
Henry Ledgard & •
Andrew Singer ·

G 4R ~ fiS}lG(_
<..; c.sc..
eo1- L EGcc 8'

3383371

Pascal
for
the

Macintosh

Pascal
for the

Henry Ledgard
Andrew Singer

with the assistance of Peg Robbins

•
Addison-Wesley Publishing Company

Reading, Massachusetts • Menlo Park, California • Don Mills, Ontario • Wokingham, England
Amsterdam • Sydney • Singapore • Tokyo • Mexico City • Bogota • Santiago • San Juan

Library of Congress Cataloguing In Publication Data

Ledgard, Henry F., 1943-
Pascal for the Macintosh.

Includes index.
1. Macintosh (Computer)-Programming. 2. PASCAL

(Computer program language) I. Singer, Andrew, 1943-
11. Robbins, Peg. Ill. Title.
QA76.8.M3L44 1986 001.64'2 84-24503
ISBN 0-201-11772-X

Macintosh ls a trademark licensed to Apple Computer, Inc.

Copyright© 1986 by Addison-Wesley Publishing Company, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America. Published simultaneously in
Canada.

ABCDEFGH IJ-HA-898765

List of Illustrative Programs xi

Preface xv

To the Reader xix

Prelude to Programming

The Analytical Engine 1

1.1 • Starting Up and Using the Mouse 6
1.2 • Menus, Windows, and Icons 7
1.3 • Entering, Editing, and Running a Program 9
1.4 • Practice-Operating the Macintosh 12
1.5 • Programming Exercises 17

2.1 • The Concept of an Algorithm 22
2.2 • General Program Structure 23
2.3 • The Units of a Pascal Program 26
2.4 • Syntax Issues 30
2.5 • Practice-Syntax 31
2.6 • Programming Exercises 37 v

vi Contents

3.1 • Screen Layout 41
3.2 • Calling QuickDraw Procedures 46
3.3 • Writing Elementary Procedures 51
3.4 • Example Program 53
3.5 • Practice-QuickDraw 59
3.6 • Programming Exercises 66

Prelude to Variables

The Adventure of the Bathing Machine 69

Four
4.1 • Variables and Assignment 77
4.2 • Declaring Variables 79
4.3 • Declaring Constants 80
4.4 • Expressions 81
4.5 • Reading and Writing Information 86
4.6 • Practice-Calculations 88
4.7 • Programming Exercises 94

Prelude to Choices

A Study of Cigar Ash 99

5.1 • Compund Statements 105
5.2 • If Statements 106

5.3 • Conditions 109
5.4 • Case Statements 112
5.5 • Practice-Conditional Statements 114
5.6 • Programming Exercises 119

Prelude to Repetition

The Adventure of Clergyman Peter 123

6.1 • While and Repeat Loops 133
6.2 • For Loops 136
6.3 • Practice-Looping 137
6.4 • Programming Exercises 148

Contents vii

Seven .;io/m1W11i_!; ~-' ~-~----
7.1 • Problem Solving 153
7.2 • Programs as Human Communication 156
7.3 • Practice-Program Clarity 160

8.1 • Breakpoints 166
8.2 • Step and Reset 171
8.3 • Practice-Getting Programs to Work 172

Prelude to Types

An Advertisement in the Times 175

viii Contents

Nine~~
9.1 • Enumerated Types 185
9.2 • Boolean Types 189
9.3 • Character Types 190
9.4 • Subranges of Types 191
9.5 • String Types 193
9.6 • Practice-Learning Simple Types 198
9.7 • Programming Exercises 202

Prelude to Arrays

The Ciphered Message 205

10.1 • Array Types 215
10.2 • Strings as Arrays 220
10.3 • Practice-Arrays 222
10.4 • Programming Exercises 225

Prelude to Subprograms

A Study in Chemistry 229

Eleven r:;11clf~~ 4JKI~~
11.1 • Packaging and Subprograms 241
11.2 • Parameters 243
11.3 • Functions versus Procedures 246
11.4 • Global Information 248
11.5 • Side Effects 250

11.6 • Recursion 253
11.7 • Practice-Using Subprograms 254
11.8 • Programming Exercises 258

Prelude to Files

The Coroner's Report 263

Contents ix

Twelve ¥-aM 17_~----
12.1 • Input 276
12.2 • Output 277
12.3 • File Types 280
12.4 • Practice-Files 286
12.5 • Programming Exercises 288

Prelude to Records

The Adventure of the Gold Chip 293

13.1 • Record Types 301
13.2 • Pointers and Dynamic Structures 305
13.3 • Practice-Records and Pointers 309
13.4 • Programming Exercises 314

14.1 • Application: BarGraph Revisited 317
14.2 • Predefined QuickDraw Types 321
14.3 • Transfer Modes 326

x Contents

Prelude to Planning

Holmes Delivers a Lecture 331

Prelude to Expansion

The Final Programme 343

16.1 • The Example, Text Formatting 355
16.2 • Parting Comments 368

Appendix A

Summary of Menus 371

Appendix B

Syntax of Macintosh Pascal 377

Appendix C

Challenging Programming Exercises 383

Index 389

List of

2.2 • TemperatureSummary 24

Converts 3 temperatures from Fahrenheit to Celsius

2.3 • BigH 32

Prints a large letter

3.1 • TemperatureChart 42

Converts 3 temperatures from Fahrenheitto Celsius and charts the output
on the drawing screen

3.1 O • Squares 53

Draws 2 squares

3.11 • Squares 54

Draws 2 squares (different parameter names)

3.14 • BarGraph 57

Draws a bar graph

3.18 • Rings 61

Dynamic display of rings

4.2 • Tides 76

Computes the number of tide cycles In a given time period

4.3 • CountChange 89

Given the number of coins of each denomination, computes total
change XI

xii List of Illustrative Programs

5.2 • ldentifvCigar

Given the properties of cigar ash, identifies the brand of cigar

5.3 • GetMaximum 115

Use of conditionals

5.4 • TimeConversion 115

Converts nautical time to familiar form

5.5 • TimeConversion 115

Corrected anomoly for time conversion

6.2 • TrainTable 131

Computes the total time of a train journey with one stopover

6.3 • MultipleChoice 138

Interactive multiple choice test

6.4 • TimeCheck 141

Erroneous program to check time

6.5 • GCD 144

Computes greatest common divisor

6.6 • DontGoto 147

Use of confusing gotos

9.3 • ComputeDate 183

Given the number of the day in the year, computes the date

9.4 • Guestlist 195

For having a party

10.3 • Encipher 213

Enciphers a message using a cipher table

10.5 • CountChange 218

Updates CountChange using an array of coin values

10.6 • CountChange219

Updates CountChange using the type "Coin"

List of Illustrative Programs xiii

10.7 • Golf 223

Keeps golf scores

11.10 • Ribbits 255

A lesson to be learned

12.2 • CoronersReport 270

Formats a summary report

13.1 • Search 298

Compares data on a suspect to data in a file of known criminals

13.5 • Genealogy 312

Simple use of pointers

14.1 • CreateBreedFile 318

Creates an information file

14.2 • BarGraphRevised 319

Update of BarGraph using loops, records, and files

14.3 • Shapes 322

Draws shapes using a predefined type

14.4 • Colors 323

Demonstrates drawing with predefined colors

14.5 • TextFaces 325

Demonstrates text faces in QuickDraw

14.6 • TextModes 326

Demonstrates text modes in QuickDraw

14. 7 • Pen Modes 328

Demonstrates pen modes in QulckDraw

16.4 • Format 360

Formats lines of text into paragraphs, pages, centered lines and verbatim
lines

It is a pleasure to see this book
come to fruition. With the introduction of the Apple® Macintosh"'
computer in 1984, there was an attempt to bring some advanced
technology to the marketplace at a relatively low price. Among the
technological features of this device were a high-resolution screen, the
use of a mouse for cursor movement and for selecting actions, and the
use of visual images (icons) to help guide the user.

Uniqueness of Macintosh Pascal
With the release of Apple's Macintosh Pascal software, an interactive
environment for the programming language Pascal also became
available. Most earlier implementations of Pascal had used the compiler
technology to implement programs. With an interactive interpreter for
running Pascal programs, there came the ability to step through a
program as it was being run and to obtain almost instant information on
its status. In this way a Pascal program could take on a life of its own. The
programmer could in some sense "see" the program running. For us,
using and teaching these aspects has been a pleasure.

All of this technology though was not without another deliberate
design goal-ease of use. It has often been the case that programming
language implementations have been heaped in a technology of
complicated command languages and conventions that programmers
need to follow. With the Macintosh and its Pascal, this was clearly not the
case. Human engineering was paramount.

General Goals
The most visible goal of this book is to help teach the uninitiated to
program in Macintosh Pascal. In this matter this book follows traditional
lines. The book introduces the mechanics of using the Macintosh Pascal
system, introduces the reader to some simple programs, and then
presents a systematic development of the concepts in Pascal. These
concepts include syntax, assignment, control structures, data types,
procedures, and so on.

xvi Preface

In many ways this book follows the CS I course of the Association
for Computer Machinery's curriculum '78. The goals of CS 1 (see
Communications of the ACM, October 1984) are (1) to teach methods of
problem solving and the writing of algorithms, (2) to teach a particular
high-level programming language, (3) to teach programming techniques
and methods of style that promote quality. These are certainly the goals
in this book.

But this book was also written out of a bit of frustration. I have seen
too many books on programming that tend to drag the reader on with an
almost exclusive reliance on the syntax of the programming language.
Authors tend to think that once the syntax is understood, the rest will
follow in due course. This usually leads to an overemphasis on the
technical aspects of the programming language, a reliance on syntax
equations for teaching, a tendency toward sterile examples, and a
general lack of understanding of the deeper issues of programming.

This book is not at all traditional in these aspects. The examples,
ideas, and presentation issues in this book have evolved over several
years. They have been given a great deal of thought. The hope has been
to spark attention and enthusiasm and to motivate excellent work.

Motivation througln Problems
At the outset, the design of this book is based on problems, programming
problems. It is my belief that programming is understood best when the
solving of problems drives the learning process. It is the problems here
that introduce the need for a given Pascal construct. These problems
have been chosen to help the reader think about programming.
Technical details, such as the syntax and semantics of Pascal, are
introduced following the problem that motivates their need. After all,
ultimately a programming language is used to solve real problems.

Thoughtful Examples
Another philosophy is teaching through examples. An astute and
experienced programmer is often guided by many general concepts that
come into play at various stages of the programming process. But the
student of programming is in a different position. The student must,
somehow, discover these concepts. The dilemma is that teaching
programming through syntax masks the greater principles involved, but
teaching through general concepts often leaves the student at sea in an
attempt to understand what the concepts truly imply. So, the approach
here is to make frequent use of examples. The examples guide both the
teaching of syntax and concepts.

Practice Sessions
The student of programming must also face the task of his or her own
work. This can be a sizable jump, from talk to action. For this purpose,
there are special sections at the end of each chapter called "Practice."
These are not appendages, but part of the text. They attempt to go into
detail and challenge the reader to respond. All kinds of issues are
addressed in these drills: syntax, finding bugs, the effect of removing
parentheses, whether 5.0 can be changed to 5, using pointers, type
declarations, using conditions, and more. The goal is to explore the fine
print and involve the reader in an active way.

Following the practice sections, each chapter concludes with a
selection of programming exercises. These are to be done on the
computer. An attempt has been made to avoid toy exercises in favor of
more real life problems.

Book Structure
In the structure of this book each chapter or sequence of chapters
follows a somewhat general pattern:

1. Motivation

2. Example
3. Technical details
4. Practice

The motivation sections of this book are short Sherlock Holmes
dialogues taken from a previous work (Elementary Pasca~ by Henry
Ledgard and Andrew Singer, published jointly by Random House and SRA
(student edition), 1982). In each of these dialogues, Sherlock Holmes (the
teacher) and Watson (the student) attempt to solve some kind of
programming problem. In the course of the narrative, some basic
programming principles are presented in an easily readable form. An
example, a Macintosh Pascal program embodying the solution to the
problem, is presented after each narrative. Then come the techr..ical
details, a discussion of the syntax and meaning of features in Pascal. Here
the rules of Macintosh Pascal are given and concepts like type
declarations and punctuation rules are explored at great depth. These
technical matters comprise the bulk of this book. Following these
sections are the practice sections.

Reaching Toward Real Programming
The last chapter of this book concludes with a program of some
reasonable scale, a program to perform text formatting and layout.

Preface xvii

xviii Preface

Writing programs like this is not easy for the student, especially the first­
time student of programming. But this, in a nutshell, is the objective here:
to understand Pascal with sufficient depth to reach the level of
programming in the last chapter.

A Spirit of lightness
The Sherlock Holmes dialogues reproduced here from an earlier general
text on Pascal have been slightly edited for compatibility with Macintosh
Pascal. I think it is fair to say that they give a lightness and spirit to an area,
computer programming, that is often rather dryly presented. But the
dialogues have an even deeper purpose: to make the reader think about
programming. As in any discipline, some ideas in programming are more
important than others. It is these ideas that are presented in the
narratives. Thus separated from the technical details of our profession,
the fundamental ideas remain simple and readable.

Acknowledgments
This book owes much to the work of Andrew Singer. Several years ago
Andrew Singer set as a goal to design and implement a programming
system that would bring ease of use and human engineering to the center
of design. In the development of Apple's Macintosh Pascal, Andrew
Singer was one of the principal architects. It was also Andrew Singer's
goal to see that a book be designed around such a product. This book
would, he hoped, both set a high standard for programming and be a
pleasure to read and use.

Jon Hueras, a special person, provided some key assistance behind
the scenes. He is a splendid colleague. A number of people helped
contribute to the writing of the predecessor to this book, Elementary
Pascal. These include Edwina Carter, Steve Chernicoff, Louis Chmura,
Karen Herman, Ed Judge, E. Patrick McQuaid, Robbie Moll, Rich Scire, and
Holly Whiteside. John Bennison kindly provided a thoughtful review
of the manuscript.

Portions of the text contain excerpts from Programming Proverbs,
by Henry Ledgard, Paul Nagin, and Jon Hueras, copyright 1979, reprinted
with permission of Hayden Book Company. The photograph of the
Analytical Engine is courtesy of the Crown Copyright, Science Museum,
London.

Amherst, Massachusetts
December 1984

This book is about program­
ming. It is meant to teach a person with little computer experience how to
write computer programs. The programming language is Macintosh
Pascal.

Users of a professionally designed software system like the
Macintosh Pascal system expect it to be free of strange quirks. We expect
it to be error free, easy to use, and consistent. We expect the computer to
respond rapidly. In order to achieve such professional results, many
persons are involved They have to work together, to read each other's
programs, to learn what makes one solution to a problem better than
another, to think about new releases of software and new features that
might be needed. All of this implies that programming is not only a
technical activity, but a human activity.

Let us now take a look at the "amateur" programmer, one who
probably enjoys programming and most likely works alone. The
programs do not have to be sold by Apple; most likely the author is the
only one to use them. They don't even have to work properly all the time,
for the amateur can grow to understand and tolerate any shortcomings
that a program might have. An amateur's programs are relatively small
(although occasionally some large ones are written). They usually don't
have to fit with other software that someone else may have written. They
just have to work, so to speak, most of the time and do something that is
fairly useful. It is not the concern of the amateur to write something like
the software required for a commercial word processor or a drawing
package for children. The world of the amateur is thus quite self­
contained

If something goes wrong, the amateur can probably fix the program
easily. Since only one person has written it and probably understands it
quite completely, making corrections is a relatively simple chore. As for
its behavior when it is run, it doesn't really matter whether the input
conventions are convenient or whether the display is pleasant to read.
Since no one but the program's designer depends on the program, it
probably doesn't even need any documentation to reveal how it works. In
short, it's a solo flight.

But now let us look again at the professional. The task of a
professional programmer is very different from the amateur's task. The

xix

xx To The Reader

biggest difference is that the program may be used by thousands upon
thousands of people. This poses some very stringent requirements. First
of all the program had better do something useful or no one will use it or
buy it. It is not enough to do the job halfway: a complete task has to be
accomplished. The program should work just the way a user would
expect it to under all sorts of circumstances. You can bet that all sorts of
unusual inputs will eventually be tried. This means the demands on
program correctness can be enormous.

Importantly, a professional programmer must work with many
other people during the creation of a program. It is not enough for the
program to be a private matter between the programmer and the
computer. Other people have to deal with this program in intimate ways.
Someone else may need to document how the program works. Another
person may be called upon to make a change to the program. The
program may be large enough so that a whole team of programmers is
required to create it and these people must collaborate in intricate ways.
The professional certainly does not stand alone.

On top of this, the professional's program may be used for many
years, often long after its author has any interest in the program and,
usually, after the program's author has moved on to other things. It is
quite normal for other people, other programmers that is, to take over
the work. Imagine looking at hundreds of pages of a program written by
someone else. How would you deal with such a program? What if it is
poorly written? What if your taking over is vital to the completion of a
project? In the real world, this happens! Even something simple, like how
the program is laid out on pages of paper, may be critical to someone
else. The professional programmer annotates a program with comments
describing how it works. To be really useful the comments must be
accurate, brief, and informative. This itself is no easy task. And down to
the nitty gritty, a programmer has to use names for things in a program. It
is not enough to think of names haphazardly, for the meaning needs to
stand out to the human reader.

Even something as fundamental as understanding the problem itself
is an issue for the professional. It is not enough to conceive what the
problem is in broad terms, the professional must spell it out. Ideally a
complete written description of what the program is to do should be
stated beforehand. This should even include the form in which data is
entered by the user, and the exact layout on the screen of any results.
The professional can spend an enormous amount of time just trying to
understand this one aspect of software.

You see, professional programming is not a simple activity. It is
systematic; it is disciplined; it has a large human element. It can be tiring
at times to work this way and to take into account the myriad aspects that

must be brought into play, but the goal is always the same: a program that
is a pleasure to read, update, run, and most important, to use.

In the chapters that follow you will be introduced to the world of
Macintosh Pascal and programming in this language. The goal in writing
this book is to try to give you the very best ideas we can about this
subject.

To The Reader xxi

Programming

Nan incoherent and, as I deeply feel, an entirely inadequate
fashion, I have endeavoured to give some account of the
remarkable career of Mr. Sherlock Holmes as a criminal
investigator and consulting detective. As the reader is

undoubtedly well aware, my companion's interests were as broad as
Nature herself and he often spoke on an amazing variety of subjects as
though he had made a special study of each. In my modest chronicles of
the cases that I have had the privilege to share with Sherlock Holmes, I
have often alluded to his numerous publications, but I have said nothing
before of his unparallelled contributions to the development of the
Analytical Engine.

My first introduction to the Analytical Engine was in the late spring,
shortly after the conclusion of one of the most ghastly adventures we had
ever shared, which I have chronicled under the heading of "The
Adventure of the Speckled Band." The entire day Holmes was in a mood
that some would call taciturn. He was most unsettled, smoked
incessantly, played snatches on his violin, sank into reveries, and hardly
answered the casual questions that I put to him. We sat through a silent
dinner together, after which, pushing his plate aside, he revealed to me
the problem with which he was preoccupied.

"You can never foretell what one mind will come up with, Watson,
but you can say with precision what an average person will do.
Individuals vary, but percentages remain constant; and while we have not
yet grasped the results that the human mind alone can attain, it has its
distinct limitations. There are only particular individuals on whom we can
rely to produce the same chain of logical argument from one occasion to
the next."

"I certainly wouldn't argue with you, Holmes," I replied. "But as yet
we haven't found a suitable replacement for human reasoning."

"Oh, on the contrary, Watson," he answered nonchalantly. "Have
you ever heard of the Analytical Engine?"

"I know of no substitute for the mind of man."
1

2 Prelude to Programming

"Have you ever heard of the Analytical Engine?"

Holmes chuckled. "Then you must learn of it. It is an ingenious
mechanism, a machine that has displayed a considerable talent for
deductive reasoning, far superior to the average logician. You recall my
intervention in the matter of that notebook floating in the River Cam last
month?"

"I am not likely soon to forget the sight of that bloated face staring
up at me, Holmes," I replied grimly, considering the sorry state of
mankind that such events should come to pass. "What connection has
the late professor with this Engine?"

"Well, as you may remember, my investigation led me to the
Cavendish laboratories; and it was there that I had occasion to study the
Engine, if only briefly. Since then I have been in correspondence with
mathematicians at Cambridge who have been conducting experiments
with it. Watson, I do not exaggerate when I say that the Analytical Engine
is capable of solving, within minutes, complex numerical problems that
would keep five of London's finest mathematicians working for hours.
Furthermore, it is adept at logic and has a perfect memory for detail.

"The Engine also has its limits," he continued. "It can only
undertake problems whose solutions are spelled out in minute detail and
that are presented in its own peculiar language."

"Really, Holmes, sometimes you go too far with my patience!" I
exclaimed. "You expect me to believe that this device is capable of
solving problems, has a perfect memory, and actually speaks a language
of its own?"

"No, no, my dear Watson, you take me too literally. The Analytical
Engine does indeed have a language of its own, but communications must
be written out."

"Now you tell me it can read?"
"Jn a sense, yes."
I threw up my arms in a desperate gesture and began to rise from

the table.
"I fear I am going too fast for you, Watson. Bear with me for a

moment and I shall do my utmost to explain all this to you. Everything I
say is true, but let me assure you that the Analytical Engine hardly
resembles a human being.

"Its 'language' is actually a highly logical code, designed by
mathematicians in order to operate the Engine. This code is not difficult
to master, but it does require considerable discipline. It has a very small
vocabulary, which is nothing to compare with the English tongue. This
vocabulary is arranged into statements according to a limited set of
rules.

"The major problem in communicating with the Engine is that one
must use the utmost care and precision in giving it instructions, for it has
no imagination whatsoever and cannot correct even trivial errors in
spelling or punctuation .. It is, after all, like other machines in that it has no
awareness of the tasks that it performs; therefore it will obey the most
unreasonable of instructions. For example, if it is told to print the number
zero ad infinitum, it will continue to do so for hours on end, until a human
being finally causes it to stop."

"But Holmes, how does one give instructions to this Engine?" I
asked, scarcely crediting my companion's remarks thus far and
wondering whether perhaps his penchant for cocaine had finally
betrayed his reason.

"By writing a set of instructions in code and supplying them
mechanically to the Engine. Such a set of instructions is called a
programme, because it is an orderly and precise procedure for solving a
problem. The art of writing programmes is called, reasonably enough,
programming."

"Of what relevance is this strange machine to you, Holmes?"
"I intend to employ the Engine whenever possible in my future

criminal cases," he replied. "As you know, I have been rather
overburdened with work in recent months, so the Engine's speed and

The Analytical Engine 3

4 Prelude to Programming

potential accuracy are most attractive to me. It has a great capacity for
dealing with large amounts of information as well."

"But, Holmes," I interrupted, "do you truly expect this device, if it is
as unimaginative as you say, actually to solve crimes?"

"Not at all, my dear Watson," said Holmes with a laugh. "I daresay it
is not clever enough to replace my brain; but it will be useful for storing
information, as well as for performing certain repetitive tasks that absorb
too much of my time. Of most interest to me is that it will provide a means
of expressing my logical methods in a rigorous form, and perhaps be
useful in communicating to others my modest attempts at formulating a
Science of Deduction."

Chapter 1

The Analytical Engine was
indeed the forerunner of today's computers. In the 1830s Charles
Babbage and his collaborator, Lady Augusta Ada Lovelace (Lord Byron's
daughter), between them worked out most of the fundamental principles
upon which modem computing is based.

Holmes's insight into the promises and pitfalls of the computer (in
the Prelude to this chapter) is striking. The ability to handle great
amounts of data, to remember even the tinest detail, to make extremely
accurate calculations, and to obey instructions over and over again are
all well recognized.

What are not so well recognized are the pitfalls: the often endless
details, the computer's intolerance of error, the annoying idiosyncracies,
and the need for unremitting rigor.

A first attempt at programming is likely to be a frustrating
experience. The demanding precision to which Holmes alludes is quite
unfamiliar to most people. You struggle to piece together a variety of
computer instructions, making changes almost randomly and hoping
somehow the program will work. You might put a line into your program
that says,

Print the answer

and expect the computer to print the correct result. This would be futile.
To get a computer to do your bidding, you must tell it precisely what you
want it to do in exactly the proper way.

When you do this, you have at your command a kind of modem
genie. For example, the manuscript for this book was typed on the Apple
Macintosh using Apple's MacWrite'". MacWrite makes it easy to modify
the text in small and large ways and then print out revised versions 5

6 1 The Machine and the Language

I. I • Starting Up
and Using the
Mouse

quickly for study and further improvement. When the revisions are
finished and the manuscript complete, the text can be transferred to
another computer which reproduces it in a form that makes it possible to
typeset the book automatically. Babbage would be especially satisfied if
he were alive today, for it was his desire to eliminate error from tide tables
that led him to develop the Difference Engine from which the Analytical
Engine evolved. In fact, this early computer was designed to set type to
enable the printing of the tables.

In the chapters that follow, you should find all that you need to know
in order to write first-rate computer programs yourself. The present
chapter introduces you to the Macintosh environment and Macintosh
Pascal. If you are already familiar with the mouse, pulldown menus, icons,
and overlapping windows, you may want to skip ahead.

The on/ off switch for the Macintosh is located on the back of the machine
on the left side as you face the screen. When you turn it on, the screen
displays an image, or icon, of a disk with a question mark flashing. Below
the screen under the left side of the front is a knob which controls the
brightness of the screen; you may want to adjust the brightness before
continuing. The Macintosh Pascal disk contains the system information
needed by the machine, as well as the Pascal interpreter. Insert the disk
label side up, metal end first. You can hear it snap into place.

When the machine has finished reading the system information it
needs, the screen displays an icon of a disk with the disk name
underneath it in the upper right corner of the screen, and the trash icon
underneath it in the upper right corner of the screen, and the trash icon
(a tiny garbage can) in the lower right corner. The command menus
appear across the top of the screen. There is also a pointer somewhere
on the screen. The location of the pointer is controlled by the mouse.

The mouse is the primary means of communicating with the
machine. There are four ways of signaling with it.

To locate the pointer, roll the mouse on any flat surface. The pointer follows
the movement of the mouse. If you are too close to the edge of a table, just
pick up the mouse and move it to a new starting point.

To click the mouse, press the button on top of the mouse and then release.
To click an icon or a window, locate the pointer on it and click the mouse.
Clicking an icon or a window causes it to become active. The active item is
highlighted to distinguish it. The commands that you choose from the menu
will act on whichever item is active.

To double-click, press and release the mouse button twice quickly.

The drag the mouse, move the pointer to the desired location, push the
button down, and hold it down while you move the pointer to the new
location, then release the button.

Menus, Windows, and Icons 7

An icon can be dragged to a new position by locating the pointer on
the icon and then dragging it to the new location. The icon will stick with
the pointer until you release the mouse button.

The pointer, or cursor, is not always an arrow. It is displayed as an
!beam when choosing edit locations, a plus sign when a program is
running, a wristwatch when the computer is busy and you must wait.
Regardless of the cursor's chape, its location is always controlled by the
mouse.

Each menus across the top of the screen offers several selections. To
read the selections on any one of them, locate the pointer on the menu
name, press the mouse button and hold it down. The selections displayed
in bold type are available. To choose one, drag the pointer down to your
choice and then release the mouse button. Notice that some of the
selections are followed by a symbol and a letter. These represent
keyboard commands that can be substituted for the menu and mouse.
The Macintosh screen is shown in Fig. 1.1 with the file menu
highlighted.

To open a disk or file , either choose Open from the File menu or
double-click the icon. In order for an item to be opened it must be the
active item; if the one you want to open is not the highlighted item it can
be activated by clicking it. Opening an item causes its contents to be

1.2 • Menus,
Windows, and
Icons

Figure 1.1 • File menu
on Macintosh screen

8 1 The Machine and the Language

displayed on the screen in a window. The display will be by Icon, by Name,
by Date, by Size, or by Kind depending on which view was last selected for
that file from the View menu. To close the window, either choose Close
from the File menu or click the white square on the left side of the
title bar.

It is not necessary to close one window before opening another;
more than one can be displayed at a time. You can tell which window is
the active one by looking at the title bar; it will be lined on the active file
and clear on the others. When the windows overlap, the active one will
always appear at the front. To activate a different window, click anywhere
within it.

You may need to rearrange the windows on the screen to suit your
needs. To move the whole window, drag it by its title bar. If you want to
make it larger or smaller, drag from the size box in the lower right corner.
The arrows on the bottom and right borders are for scrolling the screen.
Move the pointer to the arrow, then press and hold the mouse button to
get the view that you need. You can also change the view by clicking
anywhere on the bottom or right border or by dragging the white square
on either of these borders to a new position. The position of the square on
the border indicates the position of the view in relation to the total
document.

The icons displayed in the windows and on the screen tell you what
kind of information is contained. Files are represented by file folders,
documents by a sheet of paper, garbage by a trash barrel, and so on.
These sets of information can be relocated by dragging the icon from
place to place. Documents can be moved from folder to folder or disk to
folder; files can be moved to the trash barrel, all the documents
contained within go with it. They will remain in the trash barrel and can be
retrieved until you choose Empy Trash from the Special menu. Once you
have emptied the trash, they are gone for good. If you want to save a
particular document, drag it to the disk window or to another folder
before you move the file folder to the trash. When you have finished
moving icons around, choose Clean Up from the Special menu and the
macine will straighten out your icon display.

To move information to a different disk, make sure its icon is
displayed in a window, then activate the current disk icon and choose
Eject from the File menu. Insert the new disk and drag the icon you want
to save to the new disk icon. The machine will direct you from that point.
A copy is always left behind when a file or document is moved to a new
disk.

These filing activities are all part of the Finder, a control system
provided by the Macintosh which makes it easy for you to keep your work
in order. The information presented here will get you started; for more
detailed information on the Finder you should refer to the Macintosh
manual.

Entering, Editing, and Running a Program 9

Figure 1.2 presents a simple Pascal program. This program reads a
Fahrenheit temperature, computes its Celsius equivalent and prints the
result.

We will discuss the structure of a program in detail in the next
chapter. The purpose of the present chapter is to introduce the working
environment and the process of entering and running a Pascal program
on the Macintosh. You may choose to enter this program into your
computer to get a feel for the system. As you enter it, be aware that every
detail is important; correct punctuation and spelling are not just niceties
here, they are absolute necessities.

When you open a Macintosh Pascal file, you are presented with
three windows: Untitled, Text, and Drawing (see Fig. 1.3).

The Untitled window should show as the active one. When you type
in a program, that is where it appears. Drag the window out to the right to
give yourself a better view while you are typing. Type the program just as
it is printed in Fig. 1.3, but be prepared for some surprises. The entries are
automatically formatted as you go along. Certain words become boldface
lowercase print. These are keywords and will be discussed in the next
chapter. Alignment is performed as soon as each statement is accepted
by the machine. Some line changes are automatic, but you can use the
carriage return to create blank lines and to put the comment (the
sentence enclosed by curly brackets) on a line by itself .

.S File Edit Searrh Run Windows

prog,-am T 1?mpe-r .j~1Jre ;

var
F : lnti;-ger ;
C : Real ;

bPgin

Temperature

'vfrile('ENTER A FAHRENHEIT TEMF'EF: ATURE : ');
R•adlro(F);
C := (5 I 9) * (F - 32);
!irileln :
\'iriteLn(F : 2 , '[)EGRErn FAHRENHEIT It' [l~UAL TO ·, c : .:. . 1 .. '[:o[OREES CEL~;ll_lt; . ')

Pnd .

Te Ht
ENTER R FRHREt!HE I T TEMPERATUF:E t•9

1.3 • Entering,
Editing, and
Running a
Program

Figure 1.2 • Program
Temperature

10 1 The Machine and the Language

Figure 1.3 • The three
windows on the
Macintosh screen

• File Edit Search Run lllindows

Te Ht

Drawing

There are several options available for making changes and
corrections. The simplest way to correct a mistake is to use the
Backspace key. The Backspace key will erase as it goes and new data can
be entered immediately.

Another tool available is the Edit menu. The cursor location tells the
machine where an operation is to be performed, and the Edit menu tells it
what is to be done.

You can change the location of the cursor by using the mouse to
move the !beam to the desired location and then clicking or dragging.
Clicking selects a location; dragging selects a section of text, which
becomes highlighted. A whole word can be highlighted by double-clicking
it. To highlight several words or several lines of text at once, place the
!beam at one end of the section and drag directly to the other end of the
section; everything between will become highlighted. Pressing the
Backspace key will clear the entire highlighted area. Entering new text
will also clear the highlighted area; the new text will replace it.

Once you have placed the cursor, you have several choices
available to you from the Edit menu. You can Clear the highlighted area
from your program, Copy it onto the clipboard, or Cut it out of its present
location and Paste it into a new spot. When you Cut or Copy, the text is
put onto the clipboard, replacing whatever was there before.

Entering, Editing, and Running a Program 11

If you have any doubt about what the clipboard contains, go to the
Windows menu and select Clipboard. This causes the clipboard window
to be displayed on the screen, allowing you to view the contents. The
Windows menu also offers the choice Type Size. Choosing small type
allows more of the program to be displayed at one time.

Once the program is entered correctly, it is important to save it. The
File menu has a Save As command and a Save command. You choose
Save As first to name your program. When the dialog screen appears,
type the name of your program and then click the Save button. If you
make changes later, choose Save to have the changes saved on the disk.
Up until you Quit the program you have the option of reverting to the last
saved version; choose Revert from the File menu to discard the most
recent changes.

Always save your program before you run it. Don't take a chance on
losing it; this can happen if something in the program causes a problem
for the machine.

There is one more thing to think about before running a program.
Consider the location of the program's output. You will probably want to
activate the Text window for this program. The output is written to the
Text window whether it is active or not; the purpose of activating it is to
make it visible. If you did not cover it completely when you enlarged your
program window, you can activate it by clicking in the visible portion. If it
is completely covered, either shrink the program window or go to the
Windows menu and select Text.

Now choose Go from the Run menu to start the program. When you
see Pause appear on the menu line, the machine is waiting for data from
the keyboard in order to continue. You have the option of choosing Halt
from the Pause menu or entering the needed data. For the example
program, the data needed is an integer representing a Fahrenheit
temperature. As soon as you enter an integer number followed by a space
or carriage return, the program will continue its run. Step will run one line
of the program at a time. The finger in the left margin points to the next
step that is to be executed. Step-Step activates the pointer to show which
step is being executed, but does not stop after each statement.

There comes a time when a printed copy of the program or the
output is needed. To print only the program, activate the program
window, turn on the printer, and choose Print from the File menu. This
will cause a dialog box to appear requesting certain instructions: the
quality of print, the page range, the number of copies, and the type of
paper being used. Once these choices have been made, click the OK box
and printing will begin. To print the output of the program, you must
follow the instructions for printing the contents of the screen. Hold down
the "Command" key (the wide key to the left of the space bar) and the
"Shift" key while you type the number "4." This will cause the contents of

12 1 The Machine and the Language

1.4 O Practice

the active window to be printed. If the "Caps Lock" key is also down, the
contents of the whole screen will be printed.

The information in this chapter will get you started using your
Macintosh and Macintosh Pascal; as you continue to use the computer,
refer to the menu commands summarized in Appendix A.

The best way to become proficient at using the Macintosh is, of course, to
sit down and use it. This section should be read at the computer as you
experiment with some of the options. If the disk you are using has
previously been used by someone else, there may be some differences
from what is described below. Do the best you can.

Experiment first with opening and closing the disk icon and the trash
barrel. Choose different Views and note the arrangement of the
information with each view. Next, open the system folder. Inside the
system folder there should be an icon marked Empty Folder. Duplicate
the empty folder. What is the name given to the new folder?

•••
A new folder icon should have appeared next to the original and should
be labeled Copy of Empty Folder. Once a duplicate folder has been
created, it can be moved onto another window or into a folder or disk.
The name can be edited whenever the icon is displayed. Move the folder
to the disk window and then choose Clean Up from the Special menu to
keep the desktop neat. Edit the name on the folder so that you can use it
to store your work. Do this before you continue .

• • •
Now that you have a folder for storing programs, it would be nice to have
something to put in it. Entering the text of a program may not be the most
enjoyable part of the programming process, but it is important that you
become proficient at it. Fortunately, Macintosh Pascal assists you in this
operation. Open the Macintosh Pascal application now and enter the
example program Temperature. Run it through a Check and make
whatever corrections are required. Do no1t save it yet. Choose Quit from
the File menu. What happens?

•••
The Macintosh usually sounds a warning when you may be making a
mistake or when your intentions are unclear. The dialog box that appers

Practice-Operating the Macintosh 13

on the screen requires your attention before you can continue. It is a
reminder that you have not saved your program. Choose Save. You will
be asked for a name for your document; enter the name Temperature,
then click the Save button in the dialog box. What happens?

•••
Now the computer can act on your original Quit command; it will return
to the Finder. When returning to the Finder, whichever windows were
open when you left the Finder will still be open. Find the icon for the
program you just entered and saved and put it into your folder. You can
do that either by dragging the document icon to the folder icon, or by
dragging the document icon onto the folder window .

• • •
Open program Temperature. Now close the windows using the Close
choice from the File menu. Clicking the white box on the menu bar does
not accomplish what is desired here; when you are in the Pascal
application, clicking the disappear box does make the window disappear
from the screen, but it does not close the file. Choosing Close closes the
present program but does not return to the Finder. Note that the disk icon
and the trash barrel are not on the screen. The Pascal application is still
open. Check the File menu now. What are the new choices available?

•••
Two additional choices are now available, New and Open. Choosing New
creates a blank program window for a new program. Choosing Open puts
up a dialog box listing the available files. We need program Temperature
again. There are two ways to open it. What are they?

•••
The dialog gox shows the names of the available files along with an Open
choice, a Cancel choice, and an Eject choice. A file can be opened by
clicking the file name and then the Open button, or by double-clicking the
file name.

Run program Temperature at least once using Go. Run it again by
holding down the fan key and typing "G." Note that the Pause menu lights
up when the computer needs data from the keyboard. Now Step through
the program; either choose Step or use the fan key and "S." There are
several things to note as you step through.

1. The finger points to the line that is to be executed next; that line is
executed when you choose any Run command.

14 1 The Machine and the Language

2. The Pause menu does not light up when you are using Step;
however, note that the cursor appears on the text screen when
data is needed.

3. If you tiy to advance beyond the Read statement without
entering needed data, a warning is sounded .

• • •
Using the Search menu, change All Occurrences of "F" to "FTemp" and
"C" to "CTemp" eveiywhere in the program. Do not Save. Run the edited
version. How does the output change?

•••
All Occurrences means exactly what it says. The "F" in the word
"Fahrenheit" and the "C" in the word "Celsius" are replaced with
"FTemp" and "CTemp" producing a veiy strange sentence.

Revert to the previous version of the program. Print the program
using the Print choice from the File menu. Run the program and print the
output screen.

• ••
Save the program under a different title (use Save As). Return to the
Finder. The right side of the title bar shows the Space Available on the
disk. Note the amount. Now, move the new version of the program to the
trash barrel. How much does the space available change? Empty the
trash. Again, how much does the space available change?

•••
Moving a file to the trash barrel does not remove it from the disk;
therefore, the space available on the disk does not change. However,
once the trash has been emptied, the space is available for other use.
Removing program Temperature creates lK more of disk space. Notice
that when you choose Empty Trash, no warning beep is sounded. Always
be aware of what is in the trash barrel before you empty it. When in doubt,
open the window and check. You will be warned if you tiy to empty
something the computer needs, such as the system folder.

Open the Control Panel (keep looking, it's there somewhere) and
adjust the speaker volume by dragging the knob up or down. Open
program Temperature and change the Type Size to small. Now quit the
application, eject the disk, and turn off the machine. Restart the disk.
What happened to the speaker volume? What happened to the type
size? •••

Practice-Operating the Macintosh 15

Each time the Pascal application is opened, the default conditions are
active. Changes are maintained when going from one program to
another, but returning to the Finder deactivates them. The system
changes, on the other hand, which are set at the Control Panel, are
recorded on the disk and remain active until changed again .

•••
Try the review exercises below. You should be off and running now.

Fill in the Blanks
1. A file can be opened by choosing from the ___ _

menu, or by the file icon.
2. Clicking the causes the window to disappear.
3. To name a file, choose from the _____ _
4. To change the name of a file, the _________ must be

displayed.

5. To shrink or stretch a window, drag from the-------­
corner.

6. To print the contents of a window as displayed on the screen, hold
down the key and the key and press the
number _____________________ .

7. The control panel is found in the _________ menu.

8. When the Macintosh application is active, the contents of the
clipboard can by displayed by choosing _________ _
from the menu.

True or False
1. Choosing GO from the RUN menu causes the cursor to move.
2. Some menu selections are in boldface print, some in light print. The

lighter selections must be double-clicked.
3. If you type "help" on the screen, the computer will tell you what

mistake you have just made.
4. You cannot see through a Macintosh window.
5. Macintosh Pascal is easy to use.
6. In order to erase the letter you just typed, press the Backspace

key.
7. The Command key is marked "C."
8. Saving the file causes the contents of the screen to be copied to the

internal memory of the Macintosh.
9. Instead of choosing from the RUN menu, you can type "run."

16 1 The Machine and the Language

10. The contents of the trash barrel can never be retrieved.

In order for you to check your own weak spots, the answers for the
True/False and Fill in the Blanks exercises are given in the following
paragraphs. If you feel reasonably comfortable with your results,
continue on. As you begin writing and running your own programs, you'll
get plenty of practice using the Macintosh.

There are two ways to open a file. It can be opened by activating the
icon with a single click and then choosing OPEN from the FILE menu or by
DOUBLE-CLICKING the icon.

When a window is active, the title bar at the top of the window shows
a set of horizontal lines. The lines are interrupted on the left side by a
small white box. Clicking the WHITE BOX ON THE LEFT SIDE OF THE
TITLE BAR causes the window to disappear.

To name a file, choose SA VE AS from the FILE menu. This causes a
dialog box to appear. Type the name into the space indicated. This causes
the computer to set aside a location on the disk for that particular file and
to associate the given name with that location. To change the name later,
go to the window containing the FILE ICON. Activate the icon by clicking
it, then edit the name using the cursor to erase the old name or make
corrections.

A window can be stretched or shrunk by dragging the LOWER
RIGHT corner to a new location.

It is possible to print the contents of a single window or the contents
of the whole Macintosh screen. To print only the active window, hold
down the SHIFT key and the COMMAND key and type the number "4." To
print the whole screen, first press the Caps Lock key, and then the fn,
Shift, and 4.

At the top of the screen, in addition to the menu names, there is an
apple. Press and hold on the apple and a list of choices including the
control panel is displayed.

When using the Finder application, the clipboard can be viewed by
choosing Show Clipboard from the Edit menu. In the Macintosh Pascal
application, that choice is not available in the Edit menu. However, there
is a choice labeled CLIPBOARD under the WINDOWS menu, which causes
the contents of the clipboard to be displayed.

Let's take a look at the True/False questions. Number 4 is obviously
true. Number 6 is also true. As far as number 5 goes, to each his own. The
others are false.

The movement of the cursor is always controlled by the mouse.
However, the form that the cursor takes depends on what activities are
being performed. When a program is running, the cursor appears as a
plus sign.

Some menu choices appear in boldface print, others are light. Orily
those in boldface print are available. Trying to choose one that is in light
print has no effect.

If you type the word "help" on the screen, all you will get is the word
"help" on the screen.

The Command key is located at the bottom of the keyboard to the
left of the space bar and is marked with the picture of a fan.

When a file is Saved, it is written to the disk.
Typing "run" at the keyboard does not cause a program to run.

However, a program run can be initiated by holding the Command key
down and typing "G" at the keyboard. Command "S" will run one line of
the program; this may be a little quicker than using the mouse and menu if
you are running several lines.

Don't empty the trash until you are sure you do not need the
contents. Until it is emptied, you can retrieve whatever is there by
dragging the icon back to the screen. However, once the can is emptied, it
is gone for good.

1.1 Entering a Program
Entering the text of a program is a task in itself. It is important that you
become proficient at it Fortunately, Macintosh Pascal gives you a good
deal of assistance. The following program is to be entered word for word
If you make mistakes, they must be corrected Once the program is
entered, run it through Check and Go.

program WriteName;
var

Name : string;
begin

WriteLn('What is your name? ');
ReadLn(Name);
WriteLn('Thank you, ',Name, '.')

encl

Note: If you enter-this program correctly, the text screen will first
show a request for your name. Enter your name by a return. The
response line should appear, properly punctuated with a comma
following the "Thank you" and a period at the end

1.2 Running a Program
Enter the following program and then run it several times, successively
using the following values as inputs for I:

0 5 25 25,000 25.25

Can you explain the outputs?

Programming Exercises 17

1.5 0

18 1 The Machine and the Language

program Square;
var

I: Integer;
begin

Read(I);
Write(I *I)

end

1.3 Read and ReadLn
When a Read statement is encountered in a program run, the cursor
begins flashing on the text screen, indicating that data is expected. If the
statement is a ReadLn rather than a Read, the run does no continue until
a return is encountered. Change the Read in the program of the previous
exercise to ReadLn and run the program again with the same set of input
values. When you enter the 25.25 what happens to the decimal
portion?

1.4 Write and WlliteLn
Write and WriteLn are related in a way similar to Read and ReadLn. With
Write, the data is written to the screen, and then any further data is
continued on the same line. With WriteLn, new data is written to a new
line. Enter the following program and then try to find ways to improve the
output.

program NewYear;
b~gln

Write('HAPPY NEW YFAR');
Write('HAPPY NEW YFAR')

end

1.5 Calculations
Enter the following program:

program Calculate;
var

X: Integer;
Y: Real;

begin
Write('Enter an integer number: ');
ReadLn(X);
Write('Enter a real number: ');
ReadLn(Y);
WriteLn((X + Y) : 4 : I);
WriteLn((X- Y) : 4: I);
WriteLn((X * Y) : 4: I);
WriteLn((X I Y) : 4 : I)

end.

This program is a little trickier to enter than the previous one. Watch
out! The : 4 indicates that the value of the expression in parentheses shall
be written using not less than 4 spaces. The : 1 indicates that 1 decimal
place will be displayed . Using the values given below as inputs, make
whatever changes are necessary to ensure that the output appears in a
column that is right justified; that is, the right hand edge must be even.
Here are the values:

X= 2
X= 10
X= 555

Y= 4.0
y = 30.0
Y= 33.3

Programming Exercises 19

Chapter 2

The following programming
application demonstrates how a simple Pascal program is written. It gives
an example of the steps from problem to printout. With the information
contained in this chapter, you will be able to write some simple programs
of your own.

You have an opinion on what temperature is comfortable for a study
room. You may think of the temperature in degrees Fahrenheit and might
find it useful to relate room comfort to degrees Celsius. When you think of
a particular Celsius temperature as being related to comfort, instead of
thinking of it only as the equivalent of some Fahrenheit temperature, it
becomes more meaningful. To do this, let us consider a simple program
to display three temperatures along with their comfort levels. The
problem is defined as follows:

to read in 3 Fahrenheit temperatures defined by the user as too cold,
comfortable, and too hot,

to compute the Celsius equivalent of each of them, using the formula
C = (5 I 9)(F - 32),

to display the results with the following format:

TEMPERATURE SUMMARY

F C
?
?
?

Too Cold
Comfortable

Too Hot

?
?
?

The question marks stand for the given temperatures. 21

22 2 Writing Simple Programs

2.1 • The
Concept of
an Algorithm

Of all the topics discussed in this book, the most fundamental is the
concept of an algorithm. The rigor demanded by a computer algorithm is
the essence of programming, no matter which special language you are
working in. Let's quickly review the properties of an algorithm, for this
gives us the key to all that is taken up in later pages.

Generally, an algorithm is a sequence of instructions given to solve
some problem. Any algorithm must have the following characteristics:

1. It must be organized properly. An algorithm reflects some
sequence of instructions carried out in the real world. Accord­
ingly, the instructions must be arranged in some meaningful way
in order to solve the problem at hand.

2. It must go step by step. Each instruction in the algorithm must be
some form of imperative statement, or command, to carry out a
given step in the problem solution. After each step, the next step
in the solution must be unambiguous.

3. It must be precise. The instructions given in an algorithm can
leave no room for ambiguity. Thus it must be possible to
interpret the instructions in only one way.

4. It must make the data explicit Each item we choose to include in
our algorithm must be clearly identified. For example, if an
algorithm has something to do with temperatures, and these are
calculated during the course of the algorithm, then these items
need to be described explicitly.

5. It must contain no irrelevant information. There can be no loose
ends, no extraneous instructions, no frills. The algorithm must
state only the relevant instructions needed to be carried out.

6. It must be correct An algorithm is always directed toward its
single goal-to establish results that will be known upon its
completion. The results must be exactly what you want.

All of these features are things that we often take for granted. In an
algorithm, we must be rigorous to the last detail.

For our problem we first need to request some data, the three
temperatures, from the user. When the machine reads these three
numbers, it assigns them to particular variables, so we must have a name
or identifier for each one. The program is easier to read if the names are
descriptive of the value being entered, so we have chosen to use
TooCold, Comfortable, and TooHot.

Once we have the three values, we can apply our formula to each of
them in turn; we assign each temperature to F, calculate the Celsius
equivalent, and store the result as C. Each time we assign a new value to F
or C, the assignment causes the previous value to be discarded, so each

General Program Structure 23

value must be printed before the next one is calculated. Before we print
the temperatures, however, we want to print a title and heading.

When all of these steps are put into the proper order, we arrive at
the algorithm shown in Fig. 2.1.

The corresponding program is shown as Fig. 2.2. Notice here that
the Celsius temperature required for the output is a two-digit integer;
however, our formula returns a decimal number, so we have added one
more step to give us the type of number that we need for our
summary.

C := Round(RealC);

The additional step creates a need for an identifier for the intermediate
value of C. Since it has to be declared as a Real number we have chosen to
name it RealC. We will explain more details as we proceed.

Now we have a working model of a typical Pascal program. As you have
probably already observed, the writing of programs requires that you
know a number of sometimes odd conventions. Let's start by examining
the major components of our example program.

program TemperatureSummary;
-- declarations

begin
-- statements

end.

Definitions:
TooCold degrees Fahrenheit entered by user
Comfortable: degrees Fahrenheit entered by user
TooHot degrees Fahrenheit entered by user
F: Fahrenheit temperature
C: Celsius temperature

Algorithm:
Request degrees Fahrenheit for each comfort level
Read temperatures for TooCold, Comfortable, and TooHot
Write headings
For each temperature do the following:

set F to temperature
apply formula C = (5/9)(F-32)
write: F, comfort level, C

2.2 • General
Program Structure

Figure 2.1

24 2 Writing Simple Programs

Figure 2.2 • Program
TemperatureSummary

All programs begin with the word program followed by the name of
the program, in this case TemperatureSummary.

Following the program heading are definitions for all of the objects
in a program. Each definition is called a declaration In Pascal, this rule
must be followed strictly. Every name used by the programmer must be
defined in a declaration. For example, "F" is the name that stands for a

program TemperatureSummary;
{ -- This program reads 3 Fahrenheit temperatures entered by the user, }
{ -- calculates the Celsius equivalents, and prints the results. }

var
TooCold, Comfortable, TooHot : Integer;
F,C : Integer;
Reale : Real;

begin
{ -- Request temperatures)

Write('Enter 3 Fahrenheit temperatures: too cold, comfortable, too hot: ');

{ -- Read Fahrenheit temperatures)
ReadLn(TooCold, Comfortable, TooHot);

{ -- Write headings)
WriteLn;
WriteLn;
WriteLn('TEMPERA TURE SUMMARY');
WriteLn('-----------------------');
WriteLn(' F C ');

{ -- Calculate celsius equivalents and write results)
F := TooCold;
RealC := (5 I 9) * (F - 32);
C := Round(RealC);
WriteLn;
WriteLn(F : 2,' Too Cold ', C : 2);

F := Comfortable;
Reale := (5 I 9) * (F - 32);
C := Round(RealC);
WriteLn;
WriteLn(F : 2,' Comfortable ', C : 2);

F := TooHot;
Reale := (5 I 9) * (F - 32);
C := Round(RealC);
WriteLn;
WriteLn(F : 2,' Too Hot ', C : 2);

end.

Fig. 2.2 continued

Enter 3 Fahrenheit temperatures:
too cold, comfortable, too hot:
60 60 78

TEMPERATURE SUMMARY

F c

60 Too Cold 16

69 Comfortable 21

78 Too Hot 26

Fahrenheit temperature. This name must be declared, as in

F: Integer;

General Program Structure 25

This declaration means that the name F will hold integer values during
the course of the algorithm portion of the program. The three
temperatures entered by the reader; TooCold, Comfortable, and TooHot
will also hold integer values. We want to display an integer value for the
Celsius temperature also; that must be declared. However, when we
apply the formula, C = (5 I 9)(F - 32), the calculation will produce a real
number; therefore, we must assign the result to a variable that has been
declared as Real, as in

Reale : Real;

Next we come to the algorithm portion of the program. An algorithm
is written as a series of statements. There are several kinds of statements
in Pascal. Each of them specifies some action to be carried out by the
computer. For example, consider the assignment statement,

Reale := (5 I 9) * (F - 32)

The symbol := is read as "becomes"; it assigns the value of the
expression on the right to the variable on the left. During the course of the
program, F takes on three different values. When a new value is assigned

26 2 Writing Simple Programs

2.3 • The Units
of a Pascal
Program

to the identifier, it replaces the existing one, which is discarded.
Therefore, we print out the F and C values in each case before starting the
next calculation.

Other statements in Pascal cause a series of actions to be
performed. For instance the statement

WriteLn(F : 2, ' Comfortable ', C : 2)

is actually a procedure call. It calls the procedure WriteLn, which causes
the machine to print the integer value for F using two digits, print the
character string enclosed by the parentheses, print the integer value for
C using two digits, and then move to the beginning of the next line.

A program always ends with the word end followed by a period.
All of these points will be taken up in greater detail in later chapters.

For the remainder of this chapter, however, let's take a closer look at the
individual components of a program.

At the most elementary level, a Pascal program consists of a sequence of
symbols. The possible symbols are listed in Table 2.1. The arrangement
of symbols is subject to numerous and sometimes complex conventions
that you will have to learn as you go along. Here we pin down a few of the
more primitive conventions, including the rules for writing names,
numbers, character strings, and comments.

Identifiers
An identifier is a name created by the programmer. It consists of one or
more letters, digits, or underscores, but the first character must always
be a letter. An identifier can be up to 255 characters long, but cannot
contain any spaces. The identifiers we have used are

F C TooCold Comfortable TooHot RealC

Macintosh Pascal accepts the use of the underscore in an identifier,
therefore we can, if we choose, use

TOO_HOT

instead of

TooHot

In identifiers, uppercase and lowercase letters are treated as being
equivalent, which means that the identifier

COMFORTABLE

is the same as

Comfortable

The Units of a Pascal Program 27

Keywords
Table 2.1 also lists the 38 keywords in Pascal. A keyword is a special
identifier that tells the computer what to do. For example, the keyword
program introduces a program. Other keywords have more ubiquitous
meanings. For example, the keyword end marks the end of something­
the end of a sequence of statements, for instance, or the end of the
program.

You don't have to memorize all the keywords. The important point
is that each has a specific role. Furthermore, the keywords in Pascal are
said to be "reserved," meaning that you may not use them as identifiers in
your program. For example, if we wished, we could change the name
TooCold to Chilly, but we could not change it to Program or Array
because these are reserved.

Table 2.1 • Macintosh Pascal Symbols

Digits

0 1 2 3 4 5 6 7 8 9

Letters

a b c d e g h k m
n o p q r s t u v w x y z

A B c D E F G H I J K L M
N 0 p Q R s T u v wx y z

Special Symbols

+- * I = < > [l ' () @$
/\ >= <= <>: = .. { l

Keywords

and else label packed until
array end procedure uses

program
mod var

begin file record
for nil repeat while

case function not with
const set

goto of string
div or
do if otherwise then
down to in to

type

28 2 Writing Simple Programs

Numbers
Suppose you wish to compute the number of feet to the scene of a crime,
or an amount of money embezzled in a series of bank transactions.
Pascal, like any other programming language, has a rather fixed set of
conventions for writing numbers.

The first kind of number you can write is an integer, which means a
whole number. An integer is represented by a sequence of digits, possibly
preceded by a plus or a minus sign:

0 10
1776 +10

100000 -10

Negative numbers can be used to represent things like a temperature of
minus 10 degrees or a bank balance that is "in the red."

The second kind of number you can write in Pascal is a real number.
A real number must have either a decimal point, a letter "E" followed by a
scale factor (which means "times ten to the power of"), or both. For
example, you may write the numbers,

12.34
1234E-2
0.1234E2
0.1234E+2

both of which stand for the same real number.
The E notation (often called scientific notation or floating point

notation) is especially useful for very large or very small numbers, which
might arise if you are trying to calculate the distance between two planets
or the weight of a molecule. Instead of writing,

123000000000000
0.0000000000000456

you can write,

l.23E+l4
4.56E-14

This saves you from counting zeros to find how large or small a number
is.

These are the only conventions you can use for writing numbers. Be
careful, for as much as you would like, you cannot write numbers like the
following:

2.
.3
1,000
$123

{ you must write 2.0 }
{ you must write 0.3 }
{ you must write 1000 }
{you must write 123}

The Units of a Pascal Program 29

With both integer and real numbers there is a limit to the number of
digits that the machine will accept. If you are using an integer greater than
32,767 or less than -32,767 it must be declared as Longlnt instead of
Integer. Real numbers are limited to 8 decimal digits; however if greater
accuracy is needed, they can be declared as Double or Extended.
Whatever number you have in mind, you must declare it as either an
integer, long integer, real, double, or extended number. Normally you use
integers to represent thing you can count (the number of degrees
Fahrenheit or the scheduled time of a train arrival, for example) and real
numbers to represent things you measure or calculate that cannot be
determined exactly (the number of feet to the scene of a crime or the
result of a division problem, for example).

Character Strings
Often when you use a computer program, you want your program to
print messages telling you what is going on. You can do this with
character strings, such as

'Enter a Fahrenheit temperature:'

To print a character string, you simply include it in a Write or WriteLn
statement, just like

WriteLn('TEMPERATURE SUMMARY')

in our example program.
A character string consists of a sequence of characters enclosed by

single quotes. You might have expected that a character string would be
enclosed by double quotation marks("); so be careful, as a single
quotation mark, an apostrophe('), must be used.

Any characters that the computer recognizes can be put into a
character string, even such characters as $ and %. If you would like to
have an apostrophe itself as part of a character string, just type two
apostrophes in a row, and it will output as a single apostrophe. Thus we
may have

'THE BOY''S HAIR IS BROWN'
'NOTE THE PAIR OF SINGLE QUOTES ABOVE'

'STRINGS MAY CONTAIN SPECIAL CHARACTERS'
'LIKE $AND %'
'as well as lowercase letters'

Comments
One of the most useful features of programming languages is the ability to
annotate your program with comments. Completely ignored by the
computer, comments are there entirely for the enlightenment of a human
reader. For example, in the sequence

30 2 Writing Simple Programs

2.4 • Syntax
Issues

{ -- Calculate Celsius equivalents and write results)
F := TooCold;
Reale := (5 I 9) * (F - 32);
C := Round(RealC);
WriteLn;
WriteLn('F: l,' TooCold ', C : l);

the first line is a comment.
A comment consists of any sequence of characters enclosed by

curly braces. The text of the comment may include anything you like
except a right curly brace (}).

{ -- If you include a carriage return in your comment,)
{ -- a right brace will be automatically entered to end the line,)
{ -- and a left brace will be entered at the beginning of the next line.)

Comments may lbe placed between lines of the program or at the
end of lines. If they are entered within a line of program text, they will be
moved to the end of the line.

As far as running the program is concerned, the comment will have
no effect and will be treated just as if it were a blank space.

If you, choose, you can enclose comments with the symbols (* and
*) instead of curly braces; for example,

(* -- Write headings *)

No matter which symbols you use, be sure to close off each comment
with its terminating*) or). If you do not, all the program text following the
comment will be treated as part of the comment itself.

Much of the formatting of a program is done for you in Macintosh Pascal.
Each statement is started on a new line. Indenting is· performed
automatically. You do have the use of blank lines and spaces at your
disposal, however. For instance, it is much easier to read,

than

{ -- Request temperatures }
Write('Enter 3 fahrenheit temperatures: ');
ReadLn(TooCold, Comfortable, TooHot);

{ -- Write headings)
WriteLn;
WriteLn;

{Request temperatures}
Write('Enter 3 fahrenheit temperatures:');
ReadLn(TooCold,Comfortable,TooHot);

{Write headings}
WriteLn;
WriteLn;

The only difference between the two examples is the use of spacing. The
computer will ignore blank spaces and blank lines, but the human reader
will not. In fact, the proper spacing of programs can go a long way in
making your intended purpose clear.

There are a few restrictions on the placing of blank spaces and blank
lines. These restrictions need not concern you very much, as they are
reasonably obvious. For example, you may not put blank spaces between
the characters of an identifier or between the : and the = of a :=. And, of
course, at least one blank must be inserted between adjacent words (for
example, between program and the program name).

Finally, the end of a line is treated as if it were a blank space, at least
as far as the computer is concerned. All of these rules follow common
intuition, and generally speaking, you may insert blank spaces and blank
lines wherever convenient.

Now we come to the rules for the placement of semicolons. The first
rule is simple. A semicolon is required at the end of a program heading, as
in:

program TemperatureSummary;

As we shall see later, the same rule applies to procedure and function
headings.

The second rule is just as simple, but a bit more embracing: a
semicolon is required after each declaration. For example, a semicolon is
required after the variable declaration,

Reale : Real;

and after each declaration of a list of variables, as in

TooCold, Comfortable, TooHot : Integer;

Things begin to get a bit more sticky when we come to the algorithm
part of a program. A semicolon must be placed between the statements in
a sequence of statements. In effect, in a simple sequence of statements a
semicolon is required after each statement except the last. When we get
to structured statements, there will be more details to remember, but this
will suffice for now. If you have any doubts about the placement of
semicolons, refer to Appendix B, which summarizes the formation rules
for writing programs in Macintosh Pascal.

Following the practice section, there are suggestions for some
programs that you should be able to write with the information covered
so far.

Practice-Syntax 31

2.5 • Practice

Consider the program shown in Fig. 2.3, which prints a replica of the letter --771~. H. Certain properties of this program are shared by all other Pascal ,.,./')
programs, short or long.

32 2 Writing Simple Programs

Figure 2.3 • Program
BigH

program BigH;

{ -- This program prints a replica of the letter H, }
I -- printed with 14 lines of H's. l
begin

WriteLn('HH HH');
WriteLn('HH HH');
WriteLn('HH HH');
WriteLn('HH HH');
WriteLn('HH HH');
WriteLn('HH HH');
WriteLn('HHHHHHHHHHHH');
WriteLn('HHHHHHHHHHHH');
WriteLn('HH HH');
WriteLn('HH HH');
WriteLn('HH HH');
WriteLn('HH HH');
WriteLn('HH HH');
WriteLn('HH HH')

end.

=D Te Kt
:J

HH HH ~ HH HH
HH HH
HH HH
HH HH
HH HH
HHHHHHHHHHHH
HHHHHHHHHHHH
HH HH
HH HH
HH HH
HH HH
HH HH
HH HH

f§
Q]

1. The program starts with the word program.

2. The program has a name, in this case BigH.

3. The program name is followed by a semicolon.

4. The statement part of the program starts with the word
begin.

5. The program ends with the word end followed by a
period.

Some other factors in this program also deserve mention. The word
WriteLn means "Write a Line"; it causes each string to be printed on a line
by itself. Each WriteLn is followed by a character string contained within
parentheses. The character strings are enclosed by single quotes. There
are 14 of these statements separated from each other by 13 semicolons.
Two characters are used, the letter "H" and the blank space. There are 8
blanks used between the H's on 12 of the statements. Since the output
font has a fixed character width, the letters will line up nicely.

You may have noticed in reading program BigH that it has no
declarations part, although it is a valid program. Most programs will make
use of names or identifiers, and each of these identifiers must be declared
in the declarations part of the program. The identifiers we have used so
far have all been variables; that is, the value of the identifier can change
during the course of the program. When declaring variables, it is
necessary to state the identifier and its type.

Some of the following are valid identifiers and some are not. Make
your choices before you read on.

1. Item2 6. Input
2. Item2.2 7. R2D2
3. NEWITEM 8. file
4. Two3rds 9. IL Then__Else
5. 2 Thirds 10. TenDivTwo

• • •
All identifiers share the following characteristics:

They start with a letter.
They contain only letters, digits, and underscores.
They are less than 255 characters long.

Numbers 1, 3, 4, 6, 7, 9, and 10 are all valid identifiers. Number 2 can
not be used as an identifier because it contains a decimal point. Number 5
is disqualified for two reasons: it starts with a number, and it contains a
space. Number 8 is a reserved word.

Following are items that might be included in a mortgage calculation
program. Each item needs an identifier. If they are to be read from the
keyboard or calculated during the program, they must be declared as
variables. In addition, they must be declared to be of type Integer,
Longlnt, Real, or string. How would you declare each of them?

1. Total amount of mortgage

Practice-Syntax 33

34 2 Writing Simple Programs

2. Interest rate
3. Monthly payment

4. Amount of monthly payment on the principle
5. Amount of monthly payment on the interest
6. The address of the property
7. The account number

•••
The identifiers for these items should be as descriptive as possible
without being overly long; your choices may differ from ours. There may
be some matter of opinion on the other choices also, depending on the
concept of the finished program. Here are our suggestions.

Identifier Type

I. MortgageAmt Longlnt
2. IntRate Real
3. MonPayment Real
4. MonPrinPayment Real
5. MonlntPayment Real
6. Address string
7. AccountNum Longlnt

The mortgage amount may or may not be over 32767, the maximum that
can be declared as Integer. Longlnt is certainly safer here. The account
number also may be small enough to be Integer; but since we don't know,
it is safer to use Longlnt. Items 2, 3, 4, and 5 will be dollar values with
accuracy to two decimal places. When dealing with very large mortgages,
it may be necessary to use Double for 3, 4, and 5. Let's hope that interest
rates will never require a number that large! The address is declared as a
string; it contains both numbers and letters, and no arithmetic
calculations will be performed on it. It may be desirable to break the
address down into StreetAddress, City, State, ZipCode.

Details are very important in any kind of programming. The
following program has a fatal error. See if you can find it before you
continue.

program Double

{ -- This program reads in a number N and l
{ -- prints twice its value. l

var
N: Integer;

begin
Read(N);
Write((N+N)

end. • ••

The placement of semicolons is very important in Pascal. The program
just shown is missing the semicolon following the program name and will
not run. An error message will result.

• A semicolon must be placed after the program name, after each
declaration, and between statements.

Below is a series of statements concerning some details of Pascal.
Some are true, some are false. Use the True/False quiz and the following
Fill in the Blanks to check your understanding.

Trne or False
1. The first nonblank character in a program must be the p in

program.
2. The last nonblank character in a program must be a period.

3. The identifier Record may be used as the name of an integer
value.

4. A semicolon can be placed after every statement.

5. The following sequence of characters is a well-formed comment:
(The symbols (and *) may be used in comments. l

6. The Pascal number 2.0 is an integer.
7. Spaces may be inserted between any two characters in a program.

8. Two statements, for example,
Write('THIS'); Write(' AND THAT')

may appear on a single line.

9. The parentheses in
Write('THIS')

may be omitted.
10. A declaration always ends with a semicolon .

• • •
Fill in the Blanks
As you continue with Pascal, the information in this chapter will become
second nature. Try filling in the blanks in the following statements to see
how much you have already retained.

1. Before beginning to write the program, you should write an

2. Each variable in a program must be given a name; this name is known
as its __________ _

3. The two parts of a program are the part
and the part.

Practice-Syntax 35

36 2 Writing Simple Programs

4. A program ends with

5. Identifiers can be constructed using letters, digits, and
6. The whole number 32,776 should be declared as a ____ _
7. Character strings are enclosed by ________ _

8. Keywords cannot be used as _______ in a program.

9. Comments are useful to improve a program's

10. A is required after the word program .

• • •
The following paragraphs contain the answers for the True/False

(T /F) and Fill in the Blanks (FB) questions. If you have done well, then
you have been paying close attention to details. This characteristic will
serve you well as you continue expanding your programming skills.

Before beginning to write a program, always write an ALGORITHM.
This will force you to define the problem carefully, and will keep you from
wandering off on a tangent while writing the program itself (FBI).

A program always starts with the word program and ends with the
word end followed by a period (FB4). However, comments can be placed
before the word program and after end, so the answer to the first and
second True/False questions is actually "False." The program can start
with the letter "p" or a left hand curly brace and can end with the word
"end" followed by a period, or a right hand curly brace
(T/Fl,T/F2).

A program contains a DECI.ARATION part and a STATEMENT part
(FB3). Each declaration is followed by a semicolon (T/FIO). Semicolons
are also required after the program name and between statements in a
sequence. Do not get into the habit of thinking that each statement is
followed by a semicolon; it will cause confusion later. The answer to the
fourth question is "False" (T/F4).

Each variable in a program must be given a name, which is known as
its IDENTIFIER (FB2). An identifier is constructed of letters, digits, and
underscores (FB5); and must begin with a letter. Keywords cannot be
used as IDENTIFIERS (FB8, T /F3). The declaration of a variable gives its
name, or identifier, and also tells what type of values the variable will hold
during the course of the program. Integer variables can hold values
between -32,767 and +32,767. Integers outside this range must be
declared as LONGINT (FB6). Numbers containing a decimal part are
declared as Real, therefore Record cannot be used as the name of an
integer value (T /F3).

Identifiers can also be used for values that remain constant
throughout the program. These values may be numbers or character
strings. Character strings are enclosed by SINGLE QUOTES (FB7).

A Write statement must be followed by a pair of parentheses CT /F9)
enclosing the identifiers whose values are to be written and/ or the actual
values enclosed by single quotes. The parameters in the list must be
separated by commas. WriteLn can be used without the parentheses to
simply skip a line.

Most of the formatting in Macintosh Pascal is done automatically.
For instance, each statement is placed on a new line CT /F8). Some care is
required with blank spaces; however, most of the rules follow the dictates
of common sense. A SPACE is required after the word program before
the program identifier CFBIO). Spaces inserted between characters in an
identifier are not allowed; and in a Write statement, there may not be a
space between the e and the beginning parenthesis. Also watch out for
any double symbols, such as the assignment symbol C :=) and two single
single quotes contained in a character string CT /F7).

Comments are used to improve a program's READABILITY CFB9). A
comment begins when the symbol (or C* is encountered, and ends when
the symbol) or*) is reached In True/False question 5, the comment ends
in the middle instead of where it is obviously intended to end.

2.1 Learning to Use Macintosh Pascal
Learning to use a programming language requires attention to many
details. The smallest error can cause your program to stop in the middle
of a run or perhaps not even start. So be prepared for the worst, gather
your wits about you, and solve the following problem: Write a program to
print MY NAME IS followed by your name. A sample output might be

MY NAME IS SUE

2.2 Printing a Checkerboard
Write a program print the initial configuration of checkers on a
checkerboard; for example,

BBB B
B B B B

B B B B

RRRR
RRRR

RRRR

where B stands for black and R for red. Can you make the checkerboard
look even nicer?

Programming Exercises 37

2.6 0

38 2 Writing Simple Programs

2.3 Big Z
In the practice section, you read a program to print a big H. Now write one
to print a big Z. Remember that the spacing differs from the program
screen to the text screen.

2.4 Secret Numbers: Version I
There are many computer applications where a code number is required.
Write a program that requests a number from the user, and then returns
to the user a written message containing the number and a warning that
the number must be remembered for future use.

Note: This problem is the first in a series of programming exercises
involving entry codes.

2.5 Writing a Sequence
When printing numerical values, it is usually desirable to control the
spacing. Write a program that reads a number, and then, on a new line,
prints the number three times with 5 spaces between.

2.6 Real versus Integer
A variable cannot be declared as both Real and Integer. You may,
however, want to print an integer value followed by a decimal point and
zeroes. For instance, when dealing with dollar values, it is often better to
show the pennies. There is more than one way to solve the problem.
Write two different programs that read a number, say 814, and then print
it as a dollar amount, say $814.00.

2. 7 A Simple Area Computation
Given the radius, the area of a circular surface is found using the age-old
formula,

A=PI·r2

or in computer notation,

A := Pl*(R*R)

where PI, computed to five decimal places, is 3.14159. Write a program to
read in the radius of a circle as a real number and output the
corresponding area as a real number. For example, with the input 2.101,
the area would be 13.86761. The result can be computed to any number
of decimal places.

2.8 Square Roots
There are predefined functions in Pascal that will return the value of a
calculation. This is accomplished by simply using the name of the
function in a statement, for instance the statement

Write(SqRt(AnyNumber))

will calculate the square root of the identifier in parentheses, and print
the result.

Write a program that reads a number and then writes the square
root of the number.

2.9 An Average Program
Write a program to find the average of three real numbers. Declare an
identifier for each number, for the sum, and for the average. Print the
average with two decimal places.

2.10 Mileage
Miles per gallon is calculated by dividing the number of miles traveled by
the number of gallons of fuel used. The figures needed here are the
mileage showing with a full tank at the beginning of the check; the mileage
showing at the end of the check, again with a full tank; and the total
number of gallons added during the course of the check.

For this program, assume that fuel has been added four times. The
program must read the beginning and ending mileage and the four
amounts of added fuel, and print the miles per gallon using one decimal
place.

Programming Exercises 39

Chapter 3

Macintosh Pascal allows
access to the Apple QuickDraw library. The QuickDraw routines can be
used in a Pascal program to draw both shapes and text on the screen by
using predefined procedures and functions stored in the QuickDraw
library. Entering the names of the subroutines into a program calls upon
the machine to automatically perform a series of actions. For instance,
given integer values for the four identifiers Top, Left, Bottom, and Right,
the call

FrameRect(Top, Left, Bottom, Right)

causes the machine to locate two horizontal and two vertical lines on the
screen, and draw the rectangle enclosed by the intersection of the four
lines. Using similar statements one can draw ovals, circles, rectangles
with rounded corners, and wedge-shaped sections of circles. These can
be either hollow or solid.

This chapter presents some of the basic procedures and functions
available. With these routines you will be able to write some interesting
programs of your own. Some of them are used in the program of Fig. 3.1.
This program puts the temperature chart given earlier onto the drawing
screen and puts a frame around it. The two changes are reflected in the
revised algorithm shown in Fig. 3.2.

To use QuickDraw efficiently and comfortably one must understand the
drawing screen. Imagine the Macintosh screen as divided into very small
squares, 72 per linear inch to be precise. These squares are called pixels,

3.1 • Screen
Layout

41

42 3 Drawing and Using Procedures

Figure 3.1 • Program
Temperatu reChart

program TemperatureChart;
{ -- This program reads 3 Fahrenheit temperatures entered by the user, }
{ -- calculates the Celsius equivalents, }
{ -- and charts the results on the drawing screen. }

var
TooCold, Comfortable, TooHot : Integer;
F,C : Integer;
Reale : Real;
Right : Integer;

begin
{ -- Request temperatures }

Write('Enter 3 Fahrenheit temperatures describing too cold,
comfortable, too hot:');

Read(TooCold, Comfortable, TooHot);

{ -- Set up for drawing }
TextSize(l2);
TextFont(4);

{ -- Write headings }
MoveTo(30,46);
WriteDraw('TEMPERA TURE SUMMARY');
MoveTo(30,66);
WriteDraw('F C');

{ -- Compute Celsius and print l
F := TooCold;
RealC := (5 I 9) * (F - 32);
C := Round(Rea!C);
MoveTo(30,86);
WriteDraw(F: 2,' Too Cold', C: 2);

F := Comfortable;
ReaIC := (5 I 9) * (F - 32);
C := Round(RealC);
MoveTo(30,106);
WriteDraw(F: 2,' Comfortable', C: 2);

F := TooHot;
RealC := (5 I 9) * (F - 32);
C := Round(RealC);
MoveTo(30,126);
WriteDraw(F: 2,' Too Hot', C: 2);

{ -- Draw frame l
Right:= 30 + StringWidth('TEMPERATURE SUMMARY')+ 5;
FrameRect(30,25, 130,Right);
MoveTo(25,50);
LineTo(Right,50);
MoveTo(25,70);
LineTo(Right,70)

end.

Figure 3.1 continued

Te Ht
Enter 3 Fahrenheit temperatures describing
too cold, comfortable, too hot: 60 69 78

=D Drawing

TEMPERATURE SUMMARY
F c

60 Too Cold 16

69 Comfort ab I e 21

78 Too Hot 26

Definitions:
TooCold, Comfortable, TooHot: Fahrenheit temperatures entered

by user
F: Fahrenheit temperature
C: Celsius temperature
Right: frame boundary

Algorithm:
Request 3 temperatures from user
Set up for drawing screen
Write headings
For each temperature do the following:

set F to temperature
apply formula C = (5 I 9)(F - 32)
write: F, comfort level, C

Draw frame

short for "picture elements." There are 512 pixels across the screen and
342 down. The squares are part of a coordinate system with its origin at
the upper left corner of the screen. The horizontal or x coordinates
increase from left to right just as they do in the conventional mathematics
coordinate system. The vertical or y coordinates increase from top to

Screen Layout 43

Figure 3.2 • Revised
algorithm for Fig. 3.1

44 3 Drawing and Using Procedures

bottom. This is not the conventional coordinate system but corresponds
to the way a page of English text is read.

When you address a point on the screen by stating first anx location
and then a y location, you are actually designating a pixel that is bounded
by four imaginary lines. In Fig. 3.3, the single black square would be
addressed as 5,4. It is located between horizontal coordinates 4 and 5,
and between vertical coordinates 3 and 4.

When you draw on the screen, you start with a pen which is 1 pixel
wide and 1 pixel high. The pen size can be changed by using the standard
procedure Pensize. For instance

Pensize(3, 2)

expands the pen to 3 pixels wide by 2 pixels high. The expanded area of
the pen always hangs down and to the right. A location designated for the
pen corresponds with its upper left pixel. In Fig. 3.3, the pen with size 3,2
when moved to position 5,4 covers the larger shaded area. For the
purposes of this chapter, we will use only a pensize of 1,1.

In order to create the desired output, it is necessary to ten' the
machine exactly where to place each line of text and where to draw the
frame. The size of the print influences all of these choices, so that decision
must be considered first. Type size is designated in "points," a
typographic term meaning approximately 1/72 of an inch. Notice that
there are 72 pixels to the inch. Convenient, isn't it? The sizes available are
9, 12, 14, 18, and 24 point. If you are using 12 point text size, 12 pixels will
allow room for the letters themselves plus the space above them. This is
the size used for the chart in the example program. It is activated by the
call

TextSize(l2);

Figure 3.3 • Pen O 5 10 15 20
location o

5

10

The upper left comer of the chart is situated at 25,30; that is 25 pixels to
the right and 30 pixels down from the top. This position is a purely
arbitrary decision; you can start the chart anywhere you like as long as
you allow room on the screen toward the right and down from the
starting point.

More space is needed between lines on a chart such as this than
what is normally allowed on a page of print, so we allowed 20 pixels for
the height of each line; that is, for each new line of text we move down 20
pixels in they axis. When the machine acts upon a WriteDraw call, it starts
writing to the right and up from the location of the pen. A little arithmetic
is required here to center the line of text between the dividing lines. The
space for the title is 20 pixels high, it starts at 30 and goes down to 50.
Since we have chosen to use 12 point type, the printing itself uses 12 of
those pixels; that leaves 8 pixels of space. Dividing those 8 pixels gives us
4 spaces above the print and 4 below. You can see at this point that it is
useful to plot out the components of the output on a piece of graph paper
before you begin to write the program. The output format is part of the
algorithm. Shown in Fig. 3.4 are the vertical or y coordinates used for
TemperatureChart program.

The x values are plotted in the same way. The left boundary was
previously placed at 25. Some space is needed between the frame and the
text, so we start the text 5 pixels to the right at 30. If we leave the
character strings in our Write statements just as they are, the horizontal
spacing takes care of itself. But how do we know where to place the right
boundary of our frame? It is necessary to know how many pixels of space
the character string is going to use. This can be calculated by the function
call

StringWidth('TEMPERA TURE SUMMARY')

30 Top of Chart

46 TITLE

50 Dividing Line

66 HEADINGS

70 Dividing Line

86 TOO COLD

106 COMFORTABLE

126 TOO HOT

130 Bottom of Chart

Screen Layout 45

Figure 3.4 • Vertical (y)
coordinates for
the program
TemperatureChart

46 3 Drawing and Using Procedures

3.2 • Calling
QuickDraw
Procedures

Figure 3.5 • Horizontal
(x) coordinates for
the program
TemperatureChart

The width of the string is calculated for us. It is not really necessary to
know the numerical value of this width; our goal is to locate the right
boundary for the frame. We can use the identifier Right instead of an
integer in a FrameRect statement, and assign a value to Right with the
following statement:

Right := 30 + StringWidth('TEMPERA TURE SUMMARY') + 5

The 30 represents the start of the text; the 5 is the space between the end
of the text and the frame. The layout in Fig. 3.5 shows these x locations
more clearly.

Write and WriteLn are not part of the QuickDraw library. In order to write
text onto the Drawing window, we must use one of the following
statements instead.

DrawChar('A') {a character}
DrawString('TEMPERATURE SUMMARY') {a string}
WriteDraw('The value of X is ', X) { strings and variables }

All of these are QuickDraw procedures which use the drawing screen as
the output area. The WriteDraw procedure is the most versatile as it
allows the entering of variables and/ or character strings between the
parentheses.

When the machine starts to write it uses the same type size that is
being used for the program unless you have specified otherwise. If you
choose to use something different, the statement

TextSize(l2) { Integer}

sets the type size. Enter 9, 12, 14, 18, 24, or an integer variable between the
parentheses. For changing the font, use

TextFont(4) { Integer}

The integer used will call a text font from the available set. We are using
text font number 4 in our program because it has a fixed character width;
this allows us to plan our output to appear in even columns.

Right boundary of frame
End of text

String Width

Beginning of text 5

Left boundary of frame

Calling QuickDraw Procedures 47

These text size and text font statements must appear before the first
Write statement.

For the TemperatureChart program all of the WriteLn statements
that we used in our TemperatureSummary are changed to WriteDraw to
cause the text to be printed on the drawing screen instead of the text
screen. In addition, each WriteDraw statement is preceded by a MoveTo
statement to place the pen in position for writing. A MoveTo statement
requires two coordinates; for instance,

MoveTo(l0,20) { x coordinate, y coordinate }

On the output layout we determined that the text would start 30 pixels to
the right and 46 pixels down; these values are entered into the MoveTo
statement,

MoveTo(30,46);
WriteDraw('TEMPERA TURE SUMMARY');

We increase the y value by 20 for each new line of text.
When the text is complete, we draw the frame. The values for Top,

Left, and Bottom were established on the output layout. In order to get
the value for Right we enter the StringWidth expression. Then a single
procedure call draws the frame.

Right:= 30 + StringWidth('TEMPERATURE SUMMARY') + 5;
FrameRect(30,25, 130,Right);

As you see, you can use either integers or identifiers within the
parentheses; you could even use an expression, such as y + 3. However,
you cannot use a variable that has been declared as Real; only integer
values will be accepted.

In addition to the StringWidth function that we used in the program,
there is a function call that returns the width of a single character.

CharWidth('A') (a character l

This function returns an integer value just as the StringWidth function
does.

There are several ways to draw a line with QuickDraw; we have
chosen to use a LineTo statement preceded by a MoveTo. A LineTo
statement draws a line to the specified location from wherever the pen is
currently located; so we move the pen to the point where we want to
begin and then use the LineTo statement to draw a line to the second
point. The following four statements draw the two dividing lines.

MoveTo(25,50);
LineTo(Right,50);
MoveTo(25,70);
LineTo(Right, 70)

48 3 Drawing and Using Procedures

Figure 3.6 • Oval with
FrameOval call

There are two statements similar to MoveTo and LineTo.

Move(dh,dv)
Line(dh,clv)

{ horizontal distance, vertical distance }
{ horizontal distance, vertical distance }

Instead of moving the pen and drawing a line to a specific coordinate
location on the screen, these two statements cause the pen to move a
specified distance from the current position. Line draws a line from the
current position to the new one. You can use negative values within the
parentheses to move to the left or upward, or a zero value for one of the
coordinates if you want to move up or down or from side to side. For
instance, if the pen is located at 50,75 and you say,

Line(0,-25);

the pen will draw a line from 50,75 to 50,50. This would be a vertical
line.

There is one more very efficient way of drawing a line. The call

DrawLine(a, b, c, <l)

draws a line from point a, b to point c, d.
The example program calls FrameRect to draw the frame. This call

draws the outline of a rectangle. Additional operations that can be
performed on rectangles are

PaintRect(T,L,B,R)
EraseRect(T,L,B,R)
InvertRect(T,L,B,R)

-draws a solid rectangle instead of a frame.
-paints the rectangle white.
-changes black areas within the rectangle to white

and white areas into black.

These four calls can also be used on ovals. Change the Rect to Oval
and what will be drawn is the oval that would fit into the rectangle. Thus
the call

Frame0val(20,30, 70, l 50)

draws the oval shown in Fig. 3.6.

Drawing

Calling QuickDraw Procedures 49

The oval that fits into a square is a circle, so if you describe a
rectangle with four sides equal, you will draw a circle, as in Fig. 3.7.

Frame0val(20,20,70,70)

Drawing

0
These procedures can also be applied to rounded corner rectangles

and to arcs. For the rounded rectangles you will need two more integers
describing the horizontal diameter and the vertical diameter of the oval
which fits the corner.

FrameRoundRect(20,30,70,150,20,lO)

gives Fig. 3.8.

;o Drawing

[]
'21

Arcs require a little more explaining. The call is written as

FrameArc(Top, Left, Bottom, Right, StartAngle, ArcAngle)

The start angle indicates where the arc begins and the arc angle indicates
how many degrees the arc is to contain. Zero degrees is at 12 o'clock and
clockwise is the positive direction. Angles are measured relative to the
enclosing rectangle. Thus, the call

Figure 3.7 • Circle
drawn with FrameOval
call

Figure 3.8 • Rounded
corner rectangle
drawn with the
FrameRoundRect call

50 3 Drawing and Using Procedures

Figure 3.9 • Arc drawn
with the PaintArc call

PaintArc(20,20, 70, 70,0,90)

draws the sector shown in Fig. 3.9.

=o Drou.,ing

•
121

Use care when dealing with arcs. If the enclosing rectangle is not a
square, you will be dealing with sectors of ovals instead of circles, but this
takes us beyond our goal here.

There are two procedures specifically for circles

PaintCircle(x,y,r)
InvertCircle(x,y,r)

where x and y are the coordinates of the center and r is the radius.

Summary of QuickDraw Procedures
The following list is a summary of the QuickDraw procedures and
functions that you should be able to make use of now.

Text Writing
TextSize(Point Size);
TextFont(Font Number);
WriteDraw(V ariables, 'Strings');
DrawChar('Character');
DrawString('String');
CharWidth ('Character');
StringWidth('String');

Line Drawing
DrawLlne(a,b,c,d);
MoveTo(x,y);
Move(dh,dv);
LlneTo(x,y);
Line(dh,dv);
PenSize(Width,Height);

Writing Elementary Procedures 51

Rectangles
FrameRect(Top,Left,Bottom,Right);
PaintRect(Top,Left,Bottom,Right);
EraseRect(Top,Left,Bottom,Right);
InvertRect(Top,Left,Bottom,Right);

Ovals
FrameOval(Top,Left,Bottom,Right);
PaintOval(Top,Left,Bottom,Right);
EraseOval(Top,Left,Bottom,Right);
lnvertOval(Top,Left,Bottom,Right);

Round Rectangles
FrameRoundRect(Top,Left,Bottom,Right,OvaIWidth,OvalHeight);
PaintRoundRect(Top,Left,Bottom,Right,OvalWidth,OvalHeight);
EraseRounclRect(Top,Left,Bottom,Right,OvaIWidth,OvalHeight);
InvertRoundRect(Top,Left,Bottom,Right,OvaIWidth,OvaIHeight);

Arcs
FrameArc(Top,Left,Bottom,Right,StartAngle,ArcAngle);
PaintArc(Top,Left,Bottom,Right,StartAngle,ArcAngle);
EraseArc(Top,Left,Bottom,Right,StartAngle,ArcAngle);
InvertArc(Top,Left,Bottom,Right,StartAngle,ArcAngle);

Circles
PaintCircle(x,y,r);
InvertCircle(x,y,r);

The procedures discussed in the previous section are predefined; that is,
they are already stored in memory and can be used by simply including a
statement consisting of the name of the procedure followed by a
parenthesized list of values or variables. This calls upon the machine to
perform the named procedure, using the values indicated in the
parentheses. The values given within the parentheses, or the variables
representing the values, are known as parameters.

There will be a need many times to write procedures of your own,
whether for QuickDraw applications or for regular Pascal applications. A
brief discussion of writing procedures follows; more detail is presented in
a later chapter.

Let's assume that you have a QuickDraw program that draws
several squares, and that you also want to draw the diagonals. This can
be done by including a procedure. We'll call the procedure
DrawDiagonals. The procedure must be declared in the declarations part
of the program, as in,

procedure DrawDiagonals(Top,Left,Bottom,Right: Integer);

The procedure must be given a name, in this case DrawDiagonals. The
parenthesized list tells the computer that, when the procedure is called:

3.3 • Writing
Elementary
Procedures

52 3 Drawing and Using Procedures

four values will be given by the statement; the values will be of type
Integer; the values are to be assigned, respectively, to Top, Left, Bottom,
and Right. Following the heading are the steps that will be taken to draw
the diagonals. This sequence of steps is written just as if it were a
sequence of steps in the program itself. The list starts with the word
begin and ends with the word end. The word end, in this case, is
followed by a semicolon since execution will return to the next statement
in the program.

The whole declaration of the procedure might look like this:

procedure DrawDiagonals(Top,Left,Bottom,Right: Integer);
begin

MoveTo(Left,Top);
LineTo(Right,Bottom);
MoveTo(Left,Bottom);
LineTo(Right,Top)

end;

Once a procedure has been declared, the name can be used as a
statement in a program, just as with the predefined procedures. For
instance, the program in Fig. 3.10 draws two squares with their
diagonals.

Note that the names Top, Left, Bottom, and Right that are used in
the header are the same ones used in the program itself. This is not a
requirement; different variables can be used for the parameters of the
procedure. For instance, we could have used the following as the
procedure heading:

procedure DrawDiagonals(T,L,B,R: Integer);

This heading creates four new variables of type Integer. These
parameters are considered local variables. Using these parameters, the
statement part of the procedure reads as follows:

begin
MoveTo(L,T);
LineTo(R,B);
MoveTo(L,B);
LineTo(R, T)

end;

The main program would be unchanged. The call

DrawDiagonals(Top,Left,Bottom,Right)

passes the values associated with Top, Left, Bottom, and Right to the
procedure. The procedure accepts them in order, associating them with
the variables T, L, B, and R The two sets of parameters must be in the
same order and must be of the same type. In this case, all are
Integers.

program Squares;

var
Top, Left, Bottom, Right : Integer;

procedure DrawDiagonals(Top, Left, Bottom, Right : Integer);
begin

MoveTo(Left, Top);
LineTo(Right, Bottom);
MoveTo(Left, Bottom);
LineTo(Right, Top)

end;

begin
Top:= 5;
Left:= 5;
Bottom := 50;
Right:= 50;
FrameRect(Top, Left, Bottom, Right);
DrawDiagonals(Top, Left, Bottom, Right);

Top := Top + 50;
Left := Left + 50;
Bottom := Bottom + 50;
Right := Right + 50;
FrameRect(Top, Left, Bottom, Right);
DrawDiagonals(Top, Left, Bottom, Right)

end.

The new program reads as shown in Fig. 3.11.
You should be able to write simple procedures now, but the subject

is discussed fully in Chapter 11.

We should have all the tools we need now to build a program that will
draw a bar graph. Consider the following problem.

Write a program to draw a bar graph showing the number of
puppies enrolled in AKC in 1983 by breed using the following figures:

Cocker Spaniel 172,291
Collie 45,337
German Shepherd 129,621
Labrador Retriever 117,221
Poodle 184,297

Example Program 53

Figure 3.10 • Program
Squares draws two
squares with their
diagonals

3.4 • Example
Program

54 3 Drawing and Using Procedures

Figure 3.11 program Squares;

var

Figure 3.12

Top, Left, Bottom, Right : Integer;

procedure DrawDiagonals(T, L, B, R: Integer);
begin

MoveTo(L,T);
LineTo(R,B);
MoveTo(L,B);
LineTo(R, T)

end;

begin
Top:= 5;
Left:= 5;
Bottom := 50;
Right:= 50;
FrameRect(Top, Left, Bottom, Right);
DrawDiagonals(Top, Left, Bottom, Right);

Top := Top + 50;
Left := Left + 50;
Bottom := Bottom + 50;
Right := Right + 50;
FrameRect(Top, Left, Bottom, Right);
DrawDiagonals(Top, Left, Bottom, Right)

end.

The graph should have the format shown in Fig. 3.12.
Let us first look at what Pascal features will be required. We need to

write text in specified locations. We can do that with

MoveTo and WriteDraw.

Breed

Cocker Spaniel

Collie

Labrador Retriever

German Shepherd

Poodle

Puppies Enrolled by AKC in 1983

Puppies enrolled and AKC registerable

(in thousands)

We need to draw a frame. That we can do with

FrameRect.

We need to draw the bars, and

PaintRect

will serve nicely for that. This will draw a solid rectangle.
It looks as if the difficult part of this problem is to determine the

locations for the various components of the output. Let's look first at the
x coordinate, the horizontal distance from the left side of the screen to
the beginning of our text, to the beginning of the bars, and to the end of
the bars and the right side of the frame. The beginning of the text is easy
enough, we just decide where we want the graph to begin on the screen.
When we think about where the bars should begin, we run into a problem.
We need to allow enough space for the longest breed name, but the space
will vary according to what size type we choose. And what if we want to
change the type size?

Think about our temperature chart for a moment. If we wanted to
change the type size, it would be necessary to go through the whole
program very carefully, changing MoveTo and Line To locations. Not only
would this be very tedious, it would also be likely to result in errors. We
would like to avoid this potential problem if possible. We can do this by
giving names or identifiers to the various values. The ones that do not
change in the course of the program can be assigned constant values in
the declarations part of the program. The type size can also be declared
as a constant. That way we can change constant values instead of making
changes in the statements part of the program. This will not only be easier
and lessen the possibility of error, it will also make the program much
more readable. The values that change during the program have to be
named as variables in the declarations.

We have given the name TextStart to the horizontal location where
the text begins. The bars start at BarStart. The title and the label for the
ho name TextStart to the horizontal location where the text begins. The
bars start at BarStart. The title and the label for the bottom scale can start
at the same line as the bars. That still leaves two x locations to consider.
The right side of each bar shows the number of puppies divided by 1000,
so we use a variable named NumPups. The value of NumPups added to
the value of the bar start will be equal to Right. The final x line, the right
boundary of our frame is equal to whatever the upper limit is on our scale.
We will name this MaxNumPups.

Now we come to they coordinates, the distance from the top of the
screen to the bottom of each line of printing and to the top and bottom of
the bars. We can choose the location for the title line, name it TitleLine
and then use that as a base for determining the other y values. We will
decide on a TextHeight, which we can declare as a constant, and will
move down by that number of pixels for a new line of text. Each time we
add the TextHeight to a present line location, we get a new TextLine.
When we look at the bars themselves, we have the height of the bar and
the space between bars to consider. Let's name these BarHeight and

Example Program 55

56 3 Drawing and Using Procedures

Figure 3.13 • Algorithm
for program BarGraph

BarSpace. We can use these two variables to determine our Top and
Bottom boundaries for our rectangle.

We need to think about our frame. The left side lies along the
BarStart, which is a constant. The right side is equal to the highest
number on the scale, which is also a constant. The top lies along the line
where we write "Breed" and the bottom line lies along the bottom of the
last bar. Since we will not have the location of the bottom line until we
have reached the last breed, we would be wise to store the value for the
TextLine "Breed" while we are working in that area. We will store it as a
variable named FrameTop.

When we collect these various definitions and determine the steps
required to draw the graph, we come up with the algorithm shown in Fig.
3.13. For the corresponding program see Fig. 3.14; the screen that results
is shown in Fig. 3.15.

Definitions:
NumPups: number of puppies for each breed in thousands
MaxNumPups: high limit for number of pups in thousands

Top,Left,Bottom,Right: rectangle specifications

BarStart: x position for .start of bars
BarHeight: width of a bar in pixels
BarSpace: space between bars in pixels

TypeSize: point size of type
TitleLine: y position for title line
TextLlne: y position for a line of text
TextHeight: height of text including space in pixels
TextStart: x position for start of text column

MarkerLength:
NumWidth:
StartScale:
ScaleUnit:

length of marker on bottom scale
width of a number of chosen type size in pixels
x position for start of numbers on bottom scale
increment of numbers and markers on bottom scale

ScaleNum: number on bottom scale

Algorithm
Write title and column headings
Store frame top
For each breed

Set bottom
Set Top
Set pen for text
Write breed name
Set NumPups equal to number of puppies divided by 1,000
Set Right
Draw bar

Draw frame
Draw scale markers
Number bottom scale
Label bottom scale

program BarGraph;

const
MaxNumPups = 200;
BarStart = 150;
BarHeight = 12;
BarSpace = 4;
TypeSize = 9;
TextHeight = 16;
TextStart = 35;
TitleLlne = 30;
MarkerLength = 3;
ScaleUnit = 50;
NumWidth = 5;

var
NumPups : Integer;
Top, Left, Bottom, Right, FrameTop : Integer;
TextLine, StartScale, ScaleNum : Integer;

begin

I -- Write title and column heading l
TextSize(TypeSize);
TextLlne := TitleLine;
MoveTo(BarStart, Textline);
WriteDraw('PUPPIES ENROLLED BY AKC IN 1983');
TextLlne := TextLine + TextHeight;
MoveTo(TextStart, TextLine);
WriteDraw('Breed');

{ -- Store frame top }
FrameTop := TextLlne;

{ -- Draw and label bars }
Left := BarStart;
Bottom := TextLine;

Bottom := Bottom + BarHeight + BarSpace;
Top := Bottom - BarHeight;
MoveTo(TextStart, Bottom);
WriteDraw('COCKER SPANIEL');
NumPups := 172291 div 1000;
Right := BarStart + NumPups;
PaintRect(Top, Left, Bottom, Right);

Bottom := Bottom + BarHeight + BarSpace;
Top := Bottom - BarHeight;
MoveTo(TextStart, Bottom);
WriteDraw('COLLIE');
NumPups := 45337 div 1000;
Right := BarStart + NumPups;
PaintRect(Top, Left, Bottom, Right);

Bottom := Bottom + BarHeight + BarSpace;
Top := Bottom - BarHeight;

Example Program 57

Figure 3.14 • Program
BarGraph

58 3 Drawing and Using Procedures

Figure 3.14 continued

MoveTo(TextStart, Bottom);
WriteDraw('GERMAN SHEPHERD');
NumPups := 129621 div 1000;
Right := BarStart + NumPups;
PaintRect(Top, Left, Bottom, Right);

Bottom := Bottom + BarHeight + BarSpace;
Top := Bottom - BarHeight;
MoveTo(TextStart, Bottom);
WriteDraw('LABRADOR RETRIEVER');
NumPups := 117221 div 1000;
Right := BarStart + NumPups;
PaintRect(Top, Left, Bottom, Right);

Bottom := Bottom + BarHeight + BarSpace;
Top := Bottom - BarHeight;
MoveTo(TextStart, Bottom);
WriteDraw('POODLE');
NumPups := 184297div1000;
Right := BarStart + NumPups;
PaintRect(Top, Left, Bottom, Right);

{ -- Draw frame l
FrameRect(FrameTop, Left, Bottom, MaxNumPups + BarStart);

{ -- Draw scale markers I
MoveTo(BarStart, Bottom);
Llne(O, MarkerLength);
Move(ScaleUnit, - MarkerLength);
Line(O, MarkerLength);
Move(ScaleUnit, - MarkerLength);
Llne(O, MarkerLength);
Move(ScaleUnit, - MarkerLength);
Llne(O, MarkerLength);

{ -- Number bottom scale }
TextLlne := Bottom + TextHeight;
StartScale := BarStart- NumWidth;

ScaleNum := O;
MoveTo(StartScale + ScaleNum, TextLine);
WriteDraw(ScaleNum: l);

ScaleNum := ScaleNum + ScaleUnit;
MoveTo(StartScale + ScaleNum, TextLine);
WriteDraw(ScaleNum: l);

ScaleNum := ScaleNum + ScaleUnit;
MoveTo(StartScale + ScaleNum, TextLine);
WriteDraw(ScaleNum : l);

ScaleNum := ScaleNum + ScaleUnit;
MoveTo(StartScale + ScaleNum, TextLine);
WriteDraw(ScaleNum : l);

Figure 3.14 continued

ScaleNum := ScaleNum + ScaleUnit;
MoveTo(StartScale + ScaleNum, TextLine);
WriteDraw(ScaleNum: I);

{ -- Label bottom scale l
TextLine := TextLine + TextHeight;
MoveTo(BarStart, TextLine);
WriteDraw('Puppies Enrolled and AKC Registerable (in thousands)')

end.

::o Drowing

PUPPIES ENROLLED BY AKC IN 1983

Breed

COCKER SPANIEL

COLLIE

GERM AN SHEPHERD

LABRADOR RETRIEVER

POODLE r ' ' 0 so 100 150 200

Puppir.s Enrolled and AKC Regi•terable (in thou;and;)

Practice-QuickDraw 59

Figure 3.15 • Bar
graph drawn by
program BarGraph

Q]

3.5 o Practice

The drawings shown in Figs. 3.16 and 3.17 are produced by the program ~·', /
shown as Fig. 3.18. This program uses both the text window and the W
drawing window. The text window is used to request data from the user,
and the drawing window is used for the graphics display. The user is
asked to enter a number between 1 and 25. That number is then used to
control the size of the circle to be drawn.

Notice the boldface words repeat and until with a sequence of
statements between them. This is a repeat loop. The entire sequence of
statements enclosed by repeat and until is repeated, with the diameter
of the circle increasing each time, until the diameter finally exceeds 2000.
This program demonstrates how easily a moving display can be created
with QuickDraw.

The following questions apply to the program Rings.

I. How many variables does this program contain?
2. Can the two lines

60 3 Drawing and Using Procedures

Figure 3.16

Figure 3.17

program Rings;

var
Top, Left, Bottom, Right : Integer;
Diam, Increase : Integer;

begin
Top:= O;
Left:= O;
Diam:= O;

Write('Type an integer between 1 and 25: ');
Read(Increase);

repeat
Diam := Diam + Increase;
B'ottom := Diam;
Right := Diam;
FrameOval(Top, Left, Bottom, Right)

until Diam > 2000

end.

Top, Left, Bottom, Right : Integer;
Diam, Increase : Integer;

be combined into one line? How does this affect the program?
3. What happens if the statement

Write('Type an integer between 1 and 25: ');

is replaced by
WriteDraw('Type an integer between 1 and 25: ');

4. What happens if the user types a 26 in response to the prompt?
5. How many rings are drawn if the user enters the number 9?
6. What happens if the statement

FrameOval(Top, Left, Bottom, Right)

is replaced by
PaintOval(Top, Left, Bottom, Right)

7. How can the drawing be stopped in process to print the screen?

•••
There are two lines following the word var. The first line contains

four variables and the type description Integer. The second line contains
two more variables and the same type description Integer. These six

Practice-QuickDraw 61

Figure 3.18 • Program
Rings

62 3 Drawing and Using Procedures

variables could be listed on one line, since they are all of the same type.
The line would read,

Top, Left, Bottom, Right, Diam, Increase : Integer;

Don't forget the semicolon after the word Integer; declarations always
end with a semicolon. The execution of the program is not affected at all
by combining the two lines into one. The difference is in readability. The
first four variables are used to define the enclosing rectangle; the second
two pertain to the circle. Notice that the first two statements after the
repeat could also be combined to read

Bottom := Diam + Increase;

This would be a legal statement; however, the separation makes the steps
a bit clearer.

Write is used to enter text on the Text screen. WriteDraw would put
the output on the Drawing screen. Not only would this use space that we
want for the display; but, also, we have not given any instruction
regarding where to place the pen. Before writing on the drawing screen, it
is necessary to move the pen to the desired location.

The prompt for the user asks for a number between 1 and 25;
however, nothing in the program itself checks to see if that request is
being honored. The user could enter any number up to 32,767; a number
larger than that would be outside the range for Integer and would cause
an error. Of course, with very large numbers nothing would appear on the
screen.

If the user enters a 9, Diam becomes 9 the first time the loop is
executed, 18 the second time, and so forth. On the 223rd loop, Diam
becomes 2007 and execution proceeds to the next statement, in this case
to end.

PaintOval fills a circle rather than drawing the circumference. If
PaintOval is used instead of FrameOval, the blackness spreads in a curve
from the upper left corner, covering the screen and leaving no white
areas showing. The speed with which the darkness spreads is dependent
upon the number entered by the user.

When a program is running, a Pause menu appears to the right of the
existing menus. To stop the program during the run, move the plus sign
over the Pause menu and press the mouse button. The run will stop for as
long as you hold the button, and will continue its run when you release
the button. To stop the run for a longer time, pull down to the Halt, and
then release. The run will stop and you can print the screen. When you
are ready to go on, choose Go again, the run will continue where it
left off.

The screen dumps in Fig. 3.19 show the display with the user
entering a different number.

I
.I

,/
.. · ,/

Practice-QuickDraw 63

Figure 3.19

64 3 Drawing and Using Procedures

True or False
1. The text screen and the drawing screen can both be used as output in

the same program.

2. A pixel is a round dot on the Macintosh screen.

3. WriteDraw is used to draw on the text window.

4. Line(x,y) causes the pen to draw a line from the present pen location
to the position x,y on the screen.

5. To draw a line you must use two calls, MoveTo and LineTo.

6. To draw an oval you must describe a rectangle.

7. There are lots of poodles in the United States.

8. It is helpful to sketch the output on graph paper.

9. Bar graphs can only be drawn horizontally with QuickDraw.

10. WriteLn causes the pen to move down a distance equal to the text
size.

• ••
In program TemperatureChart and program Rings, you have seen

that the text and drawing windows can indeed be used in the same
program.

A pixel is actually square rather than round. It is a square area on the
screen which is bounded by four imaginary lines.

To write on the text window, you must use Write or WriteLn.
WriteDraw is for writing to the drawing window.

Number 4 is true.
Although a line can be drawn using MoveTo and LineTo; it can also

be drawn using the single call DrawLine(a, b, c, d); therefore, the answer is
false.

Numbers 6-8 are all true.
Bar graphs can certainly be drawn vertically with QuickDraw. We

leave it to you to write a program for doing exactly that.
The pen is tied to the drawing screen. WriteLn is a procedure call

that is used when outputting to the text screen. It causes the computer to
write the data designated and then reset to the beginning of the next line.
The answer is false.

Fill in the Blanks
1. The Macintosh screen is 512 pixels wide and ___ pixels

high.

2. The y coordinate increases as you move from ______ to
______ on the screen.

3. The statement

Move(8,20)

causes the pen to move ___ pixels down and ___ pixels to
the right.

4. In the procedure call

PaintArc(l0,20,80,90,30,60)

the integer 60 describes ________ ,

5. The call lnvertRect(T,L,B,R) causes the black pixels within the
described area to ____________ and the white
pixels to _________ _

6. The five shapes predefined in QuickDraw are ______ _
and

7. Values that change during the course of the program must be
declared as _________ _

8. Using identifiers for constant values makes it easier to ___ _

•••
The Macintosh screen is 512 pixels wide and 342 pixels high.

The y coordinate increases as you move from the TOP to the
BOTTOM on the screen. If you are used to using the standard coordinate
system, you need to adjust your thinking when you use QuickDraw. Think
of the screen as a page of text, which is read from left to right and from top
to bottom.

The statement Move(8,20) causes the pen to move 20 pixels down
and 8 pixels to the right. The horizontal location is always given first.

In the procedure call PaintArc(l0,20,80,90,30,60), the integer 60
describes the SIZE OF THE ARC. Since the arc starts at 30 and continues
for 60 degrees, it ends at 90 degrees.

The call lnvertRect(T,L,B,R) causes the black pixels within the
described area to BECOME WHITE and the white pixels to BECOME
BLACK

The five shapes predefined in QuickDraw are RECTANGLE, OVAL,
ROUNDED RECTANGLE, ARC, and CIRCLE.

Values that change during the course of the program must be
declared as VARIABLES.

Using identifiers for constant values makes it easier to MODIFY THE
PROGRAM. In most cases, it also makes it easier to read and understand
the program. Any of these answers is correct.

Practice-QuickDraw 65

66 3 Drawing and Using Procedures

3.6 0

3.1 Drawing a Figure
Here is a fun program for you to start with. Draw a snowman. The
minimum requirements f~r this snowman are: a body, a head, two eyes, a
mouth, and two arms. Add as many other things to the picture as
you like.

3.2 Enlarging the Circle
Cartoons are created by changing the drawing in each frame just slightly,
and then displaying the frames one after the other very quickly. Using this
principle, write a program to create a circle which appears in the center
of the drawing screen and grows larger.

3.3 More Big Letters
Drawing big letters, similar to the Big "H" in Chapter 2, is easily
accomplished on the drawing screen as well as the text screen. However,
remember that WriteLn does not work on the drawing screen.

Rewrite BigH to output to the drawing screen. Use MoveTo only at
the beginning; thereafter, use Move.

3.4 A Simple Procedure
The program from the preceding exercise would be very useful as a
procedure. Make the necessary changes to accomplish this. Then write a
second procedure to print a big I. A program to write a big word HI
anywhere on the drawing screen now requires only four additional
statements. Write it.

3.5 Drawing a Box
A box can be represented in two dimensions by drawing two rectangles
and connecting the corresponding corners with a line. Write a program to
draw a box.

3.6 Positioning Circles
When the 15 balls for a game of pool are racked, they form a triangle with
5 balls in one row, 4 in the next, then 3, 2, 1. Write the program to draw
this stack of pool balls.

Note: Before you begin, realize that the second row of balls nests
into the first row; some calculation is necessary here.

3. 7 Graph Paper
For various kinds of visual displays it is necessary to draw a grid on the
screen. For this exercise, write a program that divides the drawing screen
into one inch squares.

3.8 Temperature Chart
The outdoor temperature varies during the course of a day. Draw a line
graph showing the temperature for a 12-hour period. The program
should print a request for the temperature for each hour. The output
should show the temperatures on the vertical axis and the hours on the
horizontal axis. Draw a connecting line from each reading to the next.

3.9 Drawing Road Signs
Using only Move and Line, a fine stop sign can be drawn. Of course a
MoveTo is required at the beginning to set the location. Write a
procedure to draw a stop sign. Use the procedure in a program showing
the location of the two stop signs at a four-way intersection. Label the
streets and include an arrow with an "N" indicating which way is
north.

3.10 A Better Checkerboard
A checkerboard can be drawn by using lines only, or by placing squares
next to each other. Your problem is to write a program to draw a
checkerboard on the drawing screen. This is not as easy as it first
appears. Remember that the squares are two different colors; this can be
represented by using black and white, or by marking every other square
in some other way. If you are really adventursome, add the checkers.

Programming Exercises 67

f1E summer following the little matter of the Vatican
ameos was made memorable by three cases of interest, in

which I had the privilege of being associated with Mr.
. herlock Holmes and of studying his methods in the use of

the Analytical Engine. In glancing over my somewhat jumbled notes of
these cases, I find they brought him the fewest personal opportunities in
his long and admirable career. Each, however, did provide him with a
chance for testing out the Engine's varied capabilities, including a
telegraphic arrangement he made at considerable expense for com­
municating with the Engine over great distances. To Holmes the cases
were of themselves of only secondary interest; and although he saved
Scotland Yard a good deal of embarrassment in the first of these, the
official police took full credit for concluding the affair.

Upon attending one of my new patients one fine June morning, I
returned to Baker Street to find Holmes packing his valise in those high
spirits that told me he was off on some new adventure.

"You are preparing for a trip," I remarked, eager to display my own
deductive faculties.

"Yes, Watson," replied Holmes. "And perhaps your native shrewd­
ness can deduce my destination?"

I studied his packages for a moment. "Off on some scholarly
pursuits, I see. Perhaps to Cambridge and the Analytical Engine."

"There is such a delightful freshness about you, my dear Watson.
You've really done very well indeed."

I was immensely pleased.
"It is true, however," he continued, "that you have missed

everything of importance. As it happens, I leave this afternoon for the
Yorkshire coast. Now, Watson, would you care to join me?"

I hesitated for a moment, and then replied. "Indeed I would, Holmes.
There is a lull in my practice just now and I could benefit from a change of
scene. You have a case, then?" 69

70 Prelude to Variables

"A small matter, but not without points of interest," replied Holmes.
"We can consider it on the train. Can you meet me at King's Cross at
noon?"

"Yes of course, Holmes."
Holmes departed, and I hurried away to pack my bags for a few days

by the sea.
As our train lurched northwards, Holmes was deep in thought.

Framed in his ear-flapped travelling cap, he hardly spoke until we had
passed well out of London. As the grey of the city turned to the green of
the countryside, he proceeded to sketch for me the events in an
extraordinary matter which had become a topic of conversation the
length and breadth of England.

"I take it you are familiar, Watson, with this matter of the
disappearance of the Baroness of Whitelsey?" asked Holmes.

"Only what 1 have learned from what the Telegraph and the
Chronicle have had to say."

"He proceeded to sketch for me the events."

The Adventures of the Bathing Machine 71

"Well then," he began, "let us review what the papers have reported
thus far. It seems that the Baroness was spending a few days at the
seaside resort of Scarborough and was daily taking the healthful waters
of the North Sea. On each occasion she was taken down to the water's
edge in a hired bathing machine, and on each occasion she was
accompanied by the same attendants. At her request they would retire to
the beach side of the machine while the Baroness dipped into the waters.
Now, on the morning of the third of July, the attendants, at the conclusion
of this minor ritual, hauled the machine back over the beach only to find it
empty. A quick search of the shore revealed nothing, and the matter was
placed in the hands of the local police. Needless to say, the Baroness has
not been seen since."

After a brief pause, I casually remarked that the accusing finger of
the law would certainly point in the direction of these attendants.

"Yes, Watson," he answered. "Our dear Inspector Lestrade has
been called in by the local police and he naturally suspects foul play on
the part of these fellows, all of whom were detained. Of course he does
not have a shred of evidence, but remains adamant about a conviction.
The family of one of these unfortunate attendants has asked me to look
into the matter."

"Isn't it possible," I suggested, "that the Baroness met with an
accidental end and that the attendants tried to conceal her drowning?"

"Possible, yes, and highly probable," replied Holmes. "But it is a
capitiil error to theorize before one has collected one's data. However, as
Lestrade has already settled upon this theory, it is up to me to look for an
alternative."

With that Holmes lapsed into silence for much of the remainder of
our journey, sinking into that deep concentration that some might think
morose but that I knew to be a sign that he was pondering a most difficult
case.

We arrived without incident and took furnished rooms in the hotel
at which the Baroness had been staying. I found the trip fatiguing, but
Holmes left immediately to pursue his investigations without so much as
unpacking his bag. I dined alone and retired early. Lulled by the seaside
air and a single glass of port, I slept late into the next morning.

I awoke to find that Holmes had already breakfasted and gone out
again, leaving behind this note:

Watson-/'ue gone to Whitby, some 20 miles up the coast. Kindly
establish a connection with the Analytical Engine through the local
telegraph office.

Holmes

The director of the local telegraph office was most helpful, but in spite of
this, I was occupied with filling this request for most of the morning.

72 Prelude to Variables

When Holmes returned, he appeared elated. "A most profitable
morning, Watson. The mystery of the Baroness of Whitelsey is solved to
my satisfaction, but we need to resolve one final point. This provides us
with an admirable opportunity for testing our new telegraph arrange­
ments for communicating with the Engine.

"Now, the one bit of information we need to determine is the state of
the tide at the time that the Baroness vanished. Let us establish this as a
problem for the Engine.

"As you know, Watson, tides vary according to a 12 hour and 25
minute cycle. Since high tide today is at 11.00 AM., tonight it will occur at
11.25 P.M. Let us define the problem in terms of what we know, what is
given, and what we wish to determine:

The knowns:

The givens:

To find:

Tides recur every 12 hours and 25 minutes.

It is now July 28, and high tide is at 11.00 A.M.

The Baroness disappeared on July 3, at 9.00 AM.

The state of the tide at the time of the mysterious
disappearance.

"Well, Watson, this begins to define the problem. Let me present my
algorithm for solving it. First I will explain generally how the algorithm
works and then explain some key ideas illustrated by it."

Holmes then presented his simple algorithm, which I have
reproduced in Fig. 4.1.

"First, we express the time for a complete tide cycle in minutes."
"But why in minutes, Holmes?" I asked.
"That is due to a limitation of the Engine, Watson. It cannot work

directly with dates and times the way we can. For example, it is
inconvenient to read in a date and time such as July 28th, 11.00 AM.; thus
in my algorithm all dates and times are converted to minutes. As you will
see, in dealing with dates we can readily express them in terms of the total
number of minutes that have elapsed since the beginning of the
month.

"We read in TodaysDate as the number 28, representing the 28th of the
month. The TideHr is read as 11, for 11.00 AM. Similarly, the EventDate and
EventHr are read in as 3 and 9, respectively, representing July 3rd and 9.00
AM., the last time the Baroness was seen. In order to do our computations,
we must first convert our dates and times to minutes that have elapsed since
the beginning of the month. Thus our first calculation is:

Set MinsToHighTide to (TodaysDate - 1) * MinsPerDay

Today's date is 28, but only 27 full days have gone by this month. Thus we
subtract I and multiply by the number of minutes in a day. This gives the
number of minutes in the 27 complete days that have elapsed since the
b~nnin_g_ of the month.

The Adventures of the Bathing Machine 73

Definitions:

- Express the knowns
MinsPerHr is 60 minutes
MinsPerDay is 1440 minutes
MinsPerTideCycle is 7 45 minutes

Algorithm:

- Obtain the givens:
Read TodaysDate, TideHr, EventDate, EventHr

- Convert times to minutes since the beginning of the month:
Set MinsToHighTide to (TodaysDate - 1) * MinsPerDay
Set MinsToHighTide to MinsToHighTide + TideHr * MinsPerHr

Set MinsToEvent to (EventDate - 1) • MinsPerDay
Set MinsToEvent to MinsToEvent + EventHr * MinsPerHr

- Find elapsed time:
Set ElapsedTime to MinsToHighTide - MinsToEvent

- Find the number of elapsed tide cycles:
Set TideCycles to ElapsedTime I MinsPerTideCycle

- Output the result:
Write TideCycles

"We must also consider the 11 hours between midnight and high
tide today. So we use a second calculation,

Set MinsToHighTide to MinsToHighTide + TideHr * MinsPerHr

to add the number of minutes that have gone by today to our previous
total. We now have the total number of minutes from the beginning of the
month until high tide today.

"Next, we follow an identical procedure to arrive at a figure in
minutes for the time of the swim and subsequent disappearance."

"But Holmes, why do you calculate from the beginning of the
month?"

"That is arbitrary, Watson. l need some date as a reference, and the
first of the month is convenient since it allows us to express our input in
terms of days of the month.

"We now have the time of today's high tide and also the time of the
disappearance, expressed in minutes. We subtract one from the
other,

Set ElapsedTime to MinsToHighTide - MinsToEvent

to find the elapsed time in minutes.

Figure 4.1 • Holmes's
algorithm for
calculating tides

74 Prelude to Variables

"The rest is simple. We divide the elapsed time by the number of
minutes in a complete tide cycle, thus giving the number of tide cycles
that have taken place in the interim. In this way, our final answer will be
expressed in terms of high tide as a reference point

"Watson, this algorithm demonstrates several key ideas about
programming that I would like to explain to you, if you will hear
them."

"Of course."
"Very well," Holmes continued. "The first thing to understand is the

idea of a variable. Each variable we use in the program will have a name
that we give to it. Think of a variable as a piece of information that can
vary as the program progresses, such as the depth to which the parsley
had sunk into the butter that hot day when the dreadful business of the
Abernetty family was first brought to my attention."

"But what will cause the variables to change in value?" I asked.
"We will set and change the values of all the variables by the way we

write the program," Holmes replied. "They will be completely under our
control. Look again at the algorithm for our problem. Here you see
several variables, for example, the variables named TodaysDate and
TideCycles.

"Next, we have the idea of an expression. An expression is a formula
for computing a value. You can see some examples in my algorithm.
Consider the statement:

Set MinsToHighTide to (TodaysDate - 1) • MinsPerDay

Here MinsToHighTide is a variable whose value we are trying to establish.
We use the expression

(TodaysDate - 1) • MinsPerDay

to express the fact that we want the Engine to subtract 1 from
TodaysDate and multiply the result by the number of minutes in a
day."

"Does it not strike you as curious, Holmes, that the asterisk should
represent multiplication?"

"Not at all, Watson. The Engine would have difficulty in sorting out
the letter 'x' from the usual multiplication symbol."

"A statement used to set a variable based on an expression is
termed an assignment, because it assigns a value to a variable. You can
think of an assignment as establishing a fact about a variable. In the
algorithm, all assignments have the form:

Set variable to expression

That is, an assignment consists of an expression to be computed and a
variable that is to take on the value of the expression.

The Adventures of the Bathing Machine 75

"It is very important to notice, Watson, that the values of variables
may change as the program progresses. We use assignments to
elaborate progressive states of knowledge about the data. Consider, for
example, the two statements from my algorithm:

Set MinsToHighTide to (TodaysDate - I) * MinsPerDay
Set MinsToHighTide to MinsToHighTide + TideHr * MinsPerHr

The first we have already discussed. When it is evaluated, the variable
MinsToHighTide will be given a value consisting of the number of minutes
from the beginning of the month until midnight last night. In the second
assignment, the variable is revised to include also the number of minutes
that have elapsed today. Notice especially that the expression in the
second assignment contains the variable MinsToHighTide, the same
vru:iable whose value is to be changed.

"Here,'' he said, pushing a sheet of paper my way, "I have already
written out my algorithm in the language of a Pascal programme. You
shouldn't find it at all difficult to decipher."

I studied it for a moment. It was quite a short programme, and I have
replicated it here as Fig. 4.2.

"I take it that this curious symbol that resembles a colon followed by
an equal sign denotes assignment in the Pascal language?"

"Precisely," replied my companion. "In Pascal we need only say:

MinsToHighTide := (TodaysDate - I) * MinsPerDay

"I must admit, however, that the elements of originality and
enterprise are not too common to the scientific world. The symbol is,
indeed, distinctly unimaginative."

"Now, Watson, let us enter the data to the programme by using this
telegraph arrangement. We shall soon have our answer."

It was a brisk walk in the bracing sea air to the telegraph office. In a
matter of minutes our connections were established. Holmes then
carefully telegraphed the numbers

28 11 3 9

representing

July 28 11.00 am July 3 9.00 am

After a few minutes the results of his programme came clacking
back at us over the telegraph. He began scribbling down numbers on a
small pad of paper and finally tore the sheet loose.

"Precisely what I had expected,'' he exclaimed. "There have been
nearly forty-eight and a half tide cycles between today's high tide and that
fateful episode. This means, Watson, that the tide then differed by
roughly half a cycle, which places the mysterious bathing machine well
out of reach of the sea. Low tide, Watson! We can turn this little bit of

76 Prelude to Variables

information over to Lestrade and save these poor attendants from any
further humiliation."

"But how does this possibly remove them from suspicion?" l
asked.

"Elementary, Watson. If the attendants had drowned her, the
incoming tide would have washed her body onto the shore to be
discovered later. But it was not discovered. No, Watson, there is more to
it, as her family has suggested privately. The Baron Whitelsey is known as
a cruel man who abused his wife; I venture to say that the Baroness swam
out to sea and made good an escape with the help of a confederate. Let us
wish her well in her new life. I doubt that she will be seen on these shores
again."

Figure 4.2 • Program program Tides;
Tides { -- This program reads in the day of the month and the hour of }

{ -- high tide, as well as the day and hour of some earlier event. }
{ -- Times must be given in 24-hour form; for instance }
{ -- 3 p.m. is given as 18. I
{ -- The program computes the number of tide cycles during the }
{ -- elapsed time. I

const

MinsPerHr = 60;
MinsPerDay = 1440;
MinsPerTideCycle = 745;

var

TodaysDate, TideHr: Integer;
EventDate, EventHr : Integer;

MinsToHighTide, MinsToEvent, Elapsed Time: Longlnt;

TideCycles : Real;

begin

Read(TodaysDate, TideHr, EventDate, EventHr);

MinsToHighTide := (TodaysDate - 1) • MinsPerDay;
MinsToHighTide := MinsToHighTide + TideHr • MinsPerHr;

MinsToEvent := (EventDate - 1) • MinsPerDay;
MinsToEvent := MinsToEvent + EventHr • MinsPerHr;

ElapsedTime := MinsToHighTide - MinsToEvent;
TideCycles := Elapsed Time I MinsPerTideCycle;

Write('The number of tide cycles is', TideCycles)

end.

Chapter 4

Central to all programs is
the notion of a variable and the related concept of assignment. A variable
is a name for a piece of information that varies as the program
progresses. An assignment is an action that changes this information.

The use of names to refer to values needed in the course of the
computations is a characteristic of all computer programs. For example,
we may have

TodaysDate - 1
2 •Velocity
Sin(Pi I 4)

(the value of TodaysDate minus 1 l
(2 times the value of Velocity l
(the sine of the value of pi divided by 4 l

ln each of these forms a piece of information (for example, some number
of days) is associated with a name (for example, TodaysDate). This piece
of information is called a value. This value is not given directly (for
example, the value may be 28), but instead is referred to by a name (for
example, TodaysDate). This name is called a variable, since the value
associated with the name will be established or changed during the
course of the program.

An assignment is the means by which we establish or change the
value of a variable. For example, we may have

NumSuspects := 0
NumSuspects := NumSuspects + 2
MinsToHighTide := (TodaysDate - 1) • MinsPerDay

4.1 • Variables
and Assignment

77

78 4 Performing Calculations

In the first case, the value of NumSuspects is set to zero. In the second
case, the value of NumSuspects is incremented by 2. In the third case, the
value of MinsToHighTide is set to the value computed by the given
formula.

The point of all of these assignments is identical. At each step in our
program we have established certain facts about the state of our
knowledge. An assignment reflects the fact that we have established a
new state of knowledge.

The general form for writing all assignment statements is simple:

variable := expression

When this statement is acted upon by the computer, it means the
following:

1. Compute the value of the expression
2. Then associate this value with the variable

While the rules are simple, you must be careful to obey them
precisely.

Consider the following sequence of assignment statements, where
the variables MyScore and YourScore have initially unspecified values.

MyScore := O;
{ value of MyScore is 0, YourScore is unspecified }

YourScore := I;
{ value of MyScore is 0, YourScore is I }

MyScore := 2;
{ value of MyScore is 2, YourScore is 1 l

YourScore := MyScore;
{value of MyScore is 2, YourScore is 2}

YourScore := 2 * MyScore
{ value of MyScore is 2, YourScore is 4 }

We see here that each statement in the sequence is executed step by
step. Furthermore, each assignment establishes a new value for only one
variable.

The assignment

NumSuspects := NumSuspects + 2

given before perhaps deserves a little special attention. Here the variable
whose value is being set also occurs in the expression given on the right
side of the statement. This causes no problems. First, the value of the
expression is obtained; then this value is assigned to the variable, just as
before. This statement has exactly the same effect as the following
sequence:

Value := NumSuspects + 2;
NumSuspects :=Value

In both cases, the value of NumSuspects has been incremented by 2.

Declaring Variables 79

Macintosh Pascal, like all programming languages, has a number of 4.2 • Declaring
strictly applied rules regarding the use of variables. One such rule is that Variables
all variables used in the program must be stated in a declaration. A
declaration is a statement of some fact that will be true throughout your
program. For variables, the declaration states the name of the variable
and the type of information it represents.

For example, consider the following declaration:

NumSuspects : Integer;

This declaration introduces a variable named NumSuspects, and
specifies that the information it represents will be an integer number.
This last fact is particularly important. It means that whenever you
attempt to give the variable a value, the computer will check that the
value is indeed an integer number. If you try to assign the variable some
other type of value, the computer will complain. Do not be alarmed by
this fact-it should be precisely what you want. If the computer does not
complain, you can be assured that whenever you refer to this variable, it
will stand for an integer number. In Macintosh Pascal, Integer values
must not exceed ±32,676. In order to use a whole number outside of this
range, the variable must be declared as a long integer (Longlnt).

Consider next the following declaration:
TideCycles : Real;

This declaration is just like the declaration above except that here the
variable TideCycles is specified as Real. This means that the value of the
variable will always to a real number.

Real numbers, in Macintosh Pascal, can have up to 8 decimal places.
If greater accuracy is required, the variables can be declared as double
(up to 16 decimal places) or extended (up to 20 decimal places).

The variables NumSuspects and TideCycles are said to have
different types. We will have more to say about types later on, but for now
we make the following points. A type tells the computer what kind of
value a variable can hold. Once the type of a variable has been specified, it
is only possible to assign values of the same type. Thus you cannot assign
a real number to an integer variable; that is, you cannot say,

NumSuspects := 12.6 { erroneous assignment}

This is quite reasonable, since 12.6 is a rather unusual number of
suspects. When we get to other types of data, we will see that this rule is
rigidly enforced.

Pascal, however, allows you one exception. You can write,

TideCycles := 10

and Pascal takes this to mean the following: the integer 10 is converted to
an equivalent real number, and this real value is assigned to the variable
TideCycles. Note that this is the same as saying,

80 4 Performing Calculations

4.3 • Declaring
Constants

TideCycles := 10.0

As good practice, it is best to assign explicit real values to real variables,
just as you must assign explicit integer values to integer variables.

When arithmetic operations are performed on Integer numbers, the
results are returned as Longlnt. These results can be assigned to Integer
variables as long as they fall within the range for integers. Similarly,
results of arithmetic operations on real-type numbers are returned as
Extended numbers; but the results can be assigned to Real or Double
variables provided they fall within the acceptable range for real and
double numbers.

In most programs you will have many variables, and many of these
will be of the same type. Pascal lets you declare several variables at one
go by simply giving the list of variables followed by their common type.
For example, we may write,

TodaysDate, HighTideHr, ElapsedTime: Integer;

which declares three variables of type Integer.
One last rule. In Pascal, all of the declarations for variables must be

grouped together before the statement part of the program. Further, all
of the variable declarations must be preceded by the keyword var. Thus,
a complete list of variable declarations for a program might look like

var
TodaysDate, HideHr : Integer;
EventDate, EventHr : Integer;

MinsToHighTide, MinsToEvent, ElapsedTime : Longint;

TideCycles : Real;

While a variable is a piece of information that varies as a program
progresses, we often have pieces of information that are known before
the program is started and that do not change as the program
progresses. Such known facts can be stated with a constant
declaration.

Consider the following constant declaration.

MinsPerHr = 60;

This declaration specifies a constant named MinsPerHr, whose value is
fixed at 60. The constant declaration establishes the association between
the name MinsPerHr and its value. Obviously we will not be wanting to
change the number of minutes per hour during execution of the
program.

More generally, a constant declaration can be used to name any
value tnat is known when the program is written. Just as for variable
declarations, all constant declarations must be preceded by a keyword,
in this case, the keyword consl For example, we may have the constant
declarations:

const
MinsPerHr = 60;
Unknown = O;
Pi= 3.14159;
MaxTaxRate = 70.0;

(the number of minutes per hour }
(standard value for unknown items }
(the value of pi }
(the maximum rate of tax l

In all of these constant declarations, a name is associated with a simple
integer or real number. Throughout the program the name and the
number can be used interchangeably.

Just as for declared variables, the name of a constant has a defined
type. A constant's type is simply that of the value given in the constant
declaration. For example, MinsPerHr is of type Integer and Pi is of typ~
Real. The group of constant declarations for a given program musi
precede the group of variable declarations.

Before going on, one other point. Character strings can also be given
a name using a constant declaration, as in

const
Blank='';
HisName = 'Mycroft';

These names can be used in Write statements, such as

Write('His name is', Blank, HisName)

which prints

His name is Mycroft

just as you would expect.

Expressions 81

In every program we want to compute some results. To do this we need 4.4 • Expressions
to write expressions. An expression is a formula for computing a
value.

Consider the very simple expression

TodaysDate - 1

This expression subtracts one from the existing value of the variable
TodaysDate. In this expression, we have a subtraction operator and two
operands, TodaysDate and 1. Next, consider the expression

82 4 Performing Calculations

ElapsedTime/MinsPerTideCycle

Here we have a division operator and two operands, ElapsedTime and
MinsPerTideCycle. The value of the expression is the real number that is
the quotient of the two values.

Both of these expressions illustrate properties that are common to
all expressions. First, an expression can contain some special symbols
like + and I called operators. Second, the operators are applied to the
values of the operands. The operands may be numbers, variables,
constants, or parenthesized expressions. Third, when an operator is
applied to operands, a result is computed and this result has a given type.
In the first of the two preceding expressions, an integer-type result is
computed; in the second, a real-type result is computed.

Table 4.1 lists all of the arithmetic operators in Pascal, along with the
types of their operands and the type of the result. With

+ - *

you may combine integer-type values with real-type values. The type of
the result will be an extended number if either of the operands is a real­
type number, and a Longlnt number otherwise. For example,

Pi+ 2

is the same as

Pi +2.0

Table 4.1 • Arithmetic Operations in Macintosh Pascal

Operations with Two Operands

Operator Operation Type of Operands

+ addition Integer-type or Real-type
subtraction Integer-type or Real-type
multiplication Integer-type or Real-type

I real division Integer-type or Real-type
div integer division Integer-type

with truncation
mod remainder after Integer-type

integer division

Operations with One Operand

Operator Operation
+ identity

sign inversion

Type of Operands
Integer-type or Real-type
Integer-type or Real-type

Type of Result

Longint or Extended
Longint or Extended
Longint or Extended
Extended
Longint

Longint

Type of Result
Longint or Extended
Longint or Extended

In both cases, the result is an extended number.
The operators div and mod deserve a special note. The operator

div gives the integer part of the result when one integer is divided by
another. The operator mod (for modulo) gives the corresponding
remainder. For example, we may have:

7 div 2 I value is 3 l
7 mod 2 I value is I l

These little operators are quite handy. For example, suppose you are
standing in a train station and the time on the clock is 1432. In more
familiar notation, you take this as 2 hours and 32 minutes p.m. How would
you get this in Pascal? You would write something like .

Hours := TrainTime div 100;
Mins := TrainTime mod 100

This determines the number of hours and the number of minutes in the
given train time. Furthermore, if you know that the number of hours is
greater than 12 (for example, 14), you can write,

PmHours := Hours mod 12

to compute the corresponding p.m. hours.
As indicated in Table 4.1, plus and minus may be used with a single

operand. This is allowed only at the beginning of an expression, as in

XCoordinate := -10.0;
YCoordinate := + 10.0

Of course, you will often want to write expressions with several
operands and operators, just as you do in conventional arithmetic. For
example, you may wish to write,

(TodaysDate - I) * MinsPerDay

or

TotalCash + Deposits - Withdrawals - Embezzlement

To do things like this you have to remember a few rules. The rules
are

• Parenthesized operands are evaluated before unparenthesized
operands.

• The operators *, I , div, and mod are applied before - and
+.

• Otherwise, evaluation proceeds in textual order from left to
right.

These rules are intended to make the writing of expressions easier. Thus
if you write,

Expressions 83

84 4 Performing Calculations

1 + NumWidgets * 2

and NumWidgets is 3, the result is 7 (which is what you want) and
not 8.

To make sure that you have these rules straight, consider the
following pairs of expressions. The expression on the left will give the
same value as the expression on the right.

1 + 2 + 3 (1 + 2) + 3 { value is 6 }
1 - 2 - 3 (1 - 2) - 3 { value is -4 }
1 + 2 * 3 1 + (2 * 3) { value is 7 }
1 * 2 + 3 (1 * 2) + 3 { value is 5 }
-1-2-3 ((-'l)-2)-3 {valueis-6}

This may look a bit tricky, but in normal practice you should have no
problem. With proper spacing you can write your expressions like

1 + NumWidgets*2

rather than

1 +NumWidgets • 2

so that you and the reader will have no doubt as to what you mean.
Furthermore, when there is a problem, just put parentheses in your

expressions to make your intent exactly clear. For example, it is probably
not a good idea to write something like
060 -A-B-C

You can make things look a lot better simply by writing

-(A+ B + C)

which leaves no mystery for the reader.

Using Predefined Functions as Operands
Consider the expression:

Sqrt(5.0) + 1.0

This expression adds 1.0 to the square root of 5.0. Our interest here
centers on the Sqrt in

Sqrt(5.0)

In mathematical parlance, Sqrt is called a function, in this case a function
to compute the square root of its argument. In Pascal there are a number
of such functions that are predefined in the language. For example, you
can compute the absolute value of a number or its mathematical sine. A
list of all of these functions is given in Table 4.2. To use these functions,
you simply write the name of the function followed by its argument
enclosed in parentheses, as shown above. All of this works just as you
would expect and should cause no problems.

Table 4.2 • Predefined Arithmetic Functions

x denotes an expression whose whole value is either integer or real, unless stated
otherwise.

Odd(x)

Abs(x)

Sqr(x)

Sqrt(x)

Sin(x)

Cos(x)

Ln(x)

Exp(x)

Arctan(x)

Trunc(x)

Round(x)

True if the value of x is an odd number, and false otherwise. The
value of x must be an integer.

The absolute value of x. If the value of xis an integer, the result is
an integer; otherwise, the result is a real number.

The square of x. If the value of x is an integer, the result is an
integer; otherwise, the result is a real number.

The positive square root of x, where x must be nonnegative.
Result is a real number.

The sine of x, where x is expressed in radians. Result is a real
number.

The cosine of x, where x is expressed in radians. Result is a real
number.

The natural logarithm of x, where the value of x must be greater
than zero. Result is a real number.

The value of the base of natural logarithm raised to the power of
x. Result is a real number.

The principal value (in radians) of the arctangent of x.

The value of x (which must be a real number) truncated to its
integer part. For example, Trunc(4.6) is 4 and Trunc(-4.6) is
-4.

The value of x (which must be a real number) rounded to the
nearest integer. For example, Round(4.62) is 5 and Round(-4.6)
is-5. If xis zero or positive, Round(x) is equal toTrunc(x + 0.5);
for negative x, Round(x) is equal to Trunc(x - 0.5).

Before going on, we must mention two important rules that you
have to remember when you write an expression. The first is that if you
use a variable in an expression it must already have been assigned a
value. If it has not, the computer will not know what to do; and, most
likely, your program will come to a stop or give bizarre results. For
example, if you write

NumSuspects + 1

and you have not already given a value to NumSuspects, the result will be
trouble.

Expressions 85

86 4 Performing Calculations

4.5 • Reading
and Writing
Information

Second, you must be careful when writing expressions containing
both integer and real number values. For example, if IntValue is an integer
variable and RealValue is a real variable, then

lntValue + RealValue

will give a real result. Watch out for this, for you cannot say,

IntValue := IntValue + RealValue { -- erroneous}

If you want to assign a real value to an integer variable, you have to use
one of the functions Trunc or Round given in Table 4.2. Thus you can say
something like

IntValue := Trunc(lntValue + RealValue)

to truncate the real result computed by the addition of lntValue and
RealValue.

In almost every program you write, you are going to want to read in some
data and print some results. Doing this is easy. Consider the state­
ment

Read(TodaysDate, TideHr, EventDate, EventHr)

When the computer executes this statement, it will ask you for four
values. You may give it something like

28 11 3 9

or something like

28 11
3 9

When you give it these values, the four variables will be assigned the
values that you typed in. This is exactly the same as writing,

TodaysDate := 28;
TideHr := 11;
EventDate := 3;
EventHr := 9

in your program. That is, reading data is exactly the same as assigning
values to variables.

The general rule for reading data is thus quite simple. You simply
use the name Read followed by the parenthesized list of variables whose
values you want to read.

For printing your results, the process is just the opposite. For
example, consider the statement

Write(TideCycles)

Reading and Writing Information 87

When the computer processes this statement, it will simply print the
value of TideCycles. If you want, you can say,

Write('The number of tide cycles is', TideCycles)

In this case, your program will write the characters "The number of tide
cycles is" followed by the value of the variable of TideCycles.

More generally, you may print out any character string or the value
of any expression, provided that each of these items is separated by
commas. Thus all of the following statements are acceptable:

Write('SOME INTRODUCTORY MESSAGE')
Write('YOU CAN PRINT CHARACTERS LIKE $ AND +')
Write(OneVariable,Another ,AndAnother)
Write('PI divided by 4 is', Pl/4)

There Js an old computer adage: you read variables and write
expressions. It really is just about that simple.

Some closing details. When you use Read, the computer will ignore
any line boundaries and keep reading until it gets the input values it
wants. When you use Write, the computer will print the output values so
as to put several values on a line. The computer has its own way of
printing your data, and the results may not always be nice to look at.

If you want to control the situation a bit more, you can also use
ReadLn and WriteLn. With

ReadLn(TodaysDate, TideHr);
ReadLn(EventDate, EventHr)

the computer will expect EventDate and EventHr on a new line, and then
advance to the next line before reading any more data With

WriteLn('The number of tide cycles is', TideCycles)

the computer will print the message and value on a single line, and then
advance to the next line before writing any more results.

One handy little detail. If you say,

Write('Number of suspects is', NumSuspects)

the computer will normally print the value of NumSuspects right justified
in a 9-digit field. Thus your output may look like

Number of suspects is 4

To make things nicer, you can say,

Write('The number of suspects is', NumSuspects : 2)

The 2 in

NumSuspects : 2

88 4 Performing Calculations

4.6 o Practice

tells the computer that two spaces are to be used for printing the value of
NumSuspects. Thus your output will be

The number of suspects is 4

For printing real numbers, if you say,

Write('The number of tide cycles is', TideCycles)

the computer will print something like

The number of tide cycles is 4.8e+ 1

However, if you say,

Write('The number of tide cycles is', TideCycles : 6 : 2)

the computer will print,

The number of tide cycles is 48.48

The 6 in 6 : 2 means the value will occupy six character positions.
The 2 in 6 : 2 means two digits will be given to the right of the decimal
point.

We will take this up in much greater detail in Chapter 12, but this
should suffice for most cases.

Many of the ideas presented in this chapter are illustrated in the program
of Fig. 4.3. This program reads in 6 integer values, representing the
number of pennies, nickels, and so forth, and prints the value of the coins
in dollars and cents. This program, like all of the others in this book, was
written with a great concern for the reader. You see that when programs
are carefully written, they can be read and understood without a great
deal of concern for the many detailed conventions of Pascal.

This program contains several variables. All of the variables are
declared in the declarations part of the program. The declaration states
the name of the variable and its type. In this particular program all of the
variables are of type Integer.

As you read the program, notice that the only variable that actually
holds different values during the course of the program is TotalChange.
However, NumPennies, NumNickels, and so forth must be declared as
variables because their values are initially undefined; they change from
an undefined value to a specific value read from the keyboard. It is
important to understand here that "undefined" does not mean that they
have no value. If you were to put an undefined variable into an
expression, the computer would take whatever value existed in the
location assigned to that variable and would use that value in your
calculation. The result would be trouble. In the first assignment

program CountChange;

{ -- This program reads in six integer values, respectively }
{ -- representing the number of pennies, nickels, dimes, quarters, }
{ -- half-dollars, and silver dollars in coinage. }
{ -- The program outputs the total value of the coins }
{ -- in dollars and cents. }

var
NumPennies, NumNickels, NumDimes, Num Quarters,

NumHalves, NumDollars : Integer;
TotalChange, Dollars, Cents : Integer;

begin
TotalChange := O;
Write('Enter the number of Pennies, Nickels, Dimes, Quarters,

Halves, Dollars:');

Read(NumPennies);
TotalChange := TotalChange + 1 • NumPennies;

Read(NumNickels);
TotalChange := TotalChange + 5 * NumNickels;

Read(NumDimes);
TotalChange := TotalChange + 10 * NumDimes;

Read(NumQuarters);
TotalChange := TotalChange + 25 * NumQuarters;

Read(NumHalves);
TotalChange := TotalChange + 50 * NumHalves;

Read(NumDollars);
TotalChange := TotalChange + 100 * NumDollars;

Dollars := TotalChange div 100;
Cents := TotalChange mod 100;
Write('Change is ', Dollars : 1, 'dollars and ', Cents : 2, 'cents .')

end

statement in CountChange, what is the value assigned, and to which
variable is it assigned?

•••
During the course of the program the total amount of money for each
type of coin is added to the total amount of change giving a new value for
TotalChange. Since TotalChange is used as part of the expression that
calculates the new value, it is important to guarantee that it starts out
with a zero value; therefore, it is assigned a zero value before any
calculations are performed. This is a practice that must become second

Practice-Calculations 89

Figure 4.3 • Program
CountChange

90 4 Performing Calculations

nature for you. Before any variable is used in an expression, a value must
be assigned to it. Quite often, the value initially assigned will be zero.

In the program to count change, find the statement that initially
assigns a value to each of the other variables listed in the declarations .

•••
For the number of coins of each denomination, the value is assigned
when the Read statement is performed. This statement causes the
computer to read an integer value from the keyboard and assign it to the
integer-type variable shown in the parentheses following the Read. The
first and only values for Dollars and Cents are assigned in the two
statements preceding the final Write statement.

Can you think of a shorter way to assign these values?

•••
The parentheses following a Read can contain more than one variable.
Several variables can be listed separated by commas. As each value is
read from the keyboard, it is assigned to the next listed variable. One
Read could cause the number of coins of each denomination to be
assigned to their prospective identifiers, as in the following:

Read(NumPennies, NumNickels, NumDimes, NumQuarters, NumHalves,
NumDollars)

There is always more than one way to write a program. For instance,
the program for counting change could have made use of constants, such
as PennyValue, NickelValue, and so forth. Where would these values be
declared?

•••
The identifiers used in a program must be declared in a particular order.
Constants must be declared before variables. Since the value of a coin
does not change, these values could be declared as constants; for
instance,

NickelValue = 5;

The identifier would then be used in the assignment statement, as in

Tota!Change := Tota!Change + NickelValue * NumNickels

Once identifiers have been declared, you will most likely want to use
them in expressions. The following expressions are written in familiar
arithmetic notation. Using Tables 4.1 and 4.2, write them as they would
appear in a program. For example,

A2 + B2

would be written as

Sqr(A) + Sqr(B)

or as

A*A+ B*B

(a) B2 - 4AC

(b) Pl· r 2

(c) square root of A2 + B2

(d) 1000

(e) one million

(f) 6%

(g) V2 Base · Height

(h) (A + B) I (C + 0)

(i) sin2(X + I)

G) IA-Bl

(k) $25,000

(I) X2 I 2Y

•••
Many of the arithmetic notations familiar to us are not recognized by
Pascal. The following expressions are correct Pascal:

Sqr(B) - 4 * A * C.

Actually, 4AC looks more like an identifier than an expression. However, it
doesn't fit that category either, since it begins with a number.

Pi * Sqr(r) or Pi * (r * r)
Sqrt((A * A) + (B * B)) or Sqrt(Sqr(A) + Sqr(B))

1000

1000000 or l.OE+6

depending on whether an integer type or real type number is desired.

0.06

(Base/2) * Height

(A + B) I (C + D)

This expression is correct as originally written.

Sqr(Sin(X + 1))

(A-B)

25000

(X * X) I (2 * Y)

In dealing with computer languages, we must be careful of the order
in which expressions are evaluated and the value of the result.

Assuming that A, B, C, and so forth are variables of type Integer,
state what values are assigned to them.

Practice-Calculations 91

92 4 Performing Calculations

A :=I +I;
B := I +(I - I);

:= 2 * 3 * 4;
:=2*3div4;
:= 2 * (3 div 4);
:= 2 div 3 * 4;
:= (-2) * (-5);
:= 4-3 + 2;
:= - 2 * 5 +I;
:= Trunc(30/7 /2);

c
D
E
F
G
H
I
J
K := Round(31.4 * 95.3 * 1.1)

•••
You may have noticed as you calculated the preceding values that some
of the expressions produce real numbers when they are evaluated. D, E,
F, J, and K must be declared as variables of type Real; otherwise, an error
results. Remember that real numbers and integers are output differently
by the computer. Here are the correct answers assuming that the real
numbers are to be output using two decimal places.

A :=2
B :=I
c := 24
D :=LOO
E := 0.00
F := 0.00
G := 10
H :=3
I :=-9
J := 2.00
K := 3292.00

If your results are different, try again after reviewing the rules for
evaluating expressions. On D, E, and F, you must remember that the word
div is special. It does not mean "divided by"; for that you must use the
slash (/). Div gives only the integer part of the result when one integer­
type number is divided by another. Be very careful to say what you mean
to say when you use div and /.

Like any feature in a programming language, assignment state­
ments have their own peculiar conventions. For each of the following
assignment statements, answer True if the statement could be valid in
some program, and False otherwise.

(a) A:= B (e) Result:= A+ B * C mod(X) I 2
(b) One:= One+ One (f) -X :=A+ B

(c) Case! :=-Case (g) F(X) := I

(d) Sum:= ((N + I)) (h) Y := SQRT(SQRT(X))

(i) A := (A - (B - (C - (D -{X)))) + 1) (I) P :=A div B div C

(j) PISquared = 3.14159 * 3.14159

(k) !ROOT:= SQRT(X)

(m)I := B * C

(n) X := SquareRoot(Y)

Note: In making your decision, you must consider whether the statement
could be valid in any program, no matter how strange .

•••
In reviewing the assignment statements just listed, you must remember
that the statement assigns the value of the expression on the right to the
variable on the left. Examples i, j, and n do not have valid variable
identifiers on the left and therefore could not be used in any
program.

In example g, the word SquareRoot is not a predefined function; the
name of the function is Sqrt (or SqRt, the capitalization of the letters is not
relevant).

Example h would certainly be clearer with some added parentheses;
as written it would be evaluated as follows.

Result:= A +(((B * C) mod (X)) I 2)

Example m has more than one problem. An equal sign is used
instead of an assignment symbol. The numbers contain commas. You
and I may assume that the commas were meant to be decimal points;
however, the computer does not make assumptions like that.

On questions a-f and k and l you should have answered True.

Fill in the Blanks
1. All identifiers used in a program must be ________ _

before they can be used.
2. The value of a variable is changed by means of an ____ _

3. Constant declarations must be preceded by the keyword __ _

4. Character strings declared as constants must be enclosed by

5. Expressions contain operands and _____ _

6. The asterisk(*) in an expression means that the terms on either side
are to be ______ _

7. Unless otherwise indicated by parentheses, division is performed
_____ addition.

8. Unnecessary parentheses are sometimes added to an expression to
improve its ______ _

9. Sqrt is a predefined _____ _

10. When an integer is subtracted from a real number, the resulting
number is of type _______ _

Practice-Calculations 93

94 4 Performing Calculations

4.7 0

11. Using a Write statement, you can print out character strings and
____ of expression.

12. When the statement

Write(X: 4: 2)

is executed, the value printed will contain __ _
places.

• ••

decimal

The answers are: DECLARED, ASSIGNMENT, CONST, SINGLE
QUOTES, OPERA TORS, MULTIPLIED, BEFORE, READABILI1Y, FUNCTION,
EXTENDED, VALUES, 2.

4.1 A Desk Calculation
In some people's eyes, a computer is just a powerful desk calculator. Sure
enough, we can perform common calculations with a computer.

One common application of calculations is the computation of
averages. Suppose that you receive quarterly electric bills and wish to
compute the average monthly cost. For example, if your quarterly bills in
dollars and cents are

170.33 161.42 125.78 147.91

the average monthly cost would be:

50.45

Write a program to read in four real numbers representing quarterly bills
and print the average monthly cost. Test your program with the above
values.

4.2 Simple Arithmetic
The distributive law of mathematics says that the expression

A*(B+C)

is equivalent to the expression

A*B +A*C

Write a program to test the validity of this law; that is, write a program
that reads in values for A, B, and C and then prints the values of both
expressions. Can you think of values for A, B, and C where the distributive
law will not hold when you run the program? Test your program with
these values.

4.3 Unit Pricing
It is now common for supermarkets to compute and display the unit price
of items. For example, a 4-ounce item costing 72 cents would be unit
priced at $0.18 per ounce, $2.88 per pound.

Write a program to read in

a) An integer representing a given number of pounds (for example,
0)

b) An integer representing a given number of ounces (for example,
4)

c) An integer representing a given price in dollars and cents, where
the last two digits give the cents amount (for example, 72 or
072)

and print

a) The unit price per ounce (for example, 18)

b) The unit price per pound (for example, 288).

For simplicity, the unit prices may be given as the integer number of cents
per ounce and cents per pound.

4.4 A Very Simple Calculation
Write a program to read in three integers (whole numbers) and print
their sum and their average. The numbers should be allowed to have one
or more spaces between them. The output should be preceded by the
message

THE SUM AND AVERAGE ARE:

For example, with an input of

24 5 0

the output should be

THE SUM AND AVERAGE ARE: 29 14.5

Finally, run your program with input values that are not well-formed
number, for example,

2H 5 1.1

or

2,345 3,012 167

Do you think your computer treated you reasonably?

4.5 Metric Conversion
Write a program to convert miles per hour into kilometers per hour. The
input value should be the number of miles per hour expressed as a whole

Programming Exercises 95

96 4 Performing Calculations

number and the corresponding number of kilometers per hour
expressed as a whole number. For example, with the input

55

representing 55 miles per hour, the output should be something like

55 MILES PER HOUR = 88 KILOMETERS PER HOUR

There are 1.609 kilometers in each mile.
Note: In order to calculate the number of kilometers per hour

exactly, you will have to use real arithmetic. As mentioned earlier, in
Pascal, an integer can be converted to a real number by assigning it to a
real variable, as in

RealMPH := IntMPH

The calculated number of kilometers per hour (a real number) can be
converted to an integer by using the predefined function Trunc, as in

IntKMPH := Trunc(RealMPH * 1.609)

Not very symmetrical, is it?

4.6 B or Better
Assume that an exam has 28 questions. In order to receive a grade of B, at
least 80 percent of the questions must be answered correctly. Write a
program to determine how many questions you can miss and still earn at
least a B.

4. 7 Pythagorean Theorem
The Pythagorean theorem states that the square of the hypotenuse of a
right triangle is equal to the sum of the squares of the other two sides.
Write a program to read the lengths of the two legs and print the length of
the hypotenuse.

4.8 Entering a Program
Using the formula

A= Pl* r * r

write a program to read the radius of a circle, draw the circle on the
drawing screen, and write the calculated area under the circle. The radius
is to be entered in inches and converted to pixels within the
program.

4.9 A Price Calculation
Floor covering is sometimes sold by the running foot. The one we wish to
purchase comes in a 12 foot roll and costs $11.29 per running foot. There

is a delivery charge of 19 cents per pound, and the carpet weighs 3
pounds per running foot.

For this program, assume a room with a width between 9 feet and 12
feet; the carpet for this room would be cut from a 12 foot roll. Write a
program that reads the length of the room and calculates the total price
of the delivered carpeting.

4.10 Ordering
Personal computers are quite often called upon to act as handy printing
machines, reformatting data into a more useful form. Your problem this
time is to enter the following three numbers

34.60 91.25 101.05

and print them in a chart like the following:

Number Value

1 34.60
2 91.25
3 101.05

Programming Exercises 97

Prelude to Choices

OU see, Watson," remarked Sherlock Holmes, as we sat
together one frosty evening considering a recent report
that the missing Baroness of Whitlesey had been seen in
Vienna, "I attribute much of my professional success to the

fact that I regard detection as a science as well as an art; and unlike most
of my colleagues, I have never regarded it as drudgery. Detection takes its
purest form as deductive reasoning and is comparable only to
mathematics in its elegance and intellectual challenge. For this reason,
the Analytical Engine, based as it is upon mathematical principles, has
seemed a most attractive tool for my labours."

"What is your next plan for using the Engine?" I asked, sensing that
my friend was ready to launch some new idea.

"My plan, Watson, is to use this remarkable Engine as a storehouse
for some of the minutiae that clutter my mind. Take for instance my
monograph, 'Upon the Distinction Between the Ashes of the Various
Tobaccos,"' he said, gesturing to a dusty volume that lay before us on the
table.

"In this treatise I have described and classified a hundred and forty
types of cigarette, cigar, and pipe tobaccos, with coloured plates
illustrating the various sorts of ashes. Although I took a special interest in
retaining such details as, say, the exact appearance of MacDuffy versus
Lunkah cigar ash, most investigators would lack the patience to do so;
and I cannot say I blame them.

"The brain is after all like an attic of vast but limited capacity that we
fill with whatever matter we deem important for the future. Since the
walls of this attic cannot be stretched like India rubber, as we amass more
and more information some of the old is jostled out to make room for the
new. It would be helpful if we had a device to remember vast quantities of
data for us and to supply us with information pertaining to these data
whenever we so request. I claim, Watson, that the Analytical Engine is
wonderfully suited to this task.

"As an exercise to test my idea, I have prepared a table listing the
properties of the ten most commonly smoked cigars in London."

99

100 Prelude to Choices

Holmes's table of ash properties is given here.

CIGAR TYPE TEXTURE COLOUR PARTICLES NICOTINE

Espanada Caked Dark No ++
Heritage Flaky Light Grey No ++
Latino Varied Dark Yes +
Londoner Caked Brown Tint No ++
Lunkah Granular Dark Grey No ++
MacDuffy Flaky Dark Grey No ++
Old Wood Varied Brown Tint Varied +++
Top Hat Caked Dark Grey No ++
Trichinopoly Flaky Dark No ++
West Country Flaky Light Grey No ++

While I studied his document, Holmes walked over to the fire and took
down a small brass box from the mantlepiece. This he opened, and
quietly he smelled the single cigar which it contained.

"I should like to design a programme that would identify the cigars
bearing certain specified ash characteristics. Moreover, if the specified
characteristics did not match any of these ten cigars, the Engine should
indicate this so that I could then research the matter myself."

"I take it, then, that there are particular characteristics of this
programme that are of interest?" I queried, for I still had little experience
in constructing programmes.

"Precisely, Watson," replied my friend. "The central issue is the
need to make decisions and take appropriate actions as the consequence
of a given condition. Of course, this is a very common problem in the
work of detection.

"There are any number of combinations we can make of the various
conditions. We may specify that a certain action be taken under a certain
set of circumstances, such as

if texture is caked then
- perform action A

Another situation that arises is that of two possible actions, with the
choice between them depending upon a single condition. For instance,

if texture is caked then
- perform action A

else
- perform action B

Finally, we may be faced with a number of possible courses of action, with
our choice depending upon one of several conditions:

"He smelled the single cigar which it contained."

if texture is caked then
- perform action A

else if texture is flaky then
- perform action B

else if texture is granular then
- perform action C

else (if none of the conditions above are met)
- perform action D

"I understand, Holmes, but how do you solve this problem in terms
comprehensible to the Analytical Engine?"

"Simple, Watson," said Holmes. "All we must do is organize the
decisions in the form of a consistent algorithm and then translate the
algorithm into the machine's language. Here I have listed all the choices
of properties for a cigar. Notice that the normal cigar has no particles and
has a nicotine content marked with two plus signs. Furthermore, there
are two basic kinds of cigar ash. There is Stock 1, which is flaky or caked,
and Stock 2, whose characteristics are fluffy or granular."

Holmes's ash classification is reproduced here as follows:

A Study of Cigar Ash 101

102 Prelude to Choices

Colour
Texture
Particles
Nicotine
Normal Strength
Stock 1 Cigar
Stock 2 Cigar

Dark, Dark Grey, Light Grey, Brown Tint
Flaky, Caked, Granular, Fluffy
No, Yes
+, ++, +++
++, no particles
Flaky or Caked
Granular or Fluffy

"My strategy," Holmes continued, "is to command the Engine to
read a list of properties pertaining to cigar ash. The programme will then
determine whether the cigar is of normal strength and whether it is of
Stock 1 or Stock 2. With these questions settled, it will then be able to
determine whether the cigar is one of the ten types listed in the table. If
so, it will name the cigar; if not, it will report this and merely indicate the
cigar's strength or class."

Holmes then produced his algorithm, which is given in Fig. 5.1. It
seemed entirely clear, and I followed his logic almost instantly.

"They say, Watson, that genius is an infinite capacity for taking
pains. It is a bad definition, but it does apply to programming. What relief
the Analytical Engine will bring us!" he remarked. "I propose to devote
some years to the composition of a text which shall present the whole art
of detection and the special uses of the Analytical Engine into a single
volume."

"A massive undertaking," I replied. "Surely, Holmes, this will be your
greatest contribution to science and humanity."

A flush of colour sprang to my companion's cheeks, and he bowed
slightly, like the master dramatist who receives the homage of his
audience. The same singularly proud and reserved nature that turned
away with disdain from popular notoriety was capable of being moved to
its depths by spontaneous wonder and praise from a friend.

As for our study of cigar ash, Holmes applied the programme shown
in Fig. 5.2 to test the Engine's performance against his own powers. I have
had no keener pleasure than in following Sherlock Holmes in his
professional investigations and in admiring his rapid deductions-as
swift as intuitions, yet always founded on the same logical basis on which
the Engine operated-with which he unravelled the many problems that
were submitted to him.

Definitions:

Texture
Colour
Particles
Nicotine
Stock
Normality

Alg ithm:

a texture of ash
a colour of ash
an indication of particles
a result of a nicotine test
a class of cigar
an indication of particles and nicotine

Read Texture, Colour, Particles, Nicotine

If Texture = Flaky or Texture = Caked then
set Stock to 1

else
set Stock to 2

If Nicotine = ++ and Particles = No then
set Normality to Normal

else
set Normality to Abnormal

If Normality = Normal and Stock = I then
if Colour = Dark and Texture = Flaky then

write 'CIGAR IS A TRICHINOPOL Y'
else if Colour= Dark and Texture= Caked then

write 'CIGAR IS AN ESPANADA'
else if Colour = DarkGrey and Texture = Flaky then

write 'CIGAR IS A MACDUFFY'
else if Colour = DarkGrey and Texture = Caked then

write 'CIGAR IS A TOP HAT'
else if Colour= LightGrey and Texture= Flaky then

write 'CIGAR IS A HERITAGE'
else if Colour = BrownTint and Texture = Caked then

write 'CIGAR IS A LONDONER'
else

write '***UNIDENTIFIED NORMAL CIGAR OF STOCK l'
If Normality = Normal and Stock = 2 then

if Colour = DarkGrey and Texture = Granular then
write 'CIGAR IS A LUNKAH'

else if Colour = LightGrey and Texture = Fluffy then
write 'CIGAR IS A WEST COUNTRY'

else
write '***UNIDENTIFIED NORMAL CIGAR OF STOCK 2'

It Normality = Abnormal then
if Colour= BrownTint and Nicotine= +++then

write 'CIGAR IS AN OLD WOOD'
else if Colour = Dark and Nicotine = + and Particles = Yes then

write 'CIGAR IS A LATINO'
else

write '***UNIDENTIFIED ABNORMAL CIGAR'

A Study of Cigar Ash 103

Figure 5.1 • Holmes's
algorithm to identity
cigar ash

104 Prelude to Choices

Figure 5.2 • Program
ldentityCigar

program ldentifyCigar;
{ -- This program reads in four properties of cigar ash. l
{ -- The properties are coded as numbers. l
{ -- The program attempts to identify the ash according to the I
{ -- properties, and prints a message giving its findings. l

var
Texture, Colour, Particles, Nicotine, Normality: string(9];
Stock : Integer;

begin
Read(Texture, Colour, Particles, Nicotine);
if (Texture= 'Flaky') or (Texture= 'Caked') then

Stock:= I
else

Stock:= 2;
if (Nicotine = 'Plus2') and (Particles = 'No') then

Normality := 'Normal'
else

Normality := 'Abnormal';
if (Normality= 'Normal') and (Stock= I) then

if (Colour= 'Dark') and (Texture= 'Flaky') then
Write ('CIGAR IS A TRICHINOPOLY')

else if (Colour= 'Dark') and (Texture= 'Caked') then
Write ('CIGAR IS AN ESPANADA')

else if (Colour = 'DarkGrey') and (Texture = 'Flaky') then
Write('CIGAR IS A MACDUFFY')

else if (Colour = 'DarkGrey') and (Texture = 'Caked') then
Write('CIGAR IS A TOP HAT)

else if (Colour= 'LightGrey') and (Texture= 'Flaky') then
Write('CIGAR IS A HERITAGE')

else if (Colour = 'BrownTint') and (Texture = 'Caked') then
Write('CIGAR IS A LONDONER')

else
Write('***UNIDENTIFIED NORMAL CIGAR OF STOCK I');

if (Normality = 'Normal') and (Stock = 2) then
if (Colour = 'DarkGrey') and (Texture = 'Granular') then

Write('CIGAR IS A LUNKAH')
else if (Colour = 'LightGrey') and (Texture = 'Fluffy') then

Write('CIGAR IS A WEST COUNTRY')
else

Write('***UNIDENTIFIED NORMAL CIGAR OF STOCK 2');
if (Normality = 'Abnormal') then

end.

if (Colour = 'BrownTint') and (Nicotine = 'Plus3') then
Write('CIGAR IS AN OLD WOOD')

else if (Colour = 'Dark') and (Nicotine = 'Plusl') and
(Particles = 'Yes') then

Write('CIGAR IS A LATINO')
else

Write('***UNIDENTIFIED ABNORMAL CIGAR')

Chapter 5

The ability to make decisions
is fundamental to programming. It is often necessary to know the result
of the next step in order to determine which additional steps are required
Conditional statements provide this option. However, before moving into
the area of decision making in Pascal, we pause to make note of a simple
but important construct for writing programs.

In previous chapters we have looked at assignment statements as well as
statements to read and write data. As you have seen, these statements
contain no part that is another statement. In the discussion of decision
making to follow, we will encounter new kinds of statements in which a
statement may itself contain other statements. In this category we will
find, for example, the if statement. Consider the following:

If (Texture= Flaky) or (Texture= Caked) then
Stock:= 1

This statement, an if statement, contains another statement, an
assignment statement. Both the if statement and the assignment
statement are considered together as a single statement.

Of course, there are instances where we may want to execute more
than one statement after making a decision. This is achieved by means of
a compound statement. For example, we may write,

H (Texture = Flaky) or (Texture = Caked) then
begin

Stock:= 1;

5.1 • Compound
Statements

105

106 5 Making Decisions

5.2 • If
Statements

Write('Stock I Cigar')
end

A compound statement has the form

begin
statement-];
statement-2;

statement-n
end

and is itself treated as a single statement. Each statement within the
compound statement is executed in sequential order. You will have a
great many uses for this simple device as we proceed.

Now let us continue with the means for making decisions in
Pascal.

The ability to make decisions is fundamental to programming. The basic
mechanism for making choices in Pascal is the if statement In its simplest
form, there is a condition and one statement, in the following form.

if condition then
statement

This statement means

If the condition is true, execute the given statement; otherwise do
nothing.

Normally, an if statement will appear in a sequence of statements. As for
any statement, after execution, the next statement is processed. For
example,

statement-];
if condition then

statement-2;
statement-3

means

1. Execute statement I.
2. Execute the if statement; that is, if the condition is true, execute

statement 2.

3. Execute statement 3.

Notice here that the if statement is itself considered a single statement.
Thus, we may write something like

if (Normality = Normal) and (Stock = 1) then
if (Color = Dark) and (Texture = Flaky) then

Write(' CIGAR IS A TRICHINOPOL Y')

This should not cause any confusion, for this statement has the following
form.

if (Normality= Normal) and (Stock= 1) then
statement

In this case the statement following the keyword then is itself an if
statement.

This ability to include one statement within another has far­
reaching possibilities in Pascal. While the basic mechanism is extremely
simple, we can produce rather elaborate effects, as in Holmes's program
to identify cigar ash.

In the preceding examples, the if statements have a single condition
and a single statement. An if statement may also have an else part, in the
form

if condition then
statement-I

else
statement-2

This simply means

If the condition is true, execute statement 1; otherwise
execute statement 2.

For example, we may write,

if (Texture= Flaky) or (Texture= Caked) then
Stock:= 1

else
Stock:= 2

Here the value of the variable Stock is set to 1 or 2, depending upon the
truth or falsity of the condition. As always, after executing the if statement
we simply proceed to the following statement.

Finally, we may generalize the ideas just given to include multiple
conditions. For example, consider the if statement

if (Colour= Dark) and (Texture= Flaky) then
Write(' CIGAR IS A TRICHINOPOL Y')

else
if (Colour= Dark) and (Texture= Caked) then

Write('CIGAR IS AN ESPANADA')
else

Write('*** UNIDENTIFIED NORMAL CIGAR OF STOCK l'),

This statement has the form

If Statements 107

108 5 Making Decisions

if condition- I then
statement-I

else
if condition-2 then

statement-2
else

statement-3

This all means the following:

If condition 1 is true, execute statement 1;
If condition 1 is false but condition 2 is true, execute statement 2;
Otherwise (conditions 1 and 2 are both false), execute statement 3.

Notice here that this statement is really an if statement with an else part,
with the same meaning as the if statement given before.

Each of the preceding examples follows the same basic pattern:
depending on one or more conditions, a given action takes place. Thus
each of the examples falls into one of the following forms:

1. condition action A
2. condition action A

else action B
3. condition- I action A

condition-2 action B
else action C

and so on. In all cases, execution continues after the condition-action
pairs.

Normally such cascades of condition-action pairs are written in the
form:

if condition-I then
statement-I

else if condition-2 then
statement-2

else
statement-n

For example, we have.

if (Colour= 'Dark') and (Texture= 'Flaky') then
Write ('CIGAR IS A TRICHINOPOL Y')

else if (Colour= 'Dark') and (Texture= 'Caked') then
Write ('CIGAR IS AN ESPANADA')

else
Write('*** UNIDENTIFIED NORMAL CIGAR OF STOCK I')

This kind of scheme will be used throughout.

Conditions 109

Execution of an if statement depends on the truth or falsity of some given 5.3 • Conditions
condition. We now turn to the rules for writing conditions in Pascal.
These rules are analogous to the rules for writing expressions, except
that in all cases, evaluation of a condition yields one of the values True or
False.

The simplest of all conditions is the testing of values to see if they
are equal. For example, we may write,

if Stock = 1 then
if Texture = 'Flaky' then
if Room[Suspect] = 14 then
if (NumCigars + 1 = MaxNumCigars) then

In each of these constructs the condition has the form:

expression- I = expression-2

These conditions bring up two general rules in Pascal.

1. A condition always evaluates to True or False.

2. The type of the result, True or False, is said to be of type
Boolean.

Thus just as we may say the expression

NumCigars + 1

has a numeric value and its type is Integer, we say that the condition

Texture= 'Flaky'

has a value that is either True or False and is of type Boolean. The term
Boolean is named after George Boole, the English mathematician who
developed symbolic logic.

Testing for the equality of two values is not the only operation we
can perform in conditions. Table 5.1 lists several other operators that can
be used in forming conditions. For example, to see if one value is less than
or equal to another, we may write,

NumCigars < = 10

which tests to see if the value of NumCigars is less than or equal to
10.

The operator<> appears particularly strange. This is the operator
for testing for inequality. Thus, while you might be tempted to say,

if Suspect -=!= ColWoodley then { Illegal! }

which looks perfectly logical, you can not. Instead you have to write,

if Suspect<> ColWoodley then { Legal}

110 5 Making Decisions

Table 5.1 • Operators for Writing Conditions

Relational Operators

Operator

<>

< <=
> >=

Operation

equality and
inequality

ordering

Type of Operands

Integer, Real, String

Integer, Real, String

Type of Result

Boolean

Boolean

in membership Left: Integer, Real, String Boolean
Right: Must be compatible

with Left.

Logical Operators

Operator Operation Type of Operands Type of Result

not negation Boolean Boolean

end conjunction Boolean Boolean

or disjunction Boolean Boolean

The rationale here is that a < followed by a > stands for "less than or
greater than" or "not equal." So much for that.

The operator in deserves a special note. This operator allows us to
test whether a value is one of a range of values. For example, instead of
writing,

if (NumCigars >= I) and (NumCigars <= 10) then

we may write,

if NumCigars in [l..10] then

The notation

[l..10]

stands for the range of values between I and I 0.
The condition given in

if (NumCigars >= I) and (NumCigars <= 10) then

brings up the ability to write compound conditions. A compound
condition consists of a sequence of relational expressions, separated by
the logical operators shown in Table 5.1. For example, we may have the
conditions:

(Texture= Flaky) or (Texture= Caked)

(Stock = 1) and (Normality = Normal)
not (Suspect = ColWoodley)

This use of logical operators is quite natural and should present no
problems.

Compound conditions may involve arithmetic operators, relational
operators, and logical operators. To write such conditions, the evaluation
rules given in the previous chapter need expanding in order to include
our new operators. In particular, operators are applied in the following
order.

1. not

2. * I div mod and

3. + - or

4. = <> < > <= >= in

That is, the operator not is applied before the five operators*,/, div,
mod, and and. Then come the three operators+,-, or, and so forth.

For example, just as

A+ B* C

is equivalent to

A+(B*C)

so too,

A+B=C+D

is equivalent to

(A + B) = (C + D)

Although these examples appear innocent enough, the rules have a
few anomalies that you must watch out for. For example, you cannot
write

if Texture = 'Flaky' or Texture = 'Caked' then { Watch Out }

or

if A < B and C < D then { Again, trouble }

The reason is that the logical operators and and or are applied before the
relational operators. To write such expressions you have to use
parentheses, as in

if (Texture= Flaky) or (Texture= Caked) then
if (A < B) and (C < D) then

All of this means that you have to be a bit careful in writing complex
conditions. One general rule should always help you.

Conditions 111

112 5 Making Decisions

5.4 • Case
Statements

• When in doubt, use parentheses.

If you are still unsure of the rules for writing a condition, you can always
refer to Appendix B, which summarizes the grammatical rules for writing
Pascal programs.

The if statement presented in the preceding section provides a logical
method for making decisions based on the truth or falsity of one or more
conditions. The case statement provides a similar ability for making
decisions, but here the action taken depends on the value of an
expression.

For example, consider the case statement:

case Day of
1: - what to do if Day= 1;
2: - what to do if Day= 2;
3: - what to do if Day= 3;
4: - what to do if Day= 4;
5: - what to do if Day= 5;
6: - what to do if Day= 6;
7 : - what to do if Day = 7

end

Here we assume the integer variable Day represents the days of the week
and thus can take on one of seven values. Each alternative in the case
statement determines what to do for a given value of the variable Day.
The values given before each colon(:) are called case labels, and must
correspond to the possible values of the variable given after the keyword
case. After each colon, you must give a statement describing the action
to be taken when the value of the variable is equal to the corresponding
case label.

For example, we may write,

case Day of
1 : Write('Today is Monday, start on a new case');
2 : Write('Tuesday, keep working');
3 : Write('Wednesday, take a break');
4 : Write('Thursday, see the new client');
5 : Write('Friday, summarize the facts');
6 : Write('Saturday, try something new');
7 : Write('Sunday, take a complete rest')

end

Notice here that case labels are given for every possible value of Day. It is
not always necessary to cover every individual possibility. An otherwise
clause can be added following the list of case alternatives, as in

case Day of
I :

Write('Today is Monday, start on a new case');
6:

Write('Today is Saturday, try something new');
7:

Write('Sunday, take a complete rest');
otherwise

Write(' continue working')
end.

If there is no otherwise clause and an unlisted value for the variable is
encountered, the program run stops and an error message is issued.

There are a few other things one should know about case
statements. First, any statement, including a compound statement, can
be used as an alternative. Second, several labels can prefix an alternative.
Thus we could write the case alternatives

I :
if Date = Holiday then

Write('Today is a holiday')
else

Write('Monday, start on a new case');

in which the action is an if statement, or write

2:
begin

Write('Tuesday, prepare the clues');
Write('and investigate alternatives')

end;

in which the action is a compound statement, or

6,7:
Write('Take a long break')

in which two alternatives are combined. We can even write,

3:

to do nothing! This wild-looking alternative is called an empty statement
It would look better if we added a comment as

3:
; { do nothing }

This may look strange, but sometimes it is just what the programmer
wants to do.

Case Statements 113

114 5 Making Decisions

5.5 o Practice

The program in Fig. 5.3 is just about useless; nonetheless, it is simple to
understand. See if you can find any errors.

The program GetMaximum is quite straightforward. Actually, it
does not contain any errors; it runs nicely just as it is. The first two values
are compared and the greater of the two assigned to MaximumValue,
which is then compared with the third value. If the third value is greater, it
is assigned to MaximumValue; otherwise, the value of MaximumValue
remains unchanged. Fmally, the actual value associated with Maximum Value
is printed.

On many occasions you will look at a program and it will seem just
fine. But when you examine the program carefully, you may discover
many errors. The program in Fig. 5.4, for instance, contains several
errors. Find the errors and make whatever changes are required to make
the program work correctly. You might start by thinking of a nautical time
for which the program in Fig. 5.3 gives the wrong time.

Notice that the first if statement contains three different conditions
to be checked. Should any one of these three conditions be evaluated as
True, then the entered time would be considered invalid. So far, so good;
now we are assured that the given integer will fall within a certain range.
The else part of the statement contains another if statement to
distinguish whether the given time is in the morning or afternoon. The
difficulty lies in the conversion of the hours right after noontime and right
after midnight. The times of day when Hours is equal to 0 and 12 must be
considered as special cases. For instance, consider the time 12:45 p.m.
Time is read in as 1245. Hours gets 12; Minutes gets 45. Since Hours is less
than 12, the output is

12: 45 AM.

which is incorrect.
The program in Fig. 5.5 is one way of handling the problem. You may

choose to write it a little differently.
There are some fine details that you have to watch for when dealing

with conditional statements. In the following examples of conditions,
several statements about each are given. Determine which statements
are true in each case.

1. if (X<IO) and (Y>2) then

a You don't need the parentheses.
b. X must be of type Integer.
c. The result will be the same if 2.0 is used in place of 2 .

• • •

program GetMaximum;
(-- This program reads in three numbers }
I -- and outputs the maximum value given. }

var
Valuel, Value2, Value3, MaximumValue: Integer;

begin
Read(Valuel, Value2, Value3);

if(Valuel > Value2) then
MaximumValue := Valuel

else
MaximumValue := Value2;

if(Value3 > MaximumValue) then
MaximumValue := Value3;

Write(Maximum Value)
end.

program TimeConversion;

(-- This program reads an integer value representing }
(-- a nautical time, e.g. 1420, and prints the corresponding}
(-- value in day-to-day notation, e.g. 2:20 p.m. }

var
Time, Hours, Minutes : Integer;

begin
Read(Time);
Hours := Time div 100;
Minutes := Time mod 100;
if (Time < 0) or (Hours > 24) or (Minutes > 60) then

Write('NO SUCH TIME FOR', Time)
else if (Hours < 13) then

Write(Hours, ':', Minutes : 2, 'A.M.')
else

Write(Hours - 12, ':', Minutes : 2, 'P.M.')
end.

program TimeConversion;

(-- This program reads an integer value representing }
(-- a nautical time, e.g. 1420, and prints the corresponding}
I -- value in day-to-day notation, e.g. 2:20 p.m. }

var
Time, Hours, Minutes : Integer;

Practice-Conditional Statements 115

Figure 5.3 • Program
GetMaximum

Figure 5.4 • Program
TimeConversion

Figure 5.5 • Program
TimeConversion

116 5 Making Decisions

Fig. 5.5 continued

begin
Read(Time);
Hours := Time div 100;
Minutes:= Time mod 100;
if (Time < 0) or (Hours > 24) or (Minutes > 60) then

Write('NO SUCH TIME FOR', Time)
else if (Hours = 0) then

Write('l2:', Minutes: 2, 'AM.')
else if (Hours in [l..11]) then

Write(Hours, ':', Minutes : 2, 'AM.')
else if (Hours= 12) then

Write(Hours, ':',Minutes: 2, 'P.M.')
else

Write(Hours - 12, ':', Minutes : 2, 'P.M.')
end.

Consider how the example would be evaluated if the parentheses were
omitted. And is evaluated before the relational operators < and >. We
might as well have written

if X < (IO and Y) > 2

which makes no sense. When in doubt, use parentheses.
Real numbers can be compared with either real-type numbers or

integer-type numbers. However, care must be taken to know exactly
what is being compared Before the comparison is made, both numbers
are converted internally to extended numbers. An extended number is
represented to 19 or 20 decimal places. An integer is represented with
only zeros in the decimal places. When a real number with 7 or 8 decimal
places is converted to extended, the extra places are also filled with
zeros. A real number with only zeros in its decimal part can be equal to an
integer.

Here is another example to consider.

2. if Round(X) < 1.0 then

a X can be of type integer.
b. If the value of X is 0.5, the comparison will be true.
c. It would be better to use 1 instead of 1.0 .

•••
The function Round is used to round a real number to the nearest integer.
X can be an integer, but if it is, the function does not really do anything; it
simply returns the same value it is given.

Practice-Conditional Statements 117

When a number to be rounded is exactly between two whole
numbers, as is 0.5, the number with the higher absolute value is chosen;
therefore, 0.5 is rounded to 1. This results in the comparison being judged
False, since 1 is not less than 1.0.

Consistency is important in programming; therefore, since the
rounding function produces an integer number, it is better to use 1 than
1.0.

Let's go to another example.

3. if l*J + 4*K = 6*K + 2 then

a You can replace the condition with,
I*J = 2*K + 2

and the result will be exactly the same.
b. You can replace 4 *k with 4.0*K and the result will be exactly

the same.
c. The program from which this is taken is probably hard to

read.

• ••
The two expressions given are identical as far as value goes. In the overall
program, there may be a preference for one or the other in order to make
the program more readable. Since single letters are used as identifiers, we
have no way of knowing what kind of information we are dealing with
here.

Replacing 4 *K with 4.0*K will have no effect on the result. Here is
one more example.

4. H (A < 2) or (B < -2) and (X < 2) or (Y < 2) then

a The condition is true if the values for A, B, X, and Y are 1, 3, 5,
and 4, respectively.

b. The condition has the same effect as
((A < 2) or (B < 2)) and ((X < 2) or (Y < 2))

c. The condition has the same effect as
(A< 2) and (X < 2) or (B < 2) or (Y < 2)

That is, rearranging the terms has no net effect.
d An error will always result if Y has not been assigned a

value.

• ••
When in doubt about how an expression will be evaluated, add
parentheses to show how the computer will read the expression. And is
evaluated before or; therefore, the expression in example 4 is evaluated

118 5 Making Decisions

as
(A< 2) or ((B < 2) and (X < 2)) or (Y < 2)

There are three situations here that will result in the condition being
evaluated as True. Either A is less than 2, or B and X are both less than 2,
or Y is less than 2. When the value of A is 1, the condition is true.

The parentheses shown in statement 4.b change the meaning
completely. In order for the result to be evaluated as True, there would
have to be two values less than 2; either A or B must be less than 2, and
either X or Y must be less than 2.

Adding the correct parentheses to statement 4.c gives

if ((A< 2) and (X < 2)) or (B < 2) or (Y < 2) then

which gives three possibilities: either A and X are both less than 2, or B is
less than 2, or Y is less than 2.

As we have said before: when in doubt, use parentheses.
As for statement 4.d, it is asking for trouble to use a variable in an

expression when no value has been assigned to it.

Fill in the Blanks
1. A compound statement is bracketed by the words _____ _

and _____ _

2. When comparing two values, inequality is represented by the symbol

3. Compound conditions may involve arithmetic operators, logical
operators, and operators.

4. To be sure that complex conditions are evaluated in the correct order,
you should add ______ _

5. In a case statement, the values given before each colon are called

6. In addition to the stated alternative cases, a case statement can
include an clause.

7. A semicolon immediately following the colon in a case alternative, as
in

case Month of
July:;

means _______ _

8. An if statement must also include the word ______ _

A compound statement is bracketed by the words BEGIN and END.
When comparing two values, inequality is represented by the symbol
<>. Compound conditions may involve arithmetic operators, logical
operators, and RELATIONAL operators. To be sure that complex
conditions are evaluated in the correct order, you should add
PARENTHESES. In a case statement, the values given before each colon

are called CASE I.ABELS. In addition to the stated alternative cases, a case
statement can include an OTHERWISE clause. A semicolon immediately
following the colon in a case alternative, as in

case Month of
July:;

means DO NOTHING. An if statement must also include the word
1HEN.

5.1 Secret Numbers: Version 2
This exercise is motivated by automatic teller machines (ATM's), where
customers are required to enter a secret code. This is so that someone
else does not use your bank card to make withdrawals. In this exercise
your program knows your secret code, which you can specify with a
constant declaration; for example,

const
SecretCode = 17;

Your program is to ask the user to enter the secret code. If the user enters
the correct code, the computer prints an acceptance message, such
as

THANK YOU. HOW CAN WE HELP YOU?

If the code is incorrect, the computer prints a message such as

NO DICE!

You may choose the messages, but the user gets only one chance to
guess the code.

5.2 Odd or Even
Many people are afraid of computers. This may, in part, be because they
think computers know too much. But you know that the only things a
computer knows are what programmers put into their programs.

This is an easy exercise. Write a program that knows about odd and
even numbers. The input will be an integer number, say 12 or 271. The
output will be a message telling whether the number is odd or even.

Do not make use of the predefined function Odd; pretend it doesn't
exist.

5.3 A Change Making Machine
In a certain subway station there is a machine that accepts five-dollar
bills and gives the change in coins for each of four possible fares. The

Programming Exercises 119

5.6 0

120 5 Making Decisions

fares $0.65, $1.10, $1.75, and $2.10 are indicated by pressing buttons 1
through 4.

Write a program to read in one of the integers 1 through 4 and print
the number of each coin given in change on a five-dollar bill. The coins
are half-dollars, quarters, dimes, and nickels. For each amount of change,
the minimum number of coins is to be used. For example, if your
input is

3

the program should print something like

6 HALF DOLLARS
1 QUARTER

You may want to keep an eye on singular (one coin) versus plural (more
than one coin).

5.4 Leap Year
Definition: A leap year is a year that is exactly divisible by 4, except
centenary years that are not exactly divisible by 400. That's what the
dictionary says.

Well, this means that 1948 and 2000 are leap years, but 1900 is not.
Write a program to read in an integer and print a message indicating
whether the integer denotes a leap year.

5.5 Can You Make a Triangle?
Suppose you had three sticks whose lengths were 2 feet, 3 feet, and 6 feet.
You couldn't make a triangle with them. However, if you cut 2 feet off of
the long stick, you could.

Three sticks make a triangle if the sum of each pair of lengths is
larger than the third. Write a program to read in three numbers and print
a message indicating whether they make a triangle.

5.6 Normalized Scoring
In a ten-question, True-or-False quiz, the scores are normalized. That is,
the net score is equal to the number of correct responses minus the
number of incorrect responses. An unanswered question is ignored in the
scoring. Thus with eight out of ten correct responses, one incorrect
response and one unanswered question, the net score is 7.

Furthermore, the grade associated with the net score is computed
by the following table.

Net Score Grade

8-10 A
6-7 B
4-5 c
2-3 D

A score of 1 or lower results in a grade of F.

Write a program to read in the number of correct and incorrect
responses and print the final grade.

Note: You may wish to outguess the problem definition. A case
statement may be useful.

5. 7 Ordering
Comparing values is one task that can be done easily by computer. This
problem assumes that five numbers are to be entered, but only the
largest is to be printed out. Write the program and use the following
numbers as input.

14 3 3246 289 1243

5.8 Secret Numbers: Version 3
In this exercise, you are to do the same thing as in Exercise 5.1, except
that· the customer gets three chances to enter the proper code. You are
not allowed to jump ahead here and use loops. The program must be
written without loops. Watch out for this exercise; it is harder than it
appears.

5.9 Range Check
When long lists of figures are entered into a computer, there is always the
possibility of operator error in the entering of the figures. Therefore,
accuracy checks are often built into programs. One way of checking for
accuracy is to be sure that the entered figure falls into the range that is
allowable for the value.

Let us assume that a list of three-digit numbers are to be entered.
The numbers are expected to be no lower than 256 and no higher than
516. Write a program to check each value entered and to print a message
indicating any entry that is unacceptable.

5.10 Sale Price
Competition has forced some stores into giving an "instant rebate" on
selected items. In certain states, a sales tax must be paid on the original
price. You are to write a program which will calculate the final price of the
item including the sales tax. The program will read the item number and
the ticket price. It will print the price less rebate, the tax (figured on the
ticket price), and the total due.

To determine the amount of the rebate, the following information is
used

a) Item numbers consist of six digits.
b) All items starting with 30 receive a $1.00 rebate.
c) All items between 203000 and 203049 receive a $3.00 rebate.
d) All items ending with 99 receive a 50 cent rebate.

Programming Exercises 121

Prelude to Repetition

HAT do you make of this, Watson?" asked Holmes, as he
tossed a small telegram in my direction. It read:

Oxford

Must meet with you on a temporal matter of grave concern Will
arrive by one o'clock today.

Peter Cowesworthy

"A temporal matter," I replied, studying the message. "I wonder
what he could mean by that. I am inclined to think that the man wants
your help."

"It's just after twelve now," replied Holmes. "I would say, Watson,
that a matter grave enough to carry our mysterious deric all the way
from Oxford to seek my services is more of a corporeal concern than one
of the spirit. I should certainly hope that my own little practice is not
degenerating into an agency for clergymen to consult me concerning
their next sermon. In any event, we shall soon know for certain, for I
discern two gentlemen and our landlady ascending the stair."

As he spoke there came a knock on the door, after which Mrs.
Hudson admitted two visitors. The elder was a man in priestly attire, a
short, birdlike man with thinning white hair and nervous eyes peering
from behind gold-rimmed spectacles, and obviously In considerable
distress. His younger companion was a tall, lanky fellow with a bulging
Adam's apple, protruding nose, and thin lips.

"Gentlemen, I am Sherlock Holmes and this is Dr. Watson, who has
been my associate and helper in many matters. How may we be of service
to you?"

"Oh my," replied the clergyman, somewhat startled. "This is my
Deacon, Mr. Huxtable Penwether."

"Ah, yes, Mr. Penwether, I perceive that you have recently
journeyed from the Midlands," observed Holmes.

123

124 Prelude to Repetition

"Clergyman Peter Cowesworthy."

"Oh, no, you are mistaken, sir," he said. "I have been in London this
past week, on errands for the rector."

"Indeed, he has hardly been out of my sight, Mr. Holmes," observed
the clergyman.

"Yes, of course," replied Holmes, as he busied himself by filling his
pipe. "Well, as Watson can attest, my deductions occasionally miss their
mark." With that Holmes bade our visitors over to the basket-chair and
armchair beside the empty fireplace.

The clergyman had hardly settled in his chair when abruptly he
sprang to his feet and exclaimed, "Mr. Holmes, if your deductions should
fail in this matter we must abandon all hope! You are the only man in the
whole of England who can help us. The Mazarin Bible has vanished!" With
his exclamation concluded, Cowesworthy sank back into his chair.

"Yes, the Mazarin Bible," replied Holmes, "a vellum edition, is it not,
a rare Schoeffer type with hand-coloured illuminations? It is a devastating
loss, indeed."

The Adventure of Clergyman Peter 125

Sherlock Holmes had an almost hypnotic power when he wished,
and he was an accomplished master at the art of putting a humble client
at his ease.

"It was taken from your rooms?" he asked.
"Often it is in my rooms, but I bring it into the church from time to

time to inspire the parishioners. It was there last Sunday, but hidden
carefully. No one could have known where."

"Rector, I will endeavour to assist you. Please rest assured that
Watson and I will do everything within our power to recover your Mazarin
Bible. Where are you staying in London, so that we may contact you and
report developments as our investigation proceeds?" asked Holmes.

"We have taken two rooms at Anderson's Hotel in Fleet Street."
The next remark astonished me, for Sherlock Holmes was the least

romantic of men.
"I commend a walk in Regent's Park to you. It should prove a tonic to

your strain, especially on a day as fresh as this one."
When they were gone, Holmes turned to me and said, "Come

quickly, Watson, we must get to Anderson's and search Penwether's
room. He was surely lying. The discoloration on his boots clearly places
him in Birmingham within the past few days."

We proceeded at once to Fleet Street where a sovereign for the hall
porter led us quickly to Penwether's door. "I suppose that I am
committing a felony," commented Holmes, as he forced the lock, "but it is
just possible that I am saving a soul. There we are," he said, pushing open
the door. "I don't mind confessing that I have always thought I would
make a highly efficient criminal. It is certainly fortunate for society that I
have chosen otherwise."

Inside the room no Bible could be found, but the missing volume did
not appear to be my companion's chief concern as he occupied himself
studying Penwether's soiled clothing.

Back in our rooms at Baker Street, Holmes took me deeper into his
confidence.

"An excellent case for the Analytical Engine, Watson. We know that
Penwether was in Birmingham and journeyed to London in a total time of
four hours. Oxford is on the route, and the fastest transportation from the
station there to Cowesworthy's rooms would take half an hour each way.
Could Penwether have journeyed from Birmingham to London in four
hours with an hour or more in Oxford?"

"But how do you know it took four hours?" I asked.
"His collar and shirt bore the grime of a long journey," said Holmes.

"Allowing for an hour stop at Oxford, the amount of railway grime on his
cuffs would suggest a four-hour journey. Assuming that this is the case,
what do you think of our friend not taking a first-class carriage, a man of
his standing?"

126 Prelude to Repetition

"Because he feared being recognised by some fellow traveller?" I
suggested.

"Precisely, Watson," he replied. "Now, here I have the timetables for
all of London's main-line stations, and I have arranged these in a form
that the Analytical Engine can read directly."

Holmes handed me a sheet of paper to which the stations for the
Birmingham-to-London timetable had been copied. As examples it
had

Bl Birmingham
WA Warwick
OX Oxford

I nodded my understanding.
"Now," continued Holmes, "we enter the tables into the Engine

according to this organized scheme. Look here and you will see how the
stations and times are encoded. The first entry,

Birmingham 5.10

becomes

Bl 510
I then studied Holmes's notes and the sample timetable, which are

sketched in Table 6.1.
"Now as you recall, our intent is to see whether it is possible to make

a four-hour journey from Birmingham to London with an hour's stop in
Oxford. To determine this myself, I would carefully examine the schedule
for each train, searching through the timetable until I came to Oxford. I
would then search for the next train to see if it makes a connection in an
hour or more. And even if I found such a train, I would still have to
discover how Jong it took to reach London and so have the length of the
total journey. This is a tedious procedure involving much examination
and repetitious calculation. Far better to let the Analytical Engine handle
it.

"What I want as output is a table where each train is identified by a
number, the length of time for a connection at Oxford to the next train,
and the total journey time."

A sample sketch of Holmes's output table is given here:

DEPARTING
TRAIN

I
2

OXFORD
CONNECTION

255
50

TOTAL
JOURNEY

535
345

Birmingham to London times, stopping at Oxford

Table 6.1 • Sample Timetable and Input Representation

I. Sample timetable for two Birmingham-to-London trains:
A - means no stop for the given train:

STATION TRAIN 1 TRAIN 2

Birmingham 5.10
Warwick 5.30
Stratford 5.45
Chipping Norton 6.15
Oxford 6.25
Didcot 6.40
Goring 6.55
Reading 7.15
Maidenhead -
London 7.55

II. City codes:

BI Birmingham DI
WA Warwick GO
ST Stratford RE
CN Chipping Norton MA
OX Oxford LO

Ill. Sample input, with the entries for train 1:

8.05
8.25
8.55
-
9.20
-
-

10.05
-

10.45

Didcot
Goring
Reading
Maidenhead
London

BI 5.10 WA 5.30 ST 5.45 CN 6.15 OX 6.25
DI 6.40 GO 6.55 RE 7.15 MA - LO 7.55

The Adventure of Clergyman Peter 127

"It has never been my habit to hide any of my methods from you,
Watson," Holmes continued. "If you will permit me there are some points
here that may interest you."

"Proceed, my dear Holmes."
He paused a moment. "What we need, Watson, is a way to tell the

Engine to repeat the same sort of calculation over and over again. As you
may remember, such repeated calculations are called loops. A loop must
continue until the answer has been found or until some other condition
has been met. Two things are needed: a means of instructing the Engine
to perform a series of calculations repetitively and a means of controlling
the number of repetitions."

"l say, Holmes, without the second point you would be in much the
same situation as the sorcerer's apprentice who knew the magical spell
to make brooms fetch pails of water, but knew not the incantation which
would make them stop."

128 Prelude to Repetition

"Quite so," replied Holmes. "ln fact, that is just the sort of thing that
often happens to beginning programmers; and, I might add, even to
experienced programmers.

"There are two sorts of loops, depending on which strategy of
control one employs.

"A conditional loop involves a set of instructions that are to be
repeated until some condition is met; for example,

or

As long as City ':fo London, do the following:
read City, ArrivalTime

As long as Murderer = Unknown, do the following:
get another clue
examine the clue

As you can see, Watson, when the first loop is completed, the last city
read must be London. Similarly, when the second loop is completed, the
identity of our murderer is no longer a mystery.

"There is also a second sort of loop called a for loop, involving a set
of instructions that are to be repeated some fixed number of times. As an
example we might say,

For each of the next nine trains, do the following:
read the times of the train
compute the connection and journey duration

When this loop is completed, nine trains will have been processed."
I thought about this for a moment and then asked how he would

keep track of how many times the loop had been repeated.
"Elementary, Watson. We have a variable that is identified with the

loop and is automatically incremented each time the loop is repeated.
You will see an example of this in a moment.

"Here is a sketch of my algorithm for solving our problem," he said.
The sketch ran:

Write the result table headings
Read the times of the first train
For each of the next nine trains, do the following:

read the times of the train
compute the connection and journey duration
print the results

Write the caption for the result table

Holmes's algorithm is shown in Fig. 6.1. I did not follow it
immediately. "But Holmes," I queried, "what is the significance of the
number 40?"

"There are indeed some subtle points here. Our train times are
expressed as decimal numbers. Thus the difference of the two train
times,

The Adventure of Clergyman Peter 129

935 - 625

is 310, which is correct; but

920 - 625

is 295, which is not correct for our purposes. In the second case, the
answer should be 255, because there is a 2 hour and 55 minute time
difference between 9.20 AM. and 6.25 AM. If you look at the algorithm,
Watson, you will see that in these cases I have subtracted 40 minutes to
correct this difficulty. It is simply a question of doing arithmetic with
hours and minutes.

"A second subtlety in the algorithm involves preparing for the next
train each time the loop repeats. Thus for the second train, we must
subtract the time of the first. For the third train, we subtract the time of
the second, and so on. Before dealing with the next train, we must save
the times of the train we are presently using. Now, Watson, the algorithm
should be quite clear."

It was the next day when he produced the final programme, which I
offer as Fig. 6.2.

"Holmes," I remarked. "I deduce from your algorithm and
programme that this symbol mod must be Pascal's way of calculating the
number of minutes in a given train time. This is hardly readable."

"My dear Watson, you are such an ideal student and helpmate, a
confederate to whom each new development comes as a perpetual
surprise; and your grand gift for scientific enquiry makes you an
invaluable companion in these endeavours. Let us run the programme
and check the output, shall we?"

I was not completely certain how I was to interpret this remark, but I
interrupted him no further as he ran the data through the Engine. He sat
back while the Engine worked its calculations, but suddenly sprang up in
his chair, taking his pipe in his lips, and bounding like an old hound who
hears the view-holloa.

"Yes, indeed," he said. "Our friend Penwether most certainly had
the opportunity to betray his superior. Let us see how this evidence sits
with him, shall we? For now, it remains a matter between the deacon and
his creator. We shall give him a short time to decide whether he cares to
discuss this with the police."

But our meeting with the deacon was not to be. Within the hour a
visit from the Reverend Cowesworthy brought with it the missing Bible
and news of Penwether's confession.

"When one tries to rise above Nature," Holmes commented, "one is
liable to fall below it. The highest type of man may revert to criminal
means if he leaves the straight road of destiny."

130 Prelude to Repetition

Figure 6.1 • Algorithm
for calculatlng train
connections

Definitions:

City : a code for a city
TrainNum: the number of a train
Connection, Journey: intervals of time

StartTime, Stop Time, Arriva!Time,
NextStartTime, NextStopTime, NextArrivalTime: train times

Algorithm:

- Set up for first train
Write the result table headers
Read City, StartTime
As long as City i= Oxford do the following:

read City, StopTime
As long as City i= London do the following:

read City, ArrivalTime

- Handle each connecting train
Successively setting TrainNum to 2 through 10, do the following:

read City, NextStartTime
as long as City i= Oxford do the following:

read City, NextStopTime
as long as City i= London do the following:

read City, NextArriva!Time

set Connection to NextStopTime - StopTime
set Journey to NextArriva!Time - StartTime

if minutes of StopTime > minutes of NextStopTime then
set Connection to Connection - 40

if minutes of StartTime > minutes of NextArrivalTime then
set Journey to Journey - 40

write TrainNum - 1, Connection; Journey

- Prepare for handling the next train
set StartTime to NextStartTime
set StopTime to NextStopTime'

Write the caption for the result table

The Adventure of Clergyman Peter 131

program TrainTable;
{ -- This program reads in a series of train times }
{ -- on the route from Birmingham to London. }
{ -- The program calculates the total time of a journey from }
{ -- Birmingham to London, assuming a stop at Oxford. }

const
Oxford = 'OX';
London = 'LO';

var
City : string[2];
TrainNum, Connection, Journey : Integer;
StartTime, StopTime, ArrivalTime : Integer;
NextStartTime, NextStopTime, NextArrivalTime : Integer;

begin
{ -- Set up for first train }

WriteLn('DEPARTING OXFORD TOTAL');
WriteLn(' TRAIN CONNECTION JOURNEY');
WriteLn('--------- ---------- ------- ');
WriteLn;
Read(City, StartTime);
while (City<> Oxford) do

Read(City, StopTime);
while (City<> London) do

Read(City, ArrivalTime);
{ -- Handle each connecting train }

for TrainNum := 2 to IO do
begin

Read(City, NextStartTime);
while (City<> Oxford) do

Read(City, NextStopTime);
while (City <> London) do

Read(City,NextArrivalTime);
Connection := NextStopTime - StopTime;
Journey := NextArrivalTime - StartTime;
if (StopTime mod lOO)>(NextStopTime mod 100) then

Connection := Connection - 40;
if (StartTime mod lOO)>(NextArrivalTime) mod 100 then

Journey := Journey - 40;
WriteLn((TrainNum - 1) : 5, Connection: 13, Journey: 11);

{ -- Prepare for handling the next train }
StartTime := NextStartTime;
StopTime := NextStopTime

end;
WriteLn;
WriteLn('BIRMINGHAM TO LONDON TIMES, STOPPING AT OXFORD')

end.

Figure 6.2 • Program
Train Table

Chapter 6

The concept oi looping is so
central to problem solving on a computer that it is hard to imagine any
self-respecting computer program that does not contain at least one
loop. Looping, in fact, is similar to many everyday situations, as the
following informal statements illustrate.

Duplicate the following pattern eight times.

While the cat is away, let the mice play.

Repeat with each ingredient until the mixture thickens.

Search through the trunk until all items are found.

As long as a king has not been crowned, continue advancing forward.

Each of these statements implies a set of instructions to be obeyed
repeatedly until a particular condition is met.

We thus see the two basic characteristics of every loop:

1. It has a body: the instructions to be executed repeatedly.

2. It has a termination condition: an event that must happen to
signal the end of the repetition.

In Pascal there are several forms for expressing loops. The choice of a
particular form depends upon the problem at hand. These forms are our
next topic.

Perhaps the simplest form of loop in Pascal is embodied in the following
example.

6.1 • While and
Repeat Loops

133

134 6 Repeated Calculations

while (City<> London) do
Read(City, Arriva!Time)

The body of this loop consists of the single statement

Read(City, ArrivaITime)

which is executed repeatedly as long as the condition

(City <> London)

remains true.
It is important to be precise here, for understanding the meaning of

even this simple loop is fundamental to all that follows. The loop just
shown is called a while loop. When this statement is executed, the
following takes place:

1. A test is made to see if the value of the variable City is different
from London.

2. If the result of the test is positive, the body of the loop (in this
case the Read statement) is executed and the whole process
begins again from step 1.

3. Otherwise, the loop is terminated.

The net effect of our simple loop is that cities and arrival times at each city
are read in successively until the city happens to be London, at which
point execution of the loop is complete.

All while loops are statements of the form

while condition do
statement

In particular, each while loop begins with a condition. The condition
expresses some fact about our data. Each loop also contains a statement.
The statement tells which actions are to be carried out repeatedly. As
long as the condition remains true, the statement is executed again. Upon
termination of the loop, the condition is known to be false. Notice that if
the condition is initially false, the statement in the body of the loop is
never executed

The condition given at the head of the while statement has the same
form as those given in an if statement. For example, we may have

while (Murderer= Unknown) do
-what to do as long as the murderer is unknown

while (NumCigars < 10) do
-what to do as long as there are fewer than JO cigars

while (Time > 1000) and (Time < 1200) do
-what to do between JO am. and noon

In all cases, the body of the loop is executed repeatedly as long as the
condition remains true.

Obviously, there are many cases where we want to specify several
actions in the body of a loop. For this we can use the simple device
introduced earlier, the compound statement. For example, we may
have

while (City<> London) do
begin

Read(City, ArrivalTime);
Write('Another city has been read in')

end

Such loops have the general form:

while condition do
begin

statement- I;
statement-2;

statement-n
end

Here all of the statements bracketed by begin and end are processed
repeatedly as long as the condition remains true.

In Pascal, there is a very simple variant of the while loop called a
repeat loop. This loop is a statement of the form:

repeat
statement-/;
statement-2;

statement-n
until condition

Such a loop is executed as follows:

1. The statements in the body of the loop are executed.

2. If the condition is still not satisfied, the process is repeated again
from step 1.

3. Otherwise, the loop is terminated.

Notice here that the condition is tested after executing the body of the
loop. Notice also that the condition is given the other way around; that is,
the body of the loop is executed as long as the condition remains
false.

For instance, consider the following statements.

repeat
Read(City, Arriva!Time)

until (City= London)

While and Repeat Loops 135

136 6 Repeated Calculations

6.2 • For Loops

This loop tells us to keep reading in cities and arrival times until we find a
city whose value is London. This statement has exactly the same
effect as

Read(City, Arriva!Time);
while (City<> London) do

Read(City, ArrivaITime)

Here we can readily see that the condition used to control the repetitions
of the while loop is stated in just the opposite way from that of the repeat
loop.

Notice one important difference between a repeat loop and a while
loop. The body of a repeat loop is always executed at least once, for the
condition is tested at the end of the loop. For the while loop, since the
condition is tested first, the body of the loop may not be executed even
once if the condition is initially false. Thus a repeat and a while loop will
have the same effect only if the condition given in the while loop is initially
true.

There is yet another form of loop that you can write in Pascal called a for
loop. Consider the statement

for TrainNum := 2 to IO do
begin

Read(City, NextStartTime);

StopTime := NextStopTime
end

Here we have a series of actions that are to be executed exactly nine
times. The actions are specified between the begin and end of the
compound statement. Each time the actions are executed, the variable
TrainNum takes on a new value. Its first value is 2, its second value is 3,
and so forth, up to 10.

Such loops are handy in cases like this where a sequence of actions
is to be executed a fixed number of times. For example, we may have

for Month:= 1 to 12 do
-what to do for each month

for Column := (FirstColumn + 1) to (LastColumn - 1) do
-what to do for all medial columns

In general, a for loop has the form:

for variable := initial-value to final-value do
-statement

The initial and final values given in the heading of the loop determine the
number of times the statement is executed. Notice that the statement can
be compound, as in the train example sketched previously.

A word of caution: each loop contains a variable in its heading. This
variable is called the control variable, and conceptually captures the
state of the loop's execution. The initial and final values of the control
variable are specified by the expressions. In the statement above, if the
initial value were greater than the final value, the statement would not be
executed. However, it is possible to use a variable of decreasing value
with the following form:

for variable := initial-value downto final-value do
-statement

The body of a for loop is executed a fixed number of times, starting with
the initial value and continuing up or down to and including the final
value. On each iteration, the value of the control variable assumes the
corresponding value between initial and final values.

Returning to our train example, the body of the loop is executed 9
times; on each iteration, the value of TrainNum takes on one of the values
from 2 through I 0.

Two other small points are worth remembering. First, within the
body of a for loop you should never assign a new value to the control
variable. This would only cause confusion-in fact, if you try to do it, you
should get an error message. Second, when the entire loop is completed,
the value of the control variable is undefined. This means that if you want
to use the variable again, you should explicitly assign it a new value.

Summary
There is no question that, as you progress with programming skill, loops
become an important problem-solving tool. Repeated calculations are
intrinsic to almost any useful computer problem.

Here's a simple strategy for deciding which kind of loop to use.
Whenever you want some actions to be repeated until you arrive at some
specified result, use a while or repeat loop; whenever you want certain
actions to be repeated only a fixed number of times, use a for loop.

One point of caution: since the statements within a loop can include
any statement, it is possible to have loops within loops, nested
conditional structures within loops, and vice versa When situations such
as this arise, you have to be extremely careful to make the intent of your
program clear.

Practice-Looping 137

6.3 O Practice

Figure 6.3 contains a program that makes use of some of the concepts / /
contained in the last two chapters. The program MultipleChoice is a quiz /,./J~~

138 6 Repeated Calculations

Figure 6.3 • Program
MultipleChoice

reviewing some of the concepts we have covered so far. A case statement
and a conditional statement are contained within the repeat loop.

When the repeat loop is performed, one question and the possible
answers are printed, then the user's choice of answers is read and
compared with the correct answer. If the choice is correct, "Good" is
printed, and 1 point is added to the score. If the answer is not correct,
"Oops" is written. Next, the question number is increased by 1.

Each time the loop is repeated, the question number is checked. It is
the question number that is used as the case label. Each time through the
loop, a different case is selected causing a different question to be
printed. Notice that each case contains of a compound statement
bracketed by the words begin and end.

The repeat loop continues until the question number exceeds
LastQuestionNum, which is given in the constants declarations. Finally,
the score is printed and the program ends.

program MultipleChoice;

{ -- This program presents a series of multiple choice questions }
{ -- on Pascal. The user's score is reported at conclusion.)

const
LasQuestionNum = 10;

var
Dummy : string;
QuestionNum, Score : Integer;
Choice, CorrectAnswer : Char;

begin
WriteLn('The following is a multiple choice test in Pascal');
WriteLn('Enter your choice of answers by typing a letter.');
Dummy:= 'cbebdacbbc';
QuestionNum := 1;
Score:= O;

repeat
WriteLn;
case QuestionNum of

1 :
begin

WriteLn('Which of the following words need not always');
WriteLn('appear in a Pascal program?');
WriteLn('a. begin b. program c. identifier');
WriteLn('d. none of the above');

end;

Figure 6.3 continued

2:
begin

WriteLn('The word "integer" is');
WriteLn('a. the name of a variable b. the name of a type');
WriteLn('c. a keyword');

end;
3:

begin
WriteLn('Pascal was invented by');
WriteLn('a. Linus Pauling b. Blaise Pascal');
WriteLn('c. IBM Corporation d. Jimmy Carter');
WriteLn('e. none of the above');

end;
4:

begin
WriteLn('lf a program requests an integer and you type in');
WriteLn('the letter "K" the computer')";
WriteLn('a. stops dead b. beeps a warning');
WriteLn(' c. waits for an integer');
WriteLn('d. prints an error message and goes on e. crashes');

end;
5:

begin
WriteLn("'B" is a');
WriteLn('a. character b. letter c. character string');
WriteLn('d. 2 of the above e. all of the above');

end;
6:

begin
WriteLn('An "if' statement must contain the keyword');
WriteLn('a then b. else c. or d. otherwise');

end;
7:

begin
WriteLn('Which of the following is not a valid identifier');
WriteLn('a. Number b. seventeen c. 8thRow');
WriteLn('d. FUNCTION6');

end;
8:

begin
WriteLn('The body of a "repeat" loop will never be executed');
WriteLn('if the required condition is not met.');
WriteLn('a. True b. False');

end;

Practice-Looping 139

140 6 Repeated Calculations

Fig. 6.3 continued

9:
begin

WriteLn('Declarations must be located');
WriteLn('a. right after the word "program'");
WriteLn('b. before the statement section');
WriteLn('c. right after the word "begin"');
WriteLn('d. before they are used in the program');

end;
IO:

begin
WriteLn('Comments are enclosed by');
WriteLn('a. { l b. (* *) c. a or b');

end;
end;

Write('Your choice: ');
ReadLn(Choice);
CorrectAnswer := Dummy[QuestionNum];
if Choice = CorrectAnswer then

begin
WriteLn('Good.');
Score := Score + I;

end
else

WriteLn('Oops.');
QuestionNum := QuestionNum + I;

until QuestionNum > LastQuestionNum;

WriteLn;
WriteLn('Your score is', Score: I);

end.

The following program contains a while loop. Follow it through and
determine what will be printed.

program FunnyLoop;
var

J,X : Integer;
begin

I:= O;
X:= O;
while (I < 10) do

X := X +I;
Write('THE ANSWER JS ', X)

end.

• ••

The performance of the statement contained in the while loop depends
on the truth or falsity of the condition

(I< 10)

Since nothing within the loop ever changes the value of I, it remains 0
indefinitely. Thus, the loop will never be terminated; and the statement
following the loop, the Write statement, will never be executed. Nothing
will be printed. Care must be taken in writing loops to assure that there is
an exit point.

Here is another program containing a while loop. The program
works correctly as far as it goes. It reads in a sequence of train times, for
example,

1020 1040 1105 1145 1210 1305 -1

and determines whether the times are in order, as they should be for a
valid train schedule. The sequence is terminated by typing -1.

When the sequence of numbers shown in Fig. 6.4 is entered, the
program works nicely. But what happens when we throw in a few curves?
For instance, what if the sequence were as follows?

2140 130 145 210 250 -1

These figures could be valid if the train starts before midnight.

program TimeCheck;

const
Terminator = -1;

var

•••

Time, NextTime, Count : Integer;

begin
WriteLn('ENTER TRAIN TIMES');
Read(Time);
Count:= l;

while (Time<> Terminator) do
begin

Read(NextTime);
Count := Count + 1;
if (NextTime =Terminator) or (Time< NextTime) then

Time := NextTime
else

WriteLn('OOPS, CHECK TIME ', Count)
end;

WriteLn('ALL ITEMS HAVE BEEN CHECKED.')
end.

Practice-Looping 141

Figure 6.4 • Program
TimeCheck

142 6 Repeated Calculations

With this sequence of times, 2140 is assigned to Time and 130 is assigned
to NextTime. Since Time is greater than NextTime, execution passes to
the else part of the statement. Notice that in the else part, no new value is
assigned to Time, it remains 2140; thus, each new NextTime will be
compared to 2140. In each case Time will be greater than NextTime and
execution will pass to the else part each time the loop is executed. Each of
them will be reported as an "Oops" situation.

Consider the following sequence of times where there is a
duplicate.

1020 1020 1105 -1

What will happen on the first pass through the loop?

•••
The time 1020 is assigned to Time before the loop is entered. On the first
pass through the loop, NextTime also becomes 1020. The relationship is,
therefore, one of equality between Time and NextTime. This is not one of
the conditions in the if part of the statement, so execution passes to the
else part. This is as it should be, since the train cannot leave two stations
at the same time.

In the preceding case, using the program reveals an error in the
schedule, but what about the following entries where the numbers are
not valid times?

20 99 165 271 -1

•••
Nowhere in the program is there a check for validity of the times entered.
As long as the numbers are in order, no error will be reported. Even a
negative number can be entered as a time without causing an
"Oops."

Let's take a look now at the terminator. The loop continues as long
as Time is unequal to -1. If only a -1 is entered, execution passes to the
first statement after the loop, and we get the message

ALL ITEMS HA VE BEEN CHECKED

even though no items were entered. What happens with

-1 -1

which is strange to say the least?

•••

Since the execution of the loop depends on Time being unequal to -1, the
statements in the body of the loop are never performed, therefore,
NextTime is not read at all. Execution passes beyond the loop, and the
second -1 is never considered.

How about the situation where the -1 is not entered. What would
happen with

1020 1040 1105

•••
The program instructs the computer to read a number and do something
with it, and then to do the same thing again as long as the number read is
not equal to -1. Until the terminator is entered, execution continues to
return to the beginning of the loop, the Read statement. Execution never
reaches the WriteLn statement if -1 is not entered.

There is a moral here. Even these innocently small problems
present their little oddities. One of the rules of good programming is to
pay special attention to the details. Any of the situations discussed here
could arise in a program being used to check a sequence of times. For the
program to be really useful, it must address these potential difficulties. As
we stated at the beginning of this exercise, the program works fine as far
as it goes.

Consider the program in Fig. 6.5. Given the numbers 8 and 6 as input,
this program outputs

THE GREATEST COMMON DIVISOR IS 2

How many times is the loop executed before the result is printed?

•••
Let's follow the values through the loop. When the loop is entered for the
first time, the values are assigned as follows:

Remainder := 2
HighValue := 6
LowValue := 2

At the end of the first pass, Remainder is equal to 2, so execution returns
to the beginning of the loop. On the second pass the values are as
follows:

Remainder := 0
HighValue := 2
LowValue := 0

Since Remainder is now equal to zero, the loop will not be repeated
again.

Practice-Looping 143

144 6 Repeated Calculations

Figure 6.5 • Program
GCD

program GCD;

{ -- This program computes the greatest common divisor of two }
{ -- integers. The program uses Euclid's Algorithm. }

{ -- Euclid's algorithm goes as follows:}
{ -- (1) The higher number is divided by the lower. }
{ -- (2) If the integer remainder is not zero, it becomes the }
{ -- next divisor, while the divisor becomes the next dividend. }
{ -- (3) the process repeats until the remainder is zero; l
{ -- the current divisor is the GCD. }

var
Numl, Num2, HighValue, LowValue, Remainder: Integer;

begin
Read(Numl, Num2);
if Numl <= Num2 then

begin
LowValue := Numl;
HighValue := Num2;

end;
else

begin
LowValue := Num2;
HighValue := Numl;

end;

repeat
Remainder:= HighValue mod LowValue;
HighValue := LowValue;
LowValue :=Remainder

until Remainder = O;

Write('THE GREATEST COMMON DIVISOR IS', HighValue)
end.

Notice that LowValue is now also equal to zero. Since LowValue will
always be equal to Remainder at the end of the loop, we could have
used

LowValue = 0

as the condition for conclusion. Right?

•••
Wrong! Although the program would work correctly using LowValue
instead of Remainder, it would be very poor programming technique. The
goal of the loop is to find a divisor that produces no remainder. Although

it is important to be aware of all the little details, it is also important to
keep in mind the overall purpose of the program.

When writing loops into programs, one of the first steps is to
determine which kind of loop to use. Consider the use of a while loop in
the Fig. 6.5 program. What happens if the loop is changed to the
following?

while Remainder < > 0 do
begin

Remainder := HighValue mod LowValue;
HighValue := LowValue;
LowValue := Remainder

end;

Remember that when a while loop is used, the condition is evaluated
before the loop is executed Look carefully at the program. What is the
value of Remainder when the loop is first encountered? If you answered,
"I don't know," you are absolutely correct. No value has yet been
assigned to Remainder. Before a variable is used, it must be assigned a
value, or the results will be unpredictable.

Going back to the repeat loop, what happens if the loop is changed
to the following?

repeat
Remainder:= HighValue mod LowValue;
LowValue := Remainder;
HighValue := LowValue

until Remainder = O;

•••
The ultimate effect of the sequence of assignments shown above is that
the value originally associated with Remainder is assigned to both
LowValue and High Value. As you can see, the order in which assignments
are made requires careful attention.

Let's consider one more possibility before we leave this program.
What happens if Nurnl and Nurn2 are given as --8 and -6?

•••
Right from the beginning we are in trouble here. Since --8 is less than -6,
the number with the higher absolute value is assigned to LowValue and
the number with the lower absolute value is assigned to HighValue.
However, the real problem arrives when the mod operator is encountered
Negative numbers cannot be used with the mod operator; an error
results.

Before we leave you, we reluctantly turn to a discussion of goto's.
They say there are two kinds of people: those who hate New York City

Practice-Looping 145

146 6 Repeated Calculations

and those who love it. Well, there are two kinds of programmers: those
who believe the goto should be banned forever and those who believe it
can be an effective programming tool. This problem will show you why
some people would like to ban it.

The goto is a statement that causes a program to continue
execution at a specifically named place. Typically, we may have
something like

goto 25;

goto 25;

{-line A}

{-line B}

25 : DoSomethingSpecial;

goto 25; {-line C}

If the program gets to any of lines A, B, or C, execution will immediately
continue at the statement labeled 25. The rules for doing this in Pascal are
simple.

The first rule is: (1) Any statement in a program can be prefixed by a
label. For example, we may have

or

or

10 : Read(X, Y, Z)

11 : if Numltems > 100 then
Write('Too many items')

12: x := x + 1

As evident above, a label is an integer followed by a colon.
The second rule is a bit strange: (2) All integers serving as labels

must be declared Thus we may have

~bel 10, 11, 12;

This line must appear before any constant or variable declarations.
Perhaps the rationale here is to make it a bit difficult to use goto's.

Finally, the third rule is obvious: (3) No two statements may have
the same label. Otherwise, the computer would not know where to go.
For example, it is erroneous to have

15: DoThis;

goto 15;

15: DoThat;

That is about all you need, but the power of this innocent-looking
statement is enormous, and so is the trouble it can cause.

Consider the program listed in Fig. 6.6. We leave it to you to rewrite
this program to eliminate as many goto's and labels as possible, and to
make the program as short and clear as you can.

program DontGoto;

I -- This program is a bag of worms. I
label

I, 3, 4, 5, 6, 7, 8, 9;

const
MaxValue = 99;

var.
X: Integer;

begin
goto 3;

I :
if X = 0 then

goto 9
else

goto 5;
5:

if X > MaxValue then
goto 6;

else
goto 4;

9:
WriteLn(X);
goto 7;

3:
ReadLn(X);
goto l;

6:
X := Round(SqRt(X));

8:
X:= 2 * X + X;
goto 9;

4:
X:= X * X;
goto 8;

7:
WriteLn('ALL DONE')

end.

Practice-Looping 147

Figure 6.6 • Program
DontGoto

148 6 Repeated Calculations

6.4 0

6.1 Tricky For Loops
Consider the following loop:

I:= 1;
for N := I to I + 4 do begin

I:= I+ 2;
WriteLn ('N = ', N : 3, ' I = ', I : 3)

end

Even though l is changed within the body of the loop, the loop is executed
five times. However, the values printed by the WriteLn statement are

N= 1 I= 3
N=2 I= 5
N=3 I= 7
N=4 I= 9
N=S I= 11

We see that the initial and final values of N are determined before
executing the body of the loop.

The following problem is not as simple as it appears. Write an
equivalent sequence of statements for any for loop of the form:

for variable := expression to expression do
statement

The rewritten sequence must not include a for loop.

6.2 Summing a Long Series of Numbers
If you toss a coin you may get heads on the first toss. But then again you
may not. The probability of getting your first heads on the first toss is 'h.
The probability of getting your first heads on the second toss is 1/4. On the
third toss Ys, and so on.

To get the average number of tosses needed to get heads you need
to add the series of numbers:

l *(V2) + 2*(1.4) + 3*(Vs) + ...
Write a program to find the value of this series as the number of tosses
approaches infinity. A thousand terms should suffice.

6.3 Secret Numbers: Version 4
It is not clear how many guesses a user should be allowed to make on an
ATM; five tries seems reasonable, if we want to be generous we could say
10. This problem is basically the same as Version 3; that is the user gets a
certain number of chances to enter the correct code number, which is
declared as a constant in the program. This time use loops in the

program, and give the user five chances to enter the correct number.
Before the fifth choice is to be entered, the user is to be given a warning,
such as

THIS IS YOUR LAST CHANCE

6.4 Monthly Service Charge
Checking accounts at many banks have a monthly service charge but pay
interest on your current balance. One possible scheme is as follows:

a) If 10 or fewer checks are cashed, the service charge is $0.10 per
check.

b) For the next 10 checks, the service charge is $0.09 per check.

c) For all remaining checks, the service charge is $0.08 per
check.

d) If the closing balance is $100 or less, no interest is added.
e) For balances larger than $100, 0.5% monthly interest on the

surplus over $100 is credited to the account.

Write a program to read in the number of checks cashed and the closing
balance, and print the net amount debited or credited to the account. The
closing balance is read in as a real number with a decimal point two digits
from the right. Thus 50.64 represents $50.64.

For example, with the input

15
50.64

the output would be something like

DEBIT ACCOUNT BY 1 DOLLAR AND 45 CENTS

With the input

15
1000.00

the output would be

CREDIT ACCOUNT BY 3 DOLLARS AND .05 CENTS

Note: It may be helpful to multiply the closing balance by 100 and do all
arithmetic with integer values. You might also wish to comment on the
problems of rounding off the results into dollars and cents.

6.5 Accumulated Savings
If a lump sum of money is put into a savings account and left alone,
interest is calculated each time on the accumulated amount in the
account. That is, interest is paid on the interest as well as on the principle.
For this problem, assume that interest is paid only once each year.

Programming Exercises 149

150 6 Repeated Calculations

Write a program to calculate the total amount in the account after a
certain number of years. Assume that the interest rate remains constant
through the years. The original amount, the interest rate, and the number
of years are all to be entered by the user. The output must show the
original amount, the interest rate, the number of years that the savings
have been accumulating, and the accumulated amount of savings.

6.6 Paying Your Debts
A debt is said to be amortized if it is paid off by a sequence of equal
payments at equal intervals. There are four basic quantities to be
considered:

P = the principal amount of the debt
I = the yearly interest rate for the debt
N = the number of years for the duration of the debt
M = the constant monthly payment required to pay back the principal P

over N years at the interest rate /.

M = p * i * (1 + t)n

(1 +on - 1

where

= //12 = monthly interest rate
n = 12*N = number of monthly periods in N years

You are to write a program to compute the average monthly payment to
amortize a debt.

Input: The input to this program is a line with the following values,

P I N

where

P = the principal in dollars
I = the percentage interest rate computed to two decimal places (for

example, 825 means 8.25 percent)
N = the number of years in integer form

Output: The output from the program is to be the required monthly
payment.

Sample input:

20000 800 25

Sample output:

MONTHLY PAYMENT: $154.36

6. 7 Roman Numerals
The problem of converting Roman numerals to Arabic numerals lends
itself nicely to looping. Write a program to do this. Think this one through
very carefully before you begin to write.

6.8 Mailing Labels
Computers generate tons of mailing labels every day. Here's a simple
starter.

Write a program that read in an integer stating the number of times
you want your own mailing label (name and address) printed. The
program should print this label the specified number of times.

Note: If you want to get a bit fancy, buy some sheets of blank mailing
labels and try to get the computer to fill them in.

Programming Exercises 151

Chapter 7

The material so far presented
is sufficient for writing programs for solving a wide variety of problems. A
word to the wise is in order before continuing, however: Do not be misled
by the apparent simplicity of these ideas. True, they are, in and of
themselves, very simple. But using them is not.

When starting a new problem, there are many forces at work that
encourage a programmer to abandon thoughtful and effective techniques
for unproven shortcuts. Trying to speed up the process results in paying
a high price in time and energy later on. Shortcuts sometimes pay off, but
for the most part they do not. Starting with an absolutely solid problem
definition is one way to get future rewards.

Definition
The place to focu:; attention at the beginning, as difficult and tedious as it
may seem, must be on the problem definition itself. If you allow some little
detail to escape you, ignore some odd case, or dwell on irrelevant
information, you will find yourself playing host to some larger problems
down the road.

One of the best techniques is to construct a sample of the input and
output for each program before attempting to solve the problem. Among
the benefits of this technique are these:

• It forces the programmer to consider the details of the
problem.

7.1 • Problem
Solving

153

154 7 Programming Techniques

• It can help to uncover any special or annoying cases that will
surely turn up later.

• It often forces the programmer to restructure the problem,
sometimes ever so slightly, making the program easier to
write.

• Above all, it gives a clear idea of the intent of the entire
program.

This may sound too obvious; but excellent problem definitions are
as rare as excellent detectives, excellent food, or excellent anything.
Writing good problem definitions requires plain hard work; there is no
way around it. You must take the time to specify the inputs, the outputs,
and the exact task the program is to perform. What is needed is
persistence and discipline, or as Edison once remarked about genius, it is
"one percent inspiration, ninety-nine percent perspiration."

Methodology
Certainly the hardest task in problem solving is developing an overall
strategy. There is little sense in pretending that the methods in problem
solving are very scientific; nevertheless, there are known psychological
techniques to help you over these first crucial steps.

Once you have a problem firmly fixed in your mind, it is a grave
mistake to believe that this is the time to start programming. What it is the
time to do is to start thinking.

Thinking means just that. You need to think about alternative ways
to solve the problem. You need to examine various approaches in enough
detail to discover the possible trouble spots that may be difficult to
program.

Always look for possible errors and provide against them. It is the
first rule of programming just as it is the first rule of criminal investigation.
You need to polish any proposed solution before attempting to carry on.
Remember, it is certainly easier to discard poor thoughts than poor
programs.

You may have heard it said before, undoubtedly because it is true: it
always takes longer to write a program than it first appears. On the other
hand, you can safely assume that the sooner you start writing code,
rather than thinking about the problem, the longer it will take to complete
the task.

One of the best thinking aids is analogy. Presumably the problem
being solved is not so unfamiliar that you have not seen anything like it
before. Recall solutions to similar problems. You may recognize portions
of the problem that have been solved in some similar fashion, or perhaps
you have solved a similar problem that had nothing to do with
computers. In each of these situations, the point is the same: look to

previous solutions, for in them may be the seeds to the solution of the
new problem.

In attempting to solve a problem on a computer, there is a tendency
to become heavily involved with the oddities of the programming
language itself. Although the final solution must be programmed in some
language, the best solutions are those for which there is a direct analogy
to the world in which the problem is presented. To do this you should
attempt to solve the problem without regard to the final computer
implementation. Freed from the idiosyncrasies of a programming
language, you the programmer can concentrate on the essence of the
problem.

Some problems are not at all easy to solve. lt has long been an axiom
among programmers that in difficult situations two heads are better than
one. Working with someone else, customarily known as brainstorming,
and simply talking about your problem has become a classic pro­
gramming technique.

Conversations with others are more than idle chatter. In the process
of discussing the problem, one often finds inspiration. Do not be afraid to
expose the problem at hand and to listen when someone else proposes a
solution. It is remarkable how often the simple exposure of an idea can
lead to a clearer, better formulated solution.

Of course, if your mind is already made up and your solution is well
in hand, you can go right ahead. But take care-supposedly good ideas
have been known to show serious flaws when put into action.

Sooner or later you will find yourself in a situation where there
appears to be no reasonable solution to a particular problem. You may
have tried repeatedly with a given idea, each time finding some new flaw.
What should you do when all hope seems lost?

Take a break.
The technique of putting aside a problem for some period of time is

generally known as incubation. This is a subtle but potentially powerful
psychological technique. A complete distraction, a weekend away from a
problem, a good night's rest, or some frivolous entertainment can often
have far-reaching effects in solving difficult problems.

Our brain is supposedly at work on problems even though we are
not consciously aware of it. Rest from a problem is often the predecessor
of an inspiration. We have all experienced this in other areas of our
lives.

In sum, there are a great many psychological techniques for solving
problems. You should use these techniques to improve your problem­
solving skills in programming.

Expressing Algorithms
All solutions start from the problem and not from some programming

Problem Solving 155

156 7 Programming Techniques

7.2 • Programs
as Human
Communication

language. Assuming that you have a solid idea of a solution, you must now
take your first step toward a concrete program.

A simple device for sketching your ideas is to write out a solution in a
very high-level language of your own. The language can be a pro­
gramming "interlingua," a language somewhere between English and
Pascal. This means that you can borrow extensively from English, coining
phrases at will, unconstrained by a programming language.

For example, you might write,

Do the following I 0 times:
-actions to be performed JO times

or

Print the values in the table.

On the other hand, the language chosen should be guided by the
knowledge that the final program must be written in Pascal. You can, for
example, conceptualize a variable, say NumSuspects, and write,

Set NumSuspects to 0

or

If NumSuspects > 4 then
-what to do if more than 4 suspects

In Pascal, the first example can be expressed by an assignment
statement, the second by a conditional statement.

The point of this technique is to capture some written form of a
solution. This form retains the high level of discourse of the problem
domain, yet is specific enough to capture the essence of the algorithm
that is being expressed.

Assume for the moment that you were presented with two computer
programs. Each performs the same, presumably very important, task for
you. You will have to use one of the programs for the next several years,
probably making modifications as time goes on. You are told that the
programs, from a performance point of view, are absolutely identical;
that is, they perform the same input and output, they run at approxi­
mately the same speed, and each has been tested thoroughly and shown
to be correct.

You are not allowed to look inside and see the actual programs. The
only additional information you have about the programs is that the first
one required over a hundred changes in order to make it correct, while
the second worked correctly the very first time it was run.

Now the obvious question. Which program would you choose?

Programs as Human Communication 157

This question leads to another: What are the characteristics of a
program that would work correctly on its first test? We might conclude
that the persons who wrote the program were highly skilled pro­
grammers or very lucky. But surely there is more, for there must be some
element present in the second program that is lacking in the first. Our
only logical conclusion is that the second program was written with such
crystal clarity that it allowed its authors to comprehend it as easily as you
can read these lines of text. In short, the program must be so transparent
that "even a Scotland Yard official can see through it."

In all of the programs in this book, we see an almost obsessive
concern for clarity. A program is not just a set of instructions that must be
understood by some computer, but a description of an algorithm that
must be understood by human beings, especially the person writing and
using the program.

The factors that go into making a program well suited for human
comprehension are numerous. They include the design of clear
algorithms, choice of control structures, the sequence in which
operations are performed, and many other issues. But there is a key point
mentioned in the quotation above: the choice of names used in a
program.

Names
A wise choice of names can make a great contribution to the readability of
a program. Let us look at a portion of one of the programs presented
earlier:

Read(TodaysOate, TideHr, EventDate, EventHr);
MinsToHighTide := (TodaysDate - 1) * MinsPerOay;
MinsToHighTide := MinsToHighTide + HighTideHr*MinsPerHr;

Of course, it would be shorter to write,

Read(Datel, Hrl, Date2, Hr2);
Mins := (Datel - 1) • DayLen;
Mins := Mins + Hrl *HrLen;

but then we might have to guess at the meaning of Datel versus Date2
and what units DayLen and HrLen stand for. The difference between the
two is that the names in the first fragment have been chosen from
standard English descriptions of the entities.

Creating good, meaningful names can be difficult, for often it is easy
to pick a name with a close but dangerously incorrect connotation. As an
example, suppose a programmer decided to represent a file of criminal
records, and the record's three fields (the age of the criminal, the
criminal's height, and the criminal's shoe size) with the respective names
Input, Fieldl, Field2, and Field3. The name Input might cause a reader to
associate an arbitrary file of input data with the name. A better choice

158 7 Programming Techniques

would be CriminalFile. Likewise, the data names Fieldl, Field2, and Field3
are far less clear than Age, Height, and ShoeSize. Even Height may not be
so perfect, as it may be better to write Hghtlnlnches or HeightlnCm.

A name that is an abbreviation for a longer conceptual unit can also
be hazardous, especially when the resulting abbreviation is an acronym
that suggests another entity. For example, a programmer who desires a
name for a rate of pay entry would be unwise to use the name Rope,
which does not reflect the entity's true meaning.

Names like Fieldl, Field2, and Field3 should be avoided for yet
another reason. Suppose the format of the input were changed so that
the age became the third field instead of the first, and the height became
the first instead of the second field, etc. The name Field I must be changed
to Field3, Field2 to Fieldl, and so on. Needless to say, it is highly possible
that some occurrence of the name Field3 might not be changed to Field I!
Finding a mistake like the one just made in the last sentence is another
problem with such names.

Another important aspect in choosing names is the effect of
abbreviations. The first point to remember is that you should only.
abbreviate after you have created a full mnemonic name. Second, the
chosen abbreviation should not suggest a meaning different from the
original name. Let us assume you have created the lengthy name
NumberOfCigars and that it suggests the correct meaning. Even though
you surely will want to abbreviate the name, you should reject such
abbreviations as NumCig or NoCigar, for they may very well be
misleading. A name like NumCigars would be preferable.

The choice of appropriate names is seldom an easy matter. Keeping
in mind that the main reason for choosing a particular name is so that you
(and others using your program) can understand it, it is well worth the
effort to invest some thought in the choice of a name. You may not fully
appreciate this when first designing your program; but you will, no doubt,
appreciate the full value of your labors at some later date when you
return to use the program.

Prettyprinting
The use of spacing conventions to illuminate structure is often called
"prettyprinting." Prettyprinting is a vital ingredient in reading programs.
With good spacing rules, typing errors are much easier to detect and the
meaning of portions easier to follow. Most important, the overall intent of
the program can be made more transparent to the reader. The conscious
use of good spacing conventions can even affect and improve the original
code.

With Macintosh Pascal the spacing within a line and all of the
indenting are done automatically. The formatting conventions that are
used go a long way toward making a program readable. However, there

Programs as Human Communication 159

are tools available to the programmer which can make the intent of the
program even clearer.

Blank lines are ignored in the processing of a program and can be
used freely to set off blocks of information. Skip a line after the
declarations section and before and after such things as loops and case
statements. When blank lines are used in conjunction with comments
even more clarity is gained. Consider the following program:

program Temperature;
var

F: Integer;
C: Real;

begin
Write('ENTER A FAHRENHEIT TEMPERATURE:');
ReadLn(F);
C := (5 I 9) * (F - 32);
WriteLn;
WriteLn(F: 2, 'DEGREES FAHRENHEIT IS EQUAL TO', C

: 3: 1, 'DEGREES CELSIUS.')
end.

Now read it again with blank lines and one comment:

program Temperature;

{ -- This program converts a fahrenheit temperature }
{ -- to its celsius equivalent }

var
F: Integer;
C: Real;

begin
Write('ENTER A FAHRENHEIT TEMPERATURE:');
ReadLn(F);
C := (5 I 9) * (F - 32);
WriteLn;
WriteLn(F: 2, 'DEGREES FAHRENHEIT IS EQUAL TO', C

: 3: 1, 'DEGREES CELSIUS.')
end.

The improvement is obvious even on such a simple program as this one.
Imagine a longer, more complex program with no blank lines and no
comments. Reading it would be a chore to say the least.

Another tool that is very useful in the declarations part of the
program is grouping. It is not necessary to include all the identifiers of a
particular type in a single declaration; therefore you can say,

TodaysDate, TideHr : Integer;
EventDate, EventHr : Integer;

instead of

160 7 Programming Techniques

7.3 O Practice

TodaysDate, TideHr EventDate, EventHr: Integer;

This concept of grouping applies to the constants also. Although
each will be put on a separate line; they can still be grouped, with the
groups separated by a blank line, as in

SideA = 118;
SideB = 78;
SideC = 144;
SideD = 84;

Acre = 43560;

Diameter = 9;
Radians = 82;

These are simple conventions, but like anything else in this book,
their implementation requires a great deal of thought.

This brings us full circle to our point of origin-that there can never
be a substitute for thinking.

"In solving any sort of programming problem, Watson," Holmes
once remarked, "the grand thing is simple, human reasoning. It is a very
useful and easy accomplishment, though people do not practice it much.
There are fifty who can reason synthetically for one who can reason
analytically. I tell you, Watson, we have not yet grasped the results which
human reason alone can attain."

There are always a few tricky but interesting questions you can ask about
a language. One of these concerns the shortest possible program you can
write. Such a program would obviously do nothing when executed. The
shortest possible program in Pascal has 18 nonblank characters. Writing
it gives you a good chance to review the fundamentals of a Pascal
program. Give it a try. The program is shown later in the section .

•••
The program in Fig. 7.1 performs a well-known, simple arithmetic
computation. Before continuing, see if you can figure out what that
computation is.

• ••
In choosing names, the programmer must guard against using identifiers
whose relationships are vague, tenuous, or peculiar. The purpose of the

Practice-Program Clarity 161

program FunnyNames;

const
Four= 4.0;
Five= 2.0;

var
Left, Right, Middle, All : Real;
Leftl, Left2, Rightl, One : Real;

begin
ReadLn(Left, Middle, Right);

Rightl := Four • Left • Right;
Leftl := Middle • Middle - Rightl;
Left2 := SqRt(Leftl);
One := (-Middle + Left2) I (Five • Left);
All:= (-Middle - Left2) I (2.0 *Left);

WriteLn(One, · AND ', All)
end.

example program in Fig. 7 .2 has been deliberately obscured by the use of
mnemonic names that appear reasonable at first glance, but that are, in
fact, misleading and confusing.

The program in Fig. 7.2 does indeed have a purpose and Inter
represents a real quantity. This problem is more difficult than it
appears.

• ••
Shown below is the shortest possible Pascal program.

program P;
begin
end.

If you were not able to recognize the intended computation in
program FunnyNames, it is considerably clearer in the program shown in
Fig. 7 .3. The names have been changed, and three steps have been
combined into one.

The program in Fig. 7 .3 computes the roots of the general quadratic
equation

ax +bx+c=O

by using the quadratic formula.

Figure 7.1 • Program
FunnyNames

162 7 Programming Techniques

Figure 7.2 • Program
Have Fun

Figure 7.3 • Program
BetterNames

program HaveFun;

var
Denom, Slope, Inter, Num : Real;
Row, Col : Integer;
A : array[l..2, 1..2] of Real;

begin
for Row := 1 to 2 do

for Col := 1 to 2 do
ReadLn(A[Row, Col]);

if A[l, 1] = A[2, 2] then
WriteLn('NO VALUE')

else
begin

Num := A[l, 2] -A[2, 2];
Denom := A[l, 1] - A[2, 1];
Slope := Num I Denom;
Inter := A[l, 2] - Slope * A[l, 1];
WriteLn('THE ANSWER IS', Inter)

end
end.·

program BetterNames;

var
a, b, c : Real;
Stepl, Step2 : Real;
Rootl, Root2 : Real;

begin
ReadLn(a, b, c);

Rootl := (-b + SqRt(b * b-4.0 *a* c)}/ (2.0 *a);
Root2 := (-b- SqRt(b * b - 4.0 *a* c)) I (2.0 *a);

WriteLn(Rootl, ' AND ', Root2)
end.

Usually a complex arithmetic computation can be coded as a single
arithmetic expression, as it is in BetterNames. However, for the sake of
clarity, it is often advantageous to split up a lengthy arithmetic
expression and use intermediate variables. In this particular program, it
would certainly be useful to check the value of the discriminant of the
equation, that is

b-4ac

Practice-Program Clarity 163

to see if it is a negative number. Since the computer cannot compute the
square root of a negative number, an error would be reported if the
discriminant is negative. To be useful, the program should contain an if
statement which would check for this condition and report it in a Write
statement.

We leave you to struggle with program HaveFun for the time being.
However, we offer in Fig. 7.4 one possible rewrite of DontGoTo from the
last practice section.

program WentTo;

const
MaxValue = 99;

var
X: Integer;

begin
ReadLn(X);

if X <> 0 then
begin

if X > MaxValue then
X := Round(SqRt(X))

else
X := X * X;
x := 2 * x + x

end;

WriteLn(X);
WriteLn('ALL DONE')

end.

Figure 7.4 • Program
WentTo

Chapter 8

0 ccasionally a program
runs correctly and produces the expected output the first time through.
However, more often than not, no matter how carefully the program is
written, it requires some correction or modification. Choosing Check
from the Run menu reveals any syntax or typographic errors. When a
mistake is encountered during a Check run, a dialog box appears stating
the nature of the error. Three of Apple's Macintosh Pascal dialog boxes
are shown in Fig. 8.1

Either ii semicolon (;) or an ENO is eHpected following the prellious
statement, llut neither hils Ileen founct.

~· The name "Temprnture " has not Deen defined yet.

A perloct (.) Is reoulrect followtng the last END of the orogrnm !Jut
one hils not Deen founct.

Figure 8.1 • Dialog
boxes

165

166 8 Testing Programs

8.1 • Breakpoints

Figure 8.2

A pointer in the left margin indicates the location of the error; it can
normally be found on the line indicated or on the preceding line. Click the
bug to remove the dialog box, make the correction, then choose Check
again.

Other errors may be reported during a program run, such as the
ones reported in the dialog boxes in Fig. 8.2. The error messages given in
Macintosh Pascal are carefully worded to lead the programmer to the
cause of the difficulty. Pay attention to them.

A more difficult situation arises when the program is syntactically
correct, and has no run errors, but produces output that is unexpected or
inconsistent. Sometimes a careful re-reading reveals the source of the
difficulty. If that proves unsuccessful, the program has to be checked
section by section or possibly line by line.

Macintosh Pascal provides a simple method for setting breakpoints in
any program, allowing one to check and correct a section of the program
without running it through to the end each time. The Run menu offers a
selection Stops In. This option causes a margin to appear on the left side
of the program window. The margin has an icon of a Stop Sign at the
bottom. Clicking the margin places a Stop Sign before any line of the
program. Each time a stop is encountered during a run, the program halts
without executing the line. When any run command is given, execution
continues where it left off. To remove a single Stop Sign, click the sign; to
remove all of them, choose Stops Out from the Run menu.

If the program has been carefully written, the separate modules
should be obvious; setting a Stop Sign for each one and using the Observe

·~ An attempt to perrorm an integer dllllde (DIU) by zero has occurred.

m An lncompatlblllty bet111een types has been round.

m A STRING ualue Is too long for its Intended use.

window shown in Fig. 8.3 gives an indication of which section is causing
the problem.

One or more of the expressions contained in the program can be
entered into the Observe window by activating the window, and then
typing the expression and a return. Each time a stop sign is encountered,
the window is updated to show the current value of the expressions.

Once the problem area is located, stepping through the statements
while observing the behavior of variables or expressions can be a very
effective way of finding the exact source of the problem. Consider the
following simple loop:

x := l;
repeat

X:= X + 2
until X = 100

In such a short loop the error is obvious, but in a complicated program
the never-ending loop can be a very troublesome problem. By placing a
Stop Sign before the repeat and entering X into the Observe window, it is
possible to check the value of X before each execution of the loop. As
shown in Fig. 8.4, it quickly becomes obvious that X takes on only odd
values and will never be equal to 100.

The values of X can be displayed rapidly by choosing Go-Go from
the Run menu. Instead of halting before each execution of the loop, the
program pauses only long enough to update the Observe window. In the
run shown in Fig. 8.4, Go-Go was used until X reached 95, the run was
halted by choosing Halt from the Pause menu, and then Step was used to
check each line.

To avoid the problem, the condition should read,

until X > 100

Consider the program shown in Fig. 8.5. This program displays for
the element radium the percentage of atoms still radioactive after a
number of years.

It is interesting to note that, although ActiveAtoms never actually
reaches zero, program execution ends when the number becomes too

Obserue
Enter an expression

Breakpoints 167

Figure 8.3

168 8 Testing Programs

Figure 8.4

Figure 8.5 • Program
Radioactivity

small to be within the representable range of Extended numbers. By
placing a Stop Sign before the repeat line, we can observe the values of
YearsPassed and ActiveAtoms. The Observe window is shown in Fig. 8.6
for the first loop, the loops before and after the visible value becomes

• file Eclit Se.orrh llun tllinclows

!program Tn:l X,

I
/_ v~r

X : lntegl?r ;

11begin
$:e:e~~
.. x := x + 2

program Radioactivity;

(-- This program computes the percentage of atoms still l
(-- active after each half life for the element Radium. }

const
HalfLifeRa = 1620; (years }

var
YearsPassed : Longlnt;
ActiveAtoms : Real; (percent l

begin
YearsPassed := O;
ActiveAtoms := 100;
repeat

YearsPassed := YearsPassed + HalfLifeRa;
ActiveAtoms := ActiveAtoms I 2;

until ActiveAtoms = 0.0;
WriteLn('After ', YearsPassed : 5,' years, radioactivity equals zero.')

end.

zero, the next to last loop, and the Observe and Text windows at the close
of the program.

Obserue
o Ye.arsP.assed

Obserue
43740 Year:s:Passed

Entl'r an l'Xprl'ssion

Obserue
4:J360 Ye.ar:s:Passed

Entl'r an l'Xprl'ssion

Obserue
l/ndli'tinli'd .<i.Jm~ YearsP.~:s::s:ed

Entl'r an l'xprl'ssion

~o Te Ht
After 254340 years, l1t radioactivity equals zero .

~
Q]

Breakpoints 169

Figure 8.6

170 8 Testing Programs

Figure 8.7

Figure 8.8

Since ActiveAtoms never mathematically reaches zero, it is better to
assign a very low value to be used for comparison. For instance, a
constant can be assigned, as in

const
Epsilon = l .Oe-6;

Epsilon is then used instead of 0.0 as the control value.
A variable that is not shown in the Observe window can be checked

by using the Instant window shown as Fig. 8.7.
To enter a statement such as

Write(ldentifier);

activate the Instant window (Fig. 8.8), and type in the needed statement
or statements. The statements are executed by clicking the Do It
button.

The value of a variable can be changed by entering an assignment
statement, as shown in Fig. 8.9.

Instant

(Do It J
{ An q ·:. t .:i t. e rn e n t ::. , .:1 n q t. 1 tn e. :

D Instant

(Do It J ~
v·tri te(SuspectName);
v.;- ·t_ {V 't ~ ' r 1 e . .1· ... • .. t...J.;

I-::-

9
t:tl fi~ 121

lnstrsnt

(Do It

x := x + 1;

Any statement that could be entered into the program can be
entered on the Instant window. However, be aware that these newly
entered statements do not replace anything already in the program. If the
program is halted at a statement such as

Read(Temperature);

and you enter

Temperature := 68;

the Read statement is still executed when the run is resumed; the
assignment statement on the Instant window does not satisfy the need
for input data dictated by the Read statement.

The Observe and Instant windows are an invaluable aid for getting
programs to run correctly. Holmes would surely appreciate the advances
that have been made since the days of the Analytical Engine.

Sometimes the most efficient way to determine the location of the
problem is to Step through the program line by line. This is almost like
having a Stop Sign on each line. Choosing Step causes only one line of the
program to be executed. The pointer indicates which line will be
executed next. Go and Step can be used together to speed up the testing.
If the mistake is near the end of the program, set a Stop Sign just before
the suspected troublespot and choose Go to run the program up to that
line; then switch to Step to pinpoint the problem.

The Observe and Instant windows both can be used with Step just as
with Go. Expressions entered on the Observe window will be updated as
each line is executed. Statements can be entered and executed by means
of the Instant window before stepping to the next line.

Step and Reset 171

Figure e.9

8.2 • Step and
Reset

172 8 Testing Programs

8.3 O Practice

At any point it may be desirable to go back and do some editing or
try different input. Any time the program is halted, choosing Reset
returns the program to the beginning.

When all else fails, set the program aside for a while and turn your
mind to other matters. Sometimes the harder we look the less we see.
Give the problem a chance to incubate; tomorrow the solution may be
obvious.

~ ,.1,,./ Debugging programs is something that you will certainly get plenty of
<::le1l/lfrJ opportunity to practice. Be aware that a systematic approach is needed
~ 7 for correcting errors, just as for any aspect of programming.
-r,r~4~~ We leave to you the choice of a troublesome program to practice
~fl. V'h on. If you haven't already created one, you soon will. Perfection in

programming is greatly to be desired, but rarely found.
Listed below are some of the steps to follow in getting a Pascal

program to work on the Macintosh.

1. Run the program through a Check. This will assure that the
typing and syntax are correct.

2. Pay attention to any errors that are reported on the first run. The
error messages are there to help you. Quite often they lead you
directly to the problem.

If the program checks and runs, but it produces results that are incorrect
or inconsistent, or if the program ends prematurely or not at all, then
continue with the following steps.

3. Reread the algorithm and the program, watching for errors. If
possible, have someone else read them also.

4. Isolate the problem area. The Stop Signs, and the Observe and
Instant windows are a big help here. Follow the values of one or
more variables whose behavior you should be able to predict.
Are the values consistent with your expectations? If not, where
do they begin to fail?

5. Step through the problem area. The pointer indicates the next
line to be executed. Is the sequence as you expected? If there are
if-else choices, make sure that each possibility is tested. You may
want to use the Instant window in this case to assign values to the
control variable in order to check the sequence of steps.

6. Keep track of any changes you make; random trial and error will
only cause you trouble.

7. When all else fails, set it aside for a while. Don't give up; just give
yourself a break.

•••

Practice-Getting Programs to Work 173

In case you are still struggling with program HaveFun from the previous
practice session, here is some help for you. If a line is drawn on a
Cartesian coordinate system, and two points on the line are given as x1, y 1

and x2, y; then, the slope of the line is represented by

l-y1
x2-x1

and the point where the line crosses the y axis, the y intercept, is
represented by the following formula:

y = l - (x2 *slope)

HAD seen little of 'sherlock Holmes for many months, and
my marriage and my return to practice in the Paddington
district having caused us to drift apart. One night in early
August, as my way led through Baker Street, l was seized by

a keen desire to see Holmes and to know to what use he was making of his
extraordinary Engine. l found him lounging upon the sofa, a pipe-rack
within his reach and a pile of crumpled newspapers, apparently recent,
near at hand. A lens and a number of columns that had been neatly cut
from the papers were lying upon the sofa beside him, which suggested he
had been in the process of examining them when l entered.

"You are engaged, l see," said I. "Perhaps l am interrupting your
work."

"On the contrary, you could not have come at a better time, my dear
Watson," he said cordially. "You would confer a great favour upon me
should you lend me an ear, for nothing clears up a problem so much as
stating it to another person. l think that your time will not be misspent,"
he continued as he reached for a paper. "This case has its points of
interest and, especially, of instruction."

I gave the pile more careful scrutiny and realized that it was largely
made up of back editions, for they were yellowed, of the Times.

"You are searching for something?" I asked.
"Indeed, Watson. I am searching for a series of trifles," he remarked.

"You know my method. It is founded upon the premise that it is usually in
unimportant matters that there is a field for observation."

He flipped rapidly through the paper, finally thrusting it under his
sofa and taking up another.

"As you know, I customarily read nothing but the criminal news and
the personal announcements. I have of late included the advertisements,
which are proving instructive."

I waited silently, accommodating my companion's flair for the
dramatic, to which I was long accustomed. He lit his pipe nonchalantly
and continued.

175

176 Prelude to Types

"You may have read yourself, over the past eight months, of the
series of daring burglaries that has been taking place throughout
London's most fashionable districts. Scotland Yard is absolutely
baffled."

"I have seen what the Daily Telegraph and the Chronicle have had
to say, but not the Times," I replied.

"It is theorized that there are two persons involved," he continued,
"and although two suspects have been under investigation, the
authorities have never been able to establish their presence at the scenes
of the crimes. There is nothing more stimulating than a case where
everything goes against you. This particular matter is further complicated
by the fact that neither suspect ever seems to communicate with the
other. Now unless Scotland Yard can prove some means of communi­
cation, or better still, determine this means, intercept their messages, and
catch them in the act, it is feared that these burglars will remain free. It is
necessary to prove that they were indeed conspirators before they can
be brought before a magistrate."

"I take it, Holmes, you have come across something in the Times
linking these two with the crimes that the police have failed to note?"

"Yes, Watson, the Times is a paper that is seldom found in any hands
but those of the highly educated. Crime is common but logic is rare, and I
sense an extremely complex mind behind this. Therefore, it is upon the
logic rather than upon the crime that one should dwell. Just when I
thought that the criminal mind had lost all enterprise and originality,
enter these singularly interesting specialists.

"This is one of those cases where the art of the reasoner should be
used for the sifting of details rather than for the acquisition of fresh
evidence. This is where Scotland Yard has wasted its energy. I, on the
other hand, have considered how I might communicate with a silent
partner."

Holmes rose from the sofa and walked towards the hearth rug while
scanning the paper he had picked up earlier. I took this opportunity to
stretch out in the comfortable armchair which I had occupied so many
times before. I looked dreamily up to the mantelpiece, recollecting old
adventures we had shared. I started from my reverie as Holmes abruptly
pounced upon an advertisement.

"Here!" he exclaimed. "The most recent one, and at the correct
time. That accounts for all seven robberies, by my calculations.'.'

He then showed me the item which had arrested his interest.

For Sale: Copies of the Strand numbering from 23 to 276 with
various duplicates. Also, 3 Twybridge carriage wheeis in excellent
condition. Please enquire: Box 37 GPO

"I do not recognise the carriage name," I replied, "but some of those
issues of the Strand have chronicles of your achievements."

An Advertisement in the Times 177

"Holmes abruptly pounced upon an advertisement."

"The magazine itself is of little import, Watson, but the numbers of
these issues are. The newest volume number minus the oldest volume is
a number that fits well into my theory, as is the number of carriage
wheels. As for these Twybridge carriage wheels, I can safely attest that
there are no such items in existence. I am familiar with forty-two
impressions left by carriage wheels, having written a short monograph on
the subject.

"I believe the 3 represents three o'clock in the morning, the hour the
last burglary took place. Also, is it not curious, Watson, that this carriage,
whose name is unfamiliar to us, should have the same name as the street
on which the last victim resides?"

Holmes pulled another well-worn newspaper from the stack near
him.

"Here is another from last month's paper, offering for sale 209
'Brewster' pigeons; and a robbery did occur on Sunday, July 28th."

I pondered for a moment and asked, "Holmes, 1 believe you may
have something. But about the date, are you sure?"

178 Prelude to Types

"Absolutely. If we subtract the lower number from the upper
number of the supposed volumes of the Strand, we get 253. The 253rd
day of the year was September 10th, a Tuesday and the date of the last
robbery. July 28th was nearly seven weeks ago. It was the 209th day of the
year, a Sunday, and the date of the previous robbery. And, I might add,
there are no pigeons of a type called Brewster."

"Amazing, Holmes, but how did you determine the date from just the
number?"

"That is the flower that comes from this little seed, Watson. I must
take care to explain it to you in detail so that you may appreciate it
fully.

"Obviously, Watson, a programme on the Analytical Engine which
arrives at the date from the number would be a way to achieve an efficient
solution to this problem. The first of January was a Tuesday. If we enter
the number

253

the programme will calculate the date

Tuesday, September 10

the elate that is the 253rd day of the year. I am sure that these scoundrels
just count the days off on the current calendar, but counting is tedious
and prone to error. Such a solution lacks elegance and can hardly be
considered of broad use."

"There are some other uses you have in mind for this programme?"
I asked.

"It is what we learn from the particular construction of this
programme that will be of continued use to us, Watson," said Holmes.
"We are faced here with finding a means of w:orking on a numerical device
with items that have many and varying properties. We are dealing here
with a theory of types, the representation of things from the real
world.

"I have given this notion considerable thought and have taken the
trouble of constructing a diagram," he said, handing me a small chart
which ran Uiis way (see Fig. 9.1).

"A type, Watson, characterizes a class of objects and the operations
that can be performed upon them.

"The current problem has several classes of objects with differing
operations possible for them. Consider the days of the week. For us there
can only be seven days of the week-Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday.

"Some of the common operations that we can perform upon them
are

An Advertisement in the Times 179

I. Computing the day after: Given a day of the week, we can determine
the following day, for example,

DayAfter(Monday) is Tuesday
DayAfter(Friday) is Saturday

2. Comparison of days: In a given week we can determine if any
one day precedes another, for example,

Monday precedes Saturday
Monday precedes Wednesday

When we write programmes, we deal with many such types of objects­
names, varieties of cigar ash, amounts of money, months, days, and so
forth."

Holmes then displayed his algorithm for computing the date from
the number of days given in the advertisements. The algorithm is
reproduced here as Fig. 9.2. I had no problem in following his simple
logic.

"Now for the representation of the problem. When we use the
Engine, we have only a small number of commonly used fundamental
types at our disposal, for example, integers, characters, Boolean truth

PROBLEM

Actual Entities
and Operations

Representation
of the Problem

PROBLEM

Algorithm •

Programming Programme
Language Objects •
and Operations

RESULTS

Actual
Entities

4
Interpretation

of Results

RESULTS

Output
Data

Figure 9.1

180 Prelude to Types

Figure 9.2 • Holmes's
algorithm for
computing dates.

Definitions:

DayOfWeek
Month
DayOfMonth:

one of the days Sunday through Saturday
one of the months January through December
a number from 1 to 31

CurrentNum : a number from 1 to 365
NumOfDays : a number from 1 to 365

Algorithm:

Set Month to January
Set DayOfMonth to 1
Set DayOfWeek to Tuesday

Read NumOfDays

For CurrentNum set to 2 through NumOfDays, do the following:
set DayOfWeek to DayAfter(DayOfWeek)

if DayOfMonth = 28 and Month = February
set up for new month

else if DayofMonth = 30 and
Month = April or June or September or November

set up for new month
else if DayOfMonth = 31

set up for new month
else

set DayOfMonth to DayOfMonth + 1

Write DayOfWeek, Month, DayOfMonth

values, and strings. Each of these types has its own special operations
defined in the programming language, so we do not have to bother
ourselves constantly with defining them.

"For example, we have

addition: We can add two numbers and get their sum.

comparison: We can compare two numbers to see which is
greater.

negation:

printing:

We can negate an integer or a Boolean truth value.

We can print a number or a string.

"Now, Watson," he continued, "the essence of working with any actual
type of data is that the objects, such as amounts of money, days of the
week, and months, must be defined in terms of the programming
language. We must not only choose a particular representation for an
object; we must also make sure that operations upon it, as represented in
the language, correctly reflect its actual properties.

"For example, we can perform all numeric operations on numeric
data; but when the number represents some real entity, like the year
1889, some operations are meaningless. The difference of two years is a

An Advertisement in the Times 181

useful operation because it is actually sensible to consider the interval of
time between two dates. On the other hand, the square root of a year has
no useful meaning associated with it. To multiply two years is likewise
senseless.

"Specifically, our calendar problem requires us to write an
algorithm which correctly depicts the three data types:

months
days of the week
days of the month

The days of the month running from 1 to 31 can easily be represented
using integers. The 'day after' DayOfMonth is

DayOfMonth + 1

Of course, when the value of DayOfMonth is the last day of the month, the
day after is not

DayOfMonth + 1

but 1. This shows that, although we operate on days of the month as
integers, they are not really integers; this must be kept in mind or large
problems will certainly result.

"Consider also the days of the week We could represent them as
integers: Sunday with 1, Monday with 2, and so forth. Of course, days of
the week are not at all numbers; and the special rule for the last day of the
week is needed to represent the real world correctly. In a Pascal
programme we would have:

if DayOfWeek = 7 then
DayOfWeek := 1

else
DayOfWeek := DayOfWeek + 1

"Simplifying the programme even further, since there are only
seven days of the week, we could make each day a named constant,

const
Sunday = l;
Monday= 2;

and use the constant names instead of integers, so they would appear as
the actual names of the days. Then we would have

if DayOfWeek =Saturday then
DayOfWeek :=Sunday

else
DayOfWeek := DayOfWeek + 1

182 Prelude to Types

"And now, Watson, for the last step. Pascal allows us to define our
own types! We can write,

type DayName =(Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday);

This is a type with exactly seven values, corresponding precisely to the
seven days of the week.

"Just as we can say,

Numltems: Integer;

to mean that Numltems can take on only integer values, we could instead
say,

DayOfWeek: DayName;

to mean that DayOfWeek can only take on values from Sunday through
Saturday.

"To set the current day to Tuesday, we simply say,

DayOfWeek := Tuesday

Once DayOfWeek has been given a value, we can obtain the day after by
saying,

if DayOfWeek =Saturday then
DayOfWeek =Sunday

else
DayOfWeek = Succ(DayOfWeek);

The predefined function named Succ is Pascal's curious way of
expressing the value that succeeds another value. Now it is impossible to
mix an integer with a day, as one is a number and the other is a different
type quite unable to take on a numerical value."

I did not know quite what to say after this great exposition on the
theory of types and the days of the week. My silence made it plainly
evident that I was hopelessly at sea.

"This should make things clearer, Watson," said Holmes, quickly
producing the programme that I have reproduced in Fig. 9.3. The
programme was surprisingly easy to read.

"Well, then," I remarked after a while, "it all seems clear to me from
here. You plan to anticipate the next theft, unless I am mistaken?"

"Oh, hardly my dear Watson," he replied. "You know that I look
upon unnecessary bodily exertion as an extreme waste of energy. This
surely is now a matter for the police. After all, Watson, I am not retained
by Scotland Yard to supply their deficiencies."

It was one of the peculiarities of his proud, self-contained nature
that he was always averse to anything in the shape of public applause,

An Advertisement in the Times 183

and he bound me in the most stringent terms to publish no account of
this matter. Nothing amused Holmes more at the conclusion of a
successful problem than to hand over the actual exposure to some
orthodox official.

A report in the Times a fortnight later described the apprehension of
the criminals. Of course, there was no mention of either Holmes or the
Analytical Engine. It was, I surmise, his thought that widespread
dissemination in the popular press of this remarkable mechanism would
naturally come to the attention of the more undesirable elements of the
city. How well I recall his once commenting, "I could not rest, Watson, nor
could I sit quietly in my chair, if I thought that the Analytical Engine had
fallen into the hands of some diabolical mastermind, walking the streets
of London unchallenged."

program ComputeDate;

{ -- January 1, 1889 was a Tuesday. }
{ -- This program reads in a number named NumOfDays, }
{ -- representing the number of days since January 1. }
{ -- The program prints the corresponding date. }

type
DayName = (Sunday, Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday);
MonthName =(January, February, March, April, May, June, July,

August, September, October, November, December);

var
DayOfWeek: DayName;
Month : MonthName;
DayOfMonth : 1.31;
CurrentNum: 1.365;
NumOfDays : 1.365;

begin
Month :@ January;
DayOfMonth := 1;
DayOfWeek :=Tuesday;
Read(NumOfDays);

for CurrentNum := 2 to NumOfDays do
begin

if DayOfWeek = Saturday then
DayOfWeek :=Sunday

else
DayOfWeek := Succ(DayOfWeek);

Figure 9.3 • Program
ComputeDate

184 Prelude to Types

Figure 9.3 continued

if (DayOfMonth = 28) and (Month = February) then
begin

Month := Succ(Month);
DayOfMonth := I

end

else if (DayOfMonth = 30) and
(Month in [September, April, June, November]) then
begin

Month:= Succ(Month);
DayOfMonth := I

end

else if (DayOfMonth = 31) then
begin

Month := Succ(Month);
DayOfMonth := I

end

else
DayOfMonth := DayOfMonth + I;

end;

Write(DayOfWeek,' ',Month,' ', DayOfMonth: I)

end.

Chapter 9

Real-world applications re­
quire new ways of describing data that are not intrinsically numeric.
Further, we need to deal with items like train schedules and dates that,
though numeric in nature, do not behave in the same way as the integers
used to represent them. Problems of this sort require careful thought in
program design. They also illustrate two essential programming
concerns:

• The need to describe objects and their properties with precision
and clarity.

• The need to guarantee that the operations over objects do not
violate their intrinsic properties.

This brings us to the concept of types.
Every constant and variable used in a program belongs to a group of

like values, or a type. The declaration

var
StartTime, StopTime, ArrivalTime : Integer;

states that these three variables are of type Integer. Integer is a
predefined type containing all the whole numbers between -32,767 and
+32,767. If an attempt is made to assign a value outside this range to any
of the three variables, an error will result. Real, Longlnt, Char, and
Boolean are other predefined types that we have already encountered.

Sometimes it is necessary for the programmer to introduce a new set of
values. This is done by declaring a type name or type identifier and a list

9.1 • Enumerated
Types

185

186 9 Data Types

of the values that are contained within that type. This is known as an
enumerated type. Consider the following declaration:

type
DayName = (Sunday, Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, Sunday);

This declaration introduces a type named DayName and seven constants
of that type, the names Sunday through Saturday. DayName has now
been declared a type identifier. A type name cannot be used as a variable
identifier; it would be an error to say,

case DayName of { error l

However, just as we can say,

var
Counter : Integer;

to declare a variable Counter of type Integer, we can now say

var
Today : DayName;

to declare a variable of type DayName and then say

Today := Tuesday

Just as a variable of type Integer can take on integer values, a
variable of type DayName can take on any of the seven values Sunday
through Saturday. In this sense, we say that a type describes a class of
values.

For enumerated types, the type declaration explicitly enumerates
the class of values. The preceding example illustrates the first basic idea:
you introduce a type to describe a class of values needed to solve your
problem.

One of the properties of every enumerated type is that the values
are ordered. In particular, the values are assumed to be enumerated in
increasing order. For the type DayName, the first value is Sunday and the
last is Saturday.

A data type consists of a set of values and associated operations.
The declaration of an enumerated type specifies the set of values. Just as
for integers, the operations on an enumerated type are predefined in
Pascal. These include the relational operators for comparing values of
the type. Thus, if the variable Today has the value Tuesday, we may have
the following comparisons.

(Today = Friday)
(Today= Tuesday)
(Today= Monday)

{ Comparison is False l
{ Comparison is True l
{ Comparison is False l

Assignment is also allowed for enumerated types. For example, we
may have

Today:= \Vednesday

The following examples are not logical, and are erroneous.

Sunday := Monday;
Today := I

{ Only variables can be assigned values }
{ I is not a DayName }

In the first case, Sunday is not a variable. In the second case, the value
assigned to a variable is not of the same type as that declared for the
variable.

The position of a value in an enumerated type is known as its
ordinality. The first value of any noninteger enumerated type has
ordinality 0, the next has ordinality l, and so forth. The function Ord can
be applied to any enumerated value, as in

Ord(Wednesday)

and yields the ordinality of the value, in this case 3.
The functions Succ and Pred are two more predefined operations

that apply to enumerated values. Their evaluation yields, respectively,
the successor and the predecessor of an enumerated value. For a given
enumerated type, the first value listed in the type definition has no
predecessor and the last value has no successor. For example, we can
have the expressions:

Succ(Monday)
Succ(Succ(Monday))
Succ(Saturday)

{ Value is Tuesday }
{ Value is \Vednesday }
{ Gives rise to an error }

Notice that if you try to get the successor of Saturday, you will get an
error, and not the value Sunday as you might expect.

In Pascal, all programmer-defined types are introduced by type
declarations of the form:

name = type-definition;

The name is a name for the type. The type definition specifies the class of
values and, implicitly, the operations defining ways in which the values
can be used. Except for subranges of previously defined types (described
below), every type definition introduces a distinct type.

With this discussion in mind, we recall the basic definition of a
type.

• A type characterizes a class of values and the set of operations
that can be performed on thetn.

In programs, all variables have an associated type, specified when the
variable is declared. The operations are defined by the language
itself.

Enumerated Types 187

188 9 Data Types

One of the key issues in programming is the security with which we
can draw conclusions about a program. Consider the following
declarations.

Today : Dayname;
NewCoin : Coin;
Counter : Integer;

where the type Coin has the definition:

type
Coin= (Penny, Nickel, Dime, Quarter, HalfDollar, Dollar);

It would be meaningful to have the statements

Today := Tuesday;
NewCoin := Nickel;
Counter := Counter + 1

but senseless and incorrect to have the statements:

Today := Nickel;
NewCoin := Tuesday;
Counter := Today + 1

{ Nickel is not a Dayname)
{ Tuesday is not a Coin)
{ 1 cannot be added to a Dayname)

This leads us to the two basic rules for using types:

• A variable may only have values of its specified type

• The only operations allowed on a value are those associated
with its type.

As a result of these two rules, we can draw a fundamental conclusion
about a program: The type properties declared by a programmer will not
be violated during program execution. This means that Today will always
be a DayName and Counter will always be an Integer. If you try to do
otherwise, the computer will complain, and it should.

As mentioned earlier, an enumerated type is defined by listing its
values. Such types can be used in many ways as freely as integers and
often with great clarity. For example, we may have a loop iterating over
the days of the week:

for Today:= Sunday to Saturday do begin
-what to do for each value of Today

end

Notice the clarity of the loop compared with

for Daylndex := 1 to 7 do begin
-what to do for each value of Daylndex

end

Table 9.1 defines a number of enumerated types. The use of such types
can add considerably to the clarity of a program.

Table 9.1 • A Sampler of Enumerated Types

Enumerated
Type

DayName

Suspect

CigarTexture
Coin

HalfDay
Army Rank

MajorCity

Shape
Direction

Weapon
Response

ReportStatus

Values

= (Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday);

= (ColWoodley, MrHolman, MrPope, SirRaymond);
=(Caked, Flaky, Fluffy, Granular, Varied);
=(Penny, Nickel, Dime, Quarter, HalfDollar, Dollar);

=(AM, PM);

= (Private, Corporal, Sergeant, Lieutenant, Captain, Major,
Colonel, General);

= (London, Oxford, Bristol, Birmingham, Plymouth,
Liverpool, York, Manchester);

=(Triangle, Quadrangle, Pentagon, Hexagon);
= (North, East, South, West);
= (Gun, Knife, Candlestick, Rope, Wrench);

=(Yes, No Unknown);
= (Unwritten, Drafted, Edited, Completed, lnPress,

Missing);

In Chapter 5, we discussed the writing of conditions that give values
that are True or False. These values are said to be of type Boolean, and all
conditions must yield a value of type Boolean. Moreover, in Pascal you
can declare a variable to be of type Boolean just as you can declare a
variable to be of an integer type, a real type, or a enumerated type.

Suppose, for example, we wish to write a program to determine
which one of a number of suspects matches a given list of characteristics.
In searching the list of suspects, we may wish to keep track of whether we
have found a match. To do this, we might declare a variable, say:

SuspectFound : Boolean;

Such a variable can only have one of two values, True or False. It is
analogous to having the type declaration

type Boolean= (False, True);

At the beginning of our program, since we clearly have not found a match,
we can say,

SuspectFound := False

Boolean Types 189

9.2 • Boolean
Types

190 9 Data Types

9.3 • Character
Types

Later in our program we will, of course, change this value to True when a
matching suspect is found. The status of a Boolean variable may be used
directly as a condition since its value is either True or False; for
example,

if SuspectFound then
-what to do if a suspect has been found

else
-what to do otherwise

Such a statement has the same effect as writing,

if SuspectFound =True then
-what to do if a suspect has been found

else
-what to do otherwise

The type Boolean thus embodies a very simple but powerful idea
The type has only two values, True and False, and captures the essence
of a condition. Furthermore, in any program in which we wish to keep
track of a piece of information that can have only two values (for
example, on or off, open or closed, known or unknown), we can
represent our state of knowledge with a simple Boolean-valued
variable.

It would certainly be unfortunate if the only types of data that we could
read or write were numbers. Suppose we wish to read in the days of the
week, a person's name, a message, or two-letter city. What we would
really like to do is read the characters directly into our program, rather
than think up numeric codes. Fortunately we can do this in Pascal.

We use the Pascal type Char, which is predefined in the language, to
work directly with single characters. The values of this type are all the
characters you will normally find on your keyboard, and include not only
letters or digits but also characters like$, <, and%.

For example, just as you can declare a variable Counter as having an
integer type,

Counter : Integer;

you can declare a variable, say NextChar, of character type

NextChar : Char;

This declaration, like all variable declarations, specifies a variable whose
values will be of a certain type, in this case one of the characters on the
Macintosh. Thus if you want to read in a character from the terminal, you
can say,

Read(NextChar)

or if you wish to assign a dollar sign to this variable, you can say,

NextChar := '$'

Notice that in programs a character value must always be enclosed by
single quotation marks (').

Just as for integer types or enumerated types, you can compare the
character values in relational expressions, for example, as in

if (NextChar = '$') then
-what to do if the next character is a dollar sign

else
-what to do otherwise

Furthermore, the allowed characters have a given order. For
example, the character 'A' is considered to be less than 'B', 'B' is less than
'C', and so forth. Similarly, the characters 'O', 'l', and so forth are assumed
to be in conventional order. The function Ord can be applied to any
character to find its ordinality in the character set as in

Ord('x') { x = any character in the Macintosh character set }

which yields the ordinality of x. The function Chr can also be applied,
as in

Chr(!) { i = any integer between 0 and 255)

to yield the character having ordinality i.

There are many cases where variables have a common type but where
the values a variable can take on are known to be within certain limits. For
instance, we may know that a person's age will lie between 0 and 100, or
we may know a character variable can only denote certain characters. To
handle this kind of situation we can use a subrange declaration.

For instance, consider the following variable declarations.

DayOfMonth : 1..31
WorkDay : Monday .. Friday
NextCode : 'A' . .'Z';

The first declaration specifies a variable DayOfMonth whose values lies in
the range 1 through 31. The second declaration specifies a variable
WorkDay whose value is one of the weekdays Monday through Friday.
The third declaration specifies a character variable NextCode, whose
value is one of the letters "A" through "Z."

Subrange specifications are always given in the form

value .. value

Subranges of Types 191

9.4 • Subranges
of Types

192 9 Data Types

where each of the values must be an integer, a value from some
enumerated type, or a character. The type of such variables is the same
as the type of the values in the subrange.

Subranges thus define a restricted sequence of values. The purpose
of a subrange type is to control the range of values a variable may take
during execution of your program. The bounds given in a subrange
definition must belong to the same type (for example, Integer or the same
enumerated type) and must be stated in increasing order. Thus, the
following range definitions are illegal.

I.. Penny;
Dollar .. Penny;

(Error, bounds not of the same type }
(Error, bounds not in increasing order }

Subrange types can be declared just as for other types, by
associating a name with a subrange. For example, we may have

type
DayRange
WeekDayName
Letter

= 1..31;
= Monday .. Friday;
='A' .. 'Z';

Using these explicit declarations we could alternatively declare our
variables above as

DayOfMonth : DayRange;
WorkDay : WeekDayName;
NextCode : Letter;

A subrange variable behaves much like a variable of the containing type.
The only difference is that a subrange variable is constrained during
execution to hold only values that belong to the declared range.

While the values of a subrange type are a subset of the containing
type, the operations of a subrange type are the same as those of the
containing type. Thus, the Succ and Pred functions, comparison
operators, and input-output operations apply to subrange values exactly
as they apply to values of the containing type. For subrange types whose
containing type is Integer, the arithmetic operators apply as well.

In Pascal, there is no type distinction between variables specified as
a subrange and those of the containing type. The difference is simply that
Pascal keeps track of your constraints on the values. For example, if you
say,

WorkDay := Sunday

the computer will complain, since Sunday is not in the range given for
WeekDayName. Similarly, if you say,

DayOfMonth := DayOfMonth + 5

and the result is greater than 31, an error will arise.

Finally, a note on the operator in. You can use this operator to see
whether a value is within some set of values. For example, you can
say

H NextCode in ['A', '8', 'C', 'D', 'E']

or equivalently,

H NextCode in ['A' . .'E']

Generally speaking, the value being tested must be either an integer, a
character, or an enumerated value. The set of values is specified by listing
the members of the set, giving subranges, or both. Thus we may have

[Monday .. Friday]

[April, June, September, November]

[I, 3, 5, 7, 9]

['0' .. '9', '%', '$', '.']

A sequence of characters can be designated as a string type. The
declaration of a string-type value cail contain a size attribute, which sets
a limit on the number of characters that can be included. For
instance,

var
LastName : string[10]

declares LastName as a variable that can take on any string-type value
containing up to 10 characters. The size attribute of a string type must lie
in the range 1 to 255. If no size attribute is given, it is assumed to be
255.

String-type values are enclosed in single quotes, as in

LastName :='Watson'

A value of character type can be considered a string type with a size
attribute of 1. Thus, the value NextChar can be declared as

NextChar : Char;

or

NextChar : string[!];

String types have a Length attribute, which should not be confused
with tlie size attribute. The length refers to the number of characters in
the string at any particular time during the program. The size of
LastName remains at 10, but the length changes as different names are

String Types 193

9.5 • String
Types

194 9 Data Types

assigned to it. Consider the following names.

as

LastName := 'Smith' { Length is equal to 5 }
LastName :='Milligan' { Length is equal to 8)

String variables can be used in Read and Write procedures, such

Read(LastName, YrsOfService, TotalCredits);
AverageCredits := TotalCredits div YrsOfService;
Write(LastName, '-', AverageCredits: 1,' credits per year.')

The relational operators can be applied to a string-type value to
compare it to another string-type value or to a character-type value. The
length is very important here since two string values must be of equal
length to be considered equal. In the following example, although the
values may be equal for all practical purposes, they will be considered
unequal and the Write procedure will not be executed.

LastName := 'Smith'; { Length = 5 }
OwnerName :='Smith'; {Length= 6)
if LastName = OwnerName then

Write('Dear Homeowner,')

The value of OwnerName is considered greater than the value of
LastName since any character, including a space, is considered higher
than no character at all.

In comparing two string-type values, each character of one
expression is compared with the character in the corresponding position
of the other expression according to the ordering of the characters in the
Macintosh character set. Consider the following:

PresentName :='Smyth';
NextName := 'Smith';
if NextName < PresentName then

List := NextName

In comparing these two names, the individual characters are compared
in order. The two "S's" are considered equal and the two "m's" are
considered equal. When the third letter is reached, "y" is found to be
greater than "i'', therefore PresentName is considered greater than
NextName.

In addition to the relational operators, there are several predefined
procedures and functions that can be used for manipulating strings. The
length of a string is obtained by using the function call Length(Str), as in
the statement

Length(LastName)

This call will return an integer equal to the number of characters in the
current value of LastName.

Strings can be joined together or concatenated. Given the strings

LastName := 'Holmes';
FirstName := 'Sherlock';
Blank:=''

the whole name can written using the predefined function Concat, as
follows.

Write(Concat(FirstName, Blank, LastName))

This will cause the values of the strings Blank and LastName to be added
to the end of FirstName.

Other functions are available for inserting strings into other strings
at specific locations, deleting sections of strings, copying sections of
strings. These make use of the number of characters involved or the
Count, and the location within the string or Index. For instance, consider
the program segment shown in Fig. 9.4.

This program reads a first name and a last name and stores them as
a single string that uses 12 columns for the first name and up to 20
columns for the last name. Blanks taken from a string BlankString are
entered after the first name to fill in the field so that the last name will
always begin in column 13.

The third statement in the program says,

copy from the string BlankString,
start with the first character,
copy a number of characters equal to FieldWidthl less the length of

FirstName,
assign the result to Blanks.

program GuestList;
const

BlankString = '
FieldWidthl = 12;

var
FlrstName : sbing[l2];
LastName: string[20];
Blanks : string[l2];
FullName: string[32];

begin
ReadLn(FirstName);
ReadLn(LastName);

" '

Blanks:= Copy(BlankString, FieldWidthl-Length(FirstName));
FulIName := Concat(FirstName, Blanks, LastName)

String Types 195

Figure 9.4 • Program
Guestlist

196 9 Data Types

The fourth statement says

assign to the variable FullName,
a string consisting of

the value of the string FirstName
followed by the value of the string Blanks
followed by the value of the string LastName.

Other predefined functions and the procedures Delete and Insert
are summarized in Table 9.2. Notice that the two procedures actually
change the value of the string, whereas the functions return a value
without affecting the original string.

Summary
Any progr~ming language comes equipped with certain basic types of
data that must be used when writing programs. In Macintosh Pascal,
there are several primitive types that are predefined in the language itself.
These are

Integer, Longlnt
Real, Double, Extended
Boolean
Char
String

In addition to these predefined types, Macintosh Pascal allows you
to define your own enumerated types, such as

type
DayName = (Sunday, Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday);

Furthermore, Macintosh Pascal allows you to define subranges of
integer, character, or enumerated types. For example, you may say

type
lndexVal = 1..100;
Letter= 'A'..'Z';
Weekday= Monday .. Friday;

All of these except string type are defined as simple types. Although
string type is not considered to be a simple type, it has many of the same
characteristics as the simple types and has therefore been included with
them. All of the simple types except for the Real group are further defined
as ordinal types; that is, they are made up of discrete values in ascending
order. Table 9.3 summarizes the predefined functions that apply to
ordinal and string types.

Values can be compared with one another provided that they are of
the same type. Table 9.4 shows the relational operators that can be used
for comparing values.

Whatever type of data the program uses, each item must ultimately
be represented with one of the predefined simple types, one of the
methods for defining your own types, a string type, or one of the
structured types discussed in later chapters.

Once a variable in the program has been declared to be of a certain
type, it must always have values of that type. This ensures, for instance,
that an integer will not be assigned to a character variable or an
enumerated value to a real variable.

Table 9.2 • Predefined Procedures and Functions for Strings

Definitions

Str
StrVar
SubStr
Index

=an expression with a string-type value
=a string-type variable
= an expression with a string-type value
= an integer indicating the position in a string, assuming the

first character is I, the second character is 2, etc.
Count = an integer indicating the number of characters

The following predefined function calls return a string-type value.
The original strings are not affected.

Length(Str)

Pos(SubStr,Str)

ConCat(Strl,Str2, ... Strn)

Copy(Str,Index,Count)

Omit(Str,Index,Count)

Include(SubStr,Str,Index)

returns the current length attribute of Str

searches for SubStr within Str; returns a
Longint value indicating the position of
the first character of SubStr within Str;
returns zero if SubStr is not found.

concatenates all the expressions in the
order written; returns the concatenated
string.

returns a string containing Count
characters from Str starting at Index.

removes Count characters from Str
starting at Index; returns resulting string.

inserts SubStr into Str starting at Index;
returns resulting string.

The following predefined procedure calls change the value of StrVar.

Delete(StrVar,lndex,Count) removes Count characters from StrVar
starting at Index.

lnsert(SubStr,StrVar,lndex) inserts SubStr into StrVar starting at
Index.

String Types 197

198 9 Data Types

9.6 O Practice

Table 9.3 • Some Functions on Ordinal and String Types

Functions

Succ(x)

Pred(x)

Ord(x)

Chr(x)

Computes the successor of x, the value whose ordinal is
one greater than x. Taking the successor of the last value is
in error.

Computes the predecessor of x, the value whose ordinal is
one less than x. Talcing the predecessor of the first value is
in error.

Computes the ordinal value of x in its given ordering. For
integers, returns the integer itself.

Yields the character whose ordinal value is x. The value x
must be an integer, and the result is a character.

Note: x is an expression whose value Is an integer, character. string. or enumerated type.
All such values have a given ordering. For integers, the ordlnallty is the value itself; for
characters, the order is defined by the local implementation; for enumerated types. the
values are listed In Increasing order. The first value in an enumerated type is said lo have
the ordinal 0, the second 1, and so forth.

Table 9.4 • Relational Operations on Simple and String Types

Relational Operations

Operator

<>

< <=
> >=
in

Operation

Equality and
inequality

Ordering

Membership

Type of Operands

Any simple or
string type

Any simple or
string type

Left: integer, character,
or enumerated value
Right: set of values of
same type as left

Result Type

Boolean

Boolean

Boolean

The concept of types is a particularly important one, as it makes solving
certain classses of problems much easier. Type checking, a plus in any

Practice-Defining Simple Types 199

large program, makes it much easier to find small programming errors in
Pascal than in a language that lacks it, such as Basic or Fortran. Leaming
to use types in a program is a must for any Pascal programmer. You could
consider it an extra error check that is present at all times in the
system.

Following is a list of items, any of which might be included in some
program. Write a type declaration for each of them.

1. Name of an employee

2. The suit of a card

3. Current month

4. The number of square feet in a room

5. The number of people waiting in a line

6. Colors in a flag

7. The radio stations in a region

8. The traffic count at a corner

9. The status of a project

10. House pets

11. Absence or presence of a club member

12. Sizes available in a shoe style

•••
The following are all valid type declarations. Of course, styles differ; your
answers may be perfectly acceptable although different from ours.

Employee= string[40];
Suit= (Spades, Hearts, Clubs, Diamonds);
CurrentMonth =(Jan, Feb, Mar, Apr, May, Jun, Jul,

Aug, Sep, Oct, Nov, Dec);
RoomSize = Real;
QueueSize = Integer;
Color= (White, Red, Yellow, Green, Blue);
Station = (WHAf, WHMP, WKVT, WPOE, WRSI, WITI);
AxleCount = Integer;
ProjectStatus = (NotStarted, InProcess, Completed, Unknown);
Pet= (Dog, Cat, Bird, Fish, Snake, Other);
Presence = Boolean;
ShoeSize = 5 . .13;

Fill in the Blanks
1. Type declarations appear after ________ declarations

and before ________ declarations.

200 9 Data Types

2. A declaration for an enumerated type consists of an equal sign with an
identifier on the left, and on the right a list of values separated by
commas. The list is enclosed by _______ _

3. A Boolean type variable can take on only two values; the two values
are and _______ _

4. A variable which will take on any single letter can be declared as char

5. The operator in is followed by a set of values enclosed by __ _

6. If no size attribute is given in a string type, it is assumed to be

7. Subranges can be defined for integer, character, and _____ _
types.

• ••
Type declarations appear after const declarations and before var
declarations.

A declaration for an enumerated type consists of an equal sign with
an identifier on the left, and on the right a list of values separated by
commas. The list is enclosed by PARENTHESES.

A Boolean type variable can take on only two values; the two values
are TRUE and FALSE.

A variable which will take on any single letter can be declared as
char or STRING[!] or A.Z. Actually, it could also be declared as string
without a size attribute, but a lot of internal space would be wasted, since
the default size for a string is 255.

The operator in is followed by a set of values enclosed by
BRACKETS. Be sure of your intentions when using parentheses and
brackets in type declarations. Parentheses are used for enumerated lists;
brackets for sets and the size attribute of a string.

As mentioned above, if no size attribute is given in a string type, it is
assumed to be 255.

Subranges can be defined for integer, character, and ENUMERATED
types.

True or Fl\lse
1. An assignment statement can contain an integer-type variable on the

left and a real-type variable on the right.
2. The length of a string-type variable can be the same as the size of the

variable.

3. A type identifier can be used as a variable.

Practice-Defining Simple Types 201

4. Predefined types must be declared in the declarations part of a
program.

5. Calling for the successor of the last value in an enumerated list causes
the first value in the list to be returned

6. A character value must be enclosed by single quotes.

7. In order for a subrange to be used, it must be given a type identifier
and declared.

8. Character-type values can be compared with string-type values.

9. The values listed within the parentheses in an enumerated-type
declaration are the only values allowed for a variable of that type .

•••
An assignment statement cannot contain an integer-type variable on the
left and a real-type variable on the right. The real-type value would have
to be truncated or rounded before assignment. However, an integer-type
variable can be assigned to a real-type variable; for instance,

RealNum := IntNum (lntNum = 3}

causes RealNum to receive the value 3.0.
The size of a string variable is the highest number of characters that

the string is allowed to contain. The length is the number of characters it
contains at a particular point in the program. They can be the same, but
need not be. The length, of course, must not exceed the size or an error
results.

A type identifier absolutely cannot be used as a variable. Once a
name has been reserved as a type identifier, it remains so throughout the
program.

Predefined types do not need to be declared as types; their names
can be used as type descriptions without a type declaration.

There is no successor to the last value in an enumerated list. Calling
for the successor to the last value will result in an error.

Yes, a character value must, indeed, be enclosed by single
quotes.

Although it is not a requirement that a subrange be given a type
identifier, it is, nonetheless, a good practice. For instance, instead of the
variable declaration

Counterl : 1..35;

we can declare a type Rangel as follows:

type
Rangel = 1..35;

202 9 Data Types

9.7 0

and a variable Index, as in

var
Index : Rangel;

Numbers 8 and 9 are true.

9.1 Page Numbering
The numbers on the pages of a book of course go in ascending order. The
first page is 1, the second 2, and so forth.

If you are a typesetter in a printing shop, you need to have enough
digits to print the page number for each page. For example, in a book with
only 51 pages, you need

5 ZEROS 7 FIVES
16 ONES 5 SIXES
15 lWOS 5 SEVENS
15 THREES 5 EIGHTS
15 FOURS 5 NINES

Assuming you never have to print a book with more than 1000 pages,
write a program to input the number of pages in a book and to output the
number of each digit required.

9.2 Expressing Calendar Dates in Readable Form
On many computer systems, a calendar date is expressed as a six-digit
integer. For example,

022243

means the month 02, day 22, year 1943, or in more familiar terms:

FEBRUARY 22, 1943

Write a program to read in a six-digit integer and output the
corresponding date in day-to-day notation. If the six-digit integer does
not represent a valid date, the integer and an appropriate message
should be printed.

For example, with

132243

the output could be

132243 IS NOT A VALID DATE, WHO ARE YOU KIDDING?

Note: Don't forget about leap years.

9.3 Secret Number: Version 5
An entry code that is used to access an Automatic Teller Machine does
not necessarily have to consist of digits only. It could be made up of any
series of characters. Write a program which gives the user three chances
to correctly enter the code. The code is to consist of a three-digit number
followed by a color. The allowable colors are to be listed in an
enumerated type declaration.

9.4 Binary versus Octal Notation
The internals of a computer are such that it is very convenient to store all
information in a form called binary, meaning "two states." The computer
stores the information it receives from the outside in the form of l's and
O's, and thus numbers notated in this manner can be used for calculation
without a lot of manipulation inside the computer. However, binary
numbers are difficult for humans to use because they need so many l's
and Q's to write out. Like the number 1024, for instance, requires 11
binary digits, 10000000000.

A somewhat better system for humans to use is the octal system,
which uses the eight digits 0 through 7 to denote its numbers. There is
another advantage in that conversion to octal from binary is very easy.
We take the binary number and arrange it in groups of three starting from
the right side. Then each group of three is translated into its
corresponding octal number, from right to left. The resulting number is
the same number that the binary digits represented, but in octal notation.
For example the decimal number 1401 is

10 101
2 5

Ill 001
7 1

Binary
Octal

For your exercise, write a program that converts a given binary
number to an octal number. For the more adventuresome, the reverse
problem of converting an octal number to binary is interesting. Though
the problem seems to be about the same, it has some interesting
twists.

9.5 Binary versus Decimal Notation
As mentioned previously, in most computers numbers are represented in
binary notation. For example, 10011 represents the decimal integer 19.
This may be computed as follows:

10011

represents

1*24 + 0*23 + 0•22 + 1*21 + 1•2°

i.e.,

Programming Exercises 203

204 9 Data Types

1*16 + 0*8 + 0*4 + 1*2 + 1*1

which equals 19.
Write a program to read a binary number with up to 16 binary digits

and print its decimal equivalent. Test your program with the following
numbers.

Input Output

1 Value is 1
001 Value is 1
100 Value is 4
111 Value is 7
1010101 Value is 85

9.6 Reading Month Abbreviations
Many problems can be solved in more than one way, using more than one
approach. Some approaches are better than others in certain situations,
but few are clearly superior in all cases.

Let us consider the problem of month abbreviations as they are
entered as data to a program. There are many ways to convert the three­
letter representations of the months into digits that can be sorted or
compared, but the simplest involves using a direct comparison of
characters.

Write a program that will accept as input three letters, check them,
and give the correct ordinal number or return an error message if the
letters entered are not a correct three-letter abbreviation of a month of
the year. The abbreviations, in order, are:

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Note: After the next chapter, you may want to try to accomplish the
same task using arrays.

HE intimate relations that had existed between Sherlock
Holmes and myself were, to an extent, modified in those
years following my marriage, during which my practice
ncreased steadily. I was occasionally able to follow my old

companion's activities in the daily papers, which reported on his service
to the Royal Family of Scandinavia and a matter of great importance to
the French government, the details of which may never fully reach the
public. While these cases brought him fame and princely rewards, they,
and the one that I am about to relate, gave him the opportunity of
demonstrating a fresh idea in his use of the Analytical Engine.

I called upon him late one winter's evening. As we sat on either side
of the fire, Holmes was telling me once again, with great exultation, how
he had purchased at a broker's in Tottenham Court Road for only fifty­
five shillings a Stradivarius that was valued at over five hundred guineas.
He suddenly held up his hand in a gesture of silence.

"We have a visitor," he said softly. "A gentleman of some
importance, a government official perhaps."

When Mrs. Hudson showed a fellow dressed more like a gardener
than a statesman into his lodgings, I must confess I had a slight feeling of
amusement in my heart and hoped that this would be a lesson against the
somewhat dogmatic tone Holmes often exhibited.

"Tell me, sir," said Holmes, before any introductions had been
exchanged, "do you always tend your flower beds in patent-leather
boots, or is this the manner of attire appropriate to Whitehall these
days?"

"Mr. Holmes," he replied solemnly, "l come on a matter of the
utmost delicacy concerning the security of our nation." As he spoke he
handed Holmes his card, which identified him as an undersecretary in the
Home Office.

Holmes rubbed his hands and his eyes glistened. Once our visitor
was seated, Holmes leaned forward eagerly in his chair.

"State your case," he said briskly. 205

206 Prelude to Arrays

Uncomfortable, I rose to excuse myself.
"Please stay, Watson," asked Holmes. Then, turning to our visitor,

he said, "this is Dr. Watson. You may say before this gentleman anything
which you choose to say to me."

"It is known that you have assisted other heads of state on matters
of the utmost confidence," said the man. "I am here, disguised so as not to
draw attention to myself, on behalf of the Secretary to ask your help on a
delicate matter concerning the transmission of diplomatic messages."

"Surely you are aware," answered Holmes, "that this is the special
province of my brother, Mycroft. Though a government accountant, he
also serves as an advisor in such matters."

"True, very true indeed, sir. However, as you yourself know very
well, work of this nature neither begins nor ends in an armchair. While
your brother's services remain indispensable, he lacks a certain
energy."

Holmes merely nodded. "Pray continue," he said.

"He endeavoured to read them."

The Ciphered Message 207

"Diplomatic ciphered messages are being regularly intercepted,
deciphered, and acted upon. Acted upon with great damage," the
Undersecretary stated in a clear and determined manner. With that, he
produced a small packet of papers, unfolded them, and disclosed to us
some of their contents. Holmes retrieved a small pince-nez and
endeavoured to read them.

"I thought that diplomatic ciphers were extremely difficult to break
and that their keys were changed regularly. I understand also that the
material they contain is often urgent, so that by the time someone could
reasonably be expected to decode it, the information would no longer be
import~nt," Holmes said.

"This is true for the most part," replied the Undersecretary. "But
some of our clerks are-how shall I say it-incapable of handling a cipher
of great complexity or of remembering the scheme required to decipher
it, and certainly incapable of relearning a new one as often as necessary.
Indeed, the same code, a simple one, is used for months, so that
confusion is kept to a minimum."

l am not at liberty to reveal the content of the next hour's
discussion. Suffice it to say that the matters discussed were grave
indeed.

As our visitor was restoring his papers to an inner pocket, Holmes
said, "How may I be of assistance to you, sir?"

us?"
"Mr. Holmes, we need a more secure cipher. Will you devise one for

"I shall do my best," said Holmes steadily.
"Very good," replied the Undersecretary, and he then withdrew.
"Well, Watson, what do you rriake of it?" asked Holmes, once we

were again alone.
"A nasty business, I should say, by the sound of things. But I am

afraid I cannot help you much, for I am quite unfamiliar with ciphers and
codes."

"Perhaps," said Holmes. "But this cipher is one of the simplest
imaginable. It is so transparent that even a Scotland Yard official could
see through it. The foreign agents who intercepted the messages
probably believed the cipher was so elementary that it was a blind for a
deeper and more complex cipher, embedded within. Each letter of the
alphabet is simply replaced by some other letter. Allow me to show
you."

Holmes wrote a sequence of letters on a sheet of paper:

ABC D EFGH IJ KLM NO PQ RST UVWX Y Z

"Assume now that our cipher letters are given in the following
sequence.

H IJ KL MN OPQ RSTUVWX Y ZAB CD EFG

208 Prelude to Arrays

Now we write the message on top, and below it the ciphered
message.

1WEL VE SHIPS WILL LEA VE .. .
ADLSCL ZOPWZ DPSS SLHCL .. .

Thus we get a letter for each letter of the message; and as long as we have
a standard table to use, enciphering the message is an easy task."

"Well, all this seems childishly simple to me," I said.
"Too simple; and therein lies our problem, Watson."
"But surely, Holmes, you must know of some other cipher the Home

Office could substitute for this one."
"I am fairly familiar with all forms of secret writings; and am myself

the author of a trifling monograph upon the subject, in which I analyze
one hundred and sixty separate ciphers. This one, however, as I have
already stated, is by far the simplest-and I need not remind you with
whom we are dealing."

After a considerable pause he returned to his sample ciphering
sequence. "Here again is the sequence I have just written:

H IJ KL M NOP Q RS TUVWXY ZAB CD EFG

We can shift this sequence by one letter and get

IJ KLMN OPQRSTUVWXY ZABC D EFG H

We can do likewise for a shift by two letters or three letters or even 25
letters. Each of these permutations is displayed in this table."

Holmes then showed me the table that I have duplicated here as Fig.
IO.I.

"Now for the key, Watson. From time to time passwords, or
keywords, if you will, can be provided to the clerks. For demonstration,
suppose the keyword is WATSON."

"I am flattered, Holmes," I remarked quite involuntarily.
"Now," Holmes continued, "we write the password over the

message, like this:

WATSON WATSO NWAT SONWA ...
1WEL VE SHIPS WILL LEA VE

For the first letter (T) of the message, we look at the W row of the cipher
table under the column T. We get a W. For the next message letter (W),
look at the A row under column W. We get a D. Simply continuing as
prescribed, the message is coded as

WDEKQY VOION QLSL KZUYL ...

Elementary, is it not?"

The Ciphered Message 209

MESSAGE LETTER

AB C DE F G HI J KL MN 0 P _Q_R S TU V WX Y Z

A HI J KL MN 0 P QR S TU V WX Y Z ABC DE F G
B I J KL MN 0 P QR S T UV WX Y Z AB CD E F G H
C J KL MN 0 P QR STU V WX Y Z ABC DEF G HI
D KL MN 0 P QR S TU V WX Y Z ABC DE F G HI J
E L MN 0 P QR S TU V WX Y Z ABC DE F G HI J K
F MNOPQRSTUVWXYZABCDEFGHI J KL
G N 0 P QR S TU V WX Y Z ABC DEF G HI J KL M
H 0 P Q R S T U V WX Y Z A B C D E F G H I J K L MN
I P QR S TU V WX Y Z AB C DE F G HI J KL MN 0
J QR S TU V WX Y Z ABC DE F G HI J KL MN 0 P
K RS TU V WX Y Z ABC DEF G HI J KL MN 0 P Q
L STUVWXYZABCDEFGHI J KLMNOPQR
M TUVWXYZABCDEFGHI J KLMNOPQRS
N UVWXYZABCDEFGHI J KLMNOPQRST
0 V WX Y Z ABC DE F G HI J KL MN 0 P QR S TU
P WX Y Z ABC DE F G HI J KL MN 0 P QR S TU V
Q XYZABCDEFGHI J KLMNOPQRSTUVW
R YZABCDEFGHI J KLMNOPQRSTUVWX
S ZABCDEFGHI J KLMNOPQRSTUVWXY
T ABCDEFGHI J KLMNOPQRSTUVWXYZ
U BC DE F G HI J KL MN 0 P QR S TU V WX Y Z A
V C DE F G HI J KL MN 0 P QR S TU V WX Y Z AB
W DE F G HI J KL MN 0 P QR S TU V WX Y Z ABC
X E F G HI J KL MN 0 P QR S TU V WX Y Z AB C D
Y FGHI J KLMNOPQRSTUVWXYZABCDE
Z GHI J KLMNOPQRSTUVWXYZABCDEF

"Quite," I replied. "And I suppose that you intend to hand this
material over to the Analytical Engine?"

"Precisely. Think of it, Watson, a device made of wood and metal
that will actually print the results of its most complicated calculations as
soon as they are obtained, without any intervention of human
intelligence, or lack of it, as this case would suggest. Our Engine will
guarantee the mathematical accuracy of its work, so ciphering the
message will be flawless."

One of the most remarkable characteristics of Sherlock Holmes was
his ability to put his brain out of action, switching his thoughts to lighter
things whenever he had satisfied himself that he could no longer work to
advantage. With a casual remark that this was indeed one of the most
unimaginative tasks he had been called upon to deliver, he lapsed into

Figure 10.1 • Holmes's
cipher table (Note:
keyword letters are
given on the left.)

210 Prelude to Arrays

our earlier discussion of violins. This led him to Paganini; and before l
departed we sat for another hour over a bottle of claret, while he told me
anecdote after anecdote of that extraordinary man.

I promised to return the next evening, and did so promptly at eight.
Upon entering, I found Holmes peering into the internals of the device on
the centre-table, which had been cleared of everything else. From where I
stood I could see a very closely packed collection of meshing gears and
cams. There appeared to be a cover that was swung upwards, forwards,
and out of the way. Holmes studied the box for a moment and then
beckoned to me.

"An amazing machine, Watson. The way Babbage uses the gears
and cams to store his data is truly ingenious. We are now faced with the
problem of how we are to proceed with the enciphering programme. I
have been giving the matter some consideration and have written down
my thoughts in the order that the machine should perform them to
accomplish the task. What do you think, Watson?"

On a piece of paper Holmes had written the following:

Read in the cipher table
Repeat the following:

read message character
if message character is a letter then

select cipher character using keyword and message letter
write cipher character

else
write message character

until no characters are left

"Holmes, although this sketch is simple, it will actually be very
cumbersome to implement, will it not?"

"How would you do it, Watson?"
l started to write almost without thinking:

If key letter is A and message letter is A then cipher is H
If key letter is A and message letter is B then cipher is I

If key letter is A and message letter is Z then cipher is G
If key letter is B and message letter is A then cipher is I
If key letter is B and message letter is B then cipher is J

and so on.
"My goodness, Holmes, this would take hundreds, if not thousands,

of instructions. I do not see how they could possibly fit into the
Engine."

"Six hundred and seventy-six, to be precise, Watson. Your method
is indeed cumbersome. Perhaps a table-or as our mathematician

The Ciphered Message 211

friends call it, an array-would help to reduce the size of the programme.
It would also eliminate the element of redundancy that your scheme
requires."

"Exactly what is an array?" I enquired.
"An array is much like a chessboard," explained Holmes. "For our

problem the cipher table is a 26-by-26 array, a chessboard is an 8-by-8
array.

"Each position in the cipher table or chessboard can be identified by
naming the particular array and the specific element or position with
which we are concerned. In the message, the first cipher letter is the
letter residing at the crossing of the W row and the T column. Thus the
cipher for the letter T can be obtained with the description:

CipherTable ('W, 'T)

Equivalently, if Row is set to 'W and Column to 'T', we can write,

CipherTable [Row, Column]

Indeed, the description can be assumed to be the same as the actual
element.

"It is a powerful concept for describing data, as it compresses the
information into a form that is entirely suitable for a machine such as
Babbage's, and is much more economical with the amount of space used.
It also removes the need for all the words describing the choices to be
made in the cipher. Rather, it uses the position in the array to convey all of
this. However, I am still faced with the problem of the keyword. If it is not
made to reside in the Engine, anyone could steal it and use it. The
keyword will reside in the programme, so that we shall have no problems
with the operator."

Holmes paced anxiously about the room for a moment and then
constructed a sort of Eastern divan in one corner. He perched himself
upon it, cross-legged, with a quantity of shag tobacco and a box of
matches laid out before him. In the dim light of the lamp I watched him
sitting there, an old briar pipe between his lips, his eyes fixed vacantly
upon the corner of the the ceiling, the blue smoke curling up from him,
silent, motionless, with the light shining upon his strong-set aquiline
features.

I knew that seclusion and solitude were necessary for Holmes in
those hours of intense mental concentration, and it was noon the next
day when I again found myself in his sitting room. My first impression was
that a fire had broken out, for the room was thick with smoke and I could
barely see Holmes in his dressing-gown, coiled up in his armchair by the
fireplace.

"So you've been up all the night and all the morning poisoning
yourself," I said.

212 Prelude to Arrays

Figure 10.2 • Holmes's
algorithm for
enciphering a
message

"Actually, Watson, I have just returned from the Home Office," he
answered.

"You have been there in spirit, perhaps?"
"Exactly. The body of Sherlock Holmes has remained here in this

armchair and has, I regret to report, consumed in my absence two large
pots of coffee and an incredible amount of tobacco."

"And what have you brought back with you to Baker Street?"
He then unrolled a large document upon his knee. On it were the

final algorithm and the final programme, which I have duplicated as Figs.
10.2 and 10.3, respectively.

As I examined the material he exclaimed, "Well, Watson, Jet us
escape from this weary workaday world by the side door of music. Carina
sings tonight at the Albert Hall, and we still have time to dress, drop these
off at Whitehall, dine, and enjoy an evening of supreme inspiration."

Definitions:
Row, Column : a letter for a row or column of the cipher table
MessageChar : a character
CipherChar : a character
CipherTable : an array giving the cipher letter for each

keyword letter and message letter
KeyWord : the characters used for ciphering messages

Algorithm:
Read cipher letters for each Row and Column of CipherTable
Repeat the following:

read MessageChar
if MessageChar is a letter then

set Row to next letter of Keyword
set Column to MessageChar
set CipherChar to CipherTable [Row, Column]
write CipherChar

else
write MessageChar

until no characters are left

program Encipher;

{ -- This program reads in the characters of a message and l
{ -- enciphers each letter. Based on the letter and the next l
{ -- letter of the keyword, the enciphered letter is obtained l
{ -- from a cipher table initially read into the program. l
{ -- The message is terminated with a slash. l

const
NumKeyLetters = 6;
Slash='/';

type
Letter = 'A' .. 'Z';

var
Row, Column : Letter;
MessageChar, CipherChar : Char;
CipherTable : array[Letter, Letter] of Char;
KeyWord: packed array[l..NumKeyLetters] of Char;
Keylndex : Integer;

begin

KeyWord :='Watson';
for Row:= 'A' to "l: do

begin
for Column:= 'A' to 'Z' do

Read(CipherTable[Row, Column]);
ReadLn;

end;

Keylndex := 1;
repeat

Read(MessageChar);
if MessageChar in ['A' .. 'Z'] then

begin
Row:= KeyWord[Keylndex];
Column := MessageChar;
CipherChar := CipherTable[Row, Column];
Write(CipherChar);
if Keylndex = NumKeyLetters then

Keylndex := 1
else

Keylndex := Keylndex + 1
end

else
Write(MessageChar)

until MessageChar = Slash

end.

The Ciphered Message 213

Figure 10.3 • Program
Encipher

Chapter 10

Until now we have been
dealing with items like a room number, a hair color, a type of cigar, and
the time of day. All of these items have a common characteristic: they
denote a single piece of data in the real world. With the introduction of
Holmes's enciphering table, we come to an entirely different kind of
entity, that of a composite object. A composite object has components
that bear some relation to one another. In Holmes's enciphering
program, the cipher table is a composite object consisting of the cipher
characters corresponding to each possible pair of letters.

The enciphering table raises a very general issue. In many instances
we have collections of related data. To turn such data into a usable tool,
we need some means of organizing the data to reflect the way they are
used.

We turn here to one of the most important schemes for organizing
data, the array; in later chapters we will examine how data may be
organized into a file or a record structure. But the various methods for
structuring data have the same objective: the ability to describe
organized patterns of information.

You can think of an array as an ordinary table of entries. A table
expresses a correspondence; that is, for each one of several items, we
have a corresponding item.

For example, each of the following correspondences can be
expressed in a table:

city arrival time

10.1 • Array
Types

215

216 10 Arrays and Strings

month
coin

- corresponding number of days
corresponding value

In the first case, we have several cities, each having a corresponding
arrival time. In the second case, the correspondence is between the name
of a month and the number of days in the month. In the third case, taken
from our problem to count change, we have six coins, each with a
corresponding value in cents. A simple table describing the corres­
pondence between coins and values is shown in Fig. 10.4.

An array has two fundamental properties. The first is its set of
indexes, and the second is the set of components that may be stored
within it. For example, the table of coin values may be described in Pascal
as follows:

array(l..6] of Integer

This array contains six values, indexed by the numbers 1 through 6. The
components of the array, the coin values, are integers. The integers give
corresponding values for each of the six coins. Notice that the number of
components in the array is implicitly specified when the range of index
values is given in the array definition.

The indexes of an array need not be limited to integer values. In
Pascal, the indexes of an array may be specified in the following
ways:

1. by giving an explicit range of integer, character, or enumerated
values.

2. by giving the name of a previously declared integer, character, or
enumerated type, or the name of a subrange.

For instance, with the type definitions

type
CoinNum = 1..6;
Coin =(Penny, Nickel, Dime, Quarter, HalfDollar, Dollar);

we can give the array definitions:

array(l..6] of Integer
array(Penny .. Dollar] of Integer

array(CoinNum]
array(Coin]

of Integer
of Integer

Each of these array definitions describes the simple arrangement shown
in Fig. 10.4. In the first and third definitions, the indexes are the numbers 1
through 6; in the other two definitions, the indexes are the values Penny
through Dollar.

Naturally we want to do something with arrays, and this means we
want to give them names and refer to their components. Just as we can
write,

Counter : Integer;

to declare a variable Counter of type Integer, we can write,

CoinValue: array[l..6] of Integer;

to declare a variable of an array type.
To refer to array components, we give the name of the array

followed by the component index enclosed in square brackets.
Accordingly, just as we can write,

Counter:= I

to assign a value to a simple variable, we can write,

CoinValue[2] := 5

to assign a value to an array component. Similarly, just as we can refer to
the value of a simple variable in an expression like

Counter+ I

we can also refer to the value of an array component in an expres­
sion like

CoinValue[2] * NumCoins

The general rule here is that we can treat a reference to an array
component just the same as a simple variable.

Many of these ideas are illustrated in Fig. 10.5, yet another program
for counting change. Here the values of the individual coins are stored in
the array named Coin Value. The first six assignment statements simply
set the values of each coin to their respective value in pennies. In the
computation of the total change, the value of each individual coin is
obtained from the array Coin Value. The rest of the program remains as it
was in previous versions.

Coin Value

Penny 1

Nickel 5

Dime 10

Quarter 25

Half Dollar 50

Dollar 100

Array Types 217

Figure 10.4 • Table of
coin values

218 10 Arrays and Strings

Figure 10.5 • Program
CountChange using an
array of coin values

program CountChange;

{ -- This program reads in six integer values, respectively l
{ -- representing the number of pennies, nickels, dimes, quarters, l
{ -- half-dollars, and silver dollars in coinage. l
{ -- This program outputs the total value of the coins l
{ -- in dollars and cents. I

var
NextCoin, CoinCount, TotalChange, Cents, Dollars : Integer;
CoinValue: array[l..6] of Integer;

begin
CoinValue[l] := I;
CoinValue[2] := 5;
CoinValue[3] := 10;
CoinValue[4] := 25;
CoinValue[5] := 50;
CoinValue[6] := 100;

Tota!Change := O;
for NextCoin := I to 6 do

begin
Read(CoinCount);
Tota!Change := TotalChange + (CoinValue[NextCoin] * CoinCount)

end;

if (Tota!Change = 0) then
Write('NO COINS')

else

end.

begin
Dollars:= TotalChange div 100;
Cents := Tota!Change mod 100;
Write('CHANGE IS ', Dollars : 2, 'DOLLARS AND ', Cents : 2, 'CENTS.')

end;

Next consider Fig. 10.6. Here we see an even greater improvement
when the individual coins are represented with an enumerated type.
Notice here the clarity in referring to each coin by a name rather than by a
number. This clarity is especially evident in the assignments, such as

CoinValue[Nickel] := 5

or in the following loop:

for NextCoin := Penny to Dollar do begin
Read(CoinCount);
Tota!Change := Tota!Change + (CoinValue[NextCoin] * CoinCount)

end

program CountChange;

{ -- This program reads in six integer values, respectively l
{ -- representing the number of pennies, nickels, dimes, quarters, l
{ -- half-dollars, and silver dollars in coinage. l
{ -- This program outputs the total value of the coins I
{ -- in dollars and cents. I

type
Coin= (Penny, Nickel, Dime, Quarter, HalfDollar, Dollar);

var
CoinCount, TotalChange, Cents, Dollars : Integer;
NextCoin : Coin;
CoinValue: array[Penny .. Dollar] of Integer;

begin
CoinValue[Penny] := l;
CoinValue[Nickel] := 5;
CoinValue[Dime] := 10;
CoinValue[Quarter] := 25;
CoinValue[HalfDollar] := 50;
CoinValue[Dollar] := 100;

TotalChange := O;
for NextCoin := Penny to Dollar do

begin
Read(CoinCount);
TotalChange := TotalChange + (CoinValue[NextCoin] * CoinCount)

end;

if (TotalChange = 0) then
Write('NO COINS')

else

end.

begin
Dollars := TotalChange div 100;
Cents:= TotalChange mod 100;
Write('CHANGE IS ', Dollars : 2, 'DOLLARS AND ', Cents : 2, ' CENTS.')

end;

Finally, notice that array types can be named in a type declaration
just as for any of the other types in Pascal. For example, consider the
following type declarations:

type
Letter

Vector
GolfScore

='A' .. 'Z';

= array[l..100] of Real;
= array[l..18] of Integer;

Array Types 219

Figure 10.6 • Program
CountChange using the
type coin

220 10 Arrays and Strings

I 0.2 • Strings as
Arrays

CoinTable = array[Penny .. Dollar] of Integer;
CipherTable = array[Letter, Letter] of Letter;

These types may be used just as any other types in Pascal, for example, to
name the type of variables in

var
YCoordinate
ParForCourse

Coin Value
CipherCode

: Vector;
GolfScore;

Coin Table;
CipherTable;

Whenever we use a string type in Pascal, the computer treats it as an
array of characters. The array is assumed to be "packed," which means
that the computer should be very careful about economizing storage for
the characters in a string. Do not worry about this "packed" business,
simply use it as we explain in this section.

Consider the string

'Birmingham'

This string has 10 characters and is treated as a value of the type

packed array[l..10] of Char

Once a variable has been declared as a packed array of 10 characters, any
string 10 characters in length can be assigned to that variable, as in

var
City: packed array(l..10] of character;

begin
City := 'Birmingham'

When using strings as arrays, a problem arises when the length of
the string changes. Arrays have a fixed number of components. If we
wished to assign the city of London to the variable City, we would be
required to add four spaces to the string.

City:= 'London

This leads us to an important fact about packed strings.

• Packed strings are assignment compatible only if they have the
same number of components.

This, of course, creates difficulties for the programmer. In most cases it is
preferable to declare a variable of string type with a size that can
accommodate the largest value that will be assigned to that variable,
such as

City : string[lO];

Since string types are treated internally in a way similar to arrays, the
individual characters that make up the string can be accessed just as if
they were components in an array. This is done by enclosing the
character index in square brackets following the variable name. Consider
our MultipleChoice program, Fig. 7.4. We declared a variable

Dummy : string(1 OJ;

and then used Dummy to store the correct answer for each question.
The Choice was tested by using

CorrectAnswer := Dummy[QuestionNum];
if Choice = CorrectAnswer then

-what to do if answer is correct

The first statement indicates that a particular character from the string
Dummy is to be assigned to CorrectAnswer. If the current question is
number 4, then the fourth character in the string Dummy indicates the
correct answer.

The ability to access an individual character in a string as if it were
an array is an extremely useful feature. However, there are situations
where it is preferable to declare the variable as an array. In the example
given a problem arises if we wish to add questions to the test. In the
constants declarations section there is a constant named LastQuestionNum.
The constant can easily be changed to any number we wish. However the
string Dummy is restricted to 10 characters. Changing the number of
questions would require us to change the size attribute of the string. A
packed array of characters allows the range of the array to be declared
by the use of a variable name, as in

Dummy: packed array[l .. LastQuestionNum] of Char;

The same kind of situation arises in program Encipher. The constant
NumKeyLetters would be likely to change whenever the keyword is
changed It is preferable, therefore, to use the variable declaration

KeyWord: packed array[l..NumKeyLetters] of Char;

rather than

KeyWord: strlng(6];

Another instance where the packed array of character would be
needed is in the case of a very long string. Strings are limited to 255
characters in length.

A few more points must be mentioned here concerning the
compatibility of string types, character types, and packed strings.

• Packed strings can be assigned to string-type variables provided
the number of characters in the packed string does not exceed
the size of the string-type variable.

Strings as Arrays 221

222 10 Arrays and Strings

10.3 o Practice

• String-type values can be assigned to packed string variables if
the length of the string-type value is equal to the number of
components in the packed string variable.

• String-type values can be assigned to string-type variables
provided the length of the new value does not exceed the size of
the variable.

• String-type values of length 1 can be assigned to character-type
variables.

• Character-type values can be assigned to string-type variables.

Figure 10. 7 lists a fairly straightforward program using arrays. If the
declaration

Score : array[l..18] of Integer;

is changed to

Score : array[l..19] of Integer;

what effect does this have on the program?

•••
The first declaration allows for 18 values in the array of scores; the
second allows for 19 values. The two for loops which make use of these
values are each performed 18 times, with a new value each time. In the
first loop, 18 values are read in and assigned to locations in the array. No
value is read for the 19th position. In the second loop, each of the 18
values is used. Since the 19th value is never called, the results of the
program are unchanged from when it is run in its original form.

However, what happens to the program if the declaration is
changed to

Score : array[l..9) of Integer;

•••
In this case the program runs into trouble when it reaches the Read
statement and starts to read values for the scores. By declaration, only 9
scores can be stored in the array. Therefore, when the 10th execution of
the loop is attempted, and Score[IO] is encountered, an error results.
This is exactly as it should be, since the declaration has set a limit of 9 on
the number of scores possible.

program Golf;

{ -- This program reads in a sequence of scores for each of 18 }
{ -- golf holes on a par 4 course. The program prints the total }
{ -- score, the amount over (or under) par, and makes note of}
{ -- any birdies (holes under par). }

const
ParForHole = 4;
ParForCourse = 72;

var
HoleNum, TotalScore: Integer;
Score: array(l..18] of Integer;

begin
WriteLn('ENTER SCORES FOR EACH HOLE: ');
for HoleNum := 1 to 18 do

Read(Score[HoleNum]);
TotalScore := O;
for HoleNum := 1 to 18 do

begin
TotalScore := TotalScore + Score[HoleNum];
if Score[HoleNum] < ParForHole then

WriteLn('BIRDIE ON HOLE ', HoleNum : 3)
end;

WriteLn('TOTAL SCORE IS', TotalScore: 3);
WriteLn((TotalScore - ParForCourse): 3,' OVER PAR')

end.

The for loop that causes the values to be read is to be performed 18
times. What happens if the user enters only 5 input values?

•••
Whenever the computer is waiting for information from the keyboard, the
cursor flashes on the text window. The for statement instructs the
computer to read 18 integers; until those 18 integers have been entered,
the cursor continues to flash, indicating that data is expected. Execution
cannot pass to the next statement until the current statement is
finished.

What happens if the line

Read(Score[HoleNum]);

is changed to

Read(Score);

•••

Practice-Arrays 223

Figure 10.7 • Program
Golf

224 10 Arrayf. and Strings

In the declarations part of this program, Score is declared as a variable. It
is further declared to be of type array. Therefore, Score is not associated
with an individual value, but with a group of values. Without the index, the
identifier is incomplete. Therefore, when the Read statement is
attempted, an error results.

The following may be confusing to you. But if you ever have to read
or update someone else's program, you may be shocked to find the same
kind of mysterious code. Consider the following three arrays containing
the real values shown,

array R : 0.0 0.0
array S : 3.14 2.718
array Q : 1.0 2.0 3.0 2.0 1.0 3.0 3.0 2.0 2.0 2.0

and the program segment shown in Fig. I 0.8.
What does each of the loops do? What values are printed by the

Write statement?

•••
Let's take this step by step. The first loop is performed I 0 times. The first
five times, I is not greater than 5, so the else part of the loop is performed
giving the following values.

R[2] := 0.0 + 2.0
R[2] := 2.0 + 2.0
R[2] := 4.0 + 2.0

I R[2] = 2.0}
I R(2] = 4.0}
I R[2J = 6.0}

Figure 10.8 for I := to 10 do
begin

if (I > 5) then
R[l] := R[l] + Q(l]

else
R[2] := R[2] + Q[2]

end;

for J := to 2 do
S[J] := 0.0;

N := l;
for K := to 3 do

begin
S[N] := S[N] + Q(K];
S[N + l] := S[N + I] + Q[K + 3]

end;

Write(R[l] : 4 : I, R[2] : 4 : I, S[l] : 4 : I, S[2] : 4 : I)

R[2] := 6.0 + 2.0
R[2] := 8.0 + 2.0

(R[2] = 8.0}
{ R[2] = 10.0 }

The next 5 times that the loop is executed, I is equal to 6 through 10,
therefore, the if part is performed, giving the following values:

R[l] := 0.0 + 1.0
R(l] := 1.0 + 1.0
R[l] := 2.0 + 1.0
R[l] := 3.0 + 1.0
R[l] := 4.0 + 1.0

(R(l] = 1.0 l
{ R(l] = 2.0 l
(R[l] = 3.0}
(R[l] = 4.0)
(R(l] = 5.0}

When the first loop ends, the values ofR[l] andR[2] have been set to 5.0
and 10.0, respectively.

The second loop is performed twice, setting the first and second
components of array S to 0.0.

The third loop is performed three times, each time adding one of the
components of array Q to one of the components of array S. Which
component of Q is added depends on the variable K, which is also the
control variable for the for loop. The three executions of the loop
produce the following results.

S[l] := S[l] + Q[I] or S[l] := 0.0 + 1.0 (S[l] = 1.0)
S[2] := S[2] + Q[4] or S[2] := 0.0 + 2.0 { S[2] = 2.0 }

S[l] := S[l] + Q[2] or S[l] := 1.0 + 2.0 { S[l] = 3.0}
S[2] := S[2] + Q[5] or S[2] := 2.0 + 1.0 { S[2] = 3.0 }

S[l] := S[l] + Q[3] or S[l] := 3.0 + 3.0 { S[l] = 6.0}
S[2] := S[2] + Q[6] or S[2] := 3.0 + 3.0 { S[2] = 6.0 }

You are probably thinking at this point that there must be a better
way to write this program, and you may be right. However, reading
someone else's program requires this kind of careful step-by-step
procedure. The Write statement gives the following output.

5.0 10.0 6.0 6.0

If you have followed through these exercises, you have a fair under­
standing of how a one-dimensional array works. The enciphering
program is a good example of a two-dimensional array with rows and
columns. If you had any difficulty with Encipher the first time through,
now is a good time to review it.

I 0.1 Not Using Arrays
It isn't as rare as you think that someone will go through extra trouble
when a simple solution exists. Rewrite the program in Fig. 10.7 without
using arrays.

Programming Exercises 225

10.4 0

226 10 Arrays and Strings

I 0.2 Reading Month Abbreviations
Solve Exercise 9.6, this time using arrays; that is, storing the month
numbers in an array of strings.

I 0.3 Cryptic Encoding of Messages
The encoding of messages is a very complex area, certainly of use in
military applications as well as other applications where information
needs to be camouflaged. Here we treat a very simple encoding (and
decoding) method.

Write a program to input a message and then output a decoded
version of the message. Each letter of the input message is to be encoded
as a letter, three characters higher in alphabetic sequence. In particular,
we have the following substitution table:

letter : ABC DEF G HI J KL MN 0 P QR S TU V WX Y Z

substitute : A B C D E F G H I J K L MN 0 P Q R S T U V WX Y Z

For example, the input message

THE TROOPS ARE ADVANCING

should be encoded as

WKH WURRSV DUH DGYDQFLQJ

Note: In "The Case of the Ciphered Message," Holmes rejected this
scheme because it was too easy to decipher. Can you think of an
application where this method will be sufficient?

I 0.4 Deciphering a Message
Now make the preceding program into one that deciphers messages, that
is, one that reads in a coded message and prints the original message.
Test your program using the output for the previous program as
input.

I 0.5 Legal Area Codes
There are over a hundred legal area codes in the continental United
States. When you dial a long-distance telephone number, you can be sure
there are many computer circuits analyzing the number you dialed. Of
course one of these circuits checks to see if the area code is correct.

When a program to read in a three-digit number (e.g., 413) and to
print a message indicating whether the area code is correct or not.

Note: You may have to get a phone book to solve this problem.

I 0.6 Sorting Items into an Order
The process of arranging a list of items (for example, the names of
suspects or a table of area codes) into some given order is called
"sorting."

One simple but slow method of sorting is called a "bubble" sort. It
goes like this:

Examine pairs of items to produce a partial ordering (i.e., compare
item 1 to item 2, compare item 2 to item 3, and so forth). If itemj is
greater than item j + 1, interchange the two items; then compare item
j + 1 withj + 2; continue this procedure through the entire list. After
going through the list once, the largest item will be the last item of the
list.

Now go through the list again. This time, however, omit the
comparison of the item in the last place. Thus on each pass through
the list, one fewer item is examined. The last time through the list will
be when item 1 is compared with item 2 or when a pass is made
through the list and no interchange takes place.

For example, if your list has the numbers

3 -16 0 9 1

after the first interchange you will have

-16 3 0 9 1

and when you complete your first pass, you will have

-16 0 3 1 9

The second pass gives

-16 0 1 3 9

The third pass results in no interchange and we are done. Clever?
Yes.

Your problem is as follows: Write a program to read in ten integer
values and print the values in numerical order, as well as the number of
passes needed to sort the list. Test your program with the lists

1 2 3 4 5 6 7 8 9 10

and

10 9 8 7 6 5 4 3 2 1

Programming Exercises 227

Prelude to Subprograms

r T was a singular combination of events in the spring of '91
that found Mr. Sherlock Holmes and myself again sharing
his quarters at 22 IB Baker Street. I need not detail the
circumstances attendant upon my temporary return;

suffice it to say that with the aid of a noted Harley Street specialist, I was
able to persuade Holmes not to undertake a single investigation at that
time. It was absolutely imperative that the great detective lay aside all his
work and surrender himself to complete rest, should he wish to avoid a
complete breakdown.

The morning of the present narrative began abruptly. Holmes was at
my bedside, shaking me from a deep and peaceful sleep and attempting
to drag me from under my sheets.

"Quick, Watson!" he exclaimed. "On your feet, man, and to the
window!" His face was tinged with colour and his brows drawn into two
hard black lines with the steely glitter of his eyes shining out from under
them. Only in times of great crisis have I observed these battle signals
flying, and I scarcely needed to rely on my companion's great muscular
strength to get me standing.

I immediately became aware of a loathsome, suffocating odour as I
staggered with his aid to the windows. A thick, black cloud was filtering in
from the sitting room where Holmes had been experimenting with
chemicals, apparently throughout the night. He tossed aside the curtains
and threw open the lead-paned windows, and in a moment we were
leaning out, side by side, conscious only of the glorious sunshine and the
fresh, early-morning air.

Some while later we sat near my bedside wiping our clammy
foreheads and surveying each other with some apprehension. "I take it
there is some justifiable reason for all of this?" I queried, letting the tone
of my voice carry the full weight of my irritation.

"I have, with some success," replied Holmes, his eyes twinkling,
"duplicated the poisonous gas employed in the Hyde Park case."

"Indeed you have, and nearly done away with us in the bargain!" 229

230 Prelude to Subprograms

"Well, yes, I suppose I do owe you a word of apology, as I have
almost added another chapter to what the papers are calling the Hyde
Park Horrors. It was, I admit, an unjustifiable experiment to carry out on
oneself and doubly so considering the presence of an unsuspecting
friend."

It was difficult to remain angered at Sherlock Holmes for any great
length of time. His apology had been put forth with such sincerity that I
was considerably touched. My anger at a rude awakening no longer
seemed worth pursuing.

"The vapours have diffused by now," he said presently. "It should be
safe to return."

"I am greatly disappointed with you, Holmes. You promised to
engage your energies in more scholarly pursuits. The first sensational
headline to come along and you've broken your word. There you are, off
like a racing engine, ready to tear yourself to pieces, with a hospital bed
your destination for certain!" I cried.

"On the contrary, my dear Watson," he retorted. "It was just those
scholarly pursuits that have led me here, and once you have performed
your morning ablutions and breakfasted I shall be pleased to elaborate
on how the Analytical Engine may be most helpful in my chemical
dabblings. With the Engine at my disposal our predawn discomforts
could have been totally avoided. I suggest for now, however, that we take
our rashers and eggs at one of London's finer eating establishments, as
arsenic vapours are not pleasing to the discriminating palate."

After a pleasing breakfast in Mrs. Woolwich's Tea Rooms, we
returned to Baker Street. Holmes continued his discourse at a small card
table on which he had set up a makeshift laboratory.

"Do you recollect anything of my friend Dimitri Ivanovich
Mendeleeff?" he asked. "A man ahead of his time in many ways."

"A chemist, as I recall."
"Quite so," he replied. "A scientific mind of the first order.

Mendeleeff was the first to bring both system and structure to the family
of elements: gold, most highly praised of metals, which never tarnishes or
rusts; base lead, common and despised; quicksilver, a metal in liquid
form; sulphur and carbon, usually powders, sometimes crystals-why, a
diamond is merely carbon! Or consider the very air, a mixture of many
gases. And these elements combine chemically with one another to
produce the amazing variety of materials that sustain us-or that can
destroy us, as was nearly the case this morning.

"It has been Mendeleeff's great insight to categorize the various
elements in the form of a table for handy reference. In his table, he
arranges the elements, with each assigned a specific atomic weight,
vertically in groups. The elements within each group bear chemical
properties similar to one another. Dimitri Ivanovich has shown that the
properties of elements recur periodically, much as the sounds of musical

"A chemist, as I recall."

notes recurs throughout the octaves-an idea much scorned by the
Royal Society when the unfortunate Newlands first suggested it years
ago."

Holmes then produced a chart from the great bundle of papers that
littered his desk. It showed the elements arranged vertically in groups.
Naturally I had come across this table, which I have reproduced as Fig.
11.1, during my medical studies at the University of London.

"This is all very interesting," I said, after looking over the chart. "But
of what use is it to you? Surely it is of no importance to a criminal
investigator?"

"Ah, but the value of the table to me is practical. Since it lists the
atomic weights of the elements, I can use the information to calculate the
weight of any compound I choose. Consider, for example, the poisonous
arsenic vapors

As40 6

A Study in Chemistry 231

Series Group I Group II Group Ill Group IV

H=l

2 Li=7 Be=9.4 B=ll C=l2

3 Na=23 Mg=24 A1=27.3 Si=28

4 K=39 Ca=40 -=44 Ti=48

5 Cu=63 Zn=65 -=68 -=72

6 Rb=85 Sr=87 ?Yt=88 Zr=90

7 Ag=l08 Cd=ll2 ln=l 13 Sn=ll8

8 Cs=l33 Ba=l37 ?Di=l38 ?Ce=l40

9

10 - - ?Er=l78 ?La=l80

11 Au=l99 Hg=200 Tl=204 Pb=207

12 - - - Th=231

GroupV Group VI Group VII

N=l4 0=16 F=l9

P=31 5=32 Cl=35.5

V=Sl Cr=52 Mn=55

As=75 Se=78 Br=SO

Nb=94 Mo=96 -=100

Sb=l22 Te=l25 1=127

Ta=l82 W=l84 -

Bi=208

- U=240

CD -s;:::!!
-OCDCO
CDO"::::JC
3<Da.(i)
CDoCD....,,
3.::::<D~
en :::r CD,,

CD =t e
0"'
:::r "'O
CD CD
3 ::::!.
-· 0
0 a.
0 -· -o

Group VIII

Fe=56, Co=59,
Ni=59

Ru=l04, Rh=l04,

Rd=l06

Os=l95, lr=l97,

Pt=l98

,..;,
(,J
,..;,

"'1J
ii)
E
0.
<D

0
U>
c
C'
'C
0

<O
0
3
"'

that I produced this morning. According to Mendeleeffs table, arsenic
weighs 75 units and oxygen weighs 16 units. The weight of a molecule of
the gas is then

(75 * 4) + (16 * 6) = 396

"As you can see, Watson, the calculation is trivial. But there are
many elements, all of differing weights. Obtaining correct results can be
tedious and subject to error when there are many such calculations to
make. I would like to develop a tool for use on the Analytical Engine to
assist me in calculating molecular weights. Thus I wish to enter formulae
of this sort and receive as output the molecular weight."

"Yes, Holmes," I remarked. "But the problem is not so simple as you
make it appear. You must instruct the Engine to make sense of the
formulae, and you must store Mendeleeffs table in the Engine's
memory."

"Excellent, Watson! Compound of the Busy Bee and Excelsior!"
cried Holmes. "That is precisely what must be done. You see, storing
Mendeleeffs table in the Engine is of great value, and having the Engine
recognise the atomic abbreviations will save my brain for more important
matters. This is exactly where the method of instructing the Engine is of
particular interest."

In an instant Holmes was at the Engine, continuing with his
lecture.

"Now, Watson, pay close attention. Here is a general algorithm that
will allow the Engine to solve the problem of molecular weights."

He showed me the following:

Set up atomic weights table
Set TotalWeight to 0.0

Repeat the following:
Obtain NextElement and NumAtoms
Add AtomicWeight[NextElement] *NumAtoms to TotalWeight

until no more elements

Write TotalWeight

"As you remarked earlier, there are two interesting lines. First,

Set up atomic weights table

This requires the Engine to fill a table with Mendeleeffs atomic weights.
Second,

Obtain NextElement and NumAtoms

This requires that the programme ask what the next element is-for
example H means hydrogen and AS means arsenic-and how many
atoms there are of that element.

A Study In Chemistry 233

234 Prelude to Subprograms

Figure 11.2 • Holmes's
algorithm to determine
molecular weight

"The point is, Watson, that by expressing the algorithm in this way,
we have reduced the larger problem to two smaller subproblems, each of
which is easier and simpler to develop than the original problem.

"We can now face the two subproblems precisely. Just as for any
problem, there are the

input - the "givens"

output - the "finds"

For the first subproblem, there is no input; and the output is to be the
completed table of atomic weights. For the second subproblem the input
is the molecular formula; the output is the next element and the number
of times it occurs in the molecular formula."

Holmes then produced the sketch that I have duplicated as Fig. 11.2.
His illustration shows the main algorithm, giving first the definitions of the
variables used and then the algorithm itself. The main algorithm refers to
the two subproblems. These are called algorithms SetUpTable and
GetElement.

Holmes noted the ease with which I could follow the algorithm, and
then produced two more sketches, which I have reproduced as Figs. 11.3
and 11.4. These contained the solutions to the two subproblems.

"Notice, Watson," he continued, "that the algorithm for each
subproblem is separate and self-contained. Each contains, for example,
definitions of data that are meaningful only within the local context of the
subproblem.

"Every problem becomes elementary when once it is explained to
you," said Holmes. "See how childishly simple this all is when you break

Definitions:
NextElement : an element
NumAtoms : an integer number
TotalWeight : the weight of a molecule
AtomicWeight: a representation of the periodic table,

giving the atomic weight of each element

Algorithm:
Perform algorithm SetUpTable giving the AtomicWeight table
Set TotalWeight to 0.0

Repeat the following:
perform algorithm GetElement giving NextElement, NumAtoms
add AtomicWeight[NextElement]*NumAtoms to TotalWeight

until no more elements

Write TotalWeight

Algorithm SetUpTable-giving values for AtomicWeight table:

- Note: only the elements in the first five series of
- Mendeleeffs table are used
Set AtomicWeight[Hydrogen] to 1
Set AtomicWeight[Lithium] to 7
Set AtomicWeight[Beryllium] to 9.4

Set AtomicWeight[Bromine] to 80

Algorithm GetElement-giving NextElement, NumAtoms
Local definitions:

Charl, Char2: characters of a formula

repeat the following:
read Charl of element abbreviation
if incomplete then

read Char2
else

set Char2 to blank
get full name of NextElement using Char 1 and Char2
if NextElement is unknown then

write 'ELEMENT NOT RECOGNIZED.'
else

obtain NumAtoms
until valid entry is made

the problem down into smaller components? You see, Watson, a man
possessing special knowledge and powers such as my own is encouraged
often to seek a simpler approach to a seemingly complex problem. Here
we need only break the problem down into smaller parts and solve them
separately. One might say, divide and conquer."

"Or divide and calculate!" I rejoined.
"You are developing a certain vein of pawky humour, Watson,

against which you must learn to guard yourself."
"So now we turn to the programme itself, I presume."
"Yes, Watson, we may nicely express this fundamental concept

directly in Pascal with a 'sub-programme.' One method of writing sub­
programmes is called a procedure. A procedure has two parts:

I. A heading: A summary of the sub-programme, giving its name,
the inputs, and the outputs.

2. A body: The algorithm used, along with any local definitions.

A Study in Chemistry 235

Figure 11.3 • Algorithm
for subprogram
SetUpTable

Figure 11.4 • Algorithm
for subprogram
GetElement

236 Prelude to Subprograms

"Consider the sub-programme to get the next element. The
procedure to do this will have the form

procedure GetEJement (parameters);
- local declarations

begin
- statements

end;

The parameters itemize the inputs and outputs. Each parameter must be
given a name and a designation of its type.

"In addition," Holmes continued, "any output parameter must be
preceded by the keyword var, which tells the Engine that the output will
be assigned to a variable. So we have

procedure GetElement (var NewElement: Element;
var NumAtoms: Integer);

- local declarations
begin

- statements
end;

The statements, of course, describe the algorithm."
It all sounded simple, but I was still a bit puzzled. I did not at all like

some of the strange notation, and did not quite understand how the so­
called "procedures" would be used.

"To invoke a procedure in a programme," Holmes continued, "we
give the name of the procedure followed by a list of values or arguments,
one for each parameter, as in

GetElement (NextElement, NumAtoms)

This is called a procedure call; and means, quite simply, 'do it.' That is, the
Engine is commanded to perform the algorithm as spelled out in the
procedure. When the procedure is completed, NextElement will have the
value computed for the first parameter, NurnAtoms for the second
parameter.

"The essential idea is that the effect of solving the subproblem is
summarized by values calculated for each parameter."

To appreciate this sudden bounty of instruction I found it necessary
to see the actual programme. It is here duplicated as Fig. 11.5. On some
reflection, it was readily apparent that the wisest approach was breaking
such complex programmes into smaller, more manageable parts.

Holmes forged on. "Notice, incidentally, that in procedure
GetElement, we refer to another procedure GetName. This simply
matches the abbreviated element name to the full element name and is
an example of a sub-programme within a sub-programme."

"Enough, Holmes!" I moaned. "I can absorb no more. Are you
absolutely certain that all of these complexities involve less work than
simply calculating the molecular weights yourself?"

Sherlock Holmes merely smiled.

program MolecularWeight;
I -- This programme reads in a chemical formula Each element)
I -- and its quantity are requested by the programme. Entering)
I -- 'lZ indicates the end of the formula)
I -- The programme determines the atomic components of the formula I
I -- and prints out the total molecular weight. Only elements from)
I -- the first five series of Mendeleeffs table are considered.)

const
Blank='';

type
Element = (Hydrogen, Lithium, Beryllium, Boron, Carbon, Nitrogen,

Oxygen, Fluorine, Sodium, Magnesium, Aluminum,
Silicon, Phosphorus, Sulphur, Chlorine, Potassium,
Calcium, Titanium, Vanadium, Chromium, Manganese,
Iron, Cobalt, Nickel, Copper, Zinc, Arsenic, Selenium,
Bromine, Done, Unknown);

ElementName = Hydrogen .. Bromine;
PeriodicTable = array(ElementName] of Real;

var
NextElement : Element;
NumAtoms : Integer;
TotalWeight : Real;
AtomicWeight : PeriodicTable;

procedure SetUpTable (var AtomicWeight: PeriodicTable);

begin
AtomicWeight[Hydrogen] := 1.0;
AtomicWeight[Lithium] := 7 .O;
AtomicWeight[Beryllium] := 9.4;
AtomicWeight[Boron] := 11.0;
AtomicWeight[Carbon] := 12.0;

AtomicWeight[Nitrogen] := 14.0;
AtomicWeight[Oxygen] := 16.0;
AtomicWeight[Fluorine] := 19.0;
AtomicWeight[Sodium] := 23.0;
AtomicWeight[Magnesium] := 24.0;

AtomicWeight[Aluminum] := 27.3;
AtomicWeight[Silicon] := 28.0;
AtomicWeight[Phosphorus] := 31.0;
AtomicWeight[Sulphur] := 32.0;
AtomicWeight[Chlorine] := 35.5;

A Study in Chemistry 237

Figure 11.5 • Program
MolecularWeight

238 Prelude to Subprograms

Figure 11.5 continued

AtomicWeight[Potassium] := 39.0;
AtomicWeight[Calcium] := 40.0;
AtomicWeight[Titanium] := 48.0;
AtomicWeight[Vanadium] := 51.0;
AtomicWeight[Chromium] := 52.0;

AtomicWeight[Manganese] := 55.0;
AtomicWeight[Iron] := 56.0;
AtomicWeight[Cobalt] := 59.0;
AtomicWeight[Nickel] := 59.0;
AtomicWeight[Copper] := 63.0;

AtomicWeight[Zinc] := 65.0;
AtomicWeight[Arsenic] := 75.0;
AtomicWeight[Selenium] := 78.0;
AtomicWeight[Bromine] := 80.0;

end;

procedure GetName (Charl, Char2 :Char;
var Name : Element);

var
Abbreviation : packed array[l..2] of Char;

begin
Abbreviation[l] := Charl;
Abbreviation[2] := Char2;

if Abbreviation = 'H' then
Name := Hydrogen

else if Abbreviation= 'LI' then
Name := Lithium

else if Abbreviation = 'BE' then
Name := Beryllium

else if Abbreviation = 'B ' then
Name := Boron

else if Abbreviation = 'C ' then
Name := Carbon

else if Abbreviation = 'N ' then
Name := Nitrogen

else if Abbreviation = 'O ' then
Name := Oxygen

else if Abbreviation = 'F ' then
Name := Fluorine

else if Abbreviation = 'NA' then
Name := Sodium

else if Abbreviation = 'MG' then
Name := Magnesium

else if Abbreviation= 'AL' then
Name := Aluminum

Figure 11.5 continued

else if Abbreviation= 'SI' then
Name := Silicon

else if Abbreviation = 'P ' then
Name := Phosphorus

else if Abbreviation = 'S ' then
Name := Sulphur

else if Abbreviation= 'CL' then
Name := Chlorine

else if Abbreviation = 'K ' then
Name := Potassium

else if Abbreviation = 'CA' then
Name := Calcium

else if Abbreviation = 'Tl' then
Name := Titanium

else if Abbreviation = 'V ' then
Name := Vanadium

else if Abbreviation= 'CR' then
Name := Chromium

else if Abbreviation = 'MN' then
Name := Manganese

else if Abbreviation = 'FE' then
Name:= Iron

else if Abbreviation = 'CO' then
Name := Cobalt

else if Abbreviation = 'NI' then
Name := Nickel

else if Abbreviation = 'CU' then
Name := Copper

else if Abbreviation = 'ZN' then
Name:= Zinc

else if Abbreviation = 'AS' then
Name := Arsenic

else if Abbreviation = 'SE' then
Name := Selenium

else if Abbreviation = 'BR' then
Name := Bromine

else if Abbreviation= 'ZZ' then
Name:= Done

else
Name := Unknown

end;

procedure GetElement (var NewElement: Element;
var NumAtoms: Integer);

var
Charl,Char2 : Char;
ValidEntry : Boolean;

A Study in Chemistry 239

240 Prelude to Subprograms

Figure 11.5 continued

begin
Validentry := False;
repeat

Write('ENTER ELEMENT ABBREVIATION;');
Read(Charl);
if not EOLn then

Read(Char2)
else

Char2 := Blank;
ReadLn;
GetName(Charl, Char2, NewElement);
if NewElement = Done then

ValidEntry := True
else if NewElement = Unknown then

WriteLn('ELEMENT NOT RECOGNIZED.')
else

begin
WRJTE('ENTER QUANTITY OF ELEMENT:');
ReadLn(NumAtoms);
ValidEntry := True

end
until ValidEntry

end;
begin { -- MAIN ALGORITHM I

SetUpTable(AtomicWeight);
TotalWeight := 0.0;

WriteLn('ENTER EACH ELEMENT: WHEN DONE,ENTER 22.');
GetElement(NextElement,NumAtoms);
while NextElement <> Done do

begin
TotalWeight := TotalWeight + AtomicWeight[NextElement] *

NumAtoms;
GetElement(NextElement,NumAtoms)

end;
WriteLn('THE MOLECULAR WEIGHT IS', TotalWeight: 6: 1)

end.

Chapter 11

We now encounter the idea
of breaking a problem into parts and packaging each part as a
subprogram. In its essence, a subprogram is a language unit that
embodies the solution to a subproblem. As we attempt to scale up our
programming skills to solve larger and more complex problems, the use
of subprograms becomes almost indispensable. The solution to a
subproblem, with all of its details and internal calculations, can be
summarized into its givens and finds.

· All subprograms have two general characteristics:

• A heading summarizes the relationship of the subproblem to
the rest of the program. It includes the narne of the subprogram
and an itemized list of its parameters.

• A body specifies the method by which the subproblem is solved.
It includes the definitions of any relevant internal data and the
statements for carrying out the algorithm needed to solve the
subproblem.

Let us now tum to the particulars for writing subprograms in Pascal.

A procedure is a subprogram that causes some desired effect. Consider,
for instance, the simple procedure of Fig. 11.6. When executed, the three
lines of text:

THE LOST PASCAL PROGRAMS
OF

SHERLOCK HOLMES

I I. I • Packaging
and Subprograms

241

242 11 Functions and Procedures

Figure 11.6 • A simple
procedure

are printed, centered within each line. This is the so-called effect of the
procedure.

The procedure in Fig. 11.6 has the form

procedure WriteTitle;
-local declarations

begin
-statements

end

This procedure, like all procedures, has a name, in this case WriteTitle.
The procedure also contains local declarations, which specify any
entities needed. The statements within the procedure specify the

· algorithm to be carried out.
A procedure is considered a "subprogram" because, as you will

note, it has a form as well as an effect similar to that of a program. Like a
program, a procedure can have both declarations and executable
statements.

In order to cause the actions of a procedure to be carried out, we
use a procedure call statement. For example, the procedure of Fig. 11.6
can be invoked with the call:

Write Title

When this statement is executed, the algorithm specified by the
procedure will be carried out.

program WriteTitle;
con st

Space='';
var

Column : Integer;

begin
for Column = I to 24 do

Write(Space);
WriteLn(THE LOST PASCAL PROGRAMS');

for Column = I to 35 do
Write(Space);

WriteLn('OF');

for Column = I to 29 do
Write(Space);

WriteLn('SHERLOCK HOLMES');

end;

Notice that in the procedure WriteTitle, the body itself calls other
procedures. In particular, consider

for Column := 1 to 35 do
Write(Space); { -- one procedure call}
WriteLn('OF') { -- another procedure call }

Here the called procedures, Write and WriteLn, are predefined in
Pascal.

In Pascal, all procedures defined by the programmer must be stated
in the declarative part of a program. For example, in Holmes's program
we have the following general structure.

program MolecularWeight;
-constant declarations
-type declarations
-variable declarations
-subprogram declarations

begin
-statements

end.

All procedures are declared after the constant, type, and variable
declarations are given. Notice also that the statement part of the program
may contain calls not only to the declared procedures but to the
procedures that are predefined in Pascal.

This now allows us to state two precepts, elementary yet hard-and­
fast to the fundamentals of problem solving:

• The solution to a subproblem may be written as a procedure,
which must be given in the form of a procedure declaration.

• The actions specified by the procedure are carried out when the
procedure is invoked by a procedure call statement.

Parameters 243

One important feature for writing subprograms is the ability to 11.2 • Parameters
parameterize their behavior. The parameters allow you to characterize
the net effect of the subprogram.

Consider Holmes's procedure to determine the element corres­
ponding to its one-or two-character abbreviation:

procedure GetName
Char 1, Char2 : Char; { given }
var Name : Element; { result }
-local declarations

begin
-statements

end;

244 11 Functions and Procedures

This procedure uses the values of Chari and Char2 and from these two
characters deduces the element corresponding to that two-letter
symbol. The importance of the parameters is that we can characterize
the entire effect of the procedure. That is, given input values for Chari
and Char2, W€ can determine the Name of the element.

All procedures can be summarized in this simple form. A procedure
takes certain inputs and produces certain outputs. We can view the
procedure as a "black box" of the form

Inputs • Procedure Out:E_uts_. ...

Thus we can summarize the behavior of GetName as

Char! I I
~-c_h_a_r2__.:. ~.~~G-e-tN_a_m_e~---~N_a_m_e~--1••

From an outsider's point of view the parameters characterize the entire
effect of the named procedure.

To invoke a procedure with parameters, we simply give the name of
the procedure followed by a parenthesized list of arguments, one for
each parameter. For example, in Holmes's program we may have the
procedure call

GetName (Charl, Char2, NewElement)

Before the procedure GetName is called, values will have been assigned
to Chari and Char2. After the call, the name of the next element will be
assigned to the variable NewElement.

Now there are several tricky points that we must take up in order to
describe the use of parameters. For one, the names of the parameters
given in the procedure declaration are an entirely internal matter as far as
the rest of the program is concerned. These names have no significance
outside the procedure.

For example, if we wanted, we could have written the procedure
GetName as

procedure GetName (Chl, Ch2: Char; { given}

var
Result: Element); { result}

-local declarations
begin

-statements with parameters names changed
end;

That is, we could have changed all occurrences of the name Charl to Chl,
Char2 to Ch2, and Name to Result. These changes would have to be made
unifcrmly throughout the procedure. It is in this sense that we say the
names of the parameters are "dummy." We are free to choose these
names as we wish without regard to any other names outside the
procedure.

The ability to coin the names of parameters freely is an extremely
useful feature. When you are writing a procedure to solve a subproblem,
you can really think of the procedure as an entirely new program with its
own inputs and outputs and its own local declarations of variables.

In describing the parameters of a procedure, you must be a bit
cautious. First of all, the parameters must be given in some particular
order. For the procedure GetName, there are three parameters given in
the order Chari, Char2, and Name. Second, a type must be specified for
each parameter in the procedure header. For input parameters, the type
of one or more parameters can be specified in the form

parameter-list: type-name

In Holmes' s case, we have

Char 1, Char2 : Char

This specification has the same meaning as

Char 1: Char; Char2 : Char

Notice here, however, that each definition in a list of parameters must be
followed by a semicolon if more parameter definitions follow.

The specification of output parameters is almost identical to that of
input parameters, except that each list of parameters must be preceded
by the keyword var, indicating that the corresponding argument must be
a variable. In the procedure GetName we have one output parameter,
specified by

var Name : Element

Thus the full list of parameters is given as

(Char!, Char2 : Char; var Name: Element)

where the parentheses enclose the entire list.
The output parameters for procedures must be either predefined

simple types, type identifiers, or indefinite string types. To use a

Parameters 245

246 11 Functions and Procedures

structured type it is necessary to declare a type name in the declarations
part of the program and then use the type name in the procedure
parameter. An indefinite string type is declared simply as string and is
compatible with all string types.

Occasionally you will have a need for parameters whose values
both serve as input from the caller and are updated as a result of the
procedure call. Consider the procedure PlusOne, defined as follows:

procedure PlusOne (var X: Integer);
begin

X:=X+l
end;

This somewhat trivial procedure adds one to its argument. Thus X serves
as both input and output for the procedure. Such a parameter must also
be specified with the keyword var, indicating that the corresponding
argument must again be a variable.

From the caller's side, we also have to be concerned with a few
special rules. If a procedure has one parameter, you must call it with only
one argument; if the procedure has two parameters, you must call it with
exactly two arguments, and so forth.

The argument corresponding to an input parameter can be any
expression in Pascal as long as the type of the expression is identical to
the type of the corresponding parameter. Thus, with the procedure
GetName, we could have the call:

GetName ('N', 'A', Value)

Similarly for the predefined procedure Write, which takes any number of
arguments of integer, real, or string type, we may have the calls:

Write(O.O)
Write(NumAtoms + I)
Write('THE SQUARE ROOT OF XIS', SqRt(X))

For arguments corresponding to output parameters, the case is
different. Such an argument must always be the name of a variable whose
type is the same as that of the corresponding parameter. Thus in the
call

GetName ('N', 'A', Value)

the third argument must be the name of a variable of type Element.

11.3 • Functions Consider Fig. 1 l.7(a). Here we see a simple procedure named GetArea,
versus Procedures which when given a value for a radius computes the area of a circle having

that radius. If, say, the value of R is 3.0, the procedure call

Functions versus Procedures 247

GetArea (R, Area)

results in assigning to Area the area of a circle of radius 3.0, or
28.2743.

Next consider the "function" of Fig. ll.7(b). This example defines a
function named Area which has a single argument, a real value. It
computes the area of a circle having this argument as a radius. Like the
predefined functions in Pascal, this function can be called within an
expression. If the value of R is 3.0, evaluation of the expression

1.0 + Area(R)

yields 1 plus the area of the circle, or 29.27 43.
A function is a subprogram that returns a value. Generally speaking,

functions are used in place of expressions to return values, whereas
procedures are used in place of statements to perform assignments to
variables. The ability to define functions in Pascal is thus an important
counterpart to the ability to define procedures.

Conceptually a function behaves just like a function in ordinary
mathematics. That is, given one or more values, we can compute some
result. For example, consider the following informally described
functions.

• Given two numbers, the result is the greater of the two.
• Given three points, the result is the area of a triangle connecting

the three points.

• Given a molecular formula, the result is the molecular weight of
the formula

• Given the initial velocity of a projectile, its angle, and a duration
of time, the result is the distance traveled.

In each of these cases we have one or more givens and a single
result.

The rules for declaring functions are quite similar to the rules for
declaring procedures. In particular, a function declaration has the
form

function Area (parameters) : result-type;
-local declarations

begin
-statements

end;

Here we see that, like a procedure, a function may have parameters as
well as local declarations describing any internal data. As with a
procedure, the algorithm performed by the function is specified in the
statements. Furthermore, a function returns a single result, and the type
of the result must be specified in the program heading.

248 11 Functions and Procedures

Figure 11.7 • Functions
versus procedures

(a) A Simple Procedure

procedure GetArea (Radius : Real;

var Area : Real); { result }
const

Pl = 3.14159;
begin

Area:= Pl • (Radius*Radius)
end;

(b). A Simple Function

function Area (Radius : Real) : Real;
const

Pl = 3.14159;
begin

Area := Pl • (Radius*Radius)
end;

{given}

To establish the actual result returned by a function in Pascal, you
must use an assignment statement that gives a value to the name of the
function. For example, in the function of Fig. 11. 7 (b) we have the
statement,

Area := Pl * (Radius*Radius)

This statement assigns a value to the name Area, which is, in fact, the
name of the function itself. When the statements in the body of the
function are completed, whatever value has been assigned to this name
will be returned as the result of the function.

The facility for defining functions in Pascal is quite general. For
instance, the parameters may be of any type defined in your program.
Thus you may have parameters that are arrays, strings, or values of an
enumerated type. Watch out though; the type must be either a predefined
simple type or a type identifier or string. Thus, for arrays a type identifier
must be used.

Furthermore, the statements describing the algorithm performed
by the subprogram may be as complex as you like, and of course, may
even contain calls to other procedures or other functions. Thus the
facility for defining subprograms in Pascal is extremely powerful.

11.4 • Global Consider the following simple procedure:

Information procedure SkipSpaces (NumSpaces : Integer);

const
Space='';

var
Count : Integer;

begin
for Count := I to NumSpaces do

Write(Space)
end;

This procedure has only one parameter, an input parameter named
NumSpaces. When this procedure is executed, it prints the number of
spaces given as input to NumSpaces.

Let us next consider a revised version of the procedure WriteTitle
given earlier in Fig. 11.6.

procedure WriteTitle;
begin

SkipSpaces(24);
WriteLn('THE LOST PASCAL PROGRAMS');
SkipSpaces(35);
WriteLn('OF');
SkipSpaces(29);
WriteLn('SHERLOCK HOLMES')

end;

This procedure has the same effect as Fig. 11.6. Here, however, the
procedure WriteTitle explicitly invokes another procedure, SkipSpaces,
defined in the previous procedure.

The use of the procedure SkipSpaces within WriteTitle demon­
strates an important general point. A procedure may refer to the entities
(constants, types, variables, and subprograms) declared outside the
procedure in the main program. These entities are said to be global to the
procedure.

The use of several procedures in one program is commonplace as
programs solve larger and more intricate problems. Furthermore, doing
this in Pascal is quite easy. You simply declare the procedures one after
another.

For example, consider the general structure of Holmes's program
for calculating molecular weights.

program MolecularWeight;
-constant declarations
-type declarations
-variable declarations
-declaration of SetUpTable
-declaration of GetName
-declaration of GetElement

begin
-statements

end

Global Information 249

250 11 Functions and Procedures

11.5 • Side
Effects

This program uses the three procedures SetUpTable, GetName, and
GetElement. Notice, however, in program MolecularWeight, the pro­
cedure GetName is invoked within the procedure GetElement. This
brings us to the following rule in Pascal:

• A procedure or function must be declared before it can be
called

Thus the declaration of GetName must precede the declaration of
GetElement. Otherwise, the order of subprogram declarations is
immaterial.

At this point we have to talk about one of the most subtle but dangerous
problem in programming. In computer parlance this problem is called the
use of side effects. A subprogram can produce a side effect in two ways: by
altering its arguments or by altering a variable that is global to the
procedure.

Programmers who write subprograms with side effects often get
unpleasant surprises. Consider the two programs in Fig. 11.8. These two
programs are identical except for the replacement of the expression

F(B) + F(B)

in Fig. 11.8(a) by the expression

2 * F(B)

in Fig. 11.8(b). These two programs are not equivalent because

F(B) + F(B) = (11)*(3) + (12)*(3)
= 69

2 * F(B) = (2)*(11)*(3)
=66

Hence we lose a fundamental property of addition. The problem is
caused by the side effect in the function F with the assignment

A:=A+ I

where A is global to the function.
Certainly most people would be surprised to discover that

evaluation of

F(B) + F(B)

is not equivalent to

2 * F(B)

despite the familiar notation for such expressions.

(a) One Program

program SideEffect;
var

A, B, C : Integer;
function F (X : Integer) : Integer;
begin

A:=A+ 1;
F :=A* X

end;
begin

A:=lO;
B := 3;
C := F(B) + F(B);
WriteLn(C)

end.

{ -- Watch out }

(b) An Equivalent Program?

program SideEffect;
var

A, B, C : Integer;
function F (X: Integer) : Integer;
begin

A:=A+ l;
F :=A* X

end;
begin

A:= 10;
B :=3;
C := 2 * F(B);
WriteLn(C)

end.

{ -- Watch out I

The difficulties with side effects become even greater when we need
to change a program. Change is a daily occurrence in programming.
Someone may find a more efficient algorithm, more output may be
needed, a bug may be detected, or specifications may be revised.

If a piece of a program to be changed has side effects, we may need
to delve deeply into the entire program for a clear understanding of any
effects on other parts of the program. Adding a few extra lines of program
for that desirable change may render another piece of the program
incorrect. To set matters right again, another change may be needed, and
so on. Even if this process succeeds, it is not likely to add to the clarity or

Side Effects 251

Figure 11.8 • Side
effects in functions

252 11 Functions and Procedures

Figure 11.9 • Side
effects in procedures

flexibility of the program. Had the original program been written without
side effects, the subprogram could be changed without studying the rest
of the program.

The purpose of a procedure is to produce some effect external to
itself, not to return a value. Essentially, a procedure consists of a group of
statements isolated from the main algorithm for convenience or clarity.
The problems encountered with side effects in procedures are quite
similar to those encountered in functions. There is one important
exception: when a procedure is designed to update a specific set of
variables, each of the changed variables should be included in the list of
parameters.

Consider Fig. 11.9. In this program, the procedure P causes a side
effect on the global variable B. Thus the call

p (A)

gives no clue that the variable B will be changed.
There are, of course, cases where global information may indeed be

useful. For example, there may be types, constants, and arrays whose
(often used) values remain constant within the program. Making these
quantities global to the entire program certainly causes no problems, as
they do not change as the program progresses. The real culprit remains
the global variable.

In brief, global variables and side effects can cause very serious
problems. If they are used, they should be used sparingly. We close with
the following rules of thumb.

program Globals;
var

A, B : Integer;
procedure P (var X : Integer);
begin

X :=2 * (X + l);
B := 5 * X

end;
begin

A:= 2;
B := 3;
WriteLn(A, B);
P(A);
WriteLn(A, B)

end.

I Prints A as 2, B as 3 l
I Changes B as well! }
I Prints A as 6, 8 as 30 }

• Functions
Use a function only for its returned value.
Do not use a function when you need a procedure.
Do not alter the parameters.
Do not alter global variables.

• Procedures
Do not use a procedure when you need a function.
Do not alter global variables.

• Both
Be very, very careful when you use global variables.

Recursion 253

Loosely speaking, recursion is a method of definition in which the object 11.6 • Recursion
being defined is used within the definition. For example, consider the
following definition of the word "descendant:"

A descendant of a person is a son or daughter of the person, or a
descendant of a son or daughter.

In this definition all the descendants of the person are simply and
precisely accounted for. A nonrecursive definition of descendant that
takes all possibilities into consideration would be the following:

A descendant of a person is a son or daughter of the person, or a
grandson or granddaughter of the person, or a great-grandson or
great-granddaughter of the person, and so forth.

This definition is lengthier and less succinct than the recursive definition.
It is interesting to note how dictionaries attempt to skirt recursion in the
definition of descendant. "Descendant" is often defined in terms of
"ancestor," whereas "ancestor" is defined in terms of "descendant." The
two definitions are, in fact, mutually recursive.

In programming, recursive definitions apply to function and
procedure declarations. A recursive subprogram is one that has the
potential to invoke itself. In other words, it is defined partially in terms of
itself.

In many instances recursive definitions are clearer, more succinct,
or more natural than their nonrecursive counterparts, even if they are
less efficient. A clear understanding of the nature and power of recursive
definitions can be a valuable aid to a Pascal programmer.

Suppose we wish to sum the elements of an integer array. Simple
arithmetic gives us the following equality.

Sum(al' Cl:!· •.. , an) = a1 n = 1

Sum(a1, Cl:!• •.. , an) = an = Sum(ap ... , an-1) n > 1

254 11 Functions and Procedures

11. 7 o Practice

Stated in English, the sum of the elements of an array is the last element
plus the sum of the first n-1 elements. If the array has only one element,
the sum is the single element.

With these facts in mind, it is possible to write the function Sum
recursively, as follows:

function Sum (A: lntArray; N: Integer) : Integer;
begin

if N = 1 then
Sum:= A[l]

else
Sum:= A[N] + Sum(A, N-1)

end;

Its nonrecursive counterpart is also given as follows:

function Sum (A: lntArray; N: Integer) : Integer;
var

Index : Integer;
begin

Sum:= O;
for Index := 1 to N do

Sum := Sum +A[lndex]
end;

Here the type IntArray is defined as

array[l..10] of Integer

To understand the recursive definition of Sum, observe the
following analysis of the subprogram when applied to a four-component
array containing the numbers 3, 6, 8 and 2.

Depth of Recursive Calls

1
2
3
4
4
3
2
1

Value of Sum

Sum(A,4)
2 + Sum(A,3)
2 + (8 + Sum(A,2))
2 + (8 + (6 + Sum(A,l)))
2 + (8 + 6 + 3))
2 + (8 + 9)
2 + 17
19

There once was a frog named Mr. Croak who was beset with three
daughters of marriageable age, Ribbitl, Ribbit2, and Ribbit3. Now the only
eligible male frog, Horatio, fell for Ribbit2 and proceeded to ask for her leg
in marriage. However, Mr. Croak, concerned with the marriage prospects

Practice-Using Subprograms 255

for Ribbitl and Ribbit3, proposed that whichever one of his daughters
leaped the farthest would be Horatio's wife.

Now Horatio knew, but Mr. Croak didn't, that Ribbit2 could jump
twice as far as Ribbitl, and that Ribbit3 could jump only one third as far as
Ribbit 2. Thus Horatio readily agreed and persuaded Mr. Croak that the
computer program shown in Fig. 11.10 should determine who would wed
him. What is the moral of this story?

•••
If you think Horatio is a wise frog, we suggest that you run the program
listed in Fig. 11.10 using the Observe window to follow the values of
JumpRibl, JumpRib2, JumpRib3, and X. This problem asks you to think
about what you have learned about side effects. A variable that is used as
a parameter in the heading of a subroutine, and is then given a new value
within the subroutine has the side effect of changing the original variable.
In the case of Horatio's proposal, when Xis multiplied by 2 in function F,

program Ribbits;

var
JumpRibl, JumpRib2, JumpRib3: Real;

function F (var X: Real) : Real;
begin

X:=2*X;
F:=X

end;

function G (var X: Real) : Real;
begin

X := (1/3) * X;
G:=X

end;

begin
JumpRibl := 3.0;
JumpRib2 := F(JumpRibl);
JumpRib3 := G(JumpRib2);
if (JumpRibl > JumpRib2) and (JumpRibl > JumpRib3) then

WriteLn('MARRY RIBBITI ')
else if (JumpRib2 > JumpRibl) and (JumpRib2 > JumpRib3) then

WriteLn('MARRY RIBBIT2')
else

WriteLn('MARRY RABBIT3')
end.

Figure 11.10 • Program
Ribb its

256 11 Functions and Procedures

JumpRibl also takes on the new value of 6.0. Then in function G, the
problem is compounded when dividing X by 3, causes JumpRib2 to also
be divided by 3. Poor Horatio becomes a victim of the side effect of using a
global variable.

The controversy over local versus global variables is not a trivial
one; it has a very basic effect on the way people write programs. The
problem in Fig. 11.10 could have been avoided by making X a local rather
than global variable, as shown in the following:

function F (var JumpRibl : Real) : Real;
var X: Real;

begin
X := JumpRibl;
x := 2 * X;
F:= X

end;

The result then would be as Horatio desired:

MARRY RIBBIT2

The following is a simple procedure to be used to exercise your
understanding of procedures.

procedure Swap (var X, Y: Integer);
var

Temp : Integer;
begin

Temp:= X;
X:=Y;
Y:= Temp

end;

Consider the following changes and their effects.

1. What happens if the header is changed to:
procedure Swap (var X: Integer; var Y: Integer);

2. What happens if the header is changed to:
procedure Swap (var Y, X: Integer);

3. What happens if the header is changed to:
procedure Swap (var A, B: Integer);

4. What happens if the name of the local variable Temp is changed
to Nil?

5. What happens if the name of the local variable Temp is changed
to X?

•••

Practice-Using Subprograms 257

Parameter definitions must be carefully written. Variables of the same
type can be defined individually, or as a list followed by a colon and the
type name. Number 1 will have no effect on the procedure.

If the order of the variables is changed in the parameter definition,
then the actual values given by the statement calling the procedure must
also be reversed The values given in the procedure call (the actual
parameters) are assigned to the variables listed in the parameter
definition (the formal parameters) in the order in which they are given. In
the procedure Swap, if Xis given to Y and Yis given toX, and then they are
swapped, both variables will end up with the value they started out
with.

If the variables given as formal parameters areA andB, the variables
within the procedure must be changed to A andB also; if the procedure is
to be effective in swapping the two values. Additional statements may be
needed in the program, perhaps assigning the values of A and B to X and
Y.

Nil is a reserved word. It cannot be used as a variable identifier.
The procedure already has an X; if you change Temp to X, you will

be in big trouble.

True or False
1. A procedure can have no parameters.

2. If a procedure with three integer parameters is called with two
integer arguments, the third parameter is taken as zero.

3. A Real parameter can correspond to an Integer argument.

4. Two parameters can have the same name.

5. A function can have var parameters.

6. New types can be declared within a procedure.

7. Both functions and procedures can be called recursively.

8. The procedure declaration
procedure DoThis(var X: 1..50);

is a legal declaration.
9. A function can be declared within a procedure.

10. All of the parameters of a function must be of the same type.

11. A procedure can be used to assign a value to a variable.

12. Write is a Macintosh Pascal keyword .

•••
A procedure may have parameters, but it is not a requirement.

258 11 Functions and Procedures

11.8 0

If a parameter list is present, then the procedure call must provide a
number of arguments equal to the number of parameters in the
procedure declaration. If the procedure declaration lists three param­
eters and only two arguments are given, an error results.

When an Integer argument is given corresponding to a Real
parameter, the number is accepted and stored as an Extended
number.

Trying to use two parameters with the same name raises havoc with
a program.

Numbers 5, 6, and 7 are true.
A subrange cannot be used as a type in a procedure declaration. A

type must be declared as in

type
NumRange = 1..50;

and the type identifier, in this case NumRange, used in the procedure
declaration.

Yes, a function can be declared within a procedure.
Various types of parameters can be used in a function, provided

they are all properly listed.
A procedure can be used to assign a value to a variable.
Write is not a keyword, it is a predefined procedure.

11.1 Programming Tools
The important part of a program is the answer it gives back to the
operator. Making this answer pleasant and informative is an important
part of programming. This means we must have some means of handling
character data. A single number or set of numbers printed in the middle
of a screen means little, but a well-formatted, neatly labeled output fulfills
the purpose of the program, to give a clear and concise answer to the
person who entered the data, and presumably, needs it. To this end, your
task is to build two simple procedures to handle character strings.

The first such tool is a function called NumChars. This function has
one argument, a string containing 20 characters. It returns the length of
the string, defined as the number of characters in the string excluding any
trailing blanks. For example, the length of the string

'MYCROFT HOLMES

is 14. Using this function you can proceed to more useful (although you
will use this one alone many times) character-handling procedures.

The second tool is a character-handling procedure called Position.
This procedure has two arguments, a 20-character string and the column

(tab) position on an output line. The procedure prints the string starting
at the given column position, removing any trailing blanks. For
example,

HisName := 'MYCROFT HOLMES
CurrentTab := 10;
Position (HisName, {at} CurrentTab)

'· ,

prints the name MYCROFT HOLMES in positions 10 through 23 on a line.
The procedure Position can make use of the function Length.

Finally, incorporate these two simple tools in a program to test that
they behave correctly.

11.2 Random Numbers
Everyone understands intuitively what a random number is. When you
roll one of a pair of dice, you get a random number between 1 and 6. If the
die is loaded, the numbers are not so random.

In many computer applications, random numbers are very
important. Suppose you are testing some pattern for directing traffic flow,
and want to see how your idea works. Given some model for the arrival of
vehicles at each period of the day, you will want to simulate "random"
arrivals into your traffic area. To do this, you need a subprogram for
generating sequences of random numbers.

Returning to our dice, suppose we wish to simulate 50 fair throws of
a die. We need to generate 50 random integers between 1and6. Now
many programming languages have a subprogram that generates
random numbers for you. Most often the numbers generated lie between
0 and 1, for example 0.22 or 0.67, and you have to scale these numbers up
to get a random number between 1 and 6. This is easy, for you just
multiply the numbers by 6, take the integer part of the result, and add 1.
Thus

.22 times 6 is 1.32

.67 times 6 is 4.02

and your random die throws are 2 and 5.
There are many ways of generating random numbers. Let us look at

one that is particularly simple (although it doesn't always produce the
most random random numbers).

We start by picking three numbers:

the "seed'', say .56
the "multiplier", say 21
the "adder", say .33

To get our first number, we multiply the seed by the multiplier, add the
adder, and take the fractional part of the result; that is,

(.56)*(21) + (.33) = 12.09

Programming Exercises 259

260 11 Functions and Procedures

Keeping only the fractional part of 12.09, we have .09, our first random
number.

To get the second random number, we do the same thing again, only
this time replacing the seed by the first random number. Thus

(.09)*(21) + (.33) = 2.22

and, we have .22, our next random number. And so it goes. Now for the
problem:

a) Write a procedure named Random to generate random numbers
between 0.0 and 1.0. The procedure has one output parameter,
giving the next random number.

b) Use this procedure to generate 50 throws of one of a fair pair of
dice. The program must print these 50 random integers.

c) Keep a count of each 1, 2, 3, 4, 5, and 6 generated, and print the
count of each digit generated. This will give you an idea of the
"randomness" of your procedure.

Note: You may have noticed that .10 is not such a good multiplier,
and .02 is not such a good adder. If your multiplier is 1 plus a multiple of
10, and your adder is not divisible by 2 or by 5, you should be safe.

11.4 Ordering
Write a program to read in 10 integer values and print the values in
reverse order. Yol1 may not use loops in your program. Instead, of
course, you will have to define a recursive procedure.

11.5 Drawing an Icon
The icons used on the Macintosh are drawn in a box 16 pixels wide by 16
pixels high. Write a procedure to create an icon. Since you will want to be
able to create the icon anywhere on the screen, you may not use MoveTo
or LineTo.

11.6 Recursion versus Iteration
Just about everyone has heard of Fibonacci, who invented the famous
sequence 1, 1, 2, 3, 5, 8, 13, 21, ...

Assume it takes a rabbit about one month to reach reproductive
maturity, and a pair of rabbits can give birth to one litter every month.
Even further, suppose each litter consists of exactly two rabbits, one of
each sex. And finally, suppose the rabbits live a very long time,
responding to nature's call.

If you started with one pair of baby rabbits, how many pairs of
rabbits would you have in a year? In two years? In three years? Ask
Fibonacci. To start you have 1 pair, and in one month, you still have 1 pair.

But in two months you have 2 pairs, in three months 3 pairs, in four
months 5 pairs, then 8, and away you go.

You see, at the end of each month, every pair that was around two
months ago has had babies. Thus we have

Month : 0
Rabbit Pairs : I

2 3 4 5 6 7 .. .
2 3 5 8 13 21 .. .

exactly Fibonacci's sequence. Notice that each number in the sequence is
the sum of the previous two numbers. So we have the following recursive
definition of the function Fibb:

Fibb(O) = 1
Fibb(l) = 1
Fibb(n) = Fibb(n-1) + Fibb(n-2) for n> 2

Now for your problem. You are to find out how many rabbits there
are at the end of I year, 3 years, and 5 years (by computer, of course).
Further, you are to write two programs to do this. One of your programs
will define the function Fibb using recursion, the other will define it
without using recursion. Your main program in both cases will simply
contain calls to the function Fibb.

Note: The idea for this exercise is taken from the Fortran Coloring
by Roger Kaufman (MIT Press).

Programming Exercises 261

HE murder of the Honourable Colin Wiggs, with its curious,
1f not to say extraordinary circumstances, had long ceased
to be a subject of interest in Fleet Street, where for months

. the front pages of London's many daily papers had
trumpeted the disturbing details as they unfolded. Thus I was surprised
to find that, more than a year after this tragedy was laid to rest, it had
again become a subject of interest in Baker Street. Early one October
evening I called upon my friend Sherlock Holmes, who had had a
considerable share in clearing up the Wiggs case. I found him deeply
engrossed in reviewing the details attendant upon the matter.

I was apprehensive of what Holmes' s humour might be that evening,
for his eccentricities became more pronounced when he was engaged on
a case and at times his curious habit and mood, which some would call
reticent, succeeded in alarming even such an old companion as
myself.

To my surprise and pleasure, however, Holmes ushered me into his
quarters with an exuberant gesture of welcome and propelled me into
the only chair that was not cluttered with books, papers, and scientific
specimens.

"You will remember, Watson," he said, "how the dreadful business
in which Colin Wiggs was engaged ultimately led to his tragic end, and
how the matter was first brought to my notice by a small scar on his left
shoulder. A trifling point at first overlooked by the coroner."

"Indeed," said I, "and I well recall your indignation at Scotland
Yard's handling of that affair. The case might have dragged on indefinitely
had you not chosen to inspect the body yourself."

"Exactly, Watson, why I have now undertaken to reconstruct the
material circumstances of that case. I wish to design a systematic, yet simple,
means of organizing notes, documented observations, and other data that
are used in compiling special presentations, such as a coroner's report"

I listened intently to this explanation, which Holmes delivered
between puffs on his cigar. It was evident by a pile of manuscripts within 263

264 Prelude to Files

my sight that he had contrived just such a plan for use by the Analytical
Engine.

"You have devised some new programme, l take it," l ventured,
"though l fear it may lie beyond my comprehension."

"l assure you, my dear Watson, that the algorithm is elementary. If
you have understood our other exercises with the Engine, I believe you
will find little difficulty with this one."

Holmes thereupon removed a few slips of paper from one of several
notebooks that lay open nearby.

"Observe, if you will, the total disarray of these papers, which
contain crucial information pertaining to the Wiggs autopsy," he said,
handing them to me. "Would it not be more practical to store this data in
the Engine's memory, where it would be infinitely more secure and from
which a concise report could be called upon whenever necessary?"

Holmes then displayed a summary of the data usually given in a
medical examiner's report, as follows:

General Information: 1. Coroner's name, 2. Subject's name,
3. Subject's stated age.

"Observe the total disarray of these papers."

Data and Test Results: 4. Subject's height in inches, 5. Subject's
hair colour, 6. Subject's eye colour, 7. Subject's sex, 8. Results of
alcohol test, 9. Test for salicylates, 10. Bile morphine indication,
11. Gastric content, 12. Presence of bruises, 13. Presence of
lacerations, 14. Presence of lesions, 15. Detected haemorrhages,
16. Fractures.
Remarks: 17. Coroner's observations.

"Now, Watson, in designing a programme to store and recall this
information, I dealt with several important points. In the first place, you
will observe that the data in each section of the report are of variable
length and appearance. Thus when we enter the data into the machine,
we do not wish to be confined to a fixed format, consisting of rigid
columns and predetermined schemes of punctuation, letters, and
numbers. Rather, we wish to use a so-called free format, which will allow
us to separate data items as we please, with blanks and ends of lines. In
fact, often a character, for instance a comma, is used to separate items. I
decided to use a colon for this purpose, as commas and blanks will likely
occur in the data

"Notice also that it is always a good idea to prepare a sample of the
input before coding the programme, as I have also done here. This helps
clarify the task at hand Do you follow me this far, Watson?"

Holmes's conventions are summarized in the table that I have
replicated here:

FORMAT CONVENTIONS

a) Each item is treated as a sequence of characters.
b) Items 1 through 3 (general information) contain at most 20

characters.
c) Items 4 through 16 (data and test results) contain at most

40 characters.
d) Except for item 17 (coroner's observations), spaces and

ends of lines preceding an item are ignored.
e) Item 17 (coroner's observations) contains an arbitrary

number of lines of characters. The first character must
appear at the beginning of a line.

SAMPLE INPUT VALUES

General Information· 1. Dr. Harrison, 2. Colin Wiggs, 3. 42,
Data and Test Results: 4. 68, 5. Black, 6. Grey, 7. Male, 8. Negative,
9. Negative, 10. +, 11. Negative for organic bases, 12. Face, neck,
13. None, 14. Neck, 15. None, 16. Upper windpipe
Remarks: 17. Subject was apparently struck on the left side of
the neck. Double fracture of the upper windpipe, just below the
larynx, suggesting strangulation. A small scar was detected on
the left shoU;lder.

The Coroner's Report 265

266 Prelude to Files

I nodded that his explanation was extremely clear to me and begged him
to continue.

"Very good," said Holmes, resuming his manner of a patient
lecturer. "Now, so far as the output is concerned, our main objective is to
provide a report that is at once complete, orderly, and readily intelligible
to the clerks and investigators who are likely to use it. This principle is
what I call the consideration of human factors. One must remember at all
times that one is devising a programme for the benefit of other persons,
not only for the Engine-though I cannot refrain from observing that our
artificial brain has more aptitude for deduction than many of the natural
ones employed by Scotland Yard."

Holmes paused a moment to take another cigar and then continued,
as I sat attentively beside him.

"There are two simple concepts involved in the creation of output,"
he said as he blew a thin stream of smoke into the room.

"First, note that each item of data is viewed as a string of characters.
Upon output, each is printed in a specific place.

"Second, the data are grouped into lines, and there must be some
predetermined design for the appearance of the report. Thus, when the
programme has printed the desired item, advancement to a new line may
be called for."

"Really Holmes," I interrupted. "I fear this is all a bit much for my
mind to digest at one time."

"No, no, Watson, there are unexplored possibilities about you to
which you have given small attention amid your exaggerated estimates of
my own performances. If you will bear with me for another moment, I am
sure this will all become quite clear to you."

As he spoke he tore two more sheets from his notebook which I
have reproduced as Tables 12.1 and 12.2.

"Here are my specimens," he remarked as l examined them, "which
should shed some light on these concepts. Tell me, Watson, if they are
sufficiently clear, as I intend to offer them to Scotland Yard for their own
instruction."

I studied Holmes's diagrams, paying special attention to the
appearance of his sample output. The specimens looked perfectly clear
and readable, and once again I was astonished at the practical use that
resulted from a few simple principles applied by an eminently logical
mind.

"Why, Holmes," I said, "if the Engine can be programmed to fulfill a
wide variety of similar purposes, the entire profession of clerking may
well be undermined within a few years!"

"Nonsense, Watson!" snapped Holmes. "The Engine will surely
never replace the need for human intelligence. Rather, it will free
mankind from mundane tasks, those that shackle the mind and keep it
from more challenging and rewarding exercises.

Table 12.1 • Output layout of the Coroner's Report

CORONER'S REPORT

CORONER: ...

BASIC DATA

HEIGHT IN INCHES : ...
HAIR COLOUR
EYE COLOUR
SEX

TOXICOLOGY DATA

ALCOHOL TEST
SALICYLATES
BILE MORPHINE
GASTRIC CONTENT: ...

ANATOMIC DATA

BRUISES
LACERATIONS
LESIONS
HAEMORRHAGES
FRACTURES

GENERAL REMARKS

SUBJECTS NAME : .. .
STATED AGE

"Moreover," he continued, "once the Engine has been programmed
correctly, it will always perform correctly, or at least with negligible
chance of a random error. Time invested in programmes is cumulative,
always adding to the precision of the process."

I have included Holmes's entire algorithm as Fig. 12.1, so that the
diligent reader can follow the exact steps taken by Holmes to accomplish
the task described herein. You may notice that, while the algorithm is
certainly straightforward, accounting for all the details is painstaking. It is
especially tedious to ensure that the output is spaced properly.

The program is given in Fig. 12.2. It follows the stated algorithm
almost exactly.

"You see, Watson," Holmes remarked, "the programme is a simple
collection of procedures that extract each stored piece of information

The Coroner's Report 267

268 Prelude to Files

Table 12.2 • Sample output from the Coroner's Report Program

CORONER'S REPORT

CORONER: Dr. Harrison SUBJECTS NAME: Colin Wiggs
STATED AGE : 42

BASIC DATA

HEIGHT IN INCHES : 68
HAIR COLOUR : Black
EYE COLOUR : Grey
SEX : Male

TOXICOLOGY DATA

ALCOHOL TEST : Negative
SALICYLATES : Negative
BILE MORPHINE : +
GASTRIC CONTENT : Negative for organic bases

ANATOMIC DATA

BRUISES
LACERATIONS
LESIONS
HAEMORRHAGES
FRACTURES

GENERAL REMARKS

: Face, neck
: None
: Neck
: None
: Upper windpipe

Subject was apparently struck on the left side of the
neck. Double fracture of the upper windpipe, just below
the larynx, suggesting strangulation. A small scar was
detected on the left shoulder.

that is given to it. The important point is that the programme makes the
information pleasing for the enquirer to read. If it were printed in a
haphazard fashion, the Engine would not be used to its full potential to
assist a human undertaking."

"A truly useful concept, Holmes, with great possibilities, assuming
the Engine always works without mechanical error!"

To this he made no reply, but it was plainly evident that he was
pondering the shortcomings of the Engine. Like all great artists, he was
easily impressed by his surroundings; and I fear my comment had thrown
him into the blackest depression. How I had learned, long ago, to dread
periods of inaction for Holmes. His gaze was now fixed on the
mantelpiece, where lay scattered a collection of syringes and bottles; and
I knew that the sleeping friend was very near waking in times of such
idleness.

Main Algorithm:
Skip 7 lines
Perform algorithm PrintTitle
Skip 2 lines
Perform algorithm PrintGenerallnfo
Skip 2 lines
Perform algorithm PrintBasicData
Skip 2 lines
Perform algorithm PrintToxicologyData
Skip 2 lines
Perform algorithm PrintAnatomicData
Skip 2 lines
Perform algorithm PrintRemarks

Algorithm PrintTitle:
Write 25 spaces, 'CORONER'S REPORT header
Advance to next line

Algorithm PrintGenerallnfo:
Write 'CORONER:'
Perform algorithm ProcessNextltem using 20 characters
Write 6 spaces, 'SUBJECTS NAME:'
Perform algorithm ProcessNextltem using 20 characters
Advance to next line
Write 35 spaces, 'STATED AGE ·'
Perform algorithm ProcessNextltem using 20 characters
Advance to next line

Algorithm PrintBasicData:
Write 'BASIC DATA' header
Skip one line
Perform algorithm ProcessField using 'HEIGHT IN INCHES ·'
Perform algorithm ProcessField using 'HAIR COLOUR
Perform algorithm ProcessField using 'EYE COLOUR

"
·'

Perform algorithm ProcessField using 'SEX

Algorithm PrintToxicologyData:
Write 'TOXICOLOGY DATA' header
Skip I line
Perform algorithm ProcessField using 'ALCOHOL TEST
Perform algorithm ProcessField using 'SALICYLATES

·'

·'

"
" Perform algorithm ProcessField using 'BILE MORPHINE

Perform algorithm ProcessField using 'GASTRIC CONTENT ·'

The Coroner's Report 269

Figure 12.1 • Algorithm
for the Coroner's Report
Program

270 Prelude to Files

Figure 12.2 • Program
CoronersReport

Figure 12.1 continued

Algorithm PrintAnatomicData:
Write 'ANATOMIC DATA' header
Skip I line
Perform algorithm ProcessField using 'BRUISES
Perform algorithm ProcessField using 'l.ACERA TIO NS
Perform algorithm ProcessField using 'LESIONS
Perform algorithm ProcessField using 'HAEMORRHAGES
Perform algorithm ProcessField using 'FRACTURES

Algorithm PrintRemarks:
Write 'GENERAL REMARKS' header
Skip I line
As long as more lines remain, do the following:

write 5 spaces
copy next line

Algorithm ProcessField using Header:
Write 5 spaces, Header, spaces to fill header width, ':'
Perform algorithm ProcessNextltem using 40 characters
Advance to new line

Algorithm ProcessNextltem using NumChars:
Read and print item
Pad with spaces to fill the item to NumChars

program CoronersReport;

·'
·'
·'
·'
·'

{ -- This program reads in data corresponding to the items in }
{ -- a coroner's report. The items are separated by colons(:).}
{ -- The program prints a summary report of the coroner's data. }

const
Space=' ';

type
HeaderStr = string[17];

var
ReportFile : Text;
TextLine : string;

procedure SkipLines(NumLines : Integer);
var

I: Integer;
begin

for I := I to NumLines do
WriteLn(ReportFile)

end;

Figure 12.2 continued

procedure ProcessNextltem ({using)
Item Width : Integer);

var
DataString: string[40];
I: Integer;

begin
ReadLn(DataString);
Write(ReportFile, DataString);
for I:= I to (ItemWidth - Length(DataString)) do

Write(ReportFile, Space)
end;

procedure ProcessField ({using)
Header: HeaderStr);

var
I : Integer;

begin
for I := I to 5 do

Write(ReportFile, Space);
Write(ReportFile, Header);
Write(Header ,': ');
for I := I to (17 - Length(Header)) do

Write(ReportFile, Space);
Write(ReportFile, ':');
ProcessNextltem(40);
WriteLn(ReportFile)

end;

procedure PrintTitle;
begin

WriteLn(ReportFile,' CORONER"S REPORT);
WriteLn(ReportFile,' ---------- ------');

end;

procedure PrintGenerallnfo;
begin

Write('CORONER: ');
Write(ReportFile, 'CORONER:');
ProcessNextltem(20);
Write('SUBJECT"S NAME: ');
Write(ReportFile,' SUBJECT'S NAME: ');
ProcessNextltem(20);
WriteLn(ReportFile);
Write('STATED AGE:');
Write(ReportFile,' STATED AGE:');
ProcessNextltem(20);
WriteLn(ReportFile)

end;

The Coroner's Report 271

272 Prelude to Files

Figure 12.2 continued

procedure PrintBasicData;
begin

WriteLn(ReportFile, 'BASIC DATA');
WriteLn(ReportFile, ·----- ----');
SkipLines(l);
ProcessField('HEIGHT IN INCHES');
ProcessField('HAIR COLOUR');
ProcessField('EYE COLOUR');
ProcessField('SEX')

end;
procedure PrintToxicologyData;
begin

WriteLn(ReportFile, 'TOXICOLOGY DATA:');
WriteLn(ReportFile, '---------- ----');
SkipLines(l);
ProcessField('ALCOHOL TEST');
ProcessField('SALICYLA TES');
ProcessField('BILE MORPHINE');
ProcessField('GASTRIC CONTENT')

end;
procedure PrintAnatomicData;
begin

WriteLn(ReportFile, 'ANATOMIC DATA');
WriteLn(ReportFile, '--------- ----');
SkipLines(l);
ProcessField('BRUISES');
ProcessField('LACERA TIONS');
ProcessField('LESIONS');
ProcessField('HAEMORRHAGES');
ProcessField('FRACTURES')

end;

Figure 12.2 continued

procedure PrintRemarks;
var

I: Integer;
NextChar : Char;

begin
WriteLn(ReportFile, 'GENERAL REMARKS');
WriteLn(ReportFile, '-------- --------');
SkipLines(l);
Write('GENERAL REMARKS:');
Read(NextChar);
repeat

Write(ReportFile,NextChar);
Read(NextChar)

until NextChar = '/';
WriteLn(ReportFile)

end;
begin (-- Main Algorithm}

Open(ReportFile, 'CORONER"S REPORT ');
SkipLines(7);
PrintTitle;
SkipLines(2);
PrintGenerallnfo;
SkipLines(2);
PrintBasicData;
SkipLines(2);
PrintToxicologyData;
SkipLines(2);
PrintAnatomicData;
SkipLines(2);
PrintRemarks;
Close(Output);
Rewrite(Output, 'PRINTER:');
Reset(ReportFile);
while not EOF(ReportFile) do

begin

end.

ReadLn(ReportFile, T extLine);
WriteLn(TextLine)

end;

The Coroner's Report 273

Chapter 12

We have, been treating the
reading of data and printing of results quite casually up to this point; but,
as we are well aware, these matters are essential components of any
computer program.

The initial concern in reading data should be that the data are there
and in the correct form; otherwise the program will stop and the
computer will issue some strange sort of cease and desist order. What is
needed when actually using the computer is to second-guess it and check
for possible errors in input. For simplicity's sake, we've been loose about
this point in the text; but in programs to be used routinely, you should be
very careful to check for input mistakes.

As for output, your major concern should be its presentation.
Anyone using the program should be able to understand the results
easily. Granted, producing quality output can be a tedious task, but your
efforts will be amply rewarded even if you are the only person who will
use the program.

In Pascal, the basic how-to's of carrying this out are actually quite
simple, though sometimes inconveni¢nt.

There are two basic procedures that can accomplish most of what is
needed for reading and writing data. These are the procedures Read and
Write, along with their variants ReadLn and WriteLn, as described in
Table 12.3. Unless other instructions are given, these procedures operate
on the standard input file named Input and the standard output file
named Output.

275

276 12 Input and Output

Table 12.3 • Basic Procedures for Reading and Writing Data

Read (v)

ReadLn

Read(v1, ... , vn)

ReadLn(v1, ... , vn)

Write(e)

WriteLn

Write(e1, ... , en)

WriteLn(e1, ... , en)

Page

Reads the next value from the input file and assigns
the value to the variable v. The variable v must be of
type Integer, Real, or Char. For integers and reals,
leading spaces and line boundaries are skipped; for
characters, a line boundary is treated as a blank
space.

Causes a skip to the beginning of the next line, that is
skips to the character after the next end of line
marker.

Same as n individual calls to Read.

Same as n individual called to Read followed by the
call ReadLn.

Prints the value of the expression e on the output
file. The value must be an integer number, real
number, Boolean, character, or character string. If
the printed value is too large to fit on the current
output line, the value is printed on the following line.

Causes printing to continue on the following line, that
is puts an end-of-line marker on the current line.

Same as n individual calls to Write.

Same as n individual called to Write followed by the
call WriteLn.

Causes a skip to the beginning of the next page.

Note: v denotes a variable, e an expression.

12.1 • Input For reading data, the variables that will hold the data are specified
Furthermore, the type of each input value must be compatible with the
type of the corresponding variable, just as usual.

For example, if you are reading some value into an integer variable
named NumWeapons, the value must be an integer. Thus, if you input

6

the Read statement will assign 6 to NumWeapons. On the other hand, if
you input the real value

14.33

the computer will take the value as 14, and use .33 for the next value. Even

worse, if you input

QIA%

then the computer will probably complain, as the whole thing makes no
sense. Notice that if you input the value

-6

into NumWeapons, the computer will not complain, even though from a
conceptual viewpoint -6 weapons just doesn't make any sense.

When reading numeric data, leading blanks and line boundaries are
ignored. Thus, if you are reading the values of two integer variables, say
NumWeapons and NumSuspects, then you may input the data as

6 8

or

6 8

or even

6
8

As far as the computer is concerned, these cases are the same and
they're handled in the same manner.

When reading string-type values, the computer will read every
character (including spaces) up to the first end-of-line character. If more
characters than the declared string width appear before the end-of-line
mark is encountered, an error is reported.

The conventions for input of data are summarized in Table 12.4.

Output 277

The printing of data is just like the reading of data, with one important 12.2 • Output
exception: you get to tell the computer how to display the data If you
don't tell it how to display the data, the computer has its own ideas about
how the data should appear and that may not be what you had in
mind.

The conventions for displaying data are given in Table 12.5. Notice
here that if the space provided for a value is larger than needed, the value
is justified to the right: that is, the value is preceded by blanks so as to fill
the given field, or the area set aside for it.

Some examples
Recall our program for counting change, given in the previous chapters.
This program contains the procedure call

278 12 Input and Output

Table 12.4 • Input Conventions

Integer-Type Values
Blanks preceding the first digit or sign are skipped. End-of-line characters
are considered blanks. Reading continues until a noninteger character is
encountered.

Real-Type Values
Blanks preceding the first digit or sign are skipped. End-of-line characters
are considered blanks. Reading continues until a nonreal character is
encountered. One decimal point will be read, but reading will stop if a
second is encountered.

Character-Type Values
One character, even if it is a space, is read. An end-of-line character is
considered a space.

String-Type Value
Reads until an end-of-line character is encountered. The end-of-line
character is noted but not read; it remains in the file buffer. If a second
string call is given, the end-of-line character will be immediately
encountered. To avoid this situation, use ReadLn.

Enumerated-Type Vallues
Blanks preceding the first letter are skipped. End-of-line characters are
considered blanks. Reading continues as long as the characters read are
consistent with an enumerated identifier.

Table 12.5 • Output Conventions

Width of Values
The width of each value in a layout is controlled by giving arguments of
the form e:w where e is the expression whose value is to be printed, and
w specifies the minimum width of the field on the printed page.

Integer-Type and Real-Type Values
1. If e can be written with w or fewer characters, the value is preceded

with an appropriate number of blank spaces (that is, right justified).
2. Otherwise, the number of characters needed to write the full value is

used.
3. If no field width is given for integer-type value, it is assumed to be 8.

Table 12.5 continued

4. If no field width is given for real-type values, the number is printed
with a scale factor (for example 2.IOOOE-5) with a field width of 10.

Enumerated-Type Values
1. If the value can be written with w or fewer characters, the value is

preceded with an appropriate number of blanks.
2. Otherwise the entire string is written.

Character-Type Values
1. The character is preceded by (w-l) blank spaces.
2. If no field width is given, a default width of 1 is used; thus just the

character is printed.

String-Type Values
1. If the string has w or fewer characters, the value is preceded by an

appropriate number of blank spaces.
2. Otherwise, only the first w characters are printed.
3. If no field width is given, a default width equal to the length of the

string is used.

Decimal Point Representation of Real-Type Values
1. For real-type values, an additional field width parameter can be

provided in the form e:w:d. The presence of this parameter causes
the real value to be printed in decimal form (for example 22.3 or
0.0002).

2. The parameter causes the value to be printed with d digits to the
right of the decimal point.

Write('CHANGE IS ', Dollars : 2. ' DOLLARS AND ', Cents : 2, ' CENTS.')

This statement will print somethiqg like

CHANGE IS 3 DOLLARS AND 41 CENTS.

If we omitted the field widths for Dollars and Cents and wrote

Write('CHANGE IS ', Dollars, ' DOLLARS AND ', Cents, ' CENTS.')

the statement would print

CHANGE IS 3 DOLLARS AND 41 CENTS.

The output doesn't look quite right, since the length of each of the four
output fields is fixed by the computer. In particular, for strings, the
number of characters printed is exactly the number of characters in the
string; but for integers, a default of 8 is assumed.

Output 279

280 12 Input and Output

12.3 • File Types

Now for the step up. Suppose we wish to get fancy and print some­
thing like

CHANGE IS $3.41

A good and seemingly logical approach would be something like

Write('CHANGE IS$', Dollars : 2, '.', Cents: 2)

This will result in printing the following:

CHANGE IS $ 3.41

Notice here that a space appears after the dollar sign. This is because the
printed number of dollars only needs to occupy one digit. If the number of
dollars were 13, we would get

CHANGE IS $13.41

and if the number of dollars were 113, we would then get

CHANGE IS $113.41

Notice in this last case that, although the field width of Dollars is given as
2, an additional digit is used, since the number 113 requires more than
two digits to be printed. This is typical of the kind of detail that you need
to be concerned about when you want to produce readable output.

But wait a minute. Suppose the change were $3.05, that is, the value
of Dollars would be 3 and Cents would be 5. The above Write statement
would give

CHANGE IS $ 3. 5

This odd result occurs because the number of cents is printed as 5 not 05.
The remedy here is an explicit test for this case, as in

if Cents < 10 then
Write('CHANGE IS$', Dollars: l, '.', '.O', Cents: 1)

else
Write('CHANGE IS$', Dollars: I,'.', Cents: 2)

Here the 1 in

Dollars: I

will even eliminate the space after the dollar sign.

The data on the standard input and output files Input and Output are
recorded as a sequence of characters. Of course, when you read in an
integer it is expected that the characters will form a meaningful number,

but the basic Read and Write operations are performed over characters.
This sequence of characters is said to form a text file.

In Pascal, a file of data can be explicitly declared in a program. For
example, we may have

type
SuspectName = string(20]
SuspectData = ftle of SuspectName;

var
SuspectFile : SuspectData;

Here the type SuspectData represents a file of the names of possible
suspects.

All files have certain properties. For one, a file may have an arbitrary
number of items. In the above case, SuspectFile may contain 2, 10, or
even 500 suspect names. Second, the last item in the file is always
followed by a special marker called an "end-of-file." Obviously this
marker is put there so your program can know when it has read all of the
data

Third, recall the files Input and Output. These are, in fact, the names
of two predefined files whose declarations would be

var
Input, Output : Text;

where Text is a predefined type given as

type Text= ftle of Char;

That is, Input and Output are the names of text files through which your
program can read and transmit information.

Now let us revisit the basic procedures Read and Write. When we
use these procedures, input and output take place on a file. The relevant
file may be explicitly named in the procedure call by giving the name of
the file as the first argument. For example, if we have

var
YardFile, MasterFile: SuspectData;
NewName : SuspectName;

we may have the procedure call

Read(YardFile, NewName)

which reads a suspect name from Y ardFile and assigns it to NewName,
or

Write(MasterFile, NewName)

which appends the value assigned to NewName to the file MasterFile.
Notice that for files other than Input or Output, arbitrary types of data
may be stored and read in.

File Types 281

282 12 Input and Output

And now for the final blessing. If it happens, as has been the case
throughout this text, that no file name is given with a Read or Write
statement, the standard files Input and Output are assumed. So when you
say,

Read(NumWeapons);
Write(NumWeapons + 1)

this really means

Read(lnput, NumWeapons);
Write(Output, NumWeapons + 1)

A file can have an unspecified number of items. However, at some
point you will have finished reading all of the data and there will be
nothing else left in the file. You can test for this condition with the
Boolean-valued end-of-file function EOF. You can apply this function to
any file, for example, you may write,

if EOF(SuspectFile) then
-what to do if no more suspects on file

else
-what to do otherwise

The function EOF will return the value True if there are no more data
items in the file, and False otherwise. As indicated by our example, this
function is useful whenever you want to test if you are at the end of your
data Just as for the basic procedure Read, you may omit the name of a file
to be tested. In this case, the standard text file Input will be used, as
in

if EOF then
-what to do if no more Input data

Thus the function call EOF is the same as EOF(Input).
Similarly, when you are reading data from Input, you may test for an

end-of-line by saying

if EOLn(lnput) then
-what to do if at the end of a line

or equivalently

if EOLn then
-what to do if at the end of a line

Watch out, though, for one tiny detail: the ends of lines are considered as
blanks, so normally when you're reading data you can pass right over
them. If you need to be careful about what's on a line, you must call
EOLn.

The function EOLn raises another point for consideration. The
function EOLn may be applied to any file declared with type

file of Char

of with the predefined type

text

Every once in a while you may want to "peek" at a file, for example,
to see if some item you are looking for is there before you actually read it.
To do this you simply place the symbol A immediately after the name of
the input file. For example, you may wish to say something like

if SuspectFile A = Known Criminal then
-what to do if the next suspect is a known criminal

You must be a bit careful here. Assuming that the value of KnownCriminal
is the 20-character name of some suspect, the Boolean test compares the
next name in the SuspectFile with the value of KnownCriminal.
Importantly, the name given on the SuspectFile is not read in during this
comparison but is used only for the comparison.

Before an external file can be used in any way, it must be opened.
There are three procedures which can be used for opening files.

Reset(NewData)

opens the NewData as a read-only file. The information in the file can be
examined and even used for comparison and assignment, but it cannot
be changed, and new information cannot be added.

Rewrite(ResultFile)

erases ResultFile and opens it as a write-only file. New data can then be
stored in it. With both the Reset and Rewrite procedures a title, or file
name, is sometimes used, as in

Reset(NewData, 'CORONER"S REPORT)

With Reset the title is used if there is already an existing external file with
that name, and if the file has not already been opened. With Rewrite using
a title creates a new external file with that name. If a file with that name
already exists, it is deleted and rewritten.

There certainly are times when you need to both read from and
write to a file. The procedure

Open(DataFile, 'Census Record')

opens Datafile as a read/write file with the title 'Census Record'. This file
accepts both Read and Write procedures.

To close any file simply use the Close procedure, as in

Close(DataFile)

At the bottom of Pascal's facility for input and output lies a pleasant
conceptual model. Consider the declarations

File Types 283

284 12 Input and Output

type
Item = definition of type Item;
Datafile : file of Item;

var
F : Datafile;
Nextltem: Item;

We can picture a file as a sequence of items, the length of which is initially
unspecified. At a given time one, and only one, of the items is accessible to
a program; and this item is denoted by F-. F" is the buffer variable for the
file F. Within a program, F- can be used just as any other variable.

When a file is reset, the first item is assigned to the buffer variable.
To assign the value of this item to Nextltem simply say,

Nextltem := F-

and to move the second item into the buffer say,

Get(F)

When you say,

Read(F, Nextltem) I Read one item from the file F and assign the value
to Nextltem. I

this is exactly the same as saying,

Nextltem := F";

Get(F)

I Read the item presently assigned to the buffer
variable of file F, assign the item to Nextltem.)

{ Replace the item presently assigned to the buffer
variable with the next item in the file. I

When a file has been opened using Rewrite, the file buffer is empty
and EOF is true. To assign a value to F- simply say something like

F- := Nextltem

and then add the item to the file by saying,

Put(F)

In a write-only file, when an item is moved from the buffer to the file, it
becomes the last item of the file and EOF becomes true.

Write(F, Nextltem) I Assign the item Nextltem to the end of file F. I
is exactly the same as saying,

F- := Nextltem;
Put(F)

I Assign Nextltem to the file buffer. I
I Add the item in the file buffer to the end of file

F. I
Since a file is a sequence of items, each component has a position in

the sequence. The items are numbered starting with zero. When a file has

been opened using the Open procedure, it is possible to request a
particular item by using

Seek(filename, item number)

To find the number of the current item, use

FilePos(filename)

The procedures for manipulating files are summarized in Table 12.6.

Table 12.6 • Procedures for Manipulating Files

FileName is the file-variable used during the execution of the program.

Title is the name under which the file is stored on the disk.

PosNumber is the sequential position of the item in the file. The first item
in the file is numbered zero.

Reset (FileName, Title')
Opens an existing file as a read-only file or rewinds an open file. If the file
was opened with Rewrite, it becomes read-only. Title is optional. It is used
only if there is an existing external file with the name Title and if the file
has not already been opened.

Rewrite (FileName, 'Title')
Creates a new write-only file or rewinds and erases an open file. If the file
was opened with Reset, it becomes write-only. Title is optional. If it is used
and there is no existing file with that name, a new external file with the
name Title is created and associated with FileName. If there is an existing
file with the name Title, it is deleted and a new one created.

Open (FileName, 'Title')
Creates a new read/write file with the name Title or opens the existing file
with the name Title.

Close (FileName)
Closes the file. The file must be reopened in order to refer to it again.

EOF (FileName)
Checks for end-of-file. Returns True if the current position is beyond the
last item. Otherwise returns False.

EOLn (FileName)
Applicable to text files only. Checks for end-of-line. Returns True if the
current position is the end of a line. Otherwise returns False.

File Types 285

286 12 Input and Output

12.4 O Practice

Table 12.6 continued

Get (FileName)
Assigns the next item in the file to the file buffer.

Put (FileName)
Writes the item in the file buffer to the current position of the file and
moves the current file position to the next file component.

Seek (FileName, PosNumber)
Causes the file position Number to become the current position. Assigns
the item in that position to the file buffer unless Number is greater than
the component number of the last item in the file. To use this procedure
the file must have been opened using Open.

FilePos (FileName)
Returns the component number of the current item.

The program in Fig. 12.3 is supposed to count the number of blanks and
nonblanks in a document. There are two errors; what are they?

•••
The Reset procedure can be used without a title only if the file has been
previously opened. In the program shown in Fig. 12.3 a title is required for
the document file, for instance,

Reset(Document,'Letter 308');

The Rewrite procedure, however, can be used without a title to open an
anonymous file associated with a file variable.

The other error is in the declaration of the variable Document. The
difference between a file of Char and Text is that a text file is organized
into lines. In this program, Text must be used.

In preparing reports or correspondence with a pleasing appearance,
it is often nice to center a heading. Consider the program in Fig. 12.4,
which centers a single line of text.

If the text for this program is to be read from a file, what statement
must be modified?

•••

program CountBlanks;

const
Blank='';

var
NumBlanks, NumNonBlanks : Integer;
Document : file of Char;
NextChar : Char;

begin
Reset(Document);
NumBlanks :=O;
NumNonBlanks := O;
while not EOF(Document) do

begin
while not EOLn(Document) do

begin
Read(NextChar);
if NextChar = Blank then

NumBlanks := NumBlanks + 1
else

NumNonBlanks = NumNonBlanks + 1
end;

ReadLn(Document)
end;

WriteLn('NUMBER OF BLANKS IS:', NumBlanks);
WriteLn('NUMBER OF NON BLANKS IS:', NumNonBlanks);

end.

program CenterText;

const
ColumnsPerPage = 72;
Blank='';

var
TextLine : string;
LeadingSpaces : Integer;
I : Integer;

begin
ReadLn(T extLine);
LeadingSpaces := (72 - Length(TextLine)) div 2;
for I := 1 to LeadingSpaces do

Write(Blank);
WriteLn(T extLine)

end.

Practice-Files 287

Figure 12.3 • Program
CountBlanks

Figure 12.4 • Program
CenterText

288 12 Input and Output

12.5 0

If no file variable is listed in a Read or Write statement, the standard files
Input and Output are assumed. Whenever data is to be read from some
other file, the file identifier must be included as the first identifier within
the parentheses following the Read, as in

ReadLn(CorrespondenceFile, TextLine)

In the statement assigning a value to LeadingSpaces, div is used
rather than a slash. What does this accomplish?

•••
When an odd number is divided by 2, a fraction results. The line of text
may very well contain an odd number of characters. In such a case,
TextLine subtracted from 72 leaves an odd number of blanks. Therefore,
the counter I is declared as an integer, and div is used to keep the division
result in the integer category. What happens, effectively, is that the half
space is moved to the far end of the text.

Actually, the program CenterText would be much more useful as a
procedure. What changes would be required to use it as a procedure
instead of a program?

•••
The variable TextLine would be given by the original program and must
be listed as a parameter of the procedure instead of as a local variable.
Probably, the constants would be global variables, since blanks and the
number of columns per page would likely be used throughout the
program. The ReadLn statement would not be needed in the procedure,
since the text line would be given. The following short procedure would
suffice.

procedure CenterText (TextLine : string);
var

LeadingSpaces, I : Integer;
begin

LeadingSpaces := (72 - Length(TextLine)) div 2;
for I := 1 to LeadingSpaces do

Write(Blank);
Write(TextLine)

end;

12.1 Printing a Calendar
January 1 was a Tuesday. The objective of this exercise is to write a

program that reads in the number of a month from 1 to 12 and prints as
output a calendar for the month.

For example, the calendar for a January might look like

JANUARY
....................................

s M T w T F s
--------------- ---- -------

1 2 3 4 5
6 7 8 9 10 11 12

13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

12.2 Plotting Data
In many computer applications we need to plot data. In displaying the
data we need to plot the horizontal and vertical axes, as well as provide
labels ot titles indicating what the values on the horizontal and vertical
axes mean.

Write a program to display the following:

10 .

8.

6.
PICKLES

4.

2 .

0
3.0 6.0 9.0 12.0

Note: You may wish to plot something as well.

12.3 Printing a Report
The report shown below is typical of the thousands generated every day
by computer. Unfortunately, most computer-generated reports are not
as simple (perhaps they should be) and are often quite unreadable. This
is a problem originating from humans, not machines.

Putting this aside, write a program to generate the report exactly as
showri. No input is needed, just print the values shown.

Item Code: 1234
Item : Easy Applicator
Unit Price : $4.36

Programming Exercises 289

290 12 Input and Output

Quantity Price

1 $ 4.36
2 $ 8.72
3 $13.08
4 $17.44
5 $21.80

6 $26.16
7 $30.52
8 $34.88
9 $39.24

10 $43.60

11 $47.96
12 $52.32
13 $56.68
14 $61.04
15 $65.40

16 $69.76
17 $74.12
18 $78.48
19 $82.84
20 $87.20

12.4 Pascal's Triangle
Have you ever heard of Pascal's triangle? The first six lines look like
this:

1
1 2 1

1 3 3 1
1 4 6 4 1

5 10 10 5

Notice that each of the numbers (for example, 4 in the fifth row) is the
sum of the two numbers above it (1 and 3). Write a program to read in a
number N and print N rows of Pascal's Triangle. The triangle must be
centered of course, and you may assume that N is less than 15.

Note: This exercise is a bit trickier than it first appears. If you want
to try something even ·more tricky, try printing the triangle on its
side.

12.5 Putting Line Numbers on Programs
It is common practice on many computers to print programs with line

numbers, for example,

00010 program CountBianks(Document, Output);
00020 const
00030 Blank='';
00040 var
00050 NumBlanks, NumNonBlanks : Integer
00060 Document : File of Char;
00070 NextChar : Char;
00080 begin
00090 Reset(Document);
00100 NumBlan~s := O;

and so forth. Normally, successive line numbers are incremented by 10.
The line numbers allow for easy reference to a statement, and are
especially useful for large programs.

Write a program to read in another program and print it with line
numbers. Test your program using one of your favorite programs as
input. What do you think of incrementing by 10 versus incrementing
by 1?

Programming Exercises 291

r T is really very good of you to come along, Watson," said
Sherlock Holmes, as he rummaged through a litter of
newspapers. We had the carriage to ourselves and were
sitting in the two corner seats opposite each other as our

train moved rapidly along to Reading. We were responding to a summons
from Lestrade which arrived as we were breakfasting.

"It does make a considerable difference, having someone with me
on whom I can thoroughly rely. I am sure the aid we will find in Reading
will be so terribly biased as to render it worthless. You are familiar with
the particulars of this ghastly murder?"

"Not at all," I replied. "My practice has kept me quite busy and I have
not seen a newspaper in days."

"The press have not had very full accounts," he replied. "But it has
been reported that our unfortunate victim was something of a recluse
and a miser, with over three thousand pounds to his name at the time of
his death. It was also widely known that he had numerous acquaintances
in the London blackmail industry, hence the interest of Scotland Yard in
the affair. He was last seen walking away from the village of Eyford late
yesterday morning with a man who witnesses say had a bald patch
crowning his matted hair. While there is no strong evidence that this
stranger was the murderer, the police are left with no other suspects."

It was fairly late in the afternoon when we arrived to find Inspector
Lestrade of Scotland Yard waiting for us upon the platform.

"I have ordered a carriage," said Lestrade, as we disembarked. "I
know your energetic nature and that you would not be happy until you
had been on the scene of the crime.

"We certainly appreciate your help, Mr. Holmes," added the
Inspector. "But let me forewarn you that I myself and my best men could
find no clue out here. As you will soon see, there is nothing but a jumble of
footprints where the final confrontation apparently took place."

293

294 Prelude to R~-::ords

"Judge not too hastily, Lestrade," Holmes replied nonchalantly. " If I
had a shilling for every clue your best men have overlooked in the last ten
years, I would retire at once to the country and never want for the rest of
my days. Surely you know, Lestrade, that there is no branch of detective
science so important and so much neglected as the art of tracing
footsteps."

A short while later we arrived at the scene. Holmes sprang down
from our carriage, his face flushed and dark; once on a hot scent like this,
he was transformed.

Like a foxhound, with gleaming eyes and straining muscles, Holmes
was down on his knees, and at one point lay flat on the ground. For a long
time he remained there, carefully surveying the earth with his pocket
lens. Eventually, he scooped something up into a small envelope, which
he returned to his pocket.

"Are there any points to which you would draw my attention?"
asked Lestrade, as Holmes returned to us.

"Beyond the obvious facts that there were three men present here
at the time of the incident, that the man who led our victim down this path
wears a size nine boot and is in good standing with the London financial
community, and that the killer himself is a highly underpaid labourer and
former officer in the Royal Marine Light Infantry, I can deduce nothing
else. After all, Lestrade, one cannot make bricks without clay."

" For a long time he remained there."

The Adventure of the Gold Chip 295

The Inspector opened his mouth to speak, but Holmes quickly
added, "And do take the trouble of extinguishing your pipe before
examining evidence. That left foot of yours with its inward twist and the
ash from your Arcadia mixture are all over the place. A mole could trace
your movements. Oh, how much simpler it would be if I could only get a
look at things before you and your men come in here like a herd of
buffalos, trampling over everything!"

Convinced that there was no further need for his services, Holmes
called for the carriage, and we were soon heading for Baker Street again.
In the privacy of our carriage he shed some light on our abrupt
departure.

"As a rule, when I have observed some slight indication of the
course of events, I am able to guide myself by the thousands of other
similar cases which occur to my memory," he began. "As you are aware,
over the course of my career I have amassed data on well over a
thousand criminals. In recent years I have stored these data in files
suitable for the memory of the Analytical Engine. Furthermore, I have
designed a programme that will read the description of each criminal and
then print out the names of all those fitting a given description."

I have reproduced here a small section of my companion's curious
assortment of criminal data, which he showed me upon our return to
Baker Street.

Name
Height
Hair colour
Eye colour
Hat size
Shoe size
Teeth marks:

Cigar type

Facial scar
Hand scar
Eye patch
Bald patch
Leg limp
Tattoo

The name of a person
Height in inches, ranging from 48 to 84
One of the colours brown, black, red, or grey
One of the colours brown, blue, or hazel
A number from 4 to IO
A number from 5 to 15
One of the characteristics normal, crooked, gold­
filled, partially missing, or (totally) missing
One of the cigar types Lunkah, Trichinopoly,
Espanada, Heritage, Londoner, MacDuffy, Top Hat,
or West Country
Yes or no
Yes or no
Yes or no
Yes or no
Yes or no
Yes or no

"I must confess Watson, as I look over these possibilities, that this
case does have its points of interest. We know that the suspect has a
slight bald patch and wears a size-nine boot. The most singular clue in
this mystery, however, is this gold chip I found in amongst the gravel." He
showed me the object. "It is a gold dental filling and surely narrows down
our list of candidates. Just as you can tell an old master by the sweep of
his brush, I can tell a Moriarty when I see one."

296 Prelude to Records

"A Moriarty?" I queried.
"The power behind half that is evil and nearly all that is undetected

in this great city, Watson. I have been at great pains to work out all my
programmes for the Analytical Engine before he becomes aware of its
utility, for Moriarty is a mathematical mind of the highest order; and I
shudder to think what he could carry out with the Engine at his
command."

"What are the ingredients of this particular programme?" I asked,
after a considerable pause.

"The most important feature of this programme is, aptly enough,
called a record," replied Holmes." A record is a collection of data on some
item of interest. In this instance, of course, the record is a collection of
facts about a known criminal. Each record consists of one or more
components, with each component bearing a name and a value. Here is a
sample of my record structures," he continued, handing me a sheet from
his portfolio.

What he showed me is duplicated here:

Name
Height
Hair colour
Eye colour
Hat size
Shoe size
Teeth marks:

a 30-character string
0 if unknown; 48 to 84 if known
0 if unknown; I if brown; 2 if black; 3 if red; 4 if grey
0 if unknown; I if brown; 2 if blue; 3 if hazel
0 if unknown; 4 to I 0 if known
0 if unknown; 5 to 15 if known
0 if unknown; I if normal; 2 if crooked; 3 if gold-filled;
4 if partial; 5 if missing

Cigar type : 0 if unknown; I if Lunkah; 2 if Trichinopoly; 3 if Espanada;
4 if Heritage; 5 if Londoner; 6 if MacDuffy; 7 if Top Hat; 8 if
West Country

Facial scar 0 if unknown; 1 if yes; 2 if no
Hand scar 0 if unknown; 1 if yes; 2 if no
Eye patch 0 if unknown; 1 if yes; 2 if no
Bald patch 0 if unknown; 1 if yes; 2 if no
Leg limp 0 if unknown; I if yes; 2 if no
Tattoo 0 if unknown; I if yes; 2 if no

"For simplicity, such data as colour values and shoe sizes are
entered as integers," said Holmes, jotting illustrations of his ideas on a
scrap of paper, as follows:

Hair colour: 1 brown 2 black 3 red 4 grey

Moreover, truth values are also stored as integer numbers, as follows:

1 for yes, 2 for no

In all cases, if a value is unknown, its place is held by the number O."
"How can you possibly use these records to find the name of a

suspect?" I asked, for I still had no idea how he could use such data to
advantage.

The Adventure of the Gold Chip 297

"Easily," remarked Holmes. "In Pascal, variables that stand for
records can be declared as such, just like variables that stand for arrays
or integers. Here is an example:

var
Criminal : record

Name string[30];
ShoeSize: 0 .. 15

end;

"An even better method of describing this information would be as
follows:

type
NameString = string[30];
DataRecord =

record
Name NameString;
ShoeSize: 0 .. 15

end;
var

Criminal : DataRecord;

"Moreover," continued Holmes," one can refer to a component of a
record by specifying the name of the record variable and the name of the
component, as follows:

Criminal.ShoeSize

This reference can be used in Pascal statements like any other variable,
such as

or

if Criminal.ShoeSize = 9 then
- print criminal's name

Criminal.ShoeSize := 9

"What our programme will do, Watson, is read in the characteristics
of a suspect, such as a bald patch or a size nine boot, and then print out
the names of all those criminals in its files that fit the description. Let us
give it a try, shall we? I can tell you well in advance, however, whose
signature we shall find on this latest criminal masterpiece."

Holmes then carefully entered the data according to the programme,
which I have duplicated here as Fig. 13.1, paying special attention to enter
the codes for a size nine boot, gold-filled teeth, and the presence of a bald
patch. We watched for several minutes before the names of three
criminals within the file had been printed.

298 Prelude to Records

Figure 13.1 • Program
Search

"Moriarty," Holmes whispered. "These other two, Watson, are
certainly capable of carrying out such a crime. However, I happen to
know one of them is in Newgate; and if I am not mistaken, this other is
awaiting trial here in London."

"Surely you haven't enough evidence to convict Moriarty," I
protested.

"Oh, hardly, Watson," replied Holmes. "But count on it, this crime
fits into something much larger which we fail to see presently, for there
are certain subtleties that even our Engine cannot detect. True, it has
removed a lot of the painstaking drudgery from our work; but it is up to us
to find where and how this piece fits into the larger scheme of things.

"For now, Watson, there is a cold partridge on the sideboard and a
bottle of Montrachet here. Let us renew our energies before we make
fresh calls upon them."

program Search;
I -- This program reads in values corresponding to data saved I
I -- in a file of records kept on known criminals. I
I -- For each item, a prompt indicates which item is to be input. I
I -- A value of zero indicates that the item is unknown. I
I -- The program outputs the name of each criminal for which I
I -- the input values match those on the criminal's record. I

const
Unknown= O;

type
YesNoCode = 0 .. 2;
NameString = string[30];
DataRecord = record

Name : NameString;
Height : 0 .. 84;
HairColour : 0 .. 4;
Eye Colour : 0 .. 3;
HatSize : 0 . .1 O;
ShoeSize : 0 . .15;
TeethMarks : 0 .. 5;
CigarType : 0 .. 8;
Facia!Scar: YesNoCode;
HandScar : YesNoCode;
EyePatch : YesNoCode;
BaldPatch : YesNoCode;
LegLimp : YesNoCode;
Tattoo: YesNoCode

end;

Figure 13.1 continued

var
Suspect, Criminal : DataRecord;
MasterFile : file of DataRecord;

procedure GetSuspectlnfo (var Suspect: DataRecord);
begin

WriteLn('IN ENTERING DATA, USE 0 IF ITEM IS UNKNOWN.');
WriteLn('ENTER HEIGHT IN INCHES:');
ReadLn(Suspect.Height);
WriteLn('ENTER HAIR COLOUR CODE:');
WriteLn('l BROWN, 2 BLACK, 3 RED, 4 GREY');
ReadLn(Suspect.HairColour);
WriteLn('ENTER EYE COLOUR CODE:');
WriteLn('I BROWN, 2 BLUE 3 HAZEL');
ReadLn(Suspect.EyeColour);
WriteLn('ENTER HAT SIZE:');
ReadLn(Suspect.HatSize);
WriteLn('ENTER SHOE SIZE:');
ReadLn(Suspect.ShoeSize);
WriteLn('ENTER TEETH MARKS CODE:');
WriteLn('l NORMAL, 2 CROOKED, 3 GOLD FILLED,');
WriteLn('4 PARTIAL, 5 MISSING');
ReadLn(Suspect. Teethmarks);
WriteLn('ENTER CIGAR TYPE CODE');
WriteLn('l LUNKAH, 2 TRICHINOPOLY, 3 ESPANADA,');
WriteLn('4 HERITAGE, 5 LONDONER, 6 MACDUFFY,');
WriteLn('7 TOP HAT, 8 WEST COUNTRY');
ReadLn(Suspect.CigarType);

The Adventure of the Gold Chip 299

WriteLn('NOW USE I FOR YES, 2 FOR NO, 0 FOR UNKNOWN:');
WriteLn('FACIAL SCAR? HAND SCAR? EYEPATCH?');
ReadLn(Suspect.FacialScar, Suspect.HandScar, Suspect.EyePatch);
WriteLn('BALD PATCH? LEG LIMP? TATTOO?');
ReadLn(Suspect.BaldPatch, Suspect.LegLimp, Suspect. Tattoo)
end;
function ItemMatch (Iteml, ltem2 : Integer): Boolean;
begin

if (Iteml = Unknown) or (Item2 = Unknown) or (lteml = Item2)
then

ItemMatch := True
else

ltemMatch := False
end;

300 Prelude to Records

Figure 13.1 continued

function Match ({between}
Suspect, Criminal : DataRecord) : Boolean;

begin
Match := False;
if ItemMatch(Suspect.Height, Criminal.Height) then
if ItemMatch(Suspect.HairColour, Criminal.HairColour) then
if ltemMatch(Suspect.EyeColour, Criminal.EyeColour) then
if ItemMatch(Suspect.HatSize, Criminal.HatSize) then
if ltemMatch(Suspect.ShoeSize, Criminal.ShoeSize) then
if ItemMatch(Suspect. TeethMarks, Criminal. TeethMarks) then
if ItemMatch(Suspect.CigarType, Criminal.CigarType) then
if ItemMatch(Suspect.Facia!Scar, Criminal FacialScar) then
if ItemMatch(Suspect.HandScar, Criminal.HandScar) then
if ItemMatch(Suspect.EyePatch, Criminal.EyePatch) then
if ItemMatch(Suspect.BaldPatch, Criminal.BaldPatch) then
if ItemMatch(Suspect.LegLimp, Criminal.LegLimp) then
if ltemMatch(Suspect Tattoo, Criminal. Tattoo) then

Match := True
end;

begin { -- Main Algorithm l
GetSuspectlnfo(Suspect);
Reset(MasterFile, 'Criminal Data');

while not EOF(MasterFile) do
begin

Read(MasterFile, Criminal);
if Match(Suspect, Criminal) then

WriteLn('POSSIBLE SUSPECT', Criminal.Name)
end;

WriteLn('ALL ENTRIES HAVE BEEN CHECKED');

end.

Chapter 13

Certainly one of the most
useful features of Pascal is its capability for defining record structures. A
record is a collection of information pertaining to some real-world entity.
It can contain various types of information including other records.

Consider the following declarations:

var
Suspect : record

Height: 0 .. 84;
HatSize : 0 . .10;
ShoeSize : 0 . .15

end;

Cigar : record
Brand : (Trichonopoly, Lunkah, OldWood, Londoner);
Texture : (Flaky, Caked, Granular, Fluffy);
Nicotine: (Plusl, Plus2, Plus3);
Particles : Boolean;
Data : record

UnitVolume : Real;
UnitWeight: Real;
Density : Real

end
end;

The first declaration defines a variable named Suspect, whose type is a
record. The record has three components, Height, HatSize, and ShoeSize.
Each component is a subrange of integers.

13.1 • Record
Types

301

302 13 Record Structures

The components of a record can be of any type, even other records.
This is shown in the second declaration, which defines a record variable
named Cigar. Here the components Brand, Texture, Nicotine, and
Particles have values that are from enumerated types. The component
Data is itself a record structure defining the physical characteristics of
the cigar's ash. These declarations demonstrate two characteristics of
record structures.

• Record types are composed of specified lists of fields, each of
which has a declared identifier and type.

• The fields can be of differing types, including other record
types.

Record structures can be defined in a type declaration, just as for
any other type. Thus we may rewrite the definitions of cigar properties as
follows:

type
CigarBrand = (Trichonopoly, Lunkah, OldWood, Londoner);
AshTexture = (Flaky, Caked, Granular, Fluffy);
TestResult = (Plusl, Plus2, Plus3);

DensityData = record
UnitVolume : Real;
UnitWeight : Real;
Density : Real

end;

Cigarlnfo = record
Brand : CigarBrand;
Texture: AshTexture;
Nicotine: TestResult;
Particles : Boolean;
Data : DensityData;

end;

and then simply say

var
Cigar : Cigarlnfo;

to declare the variable Cigar. We strongly recommend the second
alternative. The habit of declaring types and then using their identifiers in
variable declarations will stand you in good stead as your programming
skills increase and the challenges become greater.

Just as for components of arrays, we can refer to the components of
a record. For example, we may say,

Suspect.Height; = 71 ;
Suspect.HatSize: = 7;
Suspect.ShoeSize: = 9;

to establish values for each of the properties of Suspect. The general rule
here is that if

R is the name of a record variable
C is the name of one of its components,

then

RC is the name of the record component.

Notice in the cigar example that

Cigar.Data

is also a record. Thus it makes sense to say

Cigar.Data.Density

to refer to the density of the cigar ash. For example, we may have

Cigar.Data.Density := Cigar.Data. UnitWeight/ Cigar.Data. UnitVolume

Again, just what you would expect.
Pascal provides a shortcut here, a with statement, such as

with Cigar.Data do
Density := UnitWeight/UnitVolume

This accomplishes the same result as the longer statement. The names
Density, UnitWeight, and UnitVolume are associated with the record
Cigar.Data, and thus the operation is performed on these fields. By using a
compound statement following the do, several operations can be
performed on components of Cigar.Data within the single with
statement.

In Pascal, one record can be assigned to another provided the types
are compatible. Thus, with

MyCigar, YourCigar : Cigarlnfo;

you can say:

MyCigar := YourCigar { ok }

But there is one little anomaly to watch out for here. You cannot say
something like:

if MyCigar = YourCigar then { trouble}

To get the same effect, you must write

if (MyCigar.Brand = YourCigar.Brand) then
if (MyCigar.Texture = YourCigar.Texture) then
if (MyCigar.Nicotine = YourCigar.Nicotine) then
if (MyCigar.Particles = YourCigar.Particles) then

Record Types 303

304 13 Record Structures

if (MyCigar.UnitVolume = YourCigar.UnitVolume) then
if (MyCigar.UnitWeight = YourCigar.UnitWeight) then
if (MyCigar.Data.Density = YourCigar.Data.Density) then
-what to do if all components match

which certainly is tedious. In practice, it will probably not be necessary to
compare all the components. For example, in the preceding case

if (MyCigar.Brand = YourCigar.Brand) tlhen

may suffice.
The record fields that we have discussed so far have all been fixed,

that is, each of the fields is accessible whenever that record is used.
These fields are contained in the fixed-part of the record type. There is
also available a variant part.

Consider our suspect information. Suppose that we want to add to
our list of data information regarding employment. Specifically we want
to know whether or not the suspect is presently employed; if so, the name
and address of the employer; if not, the name of the last employer and the
last date of employment. The following declaration shows this option.

line

type
Suspectlnfo = record

Height : 0 .. 84;
HatSize : 0 . .10;
ShoeSize: 0 . .15;
case NowEmployed : Boolean of

True : (EmployerName : string;
EmployerAddress : string);

False : (LastEmployerName : string;
(LastDateEmployed: Integer)

end;

In a variant field, only one of the field lists is available at a time. The

case NowEmployed : Boolean of

indicates that NowEmployed can take on one of two values, True or False.
When one of the fields is activated by assigning a value to its tag field or to
any one of its components, the other field is deactivated. Either of the
following assignments \\jll activate the True field.

Suspectlnfo.NowEmployed := True;
NowEmployed.EmployerName := 'Verigood Construction Co.'

Pointer Types and Dynamic Structures 305

The concept of pointers (or the more erudite phrase "dynamically
varying structures") is one of the most difficult constructs in program­
ming. Pointers offer the programmer a basic facility for creating rather
rich and elaborate structures of data On the other hand, the facility in
Pascal for using pointers is quite simple and quite primitive. Let's have a
look first at the basic primitives for pointers in Pascal.

Let U$ start by considering the following declaration.

type
EntryData = record

Name : string;
IDNum: Integer;
Arriva!Time : Integer;

end;

Here we have a record structure with four fields, presumably
representing (1) the name of a person, (2) the identification number of a
person, and (3) the arrival time of a person upon entering a building. For
argument's sake, let us suppose we are keeping this information for
security purposes when each employee enters a building to report to
work. Let us also assume that the arrival time is given as an integer which
can be interpreted as representing the hours and minutes since the
previous midnight, but let us not get involved in these details here. Let us
just assume that an integer represents the time of day.

If we are to keep a record of employee arrivals and departures we
will need a rather large and initially unspecified number of such records,
one for each entry into the building. If we imagine a large building there
may be hundreds or even thousands of such entries. We could keep each
record in a file of records for a given day. That is, if there were several
hundred arrivals, we would have several hundred records in the file,
presumably put there in order of the time of arrival. But now let us
suppose that we wished to print out a list of all the persons entering the
building on a given day and print this file in order by identification
number. This presents a problem. If we put each record into the file in
order of arrival, we would have quite a bit of processing in order to print
the file in order of increasing identification number. On the other hand, if
we try to keep the file in order by identification number, we would have to
do quite a bit of organization each time a new person entered the building
in order to keep the file in its proper order. The point of all this is to
suggest that we have a relationship that is not well embodied by a linear
file. We could harken back to an array of records to keep this information,
but then there is the question of how big to make the array and whether
the array can represent the relationship that we want, records ordered
by increasing identification number. This problem is suggestive of the
wide range of problems to which pointers can be applied.

13.2 • Pointers
and Dynamic
Structures

306 13 Record Structures

Consider the following additional type declaration

type
EntryPtr = - EntryData;

This type declaration introduces a new named type called EntryPtr. We
can think of EntryPtr as an address or a location where a record
containing the entry data on a given person is stored. Such a type is called
a pointer type. We can declare variables that have a pointer type just as
we can variables that have an integer type or a string type. For example
we can say

var
Person, PrevPerson : EntryPtr;

So far we have not introduced anything particularly striking. But how do
we deal with pointers?

The basic operation for using pointers is a predefined procedure
called New. If we give the procedure call

New(Person)

two things happen.

I. Space for a record containing the three fields of type EntryData
are allocated in the memory of the computer.

2. A pointer to this space is assigned as the value of the variable
Person.

So we see that New both allocates space and returns a "pointer" to the
space that was allocated. We don't have any values yet stored in the
record structure for which space was allocated, but that is handled
subsequently. For example, after the foregoing procedure call we can
say,

Person- .Name:= "Cristie";
Person - .IDNum := 5491707;
Person- .Arriva!Time := 1130

Notice here that Person has a pointer type; Person- (the item pointed to
by Person) has a record type. We can name the components of this
record type just as for ordinary records. In the above example, we refer to
the Name, IDNum, and ArrivalTime fields of Person - . Now the space
allocated for the record actually contains some values. After this we can
say something like

PrevPerson := Person

This is an assignment statement. Both the left side and the right side of
the assignment statement are of the same type; both are pointers to
records of type EntryData This assignment simply takes the pointer

Pointer Types and Dynamic Structures 307

value of Person and assigns it to PrevPerson. Now both PrevPerson and
Person point to the same record structure. Now we can even say things
like

I := PrevPerson · .IDNum;
WriteLn(PrevPerson · Arriva!Time)

The first of these two assignments, assuming I is an integer variable, will
give I the value 5491707. The second statement will print the value 1130.
This shift from Person to PrevPerson should cause no problems.

We can allocate space for another record structure by now
saying

New(Person)

When this statement is executed, the computer will allocate space for
another record and assign a pointer to this new space to the variable
Person. Note well here, that now PrevPerson and Person will point to
different spaces in memory! The old values of Name, IDNum, and
ArrivalTime are still associated with PrevPerson, but Person now is a
pointer to a new record structure which has yet unspecified values. All of
this brings us to a dead end where we meet the next major hurdle.

In our initial problem we assumed that we would have many, many
arrivals into the building with many record structures needed to record
all of this information. As we have declared only two pointer variables,
Person and PrevPerson, there is no way to get any more data into our
system. To do something about this, we add yet another field to the
records of type EntryData Consider a new rendering of this type.

type
record

Name : string;
IDNum : Integer;
Arriva!Time : Integer;
Next : EntryPtr { -- a pointer }

end;

Here we have added one more field, itself a pointer. This pointer points to
another record of type EntryData. These can be chained together to form
a whole structure of records.

The procedure shown in Fig. 13.2 compares the IDNum of each
New Arrival with the IDNum in other records of the chain and then adjusts
the Next field to keep the chain in order. A variable, Start, of type EntryPtr
is given in the procedure call. This variable points to the first record in the
chain and will change whenever a new arrival has a lower ID number than
that of the present start person. As each person arrives, the ID number is
compared first with Start-.IDNum and then with the IDNum in each
succeeding record, until the proper location for the record is found; the

308 13 Record Structures

Figure 13.2

Figure 13.3 • Procedure
AddArrival

Next fields are then changed to reflect the new conditions. Two variables
of type EntryPtr are used during the comparisons. TestPerson is the
record being checked for a higher ID number; PrevPerson is the record
immediately preceding TestPerson, that is, PrevPerson A .Next points to
TestPerson.

The following diagrams help to clarify this procedure. Assume that
the start person has an ID number of 5491707 and that three people
arrive in order with the following ID numbers.

2473492
6655532
7810023

When the procedure is called, the Start record shown in Fig. 13.3
exists.
There may or may not be more records in the chain. For the moment we
assume there are no other records; therefore, the value of Start A.Next is
nil. Nil is one of Pascal's reserved words; it is used with pointers to
indicate that the pointer, at the moment, points to nothing. It is similar to
setting a counter to zero.

The three diagrams in Fig. 13.4 show the relationships as they exist
after each new arrival.

r l
Sta rt Name AnyName

ION um 5491707

Arriva!Time Time

Next nil

procedure AddArrival (var Start: EntryPtr);

var
NewArrival, TestPerson, PrevPerson : EntryPtr;
Done : Boolean;

begin
New(NewArrival);
ReadLn(NewArrival A.Name, NewArrival ·.10Num,

NewArrival ·.ArrivalTime);

Practice-Records and Pointers 309

Figure 13.3 continued

if NewArrival ".IDNum < Start ".IDNum then
begin

NewArrival ·.Next := Start;
Start := NewArrival;
Done:= True

end
else

end.

begin
PrePerson := Start;
TestPerson := Start· .Next;
Done := False;
while (not Done) do

begin

end
end

if TestPerson = nil then
begin

PrevPerson ·.Next := New Arrival;
NewArrival ·.Next := nil;
Done:= True

end
else if TestPerson • .IDNum > New Arrival ·.1DNum then

begin
PrePerson · .Next := NewArrival;
NewArrival ·.Next := TestPerson;
Done:= True

end
else

begin
PrevPerson := TestPerson;
TestPerson := TestPerson ·.Next

end

A quick review of the concept of records is in order before we get into
more discussion about pointers.

True or False
1. The components of a record are referenced by giving the record

identifier and the field identifier separated by a period.
2. A field of a record can be any type except another record.

13.3 o Practice

310 13 Record Structures

Figure 13.4 After first NewArrival

r l]_
Sta rt AnyName AnyName

2473492 5491707

Time Time

nil, 1--' nil

After second NewArrival

I i]_ i
Sta rt AnyName AnyName AnyName

2473492 5491707 6655532

Time Time Time

nil - nil - t--' nil

After third NewArrival

r l]_ J_ l_
Sta rt AnyName AnyName AnyName AnyName

2473492 5491707 6655532 7810023

Time Time Time Time

nil - nil -I t--' nil 1-- nil

3. A record can be assigned to another record if they have the same type
identifier.

4. An array can be used any place that a record can be used.
5. Pointers always point to records.

6. Record structures are only useful for very advanced programming.
7. All criminals have gold fillings.

8. Records can be compared with other records.

9. Program Search cannot be used unless information is available for
each category.

Practice-Records and Pointers 311

Fill in the Blanks
1. Record types are composed of _______ _

2. Record structures can be defined in a ________ _
declaration.

3. A record can have two parts, a fixed part and a _______ _
part.

4. A record field consists of an __________ and its

5. In a list of statements containing record fields, repetition of the record
identifier can be avoided by the use of a _______ _
statement.

6. YesNoCode in program Search is a type.
7. A record declaration ends with the word ________ _

•••
In the True/False quiz, only numbers 1 and 3 are true. A field of a record
can itself be a record.

The components of an array must all be of the same type; this is not
true of a record.

A pointer can point to a variable of any type.
Record structures are useful at any level of programming and do

not require an advanced level of knowledge.
Holmes's criminal did indeed have a gold filling.
Records cannot be compared with other records; the individual

items which make up the record must be compared.
Function ltemMatch provides for missing information by assuming

a match if the information is not available.
The blanks should be filled with the following: fields, type or

variable, variant, identifier, type, with, subrange, end. In regard to
number 2, although records can be defined in a variable declaration, it is
much safer, in the long run, to declare them in a type declaration and then
use the type identifier in the variable declaration.

Consider the program listed in Fig. 13.5.

1. Describe the variables Member and LastBorn.
2. What does the first statement accomplish?
3. What happens when Member is assigned to LastBorn?
4. In the statement

LastBorn - .NextOfKin := Member

what is actually assigned to the component NextOfKin ?

312 13 Record Structures

Figure 13.5 • Program
Geneology

program Geneology;

type
Person = - Info;
Info = record

Name : string[lO];
SSNum : Longint;
NextOfKin: Person

end;

var
Member, LastBorn : Person;

begin
(-- initial state, no one on earth }

LastBorn := nil;

(-- birth of Adam }
New(Member);
Member ·.Name := 'ADAM';
Member -.SSNum := l;
Member· .NextOfKin := nil;
LastBorn := Member;

(-- birth of Adam's spouse}
New(Member);
Member ffl.Name := 'EVE';
Member ff1.SSNum := 2;
Member ffl.NextOfKin := LastBorn;
LastBorn ffl.NextOfKin := Member;
LastBorn := Member;

Write(LastBorn ffl.SSNum, LastBorn ffl.NextOfKin ffl.SSNum)

end.

5. When the program ends, what is the value of Member?

•••
The variables Member and LastBorn are pointer type variables, which
point to record structure values of type.

The statement

LastBorn := nil

is Pascal's way of saying that LastBorn is "a pointer to nothing." This is
similar to setting an integer variable to 0. The statement sets the value of
LastBorn to nil, indicating that no person has yet been born.

Practice-Records and Pointers 313

The birth of the first member of our family is accomplished with the
predefined procedure New, as in

New(Member);
Member-.Name :='Adam ';
Member -.SSNum := 000000001;
Member -.NextOfKin := nil

Here the call to New allocates space for a new record structure and set
Member to point to it. The next three assignments establish values for the
record components. Notice that the - in Member - refers to the object
pointed to. Thus we have

Member - denotes the pointer value of Member
Member - denotes the object pointed to by Member

With this first birth, we can now give an explicit value for LastBorn with
the assignment:

LastBorn := Member;

This statement assigns the pointer value of Member to LastBorn. So after
this we have the structure shown in Fig. 13.6.

Next consider another birth, given in the statements

New (Member);
Member-.Name :='Eve
Member -.SSNum := 000000002;
Member -.NextOfKin := LastBorn

Here again a new record structure is allocated and its values are
established for Eve. Furthermore consider the statements

LastBorn -.NextOfKin := Member;
LastBorn := Member

Member

LastBorn

' Adam

000000001

nil

Figure 13.6

314 13 Record Structures

13.4 0

Figure 13.7

The first statement results in setting the NextOfKin component
associated with Adam as a pointer to Eve. The second statement updates
the value of LastBorn to point to Eve.

The situation now is as shown in Fig. 13.7.
Now that we have two people in our family, we can see the

development of dynamic relationships during program execution. The
NextOfKin components of Adam and Eve now refer to each other, and
LastBorn has been maintained as a pointer to the person who was last
born.

At the program's end, Member is a pointer to Eve.

13.1 Duplicating a File
If you have a file of data and want to edit it, delete some of its parts,
reformat it, or what have you, it is nice to have a spare copy in case
something goes wrong.

Your problem is to write a program to duplicate a file. To test your
program, make a copy of one of your programs into another file. The
copy should be an exact replica, line by line.

13.2 Mailing Lists
You must be on at least one computerized mailing list, perhaps even too
many. Your task here is to computerize one yourself. Typically, an entry
in a mailing list has five components:

Member
~ LastBorn

1
Name 1 Adam

SSNum

NextOfKin

Name : the name of the addressee
Address : a 1- or 2-line street address
City the name of a city
State : the name of a state
Zip code: a 5-digit zip code

Write a program to read in a file of such entries and print out address
labels for each entry. Prepare a short file of entries to test your
program.

Note: In real life one must consider the following issues. How
should extra long names be treated? What if the address takes more than
two lines? What if the addressee resides in another country? What if the
zip code is missing? Should the entries be ordered by zip codes? Or by
names? You see, as for any real application, the full problem is never
easy.

13.3 Investment Gains
Many investors prefer to put their money into "real goods" instead of
paper. Your problem is to write a program that calculates the per cent of
appreciation, or depreciation, in the value of the items in an art collection.
The program is to read the following information about each item:

Item name
Artist
Date of purchase
Purchase price
Present appraised value

The output is to be a table showing:

Item name
Artist
Total appreciation or depreciation
Number of years since purchase

13.4 Inventory
Here you are to assume the existence of an external file. The extern;iJ file
is an inventory list containing the item number, item name, quantity in
storage, and number on order.

The program first prints the item number and item name. The user
then enters the count of the item on the shelf. The computer follows with
the number in storage and the number on order.

The output must be carefully formatted to create a nice evenly
spaced table.

13.5 Classification
Computers are very good at sorting and at keeping lists. This program is

Programming Exercises 315

316 13 Record Structures

to select a category for each item and then add the item to the proper list
for that category. Each list is an external file.

For this program, assume a pre-existing list containing the name,
mailing address, and statistical profile for an undefined number of people.
The program is to read the existing record, and then add it to the end of
the list of homeowners or the list of renters.

Chapter 14

We have covered a lot of
ground in the past chapters. Unfortunately, what seems quite clear when
read sometimes becomes complicated when an attempt is made to put it
into practice.

Figures 14.1and14.2 are example programs that show how some of the
concepts discussed up to this point can be applied to the bar graph
program presented in chapter 3.

Program CreateBreedFile (Fig. 14.1) creates a file of records
containing information about various breeds of dogs. This file includes
only the breed names and number of puppies; however, it could be
revised to contain any number of other bits of information helpful to the
user of the file, such as the total number of dogs registered, standards of
the breed, and so forth. A different type declaration would be requir~d to
accommodate the changes.

The new file is opened as a write-only file and assigned the title
BreedFile. A repeat loop is used to prompt the user to enter the items one
at a time from the keyboard. After both items are read, they are written as
a complete record to Annua!File. When NO MORE is entered as a breed
name, the loop ends and the file is closed.

The program as it is written requires that all items be entered at the
same sitting and does not provide for changes to any of the records. In a
real life situation, of course, a program that allows changes and additions
is certainly more useful.

14.1 • Application:
BarGraph Revisited

317

318 14 More on Graphs

Figure 14.1 • Program
CreateBreedFile

program CreateBreedFile;

const
LastName = 'NO MORE';

type
Breedlnfo = record

BreedName: string[20];
NumOfPups : Longlnt

end;
MasterFile = file of Breedlnfo;

var
Breed.Data : Breedlnfo;
Annua!File : MasterFile;

begin
Rewrite(Annua!File, 'Breed Statistics');
repeat

Write('Breed Name: ');
ReadLn(BreedData.BreedName);
if BreedData.BreedName <> LastName then

begin
Write('Number of Puppies: ');
ReadLn(BreedData.NumOfPups);
Write(Annua!File, Breed.Data)

end;
until BreedData.BreedName = LastName;
Close(AnnuaIFile)

end.

Breed Name: COCKER SPANIEL
Number of Pupp i es : 172291
Breed Name: COLLIE
Number of Puppies: 45337
Breed Name: GERMAN SHEPHERD
Number of Puppies: 129621
Breed Name: LABRADOR RETRIEVER
Number of Puppies: 117221
Breed Name: POODLE
Number of Puppies: 184297
Breed Name: NO t10RE

program BarGraph;

const
MaxNumPups = 200;
BarStart = 150;
BarHeight = 12;
BarSpace = 4;

TypeSize = 9;
TextHeight = 16;
TextStart = 35;
TitleLine = 30;

MarkerLength = 3;
ScaleUnit = 50;
NumWidth = 5;

type
Breedlnfo = record

BreedName : string[20];
NumPups : Longlnt

end;
MasterFile = file of Breedlnfo;

var
BreedDate : Breedlnfo;
lnFile : MasterFile;
ThousandPups : Integer;
Top, Left, Bottom, Right, FrameTop : Integer;
TextLine, StartScale, ScaleNum : Integer;

begin

TextSize(TypeSize);

{ -- Write title and column heading }
TextLine := TitleLine;
MoveTo(BarStart, TextLine);
WriteDraw('PUPPIES ENROLLED BY AKC IN 1983');
TextLine := TextLine + TextHeight;
MoveTo(TextStart, TextLine);
WriteDraw('Breed');

{ -- Store frame top }
FrameTop := TextLine;

{ -- Draw and label bars }
Left := BarStart;
Bottom:= TextLine;
Reset(lnFile, 'Breed Statistics');
if not EOF then

begin
Bottom := Bottom + BarHeight + BarSpace;
Top := Bottom - BarHeight;
MoveTo(TextStart, Bottom);

Application: BarGraph Revisited 319

Figure 14.2 • Program
BarGraph

320 14 More on Graphs

Figure 14.2 continued

Read(lnFile, BreedData);
WriteDraw(BreedDataBreedName);
ThousandPups := BreedDataNumPups div 1000;
Right := BarStart + ThousandPups;
PaintRec(Top, Left, Bottom, Right)

end;

{ -- Draw frame I
FrameRect(FrameTop, Left, Bottom, MxNumPups + BarStart);

(-- Draw scale markers I
MoveTo(BarStart, Bottom);
ScaleNum := O;
repeat

Line(O, MarkerLength);
Move(ScaleUnit, -MarkerLength);
ScaleNum := ScaleNum + ScaleUnit;

until ScaleNum >= MaxNumPups;

(-- Number bottom scale I
TextLine := Bottom + TextHeight;
StartScale := BarStart- NumWidth;
ScaleNum := O;
repeat

MoveTo(StartScale + ScaleNum, TextLine);
WriteDraw(ScaleNum);
ScaleNum := ScaleNum + ScaleUnit;

until ScaleNum >= MaxNumPups;

{ -- Label bottom scale I
TextLine := TextLine + TextHeight;
MoveTo(BarStart, TextLine);
WriteDraw('Thousand of Puppies Enrolled and AKC Registerable')

end.

The external file from which to draw information and the availability
of loops offer options for a more efficient bar graph program. The
program BarGraphRevised (Fig. 14.2) uses a while loop terminated by
EOF to read the information recorded in BreedFile and enter it into the
variable InFile one record at a time. Notice that InFile is of type MasterFile,
the sarrie type used in the creation of the original file. This is an important
point to recognize.

• One file record can be assigned to ~nother file record only if the
types are identical.

Predefined QulckDraw Types 321

Once the record is assigned to BreedData, the record components
BreedDataBreedName and BreedDataNumOfPups are used to write the
name and draw the bar.

Another kind of loop, the repeat loop, is used to draw the scale
markers and numbers. The repeat loops are terminated when the
number of puppies exceeds MaxNumPups, which is declared in the
constants section.

It is easy to see that this program has much more versatility than the
original version, which required several statements for each breed

Just as Integer and Real are predefined types that can be used to describe
variables, there are predefined types pertaining to QuickDraw routines.
For instance,

Rectangle = record case integer of
0 : (Top : Integer;

Left : Integer;
Bottom : Integer;
Right: Integer);

I : (TopLeft: Point;
BotRight: Point);

is predefined in QuickDraw and can be used to define rectangles. For
example, consider

var
BoxA, BoxB : Rect;

Once values have been assigned to the corresponding components, any
reference to BoxA or BoxB will use the rectangle described by those
values. The assignment of four integer variables to the record com­
ponents Top, Left, Bottom, and Right activates the case 0 record variant.
The assignment of two values of type Point activates the case 1
variant.

Type Rectangle is used in the short program shown in Fig. 14.3 to
produce a familiar figure.

There are two QuickDraw libraries that can be called from
Macintosh Pascal. The procedures and functions included in QuickDrawl
are expected to be used frequently and therefore have been made
automatically available. To use the more advanced routines in
QuickDraw2, it is necessary to include a uses clause immediately after the
program heading, as in

program DrawMore;
uses QuickDraw2;

14.2 • PreDeftned
Quickdraw Types

322 14 More on Graphs

Figure 14.3 • Program
Shape

program Shape;

var
BoxA: Rect;

begin
BoxA.Top := 20;
BoxA.Left := 20;
BoxA.Bottom := 100;
BoxA.Right := 100;
Paint Oval(BoxA);
EraseArc(BoxA, 75, 30)

end.

Dr111wing

QuickDraw2 allows you to perform more complicated operations such as
defining separate drawing areas, drawing polygons and pictures, and
customizing the operations. Our discusssion here will be limited to
presenting a few of the features available in QuickDrawl.

In the earlier graphics chapter we covered several procedures for
operations on rectangles, ovals, round rectangles, and arcs. Now that we

Predefined QuickDraw Types 323

have predefined types at our disposal, we can add to that list of
operations a procedure for filling a shape with gray instead of black
Associated with the type Pattern is the following set of predefined
variables shown below.

var
White
Black
Gray
LtGray:
DkGray:

Pattern;
Pattern;
Pattern;
Pattern;
Pattern;

These can be used in the predefined procedures

Fil!Rect(Rectangle, ColorName)
FillOval(Rectangle, ColorName)
Fil!RoundRect(Rectangle, Ova!Width, Ova!Height, ColorName)
Fil!Arc(Rectangle, StartAngle, ArcAngle, ColorName)

Fig. 14.4 gives a short program demonstrating the use of these
procedures.

program Colors;

var
Rectangle : Rect;

begin
Rectangle.Top := 20;
Rectangle.Left := 20;
Rectangle.Bottom := 200;
Rectangle.Right := 200;
PaintRect(Rectangle);

Rectangle.Top:= Rectangle.Top+ 10;
Rectangle.Left := Rectangle.Left + 1 O;
Rectangle.Bottom := Rectangle.Bottom - 1 O;
Rectangle.Right := Rectangle.Right - 1 O;
FillOval(Rectangle, Gray);

Rectangle.Top:= Rectangle.Top+ 30;
Rectangle.Left := Rectangle.Left + 30;
Rectangle.Bottom := Rectangle.Bottom - 30;
Rectangle.Right := Rectangle.Right - 30;
Fil!Rect(Rectangle, White);

MoveTo(95, 120);
TextSize(24);
WriteDraw('OK');

end.

Figure 14.4 • Program
Colors

324 14 More on Graphs

Figure 14.4 continued

Drawing

Another pair of predefined types

type
Styleltem = (Bold, Italic, Underline, Outline,

Shadow, Condense, Extend);
Style = set of Styleltem;

can be used in the procedure TextFace to change the face of the printing.
For instance,

TextFace([ltalic])

causes all following text to appear in italics. Italic is a value in a set and
therefore must be enclosed by brackets. The styles can be used in
combination as shown in program TextFaces (Fig. 14.5).

program TextFaces;

begin
TextSize(l4);
MoveTo(25,45);
WriteDraw('Standard');

TextFace([ltalic]);
MoveTo(25,65);
WriteDraw(' Italic')

TextFace([Bold]);
MoveTo(25,85);
WriteDraw('Bold')

TextFace([Underline]);
MoveTo(25,105);
WriteDraw('Underline')

TextFace([Bold, Underline]);
MoveTo(25,125);
WriteDraw('Bold Underline')

TextFace([Italic, Bold, Underline]);
MoveTo(25, 145);
WriteDraw('Italic Bold Underline')

end.

Standard
Italic

Bold
Underline

Draming

Bo1dl UnderHne
ltolic Bold Underline

Predefined QuickDraw Types 325

Figure 14.5 • Program
TextFaces

326 14 More on Graphs

14.3 • Transfer
Mode

Figure 14.6 • Program
TextModes

When writing on the drawing screen, there are three text modes that
copy the image in different ways. The normal text mode SrcOr draws with
black regardless of the color of the pixels beneath. The mode SrcXOr
inverts the pixels beneath, making the white ones black and the black
ones white. The mode SrcBic draws in white. The procedure calls are

TextMode(SrcOr)
TextMode(SrcXor)
TextMode(SrcBic)

Fig. 14.6 shows the effect of each mode.
Routines are also available for changing the pen mode, affecting the

way that any of the graphics shapes are drawn on the screen. The pen
mode is set with the procedure call

PenMode(PatOr)
PenMode(PatXor)
PenMode(PatBic)

program TextModes;

begin

Frame0val(25, 50, 75, 250);
MoveTo(80,59);
TextSize(24);
TextFont(5);
TextMode(SrcOr);
WriteDraw('GREETINGS');

FrameRect(120, 50, 170, 250);
PaintRec(l45, 50, 170, 250);
MoveTo(80,154);
TextSize(24);
TextFont(5);
TextMode(SrcXOr);
WriteDraw('GREETINGS');

Paint0val(215, 50, 265, 250);
MoveTo(80,249);
TextSize(24);
TextFont(5);
TextMode(scrBic);
WriteDraw('GREETINGS');

end.

Figure 14.6 continued

Dnnuing

G.:R.[.[.'J'l.~N GS

These three choices work in the same way as the ones discussed above
for text drawing; PatOr draws in black, PatXor inverts whatever it covers,
and PatBic draws in white. See Fig. 14.7 for an example.

What we have given here are the simple aspects of working with
transfer modes. It is possible also to use these modes plus others to
overlay one pattern on another. A single chapter is not enough to
describe all of the complexities of QuickDraw. We suggest that if you want
to delve more deeply into the possibilities, you will profit from a reference
book devoted to the subject.

Table 14.1 summarizes some of the predefined types and variables,
and some additional QuickDrawl routines.

Transfer Modes 327

328 14 More on Graphs

Figure 14.7 • Program
Pen Modes

program PenModes;

begin
PenMode(ParOr);
PaintRect(lO, 50, 75, 100);
PaintRect(lOO, 100, 175, 200);
PenMode(PatXor);
PaintRect(60, 90, 120, 175);
PaintMode(PatBic);
PaintRec(l55, 180, 165, 190)

end.

Drawing

Table 14.1 • Some Predefined Variables, Types, and Procedures in
QuickDraw1

Type

Str255 = string[255];
Pattern= packed array[0 .. 7] of 0 .. 255;
Bitsl6 = array[0 . .15] of Integer;
Styleltem = (Bold, Italic, Underline, Outline, Shadow, Condense, Extend);
Style = set of Styleltem;
Point = record case Integer of

0 : (v : Integer;
1 : (vh: array[VHSelect] of Integer);
end;

Rect = record case Integer of
0 : (Top : Integer;

Left : Integer;
Bottom : Integer;
Right : Integer);

1 : (TopLeft : Point;
BotRight : Point);

end;

Variables

White : Pattern;
Black : Pattern;
Gray : Pattern;
LtGray : Pattern;
DkGray : Pattern;

Line Routines

PenSize(Width, Height);
PenMode(Mode)
PenPat(Pattern)
PenNormal

Text Routines

TextFont(font)
TextFace([StyleName])

TextMode(Mode)
TextSize(PointSize)

{ Integer, Integer l
{ PatOr, PatXor, PatBic }
{ White, Black, Gray, LtGray, DkGray l

{Integer l
{ Bold, Italic, Underline, Outline,

Shadow, Condensed, Extend }
{ SrcOr, SrcXor, SrcBic l
{ 9, 12, 14, 18, 24 l

Transfer Modes 329

330 14 More on Graphs

Table 14.1 continued

Graphics Rputines

In the following procedures, RectName can be replaced by either a value of
type Rect, or by four integer values representing the Top, Left, Bottom and
Right coordinates of the rectangle.

FrameRect(RectName, StartAngle, ArcAngle)
PaintRect(RectName, StartAngle, ArcAngle)
EraseRect(RectName, StartAngle, ArcAngle)
lnvertRect(RectName, StartAngle,ArcAngle)
FillRect(RectName, Color)

FrameOval(RectName, StartAngle, ArcAngle)
PaintOval(RectName, StartAngle, ArcAngle)
EraseOval(RectName, StartAngle, ArcAngle)
InvertOval(RectName, StartAngle,ArcAngle)
FillOval(RectName, Color)

FrameRoundRect(RectName, StartAngle, ArcAngle).
PaintRoundRect(RectName, StartAngle, ArcAngle)
EraseRoundRect(RectName, StartAngle, ArcAngle)
InvertRoundRect(RectName, StartAngle,ArcAngle)
FillRoundRect(RectName, OvalDiameter, OvalHeight, Color)

FrameArc(RectName, StartAngle, ArcAngle)
Paint:Arc(RectName, StartAngle, ArcAngle)
EraseArc(RectName, StartAngle, ArcAngle)
InvertArc(RectName, StartAngle,ArcAngle)
FillArc(RectName, StartAngle, ArcAngle, Color)

Prelude to Planning

0 record of the doings of Mr. Sherlock Holmes and his
contributions to the development and understanding of
the Analytical Engine would be complete without a report
on his brilliant address to the Royal Society in the late

autumn of 1895. Shortly after the conclusion of the case involving Arthur
H. Staunton, the rising young forger, came the publication of the great
detective's much celebrated monograph, "Upon the Use of the Analytical
Engine in the Work of the Criminal Investigator," which earned him an
invitation to speak before the annual meeting of the Royal Society.

It may be remembered that I had sold my Kensington practise a year
earlier and that I was again sharing lodgings with my old companion at
2218 Baker Street. He insisted that I accompany him to the assembly, and
it was my great privilege to do so. I offer here an account of his address,
which I have reconstructed from my notes.

A special carriage was sent for us bearing two emissaries of the
Royal Society. These gentlemen escorted us to a stately house situated
off Pall Mall, to the rooms that were home to the learned group, where a
reception was already in progress. Here Holmes and I had the
opportunity to mingle with some of Britain's most renowned scientific
figures.

At a certain point, Holmes was escorted to a podium and, following a
brief introduction, commenced his lecture.

"Gentlemen and fellow scientific investigators," Holmes began. "It is
without doubt an honour to appear before this assembly tonight in order
to share a few of my ideas on the use of the Analytical Engine.

"Though all of you are doubtless already aware of the advantages
that the Engine promises to bestow upon science, and although many of
you may be considering applying this new device to your own areas of
investigation, it is likely that you have as yet had little experience in
designing programmes for the Engine. It is my hope that my lecture will
furnish you with a general, logical method for organizing programming 331

332 Prelude to Planning

"A special carriage wos sent for us."

tasks and attacking scientific problems with the Analytical Engine. This
method 1 have called "programming from the top-down." Although
elementary in its fundamental concepts, it is invaluable as a technique for
constructing all types of programmes, including the most complex ones
you are likely to encounter.

"In my engagements as a criminal investigator I have always been
qireful to arrange all clues systematically and devise a complete
hypothetical approach to a case before taking a single step out of my
rooms in pursuit of a solution. This principle applies equally well to the
use of the Analytical Engine. No matter how simple the task, it is
necessary at the outset to formulate a clear and complete statement of
the problem at hand, as well as a basic plan for solving it. The
programmer should prepare sample input and output formats and design
a general algorithm before writing any programme. This precaution
ensures that a minimal amount of confusion and lost time will result
during interactions with the Engine.

Holmes Delivers a Lecture 333

"Let me now enumerate the characteristics of the top-down
approach.

"The first concept essential for a grasp of programming top-down is
the idea of design in levels. The programmer should construct his
programme according to a conceptual hierarchy. The upper levels of his
hierarchy should indicate the more general features of the problem, with
details and elaborations introduced at the lower levels.

"The highest level is thus the initial conception of the solution. The
individual paths from each level represent the possible solutions at each
conceptual stage. Each lower level thus elaborates the preceding level.
Here is a chart," said Holmes, "that illustrates this idea."

1 have reproduced this graphic representation as Fig. 15.1.
"Secondly, the language used to formulate this preliminary model

need not be the special language of the Engine, and for this reason the
top-down method is described as being language independent. At this
early stage of programming, ordinary English will generally be sufficient.
Later, of course, it should be possible to encode the programme in a form
intelligible to the Engine.

"Thirdly, as in all forms of scientific reasoning, it is advisable to
attain a firm grasp of the broad aspects of a problem before proceeding to
the minute details of analysis. Accordingly, in the top-down approach,
details should be deferred to lower levels. Typical of such detail is the
internal representation of data

• • •
• • •

Initial conception of the problem, P1

• • •

Possible first
statements, P2

Possible first
refinements, P3

Possible final
programs, Pn

Figure 15.1 • The top­
down approach

334 Prelude to Planning

"Fourthly, before advancing to a lower level, the programmer must
ascertain that the solution is stated in precise terms. By this I mean that
instead of using a very vague statement that has no immediate
consequences, the programmer should seek a more meaningful
statement that entails one or more submodules.

"Fifthly, as a new level unfolds in the programme's development, the
programmer must take pains to verify the solution. You will conserve
appreciable amounts of time and energy by detecting errors in style or
content as early as possible, rather than after numerous sub­
programmes have already been generated and the errors must be traced
to their sources further up in the hierarchy.

"And finally, each step of the programme must be elaborated,
improved, and meticulously examined until it is ready to be transformed
into the Engine's special language.

"Although this lengthy process of refinement may seem tedious to
the lofty theorists among you, I assure you that there is no other way to
use the computing machine efficaciously. In fact, as you become more
adept at designing programmes, this stage of the task will become less
and less burdensome; and you may well discover that you enjoy the
intellectual exercise it affords.

"I myself found no difficulty in adapting to the requirements of
programme design, for my career as a detective has sharpened my
faculties to such a degree that I routinely dissect cumbersome problems
into manageable components with little effort.

"Now, gentlemen, if my explication is entirely clear to you thus far, I
should like to offer some further observations concerning the art, or
science, as you would perhaps prefer to designate it, of programming
from the top down. I cannot emphasize too strongly that you must
thoroughly understand the given task and its solution before attempting
to write a programme.

"Therefore, you should initially be far less concerned with your
notation-for example, ordinary English would suffice-than with your
overall comprehension of the problem. This is especially important at the
top levels of the hierarchy. Eventually, sub-programmes must be
explicitly stated; and in particular all input and output arguments must be
described.

"Again, allow me to emphasise the importance of scrupulous
examination and refinement of each stage of a top-down model. One
should always look for possible errors and provide against them.

"Here is an example at an intermediate level of refinement,"
continued Holmes, gesturing towards another illustration that I have
duplicated as follows:

Holmes Delivers a Lecture 335

case DayOfWeek of
Monday: - generate last week's criminal summary
Tuesday: - do nothing
Wednesday: - update criminal records
Thursday: - process new reports
Friday: - generate lab item reports
Saturday: - generate weekly statistics
Sunday: - do nothing

end

"The language in this illustration is obviously informal, yet each
statement can be transformed into instructions as required for the
Engine. Of course, the programme must ultimately provide explicit
instructions for performing each operation, such as the updating of
criminal records, but this occurs at a later stage of the refinement
process.

"Once again, gentlemen, may I direct your attention to our first
illustration (Fig. 15.1). As 1 remarked previously, this is a graphic
representation of the top-down concept. The highest level, P1, constitutes
the most general description of the problem; and the downward
branchings represent the alternative methods of programme design
available to the programmer at each step. As the programmer reaches
each successive level, he must choose the branches that best fit the
stated purposes. If all the branches at a certain level seem unsuitable, it
may be necessary to return upward in the tree and select a different
solution at a higher level. In advancing from P1 to the bottom of the tree,
the programmer thus moves from a general statement of the problem,
through a series of decisions about the design, and finally to a working
programme.

"Let us turn our attention to this illustration of the top-down
structure of a particular programme containing five levels."

Holmes directed their attention to the chart I have included here as
Fig. 15.2.

"Observe how individual paths from Pl' as they were designated in
our first illustration (Fig. 15.1), are elaborated to produce the individual
parts charted in this illustration (Fig. 15.2).

"I imagine that by this time my learned listeners have conceived
some applications of the top-down method to their own investigations in
various scientific disciplines. As a man acquainted with several branches
of natural science, and especially chemistry, I am confident that the
principles outlined in this lecture can be of service to investigators in all
fields, mundane as well as academic."

As could only be expected, the members of the Royal Society
greeted Holmes's lecture with considerable applause and afterwards
detained him for nearly an hour with their questions concerning the

336 Prelude to Planning

Figure 15.2 • Top-down
structure of a
programme

details of the top-down method. Many of them were delighted to meet the
famous detective, whose adventures they confessed to having followed
in my modest chronicles; and they pressed Holmes to discuss his latest
endeavours in criminal investigation.

Once we were back at our comfortable lodgings in Baker Street,
sitting on either side of the fire, Holmes, who was always amenable to
flattery, allowed his more sombre and cynical spirit to comment on the
evening's course of events.

"Do you realize, Watson, that none of our distinguished company
this evening enquired as to my plans for applying the Analytical Engine in
my future criminal investigations? If these are the greatest minds our
generation can offer, I fear that the world may not yet be ready or
deserving of this magnificent Engine. It was indeed a disappointment, for I
would surely like to contemplate tomorrow's challenges as well as
yesterday's laurels."

Main program, M 1

Subprograms, M2

Subprograms, M 3

Subprograms, M 5

Main Levels = 5

Subprograms = Procedure or
Function

Holmes Delivers a Lecture 337

"I fear, Holmes, that I am entirely to blame for this," 1 remarked. "My
highly exaggerated accounts of your doings, as you yourself have called
them, have given the public a distorted view of the seriousness with
which you go about your business."

"On the contrary, Watson. You have given prominence not so much
to the many sensational causes in our cases together, but rather to those
seemingly trivial incidents that have given room for those faculties of
deduction that I have made my special province. For this, I am eternally
grateful. As for the Analytical Engine, I offer my work to the next
generation of scientific investigators-to those young boys still in
boarding school, capsules they are, hundreds of bright little seeds from
which will doubtless spring a wiser, and indeed, better England."

Chapter 15

There are many different
approaches to a programming problem. The top-down approach is in
marked contrast to other methods, including the following ones.

Linear approach
Bottom-up approach
Inside-out or forest approach
Imitation approach

In the linear approach the programmer immediately starts writing code
as it will appear when executed, first line first, second line second, and so
forth. The drawback with this approach is the need to make specific,
detailed decisions with very little assurance that they will be appropriate
to the problem at hand.

It is a capital mistake to theorize before one has data, because one
begins to twist facts to suit theories, instead of theories to suit facts. It is
just so with programming; if one begins to construct a program without
sufficient data one must be prepared to accept the consequences. The
linear technique may seem obviously poor, but the temptation to use it
can be very strong, especially on those problems that appear "easy." But
beware of this temptation-the little, easy problems have a way of ending
up much more complicated than they first appear.

In the bottom-up approach, the programmer designs and writes the
lower components first, and the upper levels later. The bottom-up
approach is in a sense the inversion of the top-down approach. It suffers
severely by requiring the programmer to make specific decisions about
the program before the overall problem and algorithm are understood.

In between the top-down and bottom-up approaches, we have the
inside-out or "forest" approach, which consists of starting in the middle 339

340 15 Top.Down Programming

of the program and working down and up at the same time. Roughly
speaking, it goes as follows:

1. General idea. First we decide upon the general idea for
programming the problem.

2. A rough sketch of the program. Next we write any "important"
sections of the program, assuming initialization in some form. In
some sections we write portions of the actual program. In doing
this, we hope that the actual intent of each piece of program will
not change several times, necessitating rewriting parts of our
sketch.

3. Programming the first version. After step 2, we write the entire
program. We start with the lowest level module. After an
individual component has been programmed, we debug it and
immediately prepare a description of what it does.

4. Rethinking and revising. As a result of step 3, we should be close
to a working program, but it may be possible to improve on it. So
we continue by making improvements until we obtain a
complete working program.

It is probably fair to say that many programmers, even experienced ones,
often work inside out, starting neither very close to the top nor very close
to the bottom level. Instead they start in the middle and work outward
until a program finally appears on the horizon. The approach is a poor
one, for the program may undergo many changes and patches and thus
seldom achieves a clear, logical structure.

As another method, consider the imitation approach, a method
superficially resembling the top-down approach. This approach is
discussed in detail because many programmers think that the top-down
approach is really the way they have always programmed. There are,
however, subtle but important differences. The imitation approach is as
follows:

1. Thinking about the program. Having been given a programming
task, take the time to examine the problem thoroughly before
starting to program. Think about the details of the program for a
while, and then decide on a general approach.

2. Deciding on subprograms. After having thought about the
problem in detail, decide on what sections will be sufficiently
important tp merit being made into subprograms.

3. Writing of subprograms. At this point write each subprogram.
After each is completed, write down what it expects as input,
what it returns as output, and what it does. The subprograms
should be written in a hierarchical manner: the most primitive
first, calling routines second, and so forth. Doing this will ensure

that the subprograms are fully written before the upper-level
program structures are finalized.

4. Writing the main program. After all subprograms have been
written, write the main program. The purpose of the main
program is to sequence and interface the subprograms.

The imitation approach has some important similarities to the top­
down approach:

• The problem must be understood thoroughly before writing the
program.

• The actual writing of the program is postponed until after
certain decisions have been made.

• The problem is broken up into clear, logical units.

However, there are important differences between the two approaches:

• In the top-down approach, a specific plan of attack is developed
in stages. Only the issues relevant to a given level are
considered, and these issues are formalized completely.

• Furthermore, whenever the programmer decides to use a
subprogram, the interfaces (arguments, returned values, and
effects) are decided first. The inputs and outputs are formalized
before developing the subprograms; that is, the subprograms
are made to fit the calling routine instead of the other way
around.

• Most important, at every step in the top-down approach, the
programmer must have a complete, correct "program."

The disadvantages of the imitation approach are that it is more
likely to produce errors, to require extensive program modifications, or
to result in a somewhat ill-conceived program. Choosing a partially
specified attack may require serious changes to the program. Writing
subprograms first may result in confusing program logic if the
subprograms do not integrate easily into the upper-level code designed
later.

In summary, think carefully about programming technique. The
top-down approach may provide the best alternative.

Top-Down Programming 341

ITH Mr. Sherlock Holmes at Baker Street, one's morning
paper presented infinite possibilities. The air of London
remains all the sweeter for his absence, but the days of the
great cases are past following his retirement to the Sussex
Downs.

During this period of my life, Holmes passed almost entirely beyond
my ken, save for an occasional weekend pilgrimage I might make to his
little villa at Fulworth. I was surprised and delighted, therefore, when one
morning in June the maid brought in a small package and a note from my
old companion. Removing the wrappings I found a slim volume entitled,
Practical Handbook of Bee Culture, with Some Observations upon the
Segregation of the Queen. The accompanying note read:

Watson,
As you can see, I have been considering some of the problems

furnished by Nature, rather than those of a more superficial character
for which our artificial state of society is wholly responsible. Of late,
however, I have been tempted to direct my thoughts towards the
Analytical Engine. Can you spare me a few days? Air and scenery are
perfect.

Holmes

Owing to my experience in the rough-and-tumble camps of
Afghanistan, I was quite a ready traveller. My bag was packed and I was
rattling out of Victoria station within the hour.

Mrs. Hudson, his old housekeeper, showed me into Holmes's sitting
room where I found him engaged in conversation with a distinguished
gentleman, vaguely familiar to me.

"Surely you remember Major General Henry Prevost Babbage?"
said Holmes.

"Of course," I replied. "We met at the annual meeting of the Royal
Society. I am delighted to meet you again, sir."

343

344 Prelude to Expansion

"Naturally the conversc1tion turned to the Analytical Engine."

"The pleasure is mine, Dr. Watson," he answered, extending his
hand. We sat for a while and, naturally enough, the conversation turned
to the Analytical Engine.

"As you know, Watson, I am now preparing the magnum opus of my
career, a comprehensive treatise of my methods entitled The Whole Art
of Detection , with illustrations from my most noteworthy cases. As you
may imagine, this is the longest and most difficult work I have ever
attempted, over five hundred pages in its entirety. I have spent countless
hours and many sleepless nights verifying minute points and making
hundreds of emendations.

"The content and style of this manuscript have so engrossed my
attention that I simply have no patience left for the more mundane
aspects of its creation, such as typing and proofreading. Yet I dare not
entrust the copying and editing of such an important work to just anyone.
Do you understand, Watson?"

"Yes, quite, Holmes," 1 replied, with some apprehension lest he ask
me to serve as his scribe. A sudden thought came to me. "Perhaps the
Engine can be put to good use here?"

"Precisely what I had in mind, Watson. Now, you may well wonder
how the Engine is equipped to serve in this capacity. Imagine, if you will

that I have scribbled out a paragraph of my manuscript without
observing the conventions of margins, indentation, et cetera, as in this
fragment."

He placed before Babbage and myself a card with the following
inscription:

While the criminal investigator
typically does
not consider himself a disciple
of empirical science,
his work, like the chemist's,
consists in a logical and systematic
quest for Truth.

"Obviously I could not submit a collection of such fragments to a
publisher. I am trying to design a programme that will, among other
things, arrange such fragments of text correctly, as follows."

He thereupon handed us another card on which was written an
emendation of the first:

While the criminal investigator typically does
not consider himself a disciple of empirical science,
his work, like the chemist's, consists in a logical
and systematic quest for Truth.

"Notice here that the words are arranged to fill the line properly,"
Holmes continued. "You see, the typing and editing process can be made
considerably simpler. I can enter the text at leisure; and if a mistake is
encountered or a change is deemed necessary, I can simply correct the
original version. The Engine can then be commanded to print a perfect,
corrected copy. Here I have made an outline of the desired format for my
entire manuscript."

here:
I inspected the profferred conventions, which are reproduced

1. Page Size (standard 8 1/ 2-by-11 page)
85 characters per line
66 lines per page

2. Margins
Left: 15 characters in from left edge of page
Right: 10 characters in from right edge of page
Top: 6 lines down from top of page
Bottom: 6 lines up from bottom of page

3. Printing Area (standard 10 point spacing)
60 characters per line
51 lines per page

The Final Programme 345

346 Prelude to Expansion

4. Page Numbers
6 lines down from bottom margin, centered between the left
and right margin, and enclosed by hyphens, for example:

-14-

I immediately thought of my own writings and the great amount of time
that could be saved with the implementation of such a scheme. It would
sometimes take up to a year for my manuscripts to be edited by my
literary agent, Dr. Arthur Conan Doyle, again by his editors, and finally
appear in their printed form. I noted that in addition to spacing each line
of text properly, the Engine would ensure that the margins were observed
and that page numbers were correctly incremented.

"Well, Holmes," I said after a time, "this idea of yours will
undoubtedly spare you much of the tedium authors ordinarily suffer."

"True, Watson," he replied, "but this is only the beginning of my
work. Remember that before approaching the Engine it is imperative to
define the problem completely and exactly, using the top-down
approach. In particular, one must enumerate every possible detail of the
input and output. On these pages I have described the commands for
formatting text and worked out a hypothetical input with its cor­
responding output."

Holmes then showed us the commands as well as samples of the
input and output to his programme. I have replicated them here as Table
16.l and Fig. 16.1, respectively.

"The Engine would also be employed to control the general scheme
of the printed page, that is to say, it would handle the paragraphing and
indentation patterns. Thus a command such as

:Indent IO

would cause following lines of text to be indented ten spaces. Then if one
wished to return to the left margin, the command

:Indent 0

would suffice."
"I beg your pardon, Mr. Holmes," Babbage interjected at this point.

"But what exactly do you have in mind when you speak of enumerating
every possible detail of the input and output?"

"I am delighted that you asked, Mr. Babbage," said Holmes, "for that
is the most difficult aspect of this programme's design. When creating a
programme intended for intimate use by a person such as this, we must
always ask ourselves such questions as: What sorts of command are
useful? What precisely are the actions these perform? What sorts of error
might one make while using the programme? What would happen if one
incorrectly entered some input to the Engine? And what are all the
possible ways of entering input incorrectly?"

Table 16.1 • Text formatting commands

Commands
:Paragraph

:Verbatim

:Indent n

:Center n

:Skip n

:Page

Meaning
Marks the beginning of a paragraph. All following lines of
text up to the next command line are treated as a
sequence of words without line boundaries. The words
are printed with end-of-line markers inserted so that
each line (except the last) will be filled with one space
between each pair of words. The first line of each
paragraph is indented 5 spaces. The right margin is
ragged.
If the paragraph is followed by a blank line or one or
more commands (excluding the Verbatim command),
then the next line of text will be considered the
beginning of a new paragraph.
Marks the beginning of a series of lines that are to be
output exactly as given, except for possible indentation.
All lines (excluding command lines) between the
Verbatim command line and the next Paragraph
command line (or the end of the input) are to be
printed verbatim.
Causes all following lines of text to be indented n spaces
from the left margin (n from 0 through 60).
Causes the following n lines of text (n > 0) to be
centered between the left and right margins. If n is
omitted, then only the next line will be centered.
Causes n blank lines (n > 0) to be printed. If n is
omitted, then one blank line is printed. Note that a blank
line of text in the input is treated exactly as a ":Skip l"
command line.
Causes the next line to be printed at the top of a new
page. This is also done automatically whenever a page is
filled.

"But Mr. Holmes," interrupted Babbage, "with all due respect, my
first impression is that all this detail and fussing only complicates the
problem before one even begins to solve it. My research has trained me
to find the shortest possible route to a problem's solution and then take
that route without a glance at the more convoluted byways. Does this
top-down approach not result in considerable wasted time?"

"On the contrary, my dear Babbage," Holmes replied, as he reclined
in his sofa and reached for a cigarette case on a table near at hand. He lit
one end of a cigarette and blew a thin cloud of smoke into the room
before he continued. "You must know the value of taking pains in any
scientific endeavor. It has long been an axiom of mine that the little things
are infinitely the most important, and that one must realize the

The Final Programme 347

348 Prelude to Expansion

Figure 16.1 • Sample
input and output

Sample Input
:Center 2
THIS IS A TITLE

:Paragraph
The text of a paragraph is adjusted
on a line to fit on
a line with at most 60 characters.

:Indent IO
One or more lines can be indented from the left margin
with an Indent command.

:Indent 0
One can also specify that lines are to be printed
verbatim, as in the following short table:

:Verbatim
ITEM

1
2
3

AMOUNT
18
6

11

Corresponding Output

THIS IS A TITLE

The text of a paragraph is adjusted on a line to fit on
a line with at most 60 characters.

One or more lines can be indented from the
left margin with an Indent command.

One can also specify that lines are to be printed
verbatim, as in the following short table:

ITEM AMOUNT
1 18
2 6
3 11

need for analyzing a situation thoroughly before making a single attempt
to call upon the Engine.

"You will recall my address to the Royal Society, when we had
occasion to meet for the first time, and your own brilliant paper in the
Proceedings of the British Association. Keep in mind that we are not
merely seeking a single answer to a perfectly defined problem, as an
engineer does many times in his daily work. Rather, we must instruct the
Engine to deal with an entire host of problems. Our first and foremost
task is to define these problems, as it remains impossible to solve them
without first grasping an understanding of the general situation and all its

ramifications. This procedure may appear very time-consuming at the
outset. However, it usually results in an accurate programme requiring
few emendations; thus our method will actually save us time."

Holmes then produced yet another chart, given here as Table 16.2. I
now began to see that his problem was not a simple one at all. The Engine
would have to keep track of many details and even be tolerant to the
errors of its employer. He had obviously spent a considerable amount of
time thinking about the design of the programme.

"I have asked you out for the weekend, Watson," said Holmes, turning
his attention to me, "to call upon your remarkable powers of stimulating
genius, which I have, of late, found in short supply. I have been lost without
my Boswell. I would appreciate your company also, Mr. Babbage; and, at
any rate, there is no return train to London tonight and I have unwittingly
condemned you to the horrors of my hospitalities. 1 have oysters and a
br&ce of grouse, with something a little choice in red wh1es."

We enjoyed a pleasant meal together and continued our discussion
of the Analytical Engine well into the evening, with a bottle of claret
among us. When the conversation again turned to the design of a top­
down outline of a programme for formatting Holmes's manuscripts,
Babbage tried his hand at sketching a preliminary design.

"I am not wholly certain how far to delve into your list of exceptions
and details, or where to draw the line," said Babbage. "Perhaps
something like this would suffice." He then scribbled on a sheet of paper
and handed it to Holmes. It read:

Initialize programme variables

As long as lnputFile is not empty, do the following:
read NextCharacter
process NextCharacter

Print last PageNum

"Very good," said Holmes. "But there remain some points in need of
clarification. In the first place, what programme variables are to be
initialized? And the specification for reading characters is not explicit
enough. The characters, you see, may be either part of the text or part of
a command; and these two categories must of course be treated
differently.

"A line of input falls into the command category if it begins with a
colon. Otherwise, it is a line of text. Notice that in practice, lines will tend
to occur in groups belonging to one category or the other. Thus we may
view the input as groups of one or more lines of a given category.

"Notice also that command lines are treated uniformly, regardless
of their context, whereas this is not true of text lines. The treatment of a
text line depends upon whether the line is part of a paragraph or is to be
printed verbatim. Moreover, this distinction depends on the context.

The Final Programme 349

350 Prelude to Expansion

Table 16.2 • Holmes's list of exceptional conditions

1. An input line beginning with a colon is not followed by a legitimate
command.
Response: The line is output verbatim with five asterisks in the left
margin to call attention to the problem.

2. The argument given for an Indent command is not numeric or too
large (> 60); the argument given for a Center or Skip command is
not numeric or too large (> 99).
Response: As above.

3. One of the lines to be centered with a Center command is a
command line.
Response: The line is output centered with five asterisks in the left
margin to call attention to the problem.

4. A line to be output e."<tends beyond the right margin. This can be a
verbatim line that is too long or a word in a paragraph line that is
too long (for example, if the indent happens to be 50 characters and
a word will not fit in the remaining ten spaces).
Response: Allow the line to be output up to, but not beyond, the
edge of the page. Place five asterisks in the left margin to call
attention to the problem.

5. A text line is seen before either a Paragraph or Verbatim command
is seen.
Response: Assume that a Paragraph command has been seen at
the very beginning.

When a Paragraph or Verbatim command is entered, the Engine must
'remember' the command so that all following groups of text lines can be
treated accordingly. The input mode is initially assumed to be paragraph
mode in order to accept input text directly, and is altered when a
Verbatim command is entered."

We then waited in silence while Holmes's mind worked uninter­
rupted. Finally he continued.

'Tm glad you wrote this out, Mr. Babbage, as it has forced me to
consider several alternatives. 1 would now formulate my approach to this
problem as follows."

Holmes began to outline a format programme and wrote the
following sketch:

Assume TextMode is paragraph mode
As long as lnputFil~ is not empty, do the following:

if next input character is':' then
process one or more command lines

else - next line is a text line
if TextMode is paragraph mode then

process one or more paragraph lines

else
process one or more verbatim lines

Print last page number

"Yes, now I see," said Babbage. "Your method is becoming clearer
to me. In the first draft of a top-down analysis you want to be very
general, yet also account for all the various possibilities as they might
logically arise."

"Quite so," replied Holmes. "But I should like to make this analysis
even more precise, for no surprises should arise later as a result of initial
misjudgment. There are some details this first top-down sketch does not
include-for example, the line number on the output page, the page
number if a page becomes full, or the possibility of an input line resulting
in a change to the indentation."

"Well, Mr. Holmes," said Babbage after some length, "I fear that Dr.
Watson and I have been of very little help to you this evening. Perhaps
tomorrow will bring more profitable results."

"Nonsense," snapped Holmes. "I cannot agree with those who rank
modesty among the virtues. To a logician all things should be seen
exactly as they are, and to underestimate oneself is as much a departure
from truth as to exaggerate one's own powers. You have both paid me a
great service this evening and I am most appreciative."

Here was a different Holmes at work, for historically it.had been one
of the peculiarities of his proud, self-contained nature that, though he
docketed any fresh information very quickly and accurately in his brain,
he seldom made any acknowledgment to the provider.

I rose the next morning earlier than usual to find Sherlock Holmes
pacing back and forth in his sitting room. He was in excellent spirits. I
could see that he had been up the whole night working on his programme
and, furthermore, that he had good news to report.

"You have met with success, Holmes," I stated confidently.
"Indeed, Watson, I have," he replied, looking me over curiously.

"The top level of the design is completed and sketched in Pascal, but the
papers are stored away in my desk. How is it that you knew?"

"Obvious, my dear Holmes. What else am I to assume when I see
your right cuff so very shiny and spotted with ink for nearly four or five
inches, and left one with the smooth patch at the elbow where it has
rested for some length of time upon your desk?"

"I must say, Watson, the faculty of deduction is certainly
contagious."

And so I close this account of Mr. Sherlock Holmes and his
contributions to the development of the Analytical Engine. A detailed
sketch of his final top-down design is reproduced here as Fig. 16.2, and a

The Final Programme 351

352 Prelude to Expansion

Figure 16.2 • Second
version of Holmes's top­
level design

top-level sketch of the design as written in Macintosh Pascal is here
shown as Fig. 16.3.

His decision to test out the programme on a complete chapter from
his forthcoming work, The Whole Art of Detection, brought to mind my
first encounter with Sherlock Holmes in January of 1881. A chance
reunion with young Stamford, a dresser at St. Bartholomew's, brought
Holmes and me together. How well I recall Stamford, standing there at the
Criterion Bar, saying of Holmes, "I could imagine his giving a friend a little
pinch of the latest vegetable alkaloid, not out of malevolence, you
understand, but simply out of a spirit of inquiry in order to have an
accurate idea of the effects. To do him justice, I think that he would take it
himself with the same readiness."

Definitions:
TextMode
Indentation:
LineNum :
PageNum

Algorithm:

paragraph or verbatim
the current indentation·
the current line for output
the current page being printed

Set TextMode to ParagraphMode
Set Indentation to 0
Set LineNum to I
Set PageNum to I

As long as lnputFile is not empty, do the following:
if next input character= ":" then

process commands, possibly updating TextMode, Indentation,
LineNum, PageNum

else
if TextMode = ParagraphMode then

process paragraph lines, using Indentation,
possibly updating LineNum, PageNum

else
process verbatim lines, using Indentation,

possibly updating LineNum, PageNum
Print last PageNum

program Format;

const
PageSize = 66;

TextWidth = 60;

CommandChar = ':';

I Number of lines from top of page l
I to bottom edge of page. l
I Number of columns from left margin to l
I right margin. l

I -- remaining constant declarations l
type

Mode= (ParagraphMode,VerbatimMode);
CommandName = (Paragraph, Verbatim, Indent, Center, Skip,

Page, lllegal);
lndentRange = O .. TextWidth;
LineNumRange = O .. PageSize;
I -- remaining type declarations l

var
TextMode: Mode;
Indentation : lndentRange;
LineNum : LineNumRange;
PageNum : Integer;
I -- Procedures and functions, for example procedures l
I -- DoCommands, DoParagraphLines, DoVerbatimLines, and the l
I -- function NextlnputChar l

begin I -- MAIN ALGORITHM l
TextMode := ParagraphMode;
Indentation := O;
LineNum := l;
PageNum := 1;

while not EOF do
begin

if NextlnputChar = CommandChar then
DoCommands(TextMode, Indentation)

else
case TextMode of

ParagraphMode :
DoParagraphLines(lndentation);

VerbatimMode:
Do VerbatimLines(lndentation);

end
end;

NewPage
end.

The Final Programme 353

Figure 16.3 • Top-level
sketch of text formatting
program

Chapter 16

It is with a heavy heart that we
sit down to our word processor to write these, the last words in which we
record the singular gifts by which Mr. Sherlock Holmes distinguished
himself as a pioneer in the field of computer programming. His "final
programme" is a full-scale application of computers that we may employ
in many circumstances and with a variety of computers.

Let us begin with the structure of the entire program. It has the form of a
tree, much like that in Fig. 15.2. The root point of the tree is the main
program. Each successive point at a level of the tree is a subprogram. The
branches emanating from a subprogram point are the subprograms that,
in turn, are called from the subprogram.

The individual subprograms are quite straightforward, and we will
not elaborate on each. We will describe one subprogram to get a feel for
the entire program.

As the sample subprogram, let us look at DoParagraphLines. The
procedure performs the actions required for adding input lines to a
paragraph. The procedure has one parameter named Indentation, giving
the current indentation from the left margin. The body of the procedure
begins with

Column := Indentation;
NewParagraph := True;

These statements set the column position of the next printed word to the
indentation, and a new paragraph flag to true.

16.1 • The
Example, Text
Formatting

355

356 16 Beyond the Small Program

The major work in the procedure is accomplished next in the
loop:

repeat
GetWord(Word);
if Length(Word) = 0 then

-what to do if the next line is blank
else

-what to do for a nonblank line
ReadLn(InFile)

until (NextlnputChar = CommandChar) or EOF(lnFile)

This loop keeps reading and processing lines until a new command is
encountered or the end of the text is reached. The call to ReadLn simply
reads the end-of-line marker.

Finally we have

if Column <> Indentation then
New Line

which closes the last line of the paragraph.
Elementary, but keep in mind that when using the top-down

approach the main program should be so carefully defined and mapped
out that each procedure can be written independently. Thus any
subprograms that are true to the behavior expected by the main program
will suffice.

The comments shown in Table 16.3 contain information that is
useful for any user of the program and would most certainly be needed
by anyone wanting to modify it. They should be reviewed and understood
before an attempt is made to read the program itself.

Table 16.3 • Format Comments

PROGRAM TITLE: Format

PROGRAM INfENT

This program reads a text file and formats it according to conventions
given below. The text file contains lines of text and command lines. Each
command line begins with a colon and must be followed by a legal
command.

INPUf AND OUfPUf FilLES

Input:
Output:

A file containing text lines and command lines.
The formatted text.

Table 16.3 continued

GENERAL IAYOUf CONVENTIONS

Page Size

Standard 8V2 by 11 page, 85 characters per line, 66 lines per page.

Margins

Left:
Right:
Top:
Bottom:

Printing Area

15 characters in from left edge of page.
10 characters in from right edge of page.
6 lines down from top of page.
9 lines up from bottom of page.

Standard 10 pitch spacing, 60 characters per line, 51 lines per page.

Page Numbers

6 lines down from bottom margin, centered between the left and right
margin, and enclosed by hyphens, For example

COMMANDS

Paragraph

-14-

The Example Text Formatting 357

Marks the beginning of a paragraph. All following lines of text up to the
next command line are treated as a sequence of words without line
boundaries. The words are printed with ends-of-lines inserted so that each
line (except the last) will be filled with one space between each pair of
words. The first line of each paragraph is indented 5 spaces. The right
margin is ragged edged.

If the paragraph is followed by a blank line or one or more commands
(excluding the Verbatim command), then the next line of text will be
considered the beginning of a new paragraph.

Verbatim

Marks the beginning of a series of lines that are to be output exactly as
they· are given, except for possible indentation. All lines (excluding
command lines) between the Verbatim command line and the next
Paragraph command line (or the end of the input) are treated as text to
printed verbatim.

Indent n
Causes all following lines to be indented n spaces from the left margin (n
from 0 to 60).

Center n

Causes the following n lines of input text (n > 0) to be centered between
the left and right margins. If n is omitted, then only the next line will be
centered.

Skip n

Causes n blank lines (n > 0) to be printed. If n is omitted, then only one
blank line is printed. Note that a blank line of text in the input is treated
exactly as a "Skip l" command line.

358 16 Beyond the Small Program

Table 16.3 continued

Page

Causes the next line to be printed at the top of a new page. This is also
done automatically whenever a page is filled.

SAMPLE INPUT
:Center 2
THIS IS A TITLE

:Paragraph
Each line of text in a paragraph is adjusted
to fit on
a line with at most 60 characters.

:Indent IO
One or more lines can be indented from the left margin with an Indent
command.

:Indent 0
One can also specify that lines are to be printed verbatim, as in the
following short table:

:Verbatim
ITEM

1
2
3

AMOUNT
18
6

11

CORRESPONDING OUTPUT:
THIS IS A TITLE

Each line of text in a paragraph is adjusted to fit on
a line with at most 60 characters.

One or more lines can be indented from the
left margin with an Indent command.

One can also specify that lines are to be printed
verbatim as in the following short table:

ITEM AMOUNT
1 18
2 6
3 11

The Example Text Formatting 359

Table 16.3 continued

ERROR CONDffiONS

1. An input line beginning with a colon is not followed by a legitimate
command.

Response: The line is output verbatim with 5 asterisks in the left margin to
call attention to the problem.

2. The argument given for an Indent command is not numeric or too
large(> 60); the argument given for a Center or Skip command is
not numeric or too large (> 99).

Response: As above.

3. One of the lines to be centered with a Center command is a
command line.

Response: The line is output centered, but 5 asterisks are placed in the left
margin to call attention to the problem.

4. A line to be output extends beyond the right margin. This can be a
verbatim line that is too long or a word in a paragraph that is too
long (for example, if the indent happens to be 50 characters, and a
word will not fit in the remaining 10 spaces).

Response: Allow the line to be output up to, but not beyond, the edge of
the page. Place 5 asterisks in the left margin to call attention to the
problem.

GLOBAL VARIABLES

There are two global variables, LineNum and PageNum, which are
manipulated solely by the two procedures, Newline and NewPage. They
are used to paginate the formatted text and print page numbers.

As always, the complete, final program comprises the main program
and the declarations of all the subprograms, as shown in Fig. 16.4. You
may wish to read over the main program and all its subprograms until
you are satisfied that they work correctly. While doing this you may note
several ways of "speeding up" the program. The fact is, we confess, that
efficiency was not a significant design criterion during development.

360 16 Beyond the Small Program

Figure 16.4 • Program
Format

program Format;

const
PageSize = 66;
LinesPerPage = 51;
LeftMargin = 15;
TextWidth = 60;
MaxLineLength = 70;

CommandChar = ':';
Blank=' ';
NormalMargin ='
ErrorMargin = '*****

type
Mode= (ParagraphMode, VerbatimMode);
CommandName = (Paragraph, Verbatim, Indent, Center, Skip,

Page, Illegal);
IndentRange = O .. TextWidth;
ArgumentRange = 0 .. 99;
ColumnNum = O .. MaxLineLength;
LineNumRange = O .. PageSize;
Linelmage = string[121];
Commandlnfo = record

Name : CommandName;
Argument : ArgumentRange;
Line : Linelmage;

end;

var
TextMode : Mode;
Indentation : IndentRange;
LineNum : LineNumRange;
PageNum : Integer;
InFile: Text;

(-- Utility Routines I
function NextlnputChar : Char;
begin

if not EOF(lnFile) then
NextlnputChar := InFile -

end;

function DigitValue (C : Char) : Integer;
begin

DigitValue := Ord(C) - Ord('O')
end;

Figure 16.4 continued

procedure SpaceOver (NumSpaces: lndentRange);
var

I: Integer;
begin

for I := I to NumSpaces do
Write(Blank)

end;

procedure NewPage;
const

PageNumColumn = 27;
PageNumLine = 57;

var
LineCount : LineNumRange;

begin
for LineCount := LineNum + I to PageNumLine do

WriteLn(Blank);

Write(NormalMargin);
SpaceOver(PageNumColumn);
Write('-', PageNum : I,'-');

for LineCount := PageNumLine to PageSize do
WriteLn(Blank);

LineNum := I;
PageNum := PageNum + I

end;

procedure NewLine;
begin

if LineNum = LinesPerPage then
NewPage

else

end;

begin
WriteLn(Blank);
LineNum := LineNum + I

end

The Example Text Formatting 361

362 16 Beyond the Small Program

Figure 16.4 continued

procedure GetWord (var Word: Linelmage);
begin

Word:='';
while (NextlnputChar = Blank) and not EOLn(lnFile) do

Get(lnFile);
if not EOLn(lnFile) then

repeat
if Length(Word) < MaxLineLength then

Word := ConCat(Word, NextlnputChar);
Get(lnFile)

until (NextlnputChar = Blank) or EOLn(lnFile)
end;

procedure GetCommand(Line : Line Image;
var Name : CommancIName;
var EndOfCommand: ColumnNum);

var
FstWord : Linelmage;

begin
if Pos(Blank, Line) = 0 then

EndOfCommand := Length(Line)
else

EndOfCommand := Pos(Blank, Line) -1;
FstWord := Copy(Line, 1, EndOfCommand);
if FstWord = 'PARAGRAPH' then

Name := Paragraph
else if FstWord ='VERBATIM' then

Name := Verbatim
else if FstWord ='INDENT then

Name := Indent
else if FstWord = 'CENTER' then

Name := Center
else if FstWord = 'SKIP' then

Name:= Skip
else if FstWord = 'PAGE' then

Name:= Page
else

Name := Illegal
end;

Figure 16.4 continued

procedure GetArgument (Line : Linelmage;
EndOfCommand : ColumnNum;
var Name : CommandName;
var Argument: Argument(Range);

var
Column : ColumnNum;
NextChar : Char;

begin
if EndOfCommand = Length(Line) then

if Name in [Center, Skip] then
Argument := 1

else
Name := Illegal

else
begin

Column := EndOfCommand + 1;
while Line[Column] = Blank do

Column := Column + \;
NextChar := Line[Column];

end;

if not (NextChar in ['0' . .'9')) then
Name := Illegal

else
begin

Argument := DigitValue(NextChar);
if Column <> Length(Line) then

end
end

begin
Column := Column + 1;
NextChar := Line[Column];
if (Column <> Length(Line)) or not (NextChar in

['0' . .'9')) then
Name := Illegal

else
Argument := (Argument • 10) + DigitValue(NextChar)

end

The Example Text Formatting 363

364 16 Beyond the Small Program

Figure 16.4 continued

procedure GetLine (var Line: Linelmage);

var
CharCount : Integer;
TrailingBlanks : Boolean;

begin
ReadLn(lnfile, Line);
CharCount := Length(Line);
TrailingBlanks := True;
while TrailingBlanks and (CharCount <> 0) do

if Line[CharCount] <>Blank then
TrailingBlanks := False

else
CharCount := CharCount - 1;

Line := Copy(Line, 1, CharCount)
end;

procedure ParseLine (var Command: Commandlnfo);

var
EndOfCommand : ColumnNum;
BadArgument : Boolean;

begin
GetLine(Command.Line);
GetCommand(Command.Line, Command.Name, EndOfCommand);
if (Command.Name in [Paragraph, Verbatim, Page]) and

(Length(CommandLine) <> EndOfCommand) then
Command.Name := Illegal;

if Command.Name in [Indent, Center, Skip] then
begin

end;

GetArgument(Command.Line, EndOfCommand, Command.Name,
CommandArgument);

if (Command.Name = Indent) and

end

(Command.Argument> TextWidth) then
Command.Name := Illegal

Figure 16.4 continued

procedure CenterLine;

var
Line : Linelmage;
LeadingBlanks : Integer;
NextChar : Char;
IsCommandLine : Boolean;
Column : ColumnNum;

begin
if not EOF(lnFile) then

begin

end;

IsCommandLine := (not EOLn(lnFile)) and
(Nextlnput Char = CommandChar);

while (NextlnputChar = Blank) and not EOLn(lnFile) do
Get(lnFile);

GetLine(Line);
if Length(Line) > 0 then

begin
if Length(Line) < TextWidth then

LeadingBlanks := (TextWidth - Length(Line)) div 2
else

LeadingBlanks := O;
if IsCommandLine or (Length(Line) > TextWidth) then

Write(ErrorMargin)
else

Write(NormalMargin);
SpaceOver(LeadingBlanks);
Write(Line)

end;
New Line

end

The Example Text Formatting 365

366 16 Beyond the Small Program

Figure 16.4 continued

procedure DoCommands (var TextMode: Mode;
var Indentation: lndentRange);

var
Command : Commandlnfo;
LineCount : ArgumentRange;

begin
repeat

ParseLine(Command);
case Command.Name of

Paragraph:
TextMode := ParagraphMode;

Verbatim:
TextMode := VerbatimMode;

Indent:
Indentation := Command.Argument;

Center:
for LineCount := I to Command.Argument do

CenterLine;
Skip:

for LineCount := I to Command.Argument do
NewLine;

Page:
NewPage;

Illegal :
begin

Write(ErrorMargin);
Write(CommandLine);
NewLine

end
end

until (NextlnputChar <> CommandChar) or EOF(lnFile)
end;

Figure 16.4 continued

procedure PrintWord (Word : Linelmage;
Indentation : lndentRange;
var Column: ColumnNum);

var
FirstWordOnLine : Boolean;
EndOfWord: Integer;

begin
if Column = Indentation then

begin
FirstWordOnLine :=True;
EndOfWord :=Column+ Length(Word)

end
else

begin
FirstWordOnLine := False;
EndOfWord := Column + Length(Word) + 1

end
if not FirstWordOnLine and (EndOfWord > TextWidth) then

begin
New Line;
Column := Indentation;
FirstWordOnLine :=True;
EndOfWord := Indentation + Length(Word)

end;
if EndOfWord > TextWidth then

begin
Word:= Copy(Word, 1, MaxLineLength - Indentation);
Write(ErrorMargin);
SpaceOver(lndentation);
Write(Word);
New Line

end
else

begin

end;

if FirstWordOnLine then
begin

Write(Norma!Margin);
SpaceOver(lndentation)

end
else

Write(Blank);
Write(Word);
Column := EndOfWord

end

The Example Text Formatting 367

368 16 Beyond the Small Program

Figure 16.4 continued

procedure DoParagraphlines (Indentation: lndentRange);

const
Paraindent = 5;

var
Word: lineimage;
Column : ColumnNum;
NewParagraph : Boolean;

begin
Column := Indentation;
NewParagraph := True;
repeat

GetWord(Word);
if Length(Word) = 0 then

begin
if Column<> Indentation then

begin
Newline;
Column := Indentation

end;
NewParagraph := True;
Newline

end
else

repeat
if NewParagraph then

begin
Column := Column + Paralndent;
PrintWord(Word, Indentation+ Paraindent, Column);
NewParagraph := False

end
else

PrintWord(Word, Indentation, Column);
GetWord(Word)

until Length(Word) = O;
ReadLn(lnFile)

until (NextlnputChar = CommandChar) or EOF(lnFile);
if Column <> Indentation then

Newline
end;

Figure 16.4 continued

procedure DoVerbatimLines (Indentation: IndentRange);

var
Line : Linelmage;
NewLength : Integer;

begin
repeat

GetLine(Line);
if Length(Line) > 0 then

begin
NewLength := Length(Line) + Indentation;
if NewLength > TextWidth then

Write(ErrorMargin)
else

Write(NormalMargin);
SpaceOver(Indentation);
if NewLength > MaxLineLength then

Line:= Copy(Line, 1, MaxLineLength - Indentation);
Write(Line)

end;
Newline

until (NextlnputChar = CommandChar) or EOF(lnFile)
end;

begin { -- MAIN ALGORITHM }

Reset(lnFile, 'SOURCETEXT);
Close(Output);
Rewrite(Output, 'Printer:');
TextMode := ParagraphMode;
Indentation := O;
LineNum := 1; .
PageNum := 1;

while not EOF(lnFile) do
begin

if NextlnputChar = CommandChar then
DoCommands(TextMode, Indentation)

else if TextMode = ParagraphMode then
DoParagraphLines(lndentation)

else if TextMode = VerbatimMode then
DoVerbatimLines(Indentation)

end;

NewPage

end.

The Example Text Formatting 369

370 16 Beyond the Small Program

16.2 • Parting
Comments

Format is a program of fairly large scale. In the testing of this program, we
were faced with the necessity of conserving memory space without
sacrificing any of the desired procedures and functions.

Certain steps can be taken to conserve memory space when
working with Macintosh Pascal. One very simple step is to remove the
windows from the screen before running the program. Should an error
occur during the run, the program window reappears and the program is
displayed indicating the location of the error.

Another space saver is to output directly to the printer as we have
done in Format by using

Close(Output);
Rewrite(Output,'Printer:');

The Close call closes the standard output file which writes to the Text
window. The Rewrite call sets the printer as the output file. Since the
internal output file has been closed, the space normally reserved for it is
freed for other uses.

To create the input file, a program similar to CreateBreedFile (Fig.
14.1) can be used. Program Format requires a file of type Text where the
characters are read in one at a time. The end character can be any
character that will not appear within the text, a backward slash ('-) is
usually a good choice. We leave the writing of the program to you.

Mac Write can also be used to create the source text. The text can be
entered on MacWrite and then saved as a text only document. The Save
As dialog box offers the option of saving the entire document or the text
only. Choosing Text Only saves what is needed for a source file; that is,
the text is saved without the MacWrite formatting commands. The text
can be saved on the Macintosh Pascal disk by choosing Eject and then
inserting the Pascal disk before clicking the Save button.

In parting, we would like to underline a few points:

• Like Holmes, we strongly advocate the top-down approach.

• Regardless of the approach a programmer settles upon, we
cannot over-emphasize the importance of thinking. Recall the
great detective's thoughts on human reasoning in earlier
chapters, especially before attempting to write any code.

• Finally, we should not forget that ultimately computer programs
are designed to do useful things, for human users.

Sadly, our narrative is all but done. "What is the use of having
powers, Doctor, when one has no field upon which to exert them?"
inquired Holmes in "The Sign of Four." Indeed. Surely, dear reader, you
have some field of your own to address?

Appendix A

Listed below are e menus and selections available on the Macintosh
Pascal disk. Some of the selections are available only when the Finder is
active; others only when the Macintosh Pascal interpreter has been
activated. Still others are available from both applications.

The Finder is the Macintosh application that controls the mani­
pulation of the various sets of data on the disk; for instance, the opening
and closing of files, the copying and naming of documents, and the
displaying of. information about the contents of the disk. The selections
that are available as part of the Finder are indicated by (F) following the
selection or menu name. Those that are available when using Macintosh
Pascal are indicated by (MP).

Only the selections that show in bold print can be activated; for
instance, Eject will be in bold print on the File menu only if the active item
is the disk which is presently in the machine.

About the Finder (F)

About Macintosh Pascal (MP)

Shows which version of the Finder the Apple
disk contains, the copyright date, and
the authors.

Shows which version of Macintosh
Pascal the disk contains, the copy­
right date, the authors, and the
memory usage.

Other choices on this menu contain information about the Macintosh
desk accessories; refer to the owner's manual for information. 371

372 Appendix A

File New (MP) Available only when a program window has been
closed. Creates an untitled window for writing a
new program.

Open (F) Opens the selected icon or item name into a
window displaying the contents of the item.

Open (MP) Available only when a program window has been
closed. Puts up a dialog box listing the available files
and offering the option of opening an existing file,
canceling the choice, or ejecting the disk.

Close (F,MP) Closes the currently active window.

Close All (F) Closes all windows and removes all desk accessories
from the screen.

Duplicate (F) Duplicates the selected item onto the same disk;
labels the item as "Copy of ItemName."

Get Info (F) Puts up a dialog box with the following information
about the selected item:
Type of Item: Disk, document, folder or appli­

cation.
Size in bytes:
Location: The folder or disk containing the

item.
Dates: The date the item was created and

the date it was last modified.
Also offers the option of locking the items and a
place to enter comments about the item.

Put Back (F) Returns selected item(s) to the folder or disk they
were last taken from.

Save (MP) Enters the changes made to the document onto the
disk file.

Save AS (MP) Puts up a dialog box requesting a name for the
program, a choice of saving the entire document or
the text only, and the opportunity to eject the disk
in order to save the document on a different
disk.

Revert (MP) Discards the changes made and reverts to the last
version saved.

Page Setup (MP) Puts up a dialog box allowing choices of the
following details for page setup:
Paper: US Letter, US Legal, A4 Letter, or

International Fanfold.

Print (F,MP)

Quit (MP)

Eject (F)

Undo (F)

Cut (F, MP)

Copy (F,MP)

Paste (F,MP)

Clear (F,MP)

Select All (F,MP)

Orientation: Tall - normal printing
Tall Adjusted - graphics adjusted

to be consistent
with that appears
on the screen.

Wide -wide printing

Puts up a dialog box allowing the following printing
choices:
Quality:
Page Range:
Copies: __
Paper Feed:

High, standard, or draft.
All, From: __ , To: __
Number of copies.
Continuous or Cut Sheet.

Closes the windows and returns to the Finder.

Ejects the disk.

Summary of Menus 373

Undoes the last text editing action. Edit
Removes the highlighted text and places it on the
clipboard replacing whatever was previously on
the clipboard.

Copies the highlighted text onto the clipboard
replacing whatever was previously on the
clipboard.

Inserts a copy of the text contained on the
clipboard at the location of the cursor; if a
section is highlighted it is deleted and the new
text is entered in its place.

Deletes the highlighted test; does not save it on
the clipboard.

Causes all the text in the window to become
highlighted.

Show Clipboard (F) Displays a window with the current contents of
the clipboard.

Find
to

Looks for and highlights the text indicated in the What Search
Find dialog box; starts seeking at the current cursor
location.

374 Appendix A

Replace

Everywhere

What to Find

Run (MP) Check

Reset

Go

Go-Go

Step

Step-Step

Stops In

Windows (MP) Untitled

Instant

Obsel'Ve

Text

Drawing

Replaces the currently highlighted text with the text
indicated in What to Find dialog box.

Performs a Find and Replace on the whole current
document in accordance with what has been specified
in the What to Find dialog box.

Puts up a dialog box allowing you to indicate what text
to Find and what to Replace it with.

Checks the current program to see if it is a valid Macintosh
Pascal program.

Returns the current program to the beginning.

Begins or resumes execution of the current program;
continues until it reaches a pause, stop, or end.

Similar to Go except that when execution reaches a stop
sign it pauses only long enough to update the Observe
window.

Executes one line of the program; the finger in the left
margin points to the next line to be executed.

Similar to Go-Go except that the finger points to the line to
be executed next.

Causes the Stop Signs to appear in the program window. If
the stops are already in, this menu choice appears as
"Stops Out."

The name actually appearing here will be the name of the
current program; choosing this window causes it to
become the active window.

Causes the Instant window to become active. Pascal
statements can be entered and executed in the Instant
window whenever it is active.

Causes the Observe window to become active. The values
of any variables entered in the Observe window will be
displayed as the program is running.

Causes the Text window to become active. Whatever text is
"Written as output by the program will appear in this window
whether or not it is active; activating it brings it to the front
of the screen for visibility.

Causes the Drawing window to become active; QuickDraw
output will appear in this window.

Clipboard

Type Size

Causes the Clipboard window to become active displaying
its current contents.
Puts up a dialog box allowing the selection of small,
medium or large type size.

Summary of Menus 375

This menu appears only when a program is running. Holding the button Pause (MP)
down on Pause stops the program run temporarily; choosing Halt causes
it to stop until a new run command is selected. The program continues at
the point where it was interrupted.

By Icon

By Kind

By Name

By Date

By Size

Displays the contents of the disk or file by icon. When items View (F)
are displayed by icon, the icons can be moved from one
location to another; for instance, a document can be moved
into or out of a folder, or any item can be moved into the
trash or to an alternate disk. Furthermore, the names of
items shown beneath the icon can be edited. The heading of
the icon display gives the number of items contained, the
amount of space used and the space available.

Lists the contents of the disk or file and tells whether the
item is an application, a file, or a document. For documents,
the listing also shows what application was used in its
creation. In addition, the size of the item and the latest
modification date are shown.

Lists the same information as above with items arranged
alphabetically by the name of the item.

Lists the same information as above with items arranged by
the latest modification date.
Lists the same information as above with items arranged by
size starting with the largest.

Clean Up
Empty Trash

Puts the icon display into neat rows and columns. Special (F)
Erases the contents of the trash barrel. Until this choice
has been selected, items in the trash barrel can be
moved back to the screen; however, once the trash has
been emptied, the items contained are no longer
retrievable.

Erase Disk Erases the disk.

Appendix B

The following table summarizes the rules for writing the Macintosh
Pascal programs given in the text. These rules define much, but not all, of
the Macintosh Pascal language. In the table describing our subset, the
following conventions have been used.

1. Italicized names appearing in the left column, for example,

variable-declaration

give the names of constructs in Macintosh Pascal.

2. The symbol --- separates the name of a construct from the form
for writing the construct in Macintosh Pascal. The symbol --+

may be read "is written as" or "is defined as."

3. If a construct has two or more alternative forms, the symbol I is
used to separate each alternative. The symbol I may thus be
read "or."

4. Braces, for example, the braces in

I parameter-part I

enclose optional items.
5. An ellipsis symbol ... following a name or an item in braces, for

example, the ellipses in

digit ...
I adding-operator term } ...

specifies that the preceding name or item can be repeated one or
more times. 377

378 Appendix B

Programs program

declaration-part

statement-part

Declarations constant-declaration

type-declaration

variable-declaration

subprogram-declaration

procedure

function

parameter-part

parameter-definition

result-type

program identifier {(file-list)};
declaration-part

begin
statement-part

end.
{uses

identifier-list;}
{ const

constant-declaration; ... }
{type

type-declaration; ... }
{var

variable-declaration; ... }
{ subprogram-declaration; ... }

statement{;
statement } ...

identifier = constant;

identifier = type;

identifier-list: type;

procedure function
procedure identifier

{ parameter-part };
declaration-part

begin
statement-part

end;
function identifier { parameter-part };

result-type;
declaration-part

begin
statement-part

end;
(parameter-definition{ ;

parameter-definition } ...)

{ var l identifier-list : type-identifier

type-identifier

Syntax of Macintosh Pascal 379

statement assignment-statement I if-statement
case-statement I while-statement
repeat-statement I for-statement
procedure-statement I with-statement
compound statement

assignment-statement _. variable := expression
function-identifier := expression

if-statement if condition then

case-statement

while-statement

repeat-statement

for-statement

procedure-statement

with-statement

compound-statement

condition

statement
{ else if condition then

statement } ...
{else

statement}

case expression of
constant-list: statement{;
constant-list: statement} ... {;

otherwise
statement}

end
while condition do

statement

repeat
statement {;
statement } ...

until condition

_. for variable := expression to expression do
statement

for variable := expression
downto expression do
statement

procedure-identifier
procedure-identifier (expression-list)

with record-variable do
statement

begin
statement{;
statement } ...

end
expression

Statements

380 Appendix B

Types type

ordinal-type

enumerated-type

subrange

real-type

array-type

index-list

index-type

record-type

set-type

file-type

string-type

size-substitute

pointer-type

Variables variable
and Expressions

array-component

string-component

record-component

field-designator

file-component

expression-list

expression

simple-expression

term

---+type-identifier I ordinal-type I real-type
I array-type I record-type I set-type
I file-type I string-type I pointer-type

integer I longint I boolean I char
I enumerated-type I subrange

identifier-list

constant .. constant

real I double I extended

(packed } array [index-list] of type

index-type (, index-type } ...

type-identifier I subrange

record
identifier : type (;
identifier : type } ...

end

set of ordinal-type

file of file I text

string ([size-attribute H
unsigned integer

dynamic-variable

variable I array-component! string component
record-component I file-component

array-variable [expression-list]

string-variable [expression]

record-variable. field-designator

identifier

file-variable

expression (, expression } ...

simple-expression
simple-expression relational-operator

simple-expression

I sign } term (adding-operator term } ...

not operand
operand (multiplying-operator operand } ...

operand

function-call

set

element

sign

relational-operator

adding-operator

multiplying-operator

type-identifier

procedure-identifier

function-identifier

identifier-list

identifier

constant

unsigned-constant

number

integral-number

real-number

scale-factor

string

character

digit

letter

special-character

Syntax of Macintosh Pascal 381

unsigned-constant I variable I (expression)
function-call

function-identifier { (expression-list) }

[element {, element } ...]

expression I expression . . expression

+1-
=l <>I< I<= I >=I>
+I-I or
* I I I div I mod I and

identifier

identifier

identifier

identifier {, identifier } ...

letter { letter-or-digit-or-underscore } ...

{sign} unsigned-constant

number I identifier I string

integral-number I real number

digit ...

integer. integer
integer. integer E scale-factor

{sign} integer

'{character} .. .'

letter I digit I special-character

ol1l213l4ISl6l7l8l9
AIBICIDIE IF IGIHII
J IKIL IMINIOIP IQIR
s ITlulvlwlxlvlz I
!l"l*l$l%1&1 1{1}1°1+
1,1-1.1/l:l;l<l=l>l?I®
l[I 111-1_1 1{11 Ill

Identifiers,
Numbers, and
Strings

Appendix C

The programming exercises that follow are rather difficult ones, possibly
requiring many hours to solve. These problems present a worthy
challenge to those who want to really exercise their programming skills.
We present them here for use as term projects, or team projects, or
simply as good exercise for those who want to improve their mental
capacities in the area of programming.

C.1 Drawing a Circle
Many programmers have seen computer-drawn shapes. Here is one that
is not too difficult to draw, but does have a little twist to it.

Write a program to read in a real number representing the radius of
a circle in inches. The program should print a circle of the given radius,
centered on the page. Your program should accept input values up to 4.0
inches, and draw the circle with about 100 points.

Note: You do not have to connect the points, but just print the 100
or so points on the circumference.

C.2 Paying Caesar His Due
When tax time comes around, most of us hate doing the figuring as much
as we dislike paying Caesar his due. With the right program and
information, the computer can prove to be most useful in figuring out
taxes. Although there is much more involved, the last step is to take out
final earnings figure and use that to look up the amount due.

So, obtain a copy of a recent tax table and write a problem to read in
your earnings and print out the tax. If you feel that this is not enough to
flex your programming muscles, include the number of dependents in
your calculations.

Appendix C o

383

384 Appendix C

C.3 Word Searching
You may have heard of an automatic indexing program. This is a program
that reads in a document, searches for a given list of keywords and
keyphrases, and then prints each keyword or keyphrase followed by the
page numbers on which the word or phrase occurs. For example, for a
text on Pascal, we may have

addition 16,31,32
and 35
array 102-108, 154, 191
assignment statement 21-25, 104, 252

It is easy to see the merits of such a program.
Unfortunately, automatic indexing has its problems. Should you

distinguish between capitalized and uncapitalized words? What about
plurals? Shouldn't the first page listed be the major entry? What about
words like "assignment" that appear almost everywhere? Should "add"
be treated differently from "addition" or "real" be treated differently from
"real number"? What about "real world"? Should there be subcategories?
Or cross-indexing?

Never mind. For this problem consider the following simplified task
You are to write a program that first reads in a series of keywords, ending
with the word STOP, and then reads in a document. For simplicity, use the
first page of this chapter as your document and invent your own
keywords; the page can be entered with all words fully capitalized.

The program should print the number of occurrences of each
keyword.

C.4 Inventories
It is hard to think of many large-scale purchasing operations whose
inventory is still done by hand. Enter the computer, of course. For book
inventories the problem is not too difficult. Suppose the inventory entries
for each book are ordered by stock number, and that each inventory
entry contains the stock number, title, author, list price, quantity on
hand, and publisher of the book.

For input, such a program is given two files: (1) the file of inventory
entries, and (2) a file of purchase entries, also ordered by stock number
and each containing the quantity sold. For output, the program prints any
inventory entry whose remaining quantity on hand is fewer than 500. The
remaining quantity on hand is calculated by subtracting all purchases
from the quantity given in the corresponding inventory entry.

Write such a program, along with the design of the appropriate file
entries. Test your program with two short input files of your own.

Challenging Programming Exercises 385

C.5 Computations Based on Physical Measurement
Imagine for the moment that you are trying to calculate the area of a
rectangular room. You can only really read your ruler to three digits, for
example:

Width = 12.4 feet
Length = 13.6 feet

Now imagine calculating the product of these two numbers, 168.64. Can
we be sure that the area of this room is 168.64 square feet and not 168.63,
168.65, or even 169 square feet? No.

It is a law of physical measurement that the precision of a computed
result can be no greater than the precision of any measurement needed
to calculate the result. For example, all we can say is that the area is
accurate to three digits. Thus, we can say that the area of our room is 169
square feet, but we cannot be any more precise than that. The actual area
could be 168.83, 168.70, 169.08, or 169.40 square feet.

Write a program to read in two real numbers and print out their
exact product and the number of digits of precision. The precision should
be equal to the number of digits of the input value with the fewest number
of digits. For example, if you input

12.4 9.1

the output should be

THE PRODUCT IS 112.84
PRECISION IS 2 DIGITS

Note: This problem requires reading the input values on a
character-by-character basis.

C.6 The Computer in the Kitchen
There are many who believe that it will not be long before the computer
will be a household appliance. It's not clear that this will be the case, but
here goes.

Imagine a program with the following dialogue:

Computer: Enter recipe name
You : Truffle sauce a la Michel Guerard
Computer: For how many servings is the recipe written?
You : 8
Computer:
You
Computer:
You
Computer:

How many servings would you like?
6
How many ingredients are there?
7
Now for the recipe

386 Appendix C

You : 1/2 pint Port
8 tbs. Cognac
1.75 oz. Chopped truffles
4 tbs. Truffle liquid
1 pint Demi-glace
1.75 oz. Unsalted butter

Salt and pepper
Computer: Ingredients for 6 persons.

Truffle sauce a la Michel Guerard.
3/8 pint Port
6 tbs. Cognac
1.3 oz. Chopped truffles
3 tbs. Truffle liquid
3/4 pint Demi-glace
1.3 oz. Unsalted butter

Salt and pepper

It all looks simple, but ...
Whipping up a truly useful program for this application means

dealing with strings in Pascal. In addition, this sort of problem puts you in
touch with all kinds of recipes; and you've got to keep in mind that the
chef is not always a computer expert, so your final list of ingredients has
to make sense. For instance,

1.750000000 Oz. Butter

or

l 75E-2 Oz. Butter

would hardly please the cook. And what about reading (or printing)

1 3/4 Oz. Butter

instead of

1.75 Oz. Butter

Hmmm.
In any case, give it a good try and write such a program.

C. 7 Justified Text
The text of many manuscripts (including this one) is written with justified
text. That is the words of a paragraph are aligned on both the left and
right margins. Many consider this layout more aesthetic than having a
ragged right edge.

Revise the program of Fig. 16.4 to produce justified text. To do this
you will need to decide on a scheme for "balancing" lines, and add several
new procedures to the program.

Challenging Programming Exercises 387

C.8 Reservations Please
Have you ever walked up to a ticket counter, asked to reserve some seats,
and noticed that the reservations were handled by computer?

For plane reservations the problem is not too overwhelming.
Suppose there are 25 rows of seats, six to a row. The rows are numbered 1
through 25, and the six seats in each row are labeled A through F. Assume
that seats A, B, Care on one side of the aisle: D, E, and Fon the other. Seats
A and Fare window seats. Rows 1 through 15 are nonsmoking rows.

We can readily imagine a simple dialogue as follows:

Computer: Number of seats?
You 2
Computer: Smoking or non-smoking?
You NS
Computer: Window?
You : Y
Computer: Reservations OK, seats lOA and 108

In the above dialogue, the following abbreviation are assumed:

S - Smoking
NS - Nonsmoking
Y - Yes
N - No
DC- Don't care

Obviously, we could consider much more complex situations, but this
should suffice for a start.

Now for the problem. Write a program to accept a series of
reservation requests for a single plane. On request at any time, the
program should display the status of the seats, for example, in the
form

A 8 c D E F

Row 1 x x x

Row2 x x x x x

Row3 x x x x

Row4 x - x x

where an X denotes a seat already taken.
The following characteristics are important in the program's design:

the ability to handle abbreviations, the ability to respond to typing errors,
maximization of the number of seats occupied.

388 Appendix C

The output of your work should contain:

a) A short but clear guide for using the program. The User's Guide
should be suitable for a lay person.

b) Several test runs to show the performance of the program.
These may be included in (a).

c) The program itself.

C.9 Fractional Arithmetic
The built-in types in a language almost never include whole fractions. The
reason is simple: exact arithmetic with fractions is not easy.

Consider the following expression and the (exact) fractional
values.

2/6
2/6 + 2/6
(l/2)*(1/4)
1/2 + 1/3 + 1/4
(11/16)*2 + 1/3
1/3 - 2/3 + 1/3
(2/3) I (1/3)

- value is 1/3
- value is 2/3
- value is 1/8
- value is 13/12
- value is 41/24
- value is 0
- value is 2

To make these calculations we have to know about putting fractions in
their lowest terms, and other such familiar operations.

Write a program to read in a fractional arithmetic expression, such
as the above, and print its exact fractional value. The expression must
satisfy the following rules:

a) The results of the expression can be whole numbers (i.e., 1, 2, 3,
and so on) or fractions (such as 1/2, 3/2, 1/3, 2/3, and so
on).

b) The operators can be +, -, * or /.

c) fractions or sub-expressions can be parenthesized.

d) Within a parenthesized expression, the operators * and I are
applied before + and-. Otherwise evaluation proceeds from left
to right.

You may add some restrictions of your own if you think they will add to
the clarity of the expressions.

algorithm, 22, 155-156, 179
Analytical Engine, 1, 3, 69, 99, 178
argument, 244-246
arithmetic functions, 85
arithmetic operators, 82
array, 205, 211

indexes, 216
string, 220
type, 215-220

Babbage, Charles, 5
binary number, 203
Boolean type, 109, 189-190
bottom-up approach, 339
breakpoint, 166-171
buffer variable, 284

case statement, 112-113
Cavendish laboratories, 2
character string, 29, 381

array, 220
packed, 220
procedures and functions, 197
relational, 198

CharWidth, 4 7
comments, 29-30
communication, 156-157
compound statement, 105
conditional statement, 106-108
constant declaration, 80
control variable, 137

decimal number, 203
declaration, 55, 79

constant, 80
subrange, 191
variable, 79

dialog box, 165
double number, 29, 79
DrawChar, 46
DrawDiagonal, 51-52

Index

DrawLine, 48
DrawString, 46

EOF, 281, 282, 285
EOLn, 282, 285
EraseRect, 48
exceptional condition, 350
expansion, 343
expression, 74, 81-86
extended number, 29, 79

Fibonacci, 260
field, 302
file, 263

EOF, 281, 282, 285
EOLn, 282, 285
fixed, 265
free, 265
procedures, 285
text, 281
types, 280-285

for loop, 128, 136
formatting files, 265
formatting programs, 30-31
formatting text, 355
FrameArc, 49
FrameRect, 55
FrameRoundRect, 49
FrameOval, 48
functions, 84-88, 24 7

global information, 248-249
goto, 146

389

390 Index

identifier, 26, 381
imitation approach, 340
input, 276-277, 348
inside-out approach, 339
integer, 28, 79
iteration, 260
Ivanovich, Dimitri, 230
lnvertRect, 48

keyword, 27

lable, 146
linear approach, 339
LineTo, 47
local variable, 52
Longlnt, 29, 79
loops, 127-128

body, 133
for, 128, 136
repeat, 135
termination, 133
while, 134

Macintosh, 8
cursor control, 10
icons, 8, 166
menus, 11, 371
programming, 9-12, 17-18
screen display, 8
windows, 10, 170

MacWrite, 5
Mendeleeffs table, 232
menus, 11, 371
MoveTo, 47, 56

notation, scientific, 28
number, 28, 381

binary, 203
decimal, 203
double, 29, 79
extended, 29, 79
integer, 28, 79
long integer, 29, 79
octal, 203
real, 28, 38, 80

octal number, 203
operand, 81-82
operator, 81-82, 110
Ord, 187
ordinality, 187
output, 276-278, 348

packed, 220
PaintArc, 50
PaintRec, 55
parameters, 51
pixel, 41-42
pointer, 306
Pred, 187
prettyprinting, 158-160
problem solving, 153-156
procedure, 235,241, 246
procedure call, 26, 237
program format, 30-31
program structure, 23, 156-160
programming, 3

QuickDraw, 41-60
graphic routines, 330
predefined types, 321-325, 329
procedures,46-60
screen display, 41-42

Read, 18
ReadLn, 18
real number, 28,38, 80
record, 293, 296

components, 296
dynamic structure, 305
fields, 302
name, 296
pointer, 305
types, 301-304
value, 296

recursion, 253-254
repetition, 135

scientific notation, 28
side effects, 250-252
statement, 25, 55, 379

assignment, 74, 78, 306
case, 112-113
compound, 105
conditional, 106-108
single, 105

string, 29, 381
string type, 193, 197
StringWidth, 4 7
subprogram, 229,240,355

parameters, 243
Succ, 187
symbols, 27

text file, 281
text formatting, 355
top-down approach, 333, 336, 339
type, 175, 185-198

boolean, 189-190
character, 190
enumerated, 185-186, 189
string, 193, 197
subranges, 191

variable, 69-77
assignment, 74, 77
buffer, 284
control, 137
declaration, 79
local, 52
parameters, 51

while loop, 134
Write, 18
WriteLn, 18, 33
WriteDraw, 45, 54

Index 391

?.

a

"··

In response to the growing popularity of Apple 's Macintosh, Henry Ledgard and Andrew Singer
have written a book that covers the principles of programming and problem solving in Pascal for
the Macintosh. This book is written for those readers with only limited programming experience
as well as for the more sophisticated programmer wishing to learn Macintosh Pascal.

Highlights of Pascal for the Macintosh rM:

• Numerous examples guide both syntax and concepts.

• Superbly written Pascal programs appear in every chapter.

• Practice sections offer practice and drill in all areas of Macintosh Pascal programming.

• Programming exercises offer an opportunity to work on the computer.

• Motivational preludes, in the form of Sherlock Holmes' dialogues , illustrate fundamental
programming concepts.

This is a carefully constructed, splendidly written, pedagogic work.

ABOUT THE AUTHORS

Henry Ledgard holds a Ph.D. from M.I. T. and has written numerous works on programming
and Pascal.

Andrew Singer holds a Ph.D. from the University of Massachusetts at Amherst, and was the project
leader for Macintosh Pascal.

ISBN 0-201-11772-X
Addison-Wesley Publishing Company, Inc.

