
Ir1come 5000

Salaries 6000
Materia ls 5

Overhead 35111111

Profit

V~LUE: =RC-6JC-RC-4JC-R[-3JC-R[-2JC

Ent er a fc. rrnu la
R7C2

4

'3Sl;t. Free

Figure 4-24 MS DOS Multiplan: Entering a formula.

5 6 7

i"'lu.itio lan : TEMP

Examples of Macintosh Programs 57

Formulas are entered in similar ways with both versions of the program, the
main difference being how the relevant cells are located. With the Macintosh, the
mouse is used; with the MS DOS program, the cursor keys. First, the cell that is
to hold the formula and display its result is pointed to and an equals sign is
entered. Then each relevant cell is pointed to and the appropriate operator (e.g., a
plus sign) is entered (Figure 4-23). The formula is concluded by pressing the
Return key. The Macintosh version of the program makes this considerably eas­
ier, since its pointer remains in place on the screen, serving as a marker. With the
MS DOS version, the cell highlight disappears after each entry, making it difficult
to remain oriented (Figure 4-24).

Accessing Help Information

Both programs provide help information to the user, but the help feature is
implemented differently in each of them. With the Macintosh , a help file can be
accessed either from the Finder or from within the program. Requesting help
within the program turns the pointer into a question mark, which can then be
positioned on any feature to obtain relevant information. With the MS DOS
version, the Help option is selected from the main menu , and the user selects
relevant information by using help menus.

Some Conclusions

This analysis leads us to the inevitable conclusion that the Macintosh version of
Multiplan is simpler to learn and easier to use. Among the reasons for this are
that the Macintosh version makes use of many features common to other Macin­
tosh programs, is graphics-oriented, and enables commands to be issued more
easily. The Macintosh version is also stronger in the feedback department be­
cause it immediately displays cell entries, enables coordinates to be marked with
the mouse instead of by typing in row and column numbers, and keeps the
pointer in place during entry of formulas.

A Vlord Processor~Vlord

Microsoft Word is the first full-featured word-processing program for the Macin­
tosh. The very first Macintosh word processor-MacWrite-introduced many
Macintosh users to word processing. MacWrite is an easy-to-learn program, and
fairly powerful, but it has been criticized for its limitations, among which are a
lack of windowing capability, small document size (corrected in later versions),
and inability to merge files. Word adds features to correct these problems as well
as several other features , to make for a much more powerful program that is only
slightly more difficult to learn.

Word is highly compatible with Mac Write in terms of both the way it works and
the passing of files (transferrable if saved in "text-only" form). Word can also use
the Clipboard to insert pictures from MacPaint. This compatibility is obviously
desirable for Word users-virtually all of whom will have experience with
MacWrite and MacPaint-and an important lesson for designers of other Macin-

58 Programming the Macintosh User Interface

'" s File Edit Search Choracter Paragraph Document
.,

~o Untitled

<>

Figure 4-25 Microsoft Word screen.

tosh programs. Just as the designer should use Macintosh user-interface features
consistently across applications, by extension the files produced by one program
should be made accessible by others.

Program Start-up

Word is initiated in the usual way, by selecting the Word icon from the Finder.
The Word screen then appears (Figure 4-25). The screen has the standard Apple ,
File, Edit, and Search menus, as well as three program-specific menus-Charac­
ter, Paragraph , and Document (Figure 4-26). An old application can be loaded
from disk at that point by using the Open option of the File menu (Figure 4-26b).
The File and Edit menus have some additional, program-specific features (see
below).

The Word screen is a window, with a blinking, vertical line cursor, and a
diamond marking the end of the file. Scroll bars on the right edge and bottom
permit the document to be scrolled vertically or horizontally. The horizontal scroll
bar is used in creating wide documents. These can be printed with a wide­
carriage (that is, 15-inch) Imagewriter, or with a standard printer by printing
sideways. Page number is shown in a box at lower left.

Screen and Window Organization

The Word screen can be split vertically by pointing to the black box at the upper
right (Figure 4-27) and dragging the line that is produced down to the desired

Rbout Microsoft Word ...

Scrapbook
Rlarm Clock
Note Pad
talculotor
Key taps
Control Panel
Puzzle

(a)

find... 8Cf
Change ... 8CH
Go To... 8CG

(d)

Examples of Macintosh Programs 59

New SCN
Open... 3€0
Close 3€W
Saue 3€S
Saue Rs ...
Pag~ Setup ...
Print... 3€P
Print Merge .. .
Printer Setup .. .
Quit 3€0

(b)

Pfoin teHt
Bold
/1111/c
Underline
IDl!Jl.llllkil@
'1111GJ!IJ(j][ID
Small tops
Superscript
Subscript

Formats... 3€0

(e)

Oiuision layout ...

Footnote... 3U
Running Head ...

Repoglnote XJ

(g)

Undo Typing 81l2

tut 3€H
Copy 31lt
Pnst<~ :•:t•
tie or 3€8
Show Clipboard
Show Glossary

Show Ruler l!CR
Show 'II :ICY
Preferences ...

(c)

• w.liillllilm•
Normal

..Ile ft
Centered
Right
Justified

..ISlngle Space
Double Space
Open Space

Formats... :ICM

Tabs... l!CT

(f)

Figure 4-26 Microsoft Word pull-down menus: (a) Apple, (b) File, (c) Edit, (d) Search,
(e) Character, (f) Paragraph, and (JJ) Document.

60 Programming the Macintosh User Interface

,. s Fiie Edit Search Character Porogroph Document
,

~D Untitled

The Word screen can be split vertically by pointing to the black box at upper ~
right and dragging the line that Is produced down to the desired location

I p II g e 1 IQ I]!!!!i!!i!!!H!!!i!i!i!i!i!i!i!!!!Wi!i!i!i!!Hi!!i immm:i!!i!H!ii)!i!il!!i!i!:W:ii!ili!!!ii!!!!!H!!ii!iHHHHHHH!i!Hi!!!i!i!!Hli!!!iii!i!!iiH!iH!!!!!l!!H~ 91 'i:
k;·.·.-.·.·.·.·.·.·.·.·.· ·.·.·.·.-.·.·.·.·.·.·.·.·.-.·.·.·.·.·.·.·.·.·.·.·.·.·.-.·.·.·.·.·.·.·.·.·.·.-.·.·.·.·.·.·.-.·.·.·.-.·.·.-.·.·.·.·.·.·.·.·.·.·.·.·.·.-.·.·.·.-.·

Figure 4-27 The Word screen is split vertically by pointing at the box at upper right and
dragging the line produced down to the desired location.

location. The result of this action is to duplicate the lower portion of the upper
document in the second screen (Figure 4-28). Both windows have their own
scroll bars , and composition can occur in either by pointing with the mouse and
clicking the window to activate it. Since the two windows represent the same
document, changes made in one window are duplicated in the second.

In addition to splitting a single window, Word permits as many as four files to
be open simultaneously, with their contents displayed in separate windows (Fig­
ure 4-29). The files are opened with the Open option of the File menu (see Figure
4-26b), and each new file is assigned to a separate window. The desired window
is activated for input in the usual way, by pointing to it with the mouse and
clicking. The user can move freely back and forth among windows, and transfer
the contents of one window to another by cutting and pasting via the Clipboard.

Most of the features of Word will be self-evident to any experienced Macintosh
user (which is exactly how it should be). Let us take a quick tour through some
key features, via the menus (excluding the Apple menu , which is unchanged).
Incidentally, on all these menus, the most commonly used options can be acti­
vated either by pointing with the mouse or by using Command key combinations .
A keyboard-intensive program such as a word processor should work this way,
since many of its users will be skilled typists who will be able to issue a keyboard
command more rapidly than they can move their hand from the keyboard, posi­
tion the mouse, and click a menu button and then an option.

Examples of Macintosh Programs

r S File Edit Seorch Chorocter Porogroph Document

§0 Untitled

The Word screen can be split vertically by pointing to the black box at upper
right and dragging the line that Is produced down to the desired location

The Word screen can be split vertically by pointing to the black box at upper
right and dragging the line that is produced down to the desired location

Figure 4-28 Appearance of Word screen after being split.

This is window I.

Untitled

This is window 2.

Untitled

This is window 3.

Untitled

This is window 4.

0

Figure 4-29 Word screen with four document windows.

61

.,

62 Programming the Macintosh User Interface

Entering and Marking Text

As text is typed in, the cursor moves to the right of the current character. Like­
wise moves the end-of-file marker, if visible in the text window. The Backspace
key may be used to delete text to the left of the cursor. Text may be cut or copied
via the Clipboard. Before this is done, the text block must be marked. It is marked
in the same way as with MacWrite-by clicking the mouse at the beginning of
the block and then dragging to the end and releasing the mouse button (Figure
4-30). Single words are marked by double-clicking.

Word also permits lines, paragraphs, and entire documents to be marked by
positioning the pointer at the left edge of the text (in a blank area referred to as
the Selection Bar) and then issuing the appropriate command. When the pointer
is moved to the bar, it turns to an arrow (Figure 4-31). Clicking the mouse once
marks the line, clicking twice marks the paragraph, and pressing the Command
key and clicking marks the document. These additional editing features-exten­
sions of those with Mac Write and other Macintosh applications-speed up edit­
ing, particularly for skilled typists. Marked text may be cut and pasted or copied,
or its type style, face, or size may be changed with the Character menu (Figure
4-26e).

Edit Menu

The Edit menu (Figure 4-26c) has standard Undo Typing, Cut, Copy, Paste, and
Show Clipboard options, as well as several additional ones. Clear erases marked

r
• File Edit Search Ch11racter Paragraph Document

~ Untitled •'===-----=
Word has standard Macintosh editing features. Text is marked in the

same way as with IMfiif-by click.Ing the mouse at the beginning of the
block and then dragging to the end and releasing the mouse button.

.,

Figure 4-30 Text is marked with Word in the usual way-by clicking the mouse at the
beginning of the block and then dragging to the end and releasing the button.

Examples of Macintosh Programs 63

r ., s File Edit Se11rch Ch11rocter P11rngroph Document

Untitled

Word also permits lines, paragraphs, and entire documents to be
marked by positioning the pointer at the left edge or the text (in a blank
area referred to as the Selection Bar) and then Issuing the appropriate !iiii!
command.

.... ...,,ltiJIWIMIM.!,'',

. I
I
!!iii!

Figure 4·31 Lines, paragraphs, and entire documents may be marked with Word by click­
ing in the Selection Bar on the left side of the document window.

text; Show Glossary shows Word's Glossary, a user-created set of commonly used
text blocks that can be inserted into a document by typing in a short code; Show
Ruler does the obvious; Show ~ inserts a ~ symbol into the text at paragraph
divisions, and dots between words; and Preferences . . . permits the unit of
measure to be set at inches or centimeters, and IO pitch, 12 pitch, or points (l/72
inch).

Character, Paragraph, and Document Menus

Word makes a logical distinction among characters, paragraphs, and docu­
ments-ascending levels of text organization-and has separate menus for each.
The Character menu (Figure 4-26e) permits you to set type style and, via its
Formats . . . option, typeface and type size (Figure 4-32). Unlike MacWrite,
which has a quickly accessible Font menu (that some people might argue occa­
sionally results in creative excesses), Word makes changing type font and size
more remote operations. This makes sense for users who create long documents
that require fewer of such changes.

The Paragraph menu (Figure 4-26f) is used for text formatting . A MacWrite­
style ruler is available (shown by selecting the Show Ruler option from the Edit
menu- see above), but it is primarily a reference tool, and is not used for setting
tabs or margins. Instead, Word relies on the Paragraph menu to make such
settings. The Normal option on this menu aligns text on the left, unjustified and
single-spaced, and can be used in lieu of making a separate setting with other

64 Programming the Macintosh User Interface

Chorocter Formots
Style----, t OK

OBold
D ltollc
D Underline
D Outline
0Shodow
D Smoll Cops

Concel

Position
®Normol
0 Superscript
0 Subscript

Figure 4-32 Character formats are set by selecting the Formats . . . option of the Character
menu, which produces this dialog box for making the settings.

options on the menu. The Left, Centered, and Right options set margin align­
ment. Justified fills empty spaces to align the paragraph on left and right margins.
Spacing is set with the Single Space, Double Space, and Open Space options. The
Formats . . . option displays the Paragraph Formats dialog box (Figure 4-33) and
places a ruler at the top of the active window; this box permits several aspects of
format to be changed at once. Tabs can be set with the Tabs . . . option.

The Document menu (Figure 4-26g) is used for setting several more global
aspects of the document. The Division Layout ... option calls the Division
Layout dialog box (Figure 4-34), which enables setup of page breaks, number
formats, and the location of footnotes and running heads. The Footnote option
permits creation of footnotes and specification of automatic footnote numbering,
if desired. Footnotes are displayed in a separate footnote window, which opens
when the Footnote option is selected. The Running Head . . . option permits a
heading to be placed in the text at top or bottom of selected pages (odd, even, or
first page only). The Repaginate option is used to repaginate the document after
editing changes that may have affected page breaks.

Porogroph F ormots , Loft lndont: IMI I Lino Spocing: auto
First Line: O" Spoce Before: 0 II

K . OK

(Cancel J
Right Indent: O" Spoce After: 0 11

~--------~

@Left O Right D Keep with neHt 'II
O Centered O Justified D Keep lines together

Figure 4-33 Paragraph formats are set by selecting the Formats . . option of the Para­
graph menu, which produces this dialog box for making the settings.

Examples of Macintosh Programs 65

Olulslon L11yout n OK ,
Bre11lc Poge Number Formot
O Continuous @Numeric C11ncel
O Column 0 Romon (upper)
@Poge 0 Romon (lower) Footnotes Rppeor
QOdd O Rlphabetic (upper) ® On Same Page
QEuen 0 Rlphobetic (lower) 0 Rt End of Dluision

D Ruto P11ge Numbering: Running Heod Position:

Stort Page Numbers Rt: C=:=J

From Top: l..-o-. 7-5-. --.

From Bottom: io.75"

Number of Columns: I 1
:=====:

Column Sp11cing: lo.5"

Figure 4-34 Document formats are set by selecting the Division Layout . . option of the
Document menu , which produces this dialog box for making the settings.

Search Menu

Finally, the Search menu (Figure 4-26d) permits the user to locate and , if he or
she desires, to change a specific sequence of characters; this feature is similar to
that available with MacWrite.

The Bigger Picture

This tour of Word's features, as detail-laden as it was, may have told you more
about the program than you wanted to know. Let us back off from the program
slightly and examine it from a more global perspective. This program is good for a
number of very simple reasons. First, it makes use of common Macintosh user­
interface features-standard pull-down menus, dialog boxes, windows, scroll
bars, and the like. Second, where it departs from Mac Write , it adds more power­
ful features-for example, permitting individual text windows to be split, and
several files to be open simultaneously. Third, it increases the availability of
keyboard commands to perform program functions , a feature that will appeal to
skilled typists who might be put off by MacWrite's menu dependency. Fourth,
note that the program's command structure and menus are logically organized,
and are not a simple mishmash of unrelated options. (We tend to expect pro­
grams- and the menus and command structures they reflect-to be logical, but
sometimes overlook the fact that the apparent simplicity of logical organization is
the result of careful planning and is not achieved easily.) Finally, although this is
a powerful word-processing program, experienced Macintosh users will have
little difficulty learning it because it has so much in common with other programs
that they already know; this , really, is the acid test, and the test that any Macin­
tosh application must eventually pass to be successful.

66 Programming the Macintosh User Interface

A Database-Helix

This section provides a brief description of key features of Helix, a relational
database program designed by Odesta Corporation. Helix is a sophisticated, flexi­
ble, and powerful program that makes effective use of the unique features of the
Macintosh user interface. It does this with striking economy. Among the features
that make Helix special are its graphics orientation, its use of a total of nine main
icons to perform most program functions , and its ability to perform most database
operations by manipulating icons with the mouse. However, before discussing
this program in detail, let us place it in perspective. (Readers familiar with data­
base programs may skip the subsection that follows.)

An Introduction to Database Programs

Let us begin with terminology. A database is stored data used by a program. In
most cases the data are stored in disk files and can be read into memory, modified
or deleted, and stored again to the file. The database consists of one or more files .
Files are usually organized into records, which are collections of related data
elements (such as names, telephone numbers, addresses, etc.) . Records are de­
fined in terms of fields; each field consists of a single data element. An index is a
key used to access file records. For example, an alphabetic index is commonly
used to access a file whose records contain names.

A database program is generally flexible in terms of what it contains and how
its contents are organized; these factors are under the user's control. For exam­
ple, by adapting program features, the user may use the same program to track a
parts inventory, maintain personnel records, or manage a library. The simpler
databases are computerized filing systems. Examples of such programs are PFS
File, DB Master, and Microsoft File. Data are entered , indexed, and retrieved
using the index.

Often, however, the user cannot devise an indexing system that will meet all
possible future data-access requirements. When this is the case, it may be desir­
able to use a relational database, i.e., a program that permits data to be accessed
via the normal index route or via relationships among its data fields. For example,
one might use such a program to search a personnel file to identify all profes­
sional employees who have worked for a firm for between 2 and 4 years . The
search requirement implies a relationship: employee type (i.e ., professional), and
length of employment (2 to 4 years). A relationship such as this is generally
specified on the spot, during the search. Tomorrow the interest may shift to
another relationship, e.g., production-line employees earning less than $8 per
hour. It is common to specify the relationship using logical operators (AND, OR,
NOT) and relational operators (less than, more than, equal to, etc.).

The design of any database program imposes several difficult user-interface
requirements. Key is that the program must be customizable; it must be possible
for the user to specify features built into conventional programs. For example, the
user must be able to define the content of the database, design record formats for
data input and display, and specify field type and content. A relational database
must permit the user to define the desired search relation-and this , for the
Macintosh, is perhaps the most challenging aspect of design. The reasons are

Examples of Macintosh Programs 67

that (1) many program users will be unfamiliar with logical and relational opera­
tors and (2) the Macintosh user interface mitigates against entry of these opera­
tors in the traditional way (through the keyboard) in favor of a "point and click"
approach with icons.

Most Macintosh database programs deal with these design requirements in
ways that are effective. The Helix database was chosen to illustrate this section
because it is (1) a relational database and (2) completely true to the spirit of the
Macintosh user interface. Its icon-based approach to database manipulation ex­
emplifies a truly creative design. The following description will give you a taste of
how th;, prnw= ;, de,;gned md what ;t o.n do. I

Helix Icons

Helix uses nine main icons (Figure 4-35). Each of these icons opens a window to
perform a different program function. The icons are related in a ierarchical
fashion, as shown in Figure 4-36. In general, the icons will be accessed in top­
down order.

Program Start-up-Application Icon

The Helix icon (see Figure 4-35) represents the Helix program. This appears in
the Finder when the program is initiated. Helix is activated by opening this icon
by double-clicking.

Collection and Relation Icons

The Helix Collection icon (see Figure 4-35) represents a Helix data file . A file­
and corresponding icon-is created when a data file is saved to disk. Each collec­
tion of data consists of one or more data files . When the Collection icon is clicked,
the Collection window opens. The palette on the left side of the window consists
of an icon "well," which contains a Relation icon (see Figure 4-35), used to create
a new data file, and a Wastebasket to discard old relations. The right side of the
window is used to display the Relation icons of data files that have already been
created. A data file is created by dragging the Relation icon from the well into the
window in the right and defining its structure and contents (see below). (This
dragging method-from palette to window-is used throughout the program to
activate a particular program function.) Alternatively, an existing file can be
activated by clicking its Relation icon on the right side of the Collection window.

Let us consider the sequence for creating a new file. The first step is to drag the
Relation icon from the palette into the window. This causes the Relation window

~ ~ ftl l~l • ~ - l~il ~ [7J
Helix Collection Relation Field Abacus Template Selection Index Query

Figure 4-35 Nine main icons used in Helix. (From Odes ta Helix, copyright 1984, by perrnis­
sion of Odesta Corporation.)

68 Programming the Macintosh User Interface

Collection

1

~
Relation

1

t ;;,} ;
Field

~
Relation

m!~
Template

Collection Collec tion

~
Relation

l~il
Selection ~ [1]

Query

Figure 4-36 Hierarchical relationship among Helix icons. (From Odesta Helix, copyright
1984, by permission of Odesta Corporation.)

~--- RelelionWindw----

Bookshop

field

Icon Wells

(Windo'W)

Weslebeskel

Figure 4-37 Helix Relation window. (From Odesta Helix, copyright 1984, by permission of
Odesta Corporation.)

Examples of Macintosh Programs 69

(Figure 4-37) to open. The palette contains the six remaining icons (see Figure
4-35) and a Wastebasket icon . These icons are used to define the file. The Rela­
tion window and its icons are used to do almost everything within Helix.

Creating Fields

The Field icon (see Figure 4-35) is used to create a particular field within a record
by dragging the icon from the palette of the Relation Window (see Figure 4-37)
into the window on the right (Figure 4-38). If the record is to contain several
fields, the Field icon is dragged repeatedly. Each field is named by erasing the
label "Field" and typing in a new name in usual Macintosh fashion. The fi eld type
may be designated as one of four types-text, number, date, or flag-by opening
the Field icon and responding to a dialog box; the format of nontext fi elds is
defined likewise.

Defining Calculations

The Abacus icon (see Figure 4-35) is used to define calculations whose results are
to be displayed. The calculations commonly involve two or more record fi elds. For
example, the Abacus may be used to relate two fields in order to calculate and
display their sum. The Abacus field is dragged from the palette of the Relation
window to the window on the right and named, and then double-clicked to
activate the abacus window (Figure 4-39).

The palette of this window is divided into two areas . The top contains Abacus
and Field icons; clicking one of these displays the list of existing Abacus calcula­
tions or fields (Figure 4-40). The icon to the right- an oval containing two
boxes-is a Calculator Tile. Clicking this activates the scrollable list of Relation­
ship Tiles in the bottom part of the palette.

The procedure for defining a relationship is to (1) activate the Calculator Tile,
(2) scroll through the list of Relationship Tiles until the desired one is found , (3)
activate it and drag it into the window on the right (Figure 4-41), (4) select the

Reio lion

·- :::::1 1;:;::::·:1

:~:
::i : ::::::: : ~ . ..:.:::_::: :

Na mt Fi•ld Fi•ld Field

·~! i~! !~! L..:.=.=.=.=:· : : :: ::: ::: ~ ••. = =.=.=.=.=.=. ;

Fi•ld Fi• ld Field Fi•ld

Figure 4-38 A field is created by dragging a Field icon from the palette in to the window.
(From Odesta Helix, capyright 1984, by permission ofOdes ta Corporation.)

70 Programming the Macintosh User Interface

Figure 4-39 Helix Abacus window. (From Odesta Helix, copyright 1984, by permission of
Odesta Corporation.)

Addrtss
Bit·thday
City
t·1arrieod ?
M~rn >?

N".ltes ~
'Shtt
Zip

Abacus

Figure 4-40 Displaying a directory of existing fields in the Abacus window. (From Odesta
Helix, copyright 1984, by permission ofOdesta Corporation.)

Figure 4-41 Dragging a Relationship Tile from the palette into the window. (From Odesta
Helix, copyright 1984, by pe1mission ofOdesta Corporation.)

Examples of Macintosh Programs 71

'w'ho\tul• Disc. ..

Figure 4-42 Dragging a field into a box of a Relationship Tile to create a relationship. (From
Odesta Helix, copyright 1984, by permission ofOdesta Corporation.)

Abacus or Field icon , (5) move the pointer to the desired item (fi eld or relation­
ship) in the list that is displayed and drag it into one of the boxes in the Relation­
ship Tile on the right (Figure 4-42), and (6) select the next item and drag it to the
right to complete the relationship.

Relationships may be combined by linking the exit arrow of one relationship to
one of the boxes in another (Figure 4-43), and several relationships may be linked
together (Figure 4-44).

The Format icon is used to define the format of a box in a tile, and the Waste­
basket is used to dispose of relationships. Helix has a large repertoire of prede­
fined relationships: arithmetic, logical, and relational operators; trigonometric
functions; counts; averages; and so on.

Graphic definition of relationships with the Abacus window is one of the most
interesting features of Helix, and well worth dwelling on briefly. Helix does not
require the user to _type in field names, variables, formulas , or other abstractions.
Instead, relationships can be defined, from start to finish , using concrete objects ,
i.e., Relationship Tiles and previously defined fields and relationships. The rela­
tionship thus defined has a concrete, graphic representation that makes it quite
easy to grasp. Alternatively, it can be argued that this type of representation is
uneconomical, especially for complex relationships involving several Relation­
ship Tiles (it would be difficult, for example, to use this technique to make
statistical calculations.) However, graphic definition of relationships is probably
ideal for most database applications .

(a) (b) (c)

Figure 4-43 Linking the exit an-ow of one relationship to one of the boxes in another
relationship. (a) Select segment, (b) drag segmen t, and (c) release button . (From Odesta
Helix, copyright 1984, by permission of Odesta Corporation.)

72 Programming the Macintosh User Interface

r
....... ,].' .. · .. EJ·. • ~: rl?.: Yienn

F' lacf' i .. : ' · · · ·

Figure 4·44 Linking several Relationship Tiles together to form a more complex relation­
ship. (From Odesta Helix, copyright 1984, by pennission of Odesta Corporation.)

Designing Forms

The Template icon (see Figure 4-35) is used to design forms containing the fields
defined with Field icons . The Template icon is dragged from the palette of the
Relation window (see Figure 4-38) into the window to the right and named , then
double-clicked to activate the Template window (Figure 4-45).

The palette of this window is divided into two areas. The top contains palette
"switches" for Abacus, Field, and drawing-tool-selection icons. The bottom con­
tains various drawing tools-graphic forms for laying out the shape of the fields
in the data-input form. These tools are used in a manner similar to the graphic
icons of MacPaint. Clicking the Abacus icon displays the list of Abacus calcula­
tions ; clicking the Field icon displays the list of fields . A calculation or fi eld is
selected, the Pen and Ink icon is clicked, a drawing tool is selected, and then the
pointer is moved into the drawing area to lay out the field. This procedure is
repeated until all fields have been laid out and the form is completed (Figure
4-46).

~P~l ette ~ ,,_--Windo....---.._,,

Ternplote

Palette '6-0 +-i+C;~- Ruler

Figure 4-45 Helix Template window. (From Odesta Helix, copyright 1984, by permission of
Odesta Corporation.)

Examples of Macintosh Programs 73

Figure 4-46 Completed form created with Template window. (From Odesta Helix, copyright
1984, by pennission of Odes ta Corporation.)

Accessing the Database

The Selection icon (see Figure 4-35) is used to access the database for data entry
or review. Dragging the Selection icon from the palette of the Relation window
(see Figure 4-38) into the window on the right causes the Selection window
(Figure 4-47) to be displayed. The top of the window contains Template, Query,
and Index icons . Selecting one of these icons displays the lists of existing tem­
plates (see above), queries (see below), and indexes (see below). These three
devices-Template, Query, Index-provide different avenues for viewing the
file , and may be used alone or in combination. A template selection is required;
query or index selections are optional. Selecting a specific template permits the
file to be reviewed using the form defined for that template. The Query and Index
icons also appear in the Relation window. They (one or the other) are used to
create queries or indexes in a manner similar to creating templates; since the

Subject/HI\. li st
T•mplah·

Figure 4-47 Helix Selection window. (From Odesta Helix, copyright 1984, by permission of
Odesta Corporation.)

74 Programming the Macintosh User Interface

approach is similar, and only details change, we'll forego detailed discussion of
query and index creation.

There is much more to Helix than described here, but this should give you a
sense of how the program is organized and used. Notable features of this program
are its simple, hierarchical organization (see Figure 4-36); graphics orientation;
and adherence to Macintosh user-interface design principles. Perhaps the single
most interesting feature of the program is the Abacus window and the unique
way it enables graphic description of relationships.

Two Instructional Programs-MacCoach
and MacType

This section describes two instructional programs, each designed for a different
purpose. MacCoach is a tutorial for the Macintosh novice, and one can imagine it
being used by someone who has just acquired a Macintosh and knows little more
than where the on-off switch is located. MacType is a typing tutor that teaches
the typing novice the wonders of keyboard entry. Ironically, the Macintosh­
which was designed to minimize the requirement to use the keyboard-is proba­
bly the best possible environment for a typing tutor such as MacType.

These programs differ in more than their objectives. MacCoach is mainly a
tutorial, and it is designed to increase the user's knowledge; it does this by
presenting a sequence of instructional frames containing words and graphics.
MacType is designed to help the user develop a particular type of motor skill.
Each program is tailored to the type of skill or knowledge it is intended to impart.

Apple's guided tours to the Macintosh and to Mac Write and MacPaint come to
mind invariably when thinking about educational software for the Macintosh,
and so it is well to put the two programs in this section into perspective. A guided
tour, as you know, consists of an animated computer demonstration of program
features , accompanied by a time-synchronized type narration that explains what
is going on. This is very good for illustrating program features dynamically,
although it seldom permits much interaction by the viewer. Apple's guided tours
are excellent-both simple and well-paced.

Unfortunately, not all guided tours are this good, and not everyone under­
stands the ground rules for creating a good guided tour. For example, the manu­
facturer of one database program provides a 60-minute guided tour of the fea­
tures of its program that presents so much screen activity so rapidly that it is
simply bewildering. Windows open on windows, icons move, screens shrink and
expand, etc., every few seconds. Meanwhile, the confident voice of the narra­
tor, supported by an insistent, rhythmic musical score, explains what is going
on as if it were as simple as walking to the corner (which it may be, but only if
you are walking there blindfolded and backward, and the corner is 10 miles
distant).

Simpler content and better pacing are necessary to get the message across­
also an-awareness that the typical attention span is about 10 minutes. But even if
a guided tour can be constructed, it is not usually the best way to educate the
user. The main reason is the requirement for everything to proceed by the clock.
This mitigates against letting the user try things, get feedback, and learn. In sum,
guided tours may be good for giving the user the "big picture," but are not really

Examples of Macintosh Programs 75

instructional programs. On the other hand, programs such as the two described
in this section are.

MacCoach

MacCoach is a product of American Training International, a company that,
among other things , creates instructional software designed to familiarize naive
users with the features of various computers and popular programs. MacCoach
was designed to familiarize the naive user with the hardware and software fea­
tures of the Macintosh . The program is provided in the form of a 10-page manual
and two diskettes. The short manual is densely illustrated (the equivalent, per­
haps, of a Macintosh-oriented Dick and Jane reader) and may be superfluous, for
the program itself provides the instruction.

Incidentally, one can debate whether such a program is actually needed. The
Macintosh is delivered with excellent documentation , and the cassette-tape and
diskette guided tours to the Macintosh itself and to the Mac Write and MacPaint
applications are good at showing how the system works. MacCoach is described
here not so much for its content as for its instructional approach. This approach
could readily be applied to other subject areas. The approach assumes that the
program user knows nothing, and it leads, step by step, though a series of instruc­
tional frames and exercises to develop basic user skills and knowledge. This
approach may be contrasted with that of the guided tour, which generally makes
the user a passive spectator.

Thus, the less ambitious approach of a program such as MacCoach should not
be slighted. The following will give you an idea of how this program works . The
user begins by opening the manual, which one might imagine had been placed on
the desk, along with the Macintosh, that morning. The manual contains names
and pictures of Macintosh components , and it tells the user to turn the power on ,
insert the first disk, and double-click the application icon. Title pages appear, and
then a Welcome frame (Figure 4-48). This frame gives the option of viewing an
introduction (by clicking the mouse button) or starting training (by pressing the
space bar). No mouse positioning is required, since the user, presumably, may
not yet know how to use the mouse.

The introduction presents a series of instructional frames, the first few of
which are paged through by simply clicking the mouse button. Mouse use is
explained, and later frames require that the pointer be positioned and the mouse
button clicked to advance. Pointer-positioning exercises are given (Figure 4-49).

The program is more than simply a page-turning exercise. It anticipates a
variety of errors, and provides feedback via dialog boxes if the user does not
perform the exercise as directed. Thus, the user is (1) made aware of errors and
(2) forced to perform the task correctly before proceeding. Eventually, the user
completes the introduction and arrives at a menu (Figure 4-50), which provides
access to the twelve exercises comprising the program. An exercise is selected by
pointing and clicking, and after completion, the menu reappears.

The exercises, like the introduction just described, contain information frames
and require the user to perform various activities to build skill and knowledge.
There is nothing revolutionary here , but the program is straightforward and will
get the job done. Its interactive nature is quite effective from a learning stand­
point.

76 Programming the Macintosh User Interface

,. RTI Moctooch 1
,

Figure 4-48 MacCoach Welcome frame. (From MacCoach, copyright 1984, by pe1mission of
American Training International.)

RTI Moctooch I

MacAgent code:
365241

To enter the code
numbers in the
order shown below ...

,

Figure 4-49 MacCoach mouse-use exercise. (From MacCoach, copyright 1984, by pe1mis­
sion of American Training International.)

Examples of Macintosh Programs 77

r
RTI M11cC011ch 1

.,

Figure 4-50 MacCoach menu. (From MacCoach, copyright 1984, by pennission of American
Training International.)

Mac Type

MacType is a self-instructional program to teach the user touch-typing with
either the standard QWERTY or Dvorak keyboard. The program is provided with
a 10-page manual, which gives a program overview, but the actual instruction is
provided within the program. The user completes a series of exercises with
MacType to develop typing skill. The exercises work in three phases: (1) learning
the keys, (2) typing word lists and sentence fragments , and (3) developing speed.
Within each phase, performance is measured; the program uses this measure­
ment to provide the user with feedback and to determine the user's current skill
level. The user can continue to drill to increase speed up to 75 words per minute
and above. The program can maintain performance records for up to 100 differ­
ent users.

(Incidentally, and as you probably know, the Dvorak keyboard was not named
after the composer of the New World Symphony but for August Dvorak, one of its
inventors, in 1932. It has a generally more sensible layout than the QWERTY
keyboard because, among other things, its vowel keys are all located on the
middle row-see Figure 4-51. It might be the ideal keyboard were it not for the
widespread usage of the QWERTY and the fact that most typists have been
trained on QWERTY. Macintosh users who want to learn and use it can do so
with MacType. The MacType disk also contains a utility to transfer the Dvorak
layout to other Macintosh applications.)

MacType is initiated in the usual way by opening its icon in the Finder. A new

78 Programming the Macintosh User Interface

Duor8k Key M8p

Figure 4·51 Dvorak keyboard layout. MacType permits the user to redefine the keyboard
according to the Dvorak layout, if desired.

user will first see a series of instructional frames such as the one in Figure 4-52,
which explains how the program is organized and used. A student record form for
a new student will then be displayed (Figure 4-53). The user enters a name or
identification code and specifies whether the Standard or Dvorak keyboard is to
be used during exercises. This frame creates a student record that the program
uses to keep track of performance. During subsequent uses of the program, the
record can be activated from the Finder instead of the MacType icon to go directly
to exercises, without the initial instructional frames.

After start-up, training exercises can begin. These exercises are controlled by
the File and Practice menus. The user can select the lesson with the Practice

MacType

Hello.
You ore starting as 11 new student to learn to touch

type. The File menu has almost euerything you ore likely
to need. For Instance:

Use Wormup if you wont to get comfortable ot the
keyboard before starting the session. Select Start
Lesson when you're ready to begin. When you want to
stop for 11 while, select Quit.

(Clic:lc Continue or press Return for more.)

[Continue) [Concel)

Figure 4·52 MacType instructional frame for a new user. (From MacType, copyright 1984,
by permission of Palantir Corporation.)

Examples of Macintosh Programs 79

Student Record for New Student

Full Nome: lrred c. Dobbs

Keyboord: 0 Stondord
0 Duorok

New Student

Figure 4·53 MacType student record form. (From MacType, copyright 1984, by permission
of Palantir Corporation.)

menu (Figure 4-54a) or let the program do it by selecting an option from the File
menu (Figure 4-54b).

The user will learn the keys with a screen such as that shown in Figure 4-55. A
character on the key map (upper right) will blink, and the user will respond by
attempting to type the correct key. If the correct key is pressed, its character will
appear in the window below. The program will continue to select different keys to
type, and the exercise will go on, until the user closes the tutorial window. The
dialog box (upper left) contains a verbal description of the task and provides
feedback messages.

The user learns to combine characters into sentences with an accuracy drill,
using a similar screen. Here, the user's task is to type in the sentence appearing
on the top line of the typing window. After the user completes the line and
presses the Return key, the program will highlight typing errors to provide feed­
back.

Typing speed is developed using a similar screen. The user's task is identical to
that of the accuracy drill, but statistics are calculated and can be displayed using
the Drill or Total Stats option of the Special menu (Figure 4-56a). The Metro­
nome menu (Figure 4-56b) can be used to generate timing clicks adjusted to the
user's desired typing speed.

The user can put the typing skills developed to the test by using the Test option
of the Practice menu. Passing the test (30 words per minute with 99 percent
accuracy) places a sort of electronic gold star in the user's typing record and
enables a certificate to be generated on the Imagewriter. Now that's feedback.

Leorn Keys
Rccurocy Drlll
Speed Drill
Reulew
Test

(a)

UJormup
Stort Lesson
Concel
Quit

(b)

Figure 4·54 MacType menus: (a) Practice and (b) File.

80 Programming the Macintosh User Interface

"' s i:il<l Prnt:H< e Keyboord Metronome Speciol

::::
....

Type the drill lines
eHoctly os they oppeor.
Errors will be disployed
ofter you type the lost
letter. Press the spoce
bor for the neHt drill.

Stondord Key Mop

i.:;:1.------------------------'::::::::::::::::

Figure 4-55 MacType keyboard-learning exercise. (From MacType, copyright 1984, by per­
mission of Palantir Corporation.)

A Few Afterthoughts

Each of the programs discussed in this chapter is true to the basic spirit of the
Macintosh user interface. All are graphics-oriented, minimize the need to use the
keyboard, provide a high degree of visual feedback, and are interactive. (The two
instructional programs-MacCoach and MacType-depart from these conven­
tions , where necessary, to aid instruction.)

Help
Drlll Stots
Totol Stots
Stots Off
Certificate

(a)

Off
5WPM
IOWPM
15WPM
20 WPM
30 WPM
45 WPM
60WPM
90 WPM
Sound On

(b)

Figure 4-56 MacType menus: (a) Special and (b) Metronome.

Examples of Macintosh Programs 81

It is possible for any person familiar with common Macintosh applications to
begin using one of these programs and know much of how it will work already.
The flip side of this is that none of these programs performs any of its functions in
a way that conflicts with the usual Macintosh way of doing things. In short, the
applications are good both for what they do and what they don't do.

In addition , each of the programs does what it does in a clever and creative
way. This quality is a result of the total program, not of any single feature , but
certain features are certainly indicative. Consider, for example, MacPaint's
modeless canvas, which makes drawing so easy to do; DaVinci's use of the key­
board to enter graphic design elements; M ultiplan's scrollable spreadsheet, which
makes movement around the work space so easy; Word's logical control struc­
ture; and Helix's Abacus window. Each of these features goes a step beyond the
ordinary and makes the program something special. Someone had a good idea.
Part of the credit goes to the Macintosh, for without its unique user interface
these programs would not have been possible in their present form. Of course,
most of the credit must go to the designers .

Designers make choices, and sometimes they make incorrect ones. For exam­
ple, one well-known Macintosh program has its own unique way of permitting
scrolling-without scroll bars , by simply pointing to the edges of the window.
Another-which requires extensive text manipulation-does not permit cut-and­
paste editing, The logic of many of these design decisions makes sense within the
narrow context of the individual program, and perhaps the designers thought
they were making creative improvements. Possibly they did, but by ignming the
conventions of other Macintosh applications, they broke one of the command­
ments on the Macintosh stone tablets . Misguided creativity, as Dr. Frankenstein
discovered, can lead to unpleasant things. The lesson in this is that what a
program doesn't do is just as important as what it does do. What it should do is
work like other Macintosh programs. What it shouldn't do is work like something
else.

Chapter

5
User-Interface
Design Principles

This chapter presents twelve general design principles. Together, these consti­
tute a philosophy of design. Most of the principles follow from the characteristics
of human operators, as described in Chapter 3. Some of the principles-down­
playing modes, using a metaphor-follow from the Macintosh user interface.
Many of the principles reflect common sense, but others are a bit more subtle. All
are worth stating explicitly and keeping in mind during design. Most of the
principles apply in designing any program for any computer. This chapter is the
prelude to Chapters 6 and 7, which show concrete ways to apply the principles.

Define the Users

The first and most important step in program design is to identify the audience­
who will use the program. Different audiences have different needs and expecta­
tions. If you ignore them, you will disappoint expectations or, worse, fail to meet
needs. Form as real a picture of users as possible. One way to start is with the four
operator stereotypes given in Chapter 3: (1) computer professionals , (2) profes­
sionals without computer experience, (3) naive users, and (4) skilled clerks (see
Figure 3-1). These types are points on a continuum, not narrow categories, but
they are useful classifications for thinking about your program's audience.

Computer professionals are the most demanding in terms of program flexibil­
ity, the least patient, and the least in need of prompting and other operator help.
The requirements of skilled clerks are similar. Naive users are at the other
extreme, often in need of constant hand-holding and likely to make every blunder
in the book as well as many no one put in the book. Somewhere in between are
professionals without computer experience, whose needs vary depending on
where they fall in the continuum.

Define the audience, and design accordingly. Often you must write for more
than one audience-typically, for some combination of professionals without
computer experience and naive users. If so, anticipate the needs of both audi­
ences. There are two basic approaches to designing such programs: (1) write for

82

User-Interface Design Principles 83

the lowest common denominator or (2) provide different features for different
audiences. The first approach is the simplest, but it is unsatisfactory for sophisti­
cated users . The second approach is more difficult for the programmer, but it is
preferable for program users; it requires the program to provide for operator
growth. This is commonly done by making program features accessible in more
than one way. For example, a word-processing program (such as MacWrite or
Word) permits the user to perform common text-editing functions using either
mouse and menus or Command key combinations. Menus are easier for inexperi­
enced users , while Command key combinations are easier for more experienced
users .

Minimize the Operator's Work

When you design a program, there are many points at which your choices make
things easier for either yourself or the program user. Make the choice in favor of
the user. Minimize both mental and physical work. Mental work is that involved
in recalling things, performing mental calculations, making decisions , and the
like. Physical work is that involved in moving the pointer, pressing keys, insert­
ing and removing floppy disks , and the like.

Design objectives can usually be met in many different ways. Often you may
meet the letter of a design specification by providing a program feature, but that
feature may be so cumbersome to exercise that operators will avoid it. Consider,
for example, the various ways to provide access to a database to do editing. At the
worst, raw, unformatted information is thrown up on the screen, without title or
headings, and operators must decipher it before acting. At the other extreme is a
database-access program that presents data in the same format in which they
were first entered- replicating original data-input forms . Designing the program
the second way makes things easier for the operator, and is better.

Keep the Program Simple

Simplicity may be the oldest universal principle. It has found its way into the
aesthetic of many different domains, including the arts, sciences, and engineer­
ing. When is something simple enough? There is no easy (or simple) answer. As
you design , stop every so often and ask yourself such questions as these:

• Is there an easier way to do this?

• Are there any ways in which this might confuse the operator?

• Is this really necessary?

• How could I simplify this for the operator?

Look for ways to unclutter displays, reduce the number and complexity of
entries, and get rid of the unnecessary or superfluous. Since this is akin to
editing, it is important to get help from others-both designers and program
users . After you design your program, let others try it out and see if they can find
any ways to simplify it further. In short, plan for simplicity, design for simplicity,
and test for simplicity.

84 Programming the Macintosh User Interface

Simple does not mean simplistic. It is more like economy of means. Simplicity
emerges from careful planning, relentless pruning, and systematic testing and
revision.

Be Consistent

The consistency principle underlies the design of the Macintosh user interface
and is basic Macintosh doctrine. Windowing capabilities, pull-down menus, and
other built-in features are there for you to use across applications. Most designers
see the sense of this and have little difficulty with it.

The consistency principle also applies within a given program, and here it
requires that similar operations be performed in similar ways. For example, the
Helix database program (see Chapter 4) uses the method of dragging icons from a
palette into a working window to perform most program operations.

Consistency, like simplicity, is a universal principle. Consistency makes a pro­
gram easier to learn and results in fewer operator errors. The main reason is that
it reduces the amount of information the operator must commit to memory. For
example, if you have a program with several different data-input routines and all
the routines work the same way, then the operator only has to learn how to make
data entries one time, in one part of the program. The skill developed from the
first data-input routine then transfers to other routines. On the other hand, if
every data-input routine is slightly different from every other one, then the learn­
ing task is magnified-the operator must learn each routine separately. The
ability to generalize from a single learning experience results in better transfer of
training (see Chapter 3). Inconsistency reduces transfer and may even result in
negative transfer.

Minimize Demands on Human Memory

Human short-term memory (see Chapter 3) is like a computer's processing
buffer. Each has limited capacity and only holds the information being processed
momentarily. Remember that human short-term memory has a capacity of about
seven items, and holds onto information for about 15 seconds. These limitations
are important to keep in mind as you design. Human operators may be able to
work with up to nine things in memory at one time, but this is stretching their
capacity to the limit. In designing something, you would be smarter to play it safe
and work with the lower end of this range-with a capacity of, say, five items. As
you design , take into account the operator's task and do not require the operator
to process more than five items at one time. In addition, do not expect anything
you present on the screen to be retained for more than about 15 seconds.

It is also important to minimize demands on recall memory. The Macintosh
user interface-with its pull-down menus and windowing capabilities-was de­
signed to minimize the need for the user to recall information from memory.
Menus do this by presenting a list of the options available, instead of requiring
the user to type in a program name or code. File directories do likewise. Windows
do it by enabling the user to consult different information planes within the
program simultaneously-instead of having to recall information from one plane
while working in another.

User-Interface Design Principles 85

The best way to ensure that your program limits memory demands is to design
it according to Macintosh conventions. Remember that the general rule is to
allow the user to choose, rather than to name.

Minimize Modes

The ideal Macintosh program is modeless. The buzzword for this is "modeless
interaction," a concept introduced in Chapter 2. Such interaction allows the user
to perform all program functions without changing the program's state. For ex­
ample, a graphics program (such as MacPaint) allows the user to use various
drawing instruments, make selective erasures, expand the drawing, and so forth
simply by pointing at drawing tools and activating and using them. The alterna­
tive is to require the program to shift into various drawing modes , editing modes,
conversion modes , and the like to get the job done.

Few programs can be completely modeless, although the impact of modes can
be minimized by clever design. MacPaint is not truly modeless , but its modes are
disguised as drawing instruments and functions, and hence lose much of their
stigma. Analogous techniques can be used in other programs.

Use Graphics

Traditional microcomputer programs tend to be text-oriented and have never
permitted the kind of flexibility in using graphics that is inherent in using the
Macintosh. Consider some of the things that can be done with the Macintosh. A
ruler can be drawn in a word-processing program to measure the type. Text and
graphics can be freely mixed in the same document. Programs and program
functions can be represented as concrete objects. Program operations can be
performed by moving icons from one location to another. The programs illus­
trated in Chapter 4 provide good examples of the effective use of graphics. Helix
performs almost all of its functions graphically. And even the text-oriented appli­
cations-Word, Multiplan, MacType-use graphics to improve the displays.

These are just a few of the things that have been done-and this is only the
beginning. It is not just that graphics are nice to look at. They also permit the user
to move beyond the linear, text-oriented world and into the world of pattern
recognition, where graphic entities can be recognized quickly and manipulated in
a more flexible manner.

Consider how you can use graphics in your programs. Most programmers who
have experience on pre-Macintosh computers may have to twist their mind a
little to get into the graphics-thinking mode. So much was done (in the old days)
with text, character graphics, or with separate graphics modes. Now, you can
have everything, and the challenge is to put the tools to use.

How? There is no simple answer to the question. The starting point is to
consider information display and operator inputs. Display things graphically, if
possible. Permit input using graphically represented concrete objects , if possible.
The Macintosh programs in Chapter 4 provide good models of the effective use of
graphics. On the other hand, your favorite program for the IBM PC probably does
not.

86 Programming the Macintosh User Interface

Use a Metaphor

"But the greatest thing by far is to have a command of metaphor," said Aristotle in
the Poetics. Literary critics from antiquity to the present have regarded skill in
using the metaphor a key measure of the writer. Teachers commonly use meta­
phors in teaching, and politicians and preachers use them to make abstract ideas
real to the listener.

The poem that opens this book is the ars poetica of a poet-also a tough­
minded physician- whose genre was the short poem using the concrete ele­
ments of experience to convey deeper ideas through underlying metaphor. In
that particular poem, metaphors liken words to a snake waiting to strike, and
metaphor itself to a plant that splits rocks. "No ideas but in things ," states the
poet. Sound familiar? The poem could equally be the ars poetica of the Macintosh
program designer, for within a program a good metaphor and commitment to
concrete objects can split rocks.

Until now, the use of metaphor hasn't been a concern of computer program­
mers. The Macintosh changes that; now it matters. Metaphor is used cleverly in
many Macintosh programs- consider the desktop Finder, the MacPaint canvas,
the MacWrite drawing sheet (complete with ruler), the MacBeams engineer's
notebook.

Designing the elements of a program to correspond to those of something more
familiar does two main things. First, it gives the program a degree of concrete­
ness. Second, it makes learning the program easier because it allows the user to
transfer existing knowledge to the domain of the computer program.

Use a metaphor (1) if an appropriate (i.e., both familiar and concrete) one can
be found and (2) if the metaphor can be extended to all or a large part of what the
program does. Keep in mind that metaphors are not the things they represent and
do not have to correspond in every particular. But to be useful in a program, they
must correspond in most important ways.

Also beware the danger of mixed metaphor, which is just as real in a computer
program as in writing. The computer equivalent of being "fed up with being up to
the knees in alligators" is a program that mixes different, incompatible meta­
phors; for example, opening the page of a book to an aircraft control panel.

Manage Errors

Programmers need an error-management philosophy. The recommended one in
this book is fairly simple: Assume that Murphy's Law holds and that everything
will go wrong. Then attempt to prevent errors by anticipating them, protecting
against them with error-trapping routines , educating operators , and thoroughly
testing the program before releasing it to operators (who will, no doubt, prove that
errors still exist, despite everything you did).

Error management is one of the key factors in designing a user-friendly pro­
gram and one of the first things to look for in evaluating someone else's program.
Bear in mind that any program containing errors that compromise its effective­
ness cannot be considered friendly in even the narrowest sense. It automatically
fails the test the moment it crashes, allows the user to destroy a database, or
permits other mischief to occur.

User-Interface Design Principles 87

Make the Program Forgiving

One aspect of error management is to make the program tolerant of operator
errors. No combination of user inputs should be capable of interrupting the
program or inadvertently aborting the application being used.

A less extreme aspect of such tolerance is the program's willingness to permit
the user to reverse an action taken previously. Such tolerance is common in most
Macintosh applications. Examples are the ability to activate a pull-down menu,
run the pointer down the list of options, and then not select an option; the ability
to perform a cut during text editing, and then select Undo from the Edit menu to
restore text as before; the ability to select a window, bringing it to the forward
plane, do nothing, and then select the window previously viewed. This flexibility
is desirable, since it acknowledges that users will make mistakes or simply
change their minds.

If a program lacks this flexibility, then the user is forced to complete every
action initiated, however inconvenient. This removes a degree of control from the
operator-and a degree of responsiveness from the program. It is far better to
have the program acknowledge that program users, unlike computers, will make
mistakes, change their minds, and sometimes want to step backward.

Provide Adequate User Documentation

User documentation is information that helps people use your program. It comes
in two forms : internal (within the program) and ex ternal (outside the program).
Help screens are one form of internal documentation. Actually, any information
within the program that guides the user-including directions, and even
prompts-may be thought of as internal documentation. The most common form
of external documentation is the written user's guide, although there are other
forms as well. There are even hybrid forms, such as Apple's guided tours to the
Macintosh and MacWrite and MacPaint applications.

All such documentation is intended to help the user gain knowledge about the
program and skill in using it. User documentation is extremely important. Good
documentation makes the program easy to use . Bad documentation makes it
difficult or impossible and may relegate a perfectly good program to the (literal)
Wastebasket. The type and amount of documentation needed depend upon the
particular program-what functions it performs and its overall complexity-but
every program needs some documentation.

Follow Prevailing Design Conventions and
Human-Factors Guidelines

Design conventions are standard ways of doing such things as displaying text
information, writing input prompts, and designing menus. Human-factors guide­
lines are research-based rules for designing the user interface. The designer
should follow such conventions and rules or have a very good reason for doing
otherwise.

The Macintosh program designer must be aware of several Macintosh-specific

88 Programming the Macintosh User Interface

conventions. Examples are the use of the mouse to position the pointer, pull­
down menus to display available commands, and scroll bars to move different
parts of the information landscape into a window. These are ground rules that
apply to all Macintosh programs and, to a lesser extent, to programs written for
other computers. (Macintosh conventions are described in Chapter 6.)

Human-factors guidelines apply to all computer programs, on all computers;
many of them also apply outside the world of computers. For example, one
guideline is to present text information in both upper- and lowercase letters,
since this increases readability. Another is to present columns of numeric in­
formation aligned on the decimal point, and to display all entries with the
same number of decimal places. (Several human-factors guidelines are given in
Chapter 7.)

Chapter

6
Macintosh User-Interface

Conventions

This chapter summarizes Macintosh user-interface conventions based primarily
on the guidelines presented in Inside Macintosh (Apple Computer, 1984). The
Macintosh must display information to the user to carry on its side of a human­
computer dialog, as described in Chapter 2. The human's side of the dialog is
carried on by making inputs that become part of a database or by taking control
actions. Thus the chapter is organized into separate sections for Information
Display, User Input, and Program Control.

Information Display

This section describes conventions for displaying information on the Macintosh
video screen. The key issues of concern during information display are the
classes of information displayed, emphasis on graphics, and use of windows.

Classes of Information Displayed

A window may contain any combination of graphic, numeric, text, or character
information. Since the Macintosh is graphics-oriented, it makes no distinction
among the types of information it presents , although such distinctions may be
useful to the designer in structuring thought about the different types of win­
dows. A useful classification is of four separate window types: (1) text, (2) graph­
ics , (3) array, and (4) form.

Text windows. A text windaw (Figure 6-1) consists primarily of words and is
common in instructional and word-processing programs and in the dialog and
alert boxes of the Macintosh itself. The text may be presented by the program
(e.g., an instructional program) or created by the user (e.g. , a word processor).
Text should seldom be used alone, and thus a "pure text window" should be a
rarity in a program.

Graphics windows. A graphics windaw (Figure 6-2) contains pictures drawn by
the application or the user. The graphics may be used alone or in combination

89

90 Programming the Macintosh User Interface

Untitled

A text window consists primarily of words, and is
common in instructional and word-processing programs
and in the dialog and alert boxes of the Macintosh itself. :!;!;!
The t.ext may be presented by the program (e.g., an
instructional program) or created by the user. Text
should seldom be used alone, and thus a ·pure text
window· should be a rarity in a program.
0

P11ge 1

Figure 6-1 A typical text window.

with text, arrays , or forms. Graphics are usually the single most important ele­
ment in an application.

Arrays. An array is a collection of tabular data and is presented in the form of a
table with its cells separated by vertical and horizontal lines. The cells contain
numeric or text information and are organized into rows and columns. The array
may be one- or two-dimensional. A typical one-dimensional array is a column of
numbers . A two-dimensional array is similar in appearance but has more than
one row or column (Figure 6-3). While arrays are not required to have separating

you are fcwi™J a sfuu:~ on a N/8
cHrt road. :Befit.tu! you is a Co9

cc:Wi.n.

Figure 6-2 A graphics window. (From Transylvania, capyright 1984, by permission of Pen­
guin Software.)

Macintosh User-Interface Conventions 91

Diet/Weight
2 3 1

...... : ... ~.~.n~~r.~ ... : .. f. e.~:.~a.rx_ . :

: ''':~i[~ ••••••. · i: :::••·····. I!!' li •••••••• :1:: ii• •••• • 111
7 ~~~~: J ? :.7.a .. : s~:.s.s .. : P: .3.s .. : ... :rn::

: :: : :: : >e t:t:~:: ~::::::: : :~~::?:5: :: :::: :· .. $~ :.3.Z .. ; ~~ :.68 .. :. · 1:1:·:

I 0 V.i.tarn.i .n ~: J.Z~:.~.s .. : J.Z~:.8.4 .. '. .. J.3~:.43 m:::
11 : : : ... !!!iii

12 xv~.1.9 .h ~.= : 1.1.s .. :•.. .. 1.s.s .. : 1.s.4 .. : .. . :;;: -. . . .

Figure 6-3 A typical two-dimensional an-ay (from Microsoft Multiplan). A one-dimensional
array is similar in appearance but consists of a single column of numbers.

lines, these lines are desirable, since they make the array easier to interpret. The
increased clarity offered by separating lines is apparent in the two versions of
Multiplan described in Chapter 4. The MS DOS version lacks lines (see Figure
4-1 6), but the Macintosh version has them (see Figure 4-15).

Forms. An array used for the entry of data is referred to as a form. Its cells
represent record fields, and these are filled in-all or in part-by the user. An
example of a one-dimensional form is an input window used with a database
(Figure 6-4; see also Figure 4-46) to fill in the items comprising a record. An
example of a two-dimensional form is the Multiplan screen (see Figure 6-3). A
form may be regarded as a special type of array-one that permits entries­
rather than something different. In general, it is desirable for arrays to have the
separating lines mentioned. Data entry into forms should be done consistently.

Personol Checkbook Balance 0.00

Date I OB/O Z/ BS I Chec1c• l1 01 I
Pa~ To I Friend! y Loen Company IS j 147.9 1 I
Memo lfinel payment on VW ID Code@=:]

C1te9or 1,1 J._L_oe_n~..;.._ _____ _ _ __,

Quit Split

Figure 6-4 A form. (From Home Accountant, copyright 1984, by permission of Arrays, Inc.I
Continental Software.)

92 Programming the Macintosh User Interface

Graphics and Program Entities

Applications should make full use of graphics. Program entities-commands,
features, parameters, data, etc.-should be represented graphically as concrete
objects, if possible. It is important to move beyond the text-oriented approach of
traditional computer programs. Program entities should look and act like the
objects they represent. In general, this implies the existence of a visual metaphor,
as described in Chapter 5. Familiar examples are the movable desktop icons for
file folders, documents, and diskettes ; visual "buttons" that light up when acti­
vated; and "dials," whose settings can be adjusted (Figure 6-5; see also Figures 6-
37 and 6-38).

Icons. The main graphic entity is the icon. The ideal is for the icon to be
sufficiently self-evident so as not to require a label. (The drawing tools on the left
side of the MacPaint canvas in Figure 6-6 are good examples.) This requires
careful design , as icons represent visual codes (refer to the discussion of icon
design in Chapter 7). Some icons, representing duplicate entities (e.g., file folders
on the desktop), will require labels to distinguish them from one another.

Some icons are movable, and others fixed in position. Fixed icons generally
work like buttons, and place the system into a mode. Examples are the drawing
tools in MacPaint. Movable icons generally represent program objects such as
program files on the desktop or program functions that are performed by moving
the icon into another window (e.g., the form-design icons used in Helix-see
Figure 6-7).

Palettes. An organized collection of icons (or other graphic entities) is referred
to as a palette. The icons are usually contained in a matrix of squares (see Figures
6-6 and 6-7). Activating one of the icons turns it on and places the system into a
mode that permits the corresponding operation to be performed. Palettes are
commonly part of the window in which they are used, but they may be placed
elsewhere. If space permits , the palette should be included in the window to
prevent its being hidden underneath other windows.

~ CJ tj
Macintosh B.t.SIC Tutorial Programs MacB.t.SIC

CJ CJ tj
System Folder Empty Folder 'Write/Paint

~ ~ ~ I i " .
MacPaint Mac\\lrlte Disk Copy Sample Memo Trash

Figure 6-5 A selection of icons representing program entities. See also Figures 6-37 and
6-38.

Macintosh User-Interface Conventions 93

p .-,
' ' ·-·

0 A
~ ;,.~

It p

' u
D •
0 •
0 •
<:::? • a ..

Figure 6-6 MacPaint drawing tools.

Windows

A window is a rectangular area of the display used to present information. Win­
dows include the document windows of the application itself- containing text,
graphics, arrays, and forms-and nondocument windows used to support the
application- desk accessories, dialog boxes, and alert boxes. (Nondocument win­
dows are discussed later in this chapter.)

Document windows are constructed of common elements (Figure 6-8), and
document windows used in applications should contain all (or in some cases, a
subset of) the common elements. The window should also operate according to
Macintosh conventions, as described below.

Opening a document window. The application, when opened, generates one or
more document windows. The application is opened in one of two ways: (1) by
double-clicking its icon or the icon of a document using the application or (2) by
single-clicking the icon and then selecting Open from the File menu. Within the
application, other document windows may be opened automatically, and the work
space may contain several windows simultaneously (see "Multiple Windows,"
below).

Figure 6-7 Movable icon, withdrawn from palette, to create fonn. (From Odesta Helix,
copyright 1984, by permission of Odesta Corporation.)

94 Programming the Macintosh User Interface

Clo3e box Title

Scroll bar

Tille bar

Scroll arro ...
Scroll box

Scroll bar

Figure 6-8 Anatomy of a document window. (From Inside Macintosh, copyright 1984, by
pennission of Apple Computer, Inc.)

The close box. The top line or title bar of a document window contains a close
box, which is used to close the window. If the program uses a single window that
is not explicitly closed, this box is unnecessary. The title bar also includes the
window title ; every window should be titled. If the window is active, highlight
bars appear on either side of the title (Figure 6-9). In general, the application may
be terminated either by closing its main document window or by selecting Close
from the File menu.

Scroll bars. If the window is to be scrollable, it should contain scroll bars at the
right edge, bottom edge, or both. These bars should work in the usual way. For
example, activating the up or down arrow moves the contents of the window up
or down one unit (e.g., line of text, row of icons) in the document. Dragging the
scroll box moves the window through the document in the dragged direction;
after dragging the scroll box, the box is repositioned accordingly in the scroll bar
(Figure 6-10). Clicking in the gray area pages through 1 page of the document
(Figure 6-11).

10~ anHMI ~t-+-

f'lr--'
~
~-

~~;r-~, ,~,,,,~,,,.~,,~,,~, , ,,~,,,,~,,,~,,,,~,, ,,~,, i!Yl?llilf:t

lneclive
window'

The
ective

window

Figure 6-9 An active window moves to the forward plane and highlight bars appear on
either side of its title. (From Inside Macintosh, copyright 1984, by pennission of Apple
Computer, Inc.) See also Figure 4-29.

Macintosh User-Interface Conventions 95

Row 1
Row 2
Row 3
Row 4
Row 5

Untitled

--c)
'=o

Row 19
Row 20
Row 21
Row 22
Row 23

Untitled

Figure 6-10 Dragging the scroll box moves the window through the document in the
scrolled direction , and the scroll box is repositioned accordingly.

.. o untitled ~O Untitled

:::~ ~c::) :::~ I
Row 4 IQ] Row 8 ~

.._R_ow __ s ________________ ~jQ:j~ ~-R-ow-...-9 ________________ ~Q]~

Figure 6-11 Clicking in the gray area pages through 1 page of the document.

Size box. The size box, at the lower right comer (see Figure 6-9), is used to
change the size of the window, while keeping the upper left comer of the window
anchored. Clicking the size box generates a dotted outline of the box that can be
expanded or compressed by dragging the pointer. Releasing the mouse button
resizes the window to the outline created (Figure 6-12).

Moving a window. The window itself is moved by dragging its title bar. Clicking
on the bar creates an outline of the window, which can be dragged with the
pointer, and releasing the button moves the window to the new location. The
window can be moved without making it the active window by holding down the
Command key when clicking the title bar; this permits movement in the same
plane.

The two acts of moving and sizing are commonly done to organize the work
space. Typically, some windows are made more prominent and others less promi­
nent (some are completely hidden beneath other windows). The application
should prevent the user from making the window disappear by dragging it off the
edge of the screen or by reducing size too greatly.

L._ ________ ·-···-··--··--·---j_\

Figure 6·12 Resizing a window with the size box.

Row I
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8
Row 9
Row 10

Untitled

96 Programming the Macintosh User Interface

Splitting a window. In some applications, it is desirable to be able to split the
window vertically, horizontally, or both. For example, the document window of
Microsoft Word can be split vertically (see Figures 4-27 and 4-28). A window is
split vertically by moving the pointer to a split bar at the upper right, dragging it
down the window to the desired location, and then releasing the mouse button
(see Figure 4-28). This moves the split line to the new location and divides the
window into two parts, each with its own separate scroll bars. Each half of the
split window is referred to as a pane. A window may be split horizontally in an
analogous manner, except the split bar is dragged from the left edge to the right.
Some applications may permit a window to be split both vertically and horizon­
tally (Figure 6-13).

Once the window is split, scrolling works in standard ways. If the window is
split vertically (Figure 6-14), then the upper or lower half of the window is
affected only by its own vertical scroll bars , but the horizontal scroll bar scrolls
both windows horizontally. Scrolling works analogously if the window is split
horizontally or in two directions (as in Figure 6-13). A window may be "un­
split" -converted back to a single window- by dragging the split bar back to its
point of origin.

Multiple windows. Many applications benefit from multiple windows. These
may be used for a variety of specific purposes, depending upon the application: to
show different parts of the same document (e.g., Microsoft Word Text editing­
see Figure 4-29), to present different classes of information simultaneously (e .g.,
the typing practice window of MacType- see Figure 4-55), and so on.

True windows (as opposed to a single window divided into parts) are indepen­
dent, movable, and designed according to the structure outlined above. Separate
windows appear in different planes. Clicking on a window brings it into the
forward plane, where it can be dragged over other windows. Several windows,
therefore, imply several display planes (see Figure 6-9), rather than simply a
foreground and background plane. The active (foreground) window has a high­
lighted title bar and shows all of the features it is provided with , i.e., scroll bars,
siZel)oi,-1nfo-rrriation content, etc. Background windows show titles and as much

I

2
3

11

12
13
14

15
16

Untitled
2 ···· ·· ····· ·· ······ ······ ········· ·····

······ ···· ······· ···· ······ ···· ···· ····
.

.............

.............
······· ········· ····· ···· ··· ····· ······

7 8

Figure 6-13 Window split both vertically and horizontally (from Microsoft Multiplan). See
also Figures 4-27 and 4-28.

Macintosh User-Interface Conventions 97

Row 2: 1 2 3 4 5 6 7 8 9 1 O
Row 3: 1 2 3 4 5 6 7 8 9 10
Row 4: 1 2 3 4 5 6 7 8 9 10
Row 5: 1 2 3 4 5 6 7 8 9 10

Row 1: 1 2 3 4 5 6 7 8 9 10
Row 2: 1 2 3 4 5 6 7 8 9 10 ..
Row 3: 1 2 3 4 5 6 7 8 9 IO ii!iil
Row 4: 1 2 3 4 5 6 7 8 9 I 0 ''''''

Poge 1

§0 Stroller §0 Scroller

Row I: 1 2 3 4 5 6 7 8 9 10 l 2 3 4 5 6 7 8 9 10 11 12 l
Row2: 12345678910.,,, l 23456789101112 L.

l=R~o"°'w~3""': ~1 ~2="3='4'=5~6~7!::8~9 ~1 O~·· ¢ f=!l!:!2'=3=4~5 ~6,,,i,7~8=9!:=1~0~1~1 ;!1~2 :!JI .i>

Figure 6-14 The effects of scrolling on a split window.

of their information contents as can be displayed, but other features are not
shown.

Multiple windows support modeless interaction by permitting the user to view
different parts of an information landscape or different classes of information
simultaneously. However, there is a danger in carrying this feature too far in an
application. First, if several windows are displayed- some foreground , others
background-the user may become confused. Second, the screen itself may be­
come a cluttered mess. Thus, the document windows available in a program
should be selected only after careful analysis.

User Input

The user makes inputs to the Macintosh via the mouse or keyboard. Some of
these inputs affect the database, and others result in control actions. An example
of the former is the typing of data into a field of the Multiplan spreadsheet. An
example of the latter is the selection of an option from a pull-down menu using
the mouse. The present section deals with the first type of input. The next section
covers control actions. There is some overlap between the two types of inputs,
and so the two sections are not mutually exclusive, although the distinction
generally holds. The key issues of concern during user input are mouse and
keyboard philosophy and properties , making selections, and text editing.

98 Programming the Macintosh User Interface

Note that pull-down menus are important for both input and control. For
example, the File menu is used primarily for control actions (e.g., opening and
closing files, printing output), but the Edit menu is used primarily during input
(e.g., for cutting and pasting).

Mouse and Keyboard Philosophy

The graphics orientation of a Macintosh application tends to place emphasis on
positioning the pointer with the mouse and selecting a displayed object, as op­
posed to the more traditional approach of typing information in through the
keyboard. The keyboard, in a certain sense, plays second fiddle. The emphasis on
mouse and pointer is most pronounced in terms of program control actions,
particularly the selection of menu options. Here, it is often desirable to let the
user issue certain commands through the keyboard as well, although such com­
mands should duplicate those available with pull-down menus (program control
is discussed in the next section).

User input (e.g., creating a record in a database, word processing) is a different
matter. Often it will be impractical to use the mouse to make user inputs, and in
such cases the keyboard is used. This is obviously the case with text-oriented
applications such as word processors , text- and numbers-oriented applications
such as databases , and numbers-oriented applications that crunch numbers. In
general, such applications imply a keyboard orientation both in terms of data
entry and control. This does not mean reducing the emphasis on the mouse and
pointer so much as ensuring that the program allows use of the keyboard as well
as the mouse for actions that would normally need only the mouse. Microsoft
Word is a good example of this approach, as it allows the user to make inputs
through the keyboard and to issue most commands with either keyboard or
mouse.

An application should never require use of the keyboard to perform an opera­
tion that common Macintosh applications perform with the mouse.

Mouse and Pointer

Moving the mouse on a fiat surface produces a corresponding movement of the
pointer on the video display. The mouse is sensitive to the rate as well as distance
of movement; faster movement produces greater pointer displacement on the
display.

Pointer shapes. The pointer can assume several different shapes. There are a
number of standard shapes (Figure 6-15), and others can be designed to fit the
application. Standard pointers should be used for standard applications and
should work in the usual way. In general, this means positioning the intuitive
locus of the pointer on the object and then clicking the mouse button to take the
action. Special pointers may be designed for special applications (e.g., the draw­
ing tools of MacPaint) . Such pointers should be intuitively obvious, and they
should work in a way that makes sense (e .g., pushing a drawing with MacPaint's
hand pointer).

Pointer

I

+

Macintosh User-Interface Conventions 99

Used for

Scro ll bar and other controls, size box,
title bar, menu bar, desktop, and so on

Select ing text

Drawing, shrink ing, or stretching
graphic objects

Selecting fields in an array

Show ing that a lengthy operation is
in progress

Figure 6-15 Common pointer shapes. (Fram Inside Macintosh, copyright 1984, by pe1mis­
sion of Apple Computer, Inc.)

Mouse Actions

Mouse actions should only have an effect when the pointer is positioned appro­
priately, i.e., over the object to be acted on.

Mouse actions should be forgiving. In general, the action should be reversible
simply by releasing the mouse button, moving the pointer elsewhere, and taking
another action.

The Macintosh has the mouse equivalent of a keyboard's "type-ahead" buffer
("mouse-ahead" buffer) that permits it to delay a mouse action until processing
resources become available.

There are three different mouse actions: clicking, pressing, and dragging.

Clicking. Clicking (Figure 6-16) consists of positioning the pointer and clicking
the mouse button. This produces an immediate action , such as selecting an
application in the Finder. Double-clicking is used in some applications to com­
bine two operations, e.g., both selecting and opening an application, or selecting a
word during text editing. Triple-clicking is an extension of double-clicking and
extends an operation an additional step, e.g., selecting a sentence or paragraph
during text editing.

Pressing. Pressing (Figure 6-17) consists of positioning the pointer and holding
down the mouse button while keeping the mouse button stationary. This may
produce a temporary action. For example, you may position the pointer over the
heading of a pull-down menu and press the mouse button to review the contents
of the menu . In some cases, pressing the mouse button engages an auto-repeat
action that has the same effect as repeated clicking. For example, if you press
while the pointer is positioned over a scroll arrow in a document window, the
document will scroll continuously.

100 Programming the Macintosh User Interface

_o
9 ittms

A
~

Word Moster
374K in disk 25K availablt

I .
.

Microsoft Word MEMO

CJ D
System Folder MWOOOO

Figure 6·16 An example of clicking-selecting an application in the Finder.

Dragging. Dragging consists of positioning the pointer over an object, holding
down the mouse button, and then moving the pointer to another position and
releasing the button. The effect varies with context. In a graphics application,
dragging is commonly used to (literally) drag an entire object; for example, a
document window is moved by positioning the pointer on the title bar and drag­
ging the window to the new location (Figure 6-18). Dragging is used during
window resizing (see above), wherein part of the object remains stationary. Drag­
ging is used to make an extended selection. An anchor point is established with
the first click, and the area dragged through is boxed or highlighted (for text and
arrays-see Figure 6-19). Highlighting or boxing is important, as it provides the
user with visual feedback about the extent of the selection.

Extending a selection. Once a selection has been made-by either clicking or
dragging-it can be extended or compressed by using the Shift key in combina­
tion with the mouse. With text and arrays (selected by dragging), a Shift-click
moves the end point of the selection to the new location (Figure 6-20a). A Shift­
click within the current selection reduces the range of selection (Figure 6-20b).

Open
Duplicote l!CD
Get Info l!CI
Put Back

Close
Close Rll
Print

Eject an
Figure 6-17 An example of pressing-activating a pull-down menu.

Macintosh User-Interface Conventions 101

Figure 6-18 An example of dragging- relocating a window.

Making discontinuous selections. With graphics , a Shift-click adds objects to
the current selection (Figure 6-21). Objects may be added without regard to their
current location, and so this method may be used to make discontinuous selec­
tions, i.e., selections of nonadjacent objects.

Shift-click cannot be used to make discontinuous selections in text or arrays
because, unlike graphics , they do not consist of discrete objects. Instead, a Com­
mand-click procedure is used: the first selection is made in the usual way, and
then the Command key is held down as each additional selection is made. Select­
ing already selected material during this process has the effect of deselecting it.
Figure 6-22 illustrates a discontinuous selection in an array.

Text Editing

Text should be entered and edited in common ways across applications. (Most of
the standard text-editing features are incorporated in MacWrite, which may be

Diet/Weight
2 3 4

1 J.a.n11a.~.'>' ... : ..f. e.br.IJa.r.~ M..a_rch
2 : :
3 (;~~~~~{~·~; .. : : : :·· ·· ::!::

....
1 A.JlP.1.~~
5 Bananas

s Y.0911'..t
7 Tofu

8

9
10
11

Lettuce

Vitamins
.......... i!!lil

.... J.~~:.~.4 .. : J.32. 43 :
.

12 1A1e.i9.~~.: 1.7.s .. : 1.s.~ .. : 1.s.4...... 13

Figure 6·19 Dragging used to make an extended selection in an array; the selection is
highlighted.

102 Programming the Macintosh User Interface

Diet/Weight
2 3 1

... : ... ~.~n~0.r:.t .. : .. f. ~-~.r~~.r:x ~.~.":~~

~ .,,;~::1:il i:::l !ji:1~ •••••I~
6 Yogurt $1 0.82 $12.65 i!i!i:

: ,;,;;;~ JUL ll::f !Bf ••••• Ill
10 :::::~~~~:~:i:~~::::~:~~;:~:s::r:::::~:~~;:~:< ::::::~:~~;:~:~: : ::::: i!i!li
11 : : :di
12 ~~-i.9.~~-: : !.?.~ .. : !.~.~ !.~.~ ::m:

. .

Diet/Weight
2 3 1

.................. : ... J_a_nlla.r:x ... : .. f. ~.b_r:lj a_r:x .. : ~~_a_r:~h :
2 : . : .
J ci~·o·~~~-;~·~ :··:············· ··· · ·: · · · · · · · ·· · ·· ····· · '············ ··· ···:····· /'

....
1 A.l?P.1.~~
5 Bananas
s Y.~.9~r:.t ,,,,
7 T~f~
8 Lettuce

(a)

Figure 6-20 Shift-click used to (a) extend a selection and (b) reduce the range selected.

used as a model.) This consistency should be reflected in the use of the keyboard,
the definition of the insertion point, editing actions, the selection of text, intelli­
gent cut-and-paste editing, and the use of pull-down menus.

Use of keyboard. Text is typed in through the keyboard. The Backspace key
deletes the character to the left of the cursor, the Return key moves to the

Macintosh User-Interface Conventions 103

Diet/Weight
z 3 1

..................... ~.~n~~.r::I'.'. .. : .. f. ~.~:.~~.~.~ ~.~_r:~h :
2 : : : :i;:::

•••••••. ••• ••••••• · · · ··· ······ ··· ···:··········· · ······:·················· :····· !:::::
3 Groceries: · · ·
4 APP.!.~~
5 Bananas ··············· ···
s Y.C?.!!~'..~
7 Tofu
8 Lettuce
9

10 i.~ ~.r:r.i.in~ J.~~:.~.4 .. : J.~~:.4 .3 · ·!··· · · m:::
11 : : : ,,,,,,

~~.i.9.~~: ; ~.?.~ .. : ~.~.~ .. : ~ .?.~ .. : iiiiii

Diet/Weight
2 3 1

.... ~.~.~~~.~.~ ... : .. f.~.b_r:~~q ~.a.r:~~· · ········· 2
· · · · · · · · · · · · · · · · · · : · · · · · · · · · · · · · · · · · · ~ · · · · · · · · · · · · · · · · · · ~ · · · · · · · · · · · · · · · · · · ~ · · · · · l!I!!!

3 ~~.<?.~~'..!.~.~: ..• : · : : ''''"
1 Apples SB. 81 ; Sii. 63 ; !!:!:! : : i~:~:;

s ~.~~~.ry.~~ J~:.~.2 .. : P:.?.5 .. : ::m:
6 Yoourt SI0.82 ; $12.65 : !iim

1 :::::::::::f ~r~ ::::::::~~;:s:s::::::: ::: :s~; :3:s:::: :::: iiiiii
8 Lettuce: $3. 75 : S4. 32 : $6.68 : !iii:!
9 ::: ::V: :l:t:a: :m:: :t:n: ~ :.: : : : : :: :: : :: :: :: : : : : : : : : : : :: : : : : : : : : : : : !J,I!'
10 ~ ~.~~:.~.~ .. : J.~~:.~.4 .. : P~:." .3 .. : '"''
11 : : : : !;!i!i

: ~ ~~1:9:~~!:::: : ::::: :: :: :: : : : i:?~:: ~::::: :::: :: i:~:~::::::: ::::::: i:~:~:::::::: Iii!"

i;!J

(b)

beginning of the next row, and the Tab key, if active, moves to the next tab stop.
(Tab and Return keys have a different effect with arrays than with extended
text-see below.) Shift and Option keys select alternate character sets. The U.S.
keyboard differs somewhat from the European, but it functions in the same
manner. The keyboard has both an auto-repeat feature and a type-ahead buffer.
The keyboard lacks cursor-positioning keys; instead, the cursor is positioned with
the mouse.

104 Programming the Macintosh User Interface

~o= Commercial Interiors
393K in disk 7K • n ilable

WWWl!ili
[Q

'rt'ork Sta.

[Q
~

~ [CJ
Seatifi9•t Seatin9 •2 Seatin9 •3

D
§§0= Commerciol Interiors

393K in disk

Figure 6·21 Shift-click used to make a discontinuous selection in graphics.

Diet/Weight
2 3 1

.... \ .. . ~.~n~~.~X ... ~ .. f. e.~r.~~tX .. : ~.9r.~h :
2 : , ; ;... .. y;
3 ~'..9 .~~n~.s: .. :
1 ~P.111 .~~
5 Bananas
6 ~.9.Q~r.t
7 Tofu
8 ~ .~!.\.~~~
9

10
11

Vitamins
······· ···········

•• • •• 1l!:i~··· ····'':
::::::

...... ~.2~: .~.4 .. \ S.3 ~ : .4.3 . . [.... . !lil!I
i!H!l

12 ~~.i.9.~!.: : 1.7.5 .. : ! .6~ .. : 154 :

Figure 6-22 Command-click used to make a discontinuous selection in an array.

Macintosh User-Interface Conventions 105

Defining the insertion point. The insertion point is where typed-in text or past­
ing from the Clipboard will go. During text editing, the cursor defines the inser­
tion point and is positioned by single-clicking between two characters. Following
insertion, the cursor moves to the right of the new material.

Editing actions. Single characters, words, and larger text entities may be se­
lected (i.e., marked for deletion or cut-and-paste editing) in ways summarized
below. Once selected, the material may be deleted by pressing the Backspace key,
replaced by typing in new material, or placed in the Clipboard with the Cut or
Copy option of the Edit menu (see below). Selecting the Undo option of the Edit
menu returns text to its original (i.e. , pre-edited) form.

Selecting text. Double-clicking selects a word. A word is a continuous sequence
of characters consisting of letters, numbers, monetary symbols, apostrophes , or
percent signs. A space is regarded as a word break, unless it is an Option-space. A
comma is regarded as a break unless it appears within a string of numbers. A
hyphen is regarded as a character, but neither a minus sign (Option-hyphen) nor
a dash (Option-Shift-hyphen) are. Other characters (e.g., the # sign) are re­
garded as independent words; thus , clicking on the# in 123# highlights# alone.

A continuous or discontinuous range of text is selected by dragging, as de­
scribed earlier.

Intelligent cut-and-paste editing. If the application works primarily with words
and permits words and collections of words to be selected, it should support
intelligent cut-and-paste editing. The key is to pay attention to spaces during
cutting and pasting to avoid adding extra spaces or leaving out spaces. To support
this feature, the editor ignores spaces surrounding a selected word or string of
words when cutting it for the Clipboard. During pasting, if there is no space to the
left of the insertion point, a space is added; a space is also added to the right if
there is no space or punctuation mark(.,!?':;") there .

A particular text editor may employ a subset of the text-editing features de­
scribed or may extend the features and include additional ones. In all cases,
standard features should work in the standard way. Additional features should
work by logical extension of existing features (e.g. , selecting a paragraph by triple­
clicking). Applications that are not primarily text-oriented (such as arrays-see
below) do not require the full suit of features, although the more features pro­
vided, the better.

Edit, Font, and Style menus are used in standard ways during text editing (see
below).

Working with Arrays

Arrays consist of several separate data fields. The user enters information into
some or all of these fields. Entering or editing data in a field requires the user to
locate the field and then make entries or edits within the field. Consistent with
the minimum-work principle, fields whose contents are predictable should be
filled in beforehand with defaults.

Locating an array field. An individual field is located by clicking on the field;
and a range of fields, by dragging, as described earlier. If the application is to

106 Programming the Macintosh User Interface

D
3 ..

2 : : :
: :

D

D
Untitled

2 3

2 : : : : :.
3 . : : .. " " " : " " ~ " : .

Figure 6-23 Effect of tabbing in an array- active field moves right each time Tab key is
pressed.

Macintosh User-Interface Conventions 107

permit the selection of an entire row, then selection is made by clicking on the
column header; several columns are selected by dragging through the column
headers. Entire rows are selected analogously.

The fields of a form are usually filled out in a particular order (e.g., top to
bottom or left to right) and make use of the Tab and Return keys. The Tab
key selects fields in a logical sequence. For example, row by row or column by
column (Figure 6-23). The Return key activates the first field in the row below
(Figure 6-24).

Editing a field. Editing within fields of an array should incorporate appropriate
text-editing features as described above, although the particular application may
not demand that all features be provided . The minimum requirement is that the
user be able to select a field and replace its contents by typing in a new entry. The
next step is to permit within-field editing by adding such features as use of the
Backspace key, substring selection by dragging, and word selection by double­
clicking. Beyond this, features of the Edit menu (Cut, Copy, Paste, Undo, Clear)
are incorporated. The final step is to add intelligent cut-and-paste editing.

Program Control

Program control is the act of issuing commands to an application. Most control
actions are taken with pull-down menus. A given application typically makes use
of its own menus, as well as certain "standard" menus (e.g., Apple menu, File
menu). Generally , it is possible to issue a subset of menu commands through the

Untitled

2 3

.

Figure 6-24 Effect of pressing Return key in an array-active field moves down 1 row each
time Return key is pressed.

108 Programming the_ Macintosh User Interface

keyboard with Command key combinations. Symbolic control devices such as
buttons and dials may be used to control certain aspects of an application. Dialog
and alert boxes are important during program control because they are ways,
respectively, for obtaining certain types of control information and issuing warn­
ings. Thus, issues of concern during program control are application menus,
standard menus, symbolic control devices , and dialog and alert boxes.

Application Menus

A typical application uses several pull-down menus. Some of these will be stan­
dard menus, and others will be unique to the application. Standard menus, if
used, may contain a subset or superset of their usual commands.

The menu bar. Menus are identified by name in the menu bar, which appears at
the top of the screen (Figure 6-25). The title of an available menu is displayed in
black letters, the title of an unavailable menu appears in gray, and the title of an
active (i.e., pulled-down) menu is highlighted (i.e., white letters on black). An
inactive menu can be pulled down, but no commands can be chosen from it (see
Figure 6-25).

Using a menu. A menu is activated by positioning the pointer over its title and
holding down the mouse button. The title is then highlighted, and the menu
appears. The user then moves the pointer down the menu, without releasing the
mouse button. Each command pointed to will be highlighted while beneath the
pointer. The pointer may be moved off the menu without executing a command.
Releasing the button over a command causes the command to blink and then be
performed. Following a command, the menu disappears, but its title remains
highlighted until the command has been executed.

Planning a program's command structure. Menus usually contain groups of
functionally related commands, rather than lists of unrelated commands. Thus,
the first step in planning the command structure of a program is to define the
commands, group them logically, and assign functionally related commands to
common menus. Functional organization applies also to the way the menus are
organized and to the grouping of commands within a menu. Group related menus
together, e.g., the Font and Style menus. In general, if standard menus are used,
they should be placed in their usual locations, e.g. , Apple menu at the far left, File

s file Edit S(rnn h rormu t

v-Genel•d
N!'UJ 'i'ork
Mori<!(o

l'<rni<"
l.01ulon
fl1h<rn~

Figure 6-25 Menu bar with pulled-down inactive menu.

Macintosh User-Interface Conventions 109

and Edit menus to the right. If the program uses the same menus on more than
one screen, place menus consistently from screen to screen.

Early design is also the time to name commands, and to decide which com­
mands are to be executable from the keyboard. Naming commands is more
complex than it sounds, as the discussion that follows makes clear. One of the
ground rules is to work within the existing Macintosh lexicon to the maximum
extent possible. Do not, for example , name your File menu Directory. The flip
side is not to name a new command with an old name.

Reserved Command key combinations. Apple strongly suggests that the fol­
lowing Command key combinations be reserved for the commands indicated:

Command-C
Command-Q
Command-V
Command-X
Command-Z

Copy (Edit menu) ·
Quit (File menu)
Paste (Edit menu)
Cut (Edit menu)
Undo (Edit menu)

Programs that use the Style menu (Figure 6-26) should also reserve the Com­
mand key combinations listed on it.

Menu command syntax. Most menus are used to issue commands and hence
imply an action and an object. Some menus specify attributes rather than com­
mands. The words used in the menu title and listed in the menu should be
concrete, and they should leave no doubt about what type of action will be taken.
In general, menu titles are nouns, verbs, or adjectives that specify the class of
commands in the menu.

For example, a menu titled File (noun) lists commands Open and Close, which
are actions performed on the object named in the menu title. A menu titled Edit
(verb) has commands for Cut and Copy, which are actions performed on the
material being edited; here the object is implicit. A menu titled View (verb) has
commands for (by) Icon and (by) Name; in this case, the action word is in the
menu title and the object is defined by the command. A menu titled Special
(adjective) has commands for Clean Up and Empty Trash. A menu titled Font
(noun) lists attributes Chicago, Geneva, and so on.

The menus just described are not consistent with one another in terms of
where the action and object are defined. In some the object is in the title, in
others the command, and in one (Edit) the object is implicit. One of the menus
(Font) defines an attribute-type font-rather than a command (although there

./Plain ll!:P
Bold 3€8
Jtnlir. :!Cl
Underline :ICU
tlJl!JUDOUl~ 3€0
"lil!ll(il(i)[!JJ ag s

Figure 6-26 Standard Style menu.

110 Programming the Macintosh User Interface

are an implicit action and object). No menu leaves any doubt about what it will
do . Although such inconsistencies may be unavoidable, the ideal is to title menus
with single verbs or nouns, avoid adjectives, and make the object acted upon
explicit.

Functional grouping of commands. Menu commands should be grouped by
function within the menu, with each group separated from others by a dotted
line. List command groups in order of their frequency of use. List hazardous
commands at the bottom of the list, where they are less likely to be selected by
mistake. Try not to create very long menus-those with more than about ten
commands. An alternative is to put separate command groups on different
menus.

Action commands versus attribute commands. As noted, the commands on
some menus define actions, and those on others attributes. An example of an
action is the Cut command on the Edit menu. An example of an attribute is the
Geneva command on the Font menu.

Some attributes are mutually exclusive, as in the example just given. Others
can be combined, with several in effect simultaneously. An example is selecting
both the Underline and Outline commands on the Style menu. Active attributes
are shown on the menu by a check mark to the left of each attribute command
(see Figure 6-26).

Commands that toggle. Attributes with two possible states can also be shown
by changing the menu command to its logical alternative when it is selected-in
effect, "toggling" the command. For example, in MacWrite, selecting the Show
Rulers command from the Format menu displays the rulers and also changes the
menu command to Hide Rulers.

Menu codes. The commands listed on a menu generally consist of one or two
words, plus visual codes that convey additional information. The codes are de­
scribed below, and shown in Figure 6-27.

Available commands are shown in standard (black on white) video.

Unavailable commands (like inactive menus) are shown in gray.

A command followed by an ellipsis (. ..) will require entries in a dialog box
to complete.

A command that can be executed from the keyboard is followed by its Com­
mand key combination.

Standard Menus

Standard menus on the Macintosh are the Apple, File, Edit, Font, FontSize, and
Style menus. Many applications will use one or more of these menus to support
the application. The menus may be incorporated in whole or in part, or they may
be extended to include additional features. The ground rule for using them is to
make sure that their commands are performed in standard ways. The standard is
illustrated in such applications as Mac Write and MacPaint. Standard features are
summarized below.

Macintosh User-Interface Conventions 111

Show Rulers
Custom Rulers ... Ellipsis

v'Normal Size __ ...__ Checked command

Reduce To flt XR Keyboard equ ivalent

Reduce
Enl<tr~JH ----1-- Dimmed command

Show Size
Hide Page Breaks
Drawing Size ...

Figure 6-27 Menu codes: Available commands are in standard video, unavailable com­
mands are in gray, commands followed by ellipses lead to a dialog box, and keyboard­
executable commands are followed by a keyboard code. (From Inside Macintosh, copyright
1984, by permission of Apple Computer, Inc.)

Apple menu. The Apple menu (Figure 6-28) contains the standard disk accesso­
ries-mini-applications that can be used within the main application. These
applications are disk-based, and must be on the disk to be used. Desk accessories
are described in detail in Apple user documentation , particularly Macintosh (Ap­
ple Computer, 1983).

The first command- which begins with the word "About"-is commonly used
to present information about the application. It is the logical place to locate a Help
command.

File menu. The File menu (Figure 6-29) contains commands for opening and
closing files, printing output, and terminating the application.

The New command creates and opens a new document. This command should
be deactivated when the application is incapable of handling additional docu-
men ts.

Open . . . permits the user to open an existing document.

About MacWrtte ...

Scrapbook
Alarm Clock
Note Pad
Calculator
Key Caps
Control Panel
Puzzle

Figure 6-28 Standard Apple menu (from MacWrite).

112 Programming the Macintosh User Interface

N(m1

O!H.'0 ...
C:lose
Saue
Saue As ...
Page Setup
Print ...
Quit

Figure 6-29 Standard File menu (from MacWrite).

After a selection is made, a dialog box (Figure 6-30) is presented that lists
existing files and permits the user to select the one desired from either disk drive,
to cancel the command, or to eject a disk.

Close has the same effect as clicking the close box of the document window-it
closes the document (or desk accessory) being worked with. If a change to the
document has been made since it was last saved, an alert box (Figure 6-31) is
presented to warn the user and permit the document to be saved, if desired ,
before closing.

Save permits the document to be saved. If the document has not been previ­
ously saved, the Save As . . . dialog box (Figure 6-32) is presented to permit the
user to name the document. If there is insufficient disk space to store the docu­
ment, the user is warned and routed to the Save As . . . dialog box to switch disks
and make the save.

Save As ... works much like Save (see above), but it also permits a duplicate

ks
me
me me
PHY

Figure 6-30 Open . . . dialog box.

Open

C:nncel

Saue chnnges before quitting?

ll Yes l
[No J C:oncel

Figure 6-31 Save alert box.

Kelly's disk

Eject

Oriue

Macintosh User-Interface Conventions 113

Saue current document as

S11ue C11ncel

Kelly's disk

Eject

Driue

@Entire Document OTeHt Only

Figure 6-32 Save As . . . dialog box.

file to_ be created. Th~ Save As. _ . :_dialog ~O){ (see Figure 6-32)r:egu_i~es _the_!-l~e~
to assign a document name. If the document is new, it will be saved with this
name. An old document will be closed and duplicated, and the duplicate will be
opened with the new name.

Revert to Saved, if present, permits the user to load the document from disk
after previously loading it and making changes. A dialog box is presented to the
user to verify this action before it is performed.

Quit exits the application to return to the Finder. If the document has been
altered, an alert box is presented to allow the user to save the document.

An application's File menu usually includes additional commands to permit
such actions as formatting and printing output.

The File menu also exists in the Finder. The commands it contains are analo­
gous to those in the application's File menu.

Edit menu. The Edit menu (Figure 6-33) is used for editing text and graphics,
viewing the Clipboard, and undoing previous edits and certain other types of
actions. Applications using desk accessories must list Edit menu commands in
the order shown in Figure 6-33 to ensure compatibility.

The Undo command (generally followed by the name of an operation) reverses
a previous operation. After an Undo command has been given, the Undo com­
mand becomes Redo, which can be used to undo the undo. As soon as additional
input occurs, Redo reverts to Undo. Undo is an essential feature of Macintosh
applications and should be supported.

xz

tut XH
Copy XC:
Paste XU
Clear

Show Clipboard
Select Rll

Figure 6-33 Standard Edit menu . (From Inside Macintosh, copyright 1984, by pe1mission of
Apple Computer, Inc.)

114 Programming the Macintosh User Interface

In general, user input that alters the contents of a document should be undo­
able. Obvious cases are to be able to undo text changes made during text editing
or graphics changes following a graphics manipulation.

Most user control actions should not be undoable. For example, making a
menu selection or scrolling, resizing, or moving a window do not affect document
contents and should not be undoable. Some control actions that are graphics­
oriented and do not use menus should be undoable; examples include setting
dials and making checks in dialog boxes.

Cut deletes selected material from the document and puts a copy of it in the
Clipboard. A cut can be made without sending a copy to the Clipboard by select­
ing the Clear command; this makes the cut but leaves the Clipboard intact.

Copy simply copies selected material to the Clipboard without cutting it from
the document.

Paste inserts the contents of the Clipboard at the insertion point. Pasting does
not affect the contents of the Clipboard, and the same item can be pasted repeat­
edly.

The contents of the Clipboard can be viewed by selecting the Show Clipboard
command. The Clipboard holds one item-the last item cut or copied.

Select All selects every item in the document. This is typically the prelude to
some global editing action , such as changing type font of a written document or
deleting the en tire document.

Font, FontSize, and Style menus. The Font, FontSize, and Style menus (see
Figures 6-26, 6-34 , and 6-35) control, respectively, the type font used , its size in
points (1 point = I/ 72 inch), and type style. The Style and FontSize menus are
often combined (Figure 6-36). These menus are used primarily with text-ori­
ented applications . Their use is described in detail in user documentation for
Mac Write .

Symbolic Control Devices

There are four different standard symbolic control devices: buttons, check boxes,
radio buttons, and dials (Figure 6-37). Each device is a graphic representation of
the familiar device for which it is named, and works analogously. The user
controls the device with the pointer of the mouse, either by clicking or dragging.
The result is similar to using the literal device; e.g., pressing a radio button
selects it and deselects other buttons. In addition , custom symbolic control de­
vices may be created for a particular application. These devices usually require

Figure 6-34 Standard Font menu .

Chic11go
./Geneu11

New York
Mon11co
Uenlce
London
Athens

Macintosh User-Interface Conventions 115

•11m .. 1H,

@[i)Cillllllll
Dill

.10~
o~
om
~~
36
48
72

Figure 6-35 Standard FontSize menu .

./Ploin TeHt
Bold
/18/ir.

3€P
3€8
3€1

Underline 3€U
oomnonm 3€0
'1!iJ[l)c!J(i)l!IJ 3€ s
Superscript 3€H
Subscript 3€l

ID li'©Dlllll
U(j)[i'(i)f]{j]Q

.10~ li'©Olllll
O~ IP©Olllll
om li'mamn
~~ !P©Dlllll

Figure 6-36 Combined Style and FontSize menus (from MacWrite).

Dutton I

[Button 2 J

[8J Check DOH I

[8J Check OOH 2

0 Check BOH 3

0 Radio Button I

@ Aadio Button 2

O Radio Button 3

(\)
~ Diel3

Figure 6-37 Symbolic control devices: buttons, check boxes, radio buttons, and dials. (From
Inside Macintosh, capyright 1984, by pennission of Apple Computer, Inc.)

116 Programming the Macintosh User Interface

Control Pnnel

Figure 6-38 Control Panel.

accompanying text to state the parameters they set and perhaps to give direc­
tions. This is clearly the case when they are used in dialog or alert boxes (see
below). In some cases, graphics may make text unnecessary, as in the control
devices used on the Control Panel (see Figure 6-38).

Buttons are pressed by clicking on them. They perform a momentary, instanta­
neous action when pressed. Such buttons are commonly used in dialog or alert
boxes to allow the user to select an action to take. For example, buttons are used
in the alert box that appears when the user quits an application (see Figure 6-31).
A button is typically pressed once to take a single action. However, in some
applications it may make sense to press it repeatedly (by pointing and holding
down the mouse button) to perform a continuous application; this is similar to
pressing a window's scroll arrow to scroll a document continuously.

Check boxes are used to select or unselect parameters. A parameter is selected
by clicking on the box. This places an X in the box and activates the parameter.
Clicking a second time deactivates the parameter and removes the X. Several
check boxes can be used together, and each is independent of the others; i.e.,
clicking one has no effect on others in the group, and their parameters may
accumulate.

Radio buttons work much like check boxes, but, like literal radio buttons, they
come in a group, and only one can be in effect at a time. Pressing a button turns it
on, places a black, filled circle at its center, and turns off other radio buttons in its
group. It is turned off by pressing a different radio button.

Dials are used to set parameters that may vary continuously over a range of
values. They are set by dragging. A scale or separate digital display may accom­
pany a dial. The Control Panel includes a scaled dial (far left) for setting audio
level. It also has several controls that work as radio buttons do, although in
slightly different form.

Dialog Boxes

Most program control is carried out through menus, which allow the user to
select among a set of alternatives. Sometimes the application needs additional
information to complete the action. Dialog boxes are the means for getting this
information. When the box (e.g., Figure 6-39) appears , the user provides the
information and closes (or otherwise exits) the box, and the application goes on

Macintosh User-Interface Conventions 117

-D Find

Find what I mi spelled wor~

[Find NeHt J ® Whole Word O Partial Word

Figure 6-39 Modeless dialog box. See Figure 6-30 for example of modal dialog box.

about its business. Since menus and dialog boxes are often linked, menu com­
mands that lead to dialog boxes are coded with trailing ellipses (see Figure 6-27).

Dialog boxes are of two types: modeless and modal. Modeless boxes look like
small document windows, are movable, permit use of other windows or menus
while open, and can be closed. Modeless boxes are flexible, and they often work
like user-initiated mini-applications. A good example is the box that appears
when the Find ... command is selected from the Search menu of MacWrite
(see Figure 6-39).

Modal dialog boxes lock out all other program action when present, are fixed in
position, and disappear only when verified by pressing a button. When such a box
is displayed, the menu labels in the menu bar tum gray to show their unavailabil­
ity. Usually the box contains separate buttons to verify the window (e.g., an OK
button) or to terminate the operation (e.g., a Cancel button). A good example is
the box that appears when the Open . . . command is selected from the File
menu of Mac Write (Figure 6-30). Modal dialog boxes constrain what the user can
do, and they should be used sparingly-in general, only when an operation must
be performed before the program can proceed.

Both types of boxes typically contain explanatory text (e .g., title, directions) and
standard symbolic control devices. They may also contain custom control devices,
data-input fields, and icons. They often use text to inform the user or make a
request, and so the careful use of written language is important (see Chapter 7).
Some modal dialog boxes simply inform the user of an ongoing program activity
and are nothing more than message carriers; they disappear when the activity is
completed.

Text and numeric fields of a dialog box should work like those of a standard
form, as described under "User Input" in this chapter. For example, a field is
activated by clicking in it, Tab and Return keys step through fields , and text
editing works in the usual way. The application should make default entries in
the box, if possible, rather than require the user to enter everything from scratch.

Closing or canceling a dialog box causes it to disappear. Commanding it to go
ahead (e.g., by pressing an OK button) causes it to perform its operation and
remain in place until the operation has been completed.

Alerts and Alert Boxes

An alert is a warning. It may tell the user that something is wrong (e.g., a system
or user-caused error), or simply obtain a verification for an action with serious
consequences (such as erasing a document). The alert can take the form of a beep
or an alert box. Obvious, minor errors are signaled with beeps. Warnings and
more serious errors are signaled with alert boxes.

118 Programming the Macintosh User Interface

An alert box (see Figure 6-31) is similar in form to a model dialog box. Its
content is usually a written message, supported by graphics that the user re­
sponds to by pressing a button. Some boxes contain a single button (such as OK),
the pressing of which signals that the user has read the alert. Other boxes contain
two or more buttons (usually two) with alternative choices such as OK or Cancel,
Yes or No, and so on. When more than one choice is offered, the default (safest)
choice should be outlined boldly (see Figure 6-31) and take effect if pressed or if
the Enter or Return key is pressed.

Alert boxes are of three types: (1) Note, (2) Caution , and (3) Stop. Each
presents a more serious warning than the one before. A Note marks a minor
warning, e.g., an error that has no serious consequences if left uncorrected. A
Caution means that something undesirable may happen; the user can terminate
the action, if desired. Stop means that the user must take an action before
continuing.

Alerts are especially important in dealing with user errors, as they provide the
avenue for alerting the user to the error and providing the corrective action. The
ideal application tracks user errors, and has enough intelligence to detect recur­
rences of particular errors. Based on this, it can provide appropriate information
to the user. If the user persists in certain errors , the alerts are upscaled, e.g.,
upgraded from beep to Note to Caution to Stop.

Alerts require the effective use of written language to communicate effectively
with the user. This subject is discussed in greater detail in Chapter 7.

Chapter

7
Human-Factors

Guidelines

This chapter presents several human-factors guidelines relating to information
display and user input. Most of them follow from research, standard practice, or
common sense, and you will know many of them already. Skip the ones you
know, read the others, and keep all of them in mind when you apply the Macin­
tosh conventions presented in Chapter 6.

Information Display

This section discusses the use of language, icon design, the presentation of
numeric information, and some common display conventions for presenting
dates, times, telephone numbers, and strings.

Use of Language

Some don'ts. Computer_ programs have not been distinguished by their effec­
tive use of language. The following is a brief catalog of common but undesirable
practices, along with suggested alternatives:

• Printing everything in capital letters. Solution: Use uppercase and lowercase.
It is easier to read, and it is what we are used to.

• Using abbreviations. An abbreviation is a code that must be translated. In
order to translate it, operators must first learn it. If they have not done this, the
code remains a mystery. Even if they have memorized it, translating it takes
time. Solution: Do not use abbreviations.

• Using jargon. Jargon is a specialized vocabulary, like a foreign language.
Again, if operators do not know it, you leave them out in the cold. Solution:
Avoid using jargon.

• Giving cryptic prompts, messages, and directions. Solution: Write everything
in plain English, and do not require users to go to written documentation to
figure out what the program wants.

119

120 Programming the Macintosh User Interface

Some dos. Here are some general guidelines for the use of written language in
your program:

• Begin each sentence with its subject or main tapic.

• Use short, simple sentences. Long sentences-especially those with multiple
clauses-are more difficult to understand.

• Use simple, commonplace words. Avoid complex words where simple ones
will do. Use concrete rather than abstract language. Avoid abbreviations and
jargon.

• Make statements in a positive rather than a negative way. For example, here
are two ways to tell the operator how to prepare to print reports:

(Positive) Load the document before printing reports.
(Negative) Do not attempt to print reports until the document is loaded.

• Make statements in the active rather than the passive voice. For example:
(Active) Load the document before printing reports.
(Passive) The document must be loaded before reports can be printed.

• State actions in the order in which they must be perfonned. For example:
(Correct order) Load the document before printing reports.
(Incorrect order) Before printing reports, load the document.

• When listing multiple items or giving a set of directions, list each point on a
separate line. This makes the points easier to separate. For example:

(List sequence)
To load document:

Call document directory
Select document with pointer
Double-click mouse button

(Nonlist sequence) To load document, call document directory, select docu­
ment with pointer, double-click mouse button.

· Making text readable. Text is easiest to read if it is left-justified-aligned on a
common left margin , as are the words on this page. Right-justification is nice for
effect-for example, on title pages-but should be used very sparingly because it
is more difficult to read. Leave centered text to poets. See Figure 7-la, b, and c for
examples.

Avoid word wrap-allowing a word to be divided haphazardly between rows.
Hyphenation is the technically correct way to divide a word between rows, but it
is only a slight improvement in terms of readability . If possible , do not divide
words between rows at all .

Presentation of lists and directories. Many displays contain lists or directories.
Examples are a list of documents, a list of part numbers, and a directory of names
and telephone numbers. Present such lists in a recognizable order. For example ,
the list of documents shoulc,l be presented in alphabetic order, the part numbers
in numeric order, and the names in alphabetic order (Figure 7-2a, b, and c).

Human-Factors Guidelines 121

~D Left.just
Left Justlflcotion ...

Text is eesiest to reed 1f 1t is left-justified
--eligned on o common left margin, like the
words in this window. Right justification is nice
for effect--for example, on title poges--but
should be used very sporlngly because it Is more
difficult to read. Leave center just1f1cation to
poets.I

(a)

~D Right. ust
Right Justificotion ...

Text is easiest to read 1f it is left-justified
--aligned on a common left margin. Right

Justif1cetion, es shown in this window, is nice
for effect--for example, on title pages--but

should be used very spBringly becBuse it is more
difficult to reed. LeBve center justlficetion to

poets.I

(b)

~D Center.just
Center Justificotion ...

Text is easiest to reed if it is left-justified
--aligned on a common left margin. Right

justificBtion is nice for effect--for example, on
t1tle peges--but should be used very sparingly

because It is more difficult to read. Center
justification, es shown in this window, should be

left to poets.

(c)

Figure 7-1 Three ways to position text: (a) left-justified (b) right-ju stified, and (c) centered.
Left-justification makes text most readable.

122 Programming the Macintosh User Interface

:o

~D

Personnel

SJlmlllD..ll.
Alberts, c.
Becker, s.
Cimino, M.
Eaker, F.
Jones, G.
KrBmden, R.
Volsted, A.
YeBker, X.
ZZBPP, J.

(a)

Sales

~ surnam11
0 Jones, G.

100 Krnmden, R.
400 Volsted, A.

1200 Becker, S.
6000 Alberts, C.
9000 Cimino, M.

12000 ZZBPP, J.
19BOO Yeager, C.

(b)

Hire.yeor.
Vear of Hire

1941
1947
1952
1953
1953
1957
1964
1967
1971

(c)

Surname
Eaker, F.
Alberts, C.
Volsted, A.
Cimino, M.
Yeaker, X.
Zzapp, J.
Kramden, R.
Jones, G.
Becker, s.

~

' w~~;
HHH

!Ill;'
:;:::·

min
;:;ill ;

Figure 7-2 Three ordered lists: (a) alphabetic, (b) numeric, and (c) chronologic. Ordering
information in a logical way makes it easier for the operator to find things.

Human-Factors Guidelines 123

By using an order, you give operators a key that allows them to relate any iteJ
on the list or directory to any other. This simplifies search and saves time. They
do not have to search the entire list; they can quickly foc us in on the part that
should, by the ordering rule, contain what they are looking for.

Icon Design

An ican is a type of information code, i. e., a way of conveying information in
indirect, symbolic form . Other ways information is commonly coded are by color,
shape, size, brightness, and flash rate. Of these, information coding by icon is
closest to shape coding, and some of the same guidelines apply.

First, recognize that the icons you use amount to a vocabulary representing
program objects. That vocabulary must be used consistently for the user to learn
it. This means that your application must use the standard icons in the usual
ways and must be internally consistent in the way it uses its own icons. An icon
that stands for a particular object on one screen must do likewise on others. It
follows that a particular object should be represented in only one way.

Second, in designing icons, follow these rules:

• Use simple icons rather than complex ones.

• Make the icons distinct from one another.

• Design icons that look like real-world , concrete objects , if possible; avoid ab­
stractions.

Third, limit the number of different icons used in a program to the minimum
required. This does not mean to use menus, dialog boxes, or other methods of
interaction to get the job done. It just means to simplify. The research on shape
coding recommends using a maximum of fifteen different shapes. This recom­
mendation cannot be extended directly to an icon vocabulary, but it shows what
shape coding allows, and it may be a good maximum to keep in mind. When the
icons are used in a palette to give them context and related meanings, they may,
for counting purposes, be thought of as a single icon. It is clear that som(:'. Macin­
tosh applications get difficult to use when they go beyond a certain limit.' (When
the use of many different icons is unavoidable, confusion can be reduced by
labeling icons, but this goes against the spirit of the Macintosh user interface.)

Chapter 4 illustrated several programs that follow these rules. Perhaps the best
examples are MacPaint and Helix. The icons on the palette of the MacPaint
canvas (see Figure 4-1) are ideals of simplicity, uniqueness , and concreteness;
this was possible, in part, because they represent drawing tools.

The domain of Helix, a database, is somewhat more difficult to represent
concretely. Yet it is limited to nine main icons (see Figure 4-35), all simple ,
different, and concrete; additional icons used on palettes (see Figure 4-38) are all
straightforward.

Beyond these technicalities, icons can sometimes be made more memorable
through humor. For example it is hard to forget Apple's lighted bomb, smiling or
sour-faced Macintosh, or the Hippo-C icon.

124 Programming the Macintosh User Interface

The Presentation of Numeric Information

Many computer programs must display numeric information to the user, and
there are several conventions for presenting such information. These conven­
tions are both sensible-since they make the numeric information easier to read
and interpret-and relatively easy to follow.

Proper number formatting. An important convention in presenting numbers is
to format all numbers within a program consistently. For example, if the pro­
gram's output is dollars, display the output with a dollar sign and two decimal
places-display twelve dollars as $12.00, 7.2 dollars as $7.20, 4.3741928 dollars
as $4.37, and so on. If a program makes use of more than one type of numeric
information, then it may need to display numbers in more than one way. For
example, a stock market program might display portfolio information in the forms
shown in Figure 7-3.

Figure 7-3 contains three different types of quantities-price/share, number of
shares, portfolio value-and the different types of numbers are formatted differ­
ently, depending upon type. Stock prices are reported to three decimal places.
Number of shares is an integer and has no decimal part. Portfolio value is a dollar
amount and is displayed with a dollar sign and two decimal places. A particular
program may use more than one display convention, but it should use the appro­
priate convention consistently for each type of quantity. This means to avoid
displaying such quantities as a price of 2.4, 341.00 shares, or a portfolio value of
$1531.5.

Guidelines for presenting numbers. There are two fairly common presentation
/ situations: (1) displaying a few (usually) unrelated numbers and (2) displaying a

set of related numbers.
In case 1, the convention is to print a descriptor for each number, followed by a

separator (usually a colon) and then the number (Figure 7-4). Left-justify the
descriptors. Descriptors and numbers in the same horizontal region of the report
should be justified in common column numbers. If they change from row to row
of the screen, the screen is more difficult to read and looks sloppy. For compari­
son purposes, examine Figure 7-5, which contains the same information as Fig­
ure 7-4 but with common justification among rows. With a short list of de-

~o Stock.info
Stock: Doto

Stock Name:
Price/Share:

Number of Shares:
Portfolio Value:

Holistic Microware
$32.125
240

$7710.00

Figure 7-3 Hypothetical stock-market program window, which presents information with
several different formatting requirements: Stock name, a string that cannot exceed 20
characters; price/share, a dollar amount with three decimal places; number of shares, an
integer; and portfolio value, a dollar amount with two decimal places.

~o

Human-Factors Guidelines 125

Quiche d'Yuppie
lngredlents

Bacon: 3 strips (chop and cr1sp)
Green on1 on: 1 tbsp. (chopped)

Swiss cheese: I cup (shredded)
Evaporoted milk: (1 /3 cup)

Sa 1t seasoning: add to suit pa I ate

Figure 7-4 A poorly formatted case I type screen. The columns in which descriptors and
their objects are presented vary from row to row. Better ways to format the screen are shown
in Figures 7-5 and 7-6.

Quiche d'Yuppie
.Ingredients

Bacon:
Green onion:
Swiss cheese:
Evaporated milk:
Salt seasoning:

3 strips (chop/crisp)
1 tbsp. (chopped)
1 cup (shredded)
1 /3 cup
add to suit palate

Figure 7-5 The preferred way to format a case I type screen. Descriptors are left-ju stified
and followed by a separator (:), and objects are printed on the right. The style used in
Figure 7-6 is also acceptable.

Quiche d'Yuppie
lngredjents

Bacon: 3 strips (chop/crisp)
Green onion: 1 tbsp. (chopped)

Swl ss cheese: 1 cup (shredded)
Evaporated milk: 1/3 cup

Salt seasoning: add to suit palate

Figure 7-6 Another way to format a case I type screen. Descriptors are right-justified and
followed by a separator (:), and objects are printed on the right. Although this format is
acceptable for short screens, the preferred method is shown in Figure 7-5 .

scriptors, it is also acceptable to right-justify the descriptors as shown in Figure
7-6.

In case 2, the convention is to present the numbers in a column beneath a
descriptive heading (Figure 7-7). Columns of numeric information such as this
should always be aligned on the decimal point, that is , $ formatted. This permits
the viewer to use a graphic cue-how far to the left of the decimal point the
number extends-to estimate its magnitude. When numbers are aligned on a
common left margin (Figure 7-8), you cannot use this cue and must read each

126 Programming the Macintosh User Interface

Align.d11t11

D11t11
7.33

23.31
1041.91

56.78
1.12

78.12
132.43

0.12
458.61

4.43
723.95

Figure 7-7 A case 2 type screen. A column of numbers is presented beneath a heading, with
all numbers aligned on the decimal point.

number and keep score to determine which is biggest, smallest, or whatever.
Incidentally, never, ever present a set of such numbers as you would present
text-printed out, one after the other, in rows. This makes the set very difficult to
read and interpret.

Common Dlsplay Conventions

This subsection describes display conventions to follow in presenting dates,
times, telephone numbers, and strings on screens and reports. A basic principle
of information display is to present information in the simplest and most obvious
form. The conventions that follow all apply this basic principle. For example,
since we habitually tend to write dates a certain way-usually month/day/year­
it makes a certain amount of sense to present them that way on computer dis-

§0 Mis111ign.d11t11

D11t11
7.33
23.31
1041.91
56.78
1.12
78.12
132.43
0.12
458.61
4.43
723.95

Figure 7-8 A poorly formatted case 2 type screen. The numbers are left-justified instead of
aligned on the decimal point. A better way to format the screen is shown in Figure 7-7.

Human-Factors Guidelines 127

plays. The popularity of other, unnatural forms-such as 06081988-usually
reflects a programmer's indifference to the program user, or the incorrect as­
sumption that what suits the computer should suit the operator just fine . Such
attitudes need some reconsideration, to put it mildly.

Presenting dates. In normal written language, we tend to express dates in all of
these forms :

Month/day/year: 419148

Month-day-year: 4-9-48

Month (written) day, year: April 9, 1948

Day month (written) year: 9 April 1948

On the other hand, you seldom see dates written like this:

04091948

04,09,1948

04-09-1948

04/09/1948

While the last four forms are decodable, they are not what we are used to. Each
requires parsing and interpretation and is extra work for the operator to process.

In general, the best form for date entry is that used by the Macintosh itself
within the Control Panel (see Figure 6-38), i.e., the month/day/year form. This is
also a good form for date presentation, although including the written month is
sometimes desirable.

Presenting times. The correct format for presenting a time is hour:minute:se­
cond. For example, 15 minutes and 59 seconds past noon would be displayed as
12:15:59. Hours past noon increase above 12, in the manner of military time. For
example, 1 :30 p.m. exactly is represented as 13:30:00. Times, like dates, are
displayed in the Control Panel (see Figure 6-38) in the correct form.

Presenting telephone numbers. The correct format for presenting a telephone
number is area code-prefix-number. For example, 123-456-7890. Leading and
trailing zeros are acceptable in all three number groups, since they are significant
to the user. ·

Presenting strings. One of the reasons to avoid presenting a date as a sequence
of run-on numbers-04091948-is that such numbers are more difficult to read.
The separate parts of the number are pushed together. This requires the operator
to separate them visually and mentally. Hence, the convention is to separate
month, day, and year by slashes.

A similar requirement exists for any set of characters-numbers, letters , sym­
bols-which the programmer might, for whatever reason, want to display. Such
character sequences, or strings, may be used in various ways in a program-for
example, as passwords, codes, or the contents of a database. You cannot read a

128 Programming the Macintosh User Interface

string like a word. To make sense of it, you must take it apart. It is best not to
display strings at all but to present the information represented by the string in
more natural form. However, if displaying the string is unavoidable, break it up
by inserting spaces between every 4 or 5 characters. For example, display the
string RT67%KL9+ WW45?99 like this :

RT67 %KL9 + WW4 5?99

Special video modes. The Macintosh has several special video modes, includ­
ing standard video (dark on light), reverse video (light on dark), and blinking. In
addition, it is possible to use underlining and to alter type fonts , styles, and sizes
for emphasis or effect.

Use standard video for creating your displays. The special modes should be
used to highlight or attract attention. If used too liberally, they lose their impact
or simply confuse.

Use blinking to attract attention to something that the operator should know
about immediately. Try not to have more than one blinking message on the
screen at a time. Blinking means that the operator must act, and usually the
operator can act to resolve only one problem at a time. If more levels than this are
required-in your nuclear power plant simulation, with everything going wrong
at once-then it is probably a good idea to take a differen t approach to attracting
the operator's attention. Instead of using several blinking messages, you might
display a status window that rank-orders the problems so that the operator can act
on them in the most effective order (Figure 7-9).

Reverse video is a way to highlight information on the display. Highlighting
may be used for several different purposes-to indicate selections, system state,
operating mode, the item being worked on, and so forth. Highlighting informs the
operator of a condition that exists. Unlike blinking, it does not demand immediate
action.

It is a great temptation to use underlining, special type fonts , styles, and sizes
for emphasis or effect. The possibilities are enormous, but so is the danger. Do
not overdo it. Implicitly, each combination is a separate code that suggests mean-

m Alerts
{}

Priority Item
1 Main coolant valve
2 Electrical malfunction X3 .31
3 Temperature high V90
4 System error 203
5 System error 202
6 Telephone priority 1 line'5
7 Telephone priority 2 line 6
6 Lottie 's husband on line 33

Figure 7-9 When the operator must act on several items, it is best to present them in
prioritized list form , as shown here, rather than as individual blinking messages.

Human-Factors Guidelines 129

ing beyond its semantic content. The more combinations used, the more codes,
and the greater the information load on the user. Thus, overuse of combinations
is more apt to confuse than inform. As any number of misguided Mac Write users
have demonstrated , the novelty of several different type fon ts, styles , and sizes in
a single memo soon wears thin.

User Input

This section focuses on keyboard entries of the type commonly required in pro­
grams that build databases. Much of what is discussed also applies to inputs with
mouse and pointer. Topics covered are the input process, prompting, data input,
error testing, error messages, and data-input forms and screens.

The Input Process

User input is a process , not a single action. The steps in the process usually occur
in order, although there is sometimes good reason for having it otherwise.
Whether or not a strict order is followed, it is important that all the steps be
performed:

Prompting. The operator is told the nature of the required input.

Data input. The operator makes the input to the computer.

Error testing. The computer tests the operator's input for errors. If an error is
found , the operator is informed and required to make a new input. Otherwise,
the process continues.

Editing. The operator is given a chance to modify the input.

This sequence is a dialog (see Chapter 2). It starts with a question, or prompt,
from the computer. The operator answers the question by making an input. The
computer next performs an error test to decide whether the entry is acceptable. It
lets the operator reconsider his or her side of the dialog and change (edit) it, if
necessary. Finally, the computer accepts the data as legitimate and stores them
away in memory somewhere.

Prompting

The prompt is a question. It must meet all the information requirements of what
we would consider a reasonable question in normal human dialog. Some things
that are often used as prompts, and that obviously do not meet this requirement,
are the following:

• A blinking cursor

• A blinking question mark

• A prompt that says "Enter data"

Such prompts fail to meet the basic information requirements, which are to
(1) draw attention, (2) tell what input is required , (3) give the input format, and
(4) list the default value, if there is one.

130 Programming the Macintosh User Interface

Draw attention. A prompt must draw attention to itself to prevent its being lost
in the rest of the screen. If it is not conspicuous, the operator must search for it,
which is extra work. Search is reduced by placing prompts consistently from
screen to screen. Macintosh programs should use full-screen input, with the
screen resembling a form, as described in Chapter 6. Typically, the form consists
of a series of prompts, followed by data-input fields , with the fields enclosed by
boxes (Figure 7-10; see also Figure 6-4). (Underlines or brackets may be used to
mark fields instead of boxes, but boxes are preferable.) Using such forms makes
clear that inputs are required and helps the operator locate the prompts. Further,
make the active prompt stand out by (1) highlighting it when it is active and
(2) displaying a prominent blinking cursor. Do not allow prompts to scroll up
the screen.

Tell what input is required. The prompt must be descriptive enough to leave no
doubt about what information is being asked for. A blinking cursor or a prompt
that says "Enter data" is too vague. The prompt must be more explicit. For
example:

Please type in the price of corn : $ _____ _

This prompt is polite. It asks "please." This is nice in some cases but unneces­
sary in others. A descriptive prompt such as this is desirable if the program will be
used infrequently or by inexperienced operators. Skilled operators generally pre­
fer more succint prompts. For example:

Price of corn: $------

This prompt still contains the essential information-but skips the "please" and
telling the operator to type in the entry. In general, the more inputs required, the
more succinct the prompts should be.

Finally, the prompt indicates that the price of a particular commodity (com) is
required and displays a $ in the data-input field.

Design a Blueprint

Field Name:
'-'--------------------~

Data Type: @ TeHt QNumber

Format:

Width:

Options:

Help

.---------------------·

0 OoUnr Sign
0 Cornrr1<1~
O Minus ~ign 0 Hnu:k<ih

(Soue Field) (Finished

Figure 7-10 Data-input fonn , with prompts followed by boxed data-input fields. Fonn also
contains check boxes, radio buttons, and standard buttons. (From 1st BASE, copyright 1984,
by pennission of Desktop Software, Inc.) See also Figure 6-4.

Human-Factors Guidelines 131

Tell the input format. If data must be entered in a particular format , show the
format in the prompt. For example:

Date (month / day / year):

If there is a length limit to the entry, show graphically in the prompt what the
limit is. This should be done with a box (or underline or brackets, as noted)-see
Figure 7-10.

Show the default value. If an entry has a default value, display the default in
the data-input field. Permit operators to verify and enter the default without
retyping it themselves.

The foregoing guidelines all say the same thing: make sure the operator knows
what you want. This is what we expect when another person comes up to us and
asks a question. If the question is phrased properly, it tells us what we need to
know to answer. If the question is vaguely worded or incomplete or if it allows
several interpretations, we cannot answer properly.

Data Input

Most of the rules to follow during data input emerge from common sense. None­
theless, since the rules are often broken, well, you draw the conclusion about
certain programmers' common sense.

Display the entry. Display (or echo) the operator entry back on the screen. This
provides the feedback the operator needs to be sure that an entry has been
accepted by the computer. Without such feedback, the operator cannot be sure.
Uncertain operators tend to make duplicate entries , often producing unintended
results. If you have ever attempted to operate a computer without a functioning
visual display, you understand the problem.

Permit error correction during data input. Many errors will go undetected un­
less they are observed. You must therefore make it possible for operators to
observe and correct an entry before it becomes final. The operator must be able to
back up and make changes . The entry should not be accepted by the computer
until the operator verifies it. This is done by signaling the completion of the field
with the Tab, Return, or Enter key or by using the mouse and pointer. Verifica­
tion ensures that the program will not proceed until the operator has had a
chance to reconsider the entry.

Keep the operator in control. Giving the operator the ability to correct previous
entries is a specific example of the more general principle of operator control of
the input process. The operator should never be locked into a situation from
which there is no escape other than the rigidly defined one that the computer
controls. Thus, the operator should be able not only to correct previous entries but
also to abandon the input altogether and go have lunch or do some other more
important thing.

There should always be an easy way to exit the data-input process without
being forced to carry on mechanically to the end. This is an operator convenience.

132 Programming the Macintosh User Interface

It is also a way out for inexperienced users who cannot figure out what to do.
Without it, such operators may find themselves trapped so that the only escape is
to exit from the program by brute force-by interrupting the program and restart­
ing. Interrupting and restarting can have disastrous consequences, and the temp­
tation to employ such measures should be minimized.

Permit entries in their natural form. Permit operators to make entries in the
forms that are most natural to them. This applies to dates, units of measure,
quantities, names, or anything else that might be represented differently within
the computer than in normal, written communication. For example, do not re­
quire an operator to enter leading zeros unless the zeros are truly significant-for
example, do not require date entry in a format such as 04/02/85. Let operators
enter the date as they would write it, and have the computer add the leading zeros
or make the transformations necessary for internal use.

Keep the operator posted on delays. If an operator entry will cause an ex­
tended delay-several seconds or more-then use an alert box to display a mes­
sage (or other sign) to show that the program has not stopped.

As operators gain experience, they will worry less about delays. However, even
experienced operators worry when a program takes too long to do something.
Keep them posted.

Error Testing

Data-input errors are inevitable, and the program and operator must be protected
from their consequences. Without error protection, a program may crash when
certain entries occur, thus erasing the operator's previous work. Once this hap­
pens to an operator, the program is seldom trusted in the future, and it may never
be used to its full potential. This is not news to an experienced programmer or
designer, who spends a fair amount of time anticipating data-input errors and
building software to handle them safely.

Error-testing philosophy. You must assume that any enor, however improba­
ble, will in fact occur. This is admittedly a pessimistic philosophy, based on the
premise that one ought to expect the worst in order to guard against it. For
example, assume that operators will make errors such as the following:

• Enter numbers where letters are requested, and vice versa.

• Attempt to exceed length limits.

• Enter nothing.

• Enter inappropriate punctuation.

• Attempt to enter Command character combinations.

• Do exactly what you tell them not to do.

• Etc. (You get the idea.)

Human-Factors Guidelines 133

Assuming that operators will not do these and similar things requires them to
act responsibly-and that is folly. This is not meant as an insult to the fine,
intelligent people who use Macintosh programs. Rather, it is based on the desire
to spare you the anguish of the telephone call in which an operator describes to
you the bizarre sequence of keystrokes that permitted all the valuable files to be
purged, that made the program disk unreadable, and that sent the disk drives into
a self-destructive frenzy.

You must anticipate what errors can occur, devise error tests to trap them, and
write error messages to tell the operator what went wrong and what to do about it.
The first part- anticipating errors-requires you to use your crystal ball or, if you
do not have one, consider the possibilities. The second and third parts are more
straightforward, since they amount to the solution of a problem that has previ­
ously been defined. Enough philosophy.

Error messages. Write error messages that apply to each error your program
tests for and detects, and display the appropriate message in an alert box (see
Chapter 6) when it occurs.

The error message should do three things : (1) alert the operator that an error
has occurred, (2) identify the error, and (3) tell the operator how to recover.

Alerting is done with an alert box, which appears on the screen and demands
attention before the program can be continued.

The error message must identify what is wrong. If identification of the error
will permit the operator to figure out what to do next, then that is all the message
needs to contain. However, if the nature of the error is still ambiguous , then more
information must be provided. For example, it is not enough to tell the operator
that a data-input error has just occurred. The type of error must be identified. For
example:

Entry must be between 1 and 24 characters in length.
Number must be between 100 and 1000.

What ever you do, avoid messages that tell nothing, or that insult the operator.
For example:

Invalid entry
Error 51
Reenter

The final part of the message is the recovery action. This tells the operator what
to do to get out of a fix. The recovery action may be to reenter data, to select a
different menu command, or to take some other action. Whatever it is, do not
assume that the operator will automatically know. Define the action , even if it is
obvious.

Make your error messages brief, factual, and explicit. Use graphics , if possible,
to support the written message. Do not attempt to punish the operator for mis­
takes. Avoid sarcasm. Punishment or sarcasm from a computer is offensive and
inexcusable. Give your program the personality of a very helpful but rather dull
and literal-minded friend who wants to make sure the operator understands the
error and knows what to do about it.

134 Programming the Macintosh User Interface

Editing

Permit the operator to edit entries before they become permanent. Operators
often change their minds or recognize data-input errors after the fact. Therefore,
it is important for them to be able to change earlier entries. In any program that
builds a database through keyboard entries, editing should be possible both dur­
ing initial entry and afterward.

During initial entry, as data are being typed in, the operator should be able to
back up, make changes, or rewrite the entire field if desired.

Editing should also be possible after initial entry and verification. The user
should be able to reselect a data-input field to make corrections.

It should also be possible to make corrections even later-after inputs have
become a part of the stored database. The user should be able to call up the data
in the form originally entered and make changes as easily as during initial data
entry.

Chapter

8
Paths to Macintosh

Program Development

This chapter introduces the second half of the book, which is concerned mainly
with Macintosh programming languages. The present chapter gives a program­
ming-language overview, discusses the organization of a typical Macintosh pro­
gram, and describes the User-Interface Toolbox. Chapters 9 through 12 provide
more detailed information on specific programming languages.

Programming-Language Overview

As this book is written, several programming languages are available for the
Macintosh, and new languages are appearing regularly. The list presently in­
cludes several different BASICs, Pascals, and C's, FORTH, COBOL, Fortran,
Lisp, LOGO, and Assembler. Versions of the UNIX operating system are available
for the Lisa for those so inclined.

Evolution of Macintosh Languages

Most early Macintosh program development was done in Lisa Pascal or Assem­
bler. Programs were created on a Lisa, debugged using a pair of computers (two
Lisas or a Lisa and a Macintosh), and then cross-compiled for use on a Macin­
tosh. Such program development required both a Lisa and a Macintosh com­
puter. This programming path was practical only to professional programmers or
those with sufficient resources not to be concerned about costs.

Many early Macintosh programmers who lacked a Lisa or who did not want to
program in Pascal or Assembler used Microsoft BASIC (MBASIC), which became
available at about the same time the Macintosh was introduced. MBASIC works
on a 128K Macintosh, is similar to versions of BASIC available on other micro­
computers-particularly those for the IBM PC and compatibles-and is an inter­
preted language that makes it easy and quick to develop programs. Its major
drawbacks are that it is slow and that it-like other Macintosh BASICs-provides
limited access to Toolbox features and thus to what can be done in a program.

135

136 Programming the Macintosh User Interface

The bottom line on this is that professional developers with a Lisa were the only
ones who could exercise the full resources of the Macintosh.

The language picture has changed considerably. Many new languages have
appeared since the early days, and these offer a middle ground between Lisa
Pascal or Assembler and interpreted BASIC. Within limits, you now have your
choice. Table 8-1 lists the languages available for the Macintosh as of mid-1985.
This list illustrates the possibilities open to the programmer.

TABLE 8-1 Macintosh Programming Languages

Language

Assembler
68000 Assembler•
MacASM
MacNosy Dis-Assembler

BASIC

c

Macintosh BASIC*
Microsoft BASIC*
True BASIC*
PC BASIC Compiler

Aztec 68K*
C Compiler
Hippo-C*
Mac C Compiler*

CP/M (operating system)
CP/M

COBOL
Mac COBOL

FORTH
MacFORTH*
Master FORTH

FORTRAN
Fortran 77 Development
MacFortran

Lisp
ExperLisp*

LOGO
ExperLogo

Modula 2
MacModula 2

Pascal
Macintosh Pascal*
UCSD Pascal*

• Discussed in this book.

Company

Apple Computer
MainStay Software
Jasik Design

Apple Computer
Microsoft Corporation
True BASIC, Inc.
Pterodactyl

Manx Software
Softworks
Hippopotamus Software
Consulair Corporation

IQ Software

Micro Focus

Creative Solutions
Micromotion

Softech Microsystems
Absoft Corporation

ExperTelligence

ExperTelligence

Modula Corporation

Apple Computer
Softech Microsystems

Paths to Macintosh Program Development 137

This book discusses the versions of BASIC, Pascal, C, FORTH, Lisp, and
Assembler marked by asterisks in Table 8-1. (Modula 2 also would have been
included, but a review copy was unavailable when the book was being written.)
The book does not cover languages available only on the Lisa, such as Lisa Pascal,
nor does it cover older business or professional languages, such as COBOL or
FORTRAN. The focus is on Macintosh-based languages because they will be of
interest to the largest number of readers. The languages discussed have little in
common besides their individual popularity and the fact that all of them can be
used directly on the Macintosh.

Program development on the Lisa for the Macintosh is becoming less necessary
as the number and power of languages and development environments for the
Macintosh increases. The Lisa continues to offer certain advantages to the Pascal
programmer in terms of available memory and development and debugging tools.
In the choice of languages, however, the Macintosh has the clear advantage, as
Table 8-1 demonstrates.

Virtually all languages available for the Macintosh have standard Macintosh
editing features, which represent a considerable improvement over the conven­
tional editing features found in versions of the languages available on other
computers. Programmers who have grown frustrated, for example, with Apple
Pascal's tedious editor or a UNIX line editor while programming in Lisp, may find
programming in these languages on the Macintosh positively exhilarating. The
same goes for programming fri other Macintosh languages. The Macintosh sim­
ply makes editing a whole lot easier.

Moreover, many of the Macintosh languages are new not only to the Macintosh
but in the larger sense, and they offer new features and improvements over their
earlier incarnations. With these changes, some of the traditional generalizations
about specific languages-particularly BASIC and Pascal-have begun to break
down. For example, BASIC traditionally has been described as an unstructured
language, yet all the Macintosh versions have improvements that enable the
creation of highly structured programs. Pascal traditionally has been a nonin­
teractive language, but MacPascal is compiled line by line and has the interactive
nature of an interpreted language.

Many of the traditional generalizations remain intact. The C programmer can
still create compact, fast, portable applications; the FORTH programmer can be
as idiosyncratic and megalomaniacal as ever; the Lisp programmer can apply
expertise to the creation of expert systems; and the assembly-language program­
mer can still do what is desired with bits and bytes. No slurs intended.

The BASICs

Chapter 9 discusses three different BASICs for the Macintosh : Microsoft BASIC
(MBASIC), Macintosh BASIC (MacBASIC), and True BASIC (TBASIC). The
BASICs enable rapid program development, although none gives full access to all
Toolbox features. All of these are modern (i.e., structured) versions of the lan­
guage, reflecting the new ANSI BASIC standard, and a far cry from the versions
of BASIC that came vvith early mini- and microcomputers. For example, they do
not require line numbers, they enable subroutines to be called by name, and they
permit indentation and spaces to be used freely. Thus they make it possible to
develop programs similar in structure and function to Pascal programs but with-

138 Programming the Macintosh User Interface

out many of the nuisances and error-prone features (such as semicolons) that
seem inevitably to dog Pascal programmers. While these BASICs enable struc­
tured programming, they do not demand it, and they can be used also to write
BASIC programs in the more familiar mold, if a willful programmer is so inclined.
For example, certain hardheaded programmers can use numbered program lines,
GOTOs, GOSUBs, and all the other features that gave BASIC a bad name in the
first place. Spaghetti code can still be.

Microsoft BASIC was the first of the Macintosh BASICs, and is still the most
widely used. This is an interpreted BASIC, similar to the MBASIC used on IBM
PCs and compatibles, but with extensions for the Macintosh and with the struc­
tured features already mentioned.

MacBASIC is Apple's own version of BASIC. MacBASIC has been widely dis­
tributed in beta test versions, although a release date (if ever) for a final version is
uncertain. It, too, is an interpreted BASIC, but unlike MBASIC, each line is
compiled into an intermediate code as entered, and the resulting code executes
very quickly.

True BASIC is a new version of BASIC designed by John Kemeny and Thomas
Kurtz, the designers of the original Dartmouth BASIC. This is a compiled BASIC
that is closer to the new ANSI BASIC standard than any of the other BASICs for
the Macintosh, and some people consider it the most advanced BASIC in exis­
tence. While it lacks the following of MBASIC or MacBASIC , it is catching on and
gaining support. The credentials of its designers say a great deal.

The Pascals

Chapter 10 discusses two Pascals for the Macintosh: Macintosh Pascal (MacPas­
cal), and The MacAdvantage: UCSD Pascal. Pascal has always been a compiled
language, although MacPascal- like MacBASIC-produces an intermediate­
level code that makes working with it much like using an interpreted language.
UCSD Pascal, true to its forebears, is compiled. Of these Pascals , MacPascal is
the easiest to use, but UCSD Pascal-which gives access to most Toolbox fea­
tures-is the most powerful.

UCSD Pascal is to the Pascal language what MBASIC is to BASIC generally­
the standard version of the language. If you have used UCSD Pascal elsewhere,
then its Macintosh implementation will look familiar-although it has many
added features in its new form. It is, at present, the most powerful version of
Pascal that can be used directly on the Macintosh.

MacPascal is probably the easiest-to-use Pascal that has ever been written. Its
interactive nature makes it an ideal Pascal for learning the language. Although its
early versions limit access to Toolbox features , the language is evolving and
becoming more powerful. Future versions can be expected to show many im­
provements.

C, FORTH, and Lisp

Chapter 11 discusses versions of C, FORTH, and Lisp available as of mid-1985.
The C's are Hippo-C (whose Finder icon, the portrait of a hippopotamus, wins the
five-star prize for whimsy), Aztec C, and Mac C. The FORTH discussed is

Paths to Macintosh Program Development 139

MacFORTH. The Lisp discussed is ExperLisp. All of these are compiled lan­
guages, and all provide access to the majority of Toolbox features .

Assembler

Chapter 12 discusses the Macintosh 68000 development system, which may be
used to develop assembly-language programs directly on the Macintosh. This
system includes an editor, assembler, linker, several debuggers, and other fea­
tures allowing assembly-language programming with as little as 128K of memory.
The debuggers permit two computers- two Macintoshes, or a Macintosh and a
Lisa-to be linked, with one running the application and the other displaying
debug information. This is, without doubt, the most sophisticated and powerful
development system presently available for the Macintosh.

Language Selection

The choice of a programming language depends upon many factors . These in­
clude various personal characteristics- preferences, programming skill , com­
puter sophistication-as well as the features of specific languages and their
particular implementation. Many programmers know only one language and
don't consciously make a choice at all. If they have always programmed in , say,
BASIC or Pascal, they may see no need to change their language of choice when
programming the Macintosh . Sophisticated programmers invariably know sev­
eral different languages, although they usually have their favorites. To them,
many more doors are open. Where the programmer does not have a preconceived
idea about what language will be used, a choice must be made. Various criteria
may be applied in making the decision.

Of central concern are the features of the particular language implementation.
It is important to investigate the degree to which the language reflects recognized
standards and the nature of any extensions it includes.

Another concern is the programming-deuelapment environment, i.e., the vari­
ous screens, menus, and program-development tools that may be accessed while
creating the program. It is important to look into how the program is generated
and edited and how conveniently tools such as the compiler, assembler, and
linker may be accessed. It is equally important to see how the debugger (if
available) works and what type and amount of information it provides.

The two factors just mentioned- language implementation and development
environment-govern how easily and rapidly an application can be developed.
While ease and speed of development matter a great deal, in many cases a more
important concern is the speed of the resulting application itself. No one ever
claimed that it was either easy or quick to develop code in Assembler, but a lot of
people do it because the resulting code is fast. Language benchmarks-discussed
in greater detail below-are one way to judge a language's speed in general,
although they must be used with caution for reasons that will be discussed.

In addition to the factors mentioned, the Macintosh programmer must look into
how much of the User-Interface Toolbox can be opened and used and how the
particular language accesses the Toolbox. The languages vary considerably in
this regard. If you want to write a program that does everything, your choices

140 Programming the Macintosh User Interface

narrow down quickly. If you can get by with less, choices expand. Virtually all the
languages give you the Finder, standard text editing, QuickDraw, and some
windowing capability. Only some of the languages give you pull-down menus ,
movable and scrollable windows, dialog and alert boxes, full text editing, symbolic
control devices, and other user-interface features. Thus, you must investigate the
particular language implementation before making a selection.

Chapters 9 through 12 examine the languages they describe in terms of the
criteria just mentioned, i.e., language features, program-development environ­
ment, and Toolbox access. BASIC is the most unstandardized of the languages,
and its command structure is examined in the greatest depth. The remaining
languages adhere, in general, to recognized standards, and they are described
with less technical detail. The program-development environment and Toolbox
access of all languages are examined closely.

Language Benchmarks

As noted above, language speed is a major concern in selecting a programming
language, and one of the ways to assess this factor is with language benchmarks.
A benchmark is simply a standard algorithm that may be run on several different
machines to obtain an elapsed time to rate language speed.

Jim Heid, in his "Open Window" column in Macworld magazine (May 1985),
compared the performance of several of the available Macintosh languages, as
well as comparable languages for the IBM PC and Apple II. Heid used what has
become a popular benchmark test in such comparisons-the sieve of Eratos­
thenes-to determine the first 1899 prime numbers. He also presented data
drawn from earlier benchmark tests reported in BYTE magazine. Heid noted that
the benchmark primarily measured performance with integer arithmetic and
array handling, but not string manipulation, screen access, disk 1/0, or certain
other factors that may be relevant with specific applications. Macintosh tests
were run on a 512K machine. Heid's results are shown in Table 8-2.

The results are, to say the least, interesting, although they must be interpreted
with caution. First, note that the table does not include Assembler, which it is
safe to bet would be faster than any of the languages reported.

Second, MacPascal-the slowest of the reported Macintosh languages-is an
interpreted Pascal, and likely a prerelease version as well. It is certainly a good
deal slower than a compiled Pascal; note that Apple UCSD Pascal-which is
compiled-is several times faster than the two Apple BASICs. It follows that a
compiled Macintosh Pascal such as UCSD Pascal would be comparably faster
than an interpreted Macintosh BASIC.

Third, MBASIC is an interpreted BASIC, and several times slower than a
compiled BASIC such as True BASIC.

Nonetheless , taken at face value, Table 8-2 suggests that programmers should
take a good, close look at C, FORTH, and Modula 2 as development languages. Of
these, C is the most popular with professional developers, and presently it has the
greatest number of development packages available. C also seems to be gaining
rapidly in popularity among Macintosh program developers.

Paths to Macintosh Program Development 141

TABLE 8-2 Programming Language Benchmark Performance

Language Macintosh IBM PC Apple II

c 6.55 22.10 (NIA)
(Aztec C) (Computer

Innovations)

FORTH 20.01 70.00 190.00
(MacFORTH 2.0) (FullFORTH)

Modula 2 71.60 (NIA) (NIA)
(Modula, Inc.)

BASIC 1170.00 1950.00 1850.00
(MBASIC 2.0B) (Integer) (Integer)
1190.00 1990.00 2806.00
(MBASIC 2.00) (BAS I CA) (Applesoft)

Pascal 1270.00 (NIA) 516.00
(MacPascal) (UCSD)

Macintosh Program Organization

It is quite possible to wrtte Macintosh programs that are not true to the spirit of
the user interface. Doing this may not be exactly a capital crtme, but in the world
of the Macintosh it is certainly a sertous felony. The whole thrust of this book so
far has been to emphasize wrtting Macintosh programs the rtght way, i. e., consis­
tent with Macintosh conventions, graphics-ortented, and so forth. By now you
know the rules.

Wrtting programs according to the rules is difficult, even if one trtes hard. Not
the least of the difficulties is to understand and overcome old programming habits
and to grasp important differences in the ways that Macintosh and conventional
programs are organized. To a certain extent, conventional programming lan­
guages, used in conventional ways, are incompatible with effective Macintosh
program design. Some of these differences are highlighted below.

Linear Versus Event-Driven Programs

There is a sertous temptation when using a language such as BASIC to fall back
on old habits and wrtte programs in a way that is comfortable and familiar. BASIC
is not the culprtt so much as the way it- and other programming languages­
traditionally has been used to wrtte programs. In simple terms, traditional pro­
grams are wrttten to deal with data and inputs in a linear fashion. Your program
starts at one point and progresses, step by step, to another, winding up eventually
at the end. What happens in between is highly deterministic , and controlled by
code to unfold in a predictable and orderly fashion .

An extreme and highly simplified representation of this is shown in Figure 8-1;
you start at one end, perform each step once, and work your way to the end,

142 Programming the Macintosh User Interface

Start
here @l .

L

Figure 8·1 Organization of a linear program: The user starts at one end, uses each module
once, and works the way to the other end.

Start

here~r·' . ,
No End

~ ~E F Ro~'°" RIP

~Yes

Figure 8·2 Linear program with recycling possible from the final module.

without possibility of recycling. A less extreme version of the program (Figure
8-2) permits recycling to the beginning after reaching the final step. A more
flexible version of the program (Figure 8-3) permits recycling at various points
within the program, although program organization dictates that the steps be
performed in a particular order.

As you certainly have observed, Macintosh programs usually do not seem to
work this way. They are much more interactive, driven by events, and capable of
moving in many different directions at any point in time. In general, the differ­
ence is exemplified by the notion of modeless interaction. You do not so much
start at the beginning and move, step by step, to the end, as stay in one place
while using different resources in the surrounding environment (Figure 8-4).
The Macintosh program is less a cafeteria line than a patron seated before a large
lazy Susan.

Another way to describe the difference between conventional and Macintosh
programs is in terms of set orders and events. Conventional programs generally

Figure 8-3 Linear program with recycling possible at several different locations.

Paths to Macintosh Program Development 143

Figure 8-4 A nonlinear, or event-driven, program. At any point, the user can access any of
the available modules. Contrast this with Figures 8-1 through 8-3.

perform operations in a predetermined, rigid order; Macintosh programs do not.
Instead, the Macintosh program acts based on user actions-clicking the mouse,
typing in something at the keyboard, or performing some other input action. In a
good Macintosh program, the user finds many different paths open at any point in
the program, e.g., loading a file, typing in text, using the Calculator, and so forth.
It is not necessary to move the program into a particular mode or state to get at
options; they are right there all (or most) of the time.

Numbered Lines and Other Bugaboos

The differences mentioned have obvious implications for how a program is orga­
nized and coded. Clearly, you cannot get these effects by writing a program with
numbered lines that starts on line 10, performs each statement on succeeding
lines once, and then ends on line 10000; such liriear organization leads to linear
programs that have little flexibility. Instead, the program must employ a looping
structure-typically called the main event loop-that polls system events (mouse
clicks, key presses, disk insertions, etc.) and takes appropriate responsive actions.

The J. S. Bach and Pipe Organ Metaphor

One might liken a good Macintosh program to J. S. Bach seated before a gigantic
pipe organ, improvising freely on a theme. As time passes, the old man sets
different stops and presses different keys to get different voices to achieve the
musical effect. Since he is not playing a set score, his choices are not bound by
time, but only by imagination and the limits of the instrument. (Try to picture
Bach's main event loop.) The linear alternative is a sort of player piano that
follows a set score; you start here, go there , and eventually get to the end. No
main event loop, just a predefined sequence of notes , all in one voice.

The lesson of this metaphor is that you are not writing a set score to be played
in one voice on a player piano, but a theme that must allow an organist to

144 Programming the Macintosh User Interface

improvise freely, filling a cathedral with rapturous music. The trick is to avoid
having it sound like P. D. Q Bach.

Lessons in Structure, Names, Events .

Macintosh programs that handle events properly can become very complex. The
main event loop must manage several different events. The types of events vary,
but they are suggested in the discussion of the Toolbox in the next section.
Virtually the only way that such code can be made comprehensible is to use
structured-programming techniques, and to access functions, procedures, sub­
routines, and the like by meaningful names.

Structured programming is demanded by Pascal, although with some lan­
guages it is optional. Most languages permit you to name things-variables,
procedures, subroutines, etc.-what you like. Regardless of the programming
language you use, you would be well advised to use Pascal structure as a model,
to give things unambiguous names, and to work hard to make your program
readable. These things are important because Macintosh programs can get very
large very easily. If you don't take care, you can lose control and find that your
"simple" program has metamorphosed into a strange land in which you, its
designer, are a stranger.

The Use of Doing It

Talking about Macintosh programs in generalizations, abstractions , and meta­
phors is not the same as writing code. True understanding requires you, as they
say, to get your feet wet by writing actual code. There is no substitute for practice.

Unfortunately, there is no simple formula for writing Macintosh programs.
This is the tough realm that lies between the rules of the user interface and those
of the particular programming language. The best way to develop your own skills
is to develop some actual programs. In theory, this means understanding both the
user interface and the programming language, and applying knowledge of the
former while using the latter. In practice, it probably means considerable trial and
error and many hours of hard work before reaching the goal.

The User-Interface Toolbox

The Toolbox manages all aspects of the user interface. Its code occupies about
two-thirds of a 64K ROM, which sounds less impressive than it actually is, since
the code is highly optimized and was shoehorned into the chip over a lengthy
development period. The Toolbox handles such things as the mouse, windows,
pull-down menus, desk accessories, dialog boxes, and graphics. Much of the
ROM is devoted to QuickDraw, the graphics generator whose code was created by
Bill Atkinson of MacPaint fame.

The Toolbox contains nearly 500 different routines, which can be accessed to
varying degrees depending upon the language used. Toolbox routines are the key
to creating programs that work as Macintosh programs are supposed to. You must
use the Toolbox if you want your program to respond to the mouse , permit
windowing, or express other Macintosh user-interface features.

Paths to Macintosh Program Development 145

Software Overview

The Toolbox, though important, is but one part of the total Macintosh software
package. This package comprises two classes of both high- and low-level software
(Figure 8-5). The high-level software consists of the ROM-based Toolbox itself
and various ROM-based routines that are accessed as needed by the program.
The low-level software consists of the ROM-based operating system and various
RAM-based supporting routines.

The ROM in which the Toolbox and operating system reside will undoubtedly
change as the Macintosh evolves, but the relationships shown in Figure 8-5 will

L A MACINTOSH APPLICATION PROGRAM]

1HE USER INTERFACE TOOLBOX
(in ROM)

Resource Manager
QuickDraw
Font Manager OTHER HIGH-LEVEL SOFTWARE
Toolbox Event Manaoer (not in ROM)
Window Manager
Control Manager Binary-Decimal Conversion Package
Menu Manaoer International Uti I itie' Package
TextEdit Standard File Packa'1e
Dialog Manager
Desk Manager
Scrap Manager
Toolbox Utilities
Package Manager

THE OPERATING SYSTEM
(in ROM)

Memory Manager OTHER LOW-LEVEL SOFTWARE
Segment Loader (not in ROM)
Operating Sy,tem Event Manager

Printing Manager F i I e Manager
Device Manager Printer Driver

Disk Driver AppleBus Manaoer

Sound Driver Disk Initialization Package

Seriol Driver' Floating.Point Arithmetic Package
Vertical Retrace Manager Transcendental Function' Package
System Error Handler
Operating System Utilities

l THE MACINT05H HARDWARE J
Figure 8-5 Macintosh software overview. (From Inside Macintosh, copyright 1984, by per­
missian of Apple Computer, Inc.)

146 Programming the Macintosh User Interface

Dialog Manager I

Contra I Manager Menu Manager 11.------T-e_x_tE_d_i_t ---,

Window Manager J

Toolbox Utilities I

jToolbox Event Manager I
.__ __ D_es_k_M_a_n_a_g_er_~ll ~ __ s_c_r_ap_M_a_na_g_e_r _~

QuickDraw

Package Manager J ~I __ F_o_n_t_M_a_n_a_ge_r_~

Resource Manager

Figure 8-6 Components of Toolbox. (Fram Inside Macintosh, capyright 1984, by permission
of Apple Camputer, Inc.)

continue to hold. In general, the Toolbox and operating system permit the pro­
grammer to tap routines that create the standard Macintosh user interface. In
addition , custom RAM-based routines may be devised to extend interface fea­
tures; e.g., with application-specific windows, con trols , etc.

The Toolbox itself consists of several different elements, as shown in Figure
8-6. ln general, the higher an element appears in Figure 8-6, the higher-level
function it performs. However, there is a certain amount of overlap among func­
tions, and a given element may call on others to do its job. A brief description of
each Toolbox element follows .

Resource Manager

Resources are data structures used by applications. For the Macintosh, these
include menus, fonts , icons, text st1ings, and other data structures. An applica­
tion's resources are generally stored in resource files, although some languages
may permit resources to be defined within the program itself. In addition, there is
a system-resource file that stores resources used by all applications. Storing re­
sources separately from the application permits them to be changed easily, with­
out recompilation of the applications's code.

The Resource Manager coordinates the use of resources . When the system
starts, the Resource Manager is initialized, the system-resource file and applica­
tion-resource files are opened, and the resources are activated for use by the
application as needed. An application seldom calls the Resource Manager di­
rectly. Instead, other elements of the Toolbox access it while doing their jobs.

QuickDraw and the Font Manager

QuickDraw creates everything shown on the Macintosh screen. It permits the
screen to be divided into areas, and will put lines, hollow or filled shapes, and
various combinations of the foregoing into designated locations. QuickDraw also
draws text; to do this, it accesses the Font Manager, which provides the font size

Paths to Macintosh Program Development 147

and style information needed. QuickDraw enables several different drawing ports
to be defined, each with its own coordinate system, screen location, and other
attributes. It also permits drawings to be created in undisplayed memory for
quick display switching or transfer via an output device.

QuickDraw is the heart of MacPaint, whose drawing instruments and features
exemplify several of its capabilities (see Figure 4-1).

Event Manager

Macintosh programs usually employ a main event loop that polls system events
(mouse clicks, key presses, disk insertions, etc.) and takes appropriate responsive
action. These events are polled from the Event Manager, which tracks events
within the application. The application (or in some cases the system) can then
take appropriate action based on the type of event.

The most important events involve mouse or keyboard actions by the user.
These events are mouse-down or mouse-up (pressing or releasing the mouse
button), key-down or key-up (pressing or releasing a key), auto-key (holding
down a key) , and disk insertions. Mouse movement is not classified as an event,
but the Event Manager does keep track of mouse location and this information
can be obtained.

Events are also generated based on certain things that happen to windows.
These events originate from the Window Manager (see below), which passes
event data to the Event Manager. The Window Manager generates two classes of
events: Activate and Update. An Activate event is generated when a window is
activated or deactivated. An Update event is generated when all or part of a
window must be redrawn due to window movement, resizing, opening or closing,
or other actions.

Various other types of events are also generated by the Event Manager, and an
application may define up to four of its own event types to have the Event
Manager monitor and report.

Window Manager

The Window Manager controls window activities and also reports window events
to the Event Manager (see above). The window activities controlled include
window creation, activation, deactivation, movement, and resizing. The Window
Manager and Event Manager work in tandem to keep the screen in order; thus, if
a window is moved, the Window Manager will automatically redraw the portions
of the screen affected to keep the graphic entities on it intact. If a window
contains controls, then any control-related action by the user is reported to the
Control Manager.

Control, Menu, and Dialog Managers

The Control, Menu , and Dialog Managers perform analogous functions but do so
for different types of displayed information. In each case, the manager is used to
create and display and to monitor relevant inputs.

148 Programming the Macintosh User Interface

The Control Manager performs several functions relating to controls such as
buttons, check boxes, dials, and scroll bars. Functions performed include control
creation, display, sizing, and movement. The Control Manager also monitors and
reports what the user does with the control-such as changing a setting or
selection-and modifies the control accordingly. For example, if the user
"presses" a radio button, the Control Manager will modify the visual appearance
of the button to show that it has been pressed and then report on its new status.

The Menu Manager is used to create and display menus and to monitor what
the user does with them.

The Dialog Manager is used to create and display dialog and alert hoses and
obtain user responses via dialog boxes.

TextEdit

TextEdit consists of a set of routines that enable elementary text entry and
editing. Some or all of the basic features may be used in an application, and more
sophisticated editing features can be included by loading an external Core Edit
Package into RAM. Among the features supported by TextEdit are text insertion,
character deletion by backspacing, text selection with the mouse, text movement
within a window, and text copying.

Scrap Manager

The Scrap Manager is used to support the Clipboard for cut-and-paste editing of
either text or graphics. It consists of a set of routines for manipulating desk scrap,
i.e., text or graphics that are cut or copied. The desk scrap may be used to transfer
data between applications or between an application and a desk accessory.

Desk Manager

The Desk Manager permits an application to use the standard desk accessories
(such as the Calculator, Control Panel, and Puzzle) available from the Apple
menu. In addition, the Desk Manager can be used to create custom desk accesso­
ries, which, like the standard ones, work as mini-applications that run concur­
rently with the main application.

Package Manager

The Package Manager provides access to standard RAM-based software such as
the Standard File Package, Binary-Decimal Conversion Package, and Interna­
tional Utilities Package.

Toolbox Utilities

The Toolbox Utilities are used to perform fixed-point arithmetic, string manipula­
tion, byte manipulation, bit manipulation, logical operations, and simple graphics
manipulations.

Chapter

9
The BASICs

This chapter describes three versions of BASIC available for the Macintosh:
Macintosh BASIC (MacBASIC), Microsoft BASIC (MBASIC), and True Basic
(TBASIC). All of these are modem versions of BASIC, reflecting the new ANSI
BASIC standard, and they enable structured programming with the optional use
of line numbers. They make BASIC, at last, into a respectable-if potentially
duplicitous-language. These BASICs are flexible, which is where their double
nature comes in. You can use them to write programs with numbered lines,
GOTOs, GOSUBs, and such that look like early (as in ancient) BASIC, or you can
climb onto the structured-programming bandwagon and write BASIC programs
that look very much like Pascal. Of course, current wisdom-and the tide of
history-support the latter approach. These BASICs are an improvement over
the versions of BASIC that came with earlier microcomputers. They are easy to
use , they enable rapid program development, and they are quite powerful.

The program-development environment of each BASIC makes effective use of
the Macintosh user interface and special editing features by using windows, cut­
and-paste editing, and pull-down menus. Although the languages have many
similarities, they also have significant differences. One of the most obvious is
compilation: MBASIC is interpreted, MacBASIC is semicompiled, and TBASIC is
compiled in the usual way. Another important difference is the extent to which
they permit user-interface features to be used in programs.

In general, the BASIC programmer is not required to deal directly with re­
source files or to worry about the Toolbox. BASIC programs exercise user-inter­
face features indirectly via high-level BASIC statements. Although this makes
programming simpler, not all user-interface features are accessible with BASIC,
and thus BASIC imposes certain limits on what can be done. Interface features
available vary with the particular BASIC that is used, as will become apparent.

Each BASIC is described below in terms of its general characteristics, language
features, program-development environment, and input-output and the User­
Interface Toolbox.

149

150 Programming the Macintosh User Interface

Macintosh BASIC

General Characteristics

MacBASIC is a semicompiled BASIC. As each line is entered, its syntax is
checked, and the program's data structures are updated. Syntax errors result in
feedback messages, and corrections can be made on the spot. As each line is
compiled as entered, the program can be run immediately, without waiting for
compilation of the entire program. Thus, MacBASIC has both the interactive
nature of an interpreted language and the speed of a compiled language. MacBA­
SIC is also a multitasking BASIC, and permits up to seven different programs to
be worked on and run simultaneously.

Language Features

Program lines. Program lines may contain up to 32,767 characters; long lines
can be scrolled horizontally. Spaces can be used freely to increase readability and
do not affect the program's operation ; the Tab key may be used to simplify
indentation. Line numbers are optional, and when used, they serve primarily to
mark reference points in the program for GOSUB or GOTO statements; labels
(i.e., names consisting of characters, followed by a colon) can be used for the
same purpose. Line numbers or labels may contain up to 255 characters . If line
numbers are used, they are treated as labels . This means that not all lines must
be numbered and that the editor does not reposition lines entered out of order;
i.e., line 50 may precede line 10.

Variable names and data types. MacBASIC does not require that variables be
declared by name before use, although arrays must be dimensioned (see below).
The same name may be used for different variable types within a program,
provided the type suffix is used; e.g., the program may use both the real variable
X and the string variable X$ without problems.

Numeric variable names may be of any length , given the limits of a program
line, and all characters are significant; the only constraints are that the first
character must be a letter and that certain symbols (e.g., punctuation marks,
spaces, arithmetic operators) cannot be used. String variables may contain up to
255 characters.

Data types available are numeric (real or integer), Boolean, string, and picture.
Numeric types break down further into subtypes, as shown in Table 9-1.

MacBASIC supports both standard numeric arithmetic operations (+ , - , *,

I, /\) and integer arithmetic with MOD (modulo) and DIV (integer division).
MacBASI C has the usual relational operators (< , >, = , < >) in expressions

involving numeric, string, or Boolean data types.
The Boolean data type (symbol is -) has two states-true or false-and gener­

ally reflects the outcome of a test involving a logical or relational operator; for
example, if a = 1 and b = 2, the outcome of this expression

Boo-= a+ b = 3

sets Boo- to true.

TABLE 9-1 Numeric Variable Types and Subtypes
In MacBASIC

Digits
Type and subtype accuracy Symbol

Numeric
Extended-precision real 19 \
Double-precision real 15 (none)
Single-precision real 7 I

Integer
Long integer 18 #
Integer 5 %
Character 3 @

The BASICs 151

Strings have the usual properties-enclosed in quotes, with variable names
followed by the suffix$. They may be concatenated (with &), and substrings may
be taken with built-in functions.

A picture data type may be created directly in BASIC code, or from a separate
graphics application (such as MacPaint) via the Clipboard; the shape is then
assigned to a picture variable, e.g., Mickey@ for a picture of everyone's favorite
mouse. The picture name can then be evoked within a program to draw the
picture as desired.

Arrays may be of any data type or subtype, they may contain as many dimen­
sions as desired, and each dimension may contain up to 32,767 elements . Arrays
are dimensioned with the DIM statement, and may be undimensioned (erased
and their names freed for reuse) with the UNDIM statement. Array elements run
from 0 through the index used in the DIM statement.

Functions and subroutines. MacBASIC includes various built-in numeric,
string, and conversion functions . It also allows both standard and modem user­
defined functions and subroutines.

MacBASIC permits two types of user-defined functions : single-line and multi­
line. Functions can use any variable type and take any number of arguments;
they return a single result, e.g., the result of a calculation performed on function
arguments. Functions are defined and evoked by name.

Single-line functions are of standard BASIC form. For example, the following
defines a function that adds two numbers together:

DEF Addup (X , Y)=X+Y

Multiline functions may be used to perform more complex operations. The
function definition begins with a FUNCTION statement and ends with an END
FUNCTION statement. For example, this version of the Addup function makes
sure its arguments are nonnegative before adding them.

FUNCTION Addup.non . zero (X , Y)
IF X<O THEN X=ABS (X)
IF Y< O THEN Y=ABS (Y)
Addup.non.zero=X+Y

END FUNCTION

152 Programming the Macintosh User Interface

All variables used in a function definition are local to that function, and values
changed in the function (excepting the function name) are not passed back to the
program.

Subroutines come in both conventional and subprogram forms. Either may use
any combination of variable types, although only subprograms can pass parame­
ters.

Conventional subroutines begin with a label (name or number) followed by a
colon, end with a RETURN statement, and are evoked with a GOSUB statement
followed by the subroutine name. Though conventional in appearance, these
subroutines do not permit parameter passing. Here is an example:

Print . impera t ive:
PRINT '1Do i t now! 11

RETURN

A GOSUB Print.imperative statement will evoke the subroutine, causing "Do it
now!" to be displayed.

The subprogram form of subroutine begins with a SUB statement followed by a
label, and ends with an END SUB statement, like this :

SUB Domaths tuff (M, X, Z)
Y=M*X+Z
PRINT "Y= " ; Y

END SUB

The subroutine is evoked with a CALL statement, followed by the subroutine
name, e.g., CALL Domathstuff. This form of subroutine may be used to pass
parameters, although the variables used within the subroutine remain local to
that subroutine. The parameter list following the definition and CALL statement
is optional. Subprograms may be placed anywhere in the program and will not
produce "Return without GOSUB" type errors if their code is executed outside a
normal subroutine call. Like functions , they may take any number of arguments .
They are the BASIC equivalent of Pascal procedures.

Control and looping structures. MacBASIC has several control and looping
structures, including subroutines (see above); the GOTO statement; IF-THEN
and SELECT CASE decision structures; the looping structures DO-LOOP,
WHEN-ENDWHEN , and FOR-NEXT; and the PERFORM statement, which ex­
ecutes a subprogram while keeping the main program and its variables intact.

As in other forms of BASIC, the GOTO statement causes an unconditional
jump to another line. The special thing about MacBASIC's GOTO is that the
jumped-to line is referenced by a label, which may be either a name followed by a
colon, or a line number (as with conventional subroutines-see above).

IF-THEN is used to perform tests-usually involving logical or relational oper­
ators-and take appropriate actions based on the results. MacBASIC's IF-THEN
includes ELSE, ELSE IF, and END IF markers to enable multiple-line, nested
decision structures.

SELECT CASE is a little like common BASIC's ON-GOTO/GOSUB statements
(which MacBASIC lacks), but it can be extended over several lines and used for
more sophisticated decision making. A condition is specified (e.g. , in the form of a
variable) following the SELECT CASE statement, and then one or more CASE

The BASICs 153

statements are listed, each followed by a specific test and consequent action. If
the test matches a condition, then the corresponding action is performed. For
example, this structure

SELECT CASE name$
CASE "John-Paul"

PRINT "Sartre is the one"
CASE "Kurt"

PRINT "Vonnegut is the one"
END SELECT

will match name$ with "John-Paul" and "Kurt" and execute the appropriate
PRINT statement if a match is found.

DO-LOOP and WHEN-ENDWHEN are looping structures that can be used to
loop continuously, or until certain conditions are met. FOR-NEXT, the standard
BASIC looping structure, loops a fixed number of times , based on an index
variable. EXIT statements can be used with any of these structures to exit the
loop when a specified condition is met.

PERFORM is somewhat like a chaining statement, although it does a good deal
more. It executes another program, while keeping the original program intact,
and may optionally pass parameters to the second program. When the second
program ends, control returns to the first program at the statement following
PERFORM. In effect, this allows the second program to be used as a subroutine.
A PERFORMed program can contain its own PERFORM statement, and so on,
up to the limit of memory. Thus, PERFORM has the effect of keeping separate
parts of the application active simultaneously, perhaps in separate windows,
while making it relatively easy to move among them with high-level control code.

Program-Development Environment

Screen and menus. The MacBASIC screen appears when the MacBASIC icon
is selected from the Finder. The menu bar contains six menus: Apple, File, Edit,
Search, Fonts, and Program (Figure 9-1). Of these , the Apple, File, Edit, and
Fonts menus contain options similar to many other Macintosh applications , and
are self-evident (see Figure 9-la, b, c, and e). Note, however, that options on the
Edit menu now apply to the program rather than to the usual text editing.

The Search and Program menus are unique to MacBASIC. The Search menu
(Figure 9-ld) contains various find and replace options for global editing. The
Program menu (Figure 9-lf) contains various immediate-execution commands
for running, saving, and debugging. Immediate-execution commands must be
issued through this menu rather than typed in through the keyboard. The Run
option runs the program in the active window; Run Another opens an output
window and runs the program; Halt stops the program; and Go resumes execu­
tion, or runs the program.

Of the save options, Save Binary saves the program in compiled form; Check
Syntax checks changes made in a program listing and permits changes to a
running program; and Tum Checking Off toggles automatic syntax checking on
and off. Programs saved in binary form are unlistable and unmodifiable; they may
be saved in ASCII form alone by responding to a dialog box when quitting the
application. Programs may coexist on a disk in both compiled and uncompiled
forms; binary files are indicated by the suffix .Bin.

154 Programming the Macintosh User Interface

About Mocintosh BASIC

Scropbook
Alarm Clock
Note Pad
Calculator
Key Cops
Control Panel
Puzzle

(a)

Find
Replace
Replace All
lllhat to Find

:lllF
3€R

3€W

New
Open Program file... 3€0

Close 3€K
Saue TeHt 3€S
saue a Copy In .•• 3€1

Print Quick 3€Q
Print Document 3€P
Quit

(b)

~ [j)[i)Q[D{l
0(!) [jl[i)0[i}{l

.10~ [j)[i)Q[i}{l
a~ [j)[i)OlilU

om !il©Olilil
~(!) [jl[i)0[i}{l

~~!il©Olilil

Toronto
~an Francisco
Los Angeles
Cairo
Chicago

./Geneua
New York
Monaco
Uenlce
London
Athens

Undo

Cut
Copy
Paste
Clear

Select All 3€A
Show Clipboard
l:O!Hl l'ic turn

(c)

Run
Run Another
Hnlt :•:H
Go 3CG

...................................

Saue Binory
Check SyntaH :ICU
Turn Checking Off

....

Debug 3€D
St(JJl :•:t
"frnce :•:r
Block lJ'd(!' :•:Et
Show llmi<lllle~

(d) (e) (fl

Figure 9-1 MacBASJC menus: (a) Apple, (b) File, (c) Edit , (d) Search, (e) Fonts, and
(f) Program.

The debug options include Debug, which toggles the interactive debugger on
and off; and the Step, Trace, and Block Trace options, which define the debug­
ging mode, i.e., the size and speed of the portion of the program being debugged.
During debugging, the program listing and its execution are displayed in separate
windows, and a moving finger (Figure 9-2) moves through the listing to show the
portion of the program being executed. The Show Variables option displays a
window showing the variables and their current values (Figure 9-3).

Note that the majority of options on all menus have Command key equivalents,
and that most commands can be given without using pull-down menus.

,. s File Edit Search Fonts

TeHt of 82-Rectangles
Sub Corners

Let left = Rnd
Let right= Rnd
Let bottom = Rnd
Let top= Rnd

End sub

Sub Draw
Plot left, top; left, b
Plot left, bottom; ri
Plot right, bottom; r
Plot right, top; left,

End sub

The BASICs 155

.,

82-Rectangles

1111

I.II.I

Figure 9-2 MacBASIC listing and execution windows during single-step debugging. The
moving finger points to the step being executed.

,. s File Edit Search Fonts

TeHt of B2-Rectangles
Sub Corners

Let left= Rnd
Let right = Rnd
Let bottom = Rnd
Let top= Rnd

End sub

Sub Draw
Plot left, top; left, b
Plot 1 eft, bot tom; ri
Plot right, bot tom; r
Plot right, top; 1 eft,

End sub

B2-Rectangles

~D~ Uariables from B2-Rectangles ~
J 2
NRECT 12

.29030 11 083

.0907289 1809

.8809270561

. 7 410383322

Figure 9·3 Program variables may be shown in a separate window by selecting the Show
Variables option of the Program menu.

156 Programming the Macintosh User Interface

File and Program menus. The File and Program menus give good indications of
how MacBASIC programs may be edited and debugged. When a new program is
to be created, the MacBASIC icon is selected from the Finder. An untitled Listing
window then appears. The program is typed in, line by line, with the Return key
pressed at the end of each line. The editor scans the entered code and converts
key words to boldface. Lines of code may be edited in the usual cut-and-paste
way, by highlighting with the mouse and using the Edit menu. As each line is
entered, it is checked for correctness in terms of spelling, syntax, and value
assignment (unless the syntax checker is turned off via the Program menu); an
error produces an alert box identifying the error and its location (Figure 9-4).
When the program is run , run-time errors (e.g., "Subscript out of bounds") will be
identified similarly.

When the program is ready to run, a run option is selected from the Program
menu. A separate Execution window then appears, and the output of the program
is displayed (Figure 9-5). Program debugging can be done at this point by select­
ing the desired debug options on the Program menu.

Input-Output and the User-Interface Toolbox

MacBASIC has both standard and Macintosh-specific input-output features, as
discussed below.

Input-output statements. MacBASIC has various standard BASIC input and
output statements. READ-DATA are available for input from the program itself.
Keyboard input statements include INPUT, LINE INPUT, and INKEY$; key-

,.. s file Edit Search Fonts Program

TeHt of B2-Rectangles
Program Rectangles

Randomize
Ca11 HowMeny

B2-Rectangles

Ca11 SetGreph llji. Undefined label, Function or Sub
For j = 1 ton l:t..!J

Call Cornr
Call Drew Call Cornrs

Next j
End main

Sub HowMeny ([OK JJ [Debug]

Print "HowmJb~~~~~:::::;==================~~~;;;,,,,:::J]
Input nrect 1:1:'.

Clearwindow
End sub

Figure 9-4 A program error results in an alert box identifying the nature of the error.

.,

,. s File Edit Search Fonts

TeHt of 82-Rectangles
Program Rectengles

Rondomize
Coll HowMeny
Coll SetGrephics
For j = 1 to nrect

Coll Corners
Call Drew

Next j
End main

Sub HowMeny
Print "How meny rectengle
Input nrect
Cleorwindow

End sub

The BASICS 157

.,

82-Rectangles

Figure 9·5 Running a MacBASIC program causes a separate Execution window to open,
displaying program output. The List window remains on the screen.

board input must be handled with custom, user-designed input routines built
around these statements; i.e ., there is no built-in routine for creating and taking
input via protected fields. Output statements include PRINT (with commas and
semicolons) and FORMAT$, which permits output to be formatted (in the man­
ner of PRINT USING). Related cursor-positioning statements include TAB,
VPOS, and HPOS; the last two position the cursor vertically (VPOS) and horizon­
tally (HPOS).

Reading the mouse. The status of the mouse can be determined with MOU SB
or MOUSE-, which tell whether the mouse button is down ; and MOUSH and
MOUSV, which tell the horizontal and vertical coordinates of the pointer in the
active window.

Pull-down menus. MacBASIC does not have BASIC statements for creating
standard pull-down menus.

Windows and dialog and alert boxes. MacBASIC can send output to several
different windows, although it does not have BASIC statements for generating
standard dialog or alert boxes.

Graphics. MacBASIC provides extensive graphics features, which may be exer­
cised through simple BASIC statements to draw and manipulate graphics and
text in the active window. Each window is divided into a 497 x 289 dot grid for a
full-screen window (smaller if the window is reduced in size). The graphics take

158 Programming the Macintosh User Interface

DOD

'""'" 23 --Ill

(a)

0-ROUNDRECT with center
ERASEd

INVERTed OVAL

(b)

Figure 9-6 (a) MacBASIC shapes: rectangle, circle, and rounded rectangle. (b) Shape ma­
nipulations include fill (left), inversion (center), and erasing (right).

the form of dots , lines, and shapes, which may be drawn with various pen sizes.
Available shapes include rectangles, ovals , and rounded rectangles (Figure 9-6a).
Shapes may be filled (Figure 9-6b) with various patterns, outlined, drawn within
frames, erased, and reversed (i.e., the state of the pixels comprising the shape
may be changed). (See Figure 9-6.)

Text may be displayed in twelve different type fonts and several different sizes.

Sound. The SOUND statement may be used to generate sound of a specified
frequency, amplitude, and duration; sequences of sound may be generated by
supplying SOUND arguments via an array. Sound may be turned on and off at
will and played as background while other program activity continues.

File Input-output. MacBASIC incorporates three different types of files : sequen­
tial, stream, and random. Both sequential and stream files store and retrieve data
in serial form, but the first handles data in text form, and the second in binary.
Other devices-e.g., printer, windows, serial port-can be accessed in a manner
similar to that used to access files .

Microsoft BASIC

General Characteristics

MBASIC has much in common with standard Microsoft BASIC (if there is such a
thing), although it is a much-improved version of the original. Programmers
familiar with IBM PC BASICA or similar BASICs for IBM compatibles will imme­
diately recognize the majority of its statements, which are direct carryovers. New
are its structured features and Macintosh extensions, both of which are signifi-

The BASICs 159

cant. MBASIC was first released (version 1.0) when the Macintosh was intro­
duced. Although 1.0 BASIC has many advanced features, it has an awkward
editor and gives limited access to Toolbox features. Version 2.0, discussed in this
section, corrects these deficiencies to a large degree.

MBASIC is an interpreted BASIC, although it can be compiled with a separate
compiler. The language is provided on disk in two forms: decimal and binary. The
decimal version-which is aimed at business applications-makes more accu­
rate decimal calculations, but it is somewhat slower than the binary version. The
binary version is probably the best choice for most applications. Programs can be
run in either version, although disk files require conversion if they have been
created in one BASIC and are to be accessed by another; conversion commands
make this relatively easy.

Language Features

Program lines. Program lines may contain up to 255 characters. Spaces can be
used freely to increase readability , and they do not affect the program's operation;
the Tab key may be used to simplify indentation. Line numbers are optional, and
when they are used , they primarily serve to mark reference points in the program
for GOSUB or GOTO statements; labels (i.e., names consisting of up to 40 letters,
numbers, or periods, followed by a colon) can be used for the same purpose. If
line numbers are used, they are treated as labels. This means that not all lines
must be numbered and that the editor does not reposition lines entered out of
order.

Variable names and data types. MBASIC does not require that variables be
declared by name before use, although arrays must be dimensioned. The same
name may be used for different variable types within a program, provided the
type suffix is used; e.g., the program may use both the real variable X and the
string variable X$ without problems.

Numeric variable names may be of any length, given the limits of a program
line, and all characters are significant; the only constraints are that the first
character must be a letter and that certain symbols (e .g., punctuation marks,
spaces, arithmetic operators) cannot be used. String names may contain up to
255 characters.

Data types available are numeric (real, integer, or hexadecimal), string, and
picture. Numeric types break down further into subtypes, as shown in Table 9-2.

TABLE 9-2 Numeric Variable Types and Subtypes
in MBASIC

Digits
Type and subtype accuracy Symbol

Numeric
Double-precision real 7 (decimal) #

8 (binary) #
Single-precision real 6 (decimal)

7 (binary)

Integer 5 %

160 Programming the Macintosh User Interface

MBASIC also has functions that permit the manipulation of octal and hexa­
decimal numbers.

MBASIC supports both standard numeric arithmetic operations (+, - , •, I, /\)
and integer arithmetic with MOD (modulo) and integer division.

MB ASIC has the usual relational operators (< , >, =, < >) and the logical
operators (AND, OR, NOT, XOR, IMP, EQV). These can be used in expressions
involving numeric or string data types. MBASIC lacks a Boolean data type.

Strings have the usual properties-enclosed in quotes, with variable names
followed by the suffix$. They may be concatenated (with +), and substrings may
be taken with built-in functions. String constants may be up to 32, 767 characters
in length .

Pictures are not defined as a separate data type but exist implicitly. Pictures are
created in BASIC code or with a separate graphics application, and then assigned
to a string variable. The picture name can then be evoked within a program to
draw the picture.

Arrays may be of any data type or subtype and may contain up to 255 dimen­
sions; each dimension may contain up to 32, 767 elements. Arrays are dimen­
sioned with the DIM statement and may be undimensioned (erased and their
names freed for reuse) with the ERASE statement. Array elements run from
either 0 or 1 (set with the OPTION BASE statement) through the index used in
the DIM statement.

Functions and subroutines. MBASIC includes various built-in numeric, string,
and conversion functions. It also allows both standard and modem user-defined
functions and subroutines.

MBASIC permits only single-line user-defined functions. Functions can use
any variable type and take any number of arguments ; they return a single result,
e.g., the result of a calculation performed on function arguments. Functions are
defined and evoked by name. User-defined functions are of standard BASIC form .
For example, the following defines a function that adds two numbers together:

DEF FN Addup (X , Y) =X+Y

All variables used in a function definition are local to that function , and values
changed in the function are not passed back to the program.

Subroutines come in both conventional and subprogram forms . Either may use
any variable type, and both types can pass parameters.

Conventional subroutines begin with a label (name or number) followed by a
colon, end with a RETURN statement, and are evoked with a GOSUB statement
followed by the subroutine name. Here is an example:

Squareit :
X=x/\2

RETURN

If the variable X is set to 2, then a GOSUB Squareit statement will evoke the
subroutine, squaring X.

The subprogram form of subroutine begins with a SUB statement followed by
the label and ends with the END SUB statement, like this:

SUB Domathstuff (M,X,Z) STATIC
Y=M*X+Z
PRINT "Y="; Y

END SUB

The BASICs 161

The subprogram is evoked with a CALL statement, followed by the subprogram
name, e.g., CALL Domathstuff. Program variables used within the subroutine
are made local to the subroutine with the STATIC suffix, or made global by using
the SHARED suffix followed by a paremeter list.

The parameter list following the definition and CALL statement is optional.
Subprograms may be placed anywhere in the program and will not produce
"Return without GOSUB" type errors if their code is executed outside a normal
subroutine call. Like functions , they may take any number of arguments . They
are the BASIC equivalent of Pascal procedures.

Control and looping structures . MBASIC has several control and looping struc­
tures, including subroutines; the GOTO, ON-GOTO, and ON-GOSUB state­
ments and variants (see below); the IF-THEN decision structure; and the looping
structures FOR-NEXT and WHILE-WEND.

The CHAIN statement terminates the current program and initiates a new
program while retaining designated variables and program lines. The MERGE
option on the Chain statement brings additional BASIC code into memory, ap­
pending it to the end of the calling program-without erasing the calling pro­
gram. The DELETE option on CHAIN deletes argument-specified lines from the
calling program. Thus CHAIN makes it fairly easy to move different parts of
programs and subroutines into and out of memory as overlays.

As in other forms of BASIC, the GOTO statement causes an unconditional
jump to another line. The jumped-to line is referenced by a label, which may be
either a name followed by a colon, or a line number (as with conventional subrou­
tines- see above). ON-GOTO and ON-GOSUB statements route control to the
nth line label listed after them. MBASIC variants of ON-GOSUB include ON
MENU GOSUB, which routes control based on a pull-down menu selection; ON
MOUSE GOSUB, which routes control based on a mouse button press;
ON DIALOG GOSUB, which routes control when the user performs any action
affecting a dialog box; ON BREAK GOSUB, which routes control when the Com­
mand-period key combination is pressed; and ON TIMER GOSUB, which routes
control based on a time interval.

IF-THEN is used to perform tests- usually involving logical or relational oper­
ators- and take appropriate actions based on the result. MBASIC's IF-THEN
statements must be constructed in single-line form.

WHILE-WEND is a looping structure that can be used to loop continuously or
until certain conditions are met. FOR-NEXT, the standard BASIC looping struc­
ture, loops a fixed number of times, based on an index variable.

Program-Development Environment

Screen and menus. The MBASIC screen (Figure 9-7) appears when the
MBASIC icon is selected from the Finder. The screen itself is divided into three
separate windows- Command, List, and Output-and the menu bar contains six

162 Programming the Macintosh User Interface

,. s File Edit Search Run Windows
.,

:::-~r:J"° ... ·.·.·.·.·.·.·.·.·.·.·-:·:- -: ·:-:-:-:-: ·: -:-:::::~:; :~:~:::::::::::::::: :: :::::::: :::::::::::: ::=::::::::::::::::::::::::::::t:t::::::]:]t:::J]]:J:Iif:(=<:I::::::::tt::

CI RCLE(60 ,60) ,55 ,30 ,,,ASPECT
ASPECT = ASPECT* 1.4

.. WEND
::: GET (0,0)-(127, 127),P
::: CheckMouse:

..

IF MOUSE(O):O THEN CheckMouse
IF AHS(X-MOUSE(1)) > 2 THEN Mo11ePictur +:
IF AHS(V-MOUSE(2)) < 3 THEN CheckMous

MovePi cture:
PUT(X,\'),P
X=MOUSE(1): \l:MOUSE(2)
PUT(X,V),P
GOTO CheckMouse

Command

··.·.·.·.·.·.·.·.·.·.·.·.·.·.·

Figure 9-7 MBASIC screen showing menu bar and Command, List , and Output windows.
(Re-printed by permission of the copyright owner, Microsoft Corporation. Microsoft BASIC is
a registered trademark of Microsoft Corporation.)

menus: Apple, File, Edit, Search , Run , and Windows (Figure 9-8). The Com­
mand window is used to issue immediate-execution commands , the List window
to type in and display the program listing, and the Output window to display
program output.

Three of the menus- Apple, File, and Edit-contain options similar to many
other Macintosh applications and are self-evident (see Figure 9-8a , b, and c).
Note that options on the Edit menu now apply to the program rather than to the
usual text editing.

Search, Run, and Windows menus. The Search , Run, and Windows menus are
unique to MBASIC . The Search menu (Figure 9-8d) contains various find and
replace options for global editing. The Run menu contains options for starting
(running), stopping, and continuing the program; for suspending (pausing until a
key is pressed); and for tracing and single-stepping the program. The Windows
menu opens and displays Command, List, Second List, and Output windows.
Two List windows can be open simultaneously-typically used to view different
parts of the program (Figure 9-9).

Note that most of the commands on these menus have Command key equiva­
lents and that immediate-execution commands such as RUN can be issued di­
rectly through the keyboard when typed into the Command window.

Program statements may be actively traced as executed with the TRON com­
mand; tracing is deactivated with TROFF.

Rbout Microsoft BRSIC ...

Scrapbook
R111rm Clock
Note P11d
c111cul11tor
Key C11ps
Control P11nel
Puzzle

(a)

Cut
Copy
P11ste

(c)

St11rt
Stop

3€H
ace
3€U

3€R
3€.

Continue
Suspend acs
Trace On
Step 3CT

!el

New
Open ...
Close
saue
Saue Rs ...
Print ...
Quit

(b)

The BASICs 163

Find... 3€F
find Nt~Ht :)[:N

rind ~•~h~ct<Hl le11t
Hnd l.tlbt~I
Find the Cursor
Replace ...

(d)

Show Command
Show list aGL
Show Second List
Show output

(fl

Figure 9-8 MBASIC menus: (a) Apple, (b) File, (c) Edit, (d) Search, (e) Run, and
(f) Windows.

Input-Output and the User-Interface Toolbox

MBASIC has both standard and Macintosh-specific input-output features, as
discussed below.

Input-output. MBASIC has standard BASIC input and output statements.
READ-DATA are available for input from the program itself. Keyboard input
statements include INPUT, LINE INPUT, and INKEY$.

In addition, MBASIC has several input-output features tailored uniquely to the
Macintosh. The EDIT FIELD statement may be used to draw protected input
fields of specified type, size, and location, into which the user enters data and
from which the user has access to standard Macintosh editing features . The
content of the completed field is returned via the EDIT$ function. This feature
may be used to create professional-looking input forms with relative ease. The

164 Programming the Macintosh User Interface

,. s file Edit Search Run Windows
.,

:::::::::::::;:;:;:;::::::::::::::::::::::::::·::::::::::::::::::;:;::::::::::::·:::::::::::::::::::::::::::::::::::::·:::::::::::::::::::::·:::::::::::::::::::::::::::::·:::·:: ... ·:·:·:·:·:·:·:·.·.·.·.·.·.·.·.·.·'.·'.·.

dDEFINT P-Z
: DIM P(2500)
'. CLS

list

: LINE(0,0)-(120, 120),,BF
'.ASPECT= .1

WHILE ASPECT<20
CI RCLE(60 ,60),55,30 ,,,ASPECT
ASPECT = ASPECT* 1.4

WEND
: GET (0,0)-(127, 127) ,P

Picture

Check Mouse:
IF MOUSE(O):O THEN CheckMouse :::m

:: ::~~~~~~~~~g~~ : ; ~~~:~~~~ /Ill/I
MovePi cture:

PUT(X,V),P
X=MOUSE(1) V=MOUSE(2)
PUT(X,V),P
GOTO CheckMouse

Figure 9-9 MBASIC screen with two open List windows. (Reprinted by permission of the
copyright owner, Microsoft Corporation. Microsoft BASIC is a regis tered trademarh of Micro­
soft Corporation.)

completed forms look and act as expected in Macintosh programs-with normal
editing, tabbing between fields, and the ability to use the pointer to activate fields
for entry and editing.

The DIALOG statement tells when and how the user is interacting with but­
tons, edit fields , and windows. It can be used to detect a button press , a click in an
edit field , a Tab key press requiring activation of the next edit field, a click in an
inactive window that requires it to be activated, the need to redraw a window, and
a click in the close box of a window. Dialog event trapping is turned on with
DIALOG ON, suspended with DIALOG STOP, or turned off with DIALOG OFF.

Standard output statements include PRINT (with commas and semicolons)
and PRINT USING, which permits output to be formatted in several different
ways. Related cursor-positioning statements include TAB and LOCATE. Macin­
tosh-specific positioning statements include PTAB and CALL MOYETO. The
SCROLL statement may be used to scroll a designated part of an output window.

Reading the mouse. The MOUSE statement is used to determine mouse status
in terms ofrecent single-, double-, or triple-clicks; current button state (down or
up); and current, starting, and ending locations. The shape and visibility of the
mouse cursor are set with CALLs (by name) to ROM routines. The ON MOUSE
GOSUB statement (see above) may be used to call a subroutine when a mouse
button is pressed.

,. S f HH Edit S(~<il'(h Run Windows
::::::::::::::.;.:-:-:-:-:·:·:·:.:·:-: :-:.:-:-:-:-:-:-:-:-:-:-:-:·:···

List
{ REM Menu generation code
{ MENU 8,0, 1 ,"Dummy Menu"
{MENU 8,1,1 , "Option *1"
{ MENU 8,2, 1, "Option *2"
{MENU 8,3, 1,"0ption *3"
{MENU 8,4, 1, "Option *lest"

The BASICs 165

Option #1
Option #2
Option #3
Option #l11st

tied

....................

.,

...
·•·•·.·.·••.·.·.·.·.·.·.·.·.·.·

11:·· Cammood ·.·.·.w.·.·.·.· ... · .. · .. ·.·.w.·.········••·•,·•·•·•·1• >' ;
. . .:::::::::::::::::::::::::::::::~

Figure 9·1 0 MBASIC code for generating pull-down menu, and resulting menu.

Pull-down menus. The MENU statement is used to create custom pull-down
menus. The menu location, title , and options are specified in BASIC code (Figure
9-10). The MENU function is then used to read the number of the option selected
with the mouse pointer. Event trapping is enabled with MENU ON, disabled with
MENU OFF, or disabled with MENU STOP statements. The menu will act in the
usual way when selected by the user- its title will highlight and the options will
be displayed when the menu bar is selected, and individual options will be high­
lighted as the pointer moves down the menu. Control is routed using ON MENU
GOSUB statements.

Windows and dialog and alert boxes. The WINDOW statement is used to
create output windows of specified type , size, and location; to send output to a
window; and to close a window. This makes it fairly easy to use multiple windows
in an application. Window types include standard document windows, dialog
boxes, and windows with 1-line borders or shadows (Figure 9-11).

The BUTION statement is used to position and display a Macintosh-style
button in a window. The statement can be used to display push buttons, check
boxes, or radio buttons (Figure 9-12). Each button in a window has a separate
button id (that is, "identification), which is its reference code. The Button func­
tion is used to read the state of the button whose id is provided as its argument. A
button may be removed from the window with the BUTION CLOSE state.

Graphics. MBASIC provides extensive QuickDraw-based graphics features,
which are exercised mainly through CALLs to ROM routines. In addition,

166 Programming the Macintosh User Interface

r s me Edit Se<1n h Run Windows
...

... List
·· 1----------------,-----,------,------.-i

·::: :". WINDOW l "'Document Window",(50, 150)-(450,280), 1
able:

,•.·.· .

;::::: PRINT "This is an MBASIC document window"
\ GOTO 6ble

. ·.·:.·.·.·.·.·.·.· .

~~~~~~~~C[~~~D!!~~~~~~~~~-~--~- ~ ~D Document Window .. 

., 

.. 
.... . 

... 
. ·.·.·.·.· 

.·.·.·.·.· 

.. : This is an MBAS IC document window . . . . . 

This is on MBASIC document window 
... . 

":" This is an MBAS IC document window 
::::: Thi s i s an MBASIC document window 

/:/:/ Thi s i s on MBAS IC document window 

(a) 

r S me Edit S(~<H'( h Run Windows 
:-:-:-:-:-:.:-:-:-:-:-:-:·:·:·:-:-:.:-: 

List 
">-------------------------~ ..... 
} WINDOW 1,,(50, 150)-(450,280),2 
( 6ble: 
< PRINT "This is an MBASIC dialog box" 
) GOTO able 

... 

., 

.. 
.. ..... . 

. ...._ _______________________________________________ ...., ..... ~ .. 
. ::· < ,:_: r.;;""";;;;;""";""';;;;;·""';;;;;·""=:-:-=:-:-:-=:·:·:=-:·:-:;-:-:-=:·:- =···=··="""" = ... = .. ·=·= .. """'=" :::::::;;;;;;·;;;;;;· ,:=_:,:,=::,:,=:,:,:=,:,:,:=·:·:·.;·""="""="""=" ~~ 

This is 6n MBASIC ditilog box 
This is an MBASIC dialog box 
This is rm MBASIC di6log box 
This is an MBASIC diolog box 
This is an MBASIC ditilog box 

"" .. This is tin MB~S IC di6log box 
Thi s is tin MBASIC di61og box 
Thi s is 6n MBASIC dialog box 

Commanll 

(b) 

..... 

Figure 9-11 Four types of windows that may be created with MBASIC: (a) standard docu­
ment window, (b) dialog box, (c) window with I-line border, and (d) window with shadows. 



The BASICs 167 

r • Hh~ Edit ;,(~<II ( n Run Ulindows 

List 
•• WINDOW 1,,(50, 150) -(450,280),3 
:• eble: 
: PRINT "This is an MBAS IC window with one - line border" 
: GOTO able 

-.......... . 
• ;.:..:..:..:.:.:.:.:.:.:..:.::.:.:.:.:..:.:..:..:..:.:.:.:.:.:.:.:.:.:.:.:..:.;.:.:.:.:.:.:.:..:.;.:.:.:.:..:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.~-......~~~~......., 

This is iin MBASIC window with one-line border 
This is an MBASIC window with one-line border 
Thi s is an MBASIC window with one - line border 
Thi s i s (ln MBAS IC window with one-1 i ne border 
Thi s is an MBASIC window with one-line border 
This is an MBAS IC window with one-1 i ne border 
Thi s i s (ln MBAS IC window with one-1 i ne border 
Thi s is an MBASIC window witt1 one-line border 

(c) 

r a Hie Edit Se<1n h Run Windows 
., 

.............. ·: ·.·.·.·:.·.·.·:.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:.:·:-:-:.:.:-. ·.·.·.·.·.·.·.·.·.·.·.·:.·.·.·.·.·.·.·.·.· ...... .... . 

List 

WINDOW 1,,(50, 150)-(450,280),4 
·· able· 
\ PRINT "Thi s is an MBASIC window with shadow" 
•:• GOTO able 

.. .... 

····.·.·.·.·.·.·.·.·-:-:.:.:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-: ... ·.··.···· 
·.·.·.·.·.··.·········································· ············· ·· ···· · . .. ................... . 

• t: Thi s is an MBASIC window with Sh(ldOW 
Thi s is an MBAS IC window with shadow 
This is an MBASIC window with shadow 
This is an MBASIC window with shadow 
This is an MBASIC window with shadow 
This is an MBAStC window with shadow 
Thi s i s an MBAS I c window with Sh(ldOW 
Thi s i s an MBAS IC window with shadow 

Jr Command 

(d) 

·······.·· 

11 ___ /i 

(continued) 



168 Programming the Macintosh User Interface 

~ .S rile Edit Se<1n h Run Windows 
·.· ..... µ··""- · ""···~·-~··'°"·· ""·· '"'···~··""··=~~····'°".·.·.""·.··oo····""-·.·.·""· j_""· ; ·""~·too····oo····=""""""""-=""""-=""""=~··:}\}:}:}(/ 

:::::::::-:: : , :-:-:!------------------------,~: ::: ::: ::: :: : ... 
::-: ·· ··· WINDOW 1, "Controls",(30, 100)-(300,250), 1 .. 
::. .·.·.· BUTTON l, l ,"Push button",(20,25)-( 120,40), 1 .::::::::::::::::::::::::::::::::: 

.. ········ · BUTTON 2, 1,"Check box",(20,55)-(200,70),2 .. . . 

........ 

........ .. BUTTON 3, 1,"Radio button",(20,85)-(200, 100),3 ...... . ... . ..... 
. . . . . . . . 

. . · · ··. ..: .. @g .. ]. · -io~~~~~~co~n~t~ro~l~sJ. -~· -~· · ~·. ·~· ·~· · ~· . -~· -~· -~·. -~· .[. ·;· s]· ·.]·.·.·[.· .. J· · ·:····.···· · . ..... . 

... . ·:.·:.·.:::·:·:··::·:·: ··-·.·.·.·.·.·.·.·.· 
.... .. ·.·.·.·.·.·.· .... ·.·:.·.· . ... ····· ... 

. ·· . .... 

.. 
....... 

[ Push button 

0 Check boH 

O Radio button 
..... ... .. .... . 

. . 

.... .... .. 

... ·.·.·.·.·.·.·····-·.·.·.·.·.·.·.·.•.· .·.·.·.·.·.· u> .. . . ·· ... 

Figure 9-12 Three types of buttons that may be created with MBASIC. 

MBASIC statements exist for drawing dots (PRESET), lines (LINE), and circles 
(CIRCLE). CALLs are made by name and act as simple extensions of the BASIC 
language. The graphics take the form of dots , lines, and shapes, which may be 
drawn with various pen sizes and patterns . Available shapes include rectangles, 
ovals, rounded rectangles (see Figure 9-6a), and arcs. 

Shapes may be filled with various patterns, outlined, drawn within frames, 
erased, and reversed (see Figure 9-6b). 

Text may be displayed in twelve different type fonts and several different sizes. 

Sound. The BEEP statement is used to beep the speaker. More sophisticated 
sounds can be generated with the SOUND statement, which generates sound of a 
specified frequency, amplitude, and duration; sequences of sound may be gener­
ated by supplying SOUND arguments via an array. Sound may be turned on and 
off at will and played as background while other program activity continues. The 
WAVE statement, used with SOUND, sets the number of voices and the wave 
definition (e.g., SIN or the name of an array that defines the wave). 

File input-output. MBASIC incorporates sequential and random files , which 
operate much like standard MBASIC files. Other devices- e.g., printer, key­
board, windows, Clipboard, serial port-can be accessed in a manner similar to 
that used to access files . 



The BASICs 169 

True BASIC 

General Characteristics 

TBASIC is a new compiled BASIC from True BASIC, Inc., of Hanover, New 
Hampshire. Its designers are John Kemeny and Thomas Kurtz, originators (in 
1963) of the original Dartmouth BASIC. Kurtz played an important role in the 
development of the ANSI BASIC standard, which TBASIC strongly reflects. One 
of the rules underlying the design of TB ASIC is that it should be highly portable. 
It is. There is only one TBASIC reference manual, and it applies to all computers 
running TBASIC. In general, programs written in TBASIC on one computer will 
run on others. · 

Since it is compiled, TBASIC is fast , but it lacks the interactive nature of an 
interpreted BASIC. The syntax of entered lines is not checked until the program 
is compiled. At that point, errors are detected and result in feedback messages . 
Errors not detected during compilation (e.g., an out-of-bounds array subscript) 
will cause run-time errors, which produce feedback messages while the program 
is running. When errors are detected, it is necessary to return to the editor, make 
corrections, and recompile . 

TBASIC has some unusual features. First, it requires that "LET" be used in 
assignment statements and that every program contain an END statement. Sec­
ond, it has an "all-or-nothing" policy about line numbers-if you number one 
line, you must number all lines; alternatively, you can eschew line numbers 
altogether, if desired (this seems to be what its designers would like programmers 
to do). Third-and far more significant-TBASIC has many powerful control 
structures, functions, and subroutines, and it enables the use of program li­
braries. Details are given below. 

TBASIC has both immediate and deferred execution modes. Like MBASIC, it 
has a separate Command window into which commands may be typed. This 
window retains a history of previous commands and can be used for backtracking 
and other purposes (see below). 

TBASIC had not been finalized when this section was written , and so the 
current version may differ somewhat from that described; however, this descrip­
tion should accurately reflect most of its features. 

Language Features 

Program lines. Program lines may contain up to 32,000 characters; long lines 
can be scrolled horizontally. Spaces can be used freely to increase readability and 
do not affect the program's operation; the Tab key may be used to simplify 
indentation. Line numbers are optional, but when used, they must appear on 
every line. Numbered lines must be numbered successively (i.e., line 20 must 
appear below line 10) and have numbers between 1 and 999999. Numbered lines 
entered into the Command window will be located appropriately in the Edit 
window. Line labels are not used, although functions and subroutines may be 
defined and called by name. 



170 Programming the Macintosh User Interface 

Variable names and data types. TBASIC does not require that variables be 
declared by name before use, although arrays must be dimensioned (see below). 
In general, the same name may not be used for different variable types, func­
tions, or subroutines within a program; for example, if the real variable CRUNCH 
is used, the program may not also use a subroutine labeled CRUNCH. String and 
real variables may, however, use the same name. 

Variable names may be up to 31 characters long. All characters are significant; 
the only constraints are that the first character must be a letter and those follow­
ing must be letters , digits, or underscores. TBASIC does not distinguish between 
capital and lowercase letters. Strings may, in theory, be assigned up to 16 million 
characters. Seriously. 

Variables are assigned with the LET statement, which is required. Arrays are 
assigned with the MAT statement (see below) or by assigning individual ele­
ments with separate LET statements. 

Data types available are numeric and string. Computations are performed to 14 
digits and may handle numbers between ± le308. Although TBASIC uses integer 
and double-precision numbers, it makes no distinction in their names (e.g., by 
using a # or % suffix). Instead, the distinction is made during assignment. For 
example, if an integer is assigned to a variable, the variable is treated as an 
integer. 

TBASIC supports both standard numeric arithmetic operations ( +, - , *, /, /\) 
and integer arithmetic with MOD (modulo) and DIVIDE (division with quotient 
and remainder). 

TBASIC has the usual relational operators (<,>,=,<>) and logical operators 
(AND, OR, NOT). These can be used in expressions involving numeric or string 
data types. 

Strings have the usual properties-enclosed in quotes, with variable names 
followed by the suffix$. They may be concatenated (with &), and substrings may 
be taken with a function of this form: 

stringname [startpos: e ndpos] 

The expression "stringname" stands for the name of the string, and "startpos" 
and "endpos" define the character range to be extracted. For example, this ex­
pression yields the result indicated: 

"AbcdEfg" [3: 5 J ---> cdE 

A picture data type is not defined explicitly but is implicit in a PICTURE-type 
subroutine, which is a special form of subroutine that creates graphics and that 
may be evoked with a DRAW statement (see below). 

Arrays may be of any data type or subtype and may contain up to 255 dimen­
sions; each dimension may range between ± le99. Arrays are dimensioned with 
the DIM statement. Subscripts may range between any two numbers. For exam­
ple, this DIM statement uses the standard option base (1) and dimensions an 
array whose subscripts lie between 1 and 33: 

DIM A (33) 



The BASICS 171 

This DIM statement defines an array whose subscript range is - 32 to +88 : 

DIM T (-32 TO 88) 

An array may have only one DIM statement in a program, but arrays may be 
redimensioned with the MAT (i.e., matrix assignment) statement. For example, 
this expression 

MAT A=T 

converts array A into a duplicate (except for the name) of array T. MAT may also 
be used to assign a single value to all elements of an array. For example, this 
statement 

MAT A=55 

assigns the value 55 to all elements of array A. MAT may also be used in MAT 
READ, MAT INPUT, and MAT LINE INPUT forms to read DATA statements or 
input an array; and in MAT PRINT form to display the contents of an array. 

Functions and subroutines. TBASIC includes various built-in numeric, string, 
and conversion functions . It includes a full set of matrix operations and functions 
and allows both standard and modern user-defined functions , subroutines, and 
libraries. 

TBASIC matrix operations and functions permit arrays to be added, subtracted, 
and multiplied with one another, and an array can be multiplied by a variable. An 
array may be inverted with the INV function or transposed with the TRN func­
tion. The DET and DOT functions, respectively, return scalar values correspond­
ing to the array's determinant and the dot product of two arrays. TBASIC includes 
functions for creating certain predefined arrays: CON, for creating an array of 1 s; 
ION, an array whose diagonal contains ls; NUL$, an array of null strings; and 
ZER, an array of Os. Built-in functions are available to obtain information on the 
bounds and sizes of existing arrays. 

TBASIC permits two types of user-defined functions: single-line and multiline. 
Functions can use any variable type and take any number of ru·guments ; they 
return a single result, e.g., the result of a calculation performed on function 
arguments. Functions are defined and evoked by name. 

Single-line functions are of standard BASIC form. For example, the following 
defines a function that adds two numbers together: 

DEF Addup (X,Y)=X+Y 

Multiline functions may be used to perform more complex operations. The 
function definition begins with a DEF statement and ends with an END DEF 
statement. For example, this version of the Addup function makes sure its argu­
ments are nonnegative before adding them. 

DEF Addup (X,Y) 
IF X< O THEN LET X=ABS (X) 
IF Y< O THEN LET Y=ABS (Y) 
LET Addup=X+Y 

END DEF 



172 Programming the Macintosh User Interface 

Internal functions share the main program's global variables; external (sepa­
rately compiled) functions have only local variables. 

Subroutines come in both conventional and subprogram forms. Either may use 
any variable types, and both can pass parameters or not, depending upon where 
located. TBASIC makes a distinction between internal and external subroutines. 
The internal form is defined before the END statement, the external form after. 
The variables used in internal subroutines are global, but those in external sub­
routines are local. 

Conventional subroutines are standard BASIC subroutines, and they require 
numbered lines. The subroutine terminates with a RETURN statement and is 
called with GOSUB line number. Variables used are global; changes made to 
values will be reflected outside the subroutine. 

The subprogram form of the subroutine begins with a SUB statement, followed 
by the label, and ends with the END SUB statement, like this: 

SUB Domathstuff (M, X, Z) 
let Y=M*X+Z 
PRINT "Y="; Y 

END SUB 

The subroutine is evoked with a CALL statement, followed by the subroutine 
name, e.g., CALL Domathstuff (A,B,C). 

Pictures are a special form of subroutine. They begin with a PICTURE state­
ment, terminate ·with an END PICTURE statement, and contain graphics state­
ments. The defined picture may be evoked by name within the program with a 
DRAW statement, e.g., DRAW Square (5). 

Subprograms may be placed anywhere in the program and will not produce 
"Return without GOSUB" type errors if their code is executed outside a normal 
subroutine call; they are simply skipped over. Like functions, they may take any 
number of arguments . They are the BASIC equivalent of Pascal procedures. 

Collections of functions and subroutines can be stored in separate library files 
and accessed by the main program. This simplifies program development, as 
specialized or frequently used functions and subroutines can be located in a 
single file , and do not have to be duplicated in the calling program. 

Control and looping structures. TBASIC has several control and looping 
structures, including subroutines (see above); the GOTO, ON-GOTO, and 
ON-GOSUB statements; IF-THEN and SELECT CASE decision structures; 
the looping structures DO-LOOP and FOR-NEXT; and the CHAIN statement, 
which initiates a new program and may be used to execute a subprogram as a 
subroutine. 

TBASIC GOTO and ON-GOTO/GOSUB statements route control within the 
program and require that program lines be numbered. As in other forms of 
BASIC, the GOTO statement causes an unconditional jump to another line. ON­
GOTO routes control to the nth line listed after the GOTO statem~nt; ON­
GOSUB does the same but treats the jump as a subroutine call. 

IF-THEN is used to perform tests-usually involving logical or relational oper­
ators-and take appropriate actions based on the results . TBASIC's IF-THEN 
includes ELSE, ELSE IF, and END IF markers to enable multiple-line, nested 
decision structures. 



The BASICS 173 

TBASIC's SELECT CASE works like that of MacBASIC; SELECT CASE was 
described, and an example was given, in the discussion ofMacBASIC control and 
looping structures. 

DO-LOOP is a looping structure that can be used to loop continuously or until 
certain conditions are met (by embedding one or more WHILE or UNTIL condi­
tions). FOR-NEXT, the standard BASIC looping structure, loops a fixed number 
of times, based on an index variable. EXIT statements can be used with either of 
these structures to exit the loop when a specified condition is met. 

The CHAIN statement terminates the current program and initiates a new 
program while retaining a single string variable. CHAIN used with a RETURN 
suffix treats the chained-to program as a subroutine, and when it is completed, 
control returns to the calling program. The calling program and its variables are 
protected during CHAIN-RETURN; thus, CHAIN-RETURN makes it fairly easy 
to move different parts of programs and subroutines into and out of memory as 
overlays. 

Program-Development Environment 

Screen and menus. The TBASIC screen (Figure 9-13) appears when the 
TBASIC icon is selected from the Finder. The left side of the screen contains a 
palette with four icons: Stop Light, Command, Output, and Help. 

The Stop Light is used to control the program. Clicking on the red light stops a 
running program; clicking on the yellow light pauses a running program; and 
clicking on the green light runs the program or continues a paused program. Now 
that's an inspired metaphor. 

r s File Edit Search Format Run Fonts 

Easy bar chart. 

set window 0, 6, 0, 150 
for x = 1 to 5 

read va I 1Je 

bors 

box area x- .4, x+.4, 0, value 
ne xt x 

[mJ data 20 .35, 41 . 77 , 96.33, 65 . 2, 23 . 93 
Cnmm•nd end 

~ 
Output 

~ 
H•lp 

., 

~ 
2.:"::::-:r··1~0=========~==~ ... ~ ..... ~ ... ~ ..... ~ ..... ~ ... .. ~ ..... ~ ... ~~~ 

Figure 9-13 TBASIC screen showing palette, Edit window, and menu bar. (Easy bar chart, 
copyright 1984, by pennission of True BASIC, Inc.) 



174 Programming the Macintosh User Interface 

Clicking on the Command icon opens the Command window (Figure 9-14). 
This window is used for entering TBASIC commands, may be used for entering 
program lines (if the program uses line numbers), and retains a running history 
of previous commands that may be scrolled through. 

Clicking on the Output icon opens an Output window (Figure 9-15). If this 
window is not open when the program is run , the old screen will disappear and 
program output will be shown in full-screen form. Ordinarily, program lines will 
be typed into the Edit window (i.e., the document window). Use of separate 
Command and Output windows is optional. · 

Clicking on the Help icon generates a list of help files; the user may select the 
one desired from the list. 

The menu bar contains seven menus: Apple, File, Edit, Search, Format, Run, 
and Fonts (Figure 9-16). Of these, the Apple , File, and Fonts menus contain 
options similar to many other Macintosh applications and are fairly self-evident. 
TBASIC uses the Monaco font, the Fonts menu has options for three font sizes , 
and any single font may be used in any window. 

The Edit menu contains three nonstandard options: Keep . . . , Include . . . , 
and Edit. . . . Selecting the Keep . . . or Edit . . . option generates a dialog 
box, into which a line range (or the name of a function or subroutine) is entered 
(note that the program may be numbered or unnumbered with an option on the 
Format menu). The Keep ... option retains only the program lines within the 
range and deletes all others from the program; the Edit . . . option displays only 
lines within the range, to simplify editing, but nondisplayed lines still exist in the 
program and can be redisplayed at will. The Include . . option merges a disk file 
with the one in memory. 

" s File Edit Search Format Run Fonts 
., 

.·.·.·.·.·.·.·.·.·.·.·.· bars ·:.·.·.·.·.·.·· 

,-----., 
! Easy bm' chart , ;Ql 

~ 
! 
set window 0, 6, 0, 150 
for· x = 1 to 5 

. 

read value 
box area x- .4, x+,4, 0, value 

next x 

~ data 20.35, 41 .7?, 96. 33, 65. 2, 23 .93 
( 1 end 

~ 
Output 

0 Command 

~ Ok. I Qj m Holp 

~ 
~ 

I-=-

ISLll IO 
QJ T2J 

Figure 9-14 TBASIC screen with Command window (selected with Command icon in 
palette). (Easy bar chart, capyright 1984, by pennission of True BASIC, Inc.) 



" s File Edit Search Format Run Fonts 
., 

bars 
r.:· · ;::::· "2:::""·;::::"".2;i""ii.-:---:---:--------1§D Output 

! Easy ba r chart . 

I Ok.I 
Command 

iJ 
' 
~ 
H•lp 

set window 0, 6, 0, 150 
for x = 1 t o 5 

read value 
box area x- .4, x+.4, 0, val ue 

ne xt x 

data 20.35, 41.77 , 96 .33 , 65 .2, 23. 
end 

Command 

Ok. run 
Ok. run 
Ok. I 

Figure 9-15 TBASJC screen with Output window. (Eas y bar char t, copyright 1984, by 
permission of' Tme BASIC, Inc.) 

Choose Printer 
Scrapbook 
Rlarm Clock 
Note Pad 
Calculator 
Key Caps 
Control Panel 
Puzzle 

(a) 

Number 
Unnumber 
Renumber 

Format Neatly 

Do ... 

New 
Open... :!€0 

Saue 3€S 

Cut 3€ H 
Copy 3€C 
Paste 3€ U 

Saue Rs... Keep ... 
Unsaue... Include ... 

Page Setup ... 
Print.. . 

Quit 

(b) 

Con1iHUH 

Breakpoint... 
Compile 

Edit ... 

Select ... 
Select All 

(c ) 

Small 
Medium 
Large 

(e) (f) (g) 

Moue to Block •• 1 

Find... 3!:F 

Change ... 

(d) 

Figure 9-16 TBASIC menus: (a) Apple, (b) File, (c) Edit, (d) Search , (e) Format, Cf') Run, 
and (g) Fonts. 

175 



176 Programming the Macintosh User Interface 

Search, Format, and Run menus. The Search, Format, and Run menus are 
unique to TBASIC. The Search menu (Figure 9-16d) contains find and change 
(replace) options for global editing, and the Move to Block . . option , which 
moves the cursor to a line number or named function or subroutine. 

The Format menu (Figure 9-16e) contains options for numbering, unnum­
bering, and renumbering the program; an option for formatting (doing selective 
indentation and capitalization of key words to increase program readability); and 
the Do ... option, which is used to execute Do files. A Do fil e is a disk-based 
program that can inspect and alter another program. For example, the Do Format 
option activates a file that fonnats the program in memory; it is also possible to 
create your own Do files. 

The Run menu contains commands for running, stopping, and continuing the 
program, inserting a breakpoint, and compiling. The run options include Run, 
which runs the program in the active window; Run Another, which opens an 
output window and runs the program; Halt, which stops the program; and Go, 
which resumes execution , or runs the program. 

In general, a program will by typed into the Edit window, with or without line 
numbers. If lines are numbered, they can also be typed into the Command 
window; entered lines will be placed at the appropriate locations in the Edit 
window listing. Program lines can be numbered on a temporary basis, if desired . 
The Number option on the format menu assigns successive numbers to each 
line; these numbers may be removed with the Unnumber option on the same 
menu. 

When the program is ready to run, a RUN command is issued by using the Stop 
Light icon, the Run menu, and a Command key combination or by typing in RUN 
at the Command window. (Note that many menu options have Command key 
equivalents and that common commands can be given without using pull-down 
menus.) The compiler will then scan program lines and attempt to compile the 
program. Error messages will appear in the error bar beneath the Edit window 
(Figure 9-17), and the cursor will move to the location of the error. The Go Away 
box is then clicked, and the error can be corrected. Up to five errors may be 
displayed; when no errors remain, the error line goes blank. When the program is 
run, all three windows-Command, Edit, Listing-may be displayed simulta­
neously, if desired. 

Input-Output and the User-Interface Toolbox 

TBASIC has both standard and Macintosh-specific input-output features , as dis­
cussed below. 

Input-output statements. TBASIC has standard BASIC input and output state­
ments. READ-DATA are available for input from the program itself. Keyboard 
input statements include INPUT, LINE INPUT, and GET KEY (an INKEY$ 
equivalent); keyboard input must be handled with custom, user-designed input 
routines built around these statements; i.e., there is no built-in routine for creat­
ing and taking input via protected fields. Output statements include PRINT (with 
commas and semicolons), PRINT USING, MAT PRINT, MAT PRINT USING, 
and USING$, which permits custom formatting of output. PLOT TEXT displays 



The BASICS 177 

" s File Edit Search Format Run Fonts 
., 

bars 

! Easy bar chart. ~ 
! 
set window 0, 6, 0, 150 
for x = 1 to 5 

read value 
I value =value~l .5 

box area x-.4, x+.4 , 0, va lue 
next x 

~ 
Output 

data 20.35, 41.77, 96.33, 65 .2, 23.93 
end Qj 

1 
O llle_g_al statement. Q] 

Help 

Figure 9-17 Appearance of error message at bottom of Edit window. (Easy bar chart, copy­
right 1984, by permission of True BASIC, Inc.) 

text at any pixel location. Related cursor-positioning statements include TAB and 
SET CURSOR; SET CURSOR positions the cursor both vertically and horizon-
tally (like MBASIC's LOCATE). . 

Reading the mouse. The location and state of the mouse can be determined 
with the GET MOUSE statement, which gives the vertical and horizontal coordi­
nates of the pointer and tells the mouse state (e.g., no button down, dragging, 
button clicked at point, or button released at point). 

Pull-down menus. TBASIC does not have BASIC statements for creating stan­
dard pull-down menus. TBASIC may eventually include library routines to add 
this feature. 

Windows and dialog and alert boxes. TBASIC can send output to several differ­
ent windows, although it does not have BASIC statements for generating stan­
dard dialog or alert boxes. The windows are simply regions of the screen; they are 
nonmovable and nonscrollable, and they lack other Macintosh features. TBASIC 
may eventually include library routines to add Macintosh-like features. 

Graphics. TBASIC provides extensive graphics features , which may be exer­
cised through simple BASIC statements to draw and manipulate graphics and 
text in the active window. The graphics take the form of dots, lines, and shapes, 
which may be drawn in various pen sizes. Standard shapes include boxes and 



178 Programming the Macintosh User Interface 

ellipses. Shapes may be filled, merged, and erased. Text and graphics may be 
freely mixed. 

Sound. The SOUND statement may be used to generate a single sound of 
specified frequency and duration. Sequences of sounds may be generated with 
the PLAY statement followed by a string containing arguments defining note, 
note length, tempo, manner, octave, foreground and background, and pauses. 
Sound may be turned on and off at will and played as background while other 
program activity continues. 

File input-output. TBASIC incorporates three different types of files : text, byte, 
and random. Both text and byte files store and retrieve data in serial form , but the 
first handles data in text form, and the second in binary. Other devices-e.g., 
printer, windows-can be accessed in a manner similar to that used to access 
files. 



Chapter 

10 
The Pascals 

This chapter discusses two Pascals for the Macintosh : Macintosh Pascal (Mac­
Pascal) and MacAdvantage : UCSD Pascal (hereafter referred to as UCSD Pascal). 
MacPascal was created by Think Technologies, and is distributed by Apple Com­
puter. UCSD Pascal is a product of Softech Microsystems. Both Pascals reflect 
the ANSI standard for Pascal and are quite complete and powerful. They have 
much in common with each other, and with Lisa Pascal. Both Pascals can be 
used on a 128K Macintosh, although it is advisable-especially for UCSD Pas­
cal-to use a 512K machine. 

Each Pascal also makes effective use of the Macintosh user interface and 
special editing features as a program-development environment, e.g., by using 
windows, cut-and-paste editing, and pull-down menus . Although the languages 
have many similarities, they also have significant differences. A major difference 
is compilation: MacPascal (like MacBASIC) is semicompiled but has the interac­
tive character of an interpreted language; UCSD Pascal is compiled. Another 
important difference is the manner and extent to which they permit Macintosh 
user-interface features to be implemented in programs. In MacPascal, a limited 
number of user-interface features is accessed directly, via high-level functions 
and procedures. UCSD Pascal provides interface units that must be invoked to 
access the various managers, drivers, and QuickDraw to work with the Toolbox 
on a more direct level; it also uses resource files (see Chapter 8) to define re­
sources such as pull-down menus and dialog and alert boxes. 

Pascal is a much more uniform language than BASIC, and so this chapter 
focuses less on language specifics than did the previous chapter on BASIC. Take 
it as a given that both Pascals are relatively complete in terms of data types, built­
in and user-defined functions and procedures, control and looping structures, 
input-output, and other language characteristics. The main differences are the 
program-development environment, interactivity during development, and the 
ease and extent to which each allows access to the User-Interface Toolbox. Thus, 
the chapter focuses on these aspects of the two Pascals. 

179 



180 Programming the Macintosh User Interface 

Macintosh Pascal 

General Characteristics 

MacPascal is a semicompiled Pascal. As each line is entered, its syntax is checked 
and key words are highlighted. Syntax and certain other eITors result in feedback 
messages , and corrections can be made on the spot, without waiting to compile 
the entire program. Thus, MacPascal has the interactive nature of an interpreted 
language. It is unique in this respect ; heretofore, all_pascals have been compiled 
and noninteractive. MacPascal appears to be an ideal Pascal for learning to pro­
gram. Moreover, it is a full implementation of Pascal and is quite close to the 
ANSI standard. 

MacPascal provides access to Standard Apple Numeric Environment (SANE) 
and QuickDraw libraries. SANE is a powerful numeric library based on IEEE 
Standard 754 for floating-point arithmetic. It uses standardized data types , arith­
metic, and conversions, and it provides various tools for numeric applications. 
The QuickDraw library, used for graphics , is discussed below. 

MacPascal has much in common with Lisa Pascal, although it lacks certain 
extensions and generalizations of the language that Lisa Pascal includes. In 
general, it has the same data types, operators , and control and input-output 
statements. Character sets and symbols differ in that Mac Pascal programs do not 
permit entry of Tab characters from the keyboard; special symbols such as (.and.) 
are treated as alternatives to [.and.]; Mac Pascal uses certain identifiers not recog­
nized by Lisa Pascal (creation , implementation, inte1face, intrinsic , methods , 
subclass, unit), and MacPascal treats up to 255 characters of a word symbol or 
identifier as significant, but Lisa Pascal uses the first 8. MacPascal does not 
support compiler commands in comments or nested comments . Key data-type 
differences are that MacPascal uses simpler rules for mixed-integer and longint 
arithmetic; includes three additional real types (double, extended, and computa­
tional); regards Lisa Pascal scope anomalies as errors; has greater flexibility in 
mixing real and integer variable types in assignment statements; and permits 
string types to be compared with char or packed string types. Mac Pascal does not 
support Lisa Pascal's external directive or the Lisa Pascal functions and proce­
dures exit, halt, heapresult, mark, release, memavail, pwroften, moveleft, move­
right, scaneq, scanne, or fillchar. MacPascal does not support pack and unpack 
procedures. 

The first version of MacPascal, described below, provides full access to the 
QuickDraw library of the Toolbox but limited access to other Toolbox features. An 
improved version of the language, providing greater Toolbox access, was rumored 
to be under development as this section was written; readers interested in Mac­
Pascal should check current MacPascal documentation to identify changes and 
improvements made. 

Program-Development Environment 

Screen and menus. The MacPascal screen (Figure 10-1) appears when the 
MacPascal icon is selected from the Finder. The screen contains three windows, 
and the menu bar six menus. The Listing window shows the program listing; the 



The Pascals 181 

r S File Edit Search Run Windows 
., 

Untitled Te Ht 

program Untitled; 
{Your declanitions} 

begin 
!--

{Your program statements} 

l!i!ic end. 
Drawing 

:::: 

'2l 
............ . -~ 

Figure 10·1 MacPascal screen showing menus and Listing, Text, and Drawing windows. 

Text window, program text output; and the Drawing window, program graphic 
output. One or more of these windows may be closed, and other windows opened, 
as described below. A new Listing window comes complete with a program "skel­
eton." 

The menu bar contains six menus: Apple, File, Edit, Search, Run, and Win­
dows (Figure 10-2). In addition, the Pause menu becomes available when the 
program is actually running. Of these, the Apple, File , and Edit menus contain 
options similar to those of other Macintosh applications and are self-evident. 
Note, however, that options on the Edit menu now apply to the program rather 
than to the usual text editing. 

The Search, Run, Windows, and Pause menus are unique to MacPascal. The 
Search menu contains find and replace options for global editing. The Run and 
Windows menus provide options for running and debugging the program and for 
displaying program output and related information . 

Run, Windows, and Pause menus. The Run, Windows, and Pause menus are 
used alone or in tandem to run the program and display various forms of output 
during program development and debugging. While the program is running, the 
Pause menu appears on the right side of the menu bar. This menu has a single 
option, Halt, which may be used to pause the program during execution. 

The Windows menu controls the form(s) of output presented. The menu is 
divided into four sections, separated by horizontal lines. The top group contains 
the options Untitled, Instant, and Observe. Untitled refers to the Listing window, 
into which the program is typed; when the program is titled, its name will appear 



182 Programming the Macintosh User Interface 

About Macintosh Pascal... New 
..................................... Open ... 

Scrapbook i: l o~rn 

Alarm Clock Sm1e 
Note Pad S<we fl~,,, Cut 3€H 
Calculator Hi? I!!? rt Copy 3€C 
Key Caps Pill.JP Selllll--- PnshJ )•:ti 

Control Panel Print,,, Clear 
Puzzle Quit Select All 3€A 

(a) (b) (c) 

Untitled 
Check 3€K Instant 
Reset Obserue 

························••·· 

Go 3€6 Te Ht 
Go· ·ho Drawing 

find :31J Step :JCS ............................................ 

Ht?plnce :•:fl Step-Step Clipboard 
i:11(J}\JH1tlero :•:[ ....................................... 

~ What to find ... l!Clll Stops In Type Size ... 

(d) (e) (f) (g) 

Figure 10-2 MacPascal menus : (a) Apple, (b) File, (c) Edit, (d) Search, (e) Run, (f) Win­
dows, and (g) Pause. 

at this location in the menu. The Listing window might be closed while display­
ing program output in the Text or Drawing window, or the windows might be 
scaled to full-screen size, making it impossible to activate and deactivate by 
clicking on them; the Window Title option makes it possible to activate the 
window via menu. (Analogously , the Text and Drawing options make it possible 
to activate an output window via menu, without clicking on it.) 

The Instant option opens the Instant window (Figure 10-3). This permits code 
fragments to be entered and executed in an immediate-execution mode; i. e., a 
Pascal statement is typed in , and results are displayed immediately. Another use 
is to make variable assignments during a pause in an ongoing program. 

The Observe option opens the Observe window (Figure 10-4) , which has the 
form of a table. Expressions are typed into the left column . These expressions will 
be evaluated, and their results displayed, when the program is paused. 

The Text and Drawing options, as already noted , open the respective windows, 
These windows automatically become active when the program generates their 
particular output, i. e., text to the Text window, QuickDraw graphics to the 
Graphics window. 

The Clipboard option displays the Clipboard. The Type Size option produces a 
dialog box permitting type size to be set to small, medium , or large type. 



The Pascals 183 

r s File Edit Seorc:h Run tuindows 

Do It 

\vR ITELN('MecPescel ') 

Figure 10-3 Instant window used to execute a code fragment. 

r ti File Edit Search Run tuindoms 
., 

Ripple ~!iiiiiii~~~~iiij~~il :::::::::::t-~~-F-r-e1-11-eO_v_e_l(~y~-~in_c_*~cn_t_, ~x~D 

end; 
end; 

begin 
PenSize( 1, I); 
repeot 

if but ton then 
begin 

GetMouse(x, y); 
if y < 0 then 

EreseRect(O, 0, 600, 600) 
else 

Drawcircles(x, y); 
end; 

until false 
end. 

Enter en expression 

Figure 10-4 Observe window used to evaluate expressions during pause of program. 
(Ripp le, copyright 1984, by pennission of Apple Computer, Inc. ) 



184 Programming the Macintosh User Interface 

The Run menu is used to execute and set various debugging options. It con­
tains three groups of options, separated by horizontal lines. The top option, 
Check, runs a syntax checker through the program to see ifit is valid . This goes a 
step beyond the line-by-line syntax checking that is done as lines are entered. 

The bottom option, Stops In , permits stops to be inserted into the program so 
that it will halt execution at particular lines. When Stops In is selected, a stops 
bar appears on the left side of the listing, and the pointer becomes a Stop Sign 
icon when moved into the stops bar; clicking in the bar places a stop at that point 
in the program (Figure 10-5); stops may be removed by clicking the Stops Out 
option (which replaces Stops In , when stops are active). When a stop is in, the 
program will pause at the stop , and a Pointing Hand icon will indicate the loca­
tion where the program is stopped. The programmer may then examine program 
output in the Text or Drawing windows, use the Observe window to check vari­
ables or conditions, or use the Instant window to make on-the-spot checks or new 
assignments. 

The middle group of Run menu options is used for running and single-stepping 
through the program. The Go option executes the program, or continues execu­
tion if the program is paused or halted at a stop. Go-Go works like Go but pauses 
only long enough at each stop to update the Observe window; it does not actually 
halt execution and does not require restarting to reverse its action. The Step 
option causes the program to be performed 1 line (i. e., step) at a time, updating 
the Observe window at each step. Step-Step works like Step, updating the Ob­
serve window at each step, but it steps repeatedly, until the program is paused. 

Finally, the Reset option permits a paused program to be restarted from the 
beginning. 

Program-development scenario. The foregoing description of windows and 
menus gives an idea of the MacPascal program-development environment. Let us 
combine these pieces in scenario form . Assume that we are about to develop a 
new application that will generate graphic output. We begin by clicking the 
Macintosh Pascal icon in the Finder. The MacPascal screen (see Figure 10-1 ) 

begin 
GetMouse(x, yl; 
if y < 0 then 

Ripple 

EraseRect(O , 0, 600, 600) 
else 

~ DrawCirc l es(x, y) ; 
end; 

until fol se 
end. 

Figure 10-5 Selecting the Stops Jn option of the Run menu produces a stops bar on the left 
of the listing and turns the cursor into a stop sign that may be used to set stops. (Ripple, 
copyright 1984, by permission of Apple Computer, Inc. ) 



The Pascals 185 

then appears. Since the program will generate graphics output, the Text window 
is not needed, and we close it by clicking on it and then clicking on its close box. 
The screen now contains an untitled Listing window and a Drawing window. We 
resize and move both windows, offsetting them slightly to enable clicking be­
tween windows. 

Conveniently, the Listing window contains a program skeleton that can be 
used as an outline when typing in the program. As lines are typed in , their syntax 
is checked, and errors are indicated by dialog boxes. In addition , the lines are 
automatically indented as typed in. When the first version of the program is 
finished, we select the Check option of the Run menu to check its validity; again, 
an error is indicated by a dialog box. 

We then run the program by selecting Go from the Run menu (See Figure 
10-2e). The picture is unsatisfactory, and so we decide to single-step through the 
program and track the index variables used to generate the picture. We open the 
Observe window (see Figure 10-4), type in the variables and functions to be 
observed, and then select Step from the Run menu to single-step through the 
program. We then single-step and watch the picture and results bPing displayed. 
These observations indicate the index variable value at which the picture goes 
awry. We verify this by opening the Instant window (see Figure 10-3), setting the 
index variable to the indicated value, and observing the result. Based on our 
findings , we modify the program to correct its problem, and rerun it, obtaining a 
satisfactory result. 

This simple example illustrates the interactive nature of program development 
and debugging-which makes it fairly easy to pinpoint problems and correct 
them. Development of more complex programs involves additional steps and the 
use of other menu options, but the same type of interactivity is possible. 

Input-Output and the User-Interface Toolbox 

This subsection summarizes MacPascal's built-in functions and procedures for 
handling user-interface features. 

Standard input-output. MacPascal has standard Pascal keyboard input proce­
dures (e.g., READLN). Keyboard input must be handled with these or with 
custom, user-designed input routines built around the statements; i. e., there is 
no built-in routine for creating and taking input via protected fi elds. Output is 
handled with standard output (e.g., WRITELN) procedures. 

Reading the mouse. MacPascal has several Event Manager-based procedures 
and functions relating to the mouse. These include the Button function , which 
tells if the button is up or down; the GetMouse procedure, which gives the X, Y 
coordinates of the mouse; the StillDown function, which tells if the mouse is still 
down after a previous mouse event; the WaitMouseUp function, which works 
like StillDown, but removes a Mouse Up event from the event queue. 

Pull-down menus. The initial version of MacPascal lacks functions or proce­
dures for generating or reading pull-down menus. 



186 Programming the Macintosh User Interface 

-, 
Figure 10·6 Manipulation of graphics region with QuickDraw. (From Macintosh Pascal 
Technical Appendix, capyright 1984, by permission of Apple Computer, Inc. ) See also Figure 
9-6a and b. 

Windows and dialog and alert boxes. MacPascal can send output to its stan­
dard Text and Picture windows (see above). The initial version of MacPascal 
includes procedures for hiding all windows on the Pascal desktop (HideAll); 
activating and revealing text in the Text window (ShowText); activating and 
showing graphics in the Picture window (ShowDrawing); determining the size 
and location of Text and Picture windows and their contents (SetTextRect, Set­
DrawingRect, GetTextRect, GetDrawingRect); and saving the contents of the 
Drawing window in a picture file . MacPascal lacks the ability to generate multiple 
windows (i.e., beyond the two mentioned) or to generate dialog and alert boxes. 

Graphics. Graphics are one of MacPascal's strong points. Its QuickDraw library 
provides access to the QuickDraw features of the Toolbox. Graphics take the form 
of dots, lines, and shapes, which may be drawn with various pen sizes. Available 
shapes include rectangles , ovals , and rounded rectangles. Shapes may be filled 
with various patterns, outlined, erased, reversed, and scrolled. Text may be dis­
played in several different type fonts and sizes (see Figure 9-6a and b). 

Pictures may be defined and called by name. 
QuickDraw can combine sets of coherent points into structures called regions 

and manipulate the contents of those regions in a manner similar to shapes 
(Figure 10-6); this goes a step beyond the manipulation of simple geometric 
structures. 

Several different GrafPorts may be defined on the screen. Each port represents 
a different drawing environment, with its own location, size, coordinate system, 
character set, and other graphic features. Output may be quickly switched among 
ports , and output may be drawn off-screen and then sent to a window very 
quickly. 

Sound. MacPascal can generate simple harmonic tones in up to four voices, and 
drive a square-wave synthesizer to generate nonharmonic sounds. Relevant pro­
cedures are StartSound, which generates complex, multi-voice sound of specified 
frequency, duration, and waveform; StopSound, which stops all sounds; Note , 
which generates a single square-wave sound of specified frequency , amplitude, 
and duration; and SysBeep, which beeps the speaker. 



The Pascals 187 

UCSD Pascal 

General Characteristics 

UCSD Pascal is a powerful, compiled Pascal that includes several program-devel­
opment tools-text editor, compiler, resource maker, symbolic debugger, librar­
ian utility-and that makes it possible to develop applications exercising all the 
Macintosh user-interface features. 

Program lines are typed into a text editor and later compiled so that the pro­
gram may be executed. This is standard for Pascal . What is not standard is the 
fine text editor, based on Macintosh conventions, which makes line entry and 
editing very easy. The syntax of lines is not checked until the program is com­
piled. At that point, errors are detected and result in feedback messages. Errors 
not detected during compilation will cause run-time errors, which produce feed­
back messages while the program is running. When errors are detected, it is 
necessary to return to the editor, make corrections, and recompile. 

UCSD Pascal includes a set of interface units to the Macintosh ROM that 
enables most ROM-based routines to be exercised. The language is compatible 
with Lisa Pascal , and it interacts with the Toolbox in much the manner described 
for Lisa Pascal in Inside Macintosh (Apple Computer, 1984). There are some 
differences due to differing use of memory, UCSD's automatic initialization of 
certain routines, and differing implementation of ProcPtrs (pointers procedure). 
In practical terms, these differences are minor, and UCSD Pascal offers a practi­
cal avenue for developing programs directly on the Macintosh that exercise the 
full features of the Macintosh user interface. 

Program-Development Environment 

Screen and menus. The Editor screen (Figure 10-7) appears when the Editor 
icon is selected from the Finder. The menu bar contains seven menus: Apple, 
File, Edit, Search , Format, Font, and Size (Figure 10-8). All the menus except 
Edit, Search , and Format are standard and contain options similar to other Mac­
intosh applications. The Edit menu (Figure 10-Sc), in addition to containing the 
usual options, has options for aligning (unindenting) text or moving it left or 
right. The Search menu (Figure 10-Sd) contains Find and Chan ge options for 
global editing. The Format menu (Figure 10-Se) may be used to se t tabs , provide 
automatic indentation during text entry, display invisible characters, and set the 
print format. As the Font and Size menus show, text may be displayed in three 
different fonts and six different sizes; each document window is restricted to one 
type size and font. 

The Edit menu is used to open a new or existing document to enter text. A 
document window then appears (see Figure 10-7), which may be used for typing 
in the text of the program. The editor allows up to four documents to be open 
simultaneously, and text can be copied among documents. The Clipboard can 
also be displayed. 

A program is entered by typing it into the document window. Text entry and 
editing work in the usual way, i.e ., by positioning the cursor with the mouse, 
typing in characters , backspacing to delete, and cutting, pasting, and copying. 



r s File Edit Search Format Font Size 

begin 
doneFlag:= false; 
In i tMenus; 
mymenus [1]:= GetMenu(appleMenu); 
mymenus [ 2] : = Get Menu ( f i I emenu) ; 
mymenus [3]:= GetMenu(editmenu); 
drvrtype.c:= 'ORUR'; 
AddResMenu(mymenus[l] , drvrtype.p); 
for i := 1 to lastmenu do 

lnsertMenu(mymenus[i],O) ; 
Orawl1enuBar; 
SetCursor(Arrow); fj 

Set Reel ( I ocat e ( dragRect), 4, 24, 508, 336 ;l!'i 
SetRect(locate(growRect),100,60,5 12,3 ~' 

Figure 10-7 UCSD Pascal Editor screen. (UCSD Pascal 2: Grow, copyright 1984, by pennis­
sion of Softech Microsys tem s.) 

Un Do 

tut :l€H 
About Edit New :ll:N Copy :ll:t 

··············································-··· Open ..• 3€0 Paste :l€U 
Scrapbook D!H'H :•:II Clear 
Alarm Clock l lo~rn ······················-······· 
Note Pad Smic~ Align :l€H 
talculotor S<WH <I~ ... Moue Left :l€L Find :ll:F 
Key tops Ht'UPrt to Dri1.1innl Moue Right :l€R thonge :l€S 
Control Ponel Print ................................................. . ........... _.,,_ ................ _ .......... 

Puzzle Quit Hide Clipboard llil!P Hnd 

(a) (b) (c) (d) 

~!Pmnma 
Set lobs Io Point 
nuto Indent Off u~ !Pmnma 
Show lnuisibles Chico go 14 Point 

........................ -.. ···--··-····-··--····· Geneuo 18 Point 
Printing Format ./Monaco 24 Point 

(e) (t) (g) 

Figure 10-8 UCSD Pascal menus: (a ) Apple, (b) File, (c ) Edit , (d) Search , (e) Fo1mat, 
(f) Font, and (g) Size. 

188 



The Pascals 189 

Automatic indentation may be toggled on and off via the Format menu (see 
Figure 10-Se), and invisible characters (e.g., blanks, tabs , carriage returns) may 
be displayed likewise. 

After the program has been created, it is saved via the Save or Save As . 
option of the File menu (see Figure 10-Sb). It may then be compiled. 

Compiling the program. The compiler translates the program text file created 
with the editor (or another editor, such as MacWrite) into a compiled code file. 
(The compiler is also used to create resource fi les- see Chapter 8, and the dis­
cussion of RMaker below.) The compiler supports several options that may be 
embedded in the source file via pseudocomments. 

To compile the program, the Compiler icon is selected from the Finder. This 
causes a dialog box to appear. The top of the box contains four input fi elds and 
related buttons for setting up the compiler's input-output specification . The spec­
ification includes the names of input and destination files-and a Listing file, if a 
compilation listing is to be generated. The resource-file field is used if a resource 
file is being generated. Once the specification has been entered, the Compile 
button at bottom right is clicked to initiate compilation. After compilation is 
complete, the dialog box reappears, permitting another fi le to be compiled. As the 
compiler may be used separately from its source and destination files, it is possi­
ble to compile several program units in sequence without having to return to the 
editor. 

During compilation, the Progress window opens below the dialog box (Figure 
10-9), displaying line numbers and other information relevant to compilation. If 
the compiler detects a syntax error, it displays a dialog box describing the error 
and permits compilation to be either abandoned or continued. Fatal errors auto­
matically terminate compilation. 

A compiler listing (Figure 10-10) can be generated , if desired. The listing gives 
line number, Pascal segment number, procedure number, and the data or byte 

~ 

I UC\O Pnsc111 2:Grow 11 Input File I ~ I UC ~O Pnsc11I 2:Grow.(00[ 11 Output Fiil' l 

I i"''""""''"'W·""' I IResourtl' File) :~ 
I [ J ( Lis ting Fiie l ~ 

O Quiet romplil' [ J ( tompll~~) 
I 

Quit ' \. 1 
l Pr~eu 

;, 

F 2393> ....... 
I< 2400> 

. INITIAL! . 
: &ROW ............ ; 

240t lines complied In 0:03:54. 615 llnet PH mlnutl' ~ 
~ 

·--~---
...... 

~· .... ~--· 
Figure 10·9 UCSD Pascal compiler specification dialog window, with ac tive progress win­
dow below. (From The MacAdvantage: UCSD Pascal, capyright 1984, by pe1mission of 
So#ech Microsystems. ) 



190 Programming the Macintosh User Interface 

UCSD Pa•c• I Comp 1 I er [1R1, O] 1/29/86 

1 2 
2 2 
3 2 
• 2 
• 2 
6 2 
7 2 
8 2 
9 2 

10 2 
11 2 
12 2 
13 2 

l 1 d 1 pr"ogram Fact,J 
11 d 1 .... ,. 
lid 1 11 integ•rJ 
lid 2 pr-odt realJ 
lrO 0 begin 
ltl 0 w"1t•l n( 1 n factorial of n')J 
111 18 pt"odt• 1.0J 
111 23 forl1•1t.o20do 
112 41 begin 
113 4'1 prod1• pt"od • 11 
1 13 60 wrlt.eln(I,' ',prod) 
112 89 end1 

10 0 end. 

End of Compllat.lon. 

Figure 10-10 UCSD Pascal compiler listing. (From The MacAdvantage: UCSD Pascal, capy­
right 1984, by permissian of Softech Microsystems. ) 

offset of code. The listing is used with the symbolic debugger to identify the 
location and nature of faults identified by the compiler. 

Once the program has been successfully compiled, it may be run in the usual 
way-by double-clicking its icon. 

UCSD Pascal includes an executive utility that may be used in place of the 
Finder to speed up program development. The utility consists of six pull-down 
menus that provide direct access to the options most frequently used during 
program development. One of these menus permits any of the program-develop­
ment tools-editor, compiler, RMaker, or librarian utility-to be selected directly, 
without returning to the Finder. 

Program debugging. UCSD Pascal has both a symbolic debugger and a perfor­
mance monitor. The debugger may be used to set breakpoints , single-step 
through p-code, display and alter memory and p-machine registers , and disas­
semble p-code. The performance monitor may be used to identify performance 
problems due to segment swapping; faults are identified by type-segment, 
stack, or heap. 

The debugger, combined with a run-time support library, may also be used to 
deal with run-time errors. The debugger is first activated, and then the program 
is executed. Run-time errors will cause the debugger to be entered and an error 
message to be printed. The message may be used with the listing to identify and 
correct the error. If the debugger is inactive, run-time errors will simply cause a 
dialog box to appear on the screen, permitting various choices, depending on the 
nature of the error; possible choices include OK (terminate program), Continue, 
or Debug (invoke debugger) . 

Input-Output and the User-Interface Toolbox 

UCSD Pascal has standard Pascal functions and procedures for keyboard input­
output as well as facilities for reading the mouse and exercising the features of 
the Macintosh user interface. 

UCSD Pascal includes a file called Maclnterface, which contains interface 
units which may be used to access the Toolbox. These units are used in con­
structing programs that interact with the various managers (Control, Desktop, 
Dialog, Event, File, Font, Memory, Menu, Package, Print, Resource, Scrap, Win­
dow) and drivers (Printer, Serial, Sound), and with QuickDraw-the elements 
that comprise the Toolbox (see Chapter 8). The desired interface units are made 



The Pascals 191 

available to a program via a USES statement. Thus, UCSD Pascal provides access 
to virtually all Toolbox features, i.e., reading the mouse, using pull-down menus, 
windowing, creating dialog and alert boxes and symbolic control devices, using 
QuickDraw graphics, and generating sound. 

UCSD Pascal uses resource files (see Chapter 8) to implement user-inte1face 
features such as pull-down menus and dialog and alert boxes. The files are 
created via the editor, and then compiled with RMaker (resource maker), a re­
source compiler provided in the UCSD Pascal package. File creation and compila­
tion are done in much the same manner as creating and compiling program code, 
as described above. 

RMaker recognizes eleven resource types: ALRT, BNDL, CNTL, DITL, DLOG , 
FREF, GNRL, MENU, STR, STR#, and WIND. ALRT is an alert resource, used 
to define alert boxes. BNDL is an application-bundle resource, used to define 
icons and use the standard Macintosh Finder in a program. DITL is a dialog or 
alert item list resource, which may include static text, editable text, radio buttons, 
check boxes, buttons, user-defined items, and picture items. DLOG is the dialog 
resource, used to define dialog boxes; these may be visible or invisible and may be 
closeable or noncloseable. FREF is a file resource, used to associate a file type 
with an icon. MENU is a men.u resource, used to define pull-down menus. STR 
and STR#, respectively, define string space required and the number of strings 
used by a single resource identifier. WIND is the window resource, used to define 
windows; these may be visible or invisible and closeable or noncloseable. 



Chapter 

11 
C, FORTH, and Lisp 

This chapter gives an overview of popular versions of C, FORTH , and Lisp 
available on the Macintosh as of mid-1985. The C's discussed are Hippo-C from 
Hippopotamus Software; Mac C from Consulair Corporation; and Aztec C from 
Manx Software. The FORTH is MacFORTH from Creative Solutions. The Lisp is 
ExperLisp from ExperTelligence. Each language is discussed in terms of its 
general features, program-development environment, and ability to exercise the 
Macintosh user interface. The C's and MacFORTH can be used on a l 28K Macin­
tosh, but program development is facilitated with a 512K machine; ExperLisp 
requires a 512Kmachine. 

Each of these languages has its traditional uses. C is widely used by profes­
sional developers for developing fast , compact, portable code, and it underlies 
many of the most successful commercial applications, e.g., Microsoft products 
such as Multiplan, Word, and File. FORTH is a powerful, flexible language that 
programmers can extend by adding new words; it may appeal to those who like to 
be able to do things their own way. Lisp is the official language of the artificial­
intelligence community, commonly used in developing so-called expert systems. 

The chapter is directed at programmers already familiar with one or more of 
the respective languages, and it does not discuss the languages in depth; it is 
primarily intended to help the C (or FORTH of Lisp) programmer understand 
what programming in his or her language of choice entails and allows on the 
Macintosh. If you are a BASIC or Pascal programmer, you should probably skip 
the chapter. If you are a C programmer, then you should read the section on C 
and skip the rest. Likewise, FORTH and Lisp programmers should read the 
particular section that interests them. 

Hippo-C, Mac C, Aztec C 

General Characteristics 

The C language is becoming increasingly popular among developers. It is a 
compiled language that, as noted, produces fast, compact, portable code. There is 
some evidence that C is surpassing Pascal as the language of choice for serious 

192 



C, FORTH, and Lisp 193 

developers. As this book was written , the three C's covered in the chapter were 
the most prominent, but several other C's were extant or under development­
including Apple Computer's object-oriented C. Thus, as you read these pages, the 
choices have probably expanded considerably. 

The first of the C's for the Macintosh was Hippo-C, which appeared in the fall 
of 1984. The other two C's appeared the following spring. Each of the three C's 
includes several program-development tools-e.g., text editor, compiler, debug­
ger, library, Macintosh ROM-based routines-and makes it possible to develop 
applications that exercise most or all Macintosh user-interface features. Further, 
all C's are generally consistent with the common C standard, which is set forth in 
The C Programming Language by Brian Kernighan and Dennis Ritchie (1973). 
Although the C's have much in common in terms of the C language itself, each 
has enough language extensions and other unique features that code written in 
one would generally require modification to run properly on another. Nonethe­
less, the experienced C programmer will have little difficulty in adapting to any 
one of them. 

The biggest difference among the three C's is their program-development envi­
ronment. Hippo-C is fully supported by standard Macintosh user-inteiface fea­
tures and also includes a separate operating system (HOS), which may be used to 
enter C shell commands directly in much the manner of the UNIX operating 
system. The Mac C program-development environment is that of the standard 
Macintosh ; i.e. , commands are issued with pull-down menus , windows are used, 
etc. Mac C is meant to be used with the Macintosh 68000 development system 
(both were written in C by Bill Duvall-see Chapter 12). Mac C can also be used 
with the 68000 development system debuggers (using two separate machines), 
which is a significant advantage during development work. Aztec C uses a UNIX­
like operating system exclusively, and its program-development environment for 
the most part lacks Macintosh-like features. Aztec C may be ideal for the C 
programmer who is experienced with and prefers the rich UNIX environment for 
C program development. 

Another important difference among the C's is their support of Executive con­
trol files . Mac C and Aztec C support them, but Hippo-C does not. Executive 
control files can be used to carry out shell scripts to peiform common sequences 
of development commands, e.g., Compile, Link, Edit, etc. Without such control 
files , the commands must be entered individually, which makes program devel­
opment a less mechanized process. Although Hippo-C lacks these files, it does 
offer a flexible and poweiful program-development environment on a single disk. 
Like MacPascal, it may be the best choice for someone learning the language; its 
various features are readily available on a single disk, and it includes both written 
and disk-based tutorials (see Figure l l-2d for the list of tutorial files). 

The documentation provided with these packages makes clear that Mac C and 
Aztec C both fully support the Toolbox. This is less clear with Hippo-C, whose 
Toolbox appendix is excerpted directly from Inside Macintosh (Apple Computer, 
1984) and prefaced with a caution that some of the Toolbox features may not 
work with Hippo-C as described. The impression is left that Mac C and Aztec C 
are the best choices for serious development work. 

The following subsections discuss the program-development environments of 
each C separately. Hippo-C is discussed at the greatest length. The discussion of 



194 Programming the Macintosh User Interface 

Mac C is brief because its environment is· much like that of the Macintosh 68000 
development system (MDS), which is covered in Chapter 12. The discussion of 
Aztec C is brief because its environment is similar to that of UNIX C-a subject 
beyond the scope of this book that, moreover, will already be familiar to the UNIX 
C programmers most interested in it. 

Hippo-C Program-Development Environment 

There are two versions of Hippo-C-level 1 and level 2. Level 1 has most of the 
features of level 2, but the latter has an optimizing compiler, assembler, linker, 
and full floating-point support, and it permits the development of much larger 
programs. However, the development environments of the two versions are very 
similar. Program lines are entered into a text editor and are later compiled so that 
the program may be executed. Syntax errors are detected when the program is 
compiled; and run-time errors, during program execution. Either produces a 
dialog box indicating the location and nature of the enor. 

Screen and menus. The Editor screen (Figure 11-1) appears when the Hippo-C 
icon is selected from the Finder. A document window fills the screen, with a 
Command window below, and the menu bar displays eight menus: Apple, Edit , 
File, Tutorial, Compile, Debug, Windows, and Programs (Figure 11-2). The 
Apple menu is standard, but all the other menus contain options unique to 
Hippo-C. 

The Edit menu contains the usual cut-and-paste options, plus a set of search 
and replace options, and an automatic indentation option , which may be toggled 
on and off. 

r s Edit File Tutorial Compile Debug Windows Programs 

::D 
rr 

1¢1 

* 
* 
* 

untitled 

Hippo-c Command Window 

lQ1 

~ 
N l2J 

~ ~ 

Figure 11-1 Hippo-C Editor screen showing menu bar and Edit and Command windows. 



Cut 3!:H 
Copy :l!:C 

llllout Hippo-c... Paste :l!: U 
Select All :!!:A 

rrtnt 
Scrnpllook Goto line # :J!: (j 

Olarm Clock Set Search or Replace llCF 
Note Pad Ncm1 ~P tm:tl :•: (( 
Calculator Neil l flc!pliHP :•:v 
Key ·Caps lll'!)lllt:C! fill 
Control Panel •OOOOO•O•OOOO OOOOOOOOO OO .... M .... 

Puzzle ./Au t omatic Indentation 

la) 

Help 
Introduction 
The Basics of C 
Basics, Part 11 
Functions: Why 
Functions: How 
Type Conuersion and I \0 
Comments on Uocabulary 
Characters and Conditions 
Control Flow 
Switch and Break 
Arithmetic 
Aduanced Tools 
Structures 
Final Facts 
Notes If References 

ldl 

Debug file 

Seit l'<Jrii!tlle~ 

Sin9le ~tep :·:~ 

Frni:crncl :•:f' 
Bun 
S u ppre~s 11 &i<1tlle fo 1m<1h 
Ile r o~st1 l 1 <1ri<1 l11<i~ :•:l. 
Ill' tn>s tl ~ ou n:c! u) tlP 

Se t El r e<1k 11oin1 
!lPnHHH' lm~ o k poin t 

llP tn OIJP llll brt'llk!HJin ts 

Uuit tll'b!HJ 

lb) 

I • 

Compile :ICM 
Compile with Debug :l!:N 
Aemoue #Error lines :l!:E 
Run :l!:I 

Show memory 
Send command 
Set default eHecutable 

./SUPERCHHH6ER 

lei 

Command window 
.; o untitled 

New il€B 
Open aco 
Close 
Saue acw 
Saue as 
Append file :l!:R 

Quit to HOS 
Quit to Finder 

le) 

cliclcme2.c 
cllclcme.c 
misc.c 
window.c 
llemo_mouse.c 
llemo_file.c 
demo_teHt.c 
llemo_graph.c 

lfl lg) lh l 

Figure 11 ·2 Hippo-C menus: (a) Apple, (b) Edit , (c) File, (d) Tutorial , (e) Compile, 
(f) Debug, (g) Windows, and (h) Programs. 

195 



196 Programming the Macintosh User Interface 

The File menu contains the usual fi le options , plus two quit options: Quit to 
HOS, and QUIT to Finder. Selecting Quit to HOS leaves the editor, discarding its 
contents, and moves the system into the HOS , wherein Hippo-C shell commands 
can be entered directly. Shell commands are used to perform functions not acces­
sible through menus. Commands available are AS (assemble files), CAT (concate­
nate files), CC (invoke compiler), CHM OD (change file attributes), CP (copy file), 
LD (link files), LS (list files on disk), MY (rename file), OD (display file contents), 
RM (remove file from disk), TOUCH (reset internal flags to force recompilation of 
file), and WC (count lines, words, and characters in file). Shell commands can 
also be entered into a separate Command window, which is accessed via the 
Windows menu . 

The Windows menu (Figure ll-2g) lists the Command window and all open 
windows, and permits them to be opened or closed as needed, without clicking on 
them directly. 

The Tutorial menu (Figure l l-2d) displays the directory of help screens ex­
plaining the Hippo-C operating environment and particulars of the C language 
implementation. 

The Compile menu (Figure l l-2e) provides access to a se t of compile- and run­
related commands: Compile compiles the file(s) currently active, Compile With 
Debug is used during debugging (see discussion of Debug menu, below), Remove 
#Error Lines removes lines in the file marked by the compiler with # Error as 
invalid, Run runs the program, Show Memory displays the amount of memory 
available in the heap, Send Command sends selected text in the text window to 
the Command Window shell processor, Set Default Executable changes the out­
put default used by the linker, and Supercharger permits screen memory to be 
used (or not used) by the compiler to speed compilation. 

The Debug menu (Figure 11-2() is used to debug a file that has been compiled 
with the Debug option via the Compile menu (see above). Selecting the Debug 
File option causes two windows to appear (Figure 11-3), one shows the source 
file , the second (called Debug Variables) displays the formats and values of se­
lected variables and permits changes to be made; the variables to be displayed 
during debugging are set with the Set Variables option. Refresh Variables sup­
presses presentation of variable formats during debugging. Refresh Source Code 
reads back in the original source file. The remaining options are self-evident: 
Single-Step single-steps the program, Proceed continues program execution from 
the current line, Run runs the program, Set Breakpoint permits a breakpoint to be 
inserted by moving the cursor into the document window and marking a location 
with a black dot (Figure 11 -4), Remove Breakpoint is used to remove a cursor­
marked breakpoint, Remove All Breakpoints does what it says, and Quit Debug 
closes the two debug windows and exits the debugger. 

The Programs menu (Figure l l-2h) provides access to various utility and 
demonstration programs. 

The foregoing description of windows and menus in .the Hippo-C program­
development environment suggests what is entailed in creating and debugging a 
program. For a new application , the process begins by selection of the Hippo-C 
icon in the Finder. The document and Command windows (see Figure 11-1 ) then 
appear. To work on an existing file, the File menu is used to open the file in the 
usual way. Text is then typed into the document window, and edited in the usual 
way, e.g., by selecting text and using cut-and-paste options on the Edit menu. 



C, FORTH, and Lisp 197 

,. s Edit File Tutorial Compile Debug Windows Programs 
., 

Debugging demo_graph.c 
~D Debug variables= 

c I ear_screen(); 
~ i-= 

I* draw oval and rectangle *I 
r.xl = 150; I* upper-left (xi, 
r.y1 = 70; 
r.x2 = 350; I* lower-right (x2 
r.y2 = 290; 

Ir 
setrect(Br,r .x1,r.y1,r.x2,r.y2); /* s ~ "" _lQr;: invert ova I (Br); I* f i II an ova I j 

1] 

Hippo-c Command Window 

* 

Figure 11-3 Selecting the Debug File option of the Debug menu causes the Debug window 
to appear. (Demo_graph.c, copyright 1984, by permission of Hippopotamus Software, Inc.) 

,.. Ii Edit File Tutorial Compile Debug Windows Programs 

r . yl 
r.x2 
r.y2 

Debugging demo_graph.c 
70 ; 
350; / * lower-right (x2,y: mm 
290; :+ 

setrect(Br,r.x1,r.y1,r.x2,r.y2); /*set 'i!ij:! 
invertoval (Br); /* fi 11 an oval just ;;;:;: 

~•framerect(Br); /*draw a line just iF 
: ~ :::: 

I* draw I ines */ 

Hippo-c: Command Window 

* 

Debug variables 

., 

Figure 11-4 A breakpoint (black dot) is inserted by moving the cursor (a bug during debug­
ging) into the document window and then selecting the Set Breakpoint option of the Debug 
menu. 



198 Programming the Macintosh User Interface 

Several document windows may .be displayed simultaneously, and text may be 
cut and pasted among windows, as necessary. When the program is ready to 
compile for the first time, the Compile With Debug option is selected from the 
Compile menu and the program is compiled. Next, the Debug option is selected 
from the Debug menu to run the debugger through the compiled program. As 
debugging proceeds, various other debug options may be used to set and remove 
breakpoints, display variables, single-step, and so forth. 

Though pull-down menus can be used for most of this, it is also possible to 
enter shell commands directly in the Command window. Alternatively, the pro­
grammer may choose to create a series of files , and to use the HOS to compile, 
link files, and perform other file operations directly. 

Mac C Program-Development Environment 

Mac C is provided on two separate disks. The first contains the compiler, editor, 
and executive files; the second, various support files and libraries. In addition, 
the user is required to have the Macintosh 68000 development system (see 
Chapter 12). A working C disk is created by combining files from the two disks. 
Mac C requires all parts of MDS except the executive and debugger. Mac C 
includes a RamDisk utility , which can be used to speed up development by 
reducing the time required for disk access. Programs are created in the MDS 
editor (described in Chapter 12), compiled with the Mac C compiler, and linked 
with the MDS linker. Program creation is done in a manner very similar to 
the development of assembly-language programs with MDS , as described in 
Chapter 12. 

Aztec C Program-Development Environment 

The Aztec C program-development environment resembles the UNIX C environ­
ment. Menus are absent, and commands are typed into a Vi-like editor. The 
three-disk package contains an editor, compiler, assembler, linker, and debugger, 
and various utility programs and library functions. 

Input-Output and the User-Interface Toolbox 

Hippo-C includes a standard library of common routines for handling files, dis­
playing output, managing memory, handling errors , and performing other com­
mon functions. Hippo-C includes a collection of routines for reading the mouse , 
dealing with windows, editing text, creating and handling pull-down menus , 
managing events, and exercising the graphics features of QuickDraw. These 
routines can be used to build applications that exercise most of the features of the 
standard Macintosh user interface. 

Mac C and Aztec C include built-in routines and libraries for creating applica­
tions that exercise all features of the standard Macintosh user interface. 

Mac FORTH 

General Characteristics 

MacFORTH is a powerful, 32-bit, compiled FORTH that includes several pro­
gram-development tools-text editor, compiler, debugger, large set of standard 



C, FORTH, and Lisp 199 

words , Macintosh ROM-based routines-and that makes it possible to develop 
applications that exercise most Macintosh user-interface features . The language 
is derived from FORTH-79, the common FORTH standard. It is closely related to 
Multi-FORTH, another Creative Solutions product, which has been marketed for 
several years and which is used in the Hewlett-Packard Series 200 desktop com­
puters. In short, MacFORTH has a respectable lineage and is as "standard" as 
one might expect for a language whose designer, Charles Moore, had the idea 
that the programmer should have the power to extend the language by adding 
words. MacFORTH offers a high degree of speed, compactness, and portability. 

MacFORTH-like FORTHs generally--,--is quite unforgiving and will crash at 
the drop of a syntactical hat. The flip side of this drawback is the relative ease 
with which a skilled FORTH programmer can create a full-featured Macintosh 
application. If you know what you are doing, you can perform wonders with 
MacFORTH; if not, you will spend most of your time restarting the system and 
swearing. 

There are three versions of MacFORTH-level 1, level 2, and level 3. Level 1 
includes an editor, standard trace and debug features , access to most Macintosh 
user-interface features and QuickDraw graphics, standard files , and a large set of 
predefined words; this is primarily a hobbyist's version of the language. Level 2 
adds several useful features, including an in-line FORTH assembler, improved 
control structures (IF-THEN-ELSE, BEGIN-AGAIN, BEGIN-UNTIL, BEGIN­
WHILE, REPEAT, BEGIN-LOOP), full IEEE 80-bit floating-point ari thmetic, 
advanced graphics routines, improved text-editing support within applications , 
and support of standard Macintosh controls (push buttons, check boxes, radio 
buttons, scroll bars). Level 3, labeled the "Developer's Kit ," enables the Mac­
FORTH kernel to be used directly in applications , provides a turnkey facility, 
includes an overlay manager for large applications , and qualifies a purchaser for 
Compuserve hotline support. The discussion that follows is equally valid for all 
levels of MacFORTH. 

Program lines are entered into a text editor, incrementally compiled, and later 
interpreted as the program is executed. This gives MacFORTH the speed of a 
compiled language with the interactive nature of an interpreted language. The 
text editor is based on Macintosh conventions and makes program line entry and 
editing very easy. One restriction of the MacFORTH implementation is the re­
quirement to create the program in window-size blocks consisting of a maximum 
of 1024 characters per program. 

The MacFORTH program-development environment relies far less on pull­
down menus than do most other Macintosh programming languages; instead, 
many commands are typed in through a separate command window. 

MacFORTH includes a large vocabulary of predefined words for performing 
common FORTH functions , and for accessing the Toolbox ; most Toolbox features 
can be exercised. 

Program-Development Environment 

Screen and menus. The Editor screen (Figure 11-5) appears when the Mac­
FORTH icon is selected from the Finder. A document window fills part of the 
screen, with a command window (titled MacFORTH) below. The system requires 
the programmer to type in his or her initials when it is initialized. The program is 



200 Programming the Macintosh User Interface 

r S Options Edit 
., 

i :::: :;: ::::::::::::::,;:'.~.; :;:~:'.~~:;:;:;,::,; :~~~~RT::::'.:::::; :r II 
!! ::,::I::,:::,';,';::"::,:::;,';:,;;:::':: I :i:: :: . I' I oodod ood ii~I i 

ok 
ok 

MacFORTH™ 1.2 ©1984 CSI ::u: 

Ullll ............. 

?&:::::::::: ,__ _______________ ...._ ____ .........,~. /}/:/ 
k; .... ... ....... .................... . ....... . .. .. ... ... . ... . . ...... ... .. . . . ...... ·:-:-: -:-:-:-:-:·:·:· 

Figure 11·5 MacFORTH Editor screen showing menu bar and Edit and Command 
windows. 

typed into the document window, and system commands are typed into- the 
command window. Several document windows may be open simultaneously, up 
to the limit of available memory, and text can be cut and pasted among them. The 
menu bar displays three menus: Apple , Options, and Edit (Figure 11-6). The 
Apple menu is standard, but the other two menus contain options unique to 
MacFORTH. 

The Edit menu (Figure ll-6c) contains the usual cut-and-paste options, plus 
some additional ones. Stamp stamps the active block with the date and the 
programmer's initials. Clean fills the block with blanks. Revert returns the con­
tent of the block to that originally saved to disk. Enter Edit enters the editor. 

The Options menu (Figure 11-6b) provides access to Trace and Debug options 
and may be used to send output to the printer or to exit the editor. Abort termi­
nates editing and returns to the command window. The Trace option instructs 
the compiler to display the name of each word and the depth and contents of the 
stack when the program is executed. Selecting Debug causes the interpreter to 
check stack depth after each request and to display stack items. Selecting the 
Printer option causes all screen output to be sent also to the printer. Exit Mac­
FORTH causes the system to return to the Finder. 

There is no Files menu . Instead, files are loaded, saved, displayed, and other­
wise handled by typing immediate-execution commands into the command win­
dow. For example, ?FILES displays the file directory; EDIT opens a window to 
permit text entry; USE loads a file by name into the edit window; LOAD loads a 
file by block number into the edit window; LIST displays the content of a file; 
INDEX displays the first line of a range of blocks; TRIAD displays three sequen-



C, FORTH, and Lisp 201 

Undo 3C2 

Cut 3CH 
About Macforth ... Copy ace 

Rbort :ll:A Paste 3CU 
Scrapbook Trace 3CT 
Alarm Clock Debug 3Cil Sf amp :•:s 
Note Pad Printer 3CP 
Calculator (!t.>!~O 

Key Caps MacFORTH Window Rl'!Jt.>rt 

Control Panel 
Puzzle EHit MacFORTH Enter Ecflt 3CE 

(a) (b) (c) 

Figure 11-6 MacFORTH menus: (a) Apple, (b) Options, and (c) Edit. 

tial blocks; SHOW displays a range of blocks; COPY, COPY.BLOCKS, and 
XFER.BLOCKS copy or move blocks; and CLEAR BLOCKS fills the specified 
blocks with blanks. 

Likewise, there are no font-related or font size-related menus; however, font 
characteristics can be altered with typed-in commands. 

Program-development scenario. As a MacFORTH program is constructed of 
blocks of limited size, program development is done somewhat differently with it 
than with a program written in a language such as BASIC or Pascal. Usually a 
program will be constructed of several different blocks, displayed in separate 
windows. Hence, multiple-windowing during development is the rule rather than 
the exception. Compounding this difference is the requirement to type in many 
of the necessary commands rather than use pull-down menus to issue them. The 
following scenario gives a taste of what is entailed in developing a new appli­
cation. 

The Finder contains a document called FORTH Blocks, which contains a set of 
blocks used in constructing programs. Selecting this icon activates the editor and 
command window and makes the blocks available for editing (if used previously) 
or the creation of a new program. When the command window appears , it 
prompts the user to enter his or her initials. 

This done, a block to edit is selected with the EDIT command. For example, to 
edit block 2, the command 2 EDIT is typed in. This produces an appropriately 
titled document window, and the text of the program may by typed in and edited 
in the usual way. Text occupying the window may be deleted with a CLEAN 
command. The text of the block may then be typed in. When the block has been 
completed, it may be loaded for compilation and execution by isssuing a LOAD 
command, e.g., 2 LOAD. Compile-time errors will be detected, and error mes­
sages will appear in the command window. If compilation is successful, the block 
will be executed. The next block may be developed, then the next, and so on, 
until the set of blocks comprising the application is complete. The block may be 
traced or debugged by using Trace or Debug options, as desired. 



202 Programming the Macintosh User Interface 

Individual blocks may be created, compiled, executed, traced, and debugged, 
as described above; alternatively, blocks may be created and then compiled as a 
group, traced as a group, or debugged as a group. 

Input-Output and the User-Interface Toolbox 

MacFORTH includes a large vocabulary of built-in words, error-handling rou­
tines , and a file system for handling record-oriented, text, virtual, and blocks files. 

MacFORTH includes a collection of words for reading the mouse, dealing with 
windows, editing text, creating and handling pull-down menus , managing 
events, generating simple and complex sounds, and exercising the graphics fea­
tures of QuickDraw. These words can be used to build applications that exercise 
most of the features of the standard Macintosh user interface. 

Experlisp 

General Characteristics 

ExperLisp is a powerful , compiled Lisp that includes several program-develop­
ment tools-text editor, compiler, debugger, assembler, Macintosh ROM-based 
routines-and that makes it possible to develop artificial-intelligence applications 
directly on a 512K Macintosh. ExperLisp is unique in being compiled, as "stan­
dard" Lisps are interpreted. Though compiled, ExperLisp allows commands to be 
typed in and executed immediately, providing interactivity in the manner of an 
interpreted Lisp. In addition , program code can be selected (as in editing) and 
executed separately from the main program (in the manner of MacPascal-see 
Chapter 10). The language follows the common Lisp standards for defining 
macros , special forms , and functions . The language is also related to ZetaLisp, in 
which ExperLisp's compiler was written. 

ExperLisp continues under active development. Release 1.0 has limitations 
that ExperTelligence intends to correct in future releases. Release 1.0 is unable 
to save compiled code or to exercise the full features of the user interface; release 
2.0 will correct these limitations. 

ExperLisp includes a built-in vocabulary of 450 primitives-functions, macros, 
messages, special forms , special variables, and lambda list keywords. 

ExperLisp provides full access to QuickDraw graphics (as well as its own 
graphics routines, including 3-D). Release 1.0 gives limited access to standard 
Macintosh user-interface features beyond menus and graphics windows. Later 
releases provide full access to the Macintosh ROM , enabling most Toolbox-based 
features to be exercised. 

Program-Development Environment 

Screen and menus. The following description applies to release 1.0 of Ex­
perLisp; future releases will have additional features, as noted. The Editor screen 
(Figure 11-7) appears when the ExperLisp icon is selected from the Finder. The 
screen contains two windows: the Edit window (Edit Buffer) and the Listener 
window (ExperLisp Listener). The menu bar contains four menus: Apple, File, 



C, FORTH, and Lisp 203 

Edit Buffer-1 

Figure 11-7 ExperLisp Editor screen showing menu bar, Edit window, and Listener 
window. 

Edit, and Compile (Figure 11-8). (Future releases of ExperLisp will contain one 
or more menus for accessing the debugger, assembler, trace, and break package.) 
The Apple, File, and Edit menus have the usual options. Note that the Save 
option of the File menu may be used to save the contents of the active window, 
which may be any window displayed (including the Listener window). The Com­
pile menu (Figure 11-Sd) has two options: Compile Selection, which executes 
code which has been selected; and Compile All, which executes all code in the 
Edit window. 

A program is typed into the Edit window and edited in the usual cut-and-paste 
way. As the program is being developed, a portion of it may be executed by 
selecting it (as in text editing) and then issuing a Compile Selection command 
from the Compile menu; the entire program may be executed with Compile All. 
In either case, the code will be compiled and executed, and its results will be 
displayed in the Listener window (see below). Several Edit windows may be used 
simultaneously during program development (although only one· may be open at 
a time), and text may be cut or copied and pasted among them. 

The Listener window is interactive. It may be used to type in immediate­
execution commands. All program or code fragment results are displayed in this 
window. Moreover, the window retains a history and may be scrolled through to 
review previously displayed information. 

Program-development scenario. Developing a program in ExperLisp is fairly 
straightforward. The process begins by selecting the ExperLisp icon in the 
Finder. The Edit and Listener windows then appear (see Figure 11-7), with the 



204 Programming the Macintosh User Interface 

Rbout EHperllsp 

Scrapbook 
Rlarm Clock 
Note Pad 
Calculator 
Key Caps 
Control Panel 
Puzzle 

(a) 

i: ut :)[: !{ 

[D!Hj :)(:[ 

Pns1e :J::u 
i: lt>t~r 
Sc~!CH t llll 

Show Clipboard 

(c) 

New 
Open ... 
(lose 
S<nie 
S<nie HL. 
Ht>!!i>r t to S<wed 
l'tHJ!' Se1 U~l .. , 
Print... 
Quit 

(b) 

Compile Selection 3€S 
[ Otnf)il!~ Ill! :a•:fl 

(d) 

Figure 11·8 ExperLisp menus: (a) Apple, (b) File, (c) Edit, and (d) Compile. 

Listener window active. Immediate-execution commands may be typed directly 
into the Listener window. To develop a new application, the Edit window is 
clicked, and the program typed in and edited in the usual way. For an existing 
file , the File menu is used to open the file and display its contents in an Edit 
window. 

During program development, portions of code may be compiled and executed 
by selecting them and issuing a Compile Selection command from the Compile 
menu, or the entire program may be handled by selecting Compile. Results will 
then be displayed in the Listener window; this window can be scrolled to review 
earlier results or the command history. Compile-time errors will produce error 
messages in the Listener window. The contents of the Listener window may be 
saved by activating the window and using the Save option of the Files menu. 

Releases of ExperLisp which follow release 1.0 will come equipped with addi­
tional menus containing options supporting program debugging, tracing, setting, 
and removing breakpoints , and performing global searching and replacement. 

Input-Output and the User-Interface Toolbox 

As noted above, ExperLisp includes a built-in vocabulary of 450 primitives­
functions, macros , messages, special forms , special variables, and lambda list 
keywords. 



C, FORTH, and Lisp 205 

Release 1.0 includes a collection of routines for reading the mouse, dealing 
with graphics windows, and creating and handling pull-down menus. Subse­
quent releases will include routines providing access to most of the features of 
the Macintosh Toolbox, enabling full-featured Macintosh applications to be built. 

In addition to the usual QuickDraw graphics, ExperLisp includes its own 2-D, 
3-D, and mixed 2-D and 3-D "Bunny Graphics" routines , which enable three­
dimensional objects to be created, displayed, and rotated on three axes . 



Chapter 

12 
Assembly-Language 
Programming: 
The Macintosh 68000 
Development System 

This chapter presents an overview of the Macintosh 68000 development system 
(hereafter referred to simply as the development system), which may be used to 
develop assembly-language programs directly on the Macintosh. The chapter was 
written for assembly-language (or Mac C) programmers; if your interests lie 
elsewhere, you can safely skip the chapter. 

Assembly-language programming is difficult and definitely not for the faint­
hearted, but it unlocks the full potentiil of the Macintosh for use in applications. 
Using the development system requires skill at MC68000 assembly-language 
programming and a thorough understanding of Inside Macintosh (Apple Com­
puter, 1984), which provides the ground rules for programming the Macintosh. If 
you are familiar with Inside Macintosh, you know that as documentation goes, it · 
is well written, detailed, and formidable. 

Until the development system became available, the only way to program a 
Macintosh in assembly language was to use a Lisa and then transfer the assem­
bled and linked code to a Macintosh . This is no longer the case. The development 
system permits programs to be developed with as little as 128K of memory on a 
single Macintosh. However, there are significant advantages in using a 512K 
machine and still more advantages- especially for debugging- in using two ma­
chines, i.e., two Macintoshes, or a Macintosh and a Lisa. 

The following sections provide an overview of the development system and a 
close look at its components. 

System Overview 

The development system consists of two disks: MDS 1 and MDS2. The files these 
disks contain are voluminous , and they cannot be stored on a single disk. The 

206 



Assembly-Language Programming 207 

-0 MDSl 
9 items 362K in dislc 37K availabl4! 

~ ~ ~ ~ 
~ 

@V 
Edit Asm Link Exec RMaker 

~ CJ CJ 0 
PackSyms MacDB Nubs Empty Folder System Folder 

to 
~ TC Q] 

Figure 12-1 Finder image of Macintosh 68000 development system disk 1 (MDSl). 

first step in using the system is to . transfer the needed fi les to separate working 
disks . 

The Finder image of MDSl is shown in Figure 12-1. Key files are Edit, Asm, 
Link, Exec, RMaker, PackSyms, and MacDB Nubs. The System Folder and 
Empty Folder are standard. The Edit file contains the editor, which is used to 
create source files for the assembler, linker, executive, and RMaker. Asm, the 
assembler, translates assembly-language source files into relocatable modules, 
which are linked into a single application. Link, the linker, links modules. Exec, 
the executive, is a utility that speeds up assembling, linking, and the addition of 
resources. RMaker, the resource compiler, creates a resource file based on a text 
file . PackSyms is a utility that packs a symbol file to save disk space. MacDB Nubs 
is a folder containing programs that should be used during debugging. 

The Finder image of MDS2 is shown in Figure 12-2. Key files are Debuggers , 
Trap Files, Equ Files, and .D Files. The Empty Folder is standard. The Sample 
Programs file is a folder containing sample programs that illustrate programming 
techniques. Debuggers contains several different debugging tools . Trap Files 
contains files that attach trap numbers to trap names for use during debugging. 

D MDS2 
6 it@ms 397K in dislc 3K availab 14! 

!Ql 
0 0 0 

Debuggers .D Files Trap Files 

0 0 0 
Equ Files Sample Pro gr ams Empty Folder 

to 
l2I E Q] 

Figure 12-2 Finder image of Macintosh 68000 development system disk 2 (MDS2). 



208 Programming the Macintosh User Interface 

Equ Files contains files that assign default values to constants and memory 
locations used by an application .. D Files is a folder containing packed versions of 
the files in the Trap Files and Equ Files folders. 

The system produces three different types of files: application, text, and binary. 
Program lines are entered into the text editor and later assembled and linked so 

that the program may be executed. The same editor is used to create assembly­
language source files, Linker control files , Executive control files, and Resource 
files . 

Program-Development Environment 

Editor 

The Editor screen (Figure 12-3) appears when the Edit icon is selected from the 
Finder. One or more document windows are opened via the File menu for enter­
ing text. The menu bar displays eight menus: Apple , File, Edit, Search, Format, 
Font, Size, and Transfer (Figure 12-4). The Apple, File, Edit, Font, and Size 
menus are standard or near-standard, but the remaining menus contain options 
unique to the development system. 

The Search menu (Figure 12-4) contains find and change options for global 
editing. The Format menu (Figure 12-4e) may be used to set tabs, set automatic 
indentation, and show invisible characters. The Transfer menu (Figure 12-4h) 
provides access to the assembler, linker, executive, and RMaker. 

r ti file Edit Search format font Size Transfer 
.. ·······.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.· .;.:.;.·-:-:-:·:-:-:-:-:-:·:-:.;-:-:·:-;.:-:.;.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.· ....... ....... . 

:.:.: > m==--
1 

Untitled 

., 

.. . 
···.·.· 

Figure 12-3 MDS Editor screen showing menu bar and document and Clipboard windows. 



About Edit 

Simple Accessory 
Scrapbook 
Alarm Clock 
Note Pad 
Calculator 
control Panel 

(a) 

Find :lllF 
Change :u 

Hitl!' rind 

(d) 

~ !P(i)O!DU 
Io Point 

u~ IPmO!DU 
14 Point 
I B Point 
24 Point 

(g) 

Assembly-Language Programming 209 

New :lllN 
Open ... 3€0 
Opt>n :•:r! 
[IO~W 

S<llle 
S<llle <IL. 
HPllNt to DritJinnl 
Page Setup 
Print 
Quit 

(b) 

~I' t fobs 
nu10 lnd<rn1 on 
Show lnuisibles 

(e) 

[di t 

RSM 
LINK 

EHec 

AMAKER 

(h) 

IJnOo 

t: ut :•:l! 
[ O!H.t :•:C 
!'ns1<~ :•:ti 
t: h~nr 

llUt.lll :•:fl 
MOii!~ I. en :•:t. 
MOUi~ Hiqht '.•:H 

Hide Clipboard 

(c) 

Chicago 
Geneua 

v"Monoco 

(f) 

Figure 12-4 MDS menus: (a) Apple, (b) File , (c) Edit, (d) Search , (e) Format, (/) Font, 
(g) Size, and (h) Transfer. 

The editor is disk-based and can be used to edit files too long to fit into memory. 
The editor works in the usual way for a good Macintosh application : text is typed 
in through the keyboard and may be cut, copied , and pasted within a document or 
among documents . Three different type fonts and six different font sizes may be 
used, although a given window is restricted to a single font and size. Program 
lines are separated by Return characters; text is entered line by line. As noted, the 
Format menu may be used to set tabs , provide for automatic indentation, and 
display invisible characters, if desired. 

In general, one or more files will be created with the editor and then saved to 
disk with an appropriate file-name suffix to indicate file type, e.g., .Ams (assem-



210 Programming the Macintosh User Interface 

bly source file), .Files (list of assemblies to be performed), .Link (Linker control 
file), .Job (Executive control file), or .R (Resource compiler source file). (See 
Figure 12-5.) 

Assembler 

The assembler converts the source file into relocatable code along with symbol 
table and error information (Figure 12-6). The assembler permits instructions to 
be grouped into macros, is able to modify instructions so that a given program can 
access other relocatable segments, and allows conditional assemble instructions 
that permit multiple versions of a program to be generated from one source file. 
During assembly, errors are written to an error file , which may be examined. 

Once a source file has been created with the editor, it may be assembled with 
the assembler. The assembler may be invoked from the editor via the Transfer 
menu (see Figure 12-4h); from the Finder, by selecting up to four files and then 
opening the Asm application (see Figure 12-1); or with an Executive control file. 
Assume that Asm is selected from the Finder without preselecting files to be 
assembled. In this case, the Assembler screen (Figure 12-7) appears, with an 
open file-selection dialog box from which the files to be assembled are selected. 
The menu bar includes four menus: Apple , File, Options, and Transfer. The File 
menu (Figure 12-8a) includes options to Select File, Quit, and Filter By Time; the 
final option is used to pare down the list of fil es by listing only those that have 
been modified since last assembled. The Options menu (Figure 12-8b) is used to 
select listing options-Le., none, to file, or to display-and amount of output, 
normal or verbose. Normal output produces the minimum amount of output; 
Verbose produces more output, and allows a Linker listing to be generated. 

The assembler produces a file (with the .Rel suffix) containing relocatable code 
and a symbol table. Errors encountered during assembly are written to a separate 
.Err file (Asm inputs and outputs are shown in Figure 12-6). 

Various assembler directives can be included in a source or executive file to 
control assembly; the directives include assembly control directives (INCLUDE, 

Edit 
is us~d to 

create ... 

Edit 

[[] 
Winaow .Asm 

[[] 
'tt'indoW' .Link 

[[] 
Window .Job 

[[] 
W'indow .R 

Assembly lan9ua9eo 
source files 

Llnk•r control 
files 

Executive control 
files 

Resource Compiler 
source files 

Figure 12-5 Possible outputs of MDS editor. (From Macintosh 68000 Development System 
User's Manual, copyright 1984, by permission of Apple Computer, Inc.) 



Assembly-Language Programming 211 

- --Asm 

Rt locatable objfct ,;,·, ~ F ~"i ;;:~·:;:::;;;;,'" 
M•c::~:sD j:ffi._ ll'in;•l Listin9 of assembltd 

01011 ~ ~ files, ifrtquest•d 

To~-~-~·· _r ~- ~-~-~"' '"' °' """ 
~ ~ encountered durin9 

'vlirir.low .Asm Window .Err .unmbly 

Traps, Equates, and 
source flles ar-e given 
u input to the AssPmbler 

Figure 12-6 Possible outputs of MDS assembler. (From Macintosh 68000 Development 
System User's Manual, capyright 1984, by permission of Apple Computer, Inc.) 

STRING_FORMAT, IF .. ELSE..ENDIF, MACRO, END, .DUMP), symbol defini­
tion directives (EQU, SET, REG, .TRAP), data allocation directives (DC, DS, 
DCB, .ALIGN), linker control directives (XDEF, XREF, RESOURCE), and print­
ing control directives (.NoList, .ListToFile, .ListToDisp, .Verbose, .NoVerbose) . 

., 

Copy of OPEN ... ~ 
MDSl 

Eject 

Cancel Driue 

Figure 12-7 Assembler screen showing menu bar and dialog box for selecting file to 
assemble. 



212 Programming the Macintosh User Interface 

S(Jl<H t HlcJ 
Quit 

Filter by Time 

(a) 

./No listing 
List to File 
List to Display 

./Normal output 
Uerbose Output 

(b) 

Figure 12-8 Assembler screen menus: (a) File and (b) Options. (Apple and Transfer menus 
are shown in Figure 12-4.) 

Linker 

The linker is used to link the files created by the assembler into an application 
file . A symbol table and listing may be generated, if desired. Linking errors will be 
recorded in a separate .LErr file. The inputs and outputs of linking are shown in 
Figure 12-9. 

Files are linked by using the editor to define a Linker control file and then 
invoking the linker. The control file contains relevant linker commands, sets the 
global storage area, and specifies the output file. It may also be used to add 
resources and data to code. 

The linker may be invoked from the editor via the Transfer menu (see Figure 
12-4h); from the Finder, by selecting and opening the Link application (see 
Figure 12-1); or with an Executive control file. 

Executive 

The executive may be used to automate program assembly, linking, and resource 
compilation. The editor is used to create an Executive control file, which tells 
what application to execute; following execution, control returns to the Executive 
file. Executive inputs and outputs are shown in Figure 12-10. 

=0 link 

Relocatable object 0001 ~ 

W'indow Rel 'w'mdow (an appl1ca l1on•) 

modu le with symbol 10110 \ Executable " 
table inform~tion OIO ll r ObJeCt file 

~:,:kers~;~:~i~~ [IJ-@V\ ITT :;~:lbq'~:'~~:dl• 
listing on or of( J ~ 
Sourc• fil• WmlJ~==-~-ow L mk Link 'w'mdow Map 

used if li sting ~ ITT List of errors 
is reque-sted ~ from hnkmg 

\rtindow .Asm Window .LErr 

Figure 12-9 Possible outputs of MDS linker. (From Macintosh 68000 Development System 
User's Manual, copyright 1984, by pennission of Apple Compute1~ Inc.) 



Assembly-Language Programming 213 

=D EHec 
Q 

Exec .Job specifies 
the applications and 

f1 their input files 
0 

' 
m 

[IJ-~ @ii) ...... 
Exec J ob Ex ec Link 'w'hen done, control 

.j. returns to Exec 
Choose Execute 

~ Exec .Job from the 
E>< ecute Menu 

RMaker 

L 

~ 
~I 1¢1'21 

Flgure·12-10 Executive inputs and outputs. (Fram Macintosh 68000 Development System 
User's Manual, copyright 1984, by permission of Apple Computer, Inc.) 

The executive may be invoked from the editor via the Transfer menu (see 
Figure 12-4h); from the Finder, by selecting and opening the Exec application 
(see Figure 12-1); or with an Executive control file. 

Resource Compiler (RMaker) 

RMaker is used to compile an application's resource file. The file is created with 
the editor, and then RMaker is used to compile it. The form of a typical RMaker 
display is shown in Figure 12-11. Resources are defined in the input file as lines 
of text that define dialog and alert boxes; symbolic control devices ; menus; win­
dows; and custom, user-designed resources. 

-- Resource Compiler -==-- _ 

So urce File Window R 
Stot 1cText 
15 20 36 300 
This somp I e pro9ro1t1 wos 111 r i l ten 

Sto lic: Texl 
JS 20 56 300 
JUSl to prove i l could be done! 

• U I tlO Res ource •I spec: if i es ll"u 
• for the window 1n wh ich edi l i1 
• ca! I to GetNewU 1ndow 

Out ut File r-1052 Window Rs rc 

Dntn Size : 334 
Hap Size : 134 
Tolol Size : 468 

Figure 12-11 Typical RMaker display. (From Macintosh 68000 Development System User's 
Manual, copyright 1984, by permission of Apple Computer, Inc. ) 



214 Programming the Macintosh User Interface 

S Debug Run Bkp t s Ulind ow f nr rnut '>qmhn ls 

PC §§§ R eg i s t e rs~ EH a mine 

PSTAAT JSR $34 CPC) ~ :~:~~M g~ : ~·~~:~ ~ ' 7> IA41 E · gggg gg~~ ~ 
START+4 · JSR $~E CPC) 1A422 · 
STAAT • S JSR t:S6 CPC) (SETUF 02 " FFFF 0000 1A426 : FFFF 0000 
START • C : Ql"'owMer'luBor-

CSETUFf-
03 = 600 I 0024 1R42A 600, 0024 

SlfiRT • E. JSR $80CPC) 04 : 0000 0024 IA42E : 0000 0024 
STFiAT• 12 · JSR SQE CPC) <SETUF I- 05 : 0000 DOFF 1R432 . gggg ~~~~ h START + 16 MOUE L $504CPC>. - CA7) < 06 a 0000 FFFF IA436 
START~ IA · TE Idle 07 ,. FFFF FFOJ 1A43A FFFF FF03 f---" 
START+ IC : SystemTosk IA43E 0000 533A g: 
START+ IE : CLR - <A7) IA4 IE AO ,. COO 1 A604 1A442 · 0001 AS04 
STRRT•20 : MOUE • SFFFF, -<fi7 ) 1A41E A I " 0000 SACS 1A4 4 6 0000 533A '2J 
STAAT+24 : PEA S2EE C PC > <ABOUT A2 " 0000 SHB6 
START+28 . CietNe xtEvent A3 • 000 I A644 EHamine 

• STAAT • 2A : MOUE <A7 )• , DO IA41E · A4 = 0000 557A 
STAAT•2C . BE:O S •S-18 <STF.Al AS = 000 1 A608 

IAOC4 : ~~~~ ~~~~ ~ STAAT • 2E : .JSA S9C<PC> <SETUF Afl ,. 000 1 A'520 
IA6C8 

STAAT • 32 : BEO S • S-1E <STAAl A7 z 000 1 A41E 
IAOCC : 0000 0000 

STAA T•34 · ATS 
PC • 0000 4E9E ~ 1A600 ~gg g~~~ I::-INITMANAGERS . PEA S-4CA5) 1Afl04 I:>' 0, 1A604 

INITMA11A• 4 ln1 tGrof SR • 2000 ~ 5> 1A608 0001 R604 h 
INI TMANA • 6 ln1 tFont 1A60C : gggg gg~~ ri IN I TMAr1A•8 · MOUE L •'$FFFF, 00 Br ea kp oints IA6EO 
INI TMArtA • E F l ushEvenlS lg 1A6E4 : 0000 0000 g INITl1M!1A• 10 · l n 1 tU1ndoU1 

• STAAT•2A n~ 1A6E8 ~~~~ ~~~~ Q; 1N 1TMA!li=!• 12 ln 1 tnenus co: . 

Figure 12-12 Typical MacDB display. (From Macintosh 68000 Development System User's 
Manual, copyright 1984, by permission of Apple Computer, Inc.) 

Debuggers 

The development system includes two sets of debuggers: MacDB , and MacsBug. 
The most powerful is MacDB , which requires two machines, Le., two Macin­
toshes, or a Macintosh and a Lisa (with MacWorks). MacsBug works on one 
machine. Capabilities of the two debuggers are similar, but MacDB has smaller 
memory requirements , may be used to debug larger programs, and provides more 
readily available information during debugging. 

To use MacDB , two machines are connected with a serial cable, and a program 
called Nub is run on the same machine as the application ; the second machine 
runs MacDB. The Nub program locates itself in the system heap, sets pointers to 
itself, and awaits one of its predefined "exception events ," e.g., bus error, address 
error, illegal instruction , etc. When such an event is detected, the Nub sends an 
interrupt to the second machine; the main program may then be either continued 
or terminated. During debugging, windows on the second machine may be ac­
cessed to display information concerning memory, registers, the heap, linked 
lists, and traps. MacDB also allows the setting of breakpoints, single-stepping, 
pattern search of memory , and tracing. The appearance of a typical MacDB 
display is shown in Figure 12-12. 

MacsBug, the single-machine debugger, comes in five separate versions: Macs­
Bug, for 128K Macintosh , which uses 10 lines of the application's screen to 
display debugging information ; MaxBug, for 512K Macintosh , which can display 
up to 40 lines of debugging information and may be turned off to restore the 
application's screen ; TermBugA and TermBugB, which display debugging infor­
mation on an external terminal; and LisaBug, which works like MaxBug but runs 
on a Lisa with Macworks. Though the convenience of using the different debug­
gers varies, all can be used to display memory, set bytes of memory, and disas­
semble memory; check the heap; display and set registers ; set breakpoints; moni­
tor traps; trace; and single-step. 



Input-Output and the 
User-Interface Toolbox 

Assembly-Language Programming 215 

The Macintosh 68000 development system enables the development of applica­
tions that exercise all of the features of the standard Macintosh user interface. 



Bibliography 

Aker, S. Z.: "Microsoft Basic Comes of Age," MacWorld, December 1984, pp. 86-94. 
Albert, A. E.: "The Effect of Graphic Input Devices on Performance in a Cursor-Positioning Task," 

Proceedings of the Human Factors Society 26th Annual Meeting, 1982, pp. 54-58. 
American Training International: MacCoach User's Handbook, Los Angeles , 1984. 
Anderson, ]. R. (ed.): Cognitive Skills and Their Acquisition, Erlbaum, Hillsdale, N.J., 1981. 
Anderson, ]. R., and G. H. Bower: "Recognition and Retrieval Processes in Free Recall," Psycho-

logical Review, 79(2), 1972, pp. 97-123. 
Apple Computer, Inc.: Macintosh, Cupertino, Calif., 1983. 
Apple Computer, Inc.: MacPaint, Cupertino, Calif., 1983. 
Apple Computer, Inc.: MacWrite, Cupertino, Calif., 1983. 
Apple Computer, Inc.: The Certified Developer Program, version 1.4, Cupertino, Calif., draft 

2/8/84. 
Apple Computer, Inc.: Inside Macintosh (2 vols.), Cupertino, Calif., 1984. 
Apple Computer, Inc.: Macintosh BASIC Reference Manual (prerelease beta test version), Cuper-

tino, Calif., 1984. 
Apple Computer, Inc.: Macintosh Pascal Reference Manual, Cupertino, Calif., 1985. 
Apple Computer, Inc.: Macintosh Pascal Technical Appendix, Cupertino, Calif., 1985. 
Apple Computer, Inc.: Macintosh Pascal User's Guide. Cupertino, Calif., 1985. 
Apple Computer, Inc.: Macintosh 68000 Development System User's Manual, Cupertino, Calif., 

1985. 
Aristotle: The Poetics, in F. Ferguson (ed.): Aristotle's Poetics, Hill and Wang, New York, 1961. 
Bailey, R. W.: Human Error in Computer Systems, Prentice-Hall, Englewood Cliffs , N.J., 1983. 
Bailey, R. W.: Human Performance Engineering: A Guide for System Designers, Prentice-Hall, 

Englewood Cliffs , N.J., 1983. 
Ballantine, M.: "Conversing with Computers-The Dream and the Controversy," Ergonomics, 

23(9), 1980, pp. 935-945. 
Barnard, P. J., N. Hammond, A. MacLean, and J. Morton: "Leaming and Remembering Interac­

tive Commands," Proceedings, Human Factors in Computer Systems, March 1982, pp. 2-7. 
Barnard, P. J.. N. V. Hammond , J. Morton, J.B. Long, and I. A. Clark: "Consistency and Compati­

bility in Human-Computer Dialogue," Intemational]ournal of Man-Machine St!tdies, 15, 1981, 
pp. 87-134. 

Benbasat, I. , and A. S. Dexter: "An Experimental Study of the Human/Computer Interface," 
Communications of the ACM, 24(1 1), November 1981, pp. 752-762. 

Bewley, W. L., T. L. Roberts , D. Schroit, and W. L. Verplank: "Human Factors Testing in the 
Design of the Xerox 8010 "Star" Office Workstation," Proceedings, Human Factors in Comput­
ing Systems, 1983, pp. 72-77. 

Billingsley, P. A.: "Navigation Through Hierarchical Menu Structures: Does It Help to Have a 
Map? Proceedings of the Human Factors Society 26th Annual Meeting, 1982, pp. 103-107. 

Black, J. B., and T. P. Moran: "Learning and Remembering Command Names," Proceedings, 
Human Factors in Computer Systems, March 1982, pp. 8-11. 

Borman , L., and R. Karr: "Evaluating the 'Friendliness' of a Timesharing System," Proceedings, 
Human Interaction and the User Interface, 1981 , pp. 31-34. 

216 



Bibliography 217 

Boulay de, B., T. O'Shea, and J. Monk: "The Black Box Inside the Glass Box: Presenting Computer 
Concepts to Novices," International Journal of Man-Machine Studies, 14, 1981, pp. 237- 249. 

Bury, K. F., R. J. Boyle, and A. S. Neal: "Windowing Versus Scrolling on a Visual Display Termi­
nal," Human Factors, 24(4), 1982, pp. 385-394. 

Butler, T. W.: "Computer Response Time and User Performance," Proceedings, Human Factors in 
Computing Systems, 1983, pp. 58-67. 

Card, S. K.: "User Perceptual Mechanisms in the Search of Computer Command Menus," Pro­
ceedings, Human Factors in Computer Systems, March 1982, pp. 190-196. · 

Card, S. K. , W. K. English, and B. J. Burr: "Evaluation of Mouse, Rate-Controlled Isometric 
Joystick, Step Keys, and Text Keys for Text Selection on a CRT," Ergonomics, 21 (8), 1978, pp. 
601 - 613. 

Card, W. K. , T. P. Moran, and A. Newell: "Computer Text-Editing: An Information-Processing 
Analysis of a Routine. Cognitive Skill ," Cognitive Psychology, 12, 1979, pp. 32-74. 

Card, W. K., T. P. Moran, and A. Newell: "The Keystroke-Level Model for User Performance Time 
with Interadive Systems," Communications of the ACM, 23(7), 1980, pp. 396-410. 

Card, W. K., T. P. Moran, and A. Newell: The Psychology of Human-Computer Interaction, 
Erlbaum, Hillsdale, N.J ., 1983. 

Carroll, J. M., and C. Carruthers: "Blocking Learner Error States in a Training Wheels System," 
Human Factors, 26(4), 1984, pp. 377-389. 

Carroll, J. M. , and J. C. Thomas: "Metaphor and the Cognitive Representation of Computing 
Systems," IEEE Transactions on Systems, Man, and Cybernetics, March/April 1982, pp. 107-
116. 

Conrad, R.: "Short-Term Memory Factor in the Design of Data-Entry Keyboards: An Interface 
Between Short-Term Memory and S-R Compatibility," Journal of Applied Psychology, 50, 1966, 
pp. 29-36. 

Consulair Corporation: Mac C and Mac C Toolkit: A Programmer's Guide, Portola Valley, Calif., 
1984. 

Creative Solutions, Inc.: MacFORTH User and Reference Manual, Rockville, Md. , 1984. 
DeLeon, L., W. G. Harris , and M. Evans: "Is There Really Trouble with UNIX?" Proceedings, 

Human Factors in Computing Systems, 1983, pp. 125-129. 
Douglas, S. A. , and T. P. Moran: "Learning Text Editor Semantics by Analogy," Proceedings, 

Human Factors in Computing Systems, 1983, pp, 207-211. 
Durding, B. M., C. A. Becker, and J. D. Gould: "Data Organization," Human Factors, 19(1) 1977, 

pp. 1-14. 
Eason, K. D.: "Dialogue Design Implications of Task Allocation Between Man and Computer," 

Ergonomics, 23(9), 1980, pp. 881-891. 
Ehrenreich, S. L.: "Query Languages: Design Recommendations Derived from the Human Fac­

tors Literature," Human Factors, 23(6) 1981 , pp. 709- 725. 
Embley, D. W. , and G. Nagy: "Can We Expect to Improve Text Editing Performance?" Proceed­

ings, Human Factors in Computer Systems, March 1982, pp. 152-156. 
Engel, S. E. , and R. E. Granda: Guidelines for Man/Display Interfaces, technical report TR 

00.2720, IBM, Poughkeepsie, N.Y. , December 1975. 
ExperTelligence Corporation: An ExperLisp Reference Guide, Santa Barbara, Calif. , 1985. 
Folley, L. J. , and R. C. Williges: "User Models of Text Editing Command Languages, " Proceedings, 

Human Factors in Computer Systems, March 1982, pp. 326-331. 
Folley, L. J., and R. C. Williges: "Validation of User Models for Interactive Editing," Proceedings of 

the Human Factors Society 26th Annual Meeting, 1982, pp. 616-620. 
Gebhardt, F., and I. Stellmacher: "Design Criteria for Documentation Retrieval Languages," 

Journal of the American Society for Information Science, 29, 1978, pp. 191-199. 
Gentner, D., and A. L. Stevens (eds. ): Mental Models, Erlbaum, Hillsdale, N.J., 1983. 
Gilb, T. , and G. M. Weinberg: Humanized Input: Techniques for Reliable Keyed Input, Winthrop, 

Cambridge, Mass. , 1977. 
Gillund, G. , and R. Shiffrin: "A Retrieval Model for Both Recognition and Recall," Psychological 

Review, 91 , 1984, pp. 1-67. 
Goodwin, N. C.: "Cursor Positioning on an Electronic Display Using Lightpen, Lightgun, or 

Keyboard for Three Basic Tasks," Human Factors, 17(3), 1975, pp. 289-295. 
Grudin , U., and P. Barnard: "The Cognitive Demands of Leaming and Representing Command 

Names for Text Editing," Human Factors, 26(4), 1984, pp. 407-422. 
Halasz, F. G. , and T. P. Moran: "Analogy Considered Harmful ," Proceedings, Human Factors in 

Computer Systems, March 1982, pp. 383- 386. . 
Halasz, F. G. , and T. P. Moran: "Mental Models and Problem Solving in Using a Calculator," 

Proceedings, Human Factors in Computing Systems, 1983, pp. 212- 216. 



218 Programming the Macintosh User Interface 

Harris, D. H.: Fundamentals of Human Factors for Engineering and Design, Anacapa Sciences, 
Inc., Santa Barbara, Calif., 1983. 

Hayden Software: Davinci: Commercial Interiors, Hayden Software, Lowell, Mass. , 1984. 
Hayden Software: Davinci: Landscapes, Hayden Software, Lowell, Mass. , 1984. 
Heid, ]. : "Mac, Meet Microsoft ," Microcomputing, April 1984, pp. 38-42. 
Heid,]. : "Open Window," Macworld, May 1985, pp. 135-142. 
Hemenway, K.: "Psychological Issues in the Use of Icons in Command Menus," Proceedings, 

Human Factors in Computer Systems, March 1982, pp. 20-23. 
Hendler,]. A. , and P. Roller: "The Effects of Limited Grammar on Interactive Natural Language ," 

Proceedings, Human Factors in Computing Systems, 1983, pp. 190-192. 
Hiltz, S. R., and M. Turoff: "Human Diversity and the Choice of Inte1face: A Design Challenge," 

Proceedings, Human Interaction and the User Interface, 1981 , pp. 125-130. 
Jayaraman, M. J., M. J. Lee, and M. Konopasek: "Human-Computer Interface Considerations in 

the Design of Personal Computer Software," Proceedings, Human Factors in Computer Systems, 
March 1982, pp. 58-62. 

Johnson, S. C. , and B. W. Kernighan: "The C Language and Models for Systems Programming," 
BYTE, August 1983, pp. 48-60. 

Kahneman, T. , and A. Treisman: "Changing views of attention and automalicity ," in R. 
Parasuraman , R. Davies, and J. Beatty (eds.): Varieties of Attention, Academic Press, 
New York, 1983. 

Keister, R. S. , and G. R. Gallaway: "Making Software User-Friendly: An Assessment of Data Entry 
Pe1formance," Proceedings of the Human Factors Society 27th Annual Meeting, 1983, pp. 1031-
1034. 

Kemeny, J. G. , and T. E. Kurtz: True BASIC Reference Manual, Addison-Wesley, Reading, Mass. , 
1985. 

Kernighan, B. W., and D. W. Ritchie: The C Programming Language, Prentice-Hall , Englewood 
Chffs, N.J, 1973. 

Kraut, R. E. , S. ]. , Hanson , and]. M. Farber: "Command Use and Interface Design," Proceedings, 
Human Factors in Computing Systems, 1983, pp. 120-124. 

Lach man, R. , J. L. Lach man, and E. C. Butterfield: Cognitive Psychology and Information Process­
ing, Erlbaum, Hillsdale, N.J., 1979. 

Landauer, T. K. , K. M. Galotti, and S. Hartwell : "Natural Command Names and Initial Leaming: 
A Study of Text-Editing Terms," Communications of the ACM, 26(7), July 1983. pp. 495-503. 

Lemmons, P. : "An Interview: the Macintosh Design Team ," BYTE, February 1984, pp. 58-80. 
McDonald, J . E. , ]. D. Stone, L. S. Liebelt, and J. Karat: "Evaluating a Method for Structuring the 

User-System Interface," Proceedings of the Human Factors SoC'iety 26th Annual Meeting, 1982, 
pp. 551-555. 

Maeda, K., Y. Miyake, J. Nievergelt, and Y. Saito: "A Comparative Study of Man-Machine Inter-
faces in Interactive Systems," Sigchi Bulletin, 16(2), October 1984, pp. 44-61. 

Manx Corporation: Aztec C for the Macintosh, Shewsbury, N.J , 1984. 
Martin , ].: Design of Man-Computer Dialogues, Prentice-Hall, Englewood Cliffs , N.J , 1973. 
Mayer, R. E.: "The Psychology of How Novices Learn Computer Programming," Communications 

of the ACM, 13(1), 1981 , pp. 121-141. 
Mayer, R. E., and P. Bayman: "Psychology of Calculator Languages: A Framework for Describing 

Differences in User Knowledge ," Communications of the ACM, 24(8), 1981 , pp. 511-520. 
Microsoft Corporation: Microsoft Multiplan, MS DOS version 1.2. Bellvue, Wash. 1982. 
Microsoft Corporation: Microsoft BASIC Interpreter, version 2.00, Bellvue, Wash., 1984. 
Microsoft Corporation: Microsoft Multiplan, Macintosh version , Bellvue, Wash. , 1984. 
Microsoft Corporation: Microsoft Word, Macintosh version, Bellvue, Wash. , 1984 . 
Miller, G. A.: "The Magic Number Seven, Plus or Minus Two: Some Limits on Our Capacity to 

Process Information ," Psychological Review, 63, 1956, pp. 81-97. 
Moran, T. P.: "The Command Language Grammar: A Representation for the User Interface of 

Interactive Computer Systems," International Journal of Man-Machine Systems, 15, 1981 , pp. 
3- 50. 

Moran, T. P.: "Getting into a System: External-Internal Task Mapping Analysis ," Proceedings, 
Human Factors in Computing Systems, 1983, pp. 45-49. 

Moran, T. P., and S. K. Card: "Applying Cognitive Psychology to Computer Systems," Proceedings, 
Human Factors in Computer Systems, March 1982, pp. 295-298. 

Navon, 0-. , and D. Gopher: "On the Economy of the Human Information Processing System," 
Psychological Review, 86, 1979, pp. 214-257. 

Neal, A. S., and M. J. Darnell: "Text-Editing Performance with Partial-Line, Partial-Page, and 
Full-Page Displays," Human Factors, 26(4), 1984 , pp. 431-441. 



Bibliography 219 

Neal, A. S., and W. H. Emmons: "Error Correction During Text Entry with Word-Processing 
Systems," Human Factors, 26(4), 1984, pp. 443-447. 

Nilsson, N. ].: Principles of Artificial Intelligence, Tioga Publishing Company, Palo Alto, Calif., 
1980. 

Norman , D. A.: "Categorization of Action Slips," Psychological Review, 88, 1981 , pp. 1-15. 
Norman, D. A.: "The Trouble with UNIX," Datamation, November 198 1, pp. 139- 150. 
Norman, D. A.: "Design P1inciples for Human-Computer Interfaces," Proceedings, Human Fac-

tors in Comp uting Systems, 1983 , pp. 1-10. 
Norman , D. A.: "Design Rules Based on Analyses of Human Error," Comm unications of the ACM, 

26(4), 1984 , pp. 254-258. 
Norman, D. A., and D. Bobrow: "On Data-Limited and Resource-Limited Processes," Cognitive 

Psychology, 7, 1975, pp. 44- 64. 
Odesta Corporation: Odesta Helix, Northbrook, Ill ., 1984. 
Ogden, W. C., and J.M. Boyle: "Evaluating Human-Computer Dialog Styles: Command vs. Form/ 

Fill-in for Report Modification," Proceedings of the Human Factors Society 26th Annual Meeting, 
1982, pp. 542-545. 

Palantir, Inc.: MacType Owner's Guide, Houston, Tex., 1984. 
Poller, M. F., and S. K. Garter: "The Effects of Modes on Text Editing by Experienced Editor 

Users ," Human Factors, 26(4), 1984, pp. 449-462. 
Ramsey, H. R., and M. E. Atwood: Hllm.an Factors in Compllter Systems: A Review of the Litera­

ture, technical report SAl-79-111-DEN, Science Applications, Inc., Englewood, Colo., Septem­
ber 1979. 

Redhed, D. D.: "The Lisa 2: Apple's Ablest Computer," BYTE, December 1984 , pp. Al06-All4. 
Roberts, T. L., and T. P. Moran: "Evaluation of Text Editors ," Proceedings, Human Factors in 

Computer Systems, March 1982, pp. 136-141. 
Robson, D.: Object-Oriented Software Systems," BYTE, August 198 1, pp. 74-86. 
Rogers, S. P., and C. J. Jarosz: Evaluation of Map Symbols for a Compllter-Generated Topographic 

Display: Transfer of Training, Symbol Con fusion, and Association Va lue St udies, Anacapa Sci­
ences, Inc., Santa Barbara, Calif., December 1982. 

Rogers, S. P., and M. C. McCallum: Application of Coding Methods in Development of Symbology 
for a Computer-Generated Topographic Display for Army Aviators, Anacapa Sciences, Inc., 
Santa Barbara, Calif., March 1982. . 

Rosenberg,].: "Evaluating the Suggestiveness of Command Names," Proceedings, Human Fac­
tors in Computer Systems, March 1982, pp. 12-16. 

Rosenthal, M. L. (ed. ): The William Carlos Williams Reader, New Directions, New York, 1965. 
Rosson, M. B.: "Effects ofExpetience on Learning, Using, and Evaluating a Text Editor," Human 

Factors, 26(4), 1984 , pp. 463-475. 
Scapin, D. L.: "Computer Commands Labelled by Users Versus Imposed Commands and the 

Effect of Structuring Rules on Recall," Proceedings, Hllman Factors in Compllter Systems, 
March 1982, pp. 17-19. 

Schneiderman, B.: Software Psychology, Winthrop, Cambridge, Mass., 1980. 
Shackel, B.: "Dialogues and Language- Can Computer Ergonomics Help?" Ergonomics, 23(9), 

1980, pp. 857-880. 
Simcox, W. A.: "A Method for Pragmatic Communication in Graphic Displays ," Human Factors, 

26(4), 1984 , pp. 483-487. 
Simpson, H.: Design of User-Friendly Programs for Small Computers, McGraw-Hill, New York, 

1985. 
Simpson , H.: Programming the IBM PC User Interface, McGraw-Hill , New York, 1985. 
Simpson , H. : True BASIC: A Complete Manual, TAB Books, Blue Ridge Summit, Pa., 1985. 
Smith , D. C., C. Irby, R. Kimball , and B. Verplank: "Designing the Star User Interface," BYTE, 

April 1982, pp. 242-282. 
Smith, S. L., and J. N. Mosier: Design Guidelines for User-System Inte1face Softw are, ESD-TR-84-

190, MTR 9420, The Mitre Corp., Bedford , Mass ., September 1984. 
Sprague, R.: "The MacFORTH Dimension ," Macworld, November 1984 , pp. 68-74. 
Stewart, T.: "Communicating with Dialogues," Ergonomics, 23(9), 1980, pp. 909-9 19. 
Teitlebaum, R. C., and R. E. Granda: "The Effects of Positional Constancy ·on Searching Menus 

for Information," Proceedings, Human Factors in Computing Systems, 1983, pp. 150-153. 
Tennant, H. R., K. M. Ross , and C. W. Thompson: "Usable Natural Language Interfaces Through 

Menu-Based Natural Language Understanding," Proceedings, Human Factors in Computing 
Systems, 1983, pp. 154-160. 

Tyler, S. W., S. Roth , and T. Post: "The Acquisition of Text-Editing Skills," Proceedings, Human 
Factors in Computer Systems, 1982, pp. 435-325. 



220 Programming the Macintosh User Interface 

Volk, W.: "A tale of 2 FORTHs," Aegis Mac Notes, February 1985, pp. 5-7. 
Vose, G. M.: "Macintosh Pascal," BYTE, June 1984, pp. 136-138. 
Williams, G.: "The Apple Macintosh Computer," BYTE, February 1984, pp. 30-54 . 
Williams, G.: "The First Look at FORTH on the Mac," BYTE, December 1984, pp. Al 15-Al 19. 
Williams, G.: "Microsoft Macintosh BASIC Version 2.0," BYTE, January 1985, pp. 155-162. 
Williges, B. H., and R. C. Williges: User Considerations in Computer-Based Information Systems, 

technical report CSIE-81 -2, Virginia Polytechnic Institute and State University, Blackburg, Va., 
September 1981. 

Williges, B. H., and R. C. Williges: "Dialogue Design Considerations for Interactive Computer 
Systems," Human Factors Review, 1984, pp. 167-208. 

Williges, R. C., and B. H. Williges: "Modeling the Human Operator in Computer-Based Data 
Entry," Human Factors, 24(3), 1982, pp. 285-299. 

Wirth, N.: "History and Goals of Modula-2," BYTE, August 1984, pp. 145-152. 
Yetsingmeier, J.: "Human Factors Considerations in Development of Interactive Software," 

Sigchi Bulletin, 16(1), July 1984, pp. 24-27. 



Alert boxes: 
design of, 117-118 
use of, 20 

Arrays: 
display of, 90-91 
working with, 105-107 

Assembly-language programming: 
and other languages, 2, 7, 136, 137 
with 68000 development system, 139, 

206-214 
Aztec C version of C programming 

language, 136, 192-194, 198 

BASIC programming language: 
with Macintosh BASIC (see Macintosh 

BASIC) 
with Microsoft BASIC (see Microsoft 

BASIC) 
and other languages, 2, 7, 136, 137 
in overview, 137-138, 149 
with True BASIC (see True BASIC) 

Benchmarks, programming language, 
140-141 

Boxes, check (see Symbolic control 
devices) 

Buttons (see Symbolic control devices) 

C programming language: 
general characteristics of, 192-194 
input-output and Toolbox access with, 

198 
and other languages, 2, 7, 136, 137 
in overview, 138-139, 192 
program-development environments 

for, 194-198 
Calculator, Macintosh, 25 
Certified developer, Apple, 10 

INDEX 

Check boxes (see Symbolic control 
devices) 

Clicking with mouse, 99 
COBOL programming language, 2, 136, 

137 
Command key combinations, reserved, 

109 
(See also Menus) 

Command syntax, menu, 109-110 
(See also Menus) 

Consistency in design, 84 
Control Manager (see Toolbox, Macintosh) 
Conventions, design, 87-88 

human-factors guidelines as, 126-
129 

(See also Human-factors guidelines) 
for Macintosh: for information display, 

89-96 
for program control, 107-118 
for user input, 97-107 

Data-entry form, 23-24, 91 
Database programs, 66-67 

Helix (Odesta), 66-74 
Da Vinci graphics tools, 45-49 
Design: 

consistency in, 84 
methods of, 3-5 
simplicity in, 83-84 

Design conventions (see Conventions, 
design) 

Desk Manager (see Toolbox, Macintosh) 
Desktop metaphor, 38-39 
Dialog boxes: 

design of, 116-117 
use of, 20 

Dialog Manager (see Toolbox, Macintosh) 

221 



222 Index 

Dialogs, human-computer: 
computer-initiated versus operator­

initiated types of, 13-16 
control versus data-entry types of, 

15 
definition of, 12-13 
design tradeoffs for selecting type of, 

14-15 
walk through a typical, 21-26 

Dials (see Symbolic control devices) 
Directories (see Lists and directories) 
Disk drives, Macintosh, 7-8 
Documentation: 

for Macintosh program development, 
recommended, 8-9 

for user, 5-6, 87 
Dragging with mouse, 100 
Dvorak keyboard, 77, 78 

Editing, text, 101-107 
Editors, line, 18, 137 
Environment, program-development: 

for ExperLisp, 204 
as a language-selection factor, 139 
for MacFORTH, 199-202 
for Macintosh BASIC, 153-156 
for Macintosh Pascal, 180-185 
for Microsoft BASIC, 161-163 
for 68000 development system, 208-

214 
for True BASIC, 173-176 
for UCSD Pascal, 187-190 
for versions of C programming 

language, 194-198 
Errors: 

operator-caused, toleration of, 87 
in program, 86 

Event-driven programs (see Modeless 
interaction) 

Event Manager (see Toolbox, Macintosh) 
ExperLisp Version of Lisp programming 

language, 139, 202-205 

FatBits, 45, 47 
Font Manager (see Toolbox, Macintosh) 
Form, data-entry, 23-24, 91 
FORTH programming language: 

MacFORTH version of, 138-139, 198-
202 

and other languages, 2, 136, 137 
Fortran programming language, 2, 136, 

137 

Graphics, use of, 85 
Graphics windows, 89-90 

(See also Icons; Palettes) 
Guided tours to Macintosh programs, 7 4 
Guidelines, human-factors (see Human­

factors guidelines) 

Helix database program, 66-74 
Hippo-C version of C programming 

language, 136, 192-198 
Human-computer dialogs (see Dialogs, 

human-computer) 
Human-computer interface (see User 

interface) 
Human-factors guidelines: 

as conventions, 126-129 
for design, importance of, 87-88 
for icon design, 123 
for language, use of, 119-123 
for numeric information presentation, 

124-126 
for user input, 129-134 

Human language, use of, 119-123 
Human memory (see Memory, human) 
Human pattern recognition, 35-36 

Icons: 
design of, 123 
and pattern recognition, 36 
use of, in programs, 92 

Input, user (see Conventions, design) 
Inside Macintosh manual, 9, 206 
Instructional programs, 7 4-80 

Justification of text, recommendations 
for, 120, 121 

Keyboard, computer: 
versus mouse, 98 
with QWERTY versus Dvorak layout, 

77, 78 
use of, 1, 98, 102-105 

Language, human, use of, 119-123 
Languages, programming: 

benchmarks for, 140-141 
overview of, 2, 135-137 
selection of, for programming, 139-140 
(See also specific programming 

language name, e.g.: Microsoft 
BASIC) 



Learning curve, user (see Power law of 
practice) 

Line editors, 18, 137 
Lisa computer, 7, 29, 137 
Lisp programming language: 

ExperLisp version of, 139, 202-205 
and other languages, 2, 136, 137 

Lists and directories, presentation of, 120, 
122-123 

Logo programming language, 136 

MacAdvantage: UCSD Pascal (see UCSD 
Pascal) 

MacBeams program, 21-26, 36 
Mac C version of C programming 

language, 136, 193, 198 
MacCoach program, 74-77 
MacFORTH version of FORTH 

programming language, 138-139, 
198-202 

Macintosh BASIC: 
general characteristics of, 150 
input-output features and Toolbox 

access with, 156-158 
language features of, 150-153 
program-development environment of, 

153-156 
Macintosh Pascal: 

general characteristics of, 7, 137, 179, 
180 

input-output features and Toolbox 
access with, 185-186 

program-development environment of, 
180-185 

Macintosh 68000 development system, 
206-215 

assembly-language programming with, 
139 

MacPaint program: 
description of, 41-45 
as a model Macintosh application, 40 
and modeless interaction, 19, 45 

MacType program, 74, 77-80 
MacWorks programming environment, 7 
Man-machine interface (see User 

interface) 
Map, mental (see Model, cognitive) 
MC 68000 microprocessor, 1, 206 
Memory, human: 

demands on, minimizing, 84-85 
encoding specificity of information in, 

33-34 
long-term, 33-34, 39 

Index 223 

Memory, human (Cont.): 

recall versus recognition of information 
in, 34 

short-term, 31-33, 39 
Menu Manager (see Toolbox; Macintosh) 
Menus: 

in non-Macintosh programs, 13, 23 
pull-down: design of, 108-110 

standard versions of, 110-114 
use of, 1, 20, 108 

Metaphor: 
disktop, 38-39 
use of, in program, 86 
(See also MacBeams program) 

Microsoft BASIC: 
general characteristics of, 158-159 
input-output features and Toolbox 

access with, 163-168 
language features of, 159-161 
program-development environment of, 

161-163 
Microsoft Word (word-processing 

program), 57-65 
Mind-set, Macintosh, 2-4 
Modal dialog boxes (see Dialog boxes) 
Model, cognitive, 37-38 
Modeless dialog boxes (see Dialog boxes) 
Modeless interaction, 15, 17-20, 85 
Modula 2 programming language, 136, 

137 
Mouse: 

actions with, 99-101 
versus keyboard, philosophy of use, 

98 
and other pointing devices, comparison, 

39 
and pointer, 98 

Multiplan program, 49-57 

Negative transfer of training, 37 
(See also Operators, computer) 

Numeric information, presentation of, 
124-126 

Odesta Helix database program, 66-74 
Operators, computer: 

characteristics of, 36-39 
documentation for, 5-6, 87 
information processing and memory of, 

31-35 
limitations of, 34 
types of, 29-31, 82-83 



224 Index 

Package Manager (see Toolbox, 
Macintosh) 

Palettes, 92 
(S ee also Icons) 

Pascal programming language: 
for Lisa computer, 7, 137 
and other languages, 2, 7, 136, 137 
versions available, overview of, 138, 179 
(S ee also Macintosh Pascal; UCSD 

Pascal) 
Pattern recognition, human, 35-36 
Pointer (see Mouse) 
Power law of practice, 36-37 
Pressing with mouse, 99 
Program development: 

hardware for, 7 
on Lisa versus Macintosh, 7 
strategies for , 4-5 
tools for, 6-10 
(See also Environment, program­

development) 
Programming languages (see Languages, 

programming) 
Programs, Macintosh: 

good, characteristics of, 26-27, 80-81 
organization of, 141-144 
unfriendly, characteristics of, 28 
(S ee also specific program name, e.g .: 

Multiplan program) 

QuickDraw (see Toolbox, Macintosh) 
QWERTY keyboard, 77, 78 

Radio buttons (see Symbolic control 
devices) 

Resource Manager (see Toolbox, 
Macintosh) 

Scrap Manager (see Toolbox, Macintosh) 
Simplicity in design, 83-84 
Spreadsheet (see Multiplan program) 
Symbolic control devices, 114-116 

Template matching (see Pattern 
recognition, human) 

TextEdit (see Toolbox, Macintosh) 
Toolbox, Macintosh: 

access to: with C programming 
language, 198 

with ExperLisp programming 
language, 204-205 

as a language-selection factor, 2, 
139-140 

Toolbox, Macintosh, access to (Cont.) : 
with MacFORTH programming 

language, 202 
with Macintosh BASIC, 156-158 
with Macintosh Pascal , 185-186 
with Microsoft BASIC, 163-168 
with 68000 development system, 215 
with True BASIC, 176-178 
with UCSD Pascal, 190-191 

components of, 144-148 
use of, in constructing applications, 

20 
Transfer of training, 37 

(See also Operators, computer) 
True BASIC: 

general characteristics of, 169 
input-output features and Toolbox 

access with, 176-178 
language features of, 169-173 
program-development environment of, 

173-176 

UCSD Pascal: 
general characteristics of, 7, 137, 179, 

187 
input-output features and Toolbox 

access with, 190-191 
program-development environment of, 

187-190 
UNIX line editor, 18, 137 
User input (see Conventions, design) 
User interface: 

definition of, 11-12 
design principles for, 82- 88 
Macintosh: design conventions for , 89-

118 
elements of, 20-21 
rationale underlying, 29-39 

Users, computer (see Operators, 
computer) 

Window Manager (see Toolbox, 
Macintosh) 

Windows, Macintosh: 
design of, conventions for , 89-97 
in displaying information, use of, 20 
and human short-term memory, 31 
role of, in supporting operator, 39 

Word, Microsoft (word-processing 
program), 57-65 

Xerox Star computer, 29 



ABOUT THE AUTHOR 

Henry Simpson is an independent consultant and writer. 
Most recently, he was senior scientist at Anacapa Sciences, 
Inc., a human-factors research firm in Santa Barbara, Cali­
fornia. Previously, he was west coast editor of Digital De­
sign magazine. For several years before that, he was re­
search engineer and project director at Human Factors 
Research, Inc. He has conducted research, served as con­
sultant to industry, and developed management informa­
tion systems and other programs for microcomputers. He is 
the author of several books, including Design of User­
Friendly Programs for Small Computers (McGraw-Hill) and 
Programming the IBM PC User Interface (McGraw-Hill). 
His articles have appeared in such magazines as BYTE, 
Microcomputing, and Digital Design. 



ISBN 0-07-057320-4 




