

Macintosh Pascal Standard Procedures Used in this Book
Procedure Section Procedure Section
close 11.10 open 11.10
delete 9.12 paintcircle 1.7
drawchar 7.6 paintoval 5.11
draw line 1.6 paintrect 5.7
eraseoval 5.11 pensize 11.1
eras erect 5.7 read 7.7
jrameoval 5.11 readln 3.6
framerect 5.7 reset 11.10
getmouse 7.11 seek 11.10
invertcircle 1.9 sysbeep 2.8
invertoval 5.11 write 3.8
invertrect 5.7 writedraw 5.9
lineto 11.1 writeln 1.3
moveto 5.9

Macintosh Pascal Standard Functions Used in this Book
Function
abs
button
chr
copy
eoj
filepos
length
odd
ord

Section
4.14
8.6
7.9

10.1
11.10
11.11
9.10
5.11
7.1

Function
pos
pred
random
round
sqr
sqrt
SUGG

trunc

Section
11.11
7.2

10.12
4.14
4.14
4.14
7.2
4.14

Macintosh
Pascal

L

Macintosh
Pascal

Robert Moll
University of Massachusetts, Amherst

Rachel Folsom

In Conjunction with THINK Technologies, Inc.

Consultant: Mary Elting

Houghton Mifflin Company
Boston Dallas Geneva, Illinois
Lawrenceville, New Jersey Palo Alto

Macintosh is a trademark licensed to Apple Computer, lnci

Copyright © 1985 by THINK Technologies, Inc. All right~ reserved.

No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying a;1d recording, or by
any information storage or retrieval system, except as may ,,e expressly permit­
ted by the 1976 Copyright Act or in writing by the Publisher. Requests for per­
mission should be addressed to Permissions, Houghton Mif1lin Company, One
Beacon Street, Boston, Massachusetts 02108.

1

Printed in the U.S.A.
Library of Congress Catalog Card Number: 84-81937
ISBN: 0-395-3757 4-6

BCDEFGHIJ-H-898765

Contents

Preface xi

----1 A First Look at Pascal 1-------------
1.1 Getting Started l
1.2 Taking a Look at Windows 6
1.3 The Instant Window 8
1.4 Quitting 13
1.5 Your First Program 13
1.6 Points , Lines , and the Drawing Window 16
1. 7 Circles 20
1.8 Stepping 22
l. 9 How to Move the Ball 23
1.10 Saving Your Program 27
1.11 Looping 29
1.12 Let's Get the Ball Rolling 31
1.13 Saving Your Revised Program 33
1.14 Printing Program Cartoon 33
1.15 The Nuts and Bolts of Programs 34
1.16 Pascal and Macintosh Pascal 35
Test Yourself 36
Problems 37

---- 2 Machine Organization and Program Planning 43------
2.1 Binary Numbers and Memory 43
2.2 Where Does MacPascal Fit In? 45
2.3 How Program Cartoon Is Stored in Memory 45

v

vi Contents

2.4 What Happens When You Run Program Cartoon 46
2.5 The Value of a Variable 47
2.6 Watching Variables with the Observe Window 47
2. 7 Arithmetic with Integers in MacPascal 53
2.8 Arithmetic and Looping 56
2.9 Solving Arithmetic Problems 58
2.10 Using Arithmetic in Program Explode 59
2.11 Planning a Graphics Program-Drawing Diamonds 60
2.12 Thinking, Planning, Testing, and Coding and Debugging 64
2.13 An Orbiting Planet 65
2.14 Getting the Planet to Return-Backward For Loops 69
2.15 Outside the Standard Drawing Window 70
2.16 Comments 72
2.17 Good Names, Bad Names, and Syntax Diagrams 73
Test Yourself 74
Problems 74

____ 3 Syntax, Interactive Programs, and Real Numbers 79 -----
3.1 Pascal Syntax-How to Beat the Bugs 79
3.2 What Is a Statement? 82
3.3 Syntax Notation 85
3.4 Nested Loops 87
3.5 Constants 88
3.6 Interactive Programs 90
3.7 More on Output-Fields and Field Widths 94
3.8 The Write Statement 97
3.9 Real Numbers 98
3.10 Writing Programs with Real Numbers 100
3.11 Getting Around Scientific Notation 101
3.12 Arithmetic with Real Numbers 102
3.13 Program HockeyScore-Planning an Interactive Program 103
3.14 Program Targets-Donuts and Bull's-eyes 106
Test Yourself 111
Problems 111

----4 Assignment Statements and More on Looping 117 -----
4. l Assignment Statements 117
4.2 The Staircase Problem 119
4.3 Back to Money-Compound Interest 122
4.4 The While Statement 124

Contents vii

4.5 While-Loop Pitfalls 128
4.6 Relationships and Relational Operators 129
4. 7 Longint-a Second Integer Type 130
4.8 While-Loop Syntax · 132
4.9 The Natural Superiority of the While Statement 133
4.10 Back to Double-Your-Money 133
4.11 Tests and Counters 135
4.12 Yet Another Way to Loop: Repeat-Until 138
4.13 The Pitfalls of the Repeat Loop 1411
4.14 Math Formulas and Functions 142
Test Yourself · 148
Problems 148

----5 Conditional Statements, Rectangles, and Bar Graphs 153 __ _

5.1 Conditional Statements-a Two-Number Sort 153
5.2 A Better Two-Number Sort-The Scratchpad Principle 155
5.3 If-Then-Else: Pascal's Other Conditionai Statement 157
5.4 The Case of the Dangling Else 162
5.5 The Mod Operator 162
5.6 A Math Puzzle 163
5. 7 Drawing Rectangles 167
5.8 Bar Graphs 171
5.9 Writing in the Drawing Window 175
5.10 A Compound-Interest Bar Graph Program 178
5.11 Oval Graphics 183
Test Yourself 188
Problems 188

----6 Problem Solving with Procedures 191 ---------
6. l Creating Your Own Procedures 191
6.2 Executing Procedure Refrain 192
6.3 Program SquashedGlobe 193 I

6.4 Flexible Procedures-Procedures with Parameters 196
6.5 Procedures with Several Parameters 203
6.6 Procedures and Program Planning 207
6. 7 The Thermometer Problem 208
6.8 Creating a Checkerboard 214
Test Yourself 2~2
Problems 222

viii Contents

____ 7 Enumerated Types, the Type Char, and More on Procedures 225 -
7 .1 Enumerated Types 225
7.2 Successor and Predecessor 228
7.3 Program WeekPlan-Using a Global Constant 229
7.4 The Case Statement 232
7. 5 The Type Char 236
7.6 Writedraw and Drawchar 239
7.7 Echoing in the Drawing Window-Read and Readln 240
7.8 Echoing a Whole Sentence to the Drawing Window 241
7.9 The Standard Function Chr 243
7.10 Variable Parameters 244
7.11 Getmouse-A MacPascal Standard Procedure 250
7 .12 Drawing with Getmouse 252
7.13 Cryptography 254
7.14 Creating a Secret Cipher 255
Test Yourself 262
Problems 262

___ 8 The Type Boolean and Subrange Types 265 ______ _
8.1 The Type Boolean: Pascal's True/Faise Type 265
8.2 Boolean Values and Tests 267
8.3 The Logical Connectives and, or, and not 268
8 .4 Flags 271
8.5 Matching Pareqtheses-A Proofreading Program 273
8.6 The Mouse Button 276
8. 7 Logic and Computers 279
8.8 The Truth Table 280
8.9 Truth Tables and Theorems 282
8.10 Subrange Types 285
Test Yourself 287
Problems 287

____ g Arrays 289 ________________ _

9.1
9.2
9.3
9.4
9.5
9.6

The Rutland Street Survey: A First Look at Arrays
The Blueprint for an Array-Array Type Definitions
Keeping a Running Total-Program PeopleOnBlock
Finding the Largest Household 297
The Scoreboard Principle 298
Out-of-Range Errors-Program HowManyNeighbors

289
293
295

301

Contents ix

9. 7 Using an Array Variable as a Parameter for a Procedure 303
9.8 Rotating an Array-Program VolleyBall 305
9.9 Strings-Program TextEcho 308
9.10 More on Strings-Program PrintBackward 310
9.11 An Array of Strings-Program RµtlandStRoster 311
9.12 The Palindrome Problem 313
9.13 A Universal Line Graph Procedure 318
9.14 Pascal's Triangle 323
Test Yourself 330
Problems 330

----10 Functions and Random Numbers 333 --------
10.1 Standard Functions: A Review 333
10.2 Creating Your Own Functions 335
10.3 How to Declare Your Own Functions 336
10.4 Program PointlnRec-Preparing for Mouse Control 337
10.5 Function Capitalize 340
10.6 Another Math Puzzle-Finding Perfect Numbers 343
10.7 Passing an Array to a Function-Program ReportHottestDay 345
10.8 A Planning Example-Program LetterFrequency 347
10.9 Program WordFrequency 355
10.10 Sorting and Alphabetizing 361
10 .11 A Brief Look at Recursion 366
10.12 Random Numbers 368
10.13 Simulating a Coin Toss 369
10.14 The Monte Carlo Method 376
10.15 Estimating Pi with the Monte Carlo Method 377
10.16 Using Random Numbers to Test Programs 380
Test Yourself 384
Problems 384

----11 Advanced Topics: The Mouse, Records, and Files 381----
11.1 Program MiniPaint 387
11. 2 Records 398
11.3 Record Syntax 400
11.4 Program Checks 401
11.5 Employee Records 404
11.6 Arrays of Records 405
11. 7 :J:>rogram ReflectOvals 407
11.8 The With Statement 411

X Contents

11.9 Files 414
11.10 Random-Access File Commands 414
11.11 The Last Program-Program PhoneBook 424
Test Yourself 435
Problems 435

Glossary 439

Answers to Exercises and Selected Problems 445

Index to Programs 489

Index 491

Preface

Macintosh Pascal is an introductory programming textbook written specifically
for Macintosh Pascal. Developed for Apple's Macintosh computer, MacPascal
includes a number of improvements on the standard language, which make it far
easier to use than traditional versions of Pascal.

Macintosh Pascal is more than a generic Pascal text with additional sections
that explain MacPascal features. Working closely with THINK Technologies,
the software firm that developed the language for Apple, we sought to create a
book that would take maximum advantage of the features that make MacPascal
so easy to learn and so exciting.

The book has been designed for a one-semester introductory course in Pascal
programming. It is suitable for students who have no experience in computing.
Some high school algebra is needed, but nothing more. The book is also suitable
for students who have some programming experience.

____ Organization Of The Book ______________ _

The book divides into two parts. The first five chapters cover in detail a core of
programming fundamentals: looping, graphics, interactive programming, con­
ditional statements, and program design . Chapters 6-11 cover more advanced
topics: procedures, types, arrays, strings, functions, random numbers, records,
and random-access files.

Chapter 1 explains how to type in, edit, execute, save, and print programs.
We use the Instant window to introduce the writeln statement and graphics
commands. Then, using simple examples, we present the rudiments of program
structure. Finally we demonstrate how the for loop works with a program that
rolls a "ball" across the Drawing window. Because looping is the single most im­
portant part of programming, it is taught as early as possible and is examined in
great detail throughout the first five chapters .

xi

xii Pref ace

In Chapter 2 we discuss how a computer executes a Pascal program, and we
show how to use the Observe window to "view" program execution. The second
half of the chapter is devoted to the principles of top-down programming.

Chapter 3 introduces Pascal syntax, interactive programs, and real num­
bers. The chapter ends with two detailed examples of program planning.

We complete our presentation of elementary Pascal concepts in Chapters 4
and 5. Chapter 4 explains assignment statements, the while loop, and the repeat­
until loop . Chapter 5 discusses conditional statements and introduces bar
graphs, which play an important part in many applications later in the book.
The chapter ends with a carefully developed debugging example.

Chapter 6 is the central chapter of the book. Here we introduce procedures
and incorporate them into our program planning method. We illustrate the role
procedures play in top-down programming with two elaborate examples.

In Chapter 7 we present enumerated types, type char, and more material on
procedures. We also introduce the MacPascal standard procedure getmouse,
which reports the location of the pointer on the screen. Getmouse is the basis for
the more ambitious mouse-driven applications presented in Chapter 11 .

Chapter 8 is devoted to type boolean. After discussing boolean variables and
flags, we present a program that checks for matched parentheses. The chapter
ends with a section that discusses the relationship between programming and
mathematical logic.

Chapter 9 provides an unusually thorough presentation of arrays and
strings, topics that often give beginners trouble. We demonstrate the use of
arrays with a street survey application, and then develop a number of variations
on the street survey theme to illustrate important array ideas.

Chapter 10 discusses functions. We demonstrate the use of functions in two
large programs dealing with textual analysis: a letter frequency program, which
graphs the relative frequency of letters in a text; and a word frequency program,
which imitates an early computer study done to determine the authorship of the
Federalist Papers. The chapter ends with a discussion of random numbers that
includes elementary material on simulations, Monte Carlo methods, and pro­
gram testing using randomly generated data.

Chapter 11 presents a complex program called MiniPaint, which is modeled
on the Macintosh application program MacPaint. MiniPaint creates a mouse­
operated menu in the Drawing window that is used to control program execu­
tion. We then discuss records and, finally, files . The file section culminates in an
electronic phone book program that reuses MiniPaint's mouse and menu "front
end."

____ Special Features of the Text _____________ _

• Emphasis on Problem Solving and Top-Down Design. The text develops a
systematic method for problem solving and presents detailed solutions for
ten large programming problems using top-down design.

Preface xiii

• Graphics. Extensive use is made of MacPascal's graphics procedures so that
even the simplest programs produce interesting output.

• The Mouse. Mouse commands are used--frequently in the second half of the
book to augment traditional Pascal input and output instructions.

• Private Pascal. The book develops the idea of a "private" Pascal-a library
of procedures and functions that a programmer creates, which can be used
repeatedly in a variety of programs. The menu and mouse "front end" used
in programs MiniPaint and PhoneBook illustrate the private Pascal concept.

• Problems and Exercises. Macintosh Pascal includes almost 200 program­
ming problems, some of which are quite challenging. Many problems in­
volve graphics and others are applicable to everyday life. Numerous short
exercises are also sprinkled throughout the text. Solutions to selected prob­
lems and exercises are included at the end of the book.

• History of Computing. From time to time the book includes notes on the
history of computing that put into perspective the material on Pascal.

• Glossary. A comprehensive glossary explains Pascal terms and concepts as
well as those terms specific to Macintosh Pascal.

____ Acknowledgments _________________ _

We would like to thank Andrew Singer, Mel Conway, and Frank Sinton of
THINK Technologies for proposing that we write Macintosh Pascal and for
giving us early access to the language. Special thanks go to Dennis Lauro for
coordinating the project. Thanks also to Fleet Hill for her support. We greatly
appreciate the technical help we got from Terry Lucas and Peter Maruhnic, the
implementors of Macintosh Pascal.

Sandy Pratcher, Don Enns, Mary Alice Wilson, Felicia DeMay, and Clem
Wang read portions of the manuscript and gave us many thoughtful comments.
Jon Butah, Meg Beeler, and Peggy Redpath of Apple reviewed the manuscript
and made particularly helpful suggestions about organization and style. The fol­
lowing people reviewed the manuscript in detail, providing many useful recom­
mendations: Howard V. Carson, Ralph DeBoard, James Gips, William B.
Jones, Helene Kershner, Thomas W. Osgood, Rita Ann Richards, Lynn Arthur
Steen, Bernard Taheny, and Philip Tucker. The contributions of all of these peo­
ple are gratefully acknowledged.

We also are indebted to Martin Robbins and Albert Meyer for teaching us a
great deal about writing. We would like to thank Karen Strickholm , Susan
Dunnington, and Ron Feintech for their help and moral support. Finally, we are
grateful to Franklin Folsom, who ate out of the freezer for months while his
wife, Mary Elting, worked on Macintosh Pascal.

R.M.
R.F.
M.E.

Macintosh
Pascal

~FirstLook
at Pascal

"
Welcome to Macintosh Pascall

Macintosh Pascal, or MacPascal for short, is a language for giving instructions to
the Macintosh. In this book we'll show you how to write MacPascal programs to
make an electronic phonebook; calculate electric bills; invent your own version
of the Macintosh application program MacPaint that you can use for drawing
pictures on the screen; tabulate the results of surveys; chart the time you spend
each day jogging (or sleeping or working); and even make animated "cartoons"
of shapes that move across the screen.

The first program you'll write will produce an animated "cartoon." The
program will create a ball on a line and then roll it across the screen.

A program is simply a list of instructions that you give to a computer. In a
Pascal program, some instructions t~ll the computer to print messages on the
screen. Others are commands for doing arithmetic. Still others can make the
computer draw lines or circles. And some instructions tell a computer to repeat
other instructions over and over again.

MacPascal is itself just a very large program . It tells the computer what to
do in response to the words and symbols you use when you write programs in
Macintosh Pascal. MacPascal interprets the instructions in a program and passes
these commands along to the computer. · ·

--1.1 Getting Started------------------
If you've never used the Macintosh before, you need to learn some fundamentals
before tackling the rest of this chapter. The best way to begin is by listening to the
cassette tape that comes with the machine: "A Guided Tour of Macintosh." A
disk that goes with the tape demonstrates on the computer screen how to use the

1

2 A First Look at Pascal

Figure 1.1 When you roll the mouse on a flat surface, the pointer on the screen follows
its every move. Courtesy of Apple Computer, Inc.

Macintosh, and it gives you some practice with the mouse-the gadget, attached
by a wire to the Macintosh, that moves a pointer around on the screen. (See Fig­
ure 1.1.)

If you don't have the tape and the disk, you can find out what you need to
know by referring to the manual that comes with the Macintosh and to the refer­
ence manual that comes with the MacPascal disk. The Glossary at the end of this
book will also answer many of your questions.

To understand what will happen in a moment when you insert the Mac­
Pascal disk, you have to know something about how the Macintosh (and almost
every other computer) works. The Macintosh stores information in two places:
main memory and secondary memory. Main memory is located on tiny comput­
er chips inside the computer itself. You never see it. Floppy disks make up sec­
ondary memory. (The Macintosh floppy disks don't look floppy because they
come in hard covers.)

The computer can get to main memory quickly. But there is only a limited
amount of main memory, and it is already partially filled with the program that

1.1 Getting Started 3

runs the machine itself. The MacPascal program and the programs you write go
in the empty part of main memory.

Secondary memory on floppy disks can store a huge amount of information,
but the computer can't use this information directly. It can use only what has
been stored in main memory. So you must copy the information from a floppy
disk into the empty part of main memory when you want the Macintosh to use it.

MacPascal, the language you will use to give instructions to the Macin­
tosh, is stored on the floppy disk. Now let's see how to copy or load it into main
memory.

Loading MacPascal

• First switch on the Macintosh. In a moment you will see, in the middle of
the screen, a little picture of a disk with a blinking question mark.

• Insert the MacPascal floppy disk in the slot at the front of the machine. The
electronic desktop will now appear on your screen. It's called a desktop be­
cause it's the place where the computer's work will appear. (See Figure 1.2.)

Pointer

Menu Headings

" e file Edit Ulew Special
-:·:·:·:·:·:·:·:·:
::::::::::::: \ :
..

. ·.·

~ ::: : :::::::::::::
· . :::::.:.·.:. :.· . ·. ·

.
. ·. · . .

:::::::;:;:;:;:·=·
:;:::::::::: : ; : ;:: :-: ..
::;:;:;:: ::::::::: :.: .:;: .:.: .:.:.: .
.

· ~~H ~ j~'.~;:~~;~~ ii

.
. · · . . . · . . . ·.·.·. ·.-.·.-. · ;.;.;.· .. . ;.: -: -:-: -... ·.·.· ' ·

·:-:-.· ·:-:-:-:· ::::: :: : ::: :::.:;: :-:
.:·:: :· ::_=::::: .. :. ::: :. ;: ;.:.:. :. : ..
::::::: :::::::;:-:::::::; :;: ;:::: ::::::
: ; ~: H ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ : 1: lH: U ~ ~ ~: ~ ~: ~ ~ ~ ~ ~ ~~

.

·.· ' '
..

.........

. ·.· ·
~~ ~ ~~~~ ~ ~ ~ ~~~H~~ ~ ~~~~~~~~~~~~~~~~rr~

~/li !H/://!Y/H: :::::.: :::.::::::;:::::;::::.:::· :· :·:·

Figure 1.2 The electronic desktop.

MacPascal Disk Icon

.. J .. ~
,,.. · ·: :
. .·

:m:

;: ; : ;.;.:'. :

· .
.·

.

... . . ·. :~

4 A First Look at Pascal

• To load the MacPascal language into main memory, you must first open the
MacPascal disk window. Note that the MacPascal disk icon-the little pic­
ture of a disk in the upper-right corner of the desktop-is already
highlighted. That is , it is black and is labeled with white letters. This means
that the MacPascal disk window is ready to be opened.

• Using the mouse, move the pointer, which is in the shape of an arrow, to the
word File at the top of the screen.

• Now press the mouse button. A box will appear right under the word File.
Because the words in the box offer you a choice of commands that you can
give to the computer, the box is called a menu. (See Figure 1.3.)

.,
IJiew Speclnl

=~ 111•1•111•11111111111•11•1111•••••1•1111111111111•1•1•1•111:11111•1•••• •1•1 • ·111111 File Menu ::: ::::: Put Httcl:: ·· :·· .-:· :·:-::: :::·::::-:.: :-. · -: :- ·· : : ·-: · .-:-: ··.:. : : : : : : .. . -: : : : ..
... :::: ·:·::: ::::;:::::::::·'.· '. :'.· :·:::· ::::: :: ;:· : :: ·'. ·.;: ::·: :: ::·:·:·:·:·:·:·::::::::::.;::

. ·.·.· . !:lose \:}/ :: :: :::\\[://(\)(\))\:/j/:[\\:j:
<< Uose flll :. :. :.:.:.: .:.:.::·:·:::::·: :::·: :·:·: · .-.-.: · : : . . : .- :::·:·:·:-: ::-:::::.:.:::.: :.

: :: ::=;·;: ~ :;:: '. ~ :-: ·:~:~~ : :::~ : ~ ::·:: :: : . : : :: : : ::'. :; :; . : : : : ~:~::::: ::;::::::· ::::::: ·:
:-.·. : ·:·: :·:-:·:· :· :· . . :-: : : . : . · " .·.· . .. ·. :- :• . .;.;.; >'."·:-:-· ·. ·.

•' · ,• . . . ; .· . ;.;.;., .; .;.; .. -: :. . .;.;. ";. : ; .; :.: : .-. ; .: :.· ·.: :- .;. · .;.·:;. ······-.. ···-.................. • .. ·.· .·. ·.·.·.·.· ... ·. ·. · . . ·.·. ·.·.·.· . ·. ·.· · . .. · .. ·.·.· . ·.· •,• ' ,' · .. · ·.·.·. ·.· ,'. · .. · ·.· . . •
H:: :::: Eject 81:E :::;:::/::::/:>>:::::::::::::::::;:::::::::;::::::::::;:n::::::::::::::::::q

1•1•1•1• •1•1•1•1••••••••••••••••••••••t•r •1••·••1•••••••••1•

1

•••

1

•1•1•1•11••1•••• •••••••••••••·••••••••1•1••11111111•1•1•1•1••·

11•1•1••t•t•l•!•••••1•1•1•1•1•1•1•1••·················1····1·1·1·1·1·1•• •••1•••1•1•1•1•1•1•1•1•• ••••••••

1

1

1

11••

1

•1 1••••-
Figure 1.3 Screen with File menu open.

• With the mouse button held down, move the pointer to the row in the menu
labeled "Open." Moving the pointer with the button held down is called
dragging the pointer.

• Next release the button. This opens the MacPascal disk window.

The File menu will disappear, and the MacPascal disk window will appear
on top of your desktop (see Figure 1.4). In the disk window you will see several
other icons. The MacPascal icon is the one we are interested in. Note that this
icon is different from the MacPascal disk icon on the desktop.

,.

:

"'

1.1 Getting Started 5

MacPascal Icon MacPascal Disk Icon

a file Edit Uiew Special
.,

:
:~

: :
: :

:
:
: :

: : : : : :

: : :

: ; : :

: : : :
; : : : : :

: :
; :

: : : : : : :

: : : : : : :
: : :

......

::i~g· ·i·i· i. iii.i~i::ii_ ::if ::~t~·.~~.ij1 :J: ii::i:i.i: iiiii·i· ~·· I
6 it•ms 392K in cl sic 8K 11v.11i111b1• -: :::::::::::: :::- :-:-:-:-: -:-:-......

l===================..P.:============;::;:::t:
I(). >>>>>>>>

0
Tools

:i.?.1..

I

0
Information

~
Macintosh Puca!

0 0

f!:. ·

De St F ld ··· ··· · ···· · ·· ·
mos ys em o er ~ ~ ::[Ui!~H! i ~i\!T!}i

·.·.·.·.·. ·. ·.·.· .. ·.·.·.· ... · . ·.·. ·. ·.·.·.·. '·?~.: H/h///H/f ·.·.·. ·.· .·.·.·. ·.·.·.· ·. ·.· .·.·. · .. ·

, r 1

; i ! i1
MacPascal Disk Window

Figure 1.4 The MacPascal disk window on the desktop.

Now you are ready to load MacPascal. There are two ways to do this.

Loading-Choice 1

• Select MacPascal by moving the pointer to the MacPascal icon in the
MacPascal disk window and clicking the mouse button. To click the mouse
button is to press and release it quickly. This will highlight the icon.

• Next move the pointer to the File menu again and choose Open. That is,
hold down the mouse button, drag the pointer to Open, and release.

Loading-Choice 2

• Move the pointer to the MacPascal icon.

• Then quickly click the mouse button twice.

Once you are used to the mouse, you will probably use the second method
most of the time because it's faster. Both methods give the load command, which

6 A First Look at Pascal

instructs the computer to copy the MacPascal program from the floppy disk into
the empty part of main memory. The program is still stored on the disk as well;
it's there permanently . Later, when you turn off the computer, MacPascal will
vanish from main memory. You will have to load it again the next time you want
to use the language.

The noises you hear come from the floppy disk spinning like a phonograph
record. When the whirring stops, the disk window will disappear and your
screen will display the picture shown in Figure 1.5 .

Title Bar

r s File Edit Senrch Run Windows

Highlighted! :
Program :
Skeleton :

Program ____ ~

Window

Text Window

Te Ht

Drawing

.,

..---+-+- Drawing
Window

Figure 1.5 Here is what you will see when you have finished loading MacPascal.

___ 1.2 Taking a Look at Windows _____________ _

Your screen now has three windows: the Program window, the Text window,
and the Drawing window.

The big window on the left is the Program window. When you type in a
program at the keyboard, it will appear there. The highlighted material in that
window is a skeleton of a Pascal program that will be useful when you start pro­
gramming. Right now the Program window is labeled "Untitled," because you
don't have a program there yet.

1.2 Taking a Look at Windows 7

Note that, when the windows. appeared on the screen, the pointer changed
shape. The arrow became something like the capital letter I. When it is in this
shape, the pointer is called the I-Beam. If you move the pointer up to the top of
the screen, it turns into an arrow again.

When you run, or execute, a program, something happens in one of the two
windows on the right. Either a picture appears in the Drawing window, or
words or numbers appear in the Text window. What appears in these two win­
dows is called output, so they are both output windows.

Right now the Program window is the active one, the one in which some­
thing either is happening or is about to happen. You can tell it is active because it
has horizontal lines that run across the title bar. Using the mouse, you can make
a different window the active one. Just move the pointer inside that window and
click , As soon as you do this, the title bar of that window will have horizontal
lines across it. .

The windows you see are not completely fixed. With a few moves of the
mouse, you can drag a window around on the screen, change its size, and even
make it completely disappear. Try moving the Drawing window.

• First activate it by positioning the pointer in that window and clicking.

• Then place the pointer on the Drawing window title bar, and drag the
pointer. The window will follow the pointer around.

It is also possible to change a window's size. First activate it, and then place
the pointer on the size box, the square in the lower-right corner of the window.
Try this with the Text window. (See Figure 1.6.)

• Drag the pointer to the left or toward the top of the screen. The window gets
smaller.

• Now drag the pointer toward the lower-right corner of the screen. The win­
dow gets larger.

Suppose you want to fill the screen completely with a window,

• First move the window to the upper-left corner of the screen.

• Then drag the size box to the lower-right corner. Try this with the Drawing
window.

Suppose you want to make the Drawing window disappear and reappear.

• Move the pointer to the close box in the upper-left corner of the Drawing
window, and click the mouse. The window will disappear. Don't worry.
It's easy to make it reappear.

• Now open the Windows menu (see Figure 1.6), and choose the Drawing
window. The Drawing window will reappear.

8 A First Look at Pascal

,. s File Edit Search nun

Untitled

program Untitled;
{Your decleretions}

Close Box
.,

leKt

Dbserue

beg1n
{Your progrem stetements} ~eKt 1 .,._ ___,,,=~---...i.::.:r- Size Box

end. raw ng rawmg
" " " """"" """"""""'"""""''--- - -----"'----.-I

Clipboard

Type Size ...
..

. .
·"

:::
·: · ..
·"

..
-1-------------+--+--1,., 1------------~

Windows Menu

Figure 1.6 The Windows menu open. Note that only the active window has a close box
and a size box.

We will show you how to use the Observe window in the next chapter, and
an explanation of the Clipboard is coming up soon. The Type Size row in the
Windows menu lets you use smaller or larger type in yqur programs and your
output.

--1.3 The Instant Window----------------
There is another window, which you can't see right now-the Instant window.
Using the Instant window is a great way to get acquainted with MacPascal. You
can use it to try out individual MacPascal instructions.

• To open the Instant window, move the pointer to the Windows menu and
press the button to open the menu.

• Now choose the row labeled "Instant."

The Instant window will appear, overlapping the Program window (see
Figure I. 7). The Instant window became the active window when you brought
it up. Inside the Instant window is a box labeled "Do It."

,. s File Edit Search Run Windows

Untitled

program Untitled;
{Vour declarations}

beg1n
{Vour program statements}

end.

_o Instant

Do It
Comment --1---+t~1

Figure 1.7 The Instant Window.

1.3 The Instant Window 9

.,

raw ng

:>

In addition, the Instant window contains the following highlighted message
inside braces:

{Any statements, any time.}

This is called a comment. Comments are not instructions in Pascal for your com­
puter to follow. They are simply notes in English about the instructions you have
written. Macintosh Pascal will ignore your comments as long as you remember
to type them inside the braces. The foregoing comment shows up automatically
in the Instant window.

Now let's try out some Pascal instructions in the Instant window.

• First type a space (press the space bar). The highlighted comment in the In­
stant window will disappear. Whenever you want to get rid of any high­
lighted text on the screen, just type a space. Note the blinking vertical line
that appears under the Do It box. This is the insertion point. Whatever you
type at the keyboard will show up at the insertion point.

• Next type the following instruction exactly as you see it here:

wri teln('Hi there! ')

These words will show up in the Instant window just to the left of the inser­
tion point. As each new letter or symbol appears, the insertion point moves
along so that it is always to the right of the last character you have typed.

10 A First Look at Pascal

• Now move the pointer to the Do It box and click.

This executes the writeln (pronounced "write line") instruction, or state­
ment. The message Hi there! will appear in the Text window. The writeln in­
struction commands the computer to print in the Text window whatever is writ­
ten between the single quotation marks.

Writeln also tells the computer to start printing the next message (if there is
one) on a new line. This is what the ln part of writeln means.

To see how this works, let's type in two new tpriteln statements. First delete
the writeln statement you've just written. There are two ways to do this.

Deleting-Choice 1

• First make sure the insertion point is to the right of the right parenthesis in
the writeln statement. If it isn't , place the I-Beam to the right of the semico­
lon and click. The insertion point will show up where you clicked.

• Then backspace until the whole statement disappears.

Deleting-Choice 2

• Depress the mouse button, drag the pointer through the instruction to
highlight it, and release the button . Learning to highlight exactly what you
want takes some practice. If you highlight the wrong words, don't worry.
Just click the mouse button anywhere in the window and the highlighting
~ill disappear. Now you can try again.

• After you've highlighted the whole line, type a space or a backspace. At this
point, writeln('Hi there!') will disappear.

Now you are ready to add two new writeln statements.

• Type this in the Instant window:

writeln('Hello');

• Then press the return key and type this:

wri teln('world')

Don't forget the semicolon between the two statements! The semicolon
shows up a lot in Pascal. It is a separator symbol. It tells the computer that
one instruction is over and another is about to begin.

• Now click on Do It . Here's what will show up in the Text window:

Hello
world

The Macintosh prints world underneath Hello because each writeln statement
prints its message on a separate line.

1. 3 The lnstan t Window 11

Highlighting Shortcuts

To highlight a whole line, position the I-Beam somewhere on that line.
Then triple click. That is , click quickly three times.

To highlight a single word, place the I-Beam anywhere on the word and
double click.

A Bug-A Missing Semicolon

Suppose you forget the semicolon between the two statements. What happens?
Try taking out the semicolon and see.

• Place the I-Beam to the right of the semicolon, and click. This will position
the insertion point just to the right of the semicolon .

• Now backspace to get rid of the semicolon.

• Now try Do It .

,. 9 File Edit Senrch Run Windows
.,

If R semicolon (;) is required on this line or aboue but one hos not
. been found .

begin
(Vour progrem st6tements) :

end. urawmg

"
:

lnstnnt

[noin9 11) ~
wri teln('Hello ')

~wri te 1 n('worl d')
~

tQ
QI !:!:::: 2l

:
:

·"

Figure 1.8 Error message for a missing semicolon .

12 A First Look at Pascal

The Macintosh will protest with three electronic beeps. Then you will get an
error message to help you locate the bug, or mistake, in your program. With this
kind of bug, the error message consists of two clues: A hand with its thumb down
appears in the Instant window. And a box with a picture of a bug in it appears at
the top of the screen, giving you a message about what's wrong. (See Figure 1.8.)

If you run into a bug, don't panic.

• Read the error message carefully, and use the clues to figure out what went
wrong. Then move the pointer inside the error message box, and click. This
makes the error message box disappear.

Now fix the mistake. In this case you have to insert a semicolon. Here's how :

• First move the I-Beam to the place where the semicolon belongs, and click.
This deposits the insertion point where you need it.

• Now type the semicolon. It will appear at the insertion point.

The insertion point will remain to the right of the semicolon until you move
it again by placing the I-Beam somewhere else and clicking. If you don't depress
the mouse button, the insertion point always stays put while you move the point­
er around .

Important: Note that MacPascal actually points a finger at the line after the
one where the missing semicolon should go. Because there was no semicolon
MacPascal interprets the two commands as though they were one:

writeln('Hello')writeln('world')

But there is no such command. Macintosh Pascal "discovers" that these two
writeln statements, taken together , aren't an acceptable command only after the
second one has been read . Therefore the hand points to the second writeln state­
ment when your bug is reported.

You will find that the hand often points to the line after the error. If you get
an error message that you can't figure out, always look back one line to see
whether that's where the problem is.

Another Bug-A Missing Quotation Mark
What happens when you leave out a quotation mark inside a writeln statement?
Let's see.

• Delete what's in the Instant window, and try typing this:

writeln('Go for it!)

You seem to get away with it-for a moment.

• Now press the return key . MacPascal catches the missing quotation mark
and signals you by changing the typeface in the instruction, as shown in Fig­
ure 1.9.

1. 5 Your First Program 13

~D lnstunt

(Do It) If£
write 1 n ('ill® 1T®lr 99.D)

Q
[21 JQ] l2J

Figure 1.9 This is how MacPascal signals you that a quotation mark is missing.

• Fix the bug by placing the I-Beam between the! and the right parenthesis,
clicking the mouse, and typing in the single quotation mark.

• Click on Do It. The typeface will return to normal and then the Macintosh
will execute the statement.

---1.4 Quitting---------------------
If you are ready to end your programming session, here's how to do it:

• First open the File menu and choose Quit. This takes you back to the elec-
tronic desktop with the Pascal window open.

• Now click in the close box to close the Pascal icon window.

• Next open the File menu again and choose Eject. Your disk will pop out.

• Finally, turn off the machine.

---1.5 Your First Program----------------­
In this chapter we want to create a "cartoon" of a ball rolling along a line across
the middle of the Drawing window (see Figure 1.10). So let's start by writing
a program that will print in the Text window a caption for the cartoon. It will
say

The First Cartoon!

We could make the caption appear in the Text window just by typing this
instruction in the Instant window:

writeln('The First Cartoon!')

14 A First Look at Pascal

) I I

Figure 1.10 The First Cartoon!

But this time we want to write the following complete MacPascal program:

program Cartoon;
begin
writeln('The First Cartoon! ')

end.

Let's look carefully at the four lines in this program.

program Cartoon;

This line is the program heading line. It consists of the word program fol­
lowed by the name of the program-and it always ends with a semicolon. Here
the semicolon says the heading line is over.

The next three lines are the body of the program . The body is also called the
main program, and its official name is the statement part of the program. The
body must start with the word begin and end with the word end, followed by a
period. If you forget the begin, the end, or the period, you will get an error mes­
sage.

In between begin and end, you can put any number of instructions. In our
first program there is only one:

writeln('The First Cartoon!')

Parentheses and single quotation marks surround the message to be printed.
Here, too, you'll get an error message if you leave any of them out. The single
quotation marks tell the Macintosh to print exactly what appears between them.

1. 5 Your First Program 15

The words program, begin, and end, which are printed in boldface, are
called reserved words. These are part of the basic vocabulary of Pascal, and they
have special meanings. There are many other reserved words, which we have
listed inside the front cover of the book.

Writeln has a special meaning in Pascal , too, but it is not a reserved word.
It's called a standard procedure. A procedure is an instruction that does some
special job, such as write a message, draw a line, or paint a circle.

We have worked out this program for you, so all you need to do is type it in
the Program window.

Typing in Program Cartoon

• If your machine is off, you will need to turn it on and load MacPascal again.
See page 3 if you forget how.

• Make sure the Program window (the one labeled "Untitled") is active. If it
isn't , move the pointer into the window and click.

We want to type this program in from scratch. So let's get rid of the high­
lighted program skeleton first.

• Press the space bar or the backspace key . The whole block of highlighted
text will disappear.

• Now type the first line, press the return key , and see what happens. You type

program Cartoon;

and you get

program Cartoon;

• Next type

begin

followed by a return. Then type the command

writeln(' The First Cartoon!')

followed by another return. Again, what you type is not what you get. The
word begin appears in boldface. And the Macintosh automatically indents
the writeln statement one space. This rearrangement of the lines in a pro­
gram is called pretty printing. It makes your program more readable.

• Type in the word end follow ed by a period. You have a complete program .
Now you're ready to run it.

• Move the pointer to the word Run at the top of the screen and open the Run
menu. (See Figure 1.11.)

16 A First Look at Pascal

,. 9 file Edit Searth

::o Un title

program Cartoon;
begin

writeln('The First Ca
endj

stops In

Figure 1.11 The Run menu open, with Go highlighted.

.,

TeHt

raw mg

• Choose the row labeled "Go." The Macintosh will run your program. This
message will appear in the Text window:

The First Cartoon!

You have run your first complete Pascal program.

--- 1.6 Points, Lines, and the Drawing Window __________ _
Now that we've printed the caption, we can write the part of the program that
actually draws the cartoon. Remember, the program will roll a ball along a line
in the Drawing window. So we'll start by drawing the line. This is easy in
MacPascal. But first you need to know how the Drawing window is laid out.

The standard-size Drawing window that shows up on the screen when you
load MacPascal is a 201-unit-by-201-unit square made up of more than 40,000
invisible points. You can locate any point in the window ~sing two numbers. The
first number tells how far the point is from the left side of the window, and the
second number tells how far it is from the top. The upper-left corner is the point
(0 ,0). (See Figure 1.12.) Note that this convention differs from usage that is com­
mon in mathematics. In geometry, the origin point (0,0) is positioned at the
lower-left corner.

1.6 Points , Lines, and the Drawing Window 17

(0,0)
§0 Drawing

(200,0)

100 • (100,50)

50
•(100,100) • (200,100)

(50,100)

(0,200)
Q]

(200,200)

Figure 1.12 The point (50,100) is located 50 un its over from the left side and 100 units
down from the top.

If you have trouble remembering which number tells you the horizontal po­
sition and which tells you the vertical position , just remember that the numbers
come in alphabetical order: horizontal then vertical.

If you enlarge the Drawing window, the same system of locating points still
applies . When you make it fill the whole screen, the Drawing window is 500
units wide and 300 units from top to bottom . The point (500,300) would lie at
the lower-right corner. When we talk about the standard Drawing window, we
mean the 201-by-201 Drawing window that comes up when you load Mac­
Pascal.

EXERCISE 1 a. Which point is higher, (100,100) or (100,200)?

b. Examine the accompanying picture. In which
region does each of the following points fall?
(50,50), (50 ,120) , (150, 150) , (180,0)

Answer: A, D , C, B -

Drawi ng Wi ndow

A B

D C

18 A First Look at Pascal

Now you know enough about the Drawing window to start drawing lines.
There is a single MacPascal instruction for this, drawline. The instruction

drawline(50,0,200,175)

tells the computer to draw a line from the point (50,0) to the point (200, 175) . Try
it out in the Instant window.

• Bring up the Instant window by choosing Instant on the Windows menu.

• Clear any text you see in the Instant window by highlighting it and then
backspacing.

• Next open the Run menu and choose Reset. This clears the output windows .

• Now type in the draw line instruction, and then click on Do It . Figure 1.13
shows the picture it will produce in the Drawing window.

,.. s File Edit Search Run Windows
.,

Untitled TeHt

progrom Cartoon;
begin

writeln('The First Cartoon!")
end. t--1

Drawing

:o lnst11nt

[Do It l ~
drowline(50, 0, 200, 175~

I
tQ

¢1 Q!QJ
:

:

.· .

. .

Figure 1.13 Here is the picture that the instruction drawline(50,0,200,175) prod uces in
the Drawing window. By the way, the instruction drawline(200,175,50,0) draws exactly the
same line.

EXERCISE 2 What kind of line does each of the following instructions draw? Make a
sketch for each on a piece of paper, and then use the Instant window to de­
termine whether your guess is right.

1.6 Points, Lines, and the Drawing Window 19

a. drawline(0,0,200,200)

b. drawline(0 ,200,200,0)

c. drawline(l00,0,100,200)

d. drawline(O, 100,200, 100)

e. drawline(0,0,200,100) -

Now let's add to program Cartoon an instruction that will draw a horizon­
tal line.

• First make the Program window active by clicking in that window .

• Next move the insertion point to the end of the writeln statement, and type a
semicolon to separate the writeln statement from the drawline statement.

• Press ~he return key. This will push the word end down one line.

• Now type the following instruction in the blank line:

drawline(0,100,200,100)

• Try running this new version of program Cartoon.

The Drawing window will clear when you choose Go, as it prepares for a
new run. This time it will print the caption in the Text window and then draw a
line across the Drawing window. The screen should look like this:

r- S File Edit Search Run Windows
.,

:[o Untitled TeHt

: progrom Cartoon; f£_ he First Cartoon!

begin
writeln('The First Cartoon!'); r- i:: drawline(O , 100, 200 , 100)

end. Drawing

I

IQ
:t;1 1c;: £]
~ - -

20 A First Look at Pascal

___ 1.7 Circles---------------------
We are finally ready to work on the part of the cartoon that rolls the ball. To cre­
ate the ball, we will use MacPascal's paintcircle instruction. Suppose we want to
draw a circle that has a radius of 45 and has its center located at the point
(50,80). The following statement will make it appear in the Drawing window:

paintcircle(50,80,45)

This paintcircle instruction tells the Macintosh to paint a black circle. The num­
bers in the parentheses tell the Macintosh that the center of the circle should be at
horizontal position 50 and vertical position 80 and that the radius of the circle
should be 45. Let's see how this works by running the paintcircle instruction
using the Instant window.

• Open the Windows menu, and choose Instant.

• Then, after clearing the Instant window, type in the paintcircle instruction.

• Next clear the output windows by opening the Run menu and choosing
Reset.

• Now click on Do It. The screen will then look as shown in Figure 1.14.

Drnwing

Figure 1.14 The circle's center is 50 units from the left wall and 80 units from the top, and
its radius is 45 units.

EXERCISE 3 What instruction would you type in the Instant
window to make the accompanying picture?

1. 7 Circles 21

Choose Reset from the Run menu. Now type in the paintcircle instruction
and see whether you get the right circle. -

Suppose we want to draw a circle of radius 20 like the one shown in Figure
1.15.

80

Figure 1.15 A circle of radius 20 with its center at the point (20,80).

This instruction will do the job:

paintcircle(20,80,20)

The numbers mean that the center of the circle is 20 units from the left wall
and 80 units from the top and that the circle has a radius of 20. Before going on,
make sure you understand why 20, 80, and 20 are the right numbers.

22 A First Look at Pascal

• Now insert the foregoing paintcircle instruction in program Cartoon to get
this new program:

program Cartoon;
begin
writeln('The First Cartoon!');
d~awline(0,100,200,100);
paintcircle(20,80,20)

end.

• Run it. You will see the cartoon's first frame:

Drawing

--1.8 SteppinQ-------------------
When a computer runs a program, it carries out the instructions one at a time,
usually in order. Ordinarily this happens so quickly that the output appears all at
once. But MacPascal allows you to run programs slowly, one step at a time, so
that you can watch each instruction doing its job. This is called stepping.

• To make your Macintosh step, open the Run menu, but this time choose
Step instead of Go . A little hand will appear next to the word begin.

• Then hold down the command key . (The command key is the one with the
symbol ~on it .)

• Next, with the command key still down, press the S key. The little hand will
jump down to the writeln statement.

1.9 How to Move the Ball 23

• Next, still holding the command key down, press the S key again. The com­
puter will execute the writeln instruction, and the caption will appear in the
Text window. At the same time the hand will advance to the drawline in­
struction (see Figure 1.16).

" Ii File Edit Seorch Run Windows
.,

:[D Untitled Te Ht

program Cartoon; ~ the First Cartoon!

begin
writeln('The First Cartoon!') ;

H
:~ drawline(O, 100, 200, 100);

paintcirc l e(20, BO, 20) Oro wing
end.

: I

:

:

:

:

'21.
~t
~ :

~

Figure 1.16 The drawline statement is about to be executed .

• Once more, hold the command key down and press the S key. The line will
be drawn across the Drawing window and the hand will advance to the
paintcircle instruction. The finger always points to the instruction that will
be done next. Each time you press, the hand advances to the next instruc­
tion . And with each advance of the hand, one mor·e piece of the program is
executed.

--- 1.9 How to Move the Ball-----------------
Next we're going to show you the best part-how to animate your cartoon. You
can do this by making the circle appear and then disappear over and over again
very quickly, each time shifting its center a little bit to the right. The circle will
appear to be a rolling ball , and it will flicker like an old-time movie.

24 A First Look at Pascal

To make the circle dissappear, we will use the MacPascal command
invertcircle. The invertcircle instruction paints a black circle if the background is
white, and it paints a white circle if the background is black. If an invertcircle
overlaps a black region , the overlapping part will be white and the rest will be
black. For example, these two instructions

paintc ircle(70,70,50) ;
invertcircle(lJ0,130,50)

produce in the Drawing window the picture shown in Figure 1.17.

=o Drawing

Figure 1.17 An invertcircle overlapping a paintcircle.

Try it out:

• First use the Reset command from the Run menu to clear the output win­
dows.

• Then bring up the Instant window, and after clearing it, type in the tw o
foregoing commands. See what happens when you click on Do It.

Now suppose you've written a program with a paintcircle instruction, and
you add an invertcircle instruction with the same radius and location. The pro­
gram will paint a black circle, and immediately it will reverse the color of that
circle from black to white, making the circle disappear. This is exactly what we
want for program Cartoon.

I. 9 How to Move the Ball 25

• So now add an invertcircle command to the program. This is what the pro­
gram will look like:

program Cartoon;
begin
writeln('The First Cartoon!');
drawline(0,100,200,100);
paintcircle(20,80,20);
invertcircle(20,80,20)

end.

• Step it and see what happens. What you see in the Drawing window is the
first frame of the animated cartoon.

Now let's add a few more statements to extend the cartoon with new frames.
Don't type these in yet: We're going to show you a shortcut for adding the four
new instructions.

program Cartoon;
begin
writeln('The First Cartoon!');
drawline(0,100,200,100);

{FRAME ll
paintcircle(20,80,20);
invertci~cle(20,80,20);

{FRAME 2l
paintcircle(21,80,20);
invertcircle(21,80,20);

{FRAME Jl
paintcircle(22,80,20);
invertcircle(22,80,20)

end.

The three pairs of paintcircle and invertcircle instructions will draw the first
three frames of the cartoon by painting and erasing circles along the line. Frame
2 is almost identical to frame 1, except that the horizontal position of the circle
has been shifted one unit to the right. In frame 3, it has been shifted one more
unit to the-right .

Shortcuts-Copy and Paste, Cut and Paste

Because the instructions for frames 2 and 3 are so similar to the commands in
frame 1, we can use a shortcut to add the new text. Our shortcut employs the
Macintosh Copy and Paste commands.

26 A First Look at Pascal

• First highlight the paintcircle and invertcircle lines in the program.

program Cartoon;
begin
writeln('The First Cartoon !') ;
drawline(0,100,200,100);
paintcircle(20,80,20);
invertcircle(20,80,20)

end.

• Then go to the Edit menu and choose Copy . The Copy command instructs
the Macintosh to make a copy of the highlighted text.

• Position the pointer after the right parenthesis in the invertcircle instruction
and click. The insertion point will appear there.

• Next open the Edit menu and choose Paste. Copies of the two instructions
you highlighted will appear right under the original ones. The reason why
the new text does not show up at the insertion point is that the MacPascal
prettyprinter moves it down a line.

• Now position the pointer just after the first invertcircle command, and type
a semicolon. Because you have just added more instructions, you need a
semicolon here to separate the old invertcircle instruction from the new
paintcircle instruction .

• Now move the insertion point so that it is just to the right of the last
invertcircle instruction. You do this by positioning the I-Beam there and
clicking the mouse.

• Next open the Edit menu, and choose Paste again. Another copy of the two
instructions will show up beneath the others.

• Once again, add the missing semicolon.

• Now, to get the program to move the ball, all you have to do is change the
first 20 in each of the new instructions. Change the first pair of 20's to 21 and
the second pair to 22.

• To see what these new statements do , run the program. (Don't step it this
time.) The ball should seem to flicker and to roll along the line, just like an
animated cartoon .

But there's one problem. The ball rolls only a little way, and the program is
already 8 instructions long. It would take another 316 instructions to get the ball
to roll all the way across the screen. This would be tedious even if you used Copy
and Paste. There must be a better way!

And there is. Like most computer languages, Pascal has a looping com­
mand, a command that tells the computer to execute an instruction, or a group
of instructions, over and over a-gain.

1.10 Saving Your Program 27

The Clipboard: Cut and Copy

There is another command in the Edit menu: Cut. If you highlight a line
and choose Cut, the line disappears from the text . Now you can Paste
that line anywhere you want.

When you highlight text and choose either Cut or Copy, the Macin­
tosh stores the text in the electronic Clipboard. It stays there until you
highlight something else and choose Copy or Cut again. You can actu­
ally see what is in the Clipboard by opening the Windows menu and
choosing Clipboard.

Before we begin looping, let's set aside the version of program Cartoon
we've written so far by saving it-that is, by making a permanent copy of the
program on the MacPascal disk.

__ 1.10 Saving Your Program _______________ _

When you save a program, you put it in a MacPascal document on the MacPas­
cal disk. Here's how:

• Click on the Program window to make it active.

• Open the File menu, and choose Save As. This will open a dialog box, which
appears on the screen like this:

saue your program as Pascal

Eject

Saue Cancel

• Now type the name you want to use for this document. It's best to use the
name of your program, Cartoon , so that you can find it again. But any
name will do.

• Then click on Save.

Your program will be stored on the MacPascal disk, and the dialog box will
disappear. But your program will still be on the screen for you to work on. Only
one thing will be different . The Program window will be labeled "Cartoon" in­
stead of "Untitled."

28 A First Look at Pascal

Saving on a Separate Disk
You may want to store your program on a separate disk so that it doesn't take up
space on the MacPascal disk. Here's how to do it.

• Open the File menu and choose Save As.

• When the dialog box comes up, type in the name of the program and then
click on Eject. The disk will pop out.

• Now insert the other disk, and click on Save. The computer will copy the
program onto that disk and then eject it . After that a message will appear,
telling you to insert the original disk.

• Insert the original disk. Program Cartoon will appear on the screen again,
ready to be run.

Quitting

You may want to end your programming session now. If you do, here's. how:

• Go to the File menu and choose Quit.

MacPascal windows will disappear, and the desktop will appear with the
MacPascal disk window open on top of it. The MacPascal window will hold a
new icon-the icon labeled "Cartoon." (See Figure 1.18.)

• Now choose Eject from the File menu. The disk will pop out.

• Don't forget to turn off the machine.

~D Poscnl
1 itl'mS 393K in disk 7K ~nilnle

m m ~ Q

Open Me Cartoon Macintosh Pascal

CJ CJ CJ CJ
Tools Information Demos System folder

lQJ
~ ~ '21

Figure 1.18 The MacPascal disk window with the Cartoon document icon.

1.11 Looping 29

--1.11 LoopinQ------------------­
w e'll get back to the rolling ball in a moment, but first we'll show you how to
loop with a much simpler example.

Suppose we want to print this column of numbers:

1
2
3
4

One way to do this is to make a column of writeln statements . (Note that, in the
following writeln statements, there are no single quotation marks inside the pa­
rentheses. We'll explain why in a moment.)

program NumberList:
begin
writeln(l);
writeln(2);
writeln(J);
writeln(4)

end.

This is tedious. A more efficient way to print the list would be to use a Pascal in­
struction called the for statement to create a loop, like this:

program FirstLoop;
var

Number : integer;
begin
for Number := 1 to 4 do
begin

writeln(Number)
end

end.

There are several new things in program FirstLoop. We'll look at the for
statement first. The for statement in this program has two parts: a control line:

for Number .- 1 to 4 do

and a body:

begin
writeln (Number)

end

The control line tells the computer, "For each Number from 1 to 4, do the in­
structions listed in the body." The control line advances Number from 1 to 4, so
the writeln instruction in the body is executed four times .

30 A First Look at Pascal

Program FirstLoop tells the computer:

1. First substitute the integer 1 for the word Number in the writeln statement.
The symbol:= tells the Macintosh to make this substitution, or assignment,
and then do the writeln statement, which prints a 1 in the Text window.
(Note: There is never a space between the colon and the equal sign.)

2. Then substitute 2 for the word Number, and do the writeln statement.
3. Next substitute 3 for the word Number, and do the writeln statement.
4. Finally, substitute 4 for the word Number, and do the writeln statement.

Note that there are no quotation marks inside the parentheses in the writeln
statement. Quotation marks tell the computer to print out exactly what is be­
tween them. When we leave out the quotation marks we are telling the comput­
er to print out the value of Number instead of the word Number. And each time
the for loop is executed, this value is different. First it is 1, then 2, then 3, then 4.

What about the words begin and end surrounding the writeln statement?
They tell the Macintosh that the statements between them are the instructions in
the body of the loop.

Because the value of Number changes in the program, Number is a variable.
In Pascal you must tell the computer the names of the variables that you will use
in a program. You put this information at the beginning of the program in the
variable declaration part. The variable declaration in program FirstLoop is

var
Number : integer;

In addition to telling the computer that Number is a variable, this declara­
tion says that Number must be an integer. (Integers are whole numbers; they can
be either positive or negative. For example: -1, 2, 3, -4, 5, and 0 are integers. A
fraction, such as 2217, isn't an integer. Neither is a real number with a decimal
point, such as 3.1416.)

Number is a special kind of variable in program FirstLoop. Because it is
used in the control line of the for statement to determine the number of times the
loop is executed, it is called a control variable.

Loops give programs their power. You can't do much programming with­
out them. Writing a program to print out long lists of numbers, for example,
would be an overwhelming task if you didn't use a loop. Take the following
program:

program SecondLoop;
var

Number : integer;
begin
for Number := 500 to 1000 do
begin
writeln(Number)

end
end.

1.12 Let's Get the Ball Rolling 31

Program SecondLoop prints out a column of 501 numbers in the Text win­
dow, beginning with 500 and ending with 1000.

What do you think the next program does?

program OverAndOver;
var

PledgeNumber : integer;
begin
for PledgeNumber := 1 to 500 do
begin
writeln('I will not talk in class.')

end
end.

Program OverAndOver is interesting because the control variable in the for
loop-PledgeNumber-does not appear anywhere in the writeln instruction. So
the program prints the same line 500 times:

I will not talk in class.

__ 1.12 Let's Get the Ball Rolling _____________ _

Now that you know about loops and variables, we can get on with our cartoon.
We want to create a loop that will shift the center of the circle to the right, one
unit at a time, until the circle reaches the right wall of the window.

The center of the ball starts at position (20,80). As the ball rolls, the position
of the center changes to (21,80), (22,80), (23,80), and so on until it reaches
(180,80), where the ball just touches the right wall of the Drawing window. The
vertical position of the center stays the same (80), but the horizontal position var­
ies (see Figure 1.19).

(20,80) (60,80) (180,80)

Radius= 20) l I

Figure 1.19 Three steps in the ball's journey from left to right.

32 A First Look at Pascal

So let's invent a variable called Position to stand for the horizontal position
of the circle's center as the ball rolls. Our program must include the following
declaration:

var
Position : integer;

This declaration says we have a variable called Position, which must be an inte­
ger.

Now let's do the for loop. We want circles to be drawn from horizontal posi­
tion 20 to horizontal position 180. And we want the body of the loop to include
the instruction paintcircle, followed by invertcircle. Here is the loop that will
make the ball flicker and roll across the screen:

for Position := 20 to 180 do
begin
paintcircle(Position,80,20);
invertcircle(Pos ition, 80,20)

end

Now let's put this loop in program Cartoon. First you must bring up pro­
gram Cartoon.

Bringing up Program Cartoon

• If your Macintosh is off, turn it on, insert the disk , and open the MacPascal
Disk icon. In the MacPascal window you will see not only the MacPascal
icon but also an icon labeled "Cartoon."

• To bring up program Cartoon, double click on the Cartoon icon. You don't
have to load MacPascal, because the Macintosh does this for you automati­
cally when you bring up a MacPascal program.

• Now change program Cartoon so that it looks like this:

program Cartoon;
var
Position : integer;

begin
writeln('The First Cartoon !');
drawline(0,100,200,100);
for Pos ition := 20 to 180 do
begin
paintcircle (Position,80,20);
invertcircle(Position,80,20)

end
end.

The first cartoon program is now complete!

• Try running it. Watch the ball roll all the way across the Drawing window.

1.14 Printing Program Cartoon 33

__ 1.13 Saving Your Revised Program ____________ _

Now that you have a running cartoon program, you will probably want to save
your final version of the program so that you can run it later. Here's how to re­
place the permanent copy you stored on the disk with the new version on the
screen.

• Make sure the program window is active. If you forget to do this , you won't
be able to save your new version.

• Open the File menu, and choose Save instead of Save As. (If you have for­
gotten to activate the program window, the word Save in the menu will be
dimmed-that is , printed in grey-and it will be impossible to choose
Save.) You won't get a dialog box this time. The Macintosh will just replace
the old version on the disk with a copy of the new version on the screen.

Save and Save As

Use Save As when you save something for the first time and you need to
give the document a name. Use Save when you want to save a different
version of a document that already has a name. But be careful here.
When you use Save, the old version is lost forever.

--1.14 Printing Program Cartoon--------------­
H you have a printer, you will probably want to print out your program. Here's
how.

• First make sure the Program window is active.
• Then turn on your printer and choose Print from the File menu. A dialog

box will appear (see Figure 1. 20), asking you some questions about how you
want your document printed.

• Just click on OK. The printer will print out your program.

ouallty: 0Hlgh ®Standard 0 Draft OK
Page Range: @Hll 0 From: D To: D
Coples: D
Poper F~ed: ® Continuous 0 Cut Sheet (Cancel)

Figure 1.20 A print dialog box.

34 A First Look at Pascal

What if you want to print out the picture in your Drawing window or the
caption in the Text window?

• First activate the window you want to print.

• Then, holding down the shift and command keys, press the 4 key. The entire
active window will be printed.

You can also print out the entire screen.

• Press the caps lock key.

• Then , holding down the shift and command key , press the 4 key. This will
give you a screen dump, or print-out, of the entire screen .

__ 1.15 The Nuts and Bolts of Programs-----------­
All MacPascal programs use the same simple building blocks. The first building
blocks you have met are the reserved words, which are always printed in bold­
face in MacPascal. The reserved words that appear in program Cartoon are pro­
gram, var, for, to, do, begin, and end. A complete list of the reserved words in
MacPascal appears inside the back cover of this book.

A word you pick out yourself to use as a name for a program or a variable is
called an identifier. Program Cartoon has two identifiers: Cartoon (the name of
the program) and Position (the name of the control variable in the for loop) .

The identifiers you make up can use either capital or lowercase letters in any
combination. The Macintosh doesn't care whether you write Cartoon or cartoon
or even cARTOON. And it doesn't even mind if you mix things up and use capi­
tal letters the first time and lowercase the next time you use a name in the same
program. In this book we will generally capitalize identifiers to make them
easier to read .

What about the word integer in this line?

var
Position : i nteger;

In Pascal the word integer is called a type. A type in a variable declaration tells
what type of value the variable can have. This variable declaration says that the
variable Position can have only an integer value .

Program Cartoon also has certain instructions called standard procedures .
A procedure is an instruction that does some complicated special job. The stan­
dard procedures in the cartoon program are writeln, drawline, paintcircle, and
invertcircle. There is a complete list of the MacPascal standard procedures in the
reference manual. We list the standard procedures used in this book inside the
front cover.

1.16 Pascal and Macintosh Pascal 35

Finally, MacPascal has punctuation. In our first program we've used semi­
colons, commas, parentheses, single quotation marks, a colon, a colon followed
by an equal sign, and a period.

MacPascal has very definite rules for building a program from reserved
words, identifiers, types, standard procedures, and punctuation. Here are the
rules that we've seen so far.

1. The program heading line must end with a semicolon.

2. Two statements next to each other must be separated by a semicolon. A
statement followed by the reserved word end does not need to be followed
by a semicolon, however. And there should be no semicolon following the
word do in a for statement control line.

3. A program must end with a period.

4. The body of a Pascal program must begin with the word begin and end with
the word end.

5. Variables must be declared at the beginning of the program.

__ 1.16 Pascal and Macintosh Pascal ____________ _

The programming language known as Pascal was developed in Europe in the
late 1960's by Niklaus Wirth. Since then it has become very popular in the United
States, and it is now widely used as teaching language in American colleges
and universities. There are a number of different versions of the language, but
most of them closely conform to the description of the language Wirth gave in
1974.

For the most part, Macintosh Pascal conforms to this standard, too. But
MacPascal has some spectacular additions. Because it runs on the Macintosh, it
includes instructions for controlling the mouse, for drawing lines and circles, and
for working with menus and windows. If you learn MacPascal, you should have
little trouble using other versions of the language.

In the past, Pascal systems have required a program called a compiler,
which prepares a program you've typed in so that a computer can execute it.
With a compiled Pascal, you must instruct the computer to compile your pro­
gram before the program can be executed.

Compiling takes time-as much as several minutes for a big program. And
you must use the compiler every time you make a change in a program. This
means that experimenting with a lot of changes in your programs can become
quite tedious. What's more, learning to use a compiler is sometimes complicated.

MacPascal doesn't have a compiler. A different kind of program, called an
interpreter, prepares a MacPascal program for execution. Because interpreters
work much faster than compilers, a MacPascal program is ready to run as soon as
you type it in.

36 A First Look at Pascal

There is a price to pay, however, for an interpreter's quickness. A program
that has been prepared for execution with a compiler will run about ten times
faster than the interpreted version of the same program. This is a significant
speed-up that can be important if your program will be used repeatedly in some
scientific or business application. But if you are just learning Pascal, you will
spend most of your time writing, testing, and debugging small practice pro­
grams. You will barely notice an interpreted Pascal's slower execution speed.

The Instant window is a unique feature of MacPascal. Compiled versions of
Pascal allow you to run only complete programs. In MacPascal, you can run one
or several instructions that aren't in a program by using the Instant window.

In this book, when we talk about Pascal, we are referring to an instruction
or idea that is part of all versions of Pascal. When we say MacPascal, we are talk­
ing about something peculiar to Macintosh Pascal that you probably won't find
in other versions of the language.

---TEST YOURSELF---------------
1. Before you turn on the Macintosh, where is MacPascal stored?

2. Where is the point (0,100) in the Drawing window?

3. What are two synonyms for the word instruction?

4. How many units wide is the standard Drawing window? And how long is it
from top to bottom?

5. What kind of word is begin? What kind of word is writeln?

6. What happens to main memory when you load MacPascal?

7. Which three words must be in every program?

8. What punctuation mark must come at the end of the heading line of a pro­
gram?

9. What punctuation mark must come after the word end at the very end of a
program?

10. What is stepping?

11. What does a loop do?

12. What is an identifier?

13. What does the semicolon do in MacPascal?

14. What's wrong with each of these programs? Find all of the errors.

a. program Bad b. program NoGood
begin begin.
writeln('This will not work) writeln("No way!")
writeln('Why not?') end.

end.

Hint: There are a total of three errors in program Bad and four errors in
program NoGood.

Problems 37

1. Use the mouse to lay out the MacPascal windows in the following arrange­
ments:

Drawing Text

Text Drawing

Screen 1 Screen 2

Clipboard 1
Instant l

Text l
Drawing

Screen 3

2. What is the output of each of the following programs?

a. program OuchOne;
var
Throb : integer;

begin
for Throb := 1 to 250 do
begin

writeln('Have I got a headache! 1
)

end
end.

b. program OuchTwo;
var

Throb : integer;
begin
for Throb := 1 to 250 do
begin
writeln(1Have I got');
writeln(1 a 1

);

writeln('headache! 1)

end
end.

38 A First Look at Pascal

3. Suppose the Drawing window is divided into four
parts, as shown in the accompanying figure. In
which regions do the following points fall?

a. (101,20)
b. (101,150)
c. (50,70)
d. (150,70)
e. (150,170)

2

4 3

4. Read the following program and try to figure out what it does. Now run it
and test your hypothesis.

program Whoosh;
var
HDistance : integer;

begin
for HDistance := 20 to 100 do
begin
paintcircle(HDistance,100,HDistance);
invertcircle(HDistance,100,HDistance)

end
end.

5. What do you think this program does? After you decide, type it in, run it,
and see.

program Explode;
var
Radius : integer;

begin
for Radius := 1 to 100 do
begin
paintcircle(l00,100,Radius)

end
end.

6. a. What does this program do? Figure it out; then type it in and run it.

program WhoKnows;
var
Position : integer;

begin
for Position := 0 to 200 do
begin
paintcircle(Position,Position,20);
invertcircle(Position,Position,20)

end
end.

a.

Problems 39

b. What happens when you change the paintcircle and invertcircle com­
mands in program WhoKnows to the following pair?

paintcircle(Position,Position,Position);
invertcircle(Position,Position,Position)

7. What do you think program Implode does? Before you run it, see if you can
figure out what will happen.

program Implode;
var
Radius : integer;

begin ·
for Radius := 100 downto 1 do
begin
paintcircle(l00,100,Radius);
invertcircle(l00,100,Radius)

end
end.

8. Can you guess what shape this program prints out? Try it.

program Zag;
begin

drawline(0,200,50,0);
drawline(50,0,100,200);
drawline(l00,200,150,0);
drawline(150,0,200,200)

end.

9. Can you figure out what shape this0 program draws? Now try it.

program WhatShape;
begin

drawline(l00,50,150,150);
drawline(150,150,50,150);
drawline(50,150,100,50)

end.

10. Using the drawline instruction, write programs to draw the following
shapes.
b. c. d. e.

L

40 A First Look at Pascal

11. Write your initials using the drawline instruction.

12. What do you think this program does? Now try it.

program Mystery;
var

Number : integer;
begin
for Number := 2 to 5 do
begin

writeln(Number + 10)
end

end.

13. Can you figure how to use invertcircle commands to draw the following pic­
tures? Remember that invertcircle paints a white circle if the background is
already black and that it paints a black circle if the background is white.

c.

14. Change program OverAndQver in Section l.ll so that it prints out this:
' 1

I will not tallt in class.
2

I will not talk in class.
3

I will not talk in class.

and so on, for 50 repetitions.

15. Now try some variations on program Cartoon.

a. Change program Cartoon so that the ball rolls
along a line that goes down the middle of the
screen like tpis:

b. Next create two balls that roll perpendicular to
each other, like this:
Hint: Put all four circle instructions and the two
drawline instructions in one loop.

Problems 41

c. Now redo part (b), only this time put the invertcircle instruction before
the paintcircle instruction.

1 Machine Organization
and Program Planning

This chapter begins with a look at what really goes on when the Macintosh is
running a MacPascal program. Then we'll discuss a four-step technique for
problem solving with Pascal.

--2.1 Binary Numbers and Memory------------­
You've been using the decimal system for so long that it may seem like the only
imaginable way to do arithmetic . For computers, though, it turns out to be
much more practical to use the binary number system. In the binary system the
only digits are 0 and 1. Here's a table that shows how binary and decimal num­
bers correspond.

Decimal Binary

l l
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
10 1010
11 1011
12 1100

43

44 Machine Organization and Program Planning

The Macintosh's memory is made up of hundreds of thousands of rows of
tiny electronic switches. Each row has eight switches and is called a byte of mem­
ory. Each switch is called a bit. While the Macintosh is running, some switches
are open and some are closed. This is where the binary number system comes in.
If you think of an open switch as the digit 0 and a closed switch as the digit 1,
then a pattern of open and closed switches can stand for a binary number (see
Figure 2.1). For example, 10100010 stands for the number 162.

Figure 2.1 Open and closed switches.

The same pattern of switches can also have other meanings. The sequence
10100010 also stands for the symbol ¢. So one byte of memory, with its eight
switches, can hold the symbol ¢ or the number 162. Larger numbers require
more than one byte.

A binary pattern can also stand for a particular computer instruction, such
as writeln or paintcircle. This point is very important. The computer's memory
can hold not only data-that is, numbers and characters such as letters and
punctuation marks-but also instructions, which you type on your keyboard in
the form of words. Here is the binary pattern for an instruction that adds the
numbers 2 and 3:

0111 1010 1001 0001

1000 0000 0000 0010
1000 0000 0000 0011

the addition instruction
the number 2
the number 3

You may find it strange that the same binary pattern can stand for a num­
ber, a letter, or an instruction. But a part of the computer that's separate from
memory-the central processing unit-has been programmed to tell which is
which.

The central processing unit, or CPU for short, is the computer's brain. The
CPU doesn't really "know" whether a particular binary sequence is a number, a
letter, ordan instruction. But it has been programmed to expect instructions in
certain parts of a program and numbers in other parts of a program. For exam­
ple, the CPU always interprets the first byte after the word begin in the body of a
program as part of an instruction.

2.3 How Program Cartoon Is Stored in Memory 45

__ 2.2 Where Does MacPascal Fit In? ____________ _

MacPascal is a giant master-program that works like the director of a theatrical
production. You are the script writer, and the CPU is the actor. After you have
written a script (a program), you give it to the director (MacPascal). MacPascal
translates what you've written so that the actor (the CPU) can follow the instruc­
tions in your script. The CPU then performs its part by carrying out your instruc­
tions, and you see your play on one of the output windows.

The translation step is absolutely necessary, because the CPU does not un­
derstand anything except instructions written in patterns of ones and zeros. This
is called machine language.

If you wanted to talk directly to the CPU, you would have to write your in­
structions in machine language-long sequences of zeros and ones. This is far too
tedious and time-consuming. If you wrote the following simple instruction

writeln(2 + 3)

in machine language, it would look something like this:

0000 0001 0000 1010
0010 0010 0010 1100
0111 1010 1001 0001
1000 0000 0000 0010
1000 0000 0000 0011

As you can see, machine language is nearly incomprehensible. It takes many
machine-language commands to do one writeln instruction, because machine­
language commands are very primitive. "Fetch the byte at memory location
1024 and move it to memory location 1036" is a typical machine-language in­
struction translated into English.

The beauty of Pascal is that you can create your program using instructions
that closely resemble phrases in English. And once you've typed these in, Mac­
Pascal will see to it that the CPU gets a faithful, machine-language translation.

__ 2.3 How Program Cartoon Is Stored in Memory ________ _

Programs are translated into machine language in two steps. First as you type in
each command, the Macintosh converts the instruction into a binary code that is
not actually machine language and stores the code in main memory. Later,
when you run the programs, each coded command is translated into machine
language and then executed.

What happens when you type in program Cartoon? First you type in the
heading line, and MacPascal stores the name of the program in memory. The
next thing you type in is the declaration for the variable Position.

46 Machine Organization and Program Planning

This declaration directs the CPU to set aside a location in memory for the vari­
able you have named Position. (The location is two bytes long.) When you run
the program, this location in memory holds a number that represents the value of
the variable. Usually this number changes as the program runs. For the moment
no number is stored there, because the program isn't running.

Then the word begin alerts MacPascal to convert into binary code the body
of the program-all the instructions you type in between the first begin and the
final end. MacPascal puts the binary form of each instruction into consecutive
rows of memory in the order in which the instructions appear in the program.
MacPascal also tells the CPU to record where in memory the first instruction is
stored. Then, when you run the program, MacPascal "knows" where to find the
first statement of the body.

--2.4 What Happens When You Run Program Cartoon------­
The CPU starts execution of the program by translating the writeln statement
into machine language and then executing it . This prints "The First Cartoon!" in
the Text window. Next the CPU translates and executes the drawline statement,
which draws a line across the Drawing window.

Now the CPU comes to the for statement. First it goes to the location set
aside in memory for the value of the variable Position, and it puts a value
there-the integer 20.

Position

The statement paintcircle(Position,80,20) is translated next. The CPU looks
up what number has been stored in the location labeled "Position." It finds the
integer 20 .. So it executes the machine-language translation of the instruction
paintcircle(20,80,20).

Then the CPU does the same with the instruction invertcircle(Position,
80,20).

Now comes the complicated part. In most cases the CPU simply goes to the
next instruction when it finishes a command. But here it recognizes that it is
doing a for statement, and it must take a special action: Before executing the in­
structions in the body of the loop, it must determine whether looping is over. To
do this, it checks to see whether the current value of Position (20) equals the
upper limit of the loop (180). Because 180 is larger than 20, the Macintosh con­
tinues looping. It increases the value of Position by 1, replacing the number 20
with the number 21 at the location labeled "Position. "

Position

2.6 Watching Variables with the Observe Window 47

e for loop

ion,80,20);
.?tion, 80, 20)

)Sition is increased by 1until180 is reached. When that
) at the number at location Position equals the value that

11oop. This terminates the loop. And, because there are no
.:>gram execution ends.

--2.5 The Value of a Variable---------------
What do we mean when we say "the value of the variable Position?" We mean
that the value of a variable is the number in the location in memory assigned to
that variable.

The value of a variable is very concrete; it is the number that has been writ­
ten down inside memory next to the variable's name. Usually a variable's value
changes during program execution. When execution of program Cartoon starts,
the value of Position is undefined: No value has been copied into Position's loca­
tion yet. At the beginning of the for loop, Position's value is set at 20. Then it be­
comes 21, then 22, and so on up to 180.

If you get confused by the idea of the value of a variable, just think of a little
box in memory with a number written inside and a name written underneath:

~
Position

--2.6 Watching Variables with the Observe Window-------­
Now let's take a closer look at program execution, using MacPascal's Observe
window. When the computer runs program Cartoon, it executes the instructions
one by one. The value of the variable Position is undefined until the for loop is
executed. Then its value advances from 20 to 180. With each change in the value
of Position, the circle is painted and erased a little farther to the right.

Using the Observe window, you can get step-by-step reports on the value of
Position as the ball rolls across the screen. To get these reports, you have to open
the Observe window and identify Position as the variable you want to watch.
Then you must deposit stops inside the program. Stops tell the Macintosh where
to stop and make reports .

48 Machine Organization and Program Planning

X's, Y's, and Z's-The History of Variables

After printing wi~h movable type appeared in Europe, about 550 years ago,
printers began to turn out bibles, playing cards-and books on mathemat­
ics. Some math books were in Latin, others were in the language of the writ­
er, and each writer had his own way of handling variables in algebra prob­
lems. Some used the Latin word res, meaning " thing. " Italians used cosa,
also meaning "thing." And Germans used zahl, the word for " number." In a
big book, the repeated use of the same three- or four-letter word could cause
trouble: Type was expensive and printers often had limited supplies of the
letters.

Then, in 1637, the French mathematician Rene Descartes came up with
a new idea in a geometry book he was writing. He started using the single
letters x, y, and z for variables. But toward the end of his book, the letters y
and z appeared less and less often. Why?

Most books in France at that time were written in French or Latin, and
words in those languages have more x's in them than y's or z's. The French
printers who set the type for Descartes's book used up most of the y's and
z's they had in stock in the early chapters. Probably they told the author to
finish his book using x as often as possible. Descartes's book was very pop­
ular, and his use of letters for variables caught on.

When computers were first invented, programmers often used single
letters to name the variables in their programs. Computer memory was very
limited, and a single letter takes up less memory than a complete word . But
names for variables in programs have started to get longer and longer. Since
the cost of computer memory has come down, saving a few bytes by calling
a variable x instead of Position has become foolish . Computer people recog­
nize that a good program must be a clear program, and using descriptive
names for variables makes programs much easier to understand. So you
won't find many y's or z's-or even x's-in this book.

Let's observe the value of Position every time the invertcircle command is
about to be executed.

• First type in program Cartoon , or, if you saved a copy, bring it up. If you
don't _remember how to bring up a program, see page 32 in Chapter 1.

Setting up the Observe Window

• Now open the Observe window , and move it to the lower-left corner of the
screen. This prevents it from blocking the text in the Program window (see
Figure 2.2) .

2.6 Watching Variables with the Observe Window

,. s File Edit Seurch Run Windows

Cartoon

program Cartoon; ..
Yllr "I"

Position : integer;
begin

writeln('The First Cartoon!');
drawline(O, 100, 200, 100);
for Position := 20 to 180 do
begtn

paintcircle(Position, 80, 20);
ihvertcircle(Position, BO, 20)

end
end.

Obserue
Enter an expression I

~ .·. · . · . · .. ' ... ' ' . ' .. .

Figure 2.2 The Observe window.

TeHt
f:

t- :
Druwing

49

.,

• Type "Position" in the upper-right box in the Observe window, where the
insertion point is located. This tells the Macintosh you want to watch the
variable Position.

Putting in Stops

Now you must indicate exactly where in the program you want to watch Posi­
tion . Because you want to watch Position between the paintcircle and the
invertcircle commands, you must put a stop to the left of the invertcircle instruc­
tion. To deposit a stop, take the following steps:

• First make the Program window active by clicking in that window. The
Observe window will disappear behind the Program window.

• Next open the Run menu and choose Stops In . This adds a Stop column at
the left of the Program window with a tiny stop sign at the bottom (see Fig­
ure 2 .3). Now you are ready to insert a stop .

• Move the pointer to the Stop column. Something peculiar happens when
you do this. The pointer changes shape from an arrow to a stop sign.

50 Machine Organization and Program Planning

Stop---+.­
Column

Cartoon
program Cartoon;
vor

Position : integer;
begin
wri teln('The First Cartoon!');
drawl ine(O, 100, 200, 100);
for Position := 20 to 150 do

begin
paintcircle(Position, BO, 20);
invertcircle(Position, 80, 20)

end

Figure 2.3 Program window with Stop column.

• To deposit a stop sign, move the stop sign pointer opposite the invertcircle
command, and click the mouse. When you slide the pointer away from this
position, the deposited stop sign will remain (see Figure 2.4) .

Cartoon

pro'grnm Cortoon;
vor

Position : integer;
begin

writeln('The First Cartoon!');
drawline(O, 100, 200, 1 0 0)~
for Position := 20 to 180 do

begin
paintcircle(Position, 80, 20);
invertcircle(Position, 80, 20)

end
end.

Figure 2.4 A stop sign next to invertcirc/e.

2.6 Watching Variables with the Observe Window 51

Running Program Cartoon with Stops

Now let's see what happens when you run the program with a stop in it.

• First open the Windows menu and bring up the Observe window again.

• Run the program by choosing Go. The program will execute until it runs
into the stop sign. When it stops, you will see on the screen the caption, the
line, and the first frame of the cartoon-a black circle. A little hand will be
pointing to the next line to be executed-the invertcircle instruction. And
the Observe window will report the value of the variable Position-20.

~o Obserue
20 Pos1tion Q

Enter an expression

• Choose Go again. The Macintosh will go through the stop and continue
executing until it reaches that stop sign again one loop later. Now the value
of Position is 21, as you can see in the Observe window.

• Choose Go two or three more times. Each time, the ball will move one unit
to the right and the Observe window will report the new value of Position.
This is too slow! Let's start over and observe Position in a speedier way.

• Open the Run menu and choose Reset. Reset clears the output windows and
readies the Macintosh for another run.

Running with Go-Go

There's another way to watch a variable change after you have inserted stops.
When you run the program by choosing Go-Go, the cartoon runs in slow motion.

• Open the Run menu and choose Go-Go. As the program executes, it pauses
momentarily at the stop, prints the new value of Position in the Observe
window, and then resumes execution. Using Go-Go, you get a step-by-step
report on the value of Position as the ball rolls slowly across the screen.

Pause and Halt

Note that, whenever you run a program, a new menu heading called Pause ap­
pears at the top of the screen (see Figure 2.5) . You can use the two commands in
that menu to stop program execution. Now get ready to use Pause in the middle
of execution.

52 Machine Organization and Program Planning

progrnm CBrtoon;
var

Position : integer;
begin

writeln('The First C6rtoon!');
drnwline(O, 100, 200, 100);
for Position := 20 to 180 do
begin

p6intcircle(Position , 80, 20);
invertcircle(Position, 80, 20)

end
end.

Obserue
33

.,

Te Ht
The First Cartoon !

Oro wing

Figure 2.5 Pausing during execution with the value of Position equal to 33.

• Try Go-Go again and, when Position gets to 100, move the pointer to Pause
and hold down the mouse button. This stops the program temporarily.

• Release the button. Execution will start up again, and the program will run
to completion. Next get ready to freeze the program with Halt.

• Try Go-Go once more, and this time, when Position gets to 100, open the
Pause menu and choose Halt. This stops program execution. The cartoon in
the Drawing window is in suspended animation, and the current value of
Position is reported in the Observe window.

• Choose Go-Go again. You will see the rest of the cartoon. If you don't want
to watch the rest of the cartoon, you can Halt once more and then open the
Run menu and choose Reset.

Taking Out the Stops
When you want your program to run normally again, you must remove the
stops.

• First activate the Program window.

• Move the pointer to the stop sign, and click. The unwanted stop will dis­
appear. (Note: This step is optional.)

2. 7 Arithmetic with Integers in MacPascal 53

• Now eliminate the Stop column from your program by choosing Stops Out
on the Run menu.

Right now the Observe window is useful only because it helps you under­
stand how variables work. Its real use comes when programs aren't working
right-that is, when you have a bug. Then you can use the Observe window to
see whether the way you think the program is working squares with what's really
going on. We will show you how to do this later.

Our next topic is Pascal arithmetic. First we'll look at how Pascal handles
simple arithmetic . Then we'll show you how the arithmetic operations can affect
looping-sometimes with spectacular results .

--2.7 Arithmetic with Integers in MacPascal ----------­
Adding, subtracting, and multiplying are easy in Pascal. You use the plus sign
(+)to add, the minus sign (-) to subtract, and the asterisk (*) to multiply. For
example, if you type

writeln((5 + 2) * (6 - 4))

in the Instant window and click on Do It, the integer 14 will show up in the Text
window.

Doing division is a little trickier; there are two different ways to divide in
Pascal. One way uses the symbol I . This is the kind of division you are used to:

10/ 4 = 2.50
9.0/3 . 0 = 3 .0

The other kind of division uses the reserved word div, which means "divided by.' '
Div works only with integers, or whole numbers. With div, you must always
divide one integer by another integer, and the answer will always be an integer.
For example,

5 div 3 = 1

This is so because 5 divided by 3 = l 2/3, and div discards the fraction, leaving
the integer l as the answer. Using div is like doing long division and throwing out
the remainder. For example, if you wanted to calculate how many whole weeks
there are in March , you would divide 31 by 7, like this:

4
7)31

28
3

31 div 7 4 (throw out the remainder of 3)

54 Machine Organization and Program Planning

Because we' re working only with integers in this chapter , we'll be using only div.
Here are some other examples of how div works:

6 div 3 2
7 div 3 2
8 div 3 2
9 di v 3 3

-9 div 3 -3
3 div 9 0

- 9 di v 4 -2

Note: A smaller positive number divided by a larger one (both integers) always
comes out zero: Smaller div Larger = 0. And one more thing: 6 div 0 doesn't
make sense, because we are never allowed to divide by 0. If you try to, your pro­
gram will bomb. That is, program execution will stop dead and you will get an
error message.

At first glance, div might seem weird and useless to you. But there are lots of
situations that require a whole-number answer.

Take these problems, fo r example: How many dozen eggs does your hen lay
a year , if she lays an egg a day? The answer is 365 div 12, or 30 dozen . How many
days has an astronaut been in orbit if she's been up for 115 hours? The answer is
115 div 24, or 4 days.

EXERCISE 1 What is the value of each of these expressions?

a . 9 div 2

b. 3 div 4
c. 3 div (-4) (Answer: 0)

d . - 20 div 8 (Answer: -2)

e . - 10 div -3 (Answer: 3) -

What happens when you use several operators in a single statement , like
this?

writeln(2 + (3 * 4) - (5 di v 6))

Try it with pencil and paper. You should get 14, because 5 div 6 = 0.
But what does the computer print when you type in the following instruc­

tion?

writeln(5 + 4 * 2)

\

2. 7 Arithmetic with Integers in MacPascal 55

Does Pascal add 5 and 4 first and then multiply by 2, giving 18? Or does it multi­
ply 4 and 2 first and then add 5, giving 13? You can get either answer if you use
parentheses. The Macintosh will print 18 if you place the parentheses like this:

writeln((5 + 4) * 2)

And it will print 13 if you place the parentheses like this:

writeln(5 + (4 * 2))

But if you leave out parentheses, Pascal has a rule that tells which operations are
done first. Pascal does multiplications and divisions first, in the order in which
they appear left to right. Then it does the additions and subtractions, also in the
order in which they appear. This means that

5 + 4 * 2 = 5 + 8 = 13

and

8. - 3 div 5 8 - 0 8

How about this?

5 + 3 - 2 * 6 div 4

In this case, 2 * 6 is done first (because * comes before div) , leaving

5 + 3 - 12 div 4

Next 12 div 4 is done, leaving

5 + 3 - 3

And then the addition is done, followed by the subtraction. So the answer is 5.

EXERCISE 2

The Rules of Arithmetic in MacPascal

I. First do all the multiplications and divisions from left to right.

2. Then do all the additions and subtractions from left to right.

What should these statements print out? Work out the answers with pencil
and paper. You can check yourself using the Instant window.

a. writeln(2 + 4 div 6 * (8 - 10))
b. writeln(lOO div 5 div 4 div 3 div 2)

c. writeln(lO div 2 * 10 - 10 div 3) ..

56 Machine Organization and Program Planning

--2.8 Arithmetic and LoopinQ--------------­
The real power of arithmetic in programming comes when you do arithmetic in­
side a loop. To see how this works, let's take a look at program FirstLoop, which
prints the numbers I through 4 in a column.

program FirstLoop;
var

Number : integer;
begin
for Number := 1 to 4 do
begin
writeln(Number)

end
end.

If we make this change in the writeln statement

writeln(Number + 1)

We'll get this column of numbers instead:

2

3
4
5

And if we change it to

writeln(Number - 3)

the column will look like this:

-2
-1

0
1

To print out the first four even integers,

2
4
6
8

we need to use this writeln statement:

writeln(Number * 2)

2.8 Arithmetic and Looping 57

And with

writeln(Number div 2)

in the loop, we'll get

0
1
1
2

One last example. The MacPascal standard procedure sysbeep commands
the Macintosh to make an electronic beep. The instruction sysbeep(IO) produces
a beep that lasts for 10 * .022 seconds. Sysbeep(20) sounds the beep for 20 * .022
seconds . What do you think the following program does?

EXERCISE 3

program Beep;
var

Number : integer;
begin
for Number := 10 to 20 do
begin

sysbeep(5 * Number)
end

end.

a . What does this version of program FirstLoop print?

program FirstLoop;
var

Number : integer;
begin

for Number := 1 to 4 do
begin

writeln(Number * Number div 5)
end

end.

Answer: 0-0-1-3 in a column

b. Change program FirstLoop so that it prints out each of the following col­
•1mns of numbers.

3 0
6 3
9 6

12 9

-2
0
2
4

-8
-6
-4
-2 -

58 Machine Organization and Program Planning

__ 2.9 Solving Arithmetic Problems ____________ _

Now you know enough about using arithmetic in Pascal to write programs that
will solve problems. Let's see how to solve this one: Print out all the years from
1901 to 1999 that end in zero.

To write this program, you need to know that there are nine years between
1901 and 1999 that end in zero. This means that there will be nine repetitions of
the loop .

program Tens;
var

TenYearPeriod : integer;
begin
for TenYearPeriod := 1 to 9 do
begin
writeln(l900 + (10 * TenYearPeriod))

end
end.

If you want to print out all the years from 1900 to 1999 that end in 9, you
can write the program in two different ways (at least). Here is one way.

program NinesOne;
var

TenYearPeriod : integer;
begin
for TenYearPeriod := 1 to 10 do
begin

writeln(1899 + (10 * TenYearPeri od))
end

end.

Here is another.

EXERCISE 4

program NinesTwo;
var

TenYearPeriod : integer;
begin

for TenYearPeriod := 0 to 9 do
begin
writeln(1909 + (10 * TenYearPeriod))

end
end.

How about printing the leap years in the twentieth century? Leap years are
years that are divisible by 4, except for some century years such as 1900. Be­
cause there are 24 leap years from 1900 to 1999, the program looks like this:

program Leap;
var

LeapYear : integer;
begin

2.10 Using Arithmetic in Program Explode 59

for LeapYear := 1 to 24 do
begin
writeln(l900 + ~----~

end
end.

What expression should go in the box to instruct the computer to print out
all the leap years in the twentieth century? -

__ 2.10 Using Arithmetic in Program Explode __________ _

Now let's use what we've just learned to do some fancy geometry programs,
starting with a variation of program Explode (Problem 5 at the end of Chapter
1). Let's use multiplication in the for loop to make this program more exciting.
Here's the original program:

program Explode;
var

Radius : integer;
begin
for Radius := 1 to 100 do
begin
paintcircle(l00,100,Radius)

end
end.

Bring up program Explode, or, if you don't have a permanent copy on a
disk, type the program in. Now run it. Note that the exploding circle grows
slowly. This happens because, each time the paintcircle instruction in the for
statement is executed, the radius of the circle grows by just one unit.

To speed up the explosion, let's make the radius grow by two units each time
through the loop. This means that we will need only 50 repetitions, or iterations,
of the loop (instead of 100) to end up with a circle that has a radius of 100. The
for statement in program Explode will now look like this:

for Radius := 1 to 50 do
begin
paintcircle(l00,100,2 * Radius)

end

Make this change and test it out. And while you're at it, play around with
program Explode, making the explosion happen even faster-say, in 10 or 15
iterations.

60 Machine Organization and Program Planning

__ 2.11 Planning a Graphics Program-Drawing Diamonds ______ _

In this and the next example, we are going to explain how to write programs.
Programming is a problem-solving skill that requires concentration, persistence,
attention to detail, and (above all) practice.

In the first of these two examples, we want to write a program that draws a
diamond like the one shown in Figure 2.6 . We'll call it program Diamond.

(100,0)

(100,200)

Figure 2.6 The diamond consists of 201 pairs of line segments, but only 5 are shown
here.

When we solve a problem using the computer, we begin simply by thinking
about the problem until we are sure we know exactly what is required. This is
what we come up with:

The diamond has 201 pairs of line segments, and each pair meets halfway
across the screen at horizontal position 100. The first two lines meet at the top.
Each time the program draws another pair of lines, the point where the segments
meet is one unit farther down. The vertical position of the meeting point of the
two segments starts at 0 and goes down to 200. Because the meeting point is what
varies in the picture, MeetingPoint will be a variable in our program. It will rep­
resent the vertical position of the point where the line segments meet.

Now we know enough to make a rough plan for the program. Here's the
plan:

As MeetingPoint of the line segments goes from 0 to 200,
draw the left segment
draw the right segment

2.11 Planning a Graphics Program-Drawing Diamonds 61

This looks promising! Now let's change the "As . . . " statement into a Pascal for
statement:

for MeetingPoint : = 0 to 200 do
draw the left segment
draw the right segment

Let's refine our plan by concentrating on how to draw the left segments. All
the left segments are anchored at point (0,100), and they all end halfway across
the screen (see Figure 2. 7).

(100,0)

(100,150)

(100,200)

Figure 2.7 The left segments of the diamond.

In other words, the horizontal position of the right endpoints of the line seg­
ments on the left is fixed; it is always 100 units over from the left. The vertical
position of the right endpoints does vary; with each successive line, it gets one
unit farther down from the top . So with each line, the value of the variable
MeetingPoint gets one unit larger. The instruction that draws each left segment
should be

drawline(0,100,100,MeetingPoint)

The instruction that draws the right segments looks almost the same. The
right segments are anchored at the point (200,100), so the instruction should be

drawline (200,100,100,MeetingPoint)

62 Machine Organization and Program Planning

We're almost there. But first we'll have to write a variable declaration for
MeetingPoint.

var
MeetingPoint : integer;

Now we can put the complete program together.

program Diamond;
var
MeetingPoint : integer;

begin
for MeetingPoint := 0 to 200 do
begin

drawline(0,100,100,MeetingPoint);
drawline(200,100,100,MeetingPoint)

end
end.

What happens when you run program Diamond? Program Diamond draws
a picture that looks pretty exciting as it appears on the screen. But there's a prob­
lem. The lines are so close together that they blend into a solid black diamond
(see Figure 2.8). To fix this problem, we can spread out the lines and draw fewer
of them. This means doing fewer repetitions of the for loop and moving the meet­
ing point correspondingly farther down the screen with each iteration. Let's
draw the picture with about one-fourth as many lines. For the upper limit of the
for loop we'll use the expression 200 div 4, which equals 50. The meeting points
will be four units apart. Here's how the loop should look:

for MeetingPoint := 0 to (200 div 4) do
begin

drawline(0,100,100,4 * MeetingPoint);
drawline(200,100,100,4 * MeetingPoint)

end

This time when you run program Diamond, you can see the individual lines. See
Figure 2.9(a).

When we run the program with just one-seventh as many lines, using this
loop

for MeetingPoint := 0 to (200 div 7) do
begin

drawline(0,100,100,7 * MeetingPoint);
drawline(200,100,100,7 * MeetingPoint)

end

we get the picture shown in Figure 2.9(b). This picture is a little peculiar, if you
look closely, because of the way div works. The picture doesn't quite reach the

2.11 Planning a Graphics Program-Drawing Diamonds 63

sD Drawing

Figure 2.8. Program Diamond's 201 pairs of lines blend together to form a completely
black diamond.

Drnwing - Ornwing

(a) The div 4 version. (b) The div 7 version.

Figure 2.9 Program Diamond debugged.

64 Machine Organization and Program Planning

bottom of the Drawing window, which is 200 units down from the top. This is so
because the value of the upper limit in the loop is 200 div 7 = 28. So, at the last
loop iteration, MeetingPoint has the value 28. After the loop repeats 28 times,
the last meeting point is 196 units down, because 7 * 28 = 196. This is 4 units
short of the bottom.

For more on program Diamond, try Problems 6, 7, 8, and 9 at the end of
this chapter.

Algorithms and the Man from Khwarizm

A little more thian 120Qyears ago, the Caliph.of Baghdacl invited a scientist
n~med Muhammad, son of Moses, to teach and study at the House of Wis­
dom, t;ln academy of learning in Baghdt;id. Tbe scientist came to be known
as the Man from Khwarizm, the province in Central Asia that had been his
horrie. In Nabic his name was Al:Khw~rizmJ.:

Al-Khwarizmi was especially interested in solving problems by using
equations, and ~e wrote a ~()Ok about bis mE':)thod,Qne ()f theArabic words
in the title of his book was al-jabr. When it was translated into· Latin, that
word became algebra. From then on, mathematici~ns Cc:\lled. ~.1-KhwarizlTlJ's
method of solving problems algebra. In Europe his name was pronounced
"Algorismus," and gradually the art ofdoing arithmetic calTl~ to be called
algorism or algorithm. Today mathematicians use the word algorithm to
mean a careful, step-by-step method of calculating. And in compvter sqi­
ence,)t means a detailed plan for solving a problem using the cofflputer, .

--2.12 Thinking, Planning, Coding, and Testing and Debugging ____ _
Before we go on to our next example, let's summarize the steps we went through
as we wrote program Diamond.

1. First we went through a thinking step, in which we described our program­
ming problem in detail. In the thinking step it is often helpful to work the
problem with pencil and paper first. Making a diagram can also be useful if
the purpose of the program is to draw a picture.

2. Our second step was a planning step. We divided the problem into clear,
understandable units and wrote them down in English phrases. After we
formulated a loose plan, we refined it and converted it to a tight plan, or al­
gorithm. Algorithms are written in English phrases mixed with Pascal.

2.13 AnOrbitingPlanet 65

3. Coding was our third step. In this phase we actually converted our tight
program plan, or algorithm, into Pascal instructions.

4. Our final step was testing and debugging. We tested program Diamond by
running it. And, when we weren't satisfied with the picture we got, we
debugged the program by spreading the line segments in the Drawing win­
dow.

So there are really four separate steps to programming: thinking, planning,
coding, and testing and debugging. What you probably think of as program­
ming is actually just the coding part-writing down the MacPascal instructions
that will solve your problem. But there is much more to programming than
coding.

Algo·what?

You are probably wondering exactly what the word algorithm means. An al­
gorithm is a list of informal instructions that will systematically get some:.·'·
job done. Even though you may not have heard of algorithms befpre, you use
them every day, A pancake recipe, for example; is an;algorithm. It'::; a step~.'
by-sfep list of instructions to~ making pancakes. And the instruction b<loklef
that comes with a camera includes an algorithm for changing.aroll of .tilm.
l:ven this is an algorithm: · · · : ·

You put your rightfoot ip,
You put your right foot out,
You put your right foot in,
And you shake it all ab<;)i:Jt.

for doing the Hokey Pokey

--2.13 An Orbiting Planet----------------
Next we want to design and write a spectacular program called program
Planetln3D. Here's what the program will do. A planet (a flickering ball) will
move from the upper-left corner of the output window diagonally across the
screen and will exit from the window at the lower-right corner. (See Figure
2.10.)

As it moves, the planet will also grow in size-let's say from radius 0 at the
upper-left corner to radius 40 at the lower-right corner. (We've chosen 40 for the
final r.adius of the circle for no special reason except that it looks good. The final
size of the planet will be less than half the size of the standard Drawing window.)

66 Machine Organization and Program Planning

•
~ •

Figure 2.10 The planet will move from the upper-left corner to the lower-right corner.

Now let's work through the four programming steps with program
Planetln3D.

Thinking (0,0)

G-(50,50)

0 1100.1001

(150,150)-EJ

/-11

L Radius= 40

. l
(200,200)

Let's look at the accompanying diagram to see what it tells us about our prob­
lem. Notice where the planet enters the window and where it leaves. It starts
with its center at point (0,0). And it stops at point (200,200). In between, the

2.13 An Orbiting Planet 6 7

center goes to (1,1), then to (2,2), and so on. At each position we wanttheplanet
to flicker (appear and disappear) just like the ball in program Cartoon. Now we
understand the problem well enough to start planning the program.

Planning
Here is our first rough plan for the program.

Plan I
As the planet moves from the upper-left comer to the lower-right comer,

make the planet flicker and grow

Now we can make the plan more specific and turn it into an algorithm.

Plan II-The Algorithm
As the horizontal and vertical positions of planet go from 0 to 200,

make planet flicker and grow from radius 0 to radius 40.

Coding
We are now ready to translate our algorithm into Pascal. Let's look at the dia­
gram on page 66 again. As the planet moves diagonally across the screen, it does
three things: It moves across, it moves down, and it gets bigger. This might lead
you to think, "Ahal Three things change so we need three variables." Luckily
this isn't so. Here's why.

The center of the circle starts at (0,0) and goes to (1,1), then to (2,2) and so
on. The value of its vertical position is always the same as the value of its horizon­
tal position. This means that we need only one variable for the horizontal and
vertical positions. Let's call the variable PlanetPos.

The radius gets bigger as the value of PlanetPos increases, so let's try using
PlanetPos to stand for the radius, too. (We are deliberately making an error so
that we can show you how to debug later.) Here is the program:

program PlanetinJD;
var
PlanetPos : integer;

begin
for PlanetPos := 0 to 200 do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos);
invertcircle(PlanetPos,PlanetPos,PlanetPos)

end
end.

68 Machine Organization and Program Planning

Testing and Debugging

The final step in programming involves testing the program to see whether it
does what we want-and debugging it if it needs fixing. Let's test the program
by running it. When you try, you'll see that ... well, it almost works. The prob­
lem is that, when the circle reaches the lower-right corner, it's huge. But the
problem's specification, or description, says that the planet's radius should be
only 40 when the planet reaches the right wall of the window. The program has
a bug.

Here's a pencil-and-paper trick for debugging loops. You can use it from
now on, whenever you program. If a loop isn't working right (and this one isn't) ,
see what the loop is doing at the first iteration and at the last iteration. In this
case, looking at the first iteration doesn't help much. The program does the two
instructions:

paintcircle(0,0,0);
invertcircle(0,0,0)

But looking at the last iteration is more promising. The program executes these
two instructions:

paintcircle(200,200,200);
invertcircle(200,200,200)

And here is our bug. When the planet reaches the right side it has radius
200-and we want it to have radius 40.

Debugging with the Observe Window

This is a place where the Observe window can help us. To make use of it ,
we need to bring it up and enter PlanetPos as the expression to watch.
Then we can deposit a stop just before the invertcircle command and run
the program using Go-Go. We can watch the successive values of
PlanetPos as the planet moves across the screen and becomes more and
more oversized.

We want the radius to start at 0, growing smoothly until it reaches 40,
which is exactly one-fifth of 200. We can get this to happen if we make the radius
one-fifth of PlanetPos throughout the entire loop . Now the planet will be the
right size when we get to the last iteration, and our bug will be fixed. Here's the
new program .

2.14 Getting the Planet to Return-Backward For Loops 69

program PlanetinJD;
var

PlanetPos : integer;
begin
for PlanetPos := 0 to 200 do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)

end
end.

__ 2.14 Getting the Planet to Return-Backward For Loops _____ _

Suppose we want to extend the code in Planetln3D so that the planet retraces its
steps, as shown in Figure 2.11. This will be easy once we've mastered Pascal's
backward for loop construction.

Figure 2.11 The planet retraces its steps.

The backward for loop makes the value of the variable go down by 1 with
each iteration, instead of up by l. Here's an easy example of how this works:

for Number := 4 downto 1 do
begin

writeln(Number)
end;

70 Machine Organization and Program Planning

This loop prints the column

4
3
2
1

With the backward for loop, we can get the planet to return by using the fol­
lowing statement:

for PlanetPos := 200 downto 0 do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)

end

Here is a complete orbiting planet program:

program PlanetinJD;
var
PlanetPos : integer;

begin
for PlanetPos := 0 to 200 do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)

end;
for PlanetPos := 200 downto 0 do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)

end
end.

Note: If you have already typed in the first loop and you want to add the sec­
ond loop, use Copy and Paste.

__ 2.15 Outside the Standard Drawing Window _________ _

One final touch. Note that the planet is still half on the screen at the end of the
first loop. We can make it completely disappear by executing the for loop a few
more times. Try increasing the limit in both loops from 200 to 250 and see what
you get.

Something mysterious happens when you do this. The planet disappears at
the lower-right corner of the window and hesitates for a while before it comes
back. What's going on?

2.15 Outside the Standard Drawing Window 71

It turns out that you can write commands to draw shapes outside the limits
of the standard Drawing window. When you run the program , the commands
are executed, but you don't see them on the screen-that is , unless you enlarge
the Drawing window. If you use the Size box to make the Drawing window
larger , you will be able to see the planet go through all 250 loops.

You can write commands that will do imaginary drawings that extend way
beyond the borders of the Drawing window, even when it is at its largest . Think
of the Drawing window as a window that looks out onto an area that is far bigger
than the actual Macintosh screen.

Tuning Your Planet

-........._

" \
\
\
I

\ I
\ I

'-....._ /' ____ / ~

Unhappy with the speed of your planet as it moves across the Drawing win­
dow? Try speeding it up.

Make it move two or three times as fast by adjusting how far the planet
moves between flickers. Right now it's slow because it flickers at the point
(0,0), then at (1, 1), then at (2,2), and so on. Make it flicker at (0,0), (2,2), (4,4),
and so on .

72 Machine Organization and Program Planning

__ 2.16 Comments-------------------
With program Planetln3D we have reached a milestone. Our programs are now
so complex that we need to include notes, or comments, in the program text to
explain how the program works. Remember, a comment in Pascal is a message in
English, enclosed in braces:

{THIS IS WHAT A COMMENT LOOKS LIKE.}

Pascal skips over whatever is inside these braces and doesn't treat it as part of
the program. So we can write whatever we like inside the braces, and it won't
affect the output of the program. We include comments to explain to ourselves
and to others what our programs are all about. In this book we use all capital let­
ters in comments to distinguish them from program instructions. But either capi­
tal or lowercase letters will work in comments.

To show you how helpful comments are, we've gone back and put them in
our last program. With comments in place, Planetln3D is much more under­
standable for anyone who tries to read it (including you a couple of months from
now).

Here's Planetln3D with comments:

program PlanetinJD;
{PLANET MOVES FROM UPPER LEFT TO LOWER RIGHT AND GROWS.}
{THEN IT REVERSES ITS PATH AND SHRINKS.}
var

PlanetPos : integer;
begin

{PLANET MOVES FROM UPPER LEFT TO LOWER RIGHT.}
for PlanetPos := 0 to 200 do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)

end;
{PLANET RETURNS FROM LOWER RIGHT TO UPPER LEFT.}
for PlanetPos := 200 downto 0 do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)

end
end.

The first comment in a program should go right under the heading line and
should summarize the purpose of the program. Often it is helpful to put in a com­
ment that explains what a variable stands for. Each of the other comments
should explain the purpose of the instructions that follow it.

Note that in Planetln3D we don't go overboard explaining what's obvious.
In deciding what comments to use, you should go back and look at your plan,
which tells the purpose of each step in the program.

2.17 Good Names, Bad Names, and Syntax Diagrams 73

Comments should be in English and not in Pascal. Good comments are
often similar to or the same as the steps you identified in your program plan.

When have you done a good job of commenting? One way to decide is to
apply the "vacation test." Imagine that you are going on vacation for a month.
When you return, will you be able to understand the programs you wrote before
you left?

From now on, all but the simplest programs you write should include com­
ments. Don't be tempted to skip them. At the very least, you should put a one­
line comment that states the purpose of the program just below the heading line.

--2.17 Good Names, Bad Names, and Syntax Diagrams------­
When you make up a name for a program, it can't be just anything you think of.
For example, reserved words such as begin, end, and do can't be used in a made­
up name in a Pascal program. A list of the reserved words appear inside the front
cover of this book.

MacPascal rules forbid us to use certain names such as 3DPlanet, although
Planetln3D is OK. The rule says that any identifier-a name you make up and
assign to a program or a variable-must begin with a letter. Digits and the un­
derscore symbol may appear elsewhere in the name, however. This means, for
example, that you could name a program R2_D2.

Pascal has lots of rules like the identifier rule, so the designers of the lan­
guage use syntax diagrams to help make the rules clear. The syntax diagram for
identifiers is shown in Figure 2.12.

How does this diagram help us? To check whether R2_D2 is OK, we start at
the left and match the first symbol (R) against the first box, which is labeled
"letter." Risa letter, so we can go on.

The next symbol is the digit 2. If we follow one of the loops after the first let­
ter box, we come to a digit box, so 2 is also OK.

Then we follow the loop with the underscore box to determine whether the
underscore is OK. It is.

Identifier-.+ letter

digit

letter

underscore

Figure 2.12 The syntax diagram for identifiers.

7 4 Machine Organization and Program Planning

Next we match the D against the letter loop and the 2 against the digit box ,
and we're finished. The identifier R2_D2 has made it through the syntax dia­
gram, so it's OK as an identifier.

How about 3D? As you have probably figured out , 3D is not OK. Starting at
the left, the first box in the diagram is labeled "letter. " Because 3 is not a letter,
and because there's no alternative route to get past this part of the diagram , 3D is
not allowed as an identifier. D3 is OK as an identifier , but D 3 (with a space in
the middle) is not. When Pascal gets to the space in the middle, it " thinks" it has
come to the end of the name. TP,en Pascal runs into the 3 and doesn't know what
to make of it.

Here's a tip on making up identifiers: When you invent names for variables,
use names that are as close as possible to the actual idea they represent. If you
want a variable to represent the position of a planet as it orbits, don't call it X, or
Number, or even Spot. Call it PlanetPos.

---TEST YOURSELF----------------
1. What is the CPU?

2. What do we mean when we say, "The value of the variable is of type
integer"?

3. What is the value of 5 * 4 div 3? of 5 div 4 * 3? of 5 div (4 * 3)?

4. When you run a program using Go-Go , what happens when a stop is
encountered?

5. What is an algorithm?

6. What is the "vacation test" for comments?

7. What are the four steps in programming?

8. What happens in the coding step?

9. What is a byte?

10. What is a hi t?

---PROBLEMS-----------------
1. a. Give the values of the following Pascal arithmetic expressions.

Check yourself using the Instant window.

2 + 3 div 2 * 6 - 5
5 + (2 * 2)
2 + 3 - (5 * 3) div 4 + 2

b. Homer has 1038 eggs he wants to sell. Give a Pascal expression that tells
how many full dozens of eggs Homer can take to market .

Problems 75

2. What picture does this program draw? Figure it out before you try it.

program MakeLines;
var
EndPoint : integer;

begin
for EndPoint := 0 to 100 do
begin

drawline(0,0,200,2 * EndPoint)
end

end.

3. Modify the for loop in program MakeLines so that the lines drawn are twice
as far apart.

4. a. What does this program do?

program NotSure;
var
Point : integer;

begin
for Point := 0 to 200 do
begin
drawline(O,Point,Point,Point)

end
end.

b. What happens when you try program NotSure with this drawline in­
struction?

drawline(0,2 * Point,2 * Point,2 * Point)

c. What about this one?

drawline(2 * Point,0,2 * Point,2 * Point)

d. And this one?

drawline(O,Point,2 * Point,Point)

5. How could you change program NotSure to get these pictures?
a. b. c.

76 Machine Organization and Program Planning

6. Change program Diamond so that the diamond
appears on its side. Use the think-plan-code-test­
and-debug method to solve this problem.

7. Change the lower and upper limits in the for loop
of program Diamond so that you get a picture like
this:

(100,50)

(100,150)

8. How could you shift the meeting point in program (50,0)
Diamond 50 units to the left so that the program ..----ta------~
draws this picture?

(50,200)

9. Change program Diamond so that all the left segments are drawn first and
then all the right segments are drawn.
(Hint: You'll need two loops).

10. Which of the following are legal identifiers?
a. D2_R2
b. Monkey_Business
c. 5....Easy_Fieces
d. FiveJ)ollar_Bill
eNO_Way
f, No Way

Problems 77

11. Look at the accompanying syntax diagram. Which of the following sen­
tences are OK for this diagram?

Jamie

stirred

Luke

and

a. Jamie stirred and stirred and stirred the cake batter.
b. Luke stirred stirred the cake batter.
c. Jamie and Luke stirred the cake batter.
d. Jamie or Luke stirred the cake batter.
e. Luke stirred the cake batter.

Answer: a and e
12. Draw this picture in the Drawing window.

13. Write programs that print out the following columns of numbers:
a. 0 b. 5 c. 9 d. 90 e. 51 f. 2 g. 0

0 6 8 80 52 2 0
0 7 7 70 53 3 0
0 8 6 60 54 3 1

9 5 50 55 4 1

14. What does this program print?

program Question;
var

Number : integer;
begin
for Number := 5 downto 0 do
begin
writeln(Number)

end
end.

4 1
2
2
2

78 Machine Organization and Program Planning

a.

15. What does this program do?

program What;
var
Position : integer;

begin
for Position := 0 to 200 do
begin

invertcircle(lOO,Position,40);
invertcircle(lOO,Position,40)

end
end.

16. Try to figure out what this program does, and then run it.

program MoreLines;
var

Point : integer;
begin

for Point := 0 to 20 do
begin

drawline(0,10 * Point,200,200 - 10 * Point)
end

end.

Now change program MoreLines so that the image it produces is rotated 90
degrees and looks like a vertical hourglass.

17. Write programs that draw these pictures.

b.
80

,--"----,

L_,,-.1

40

c.

Syntax,
Interactive Programs,

and Real Numbers

Pascal has a lot of rules for arranging and punctuating programs, and we will
talk about them in this chapter. You have to know them, or your programs just
won't run. These rules make up the syntax of Pascal. When you master them,
you will be able to write your own programs from scratch. The better you know
the rules, the fewer bugs you'll have.

We are also going to show you how to write interactive programs. When
you run an interactive program, it stops in the middle of execution and asks you a
question about what to do next.

Finally, we'll show you how to use real numbers-numbers with decimal
points. Real numbers are important for doing scientific calculations, working
with percentages, and making calculations with money.

--3.1 Pascal Syntax-How to Beat the Bugs----------
Planetln3D is the most complicated program we've seen so far. Let's use it to ex­
plore Pascal's syntax rules.

program PlanetlnJD; Ci)
var

PlanetPos : integer; Cg)
begin
for PlanetPos := O to 200 do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5); ~
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)

end; @
for PlanetPos := 200 downto 0 do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5); (§)
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)

end
end.

79

80 Syntax, Interactive Programs, and Real Numbers

Semicolons
Placing semicolons correctly is an important part of mastering Pascal syntax.
Semicolons separate statements. They also mark the end of the heading line of a
Pascal program, and they end variable declarations.

Look at the five semicolons in Planetln3D. The first one separates the head­
ing line from the variable declaration. The second semicolon separates the
variable declaration from the body. The third and fifth semicolons separate
paintcircle instructions from invertcircle instructions. And the fourth semicolon
separates the two for statements.

The invertcircle instructions are not followed by semicolons. Why? Because
each is followed by the reserved word end and not by another statement . A semi­
colon is never needed before an end, because the word end also serves to separate
statements. (Pascal is generous here. If you put a semicolon after the invertcircle
statements, it will not object.)

You don't need a semicolon after the word end in the second loop either. It's
not followed by another statement. But, as before, Pascal doesn't mind if you put
one in.

Let's make some changes in Planetln3D that illustrate another important
syntax rule. We'll call the new program TwoStreaks. See Figure 3.1 for sample
output.

Drawing

Figure 3.1 The output for program TwoStreaks.

program TwoStreaks;
var

PlanetPos : integer;
begin

3.1 Pascal Syntax-How to Beat the Bugs 81

for PlanetPos := 0 to 200 do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5)

end;
for PlanetPos := 200 downto 0 do
begin
paintcircle(PlanetPos,200 - PlanetPos,PlanetPos div 5)

end
end.

In program TwoStreaks the paintcircle instructions are no longer followed
by semicolons. Why? In each case the instruction is followed by the reserved
word end, not by another statement.

Begin and End
We can simplify the form of program TwoStreaks by getting rid of the begin and
the end inside each for loop:

program TwoStreaks;
var
PlanetPos : integer;

begin
for PlanetPos := 0 to ,200 do
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);

for PlanetPos := 200 downto 0 do
paintcircle(PlanetPos,200 - PlanetPos,PlanetPos div 5)

end.

Because there is only one instruction in each for statement, the begin-end
pair that usually frames the for body is not necessary. When the body of the for
statement doesn't start with the word begin, the for control line applies only to
the next statement and to no others.

Now that we've eliminated the begin-end pair, we need a semicolon after
the paintcircle instruction in the first for statement, because the second for state­
ment follows directly after it.

Be careful when you get rid of the begin-end pair in a for statement: If you
try to include two statements instead of just one in the for loop, you'll get into

82 Syntax, Interactive Programs, and Real Numbers

trouble. For example, if you write the first for loop in program Planetln3D like
this:

for PlanetPos := 0 to 200 do
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5);

the program will behave strangely. Because the begin and end have been omit­
ted, the for statement will apply only to thepaintcircle statement. This leaves the
invertcircle command dangling-it's not in the body of the loop. But it includes
the control variable PlanetPos, which gets its value from the control line.

When program execution reaches that statement, you won't actually get an
error message. Something worse will happen. MacPascal will assign an arbitrary
value to PlanetPos and execution will continue. You won't see what you expect­
ed, and you won't know where to start looking for the problem.

EXERCISE 1 On a piece of scratch paper, insert the punctuation that should appear in the
following program. Then see whether your version conforms to the listing in
Problem 2 of Chapter 2.

program MakeLines
var

EndPoint integer
begin

for EndPoint 0 to 100 do
begin

drawline 0 0 200 2 * EndPoint
end

end

What can you do to simplify the program? -

--3.2 What Is a Statement?----------------
Semicolons separate statements. To place them correctly, you need to under­
stand exactly what a statement is. •

In Pascal, the term statement is the official name for an instruction or com­
mand. So far we have seen three different kinds of statement. The simplest state­
ments are the standard procedures: writeln, paintcircle, invertcircle, and
drawline. These are called simple statements.

3.2 What Is a Statement? 83

Next come compound statements. A compound statement is a kind of pack­
age of statements that starts with the word begin and ends with the word end. It
has this form:

begin
statement 1;
statement 2;

statement n - 1;
statement n

end

Even if there's only one statement between the begin and the end, the package is
considered a compound statement. In fact, it is still a compound statement if you
put nothing between the begin and the end. We'll talk about this in a moment.

Finally there are for statements, which have this form:

for control-variable := initial-value to final-value do
statement;

The body of a for statement is itself a statement. It can be a simple state­
ment:

for Number := 1 to 5 do
writeln(Number);

a compound statement:

for Position := 20 to 180 do
begin
paintcircle(Position,80,20);
invertcircle(Position,80,20)

end;

or even another for statement:

for Number := 1 to 3 do
for PledgeNumber := 1 to 500 do
writeln('I will not talk in class.');

All three of these examples are legal statements. In each case the body of the
for statement is also a statement. In the first example, the body is a simple state­
ment. In the second it's a compound statement. And in the third it's actually an­
other for statement.

A loop that comes inside another loop is called a nested loop. The nested
loop in the third example prints three blocks of 500 copies of "I will not talk in
class." That is, the writeln statement is executed 1500 times. We'll tell you more
about nested loops a little later.

84 Syntax, Interactive Programs, and Real Numbers

Because for statements are legal statements, you need to use a semicolon to
separate a for statement from any statement following it.

The Empty Statement

Now suppose you open the Instant window and type in

begin
end

What happens when you click on Do It? MacPascal does not complain. It
happily runs this little compound statement according to the following philoso­
phy: "If you don't want me to execute any instructions, I won't consider what
you've done a mistake." However, MacPascal does consider there to be a state­
ment between the begin and the end. It is called the empty statement.

More nonsense: Suppose you open the Instant window and type in

begin

end

Again no complaints . MacPascal sees two empty statements, one before the semi­
colon and one after. When you run it, this compound statement does noth­
ing-twice!

Will Pascal accept the following program?

program Test;
var

Number : integer;
begin
for Number := 1 to 5 do
begin
wri teln(Number) ;

end
end.

Yes. Each time through the loop, Pascal does the writeln statement. When it hits
the semicolon , it thinks another statement is coming. Then it comes to the end,
and it figures you've included an empty statement, so it just goes on about its
business. In fact , it would even accept this:

for Number := 1 to 5 do
begin
writel n(Number) ;;

end

Pascal would just figure that you've included two empty statements after
the writeln.

3.3 SyntaxNotation 85

--3.3 Syntax Notation------------------
You now know about four different kinds of statement: simple statements, com­
pound statements, for statements, and empty statements. When we want to indi­
cate that a statement of some kind must appear at a particular place in a pro­
gram, we use this notation:

(statement)

And the syntax of a for statement has this general form:

for control-variable := initial-value to final-value do
(statement)

Pascal expects every for statement to have this form. For example, we have
the following match-ups with the for loop in program Test which is shown on
page 84.

for control-variable := initial-value to final-value do

for Numb{:= 1~~
begin

writeln(Number); (statement)
end

You will get an error message if your for statements don't conform to this general
pattern.

Syntax diagrams are another way to show how the syntax of a statement
works. For the for statement, we can draw the diagram shown in Figure 3.2.

If we trace through the for loop in program Test, we find that everything in
the loop matches up with an essential feature of the for loop in the syntax dia­
gram. Thus we know the syntax of the loop is correct.

In the Macintosh Pascal reference manual, syntax diagrams are the stan­
dard way of describing Pascal syntax. From time to time we will also use syntax
diagrams to clarify the syntax for a particular instruction.

----•8 1----•I control-variable ~er initial-value

1---....,....·~I statement r+

Figure 3.2 A syntax diagram.

86 Syntax, Interactive Programs, and Real Numbers

EXERCISE 2 Use the for-loop syntax diagram to check the three for loops on page 83 to
determine whether they are legal. -

Syntax Rules

Let's sum up what we've discovered so far about Pascal's syntax rules.

1. Every program must have a heading line, a declaration part, and a
body.

2. You must use semicolons:
a. After the heading line
b. After each variable declaration
c. Between statements

3. So far, we have seen four kinds of statement:
a. Simple statements consisting of standard procedures
b. Compound statements, which have the form

begin
(statement);

(statement)
end

c. For statements, which have the form

for control-variable .- initial-value to final-value do
(statement)

d. The empty statement

4. The body of a for statement is itself a statement. It can be:
a. A simple statement
b. A compound statement
c. Another for statement (a nested loop)
d. An empty statement

5. A for statement whose body contains a single statement does not
need a begin-end pair.

6. You do not need a semicolon:
a. After a statement if that statement is followed by the reserved

word end
b. After the reserved word end if end is followed by another end.

7. Every program ends with a period.

3.4 Nested Loops 87

--3.4 Nested Loops------------------
In the third example in the previous section, we introduced something new-a
loop within a loop, or a nested loop.

Let's look at a more interesting example of a nested loop. We will expand
Planetln3D so that the planet makes a total of eight identical orbits. To do this ,
we'll use a variable called OrbitNumber, which will be the control variable of an
outer loop and will count out the orbits. The OrbitNumber loop contains the
other two loops, and it makes them repeat their jobs eight times.

program EightOrbits;
var

PlanetPos,OrbitNumber : integer;
begin
for OrbitNumber .- 1 to 8 do
begin
for PlanetPos .- 0 to 200 do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)

end;
for PlanetPos := 200 downto 0 do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)

end
end

end.

Program EightOrbits has two variables. Note how they are declared.
PlanetPos and OrbitNumber are separated by a comma. They could also be
declared like this:

var
PlanetPos integer;
OrbitNumber : integer;

Either way, you have to put in a colon before the word integer. But the reserved
word var can appear only once in the declaration part of a program.

When program EightOrbits is executed, the outer loop starts up first.
OrbitNumber starts with the value 1, and then the two for statements in the
body of the outer loop are executed. After the first inner for statement goes
through 200 iterations, the second inner for statement does its 200 iterations.
This completes one repetition of the body of the outer for statement.

88 Syntax, Interactive Programs, and Real Numbers

Now OrbitNumber is advanced from 1to2, and the inner for statements are
executed again. This pattern repeats 8 times before the outer loop is over and exe­
cution terminates.

EXERCISE 3 What do these nested loops print?

a. for Number := 1 to 4 do
for StatementNumber := 1 to 50 do
writeln('Polly want a cracker? ');

. b. for FirstNumber : = 1 to 2 do
for NextNumber := 10 to 12 do
writeln(FirstNumber * SecondNumber);

Answer: 10, 11 , 12, 20, 22, 24 printed in a column -

___ 3.5 Constants--------------------
In Pascal, a constant is a quantity that is fixed throughout the program. Some­
times it is useful to give this kind of fixed quantity a name. For example, in pro­
gram Planetln3D, the width of the standard Drawing window is fixed at 200.
We can give the number 200 a name: WindowWidth .

program PlanetinJD;
const
WindowWidth = 200; IA CONSTANT DEFINITION}

var
PlanetPos : integer;

begin
for PlanetPos := 0 to WindowWidth do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)

end;
for PlanetPos := WindowWidth downto O do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)

end
end .

3.5 Constants 89

Constants are defined in the declaration part of the program. Constant defi­
nitions must appear immediately after the program heading and before the vari­
able declarations. Each definition must end with a semicolon.

Constants are useful for several reasons. First of all, remember the vacation
test: Imagine yourself taking a look at program Planetln3D next fall after your
summer vacation . When you've been away from the computer for a few months,
do you think you will remember what 200 stands for? Maybe. But if you replace
200 in the body with the constant WindowWidth, the meaning of the number
will be absolutely clear.

When we use constants to clarify what certain numbers mean, we say we
are using them to document the program. A well-named constant often elimi­
nates the need for a comment.

You can change a program more easily if the program has been written
using constants. Here is program Cartoon redone, using a list of constants that
explains all the numerical values in the program.

program NewCartoon;
const

LineHeight = 100;
Radius = 20;
LeftWall = 0;
RightWall = 200;

var
Position : integer;

begin
writeln('The First Cartoon! 1);

drawline(LeftWall,LineHeight,RightWall,LineHeight);
for Position := (LeftWall +Radius) to (RightWall - Radius) do
begin
paintcircle(Position,(LineHeight - Radius),Radius);
invertcircle(Position,(LineHeight - Radius),Radius)

end
end.

Now suppose you want to roll a ball of radius 40 along a line 80 units from
the top of this screen. You can do this simply by changing Radius to 40 and
LineHeight to 80. (See Figure 3.3.)

EXERCISE 4 Add the constant definitions we have just presented to your version of pro­
gram Cartoon. Now do the following:

a. Roll a ball of radius 30 along a line of height 175.

b. Roll a ball of radius 45 along a line of height 195. -

90 Syntax, Interactive Programs, and Real Numbers

Radl"s 1eHelght - Radl"s
LineHeight -

~
(LeftWall + Radius)

Figure 3.3 Position (the horizontal position of the center of the circle) starts at
(LeftWall + Radius) and ends up at (RightWall - Radius). The vertical position of the cen­
ter of the circle is always at (lineHeight - Radius).

___ 3.6 Interactive Programs ----------------­
Now we are going to show you how to write a kind of program that's much more
exciting than any you have seen before: an interactive program. When you run
an interactive program , you give the computer information while the program is
running, and this information affects what the program does . Let's see how this
works by transforming program Explode from Chapter 1 into an interactive pro­
gram called program Blowup.

W hile program Blowup is running, it will stop and ask for a value for the
speed of the explosion. After you type this value in and press the return key, the
program resumes execution , exploding the circle on the screen at the speed you
requested . Each time you run it, you can make the explosion happen at a differ­
ent speed.

program Blowup ;
var

Speed,Radius i nteger ;
begin

wr i te l n(' Type i n speed of explos i on , an int eger f r om 1 to 100. ') ;
r eadln(Speed) ;
for Radius := 1 to (100 div Speed) do
paintc ircle (l 00 ,100, Radius * Speed)

end.

3.6 InteractivePrograms 91

The program works this way. First the writeln statement prints the follow­
ing message in the Text window.

Type in speed of explosion, an integer from 1 to 100.

This message is called a prompt. Now the Macintosh comes to the readln state­
ment.

readln(Speed);

At this point, the integer variable Speed has a location assigned to it in memory,
but that location is empty: Speed is undefined. When the Macintosh reaches the
readln statement, program execution stops and waits for you to type an integer
value at the keyboard. As you type in a value, the number appears in the Text
window underneath the prompt:

1[] Te Ht
Type in speed of explosion, ~
an Integer from 1 to 100.
1

When you press the return key, the readln statement copies or reads the value
you've typed into Speed's location in memory. Speed now has this value.

Then program execution resumes and the for loop is executed a number of
times equal to 100 div Speed. If you type in a speed of 4, the for loop is executed
25 times; during each iteration the radius of the exploding circle grows by 4.

Before every readln statement, you should always have a writeln statement
to serve as a prompt. The prompt should be a complete sentence and should state
as clearly as possible what the person using the program should type. When you
run the program, this writeln instruction prints a message in the Text window
telling you what sort of value to type in.

The next point is very important. The readln statement supplies the pro­
gram with a value for the input variable. You must place the readln statement
before any statement in the program that uses the input variable, so that the vari­
able will have a value. If you put the readln statement after an instruction con­
taining the input variable, your program won't work properly. Take this pro­
gram, for example:

program BadExplode;
var
Radius,Speed : integer;

begin
writeln('Type in speed of explosion, an integer from 1 to 100');
for Radius := 1 to (100 div Speed) do
paintcircle(l00,100,Radius *Speed) ;

readln(Speed)
end.

92 Syntax, Interactive Programs, and Real Numbers

Program BadExplode will behave strangely. First the Macintosh sets aside a
location in memory for the variable Speed. Then the for loop is executed, but be­
cause you haven't supplied a value for Speed yet , the variable holds some arbi­
trary value and the program runs unpredictably.

EXERCISE 5

Observing the Readln Statement

To see more clearly how readln works, type in program Blowup, bring
up the Observe window, and then type Speed in the upper-right box.
Now insert a stop next to the for statement, and run the program using
Go. The program will prompt you for a value. Type one in. Then execu­
tion will resume and the program will immediately run into the stop.
When this happens, you will see in the Observe window the number you
supplied as the value of the variable Speed.

What does this program do? Which statements are the prompts? Will the
program run if the last statement in the body is moved to the beginning of
the body? Why or why not?

program AddNumbers;
var

FirstNumber,SecondNumber : integer;
begin
writeln('Give me a number.');
readln(FirstNumber);
writeln('Give me another number.') ;
readln(SecondNumber);
writeln (FirstNumber + SecondNumber)

end. -

Program Yoyo

Program Yoyo drops a yo-yo on a string from the top of the Drawing window
and then pulls it back in (see Figure 3.4). The yo-yo is a flickering circle and the
string is a line. The program does this yo-yoing a number of times equal to
YoyoCount. YoyoCount has a value that you supply interactively. This value is
the upper limit of the outer for loop, and it determines the number of times yo­
yoing is done. In one iteration of the outer loop, the first inner loop lowers the yo­
yo and the second inner loop raises it.

3.6 Interactive Programs 93

Yo yo

pro9nm Yoyo;
var

Position, YoyoCount, YoyoBounce : integer;
begin

How many yoyo drops would you
I ike to see?
2

.,

writeln('How many yoyo drops would •JOU like to see?'); Q] readln(Yc•yoCount) ; _____________,

fo..- YoyoBounce := t to VoyoCount do Drawing

i.; .

begin
fol'" Position := 20 to 170 do

begin
draw line(100, 0, 1 00, Position);
paintcircle(lOO, Position, 20);
invertcircle(lOO, Position, 20)

end;
fo..- Position := 1 70 downto 20 do

begin
drawline(lOO, 0, 100, Position);
paintcircle(tOO, Position, 20);
invertcirc le(1 00, Position , 20)

end
end

end.

Figure 3.4 Program Yoyo and its output in the middle of execution.

Program Verticallines

Suppose we want to write a program that will draw any number of vertical lines
in the Drawing window. To do this , we need to read in the values for two differ­
ent variables, which we will call TotalLines and Separation. We can read in
both of these variables with one readln statement .

program VerticalLines;
var

TotalLines,Separation,LineNumber : integer;
begin
writeln(' Type in the number of lines you want to draw.');
writeln('Then type an integer value for the separation between lines.');
readln(TotalLines,Separation);
for LineNumber : = 1 to TotalLines do
drawline(Separation * LineNumber,0,Separation * LineNumber,200)

end.

First the Macintosh will prompt you with the following message:

Type in the number of lines you want to draw and separation .
Then type an integer value for the separation between lines.

94 Syntax, Interactive Programs, and Real Numbers

Drowing

Figure 3.5 The output of program Verticallines.

In response, you must type in two integers separated by a space. The first value
gives the number of lines you want drawn. The second value tells the computer
how far apart you want the lines to be. When you press the return key, program
execution resumes. The for statement draws the picture, using the two values
you've supplied interactively to determine the layout of the picture. (See Figure
3.5.)

__ 3.7 More on Output-Fields and Field Widths ________ _

Now that you are acquainted with one of Pascal's input statements, readln, it's
time to learn more about Pascal's output statement writeln and its companion in­
struction, write.

Just as readln can handle more than one input, writeln can handle more
than one output. The statement

writeln('The tallest tree in the world is a ', 367,' foot redwood')

prints in the Text window

The tallest tree in the world is a 367 foot redwood

The writeln statement has three regions, or fi elds, that are separated by commas.
The first region is a phrase in quotation marks. It is sometimes called a literal
field, because the single quotation marks command the Macintosh to print
literally (that is, print exactly to the letter) what is between the quotes. The mid­
dle field holds an actual number, 367, and this is what is printed. The last field is
another literal field.

3. 7 More on Output-Fields and Field Widths 95

The output is a little peculiar, however: There is a big gap between the "a"
and the "367."

The tallest tree in the world is a 367 foot redwood

The gap in the middle field appears because MacPascal always allows 8 spaces
when it prints out an integer, and it right-justifies the number in this 8-space
field. That is, it prints the number as far over to the right as possible in the 8
spaces allotted to it.

If you don't like the gap, you can control the number of spaces allotted to a
field by inserting a colon followed by a positive integer. The statement

writeln('The tallest tree in the world is a ', 367 : 3,' foot redwood')

lays out the line this way

The tallest tree in the world is a 367 foot redwood

The value 3 following the colon determines the field width allotted to 367. Now,
instead of using the automatic or default width of 8, the program uses the field
width we have specified: 3.

What happens if we specify a field width of l?

writeln('The tallest tree in the world is a ', 367 : 1,' foot redwood')

Now we have requested just 1 space, but of course the number 367 requires 3
spaces. So the Macintosh improvises: It takes the 1 space you've given it and,
when it "realizes" that it needs 2 more, it just takes them. So again you get

sion.

The tallest tree in the world is a 367 foot redwood

Now let's look at the field-width specification in program HeightConver-

program HeightConversion;
var

Feet,Inches : integer;
begin
writeln('Type in your height in feet and inches.');
readln(Feet,Inches);
writeln('Your height is' ,12 *Feet+ Inches : 3,' inches.')

end.

Program HeightConversion reads in your height in feet and inches and
prints this quantity out in inches. If you are 6 feet, 6 inches tall, after the prompt
you must type 6 6, and the program will print out

Te Ht
Type In your height In feet and Inches.~
6 6
Vour height Is 78 Inches.

96 Syntax, Interactive Programs, and Real Numbers

The field-width value 3 in the middle field leaves 3 spaces for your height in
inches. Unless you are a giant, your height in inches will require only 2 digits.
But we need the extra space because we've left no space after the word is in the
first field to keep the two fields apart.

There is a better way to separate them , however: Leave a space at the end of
the literal field after is and specify the exact field width that you need.

writeln('Height is ',12 *Feet+ Inches : 2,' inches .')

This method is better because it leaves no chance that the first two fields will ever
run together.

EXERCISE 6 Examine program CheckFieldWidth. Now decide which output belongs
to program CheckFieldWidth, (a) or (b)? How can you alter program
CheckFieldWidth to get the other output?

program CheckFieldWidth;
var

Number : integer;
begin

for Number := 1 to 5 do
begin

writeln(Number 5);
writeln(Number Number)

end
end.

a.

§[] TeHt
1 ~

1
2

2
3

3
4

4
5
5

~
~

b.

§0 TeHt
1 Q

1
2

2
3

3
4
4
5
5

~
'2l -

3.8 The Write Statement 97

One last feature of writeln: If you use it with no fields-that is, with nothing
after it-it causes a blank line to be printed. So program Numbers prints num­
bers on every other line, in a column.

program Number;
var

Number : integer;
begin
for Number := 1 to 3 do
begin

writeln(Number);
writeln

end
end.

2

3

Te Ht

--3.8 The Write Statement----------------
The write statement works exactly like the writeln statement, except that two
consecutive write statements print their output on the same line. For example,
the two instructions

write('Tuna on rye, ');
write('hold the mayo.')

print this:

Tuna on rye, hold the mayo.

But with the two instructions

writeln('Tuna on rye, ');
write('hold the mayo.')

you get

Tuna on rye,
hold the mayo.

98 Syntax, Interactive Programs, and Real Numbers

EXERCISE 7 What does each of the following statements print? After you decide, check
your answers in the Instant window.

a. writeln('Be there ','or ','be square.')

b. write('Be ','there ');
writeln('or ','be square.')

c. write('Be there ');
writeln('or');
write('be square.') -

Now that you know how to use fields and how to specify field widths, you
are ready to tackle real numbers.

__ 3.9 Real Numbers------------------
A number with a decimal point (such as 98.6, 19.95, and-0.04) is a real num­
ber. Temperature, money, miles per gallon, percentages, batting aver­
ages-these quantities are ordinarily represented as real numbers with decimal
points.

In Pascal, real numbers belong to a separate type called real, which is dis­
tinct from the type called integer.

Because Pascal is an important language for scientists and engineers, it uses
scientific notation as the standard way of writing real numbers. In scientific no­
tation, 93,000,000 is written

9.3 x 107

A number in scientific notation has two parts. The first part consists of a
number with a decimal point, such as 9.3. It is usually written with just one digit
to the left of the decimal point. The second part is 10 raised to some power, such
as 7.

To write a large number such as 93,000,000 in scientific notation, first make
it a real number by adding a decimal point followed by a zero: 93,000,000.0.
Now there are eight digits to the left of the decimal point. Move the decimal
point to the left until only one digit remains to its left. Each.step to the left divides
the number by 10, so you must multiply by 10 for every place you move the deci­
mal point. In the number 93,000,000.0, you move the decimal point seven places
to the left.

9.~.o

7 6 5 4 3 2 l

..

3.9 Real Numbers 99

So, to keep the value of the number the same, you multiply 9.3 by 107
• This gives

the number in scientific notation: 9.3 x 107
•

For a decimal fraction such as .00025, move the decimal point to the right
until one non-zero digit appears on the left:

·~·5
l 2 3 4

Now count the number of places you have moved the decimal point, but this
time use a negative exponent instead of a positive exponent. Because you have
moved the decimal point four places to the right, .00025 in scientific notation ~s
2.5 x 10 -J .

In Pascal, scientific notation looks a little different because the computer
can't print powers, which appear slightly above the line of type. Pascal uses the
letter e, which stands for "exponent," followed by a plus or a minus sign,
followed by a power:

9.Je+7
2.5e-4

Here are some numbers in scientific notation, with their familiar equivalents.

Decimal Scientific Pascal
Quantity Number Notation Notation

Hairs on head (blond) 90,000 9.0 x 104 9.0e+4 or 9e+4

Hairs on head (b lack) 110,000 1.1x105 1.1e+5 or 11e+4

Coldest recorded -63.0 -6.3 x 10 -6.3e+ 1
temperature in Canada
(Snag, Yukon), °C

Average man 's daily .015 1.5 x 10 -2 1.5e - 2 or 15e - 3
whisker growth in
inches

Pascal requires that every real number have either a decimal point or an e.
When Pascal expects a real number, you can write the number in various ways.
Pascal will accept 110000.0, l.le5, l. le+ 5, ll.Oe4, or even lle4. However, you
have to have a digit on both sides of a decimal point. The numbers 110000. and
.367 won't work. And one more thing. Other symbols such as dollar signs and
commas are also not permitted: $64,000.00 is unacceptable.

100 Syntax, Interactive Programs, and Real Numbers

EXERCISE 8 a. Which of the following numbers are legal Pascal real numbers?

123.4 -000.004
-1,234.5 -0.0
-.26 $19.95

Answer: The numbers 123.4, -000.004, and-0.0 are legal.

b. Write each of the following as a Pascal real number.

$19.95 .342
-126 1/4
0 396,000 -

--3.10 Writing Programs with Real Numbers----------­
Now let's use real numbers in a program .

program CircleArea;
canst
Pi = J.14159;

var
Radius : real;

begin
writeln('How long is the radius? Type in a real number.');
readln(Radius);
writeln('The area of the circle is: ',Pi* (Radius* Radius) : 5 : 1)

end.

Program CircleArea is interactive. When you run it, the writeln statement
prints a prompt asking you to specify the value of the radius. Then you type in
how big the radius is. When you press the return key, the program reads in the
value for the variable Radius, and then it calculates the area according to this fa­
miliar formula:

Area = 7r * Radius2

The variable Radius has type real. This means that the value it holds must
be a real number. When the writeln statement prints the prompt, you are sup­
posed to type a Pascal real number, such as 15.0 or 2e4.

What happens if you type an integer? This will work, too. Pascal automati­
cally converts your input to type real and stores it in real number form in the lo­
cation in memory that is set aside for the variable Radius.

Note that the constant Pi is written without a type declaration. Because its
defined value, 3.14159, includes a decimal point, Pascal knows that Pi is a real
constant. In Pascal the type of a constant is never declared.

3.11 GettingAroundScientificNotation 101

When you run the program, you may not like the answer you get because it
will be in Pascal's form of scientific notation. If you type in 10.0 as your radius,
the program will print 3.le+2 instead of 314.159. You don't get the answer
3.14159e+ 2, because MacPascal's scientific notation shows you only one digit to
the right of the decimal point.

If you don't want scientific notation, you can get the program to print out
314.159. You do this by changing the writeln instruction.

--3.11 Getting Around Scientific Notation----------­
The number 314.159 is 7 characters long: 6 digits and the decimal point. So,
when we print out this number, we want a field width of at least 7. But it's not
enough just to include" : 7" in the writeln statement. We also need to specify that
we want 3 digits to the right of the decimal point. These two numbers, 7 and 3,
are the figures we need to make the writeln statement print the area of a circle
the way we want it.

writeln ('Area of circle is ',Pi* (Radius* Radius) : 7 : 3)

The value after the first colon tells how many spaces to allow for the num­
ber-including the digits, the decimal place, and a sign if the number is nega­
tive. The number after the second colon tells how many digits to show to the
right of the decimal point.

If Pascal runs out of space, it will override your directive and use as much
space as it needs, the way it does when you specify too narrow a field width for
integers. For example, if Radius equals 1000.0, the foregoing writeln statement
will print

Area of circle is 3141590.000

Pascal follows your instructions and shows 3 digits to the right of the decimal
point. Then it goes ahead and uses 11 spaces for the answer, although you
specified a field width of only 7.

EXERCISE 9 Give writeln statements for printing the values in a and b.

a. 517. Show 10 places to the right of the decimal point.

b. 10017. Show 6 places to the right of the decimal point.

c. Use two fields in a writeln statement that will print: "My bucket of night
crawlers costs $2.98" -

102 Syntax, Interactive Programs, and Real Numbers

__ 3.12 Arithmetic with Real Numbers ____________ _

Arithmetic with real numbers is almost the same as arithmetic with integers. The
operators +, - , and* work for real numbers in just the same way they work for
integers. The only difference is that the answer is always a real number. This is
true even for an expression such as 3.14 - 0.14, which gives a value of 3.00, not
the integer 3.

You must use the conventional division symbol I to divide with real num­
bers. Division with I gives familiar answers: 1.0/4.0 = 0.25. The operator div
won't work with real numbers: Try (1.4 div 7), and see what happens.

When you have a complicated expression like

2 .0 + 6 .0/J . O = 2.0 + 2.0 = 4.0

the arithmetic operators follow the rules for doing arithmetic with integers . Mul­
tiplication and division are done first in order from left to right; then addition
and subtraction are done in order.

Program CrossCountryTrip
To see how arithmetic with real numbers works in a program, look at program
CrossCountryTrip (see Figure 3.6).

r • File Edit Search Run lllindows
..,

C:rossCountryTrip

program CrossCountry Trip;
var

People : integer; ~ Miles , Gallons, Money Spent : real;
begin

write ln('Type in number of people on trip .');
readln(Peop le) ;

:

writeln('Type in miles tra·v·eled , gas used, money spent.');
readln(Miles , Gallons , Money Spent) ;
writeln(l1iles per galfon : · .. Miles I G•llons : 4 : 1);
wTite ln('Cost per mile : $ ·, Money Spent / Miles : 4 2);
write ln('Cost per person : $ ', MoneySpent /People : 6 : 2)

end.

0 TeHt
Type q r1 number of people on trip . IQ 5 :
Type in miles traveled, gas LlSed, money spent .
3159 109.8 365.29
Miles per gal Ion : 28 .8
Cost per mi le : $0 . 12
Cost per per:.c•n : $ 73 .0E· ~

:
:

Q]

1.: : :-:-: ·.· .· :- :- :"

Figure 3.6 Program CrossCountryTrip and output .

3.13 Program HockeyScore-Planning an Interactive Program 103

Program CrossCountryTrip is an interactive program that calculates trip
statistics for a cross-country trip you take with friends. First you type in the num­
ber of people on the trip who are sharing the costs. Then you type the distance
traveled, the number of gallons of gasoline used, and the total amount of ex­
penses. The program calculates and prints out miles per gallon, cost per mile,
and cost per person.

When you type in the input values, you should separate them with a space,
although readln will also accept a carriage return as a separator between input
values.

Note that we have entered an integer-3159-for the miles traveled in the
sample run. When the Macintosh sees this value, it immediately converts it to
type real, because the variable Miles is declared to be of this type.

Now look at the expression MoneySpent/People. This is called a mixed­
mode expression, because the types are mixed: MoneySpent is type real, and Peo­
ple is type integer. You can mix real and integer types in arithmetic expressions,
and Pascal will convert integer values to real for you as it evaluates the expres­
sion. In the sample run, first Pascal converts 365.29/5 to 365.29/5.0. Then it does
the division.

__ 3.13 Program HockeyScore-Planning an Interactive Program ___ _
Suppose we want to keep track of the wins, ties, and losses of our hockey team,
the Sharks. In North America hockey scoring usually works this way:

win: 2 points
tie: 1 poiht

loss: 0 points

Our program will read in the wins, ties, and losses for the Sharks. Then it
will calculate the number of points accumulated, the percentage of games won,
and the percentage of games won or tied.

We'll write program HockeyScore by adding some new ideas to our think­
ing, planning, coding, and testing and debugging scheme.

Thinking
First we must formulate the problem: Given figures for wins, ties, and losses, we
want to calculate and print out three things: total points, percentage of wins,
and percentage of wins and ties.

When we write an interactive program, we can usually organize our think­
ing arouhd the following general format:

1. Read in the input data.
2. Make some calculations and print the output.

104 Syntax, Interactive Programs, and Real Numbers

For input we will need values for number of wins, ties, and losses. For out­
put we want a value for the number of points, as well as for percentage of games
won and percentage of games won or tied.

To calculate the number of points, we will use the expression

points = 2 x wins + ties

We can calculate the percentage of games won by using the formula

Percentage won= wins/(wins +ties+ losses) x 100

To get the percentage of games won or tied, we'll use

Percentage won or tied= (wins+ ties)/(wins +ties+ losses) x 100

Before going on, it's a good idea to collect all this information, and some
other information besides, in a chart called a data table. A data table lists the
input variables, the output variables, the program variables (variables needed
for calculations and loops), the constants, the loops, and any formulas to be used
in a program.

-----------DATA TABLE __________ _

Input Variables

Wins, Ties, Losses

Constants
none

Formulas
points = 2 x wins + ties

Output Variables
none

Loops
none

Program Variables
none

percentage won= wins/(wins +ties+ losses) x 100
percentage won or tied= (wins+ ties)/(wins +ties+ losses) x 100

We have included space for other variables, constants, and loops in our data
table, even though there aren't any in this program. In the next example we'll see
a more complex data table.

It's a good idea to save your data table and keep it with the printout of your
program. It will help you figure out how your program works when you shake
the dust off it next year.

3.13 Program HockeyScore-Planning an Interactive Program 105

Planning
fo the planning step, we will use a mixture of English and Pascal to state roughly
what the program will do. We won't be concerned if we haven't figured out how
to do all of the steps we are planning. We'll get to that later.

For this interactive program we can start with a general plan:

1. Read the input data.
2. Calculate and print the output data.

Now we can refine the plan and turn it into an algorithm:

1. Read the wins.
2. Read the ties.
3. Read the losses.

4. Print out the total points.

5. Print out the percentage won.
6. Print out the percentage won or tied.

Each of these steps is straightforward; we can move on to the coding step.

Coding
In this step we convert the pieces of our final plan into Pascal statements. For the
steps that involve reading in values, we use a prompt followed by a readln state­
ment. For the steps that involve printing a result, we use a writeln statement.

program HockeyScore;
{READS IN WINS, TIES, AND LOSSES.}
{PRINTS TOTAL POINTS, PERCENT WON, AND PERCENT WON OR TIED.}
var
Wins,Ties,Losses : integer;

begin
writeln('Type in games won.');
readln(Wins);
writeln('Type in games tied.');
readln(Ties);
writeln('Type in losses.');
readln(Losses);
writeln('Total points: ',2 *Wins+ Ties : 5);
writeln('Percentage of games won: ',

Wins/(Wins +Ties+ Losses) * 100 : 5 : 1, '%');
writeln('Percentage won or tied: ',

(Wins+ Ties)/(Wins +Ties+ Losses) * 100 : 5 : 1, '%')
end.

106 Syntax, Interactive Programs, and Real Numbers

Testing and Debugging

Always test an interactive program by running it with a variety of inputs. Then
check your answers with pencil and paper. For program HockeyScore, try
supplying numbers that could be actual numbers of wins, ties , and losses. It's also
a good idea to try exceptional input values, such as 0 or even negative numbers.

--3.14 Program Targets-Donuts and Bull's·eyes--------­
Program Targets draws pictures using the invertcircle command. Two
invertcircle instructions with the same center but different radii create a pattern
like a donut. For example, the two instructions

invertcircle(l00,100,25);
invertcircle(l00,100,50)

print out this picture:

~D Oro wing

And three invertcircle commands, all with the same center, give you a pattern
that looks like a target. The three instructions

invertcircle(l00,100,25);
invertcircle(l00,100,50) ;
invertcircle(l00,100,75)

produce the picture at the top of page 107.
The program we are going to write will draw target patterns in the Draw­

ing window. When you run program Targets, you will be able to draw as many

3.14 Program Targets-Donuts and Bull's-eyes 107

Drawing

targets in the Drawing window as you like (see Figure 3.7). Again, each target
will be made up of a series of concentric circles. And, in each target, each circle
will be larger than the one inside it by a fixed amount. You enter data about the
number of targets and the description of each target interactively.

Target 3
Target 1

Target 2

Figure 3.7 Sample output for program Targets. Target 2 has its center at (60,160). The
BullseyeRadius is 10. There are 3 circles in the pattern, and the Sizelncrease is 12.

108 Syntax, Interactive Programs, and Real Numbers

Thinking
Program Targets is more complicated than the other interactive programs in the
chapter. A good way to approach a complex program is to think about it as if you
are telling a story about what happens when you run the program. The story of
program Targets goes like this:

First you read in the number of targets you want. Next, for each target, you
read in information about the location of the center, the radius of the innermost
circle, the size difference between successive circles, and the number of circles
you want in that target. Then the program draws the target. Next you go
through another cycle of reading in target specifications, and another target is
drawn. This goes on until all the targets are drawn.

Let's see if we can use this description to fill in a data table for the program.
We won't need any output variables, because the output is all pictures. For

input variables, we will use TargetCount, Reenter, V center, BullseyeRadius,
Sizelncrease, and CircleCount. All are of type integer.

Program variables-the other variables in the program-are often control
variables in loops. So we should try to understand looping in the program before
we decide what program variables we'll need.

We'll need one loop (the main loop in the program) to gather data about a
single target and then draw that target. This loop will repeat a number of times
equal to TargetCount; TargetCount gives the total number of targets you want
to draw. We'll use a variable called TargetNumber as a control variable for this
~~. .

We will need a second loop to draw a series of concentric circles using
invertcircle. This loop will repeat a number of times equal to CircleCount, and
the control variable for this loop will be CircleNumber.

Now we can prepare the data table .

. DATA TABLE

Input Variables Output Variables Program Variables
TargetCount none TargetNumber
Reenter CircleN umber
Vcenter
StartRadius
Sizelncrease
CircleCount

Constants Loops Formulas
none the TargetCount loop none

the CircleCount loop

•

3.14 Program Targets-Donuts and Bull's-eyes 109

Planning
When you do the planning step, always start with the most general plan you are
sure of. But don't get carried away! The one-step plan

do everything

is a little too general to help out with the assignment that's due tomorrow. This
two-step plan is more helpful:

Read in the number of targets to be drawn
Draw the targets

Now we're getting somewhere. The first step is ready to be coded: It consists of a
prompt and a readln statement for the input variable TargetCount. So let's put
of(working on the first part and move on to the second part of the plan.

How many targets shall we draw? The number of them will be equal to
TargetCount. So we can refine our plan to this form:

read in TargetCount
for TargetNumber: =I to TargetCount do

draw a target

Now we need to plan how to draw a single complete target. Here's our new
plan, with the "draw a target" part refined:

read in TargetCount
for TargetNumber : = I to TargetCount do

read in center of circle
read in radius of the bull's-eye
read in size increase
read in number of circles

draw a target

And here is our final plan, or algorithm. Note that it is a mixture of English
and Pascal.

read in TargetCount
for TargetNumber: =I to TargetCount do

read in Center
read in BullseyeRadius
read in Sizelncrease
read in CircleCount
for CircleNumber: = I to CircleCount do

draw an inverted circle

110 Syntax, Interactive Programs, and Real Numbers

This concludes the planning session. There's one point we should empha­
size, though. Planning involves TQUch more trial and error than we have shown
here. Don't get discouraged if you find you have to start over or make changes
part of the way through the planning step. This happens to everyone.

Coding
Here is the program, with each part of the plan coded. Note that we made one
small change from our final plan. The inner loop that draws a complete target
has been changed so that it runs from 0 to CircleCount - 1. That way, the bull's-·
eye has a radius equal to BullseyeRadius.

Also, we have added a dotted line that will appear in the Text window be­
fore each new round of prompts for each target. This will help you notice that
input for one target is over and that it is time to work on the next.

program Targets;
{YOU READ IN HOW MANY TARGETS YOU WANT, WHERE THEIR CENTERS SHOULD}
{BE, HOW MANY CIRCLES PER TARGET, AND HOW MUCH BIGGER EACH CIRCLE}
{SHOULD BE THAN THE ONE INSIDE IT. PROGRAM PRINTS OUT TARGETS.}
var
Hcenter,Vcenter,Sizeincrease,BullseyeRadius : integer;
CircleCount,CircleNumber,TargetNumber,TargetCount : integer;

begin
{ENTER NUMBER OF TARGETS YOU WANT TO DRAWl
writeln('How many targets 'do you want to draw?');
readln(TargetCount);
{GATHER INFORMATION ON EACH TARGET TO BE DRAWN. THEN DRAW TARGET.}
for TargetNumber := 1 to TargetCount do
begin
writeln('------------ 1);

write('Type in values for the horizontal ');
writeln('and vertical position of the center.');
readln(Hcenter,Vcenter);
writeln('Type in the starting radius.');
readln(BullseyeRadius);
writeln('Type in the number of circles in the target.');
readln(CircleCount);
writeln('Type in the increment in the size of the circles.');
readln(Sizeincrease);
for CircleNumber := 0 to (CircleCount - 1) do
invertcircle(Hcenter,Vcenter,

end
end.

BullseyeRadius + CircleNumber * Sizeincrease)

Problems 111

Testing and Debugging

Try program Targets with all sorts of different inputs. There is no end to the va­
riety of pictures you can draw with this program .

---TEST YOURSELF---------------
I. What do semicolons do?

2. Where can you leave out a semicolon?

3. When can you omit a begin and an end in a for loop?

4. Where do you have to use colons?

5. Where do you use the symbol : =?

6. What is mixed-mode arithmetic?

7. Name one of Pascal's input statements.

8. What must a real number look like to be acceptable to Pascal?

9. What is the empty statement?

10. Which comes first , the readln statement or the prompt?

---PROBLEMS----------------~

I. Examine program HockeyScore and list all of the simple statements, com­
pound statements, for statements, and empty statements that you find.

2. What do you think Pascal will do with the following statement? Why? After
deciding on your answer, try it in the Instant window and see whether you
are right.

begin
begin
, ,

end
end

112 Syntax, Interactive Programs, and Real Num hers

3. Supply the missing semicolons for the following program, and then see
whether it will run.

program Grid
var

LineNumber integer
begin
for LineNumber .- 1 to 20 do
begin

drawline(0,10 * LineNumber,200,10 * LineNumber);
drawline(10 * LineNumber,0,10 * LineNumber,200)

end
end.

4. Write an interactive program that reads in a baseball player's at-bats and
number of hits and then computes the player's batting average.

5. There are 1760 yards in a mile and 0.9144 meters in a yard. Calculate, accu­
rate to five decimal places, the number of meters a runner covers in a mara­
thon: 26 miles, 385 yards. (You can do this in the Instant window.)

6. The Drawing window comes with an electronic
pen that can be cont.rolled by two commands,
lineto and moveto. When you give the command
moveto(l5, 75), you place the tip of the pen at the
point (15,75) in the window. Then, if you follow
the moveto instruction with the lineto instruction
lineto(l00,25), the pen moves from (15,75) to
(100,25), drawing this line as it goes:

/(100,25)

(15,75)

Here are some examples of moveto and lineto in action.

moveto(20,30);
lineto(l00,190)

moveto(20,30);
lineto(l00,190)
lineto(200,0)

(100,190)

Problems 113

Using moveto and lineto , write a (0,0)..,.....---------,

program that draws this picture:

(200,100)

7. Now write a program that draws (O,O)e.::-----------,

this picture, with the value of
Vpoint supplied interactively.

8 . Write a program using movelo
and lineto that draws this picture:

40

9. Which of the following are valid Pascal numbers of type real?

l.05
-0.003
-3

3.

385
34567.890

3.0e5
.943-6

(200,Vpoint)

20

}40

}20

10. An exam has 55 true-false questions. Write an interactive program that
reads in the number of correct answers a student gets and then prints the
student's percentage correct , accurate to one decimal place.

Sample input: 48
Output: 87 .3 % correct

11. Write a program that prints

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20

114 Syntax, Interactive Programs, and Real Numbers

12. The following loop prints out this column of numbers:

4
8

12
5

10
15

for Numberl := Little to Big do
for Number2 := 1 to 3 do
writeln(Numberl * Number2)

What are the values of Little and Big?

13. What does this nested for loop print?

for Numberl := 7 to 9 do
for Number2 := 3 downto 1 do
writeln(Numberl * Number2);

14. Write a program that prints out the full 10 x 10 multiplication table. Hint:
Use a nested loop. Another hint: Use the writeln statement

writeln

with no numbers after it to space the lines in your table.

15. Write a program that draws this picture: 40

16. Redo the program in Problem 15, but this time supply the spacing between
the lines interactively.

Problems 115

17. Look at the following program and its output. Why do the last two entries
spill over on the right?

" s File Edit Searth Run Windows
.,

Untitled ~O-Te11t
:

program RealTest ; 0 . 1 Q
VRr 0 . 11 : :

SignificantDig1ts : integer; 0 . 113 :
:

beg1n 0 . 1129 :
:

for SignificantDigits := 1 to 10 do 0. 14266 :
:

writeln(1 I 7 : 1 O: SignificantDigits) 0.142657 : :
: :

end. 0.1426571
0. 11265714
0 . 112657143 :

:
0 . 1426571429

~ :
:

. . ..
: : : :

:
: : : : :
: : : : : :

: :

~
:

:
: :

: :
:

: : : :
: : : :;.

}\ssignment Statements
and More on Looping

Looping is one of the most important actions in programming. So far we have
worked only with the for loop, but Pascal has two others: the while loop and the
repeat-until loop. These looping commands are more versatile than the for loop .
But they require a new kind of statement-the assignment statement. We'll talk
about assignment statements first. An assignment statement allows you to
change the value of a variable.

__ 4.1 Assignment Statements ______________ _

The time has come for another look at variables. Remember that, when you de­
clare a variable, you instruct the Macintosh to choose a location in memory
where the variable's value will be stored. Let's keep this in mind as we look at the
following program. It contains a new kind of simple statement called an assign­
ment statement.

program AssignOne;
var

Number : integer;
begin

Number := 5;
writeln(Number)

end.

A colon directly followed by an equal sign makes up the assignment symbol,
and the instruction

Number := 5

is an assignment statement. In words, it says, "Number is assigned the value 5" or
"Number becomes 5." When Pascal translates the declaration for Number into

117

118 Assignment Statements and More on Looping

machine language, Number is given a location in memory. Then, when the as­
signment statement is executed, the value 5 is copied into Number's location. So,
when you run the program, it prints 5 in the Text window.

Here is a program with two assignment statements:

program AssignTwo;
var

Number : integer;
begin

Number := 3;
Number := Number + 3;
writeln(Number)

end.

This program prints 6. First, the assignment statement

Number := 3

is executed, and a 3 is copied into Number's location in memory. Then the assign­
ment statement

Number := Number + Number

is executed. The right side of an assignment statement is always evaluated first.
So the value of Number + 3 is calculated, yielding a value of 6. Pascal calculates
this sum in the central processing unit (CPU). When the calculation on the right
is complete, the Macintosh transfers the answer to Number's location in mem­
ory. As this happens, the old value of Number-that is, 3-is written over and
destroyed.

Finally, the writeln statement is executed. The value of Number is now 6,
and that is what the Macintosh prints.

The statement

Number := Number + 3

may look strange to you because it seems to violate the rules of algebra. After all,
the equation

Number = Number + 3

makes little sense. But there is a big difference between the equal symbol and the
assignment symbol. In algebra, the symbol = means that the value on the left
side equals the value on the right side.

In Pascal, the assignment symbol : = stands for an action command. It says,
"First calculate the value of the expression on the right side of the statement.
Then copy this value into the location in memory set aside for the variable
named on the left side." So it really isn't illogical to write Number : = Num­
ber+ 3.

EXERCISE 1

4.2 TheStaircaseProblem 119

Before you read on, try to figure out what the next two toy programs do .
Make sure you understand how to get the right answers.

a. program ToyOne;
var

Number : i nteger;
begin

Number := 3;
Number := Number+ Number+ 10;
writeln(Number)

end.

Answer: 16

b. program ToyTwo;
var

Numberl,Number2 integer;
begin
Numberl .- 10;
Number2 . - 100;
Number2 .- Numberl + Number2;
Number2 .- Number2 + 1;
writeln(Number2)

end.

Answer: 111 -

--4.2 The Staircase Problem---------------
Now let's write a more intriguing program. This one uses assignment statements
and a for loop.

Suppose your Uncle Harold decides to build a staircase out of cinder blocks .
The stairs will be 6 steps high and 1 block wide. How many blocks will he need?
Starting from the top, step 1 has 1 block, step 2 has 2 blocks, and so on. So the
loop

for StepNumber := 1 to 6 do
writeln(StepNumber);

reports the number of blocks in each step: 1-2-3-4-5-6. The problem asks us to
add these numbers, which we can do as follows.

120 Assignment Statements and More on Looping

First we'll create a variable called BlockCount that will keep track of the
number of blocks Harold needs. We'll give it an initial value of 0:

BlockCount := O;

Then, in each iteration of the loop, we'll add to the current value of BlockCount
the value of StepNumber during that iteration:

BlockCount := O;
for StepNumber := 1 to 6 do
BlockCount := BlockCount + StepNumber;

These statements, which we've included in program BlocksNeeded, solve
Harold's problem.

program BlocksNeeded;
!CALCULATES NUMBER OF BLOCKS NEEDED TO BUILD}
{A SIX-STEP STAIRCASE, ONE BLOCK WIDE.l
var
StepNumber,BlockCount : integer;

begin
BlockCount := O;
for StepNumber := 1 to 6 do
BlockCount := BlockCount + StepNumber;

writeln('Harold needs ',BlockCount : 2,' blocks.')
end.

Note how the value of BlockCount accumulates. It starts at 0. Then, each
time through the loop, the number of blocks in the next step-StepNumber-is
added to its old value. The sixth time through, the loop is over and the writeln
statement prints

Harold needs 21 blocks.

The assignment statement BlockCount : = 0 is very important. It initializes,
or gives an initial value to, the variable BlockCount. If we had left this instruc­
tion out, the program might behave strangely the first time through the for loop,
when it encounters

BlockCount := BlockCount + StepNumber;

This is so because Pascal tries to evaluate the expression on the right side
first. Because you haven't initialized BlockCount, the variable will hold some
arbitrary value, and the program will be executed with this value as
BlockCount's starting value.

Suppose Harold had put the staircase on a
18-block base, like this:

4.2 The Staircase Problem 121

We would have initialized the variable BlockCount with the assignment state­
ment

EXERCISE 2

BlockCount := 18 ;

W hat does each of the following programs print?

a . program NumbersOne ;
var

Number , Pri ntNumber
begin

PrintNumber := 1;

i nteger;

for Number := 1 to 4 do
begin

writeln(PrintNumber);
PrintNumber .- PrintNumber + 1

end
end.

Answer: 1-2-3-4 in a column

b. program NumbersTwo;
var

Number,PrintNumber
begin

PrintNumber := 1;

integer;

for Number := 1 to 4 do
begin
writeln(PrintNumber);
PrintNumber .- Pri ntNumber + 2

end
end.

Answer: l -3-5-7 in a column

c. program NumbersThree;
var

Number,PrintNumber
begin

PrintNumber : = 1 ;

i nteger;

for Number : = 1 to 4 do
begin
writeln(PrintNumber);
PrintNumber . - 2 * PrintNumber

end
end.

Answer: 1-2-4-8 in a column -

122 Assignment Statements and More on Looping

Three Assignment Statement Restrictions

There are three important restrictions on assignment statements that you
should know about.

1. The left side of an assignment statement must always be a single
variable. So a statement such as

Numberl + Number2 := 3

is not valid. Remember that an assignment statement copies a value
into a variable's assigned location in memory. But in this statement
there is no place to make the copy, because there are two variables
on the left.

2. An assignment statement must be consistent with respect to the
types of the variables in it. If Number is of type integer, then

Number := J .14

will cause an error, because you are trying to copy a real number
into a space reserved for an integer. Note: You can assign an integer
to a real variable. Pascal will convert the integer value to type real
for you before the assignment is done.

3. Assignment statements cannot be used to change the value of the
control variable in a for loop. The following loop, for example, is
invalid , and a program that uses it won't work.

for Number := 1 to 5 do
begin

writeln(Number);
Number .- Number+ 2

end

__ 4.3 Back to Money-Compound Interest __________ _

Now that we know how to use assignment statements, we can write some inter­
esting programs about money. Let's start with a program that calculates com­
pound interest.

Suppose you have $100.00 in a bank account that pays 9 % interest ,
compounded yearly. At the end of 1 year you will have your $100.00 principal
plus $9.00 in interest, for a total of $109.00:

109.00 = 100.00 + (100.00 x 0.09)

4.3 Back to Money-Compound Interest 123

Using the variables Amount and Rate we can convert this equation into a Pascal
assignment statement. This statement is the key instruction in the compound in­
terest problem that's coming up:

Amount := Amount + (Amount * Rate)

t t
amount after one year starting amount

If Rate is 0.09 and Amount has the value 100.00 before the statement is executed,
then the value of Amount after execution is 109.00-the sum in your bank
account after 1 year.

If the value of Amount is equal to 109.00 and the statement is executed
again, the new value of Amount will be 118.81-the sum in your bank account
after 2 years.

Now let's look at program Interest, which is interactive and will calculate
how much money will accumulate in your account, given any principal, any in­
terest rate, and any number of years.

program Interest;
{YOU TYPE IN PRINCIPAL, INTEREST RATE, AND YEARS IN BANK.I
{PROGRAM CALCULATES TOTAL MONEY ACCUMULATED.I
var

Years,TotalYears : integer;
Principal,Amount,Rate : real;

begin
writeln('Type in principal, interest rate and years in bank.');
readln(Principal,Rate,TotalYears);
Amount := Principal;
for Years := 1 to TotalYears do
Amount :=Amount+ (Amount* Rate);

writeln('Total amount accumulated: $',Amount : 6 : 2)
end.

First the readln sb:i.tement reads in values for Principal, Rate, and
TotalYears. Then the statement

Amount := Principal;

is executed. It initializes the variable Amount to the value of Principal, the
starting sum in your account. The loop

for Years := 1 to TotalYears do

'
Amount :=Amount+ (Amount* Rate);

does the real work in the program. Each year, the value of Amount is increased
by (Amount * Rate), and this accumulation goes on for a number of years equal
to TotalYears.

124 Assignment Statements and More on Looping

Let's suppose that you type in a principal of 100.00, a rate of. 0.09, and a
total of 5 years. The for statement will loop 5 times, and the value of Amount will
go successively from 100.00 to 109.00, from 109.00 to 118.81, and so on, up to
153.86.

If you want to find out how to calculate interest compounded monthly and
quarterly see Problem 8 at the end of the chapter.

The Double-Your-Money Problem
If you put a sum of money in a bank account at 9 % interest, compounded yearly,
how many years will it take to double your money?

It is possible to solve this problem using program Interest, if you're willing to
run the program repeatedly. Each time you run it, you'll have to read a larger
number into TotalYears, until you reach a year when TotalAmount exceeds 2 *
Principal. But this is awkward and time-consuming. And there's a better way,
which involves using a more powerful looping command called the while state­
ment.

--4.4 The While Statement---------------
Let's start with some simple examples that use the while statement. We'll come
back to the double-your-money problem a little later. First, here's a program
that prints a column of numbers.

program FirstWhile;
var

Number : integer;
begin

Number := 1;
while (Number (= 4) do
begin
writeln(Number);
Number := Number + 1

end
end.

This program contains a while statement and the symbol (= . This symbol
means "less than or equal to," and it is Pascal's way of writing the mathematics
symbol :S:.

The while statement in program FirstWhile includes a test part:

(Number (= 4)
and a body:

begin
writeln(Number);
Number := Number + 1

end

4.4 The While Statement 125

The test part is either true or false. The control line

while (Number (= 4) do

tells the computer, "Keep looping while the test is true." The test becomes false
when the value of Number is greater than 4.

When you run the program, first the assignment statement initializes the
variable Number to 1.

Number := 1

Then comes the while statement. Its test, (Number (= 4), is evaluated first. The
test is true because the value of Number is 1, so the body of the loop is executed.
The value of Number, 1, is printed out, and then the statement

Number := Number + 1

increases, or increments, the value of Number by 1, from 1 to 2.
Next the loop starts over again, beginning with the test. Again it's true, be­

cause the value of Number is 2. So the computer executes the body, printing a 2
and then incrementing Number by 1. In the same way 3 and 4 are printed out.
After 4 is printed, the value of Number becomes 5, and (Number (= 4) is tested
again. Because the test is false this time, execution of the while statement ends.

In program FirstWhile we initialized Number to 1. We can get the same
output if we initialize Number to 0, change the test expression to

(Number (= J)

and then increment Number by 1 before the writeln statement.

program SecondWhile;
var

Number : integer;
begin
Number := O;
while (Number (= J) do
begin

Number := Number + 1;
writeln(Number)

end
end.

Program FirstWhile is a little clearer, though, because the statement that
initializes Number,

Number := 1

and the test expression,

Number (= 4

make it easier to see that the loop prints out the numbers from 1to4.

126 Assignment Statements and More on Looping

EXERCISE 3 a. What does the following program print?

program WhileOne;
var

Number : integer;
begin

Number := 2;
while (Number (12) do
begin

writeln(Number);
Number .- Number + 2

end
end.

Answer: These numbers in a column: 2-4-6-8-10

b. What does the following program print?

program WhileTwo;
var

Number : integer;
begin

Number : = 10;
while (Number) 0) do
begin

writeln(Number);
Number .- Number - 3

end
end.

Answer: These numbers in a column: 10-7-4-1

c. What expression must go in the box if program WhileThree is to print in a
column 2-6-18?

program WhileThree;
var

Number : integer
begin

Number := 2;
while (Number (= 20) do
begin

writeln(Number);
Number .- .----~~~~~~~~~

end
end.

For the answer, see Problem 2 at the end of the chapter. -

4.4 The While Statement 127

The While Loop vs. the For Loop
You may have noticed that you have to do more work with a while statement
than with a for statement. This two-line for loop

for Number := 1 to 4 do
wri teln(Number);

prints the same column of numbers as the five-line while loop in program
FirstWhile on page 124. The for statement initializes and increments the con­
trol variable Number automatically. In program FirstWhile, however, you
need assignment statements to initialize and increment the control variable
Number.

Nevertheless, the while statement is much more flexible than the for state­
ment because it uses assignment statements for initializing and incrementing the
control variable.

For example, suppose we want to roll a ball across the screen as we did in
program Cartoon, only this time we want it to roll 3 times as fast. To write the
for loop that does this, you need to calculate the number of flickers required to
get the ball across the screen. A total of (180 - 20)div 3 = 53 are necessary.

for FlickerNumber := 0 to 53 do
begin
paintcircle(20 + 3 * FlickerNumber,80,20);
invertcircle(20 + 3 * FlickerNumber,80,20)

end;

If you use a while loop to do the fast roll, however, you don't need to calcu­
late the number of flickers, and the loop is more straightforward.

Position := 20;
while (Position (= 180) do
begin
paintcircle(Position,80,20);
invertcircle(Position,80,20);
Position .- Position + 3

end;

Even though the for-loop version is shorter, you'll probably agree that the
while-loop version is much clearer. The while statement is more flexible because
its control variable can be incremented by any amount. With the for loop, you're
stuck: The control variable can be increased or decreased only by 1. Moral: Use a
while loop when you want to increase or decrease the control variable by more
than 1 each time through the loop.

128 Assignment Statements and More on Looping

__ 4.5 While-Loop Pitfalls---------------
In spite of its power, the while loop has some pitfalls. Suppose you forget to
initialize the control variable, as in program BadOne:

program BadOne;
var

Number : integer;
begin
while (Number (= 4) do
begin
writeln(Number);
Number .- Number + 1

end
end.

Your program may behave strangely as soon as the computer gets to the writeln
statement, because Number has an arbitrary value when the Macintosh reaches
this instruction.

If you forget to increment the control variable, however, you create a
completely different problem.

program Forever;
var

Number : integer;
begin

Number := 1;
while (Number (= 4) do
begin

writeln(Number)
end

end.

Program Forever will go on printing a column of l's unendingly. This is called an
infinite loop, because there is no way out. With no assignment statement to in­
crement the variable Number, Number will have the value 1 every time the loop
body is executed. So the value of Number will always be less than or equal to 4,
and the test will always be true.

If you find your program is locked in an infinite loop, you can take one of
the following steps.

I. Wait for a power failure.
2. Wait for the Macintosh to burn out.
3. Open the Pause menu and choose Halt. Then open the Run menu and

choose Reset, which will terminate the program.

Otherwise you'll just see an unending column of l's. To avoid strange program
behavior and infinite loops, always check to make sure you've initialized and
incremented your while-loop control variable.

4.6 Relationships and Relational Operators 129

--4.6 Relationships and Relational Operators---------­
Suppose Meg and Jon are sister and brother. Then the statement

Meg is the sister of Jon

is true, but the statement

Jon is the sister of Meg

is false. "Sister of" is a relationship between people. When we state that one per­
son is the sister of another person, the statement can be true or false. In this way,
we can think of the "sister of" relationship as a kind of test.

In mathematics and also in Pascal, we often use the terms relation and rela­
tionship when we compare numbers. For example, 3 (5 is a true relationship,
whereas 3) 5 is a false one.

The symbol (is called a relational operator because it tests whether the rela­
tionship "less than" holds between two numbers. In Pascal there are six
relational operators. These are symbols such as) and) = that give true-or-false
answers about relationships between numbers. The six relational operators are
listed in the following table with examples of how they work.

Operator Name True False

greater than 5)3 5)5

>= greater than or equal to 5 >= 3 4 >= 5
less than 2(3 3 < 2

<= less than or equal to 2 <= 3 3 <= 2

= equal to 5=5 5=3

0 not equal to 3()5 5()5

When we use the term test, we mean any expression that is either true or
false. So far, the only tests we have seen involve relational operators. For exam­
ple, the expression

(3 (4)

is a test. And so is

(Number)= 4)

where Number is some variable of type integer.
True and false, the answers to tests, are standard constants that make up an­

other type, called boolean. True and false are actually considered values, so we
can say that the value of a test is true or false. We will talk about type boolean in
Chapter 8.

130 Assignment Statements and More on Looping

--4.7 Longint-a Second lntegerType-----------­
Does the following program include an infinite loop?

program LongLoop;
var

Number : integer;
begin

Number := 1;
while (Number () 0) do
begin

wri teln(Number);
Number := Number + 1

end
end.

It looks as if it does. Number is initialized to I, and the assignment statement in
the loop increases the value of Number during each iteration, so Number will
never equal 0.

However, the program stops running and you get an error message when
the value of Number exceeds 32, 767. This number is the largest value in the type
integer, and it is called maxint, which is a standard constant. Unlike integers in
mathematics, which are infinite in number, the integers that make up the
MacPascal type integer are finite: They run from -32, 767, or -maxint, up to
maxint.

If you run program LongLoop just as you see it, you're in for a long wait be­
fore the program crashes. But there's a way to shorten the wait by choosing Halt
while the program is running and then bringing up the Instant window.

When you choose Halt and stop program LongLoop in mid-execution, the
variable Number still has an assigned location in memory, and that location
holds the value it had when execution stopped. While program execution is on
hold, you can actually use the Instant window to change the value of this vari­
able.

When you type

Number := 32760

in the Instant window and then click on Do It, the assignment changes the value
of Number to 32,760. Now, when you click on Go, the program will run for just
a few more loops, until the value of Number reaches 32,767. Because (Number
() 0) is still true, the loop is executed one more time. The writeln statement
prints the value of Number-32767 -and then the assignment statement is
reached. The right side is evaluated first. When you add 32, 767 and I, maxint is
exceeded by I.

This doesn't make the program crash, though. The program crashes when it
tries to copy 32,768 into the variable Number. Number's location in memory is
too small to hold that value. See Figure 4.1.

4. 7 Longint-a Second Integer Type 131

,. s File Edit Search Windows

• ~ The unlue of n uorinble or sub-eHpression is out of range for its m intended use .

. ·.-.·.·.-.·.: -: .;-:-:<·.· ... -: : ·.· ·-:.;.· : .: : : . :
·:::.: .:,: .::::::: ·.· ·: ::.::::::;:::::: :::::::::::.:_: :: . . ::::.::::::::::·:·::::::::::;::::::::::::: .. :::::::::::::::::·:
''' .. ,.,__,_. "-' "-' '"-"'-""' "'-' "-' "-' '"-"'-""' "'-"-"-'-"-""""""-"-~ " " " " ' " " " "

.. 1--~~~Lo_n~g~L_oo~p'--~~~ 1--~~~~Te_H_t~~~~~
program Longloop;

var
Number : integer;

begin
Number := 1;
whtle (Number<> 0) do
begin

write ln(Number);
Number := Number + 1

end
end.

32765
32766
32767

u~:<:
~-< : >> :

.
lnstont

(Do It J
Number := 3276q

.,

Figure 4.1 When program Longloop crashes, this is what you see on the screen.

Fortunately, MacPascal has an additional integer type called longint,
which runs from -2,147,483,647 to +2,147,483,647 . The second number is
called maxlongint, and it is also a standard constant. If you expect computations
in your program to use values larger than 32, 767, use longint instead of integer
variables.

Of course the type longint is finite, too, and the following program will
eventually crash as well.

program LongLongLoop;
var

Number : longint;
begin

Number := 1;
while (Number () 0) do
begin

writeln (Number);
Number .- Number+ 1

end
end.

132 Assignment Statements and More on Looping

EXERCISE 4 Watch program LongLongLoop crash. (Hint: Unless you have a lot of time
to kill, use the Instant window to change the value of Number after you
have brought the program to a halt.) -

Because every member of type integer also belongs to type longint, the two
types are closely related. If Number has type integer and LongNumber has type
longint, then the assignment statement

LongNumber := Number

will always work, and

Number := LongNumber

is acceptable if the value of LongNumber is small enough to be an integer.

--4.8 While-Loop Syntax----------------
For any Pascal expression that can have a true or false value, we will use this
notation

(test)

so the general form of a Pascal while statement is

while (test) do
(statement);

The while statement is itself one kind of statement. Hence it is possible to put
while loops inside while loops or for statements.

The notation (statement) now stands for simple statements, compound
statements, for statements, while statements, or the empty statement.

EXERCISE 5 a. What happens in the following program?

program SimpleThree ;
var

Number : integer;
begin

Number := 2;
while (Number <= 8) do
begin

writeln(Number);
Number .- Number+ 2

end
end.

4.10 Back to Double-Your-Money 133

b. What happens in the following program?

program SimpleFour;
var

Number : integer;
begin

Number : = 2;
while (Number () 16) do
begin
writeln(Number);
Number .- 2 * Number

end
end. -

--4.9 The Natural Superiority of the While Statement-------
We have already seen one way in which the while statement outshines the for
statement: If you want to advance the control variable of a loop by increments
larger than 1, the while statement is much more convenient and versatile.

But there is a second, more important reason to prefer the while loop to the
for loop. The for loop is actually rather limited. Once the lower and upper limits
are fixed, the number of iterations is completely determined, and the Macintosh
must execute the loop exactly that many times.

This is not true with while statements. A while statement loops until the test
condition of the loop is false, and this can be an indefinite number of iterations.
So the while statement can help us solve problems when we don't know how
many loops we need. To see how useful indefinite looping can be, let's return to
the double-your-money problem .

--4.10 Back to Double·Your·Money-------------­
The double-your-money problem asks this question: If you put $100.00 in the
bank at 9 % interest, compounded yearly, how many years must you wait until
your money doubles?

Here's one way to solve the problem using a while loop:

program DoubleMoney;
{CALCULATES NUMBER OF YEARS IT TAKES FOR A $100}
{DEPOSIT TO DOUBLE IF THE INTEREST RATE IS 9%l
canst
Principal = 100.00;
Rate = 0.09;

var
MoneyinBank,NewMoney real;
Years : integer;

(continued)

134 Assignment Statements and More on Looping

begin
Years := O;
MoneyinBank := Principal;
while (MoneyinBank (2 * Principal) do

begin
NewMoney := MoneyinBank * Rate;
MoneyinBank := MoneyinBank + NewMoney;
Years := Years + 1

end;
writeln('Money doubles in ',Years : 1,' years. ')

end.

This is an important program, so let's study it carefully. The body begins
with two initialization statements:

Years := O;
MoneyinBank := Principal;

These two statements make sense. They say that , at 0 years, the money in your
account is your starting principal, $100.00.

The test part of the while statement,

(MoneyinBank (2 * Principal)

says, "Keep looping as long as the money in your account is less than twice your
starting principal."

Every time you loop, the NewMoney earned (MoneylnBank * Rate) is
added to the balance in the account:

MoneyinBank := MoneyinBank + NewMoney

And the number of years in the bank is incremented by l:

Years := Years+ 1

Finally, after 9 years, the money accumulated exceeds twice the principal, so the
looping ends and the value 9 is reported.

Program DoubleMoney is unlike any we've seen so far, because it doesn't re­
port the most obvious value that it calculates-the final value of MoneylnBank.
Instead, it reports the number of loops required to increase MoneylnBank to the
value 2 *Principal. Because we've used the variable Years to count the number
of iterations in the loop, Years is called a counter.

EXERCISE 6 What does the following program print?

program FirstPuzzle;
var
Stepper,Counter : integer;

begin
Stepper := 2;
Counter := O;
while (Stepper (20) do
begin
Stepper .- Stepper * Stepper;
Counter .- Counter+ 1

end;
writeln(Counter)

end.

Answer: 3 -

4.11 TestsandCounters 135

__ 4.11 Tests and Counters ________________ _

Let's get back to Uncle Harold's staircase. Suppose Harold has 8 blocks, and he
decides to build a new staircase (1 block wide) as high as he possibly can. How
many steps high can he make it?

Here, we've turned Harold's problem around: Earlier we wanted to know
how many blocks he would need to build 6 steps. Now we want to know how
many steps (that is, how many loop iterations) he can fit in before his 8 blocks are
used up.

This situation is similar to the circumstances in the double-your-money
problem. We want to count the number of loops until a certain value is reached.
This kind of problem can't be solved easily with a for loop, because we don't
know ahead of time how many loops we will need . So, using program
DoubleMoney as a model, let's attempt a while-loop solution with the variable
StepNumber as a counter:

program HowManySteps;
{CALCULATES HOW MANY STEPS CAN BE BUILT WITH 8 BLOCKS,}
{BUT GETS THE WRONG ANSWER}
var
StepNumber,BlockCount : integer;

begin
StepNumber := O;
BlockCount := O;
while (BlockCount (= 8) do
begin

StepNumber .- StepNumber + 1;
BlockCount .- BlockCount + StepNumber

end;
writeln('With 8 blocks, Harold can build ',StepNumber 1,' steps.')

end.

136 Assignment Statements and More on Looping

Because this program is trickier than it looks, let's build a chart that shows
the values of BlockCount and StepNumber at the beginning and end of each
loop.

Step Number BlockCount Test: BlockCount <= 8

Loop 1
at begin 0 0 test is true
at end 1 1 test is true

Loop 2
1 1 test is true
2 3 test is true

Loop 3
2 3 test is true
3 6 test is true

Loop4
3 6 test is true
4 10 test is false

Loop 4 is the final loop, so the program reports that Harold can build a stair­
case with 4 steps, which will require 10 blocks. But wait a minute-Harold has
only 8 blocks! What went wrong?

The Countess and the Machine
Ada, Countess Lovelace, was the daughter of the British poet Lord Byron.
She was ().lso tt;i~ first computer programmer-almost a century and a h().lf
before anyone had heard of the personal computer. The story of the Count­
ess and the computer began around 1834 when teenager Ada met Charles
B~bbage,().n inventor, mathematician, and great party-gi'ler. Babbagehad
devised a calculating machine, and at one of his parties he spent an evening
explaining to the countess how this, the world's first computer, was going
to work. Immediately Lovelace was hooked on computing .. She ~'ydied the
math and mechanics of Babbage;s machine and gave Babbage advice on
how to get rid of bugs. Along the way she invented a kind of repetitive calcu­
lating-what today is called loopjng.

Unfortunately neither Lovelace nor Babbage ever got to see the ma­
chine perform. Its elaborate parts were extremely difficult to make, and be­
fgre one v~rsion of the machine was working, Babbage had thought of some
improvements. When he changed one part, other parts had to be changed.
The process went bn and on. Finally Babbage ran out of money, and both he
and Lovelace died before.their calculating machine was perfected.

4.11 TestsandCounters 137

At the beginning of the fourth and last loop, the value of StepNumber is 3
and the value of BlockCount is 6. So the test is still true, and the last loop is
executed. The last loop pushes the value of StepNumber to 4 and the value of
BlockNumber to 10, which is 2 more blocks than Harold actually has.

The program has overshot Harold's supply of blocks. Instead of reporting
the number of complete steps possible, the program reports the number of com­
plete steps plus the one extra step where Harold runs out of blocks.

This means that program DoubleMoney is not a completely accurate model
for Harold's problem. In program DoubleMoney, we are interested in the num­
ber of years it takes to go over the doubled principal. But in the staircase prob­
lem, we want to know how many steps we can build without going over the
number of blocks on hand.

Here's a correct solution to Harold's problem:

program HowManyStepsTwo;
{CALCULATES HOW MANY STEPS CAN BE BUILT WITH 8 BLOCKS.}
var
StepNumber,BlockCount : integer;

begin
StepNumber := O;
BlockCount := O;
while (BlockCount + (StepNumber + 1) (= 8) do
begin
StepNumber := StepNumber + 1;
BlockCount := BlockCount + StepNumber

end;
writeln('With 8 blocks, Harold can build ',StepNumber 1,' steps.')

end.

Now the test

BlockCount + (StepNumber + 1) (= 8

checks before the loop is executed to determine whether adding in the next
step-that is, StepNumber + I-will put BlockCount over the limit.

When the value of BlockCount gets to 6 and the value of StepNumber
reaches 3, BlockCount and (StepNumber + 1) are added together in the test and
compared with 8. Because they add up to 10, the test is false, and the Macintosh
advances to the writeln statement without changing the value of StepNumber
again. So the writeln statement prints the correct answer, 3.

When a counter holds the answer you are looking for in a program with a
while loop, be sure to check whether you've coordinated it properly with the
loop test. If you're interested in the number of loops needed to put some value
"over the top," as in program DoubleMoney, the test will probably be simple
and straightforward. But if looping is supposed to put some number just under a
certain value-say, the number of blocks on hand-then you must create a test
that anticipates what will happen one loop ahead.

\

138 Assignment Statements and More on Looping

--4.12 Yet Another Way to Loop: Repeat-Until ---------­
We've talked about two looping commands so far: the for statement and the
while statement. Pascal has one more looping command, the repeat-until in­
struction. Like the while statement, the repeat-until statement has a test part
and a body. But in the repeat-until statement, the test comes after the body and
looping continues until the test becomes true.

Here is a simple program using a repeat loop. What does it do?

program NumberColumn;
var

Number : integer;
begin

Number : = 1;
repeat
writeln(Number);
Number := Number+ 1

until(Number) 4)
end.

It prints out the 1-2-3-4 column.
Program NumberColumn begins by initializing Number to l. Then comes

the loop. The statements between repeat and until make up its body, and the
loop ends with a test:

(Number) 4)

In a repeat loop, the test always comes at the end, after the reserved word until.
This means that the body of the repeat-until loop is always executed at least once.
This can create some problems that we will discuss in a minute.

The general form of the repeat-until statement is

repeat
(statement)

until (test)

Because repeat-until is a kind of statement, we will add it to our growing list of
(statement)s.

Repeat-until has one peculiarity. Because the reserved words repeat and
until frame the body of the loop , Pascal allows you to leave out the begin and the
end even if the body includes more than one instruction, as we did in program
NumberColumn.

Note that there is no semicolon in program NumberColumn after the state­
ment Number : = Number+ 1. This is so because the writeln statement is
followed by the reserved word until , not by another statement. Like the reserved
word end, until works as a separator, so a semicolon isn't needed.

4.12 Yet Another Way to Loop: Repeat-Until 139

It's easy tu get a repeat-until loop to work backward. Program Backward
prints 4-3-2-1 in a column.

EXERCISE 7

program Backward;
var

Number : integer;
begin

Number := 4;
repeat
writeln(Number);
Number := Number -1

until (Number = 0)
end.

a. What does this program do?

program PuzzleOne;
var

Number : integer;
begin

Number := 3;
repeat
writeln(Number);
Number := Number+ 3

until(Number) 15)
end.

b. And what will this program do? (There's a trick here.)

program PuzzleTwo;
var

Number : integer;
begin

Number := 3;
repeat

writeln(Number);
Number := Number+ 3

until (Number = 14)
end.

Answer: It will bomb when Number gets large enough. Can you see
why? What will the value of Number be at the time of the crash? How
would you fix the program so that it prints just five numbers?

140 Assignment Statements and More on Looping

c. What does this program draw?

program PuzzleThree;
var
Vertical : integer;

begin
Vertical := O;
repeat
drawline(O,Vertical,200,Vertical) ;
Vertical := Vertical + 10

until (Vertical) 200)
end. -

Program AngleRoll
Here's another program that uses a repeat-until loop. Program AngleRoll allows
you to roll a ball across the screen at an angle, like this:

Hchange = 2

Vchange = 1

The input variables Hchange (for horizontal change) and V change (for ver­
tical change) determine the slope of the path of the ball as it moves across the
screen. When Hchange = 2 and Vchange = 1, for example, the ball drops
down 1 unit for every 2 units it moves across.

4.13 ThePitfallsoftheRepeatLoop 141

program AngleRoll;
const
Hstart O;
Vs tart 100;
Radius 20;

var
H,V,Hchange,Vchange integer;

begin
H : = Hstart;
V : = Vstart;
writeln('Type in horizontal change and vertical change.');
writeln('Horizontal change mu~~ be a positive integer.');
writeln('Vertical change can be a positive or negative integer.');
readln(Hchange,Vchange);
repeat
paintcircle(H,V,Radius);
invertcircle(H,V,Radius);
H : = H + Hchange;
V · - V + Vchange

until (H) 180)
end.

Program AngleRoll does something we haven't seen before. It increments
two different variables inside the loop, .H and V. But only one of these vari­
ables-H- serves as a control variable.

EXERCISE 8 a. What happens if Hchange is O?

b. Where does the ball leave the window if Hchange (Vchange?

c. What values must Hchange and Vchange have for the ball to leave the
Drawing window at the upper-right corner? -

__ 4.13 The Pitfalls of the Repeat Loop ___________ _

The test in a repeat-until statement comes at the end of the loop, and this can
cause trouble if you aren't careful. To see why this is so, let's look at an
interactive program that solves Uncle Harold's cinder block problem using a re­
peat loop.

In program InteractiveHowManySteps, you read in the number of blocks
Harold has, and the program calculates the number of steps he can build.

142 Assignment Statements and More on Looping

program InteractiveHowManySteps;
\YOU READ IN NUMBER OF BLOCKS. PROGRAM}
{CALCULATES HOW MANY STEPS CAN BE BUILT.}
var
StepNumber,BlockCount,BlocksUsed : integer;

begin
writeln('How many blocks does Harold have?');
readln(BlockCount);
StepNumber .- O;
BlocksUsed := O;
repeat
StepNumber := StepNumber + 1;
BlocksUsed := BlocksUsed + StepNumber

until ((BlocksUsed + (StepNumber + 1))) BlockCount);
writeln('With 1 ,BlockCount : 1, 1 blocks, Harold can build '

StepNumber : 1, 1 steps. 1
)

end.

The value you type in for the number of blocks Harold has becomes the
value of BlockCount. After StepNumber is initialized to 0, the repeat statement
is executed. First StepNumber is increased by l. Then StepNumber is added to
Blocks Used.

Next the test is made. If Blocks Used plus the number that will be needed for
the next step (StepNumber + 1) is greater than 0, there aren't enough blocks for
another step, so the loop ends.

The program works fine unless you specify that Harold has 0 blocks. In that
case, one loop of the repeat statement is executed anyway (although there aren't
any blocks) , because the test follows the until at the end of the statement. So
StepNumber is incremented to 1 in the body before the test is done, and the pro­
gram prints

With 0 blocks, Harold can build 1 steps.

which is the wrong answer!
When you use the repeat-until statement, make sure that at least one loop

will always be needed to solve the problem. If you are not sure, use a while state­
ment.

__ 4.14 Math Formulas and Functions _____________ _

In mathematics a function is some operation that gives, or returns, a single an­
swer. For example, when you square a number, you are applying the squaring
function to that number. The answer you get back is the value of that number
times itself.

4.14 Math Formulas and Functions 143

Pascal has some built-in functions, such as squaring, that allow you to do
important math calculations easily. The squaring function is written sqr. If you
type

writeln(sqr(3))

in the Instant window, you will get 9 for an answer in the Text window. The sqr
function works equally well with real or integer inputs. Writeln(sqr(3.0)) will
print 9.0e + 0 instead of 9 for its output.

There is also a square root function, sqrt, which always returns a real num­
ber for an answer. You can apply sqrt to either a real number or an integer,
but the input cannot be a negative number. The expression sqrt(2) returns the
value 1.414, and sqrt(sqrt(2)) returns the square root of the square root of 2,
or 1.189. You can get standard decimal notation instead of scientific notation
with more than one place to the right of the decimal point, if that's what you
want:

writeln(sqrt(2) : 5 : 3)

prints 1.414, and

writeln(sqrt(sqrt(2)) : 8 : 6)

prints 1.189207.
Let's look at a third Pascal function, round, which rounds off a real number

to the nearest integer. Here are some examples of how round works:

round(3 .14) = 3
round (3 . 5) = 4
round (3 . 6) = 4
round(-1.2) = -1
round(-1.5) = -2

There are two other functions related to round, which we'll need later on.
The function trunc, which is short for "truncate," returns the integer part of any
real number: trunc(3.95) = 3, trunc(-3.9) = -3, and trunc(4.111) = 4.

The function abs, which is short for "absolute value," makes any number
positive: abs(....,4) = 4, abs(-4.1) = 4.1, and abs(3.14) = 3.14.

Now look at this expression:

sqr(round(sqrt(2)))

What is its value? When functions are applied to other functions in this way,
Pascal evaluates the expression from the inside out. First sqrt(2) is calculated,
yielding the value 1.414. Then this number is rounded, and the resulting value is
the integer l. Finally 1 is squared, giving the integer 1 as a result, which is the
value of the entire expression.

144 Assignment Statements and More on Looping

EXERCISE 9 What are the values of the following expressions? They are easier than they
look . Just remember that sqrt (2) is about 1.4 and that sqrt(3) is about 1. 7.

a. trunc (sqrt(2))
(Answer: 1)

b. sqr(round(sqrt(3)))

(Answer: 4)

c. abs(trunc(sqrt(2)))
d. trunc(sqrt(abs(-J.14)))
e. trunc(sqrt(round(sqrt(3)))) ..

Program CalcDistance

Let's use what we've learned about functions in two short examples. Our first ex­
ample, program CalcDistance, draws a line between two points in the Drawing
window-the points (H1, V1) and (H2, V2)-and then calculates the distance be­
tween them.

(H,,V,)

I
I ' I
I
I

(V2 - V,) I
I
I
I
I
I
!--------- (H V) 2> 2

(H,-H,)

To solve this problem we will use the Pythagorean theorem: In a right trian­
gle, the square of the hypotenuse is equal to the sum of the squares of the other
two sides . This equation will be useful because, unless the points determine a
horizontal or a vertical line, the distance between our two points will be the hy­
potenuse of a right triangle. Using the Pythagorean relationship , we can write
this formula for the distance between the two points:

Distance apart = J(H2 - H 1)
2 + (V2 - V 1)

2

4.14 Math Formulas and Functions 145

And when we use this formula in a Pascal program, this is what we get:

program CalcDistance ;
var
Hl,Vl : integer; {THE FIRST POINT}
H2,V2 : integer; {THE SECOND POINT}
DistanceApart : real;

begin
writeln(' Type in values for the f i rst point . ');
readln(Hl,Vl) ;
writeln('Type in values for the second point .');
readln(H2, V2);
drawline(Hl,Vl,H2,V2);
DistanceApart := sqrt(sqr(H2 - Hl) + sqr(V2 - Vl));
writeln('Distance between the 2 points is : 1 ,DistanceApart

end.
5 2)

EXERCISE 10 What happens when the two points in program CalcDistance lie on a
horizontal or a vertical line? -

Program CircleOrbit

Now let's try a more ambitious example. Suppose we want a planet or ball to
move in a circle, cartoon style, around the standard Drawing window, as in Fig­
ure 4.2. We'll make the program interactive: When you run it , you supply values
for OrbitRadius and PlanetRadius.

Figure 4.2 Program CircleOrbit will move a ball in a circular orbit around the Drawing
window.

146 Assignment Statements and More on Looping

v

t=:11::=1===::===~1(100, 100)
H (100- H)

\
Orbit~__..----

Figure 4.3 The ball at a typical point in program CircleOrbit.

Figure 4.3 shows the ball at typical point (H, V) as it moves around the
screen in a circle with radius equal to OrbitRadius. From the right triangle in the
diagram in Figure 4.3 , we have the equation

OrbitRadius2 = (100 - H) 2 + (100 - V) 2

Solving for V, we get

V = 100 - JOrbitRadius2
- (100 - H) 2

Given a value for H, we can use this equation to calculate a value for V so
that the point (H, V) lies on the circumference of the orbit circle. The loop below
will move the ball along the upper half of the orbit when we finish coding it.

H := 100 - OrbitRadius;
repeat
V := 100 - y'OrbitRadius2

- (100 - H) 2
;

paintcircle(H,V,PlanetRadius);
invertcircle(H,V,PlanetRadius);
H := H + 1

until (H = 100 + OrbitRadius)

To make the repeat loop work correctly, we must translate into proper Pascal the
assignment statement that calculates a value for V. Rather than write the state­
ment on a single line, we'll use three assignment statements. Using several state­
ments will make the code less cumbersome.

OrbitRadiusSqr := sqr(OrbitRadius);
HDistanceSqr := sqr(lOO - H);
V := 100 - round(sqrt(OrbitRadiusSqr - HDistanceSqr));

4.14 MathFormulasandFunctions 147

Note that it is necessary to use the function round. This is because sqrt gives an
answer of type real, but the variable V is of type integer. Also, OrbitRadiusSqr
and HDistanceSqr may exceed maxint, so we've declared them to be of type
longint instead of type integer.

Here is the complete program . It has two loops, one for the upper semicircle
and one for the lower semicircle.

program CircleOrbit;
{YOU READ IN RADIUS OF ORBIT AND RADIUS OF PLANET. PROGRAM MOVES}
{PLANET IN AN ORBIT AROUND THE CENTER OF THE DRAWING WINDOW.}
var

H,V : integer; {THE CENTER OF THE PLANET}
OrbitRadius,PlanetRadius : integer;
OrbitRadiusSqr : longint; {SQUARE OF THE RADIUS OF THE ORBIT}
HDistanceSqr : longint; {SQUARE OF THE HORIZONTAL DISTANCE}
{BETWEEN THE CENTER OF THE ORBIT AND THE CENTER OF THE PLANET}

begin
writeln('Type in radius of orbit and radius of planet.');
readln(OrbitRadius,PlanetRadius);
H := 100 - OrbitRadius;
OrbitRadiusSqr := sqr(OrbitRadius);
{DRAWS THE UPPER HALF OF THE ORBIT.}
repeat
HDistanceSqr := sqr(lOO - H);
V := 100 - round(sqrt(OrbitRadiusSqr - HDistanceSqr));
paintcircle(H,V,PlanetRadius);
invertcircle(H,V,PlanetRadius);
H := H + 1

until(H = 100 + OrbitRadius);
{DRAWS THE LOWER HALF OF THE ORBIT.}
repeat
HDistanceSqr := sqr(lOO - H);
V := 100 + round(sqrt(OrbitRadiusSqr - HDistanceSqr));
paintcircle(H,V,PlanetRadius) ;
invertcircle(H,V,PlanetRadius);
H := H - 1

until (H (= 100 - OrbitRadius)
end.

EXERCISE 11 What does program CircleOrbit do if the plus sign in the assignment
statement

V := 100 + round(sqrt(OrbitRadiusSqr - HDistanceSqr));

is changed to a minus sign? -

148 Assignment Statements and More on Looping

---TEST YOURSELF---------------
1. What does it mean to initialize a variable?

2. When can you assign a longint value to a variable of type integer?

3. What is the difference between round and trunc?

4. How can you get out of an infinite loop?

5. When is it not permitted to change the value ofthe control variable of a loop
using an assignment statement?

6. What are the six relational operators?

7. Name two ways in which the while statement is superior to the for state­
ment.

8. Why won't this assignment statement work?

Number+ 3 := Number

9. Explain carefully what happens when Pascal does this assignment:

Number := trunc(sqrt(2))

10. How can you get into trouble with a repeat-until loop?

---PROBLEMS-----------------
1. What does each of the following programs print?

a. program AssignmentCheck;
var

M,N : integer;
begin
M := 2;
N := 2 * M + 3;
writeln(M - N)

end.

b. program WhatNumber;
var

BigNumber,StepNumber integer ;
begin

StepNumber := O;
BigNumber := 10;
while (BigNumber (= 20) do
begin

StepNumber := StepNumber + 2;
BigNumber := BigNumber * StepNumber - StepNumber

end;
writeln(StepNumber)

end.

Problems 149

2. What number must be inserted in the box to make the following program
print the column 1-3-9? (The loop body in this program gives the answer to
part c of Exercise 3 on page 126.)

program TakeAGuess;
var

Number : integer;
begin

Number : = ~-------~
while(Number (= 20) do
begin
writeln(Number);
Number := 3 * Number

end
end.

3. Suppose Uncle Harold wants to build his 6-step staircase 3 blocks wide in­
stead of just 1 block wide. Modify program BlocksNeeded so that it will do
this calculation.

4. Rewrite program Explode (Problem 5 in Chapter 1) using a while loop.

5. Write programs that print the following columns of numbers, using (a) a
while loop and (b) a repeat-until loop.

10 51 1 0 30
20 41 4 1 24
30 31 9 0 18
40 21 16 1 12
50 . 11 25 0 6

6. Suppose Number! = 5 and Number2
lowing expressions?

a. Numberl (Number2
b. Numberl)= Number2
c. (2 * Numberl) (=(Number2 - 2)
d. Numberl + 3 = Number2

8. What are the values of the fol-

7. Write an interactive program called program
Crosshairs: You type in a point, say (50,50), and a
radius, say 35, and the program draws a circle of
the given radius with its center at the given point.
It also draws "crosshairs" -one vertical and one
horizontal line through the center of the circle. So
the program output should look like this:

150 Assignment Statements and More on Looping

8. If a bank pays you interest at the rate of 9 % , compounded quarterly, then
each quarter of the year you get interest equal to 114 of 9%, or 2.25%. If
monthly interest is paid, each month you receive 1/ 12 of 9 % = . 75 % inter­
est, and the assignment statement

Amount := Amount + (Amount * Rate/12)

calculates the new amount in your bank account each month. Write an
interactive program that reads in a principal, a number of years, an interest
rate, and an integer representing the number of times during a year that the
interest will be compounded. For example, if the interest is compounded
monthly, you type in 12. For output, the program prints the amount of
money in your account when the number of years is up.

9. First National Bank pays 9.5% on its savings accounts, compounded yearly.
Second National Bank pays 9 % , compounded monthly. Which bank offers
a better deal?

10. How many integers in the sequence 1,2,3,4,5, ... must you add together be­
fore the sum exceeds 200? Write a program that makes this calculation.
Hint: You will need a counter.

11. Successive square roots of 2 keep getting smaller:

sqrt(2) = 1.414
sqrt(l.414) = 1.183

How many successive square roots do you have to take before you get to a
value smaller than 1.0000001?

12. Using while loops only, write a program that rolls
a ball around the inside perimeter of the standard
drawing window.

13. Hero's formula,

Area= y' s(s- a)(s -b)(s - c)

calculates the area of a triangle, wheres equals one-half of the perimeter
and a, b, care the lengths of the sides. Planning carefully, write a program
that reads in the locations of three points in the Drawing window and then
calculates the area of the triangle they form.

Problems 151

14. Change program AngleRoll so that you can start the ball rolling anywhere
on the left wall of the Drawing window.

15. Can a program that includes for loops only (no while loops or repeat-until
loops allowed) ever go into an infinite loop?

• 'i-.­•,r.=:-• -.... •••• • .-.-.=:=:-.
I -r.• • •

\:•:·~;r. Conditional Statements,
Y.& •d,J Rectangles,

'•*« and Bar Graphs
11 ,..,.__ ------- •,•,,~-------'
•,•~~~~

·~~-~~-~

"You may borrow my car on condition that you bring it back by noon." This is a
conditional statement. It says that something will happen provided that some

. condition is met. Conditional statements show up in computing, too: "If the first
number equals the second number, then print this message: The two numbers
are equal. Otherwise, print: The two numbers are not equal."

In this chapter you will learn about Pascal's two conditional statements: the
if-then and if-then-else commands. We'll also show you how to use Pascal's
rectangle-drawing instructions to draw bar graphs and to create unusual graph­
ics. Let's look at conditional statements first.

__ 5.1 Conditional Statements-A Two-Number Sort _______ _
When you arrange a list of numbers in numerical order, or when you alphabetize
a list of names, you are sorting the list. Program TwoSort sorts two numbers by
putting the larger one first. It is our first illustration of an if-then statement.

program TwoSort;
var

FirstNumber,SecondNumber,Larger,Smaller integer;
begin
writeln('Type in two integers.');
readln(FirstNumber,SecondNumber);
Larger := FirstNumber;
Smaller := SecondNumber;
if (Larger < Smaller) then
begin
Larger := SecondNumber;
Smaller := FirstNumber

end;
writeln('The larger number is ',Larger : 1);
writeln('The smaller number is ',Smaller : 1)

end.
153

154 Conditional Statements, Rectangles , and Bar Graphs

When you run program TwoSort, you type in two integers, which are read
into the variables FirstNumber and SecondNumber. Then the program assigns
the value of FirstNumber to a variable called Larger, and it assigns the value of
SecondNumber to another variable called Smaller.

These assignments might be mixed up: Suppose the second number is the
larger of the two . For example, the first number might be 3 and the second num­
ber 5.

5 r----.

FirstNumber SecondNumber

Larger Smaller

This is where the if-then statement comes in:

if (Larger (Smaller) then
begin
Larger := SecondNumber;
Smaller .- FirstNumber

end;

This statement says, "If Larger is less than Smaller, then do the two actions that
will reassign the numbers, putting the larger one in Larger and the smaller one in
Smaller. "

The if part is a test: (Larger < Smaller). If the result of the test is true, the
program goes on to execute the body of the then part. If the result of the test is
false , the program skips over the rest of the if-then statement and goes on to the
next instruction.

What happens when FirstNumber = SecondNumber? For example, what if
they are both 5? In that case, the test (Larger < Smaller) is false. So the then part
is not executed, and the program prints

The larger number is 5
The smaller number is 5

If this bothers you, add the following if-then statement at the end of the
program:

if (Larger = Smaller) then
writeln('The numbers are equal.')

5.2 A Better Two-Number Sort-The Scratchpad Principle 155

lf·Then Statement Syntax

The general form of the if-then statement is

if (test) then
(statement)

The statement in the then part can be a simple statement, a compound state­
ment, or any other kind of Pascal statement. We get these match-ups for the if­
then statement in program TwoSort:

if !(Larger (Smaller) I then (test)
begin + I

Larger := Second; ..,__.._(statement)
Smaller := First

end;

The body of the then part in program TwoSort is a compound statement.
The if-then statement is called a conditional statement, because the then

part is executed on condition that the test in the if part is true. When the test is
false, the then part is skipped over.

--5.2 A Better Two-Number Sort-The Scratchpad Principle----­
Program TwoSort works fine, but there is a more efficient way of sorting
two numbers. In program BetterTwoSort, we'll use FirstNumber and
SecondN umber as our input variables once again. But instead of using the output
variables Larger and Smaller, we will reuse FirstNumber and SecondNumber
for output. To help with the sort, we'll include a program variable called
Scratchpad, which will hold a value temporarily during program execution.

program BetterTwoSort;
var

FirstNumber,SecondNumber,Scratchpad integer;
begin
writeln('Type in two integers.');
readln(FirstNumber,SecondNumber);
if (FirstNumber (SecondNumber) then
begin
Scratchpad := FirstNumber;
FirstNumber := SecondNumber;
SecondNumber := Scratchpad

end;
writeln('The larger number is ',FirstNumber : 1);
writeln('The smaller number is ',SecondNumber : 1)

end.

"/

156 Conditional Statements, Rectangles, and Bar Graphs

When you run this program, you type in a value for FirstNumber and
a value for SecondNumber. If FirstNumber is greater than or equal to
SecondNumber, the if part of the loop is false and execution skips to the writeln
statement.

But suppose FirstNumber is smaller; let's say FirstNumber is 3 and
SecondNumber is 5.

D
FirstNumber SecondNumber Scratchpad

In this case, the then part of the if-then statement switches the two values. First it
copies the value of FirstNumber into Scratchpad.

t
0

FirstNumber SecondNumber Scratchpad

Then it copies the value of SecondNumber into FirstNumber.

t
0

FirstNumber SecondNumber Scratchpad

And finally it copies the value of Scratchpad into SecondNumber, completing
the swap.

t
0

FirstNumber SecondNumber Scratchpad

Now FirstNumber holds the larger number and SecondNumber holds the small­
er number.

The variable Scratchpad plays a special role in program BetterTwoSort: It
holds a number temporarily so that the values in the two other variables can be
swapped. This technique will show up again and again in programming, so it is
important that you thoroughly understand how it works.

Program BetterTwoSort is a more efficient way to sort two numbers than
program TwoSort. It uses three variables and three assignment statements in­
stead of four variables and four assignment statements. This may not seem like a

5.3 If-Then-Else: Pascal's Other Conditional Statement 157

big advantage, but in a large program that sorts thousands of names or numbers,
executing up to 25 % fewer assignment statements means the program will run
much faster.

In Chapter 10 we'll see how to use the Scratchpad principle in sorting long
lists of names and numbers.

EXERCISE 1 a. What would program BetterTwoSort do if you used the condition
(FirstNumber > SecondNumber) in the if-then test?

b. Suppose the then part of program BetterTwoSort didn't use Scratchpad,
but simply looked like this:

begin
FirstNumber := SecondNumber;
SecondNumber := FirstNumber

end;

What would the program print if FirstNumber = 3 and
SecondNumber = 5?

c. What would happen if the then part of program BetterTwoSort looked
like this?

begin
Scratchpad := FirstNumber;
SecondNumber .- FirstNumber;
SecondNumber := Scratchpad

end;

Hint: Draw a diagram with three cells named Scratch pad, FirstNumber,
and SecondNumber. Put sample values in the cells and then "execute" the
statements with pencil and paper. -

__ 5.3 If-Then-Else: Pascal's Other Conditional Statement _____ _
An if-then-else statement works a lot like an if-then statement. An if-then-else
tells the computer, " If something is true, do this, or else if it's not true, do that."
Let's illustrate how the if-then-else works with a few examples.

Program Tuna

A supermarket ad includes a coupon that entitles you to a can of tuna for 29 cents
if the cost of your other purchases is $7.50 or more. Otherwise the can costs 89
cents. Program Tuna adds the cost of the can of tuna to the cost of the other items
you buy to give a total cost.

158 Conditional Statements, Rectangles, and Bar Graphs

program Tuna;
const
RegTunaPrice 0.89;
CheapTunaPrice = 0.29;

var
Otheritems : real;
Cost : real;

begin
writeln('Type in cost of other items.');
readln(Otheritems);
if (Otheritems)~ 'i'.50) then
Cost .- Otherit.ems + CheapTunaPrice

else
Cost .,,. Otherit.ems + Re~TunaPri9~;

writeln('Total cost is$' ,Cost : 4 : 2)
end.

An if-then-else statement is appropriate here, because there is one action to
be taken if the test is true and another action to be taken if the test is false.

If-Then-Else Statement Syntax

The if-then-else statement has this general form:

if (test) then
(statementl)

else
(statement2)

Statement! and Statement2 represent the actions taken on each of the two
branches of the if-then-else.

There is one absolutely firm syntax rule for if-then and if-then-else state­
ments: Never put a semicolon immediately before a then or an else.

Now let's look at a more complicated if-then-else program.

Program Average

Program Average reads in a list of positive integers and prints out their average.
When you run the program, you type positive integers until you are ready to
quit, and then you type a zero. The program adds up the integers and stores their
sum in a variable called Sum. Meanwhile, a variable called NumberCount
tallies the number of positive integers you have entered. Then the program cal­
culates the average,

Average := Sum/NumberCount

and prints it out.

5.3 If-Then-Else: Pascal's Other Conditional Statement 159

Program Average is not quite so straightforward as it seems. We want the
program to treat different kirtds of input in different ways. So we've handled the
special-case inputs with if-then and if-then-else statements .

program Average;
{YOU READ IN POSITIVE INTEGERS, PROGRAM CALCULATES THE AVERAGE.)
var
Sum,Number,NumberCount : integer;
AverageValue : real;

begin
Number != 1;
Sum := O;
NumberCount := O;

{READ IN NUMBERS.)
while (Number () 0) do
begin
writeln('Type in a positive integer.');
writeln('Type zero to quit.');
readln(Number);
if (Number (0) then
writeln('Bad input -- type another value.')

else
begin

Sum :=Sum+ Number;
if (Number) 0) then
NumberCount .- NumberCount + 1

end
end;

{CALCULATE AVERAGE.}
if (NumberCount) 0) then
begin
AverageValue := Sum/NumberCount;
writeln('The average of the ',NumberCount : 1,

end
eise

' numbers you entered is ',AverageValue 3 1)

writeln('No values submitted -- no average reported.')
end.

First of all, the program tells you to type in a positive number or a zero. But
you might absentmindedly type a negative number. The first if-then-else state­
ment checks for this error: If the number you have entered is less than zero , the
then part of the statement informs you of your mistake.

If the number isn't negative, the else part is executed. But here, too, there is
something to check for. in this program, the number zero doesn't really figure in

\

160 Conditional Statements, Rectangles, and Bar Graphs

the average. It is a signal that you don't want to enter any more numbers. So
NumberCount is incremented only when Number is greater than zero.

What happens if the first number you type is zero? This input terminates the
while loop, and so NumberCount, which has been initialized to zero, won't be
incremented and will remain at zero for the rest of the program. But, because
you can't divide by zero, the average value

Average := Sum/NumberCount;

cannot be computed. Hence we have included a final if-then-else statement to
avoid the possibility of dividing by zero. Had we left it out, the program would
crash if the first value entered were a zero. This is called a run-time error, be­
cause the bug shows up while the program is running.

The if-then-else statement that complains when you type a negative number
has a special function. It protects you against bad input values. This is called
idiot-proofing. If you make a mistake when you are entering data, the if-then­
else statement keeps your bad input from producing invalid output.

MacPascal does some idiot-proofing of its own. Suppose you type a letter in­
stead of an integer. The program won't accept it, and the Macintosh will beep
when you press the key. And if you type a real number, MacPascal will read into
the variable Number only the integer part of what you type. It ignores the deci­
mal point and the digits that follow'it.

Program ElectricBill

Here is a more practical if-then-else example. Your electric company, Podunk
Power and Light, has a life-line rate of 2.30 cents per kilowatt hour (KWH) for
customers who use less than 250 KWH's of electricity per month. A customer
who uses more than 250 KWH's, however, is charged 4.20 cents per KWH on all
electricity used.

Program ElectricBill will compute your electric bill using an if-then-else
statement that splits the program into two parts. If you use less than 250 KWH's
of electricity per month, the then part of the program calculates your bill at the
life-line rate. If you use more electricity, the else part does the calculation at the
regular rate.

program ElectricBill;
!READS IN KILOWATT HOURS USED AND CALCULATES ELECTRIC BILLI
{BASED ON TWO-TIERED RATE SYSTEM.I
const
LifeLineRate = 0.023;
RegRate = 0.042;

var
Cost : real;
KWH : integer;

5.3 If-Then-Else: Pascal's Other Conditional Statement 161

begin
writeln('Type in the number of kilowatt hours used -- an integer.');
readln(KWH);
if (KWH (250) then
Cost .- LifeLineRate * KWH

else
Cost .- RegRate * KWH;

writeln('Your electric bill is$' ,Cost : 4 : 2)
end.

Now suppose Podunk Power and Light changes its rates to a three-tiered sys­
tem. Customers who use less than 250 KWfl's of electricity still pay 2.30 cents
per kilowatt hour. But a customer who u~es 250 KWH's or more pays 4.20 cents
per KWH on the first 0 to 499 Kilowatt hours and 5.35 cents per kilowatt hour
for any additional power. Here is the revised program. ·

program ElectricBillTwo;
{READS IN KILOWATT HOURS USED AND CALCULATES ELECTRIC BILL)
{BASED ON THREE-TIERED RATE SYSTEM)
const
LifeLineRate = 0.023;
LowRegRate = 0.042;
HighRegRate = 0.053;

var
Cost,PartialCost : real;
KWH,KWHsLeft : integer;

begin
writeln('Type in the number of kilowatt hours used -- an integer.');
readln(KWH);
if (KWH (250) then
Cost := LifeLineRate * KWH

else if (KWH (500) then
Cost :~ LowR~gRate * KWH

Ell Se
begin
"Partia1Cost := LowRegRate * 499;
KWHsLeft := KWH - 499;
Cost := PartialCost t (KWHsLeft * HighRegRate)

Emdi
wrtteln('Your electric bill is$' ,Cost : 4 : 2)

end.

To handle the three-way split in the cost of electricity, program
ElectricBillTwo has an if-then-else statement as the else part of another if-then­
else. This is called a nested if-then-else statement. Make sure you understand this
program completely by tracing how it will run on inputs of 249, 250, and 500
kilowatt hours.

162 Conditional Statements, Rectangles, and Bar Graphs

--5.4 The Case of the Dangling Else------------­
Now look at program Dangle, keeping an eye on the final else.

program Dangle;
var

Number : integer;
begin
writeln('Type in an integer.') ;
readln(Number);
if (Number) 0) then
if (Number) 10) then
Number .- 100

else The dangling else
Number .- 50;

wri te.ln(Number f
end.

What does program Dangle print out when you type in l? (Make a guess!)
To figure out the answer, you must know which if-then the final else is a part
of-the outer if-then or the inner if-then. If the final else belongs to the inner or
nearest if-then, the program prints 50. If it belongs to the outer if-then, the pro­
gram prints 1.

In Pascal , an else statement always goes with the nearest if-then that isn't
followed by another else. And so program Dangle prints 50. The else part of an
inner if-then-else statement is called a dangling else.

Once you type a program in, pretty-printing will clarify where the dangling
else goes; it will line up with the if it belongs to. But when you first create a pro­
gram with pencil and paper, you may be tempted to hook the else up with the
outer or farthest if-then. Pascal won't see it this way. It uses the "nearest if-then
rule," and you must, too .

--5.5 The Mod Operator----------------­
When we talked about arithmetic with integers, we introduced div, the operator
that does integer division.

5 .;- 3 = l 2/3
5 div 3 = l

Pascal has another operator that is a companion to the div operator. It's
called mod. The mod operator does division, too-but the answer it gives is the
remainder that's left after the division is done. For example, 5 divided by 3
equals l with a remainder of 2, so

5 mod 3 = 2

5.6 A Math Puzzle 163

Whereas the expression 31 div 7 gives you the number of full weeks in
March , the expression 31 mod 7 gives the number of days left in March after 4
full weeks have passed.

4 31 div 7 = 4
7}31

28
3 31 mod 7 = 3

Here are some examples of division using 7, div, and mod.

3-;- 3 = 1
4-;- 3 = 1 1/3

10-;- 7 = 1 3/7
5-;- 6 = 5/6

3 div 3 = 1
4 div 3 = 1

10 div 7 = 1
5 div 6 = 0

3 mod 3 = 0
4 mod 3 = 1

10 mod 7 = 3
5 mod 6 = 5

Note that with mod, if the second number divides the first evenly, the an­
swer is zero. And if the second number is bigger than the first, the answer is the
same as the first number.

EXERCISE 2 a. Figure out the answers to these problems. Then check your answers in
the Instant window.

11mod6 =?
2 mod 5 =?

111 mod 10 =?
5 mod 5 =?
8 mod 5 =?

b. What does this program print?

program ModQuestion;
var

Number : integer;
begin
for Number := 11 to 20 do
writeln(Number mod 5)

end. -

__ s.6 A Math Puzzle ________________ _

Now let's use the mod function to write a program that solves an intriguing math
puzzle. First, recall that , to cube a number, you multiply it by itself three times:

33 = 3 x 3 x 3 = 3 * 3 * 3 = 27

The following table gives the cubes of the numbers from 0 to 9.

164 Conditional Statements, Rectangles, and Bar Graphs

Number Cube

03 0
13 1
23 8
33 27
43 64
53 125
63 216
73 343
83 512
93 729

EXERCISE 3 Figure out the sums of the cubes of the digits of these numbers.

a . 121

Answer: 10

b. 567

Answer: 684 -

Now here's a strange fact: The number 153 equals the sum of the cubes of its
digits.

153 = 13 + 53 + 33 = 1 + 125 + 27 = 153

Question: Are there other three-digit numbers that equal the sums of the
cubes of their digits? To find out, let's write a program called program CubeSum
that will test each number from 100 to 999 for this peculiar property. Let's tackle
this problem with our think-plan-code-test-and-debug method .

Thinking

The problem asks us to examine all three-digit numbers-that is, all numbers
from 100 to 999-and report back if we find any that satisfy the cube-sum prop­
erty. So a piece of our program will have to generate all these numbers. We can
do this with a loop.

There aren't any input or output variables . The program merely steps
through the integers from 100 to 999 and reports any with the cube-sum proper­
ty.

How about program variables? We'll need a control variable for the loop
that generates each number from 100 to 999. Let's call it TestNumber. And we'll
need a variable called SumOfCubes to hold the value of the sum of the cubes of
the digits.

5.6 A Math Puzzle 165

We will also have to keep track of the separate digits for each value of
TestNumber. Three-digit numbers have a hundreds place, a tens place, and a
ones place. So let's use Hundreds, Tens, and Ones as the names for these vari­
ables.

Given a number, we need a way to calculate its digits. The operators div
and mod will do the job. To see how, let's look first at a two-digit number-say,
47. In the two-digit case, div and mod give us the answers we want directly:

47 div 10 = 4
47mod10 = 7

The first digit is 4 and the second digit is 7. Using div 10 and then mod 10, we can
produce the two digits that make up any two-digit number.

A similar strategy works for three-digit numbers. Let's look at 567.

567 div 100 = 5 (This gives us the first digit.)
567 mod 100 = 67
67 div 10 = 6
67mod10 = 7

(This gives us the second digit.)
(This gives us the third digit.)

We can shorten these calculations by writing them this way:

567 div 100 = 5
(567 mod 100) div 10 = 6
(567 mod 100) mod 10 = 7

These div and mod calculations give us the digits if TestNumber is any three­
digit number:

digit in hundreds place = TestNumber div 100
digit in tens place = (TestNumber mod 100) div 10
digitinonesplace = (TestNumber mod 100) mod 10

Here is our data table for program CubeSum:

___________ DATA TABLE __________ _

Input Variables
none

Program Variables
TestNumber
Hundreds
Tens
Ones
Sum Of Cubes

Loops

Output Variables Constants
none none

Formulas
Hundreds = TestNumber div 100
Tens = (TestNumber mod 100) div 10
Ones = (TestNumber mod 100) mod 10

one loop generates all three-digit numbers

166 Conditional Statements, Rectangles, and Bar Graphs

The problem asks us to test each number after it has been generated to deter­
mine whether the cube-sum property holds. So we can solve this problem by
using a method that can be applied to a great many programming problems: the
generate-and-test method.

Planning
Our starting plan looks like this:

generate numbers from 100 to 999
test to see if a number satisfies cube-sum
property, and report the number if it passes the test

We can refine our plan, using the variables from the data table:

step TestNumber in a loop from 100 to 999
calculate SumOfCubes for TestNumber
if SumOfCubes = TestNumber then print TestNumber

Now we can turn our plan into a more concrete algorithm by working out
the looping structure. There are three possibilities-a for loop, a while loop, or a
repeat-until loop. Using a for loop:

for TestNumber : = 100 to 999 do
begin

calculate sum of cubes of digits in TestNumber
if sum= TestNumber, then print TestNumber

end

Using a while loop:

TestNumber: = 100;
while TestNumber < = 999 do

begin
calculate sum of cubes of digits in TestNumber
if sum = TestNumber, then print TestNumber
TestNumber : = TestNumber + 1

end

Using a repeat-until loop:

TestNumber: = 100;
repeat

calculate sum of cubes of digits in TestNumber
if sum = TestNumber, then print TestNumber
TestNumber : = TestNumber + 1

until TestNumber = 1000

5. 7 Drawing Rectangles 167

All three looping plans will solve the problem. The for-loop solution will
work out just fine, because we already know the lower and upper limits of the
loop. The repeat plan is OK too, because the loop will execute at least once, so
having the looping test at the end of the loop will cause no problems. And the
while loop will also work. It's the most versatile looping command.

Coding
Now we have the machinery to code program CubeSum. We'll use a while state­
ment for the loop that generates each TestNumber, and we'll use an if-then state­
ment to do the test part of the generate-and-test scheme. Here's the program:

program CubeSum;
!REPORTS EVERY INTEGER FROM 100 TO 999}
{THAT EQUALS THE SUM OF THE CUBES OF ITS DIGITS.}
var
Hundreds,Tens,Ones,SumOfCubes,TestNumber : integer;

begin
TestNumber := 100;
while (TestNumber (= 999) do
begin
Hundreds := TestNumber div 100;
Tens := (TestNumber mod 100) div 10;
Ones := (TestNumber mod 100) mod 10;
SumOfCubes := Hundreds * Hundreds * Hundreds +

Tens * Tens * Tens + Ones * Ones * Ones;
if (SumOfCubes = TestNumber) then
writeln(TestNumber : 1,

' equals the sum of the cubes of its digits.');
TestNumber .- TestNumber + 1

end
end.

Are there any other of these strange numbers besides 153? We're not telling!

---5.7 Drawing Rectangles----------------­
Next we're going to show you four MacPascal instructions for drawing rectan­
gles. The Macintosh Pascal instruction framerect draws the outline of a rectangle
in the Drawing window. For example, the instruction

framerect(J0,40,150,100)

creates the picture shown in Figure 5.1. The values 30, 40, 150, and 100 deter­
mine the top, left, bottom, and right sides of the rectangle. So jramerect works
this way:

framerect(top,left,bottom,right)

168 Conditional Statements, Rectangles , and Bar Graphs

CD Top30I

@Left
40

G) Bottom 150

0Right100
i-'-

Figure 5.1 The rectangle drawn by framerect(30,40,150,100).

To keep straight which number determines which side of the rectangle, re­
member to start at the top and go counterclockwise around the rectangle: top,
left, bottom, right.

top

left right

\.,.,._ bottom __.,/

The width of a rectangle is equal to the fourth number minus the second
number, or right minus left . Its height is equal to the third number minus the
first number, or bottom minus top. So the dimensions of the rectangle shown in
Figure 5.1are100 - 40 = 60 by 150 - 30 = 120. When you use a rectangle com­
mand, top must be smaller than bottom, and left must be smaller than right. If
you frame a rectangle with left larger than right or top larger than bottom, the
figure will have negative width or height and nothing will be printed out.

EXERCISE 4 a . Whatframerect command draws a square that is 50 units on a side with
its upper-left corner at the point (100,100)?

Answer: frame re ct (100, 100, 150, 150)

b. What framerect command draws a rectangle that is exactly 10 units in­
side the border of the standard Drawing window?

Answer: framerect(l0,10,190,190) -

5. 7 Drawing Rectangles 169

MacPascal has three other rectangle commands: paintrect, invertrect, and
eraserect. Paintrect works like framerect, only instead of drawing just an out­
line, it paints the whole rectangle black. Invertrect works the way invertcircle
does. It reverses the color of everything inside the rectangle's boundary.
Eraserect completely "whites out" the area inside the rectangle's borders.

EXERCISE 5 a. Paint the entire Drawing window black.

b. Which two invertrect commands will create
this picture?

Using rectangle commands and loops, we can create dramatic graphics in
the Drawing window. For example, program ExplodeRect works like program
Explode from Chapter 2-only it explodes a rectangle instead of a circle, and
then it erases the rectangle from the inside out with an "exploding" eraserect
command. See Figure 5.2.

Drawing

100-Grow

1 0- Grow

100+Gr w

j 10o+Gmw

Figure 5.2 ExplodeRect when Grow= 50 in the first loop.

170 Conditional Statements, Rectangles, and Bar Graphs

program Expl odeRect;
{EXPLODES AND THEN ERASES A RECTANGLE}
var

Grow : integer;
begin

Grow : = O;
{EXPLODES A RECTANGLE}
while (Grow (= 100) do
begin

Grow := Grow + 1;
paintrect(lOO - Grow, 100 - Grow,100 + Grow, 100 + Grow)

end;
Grow := O;
{ERASES THE RECTANGLE}
while (Grow (= 100) do
begin

Grow : =Grow+ 1;
eraserect(lOO - Grow, 100 - Grow, 100 + Grow, 100 + Grow)

end
end.

Here is another spectacular program that uses a rectangle command (see
Figure 5.3).

~o Drawing

~ l::i=i-,
Ill
[l
L

121

Figure 5.3 Output for program StackOfRectangles.

program StackOfRectangles ;
const
Spacing = 4;

var
Grow : i nteger ;

begin
Gr ow := O;
repeat
framerect(Grow,Gr ow ,2 * Grow, 2 *Gr ow) ;
Grow := Gr ow + Spac i ng

until (Grow) 100)
end .

5.8 BarGraphs 171

If you substitute an invertrect command for the fram erect command in pro­
gram StackOfRectangles, you will get the picture at the beginning of this chap­
ter, on page 153. Try it and see.

__ 5.8 Bar Graphs __________________ _

Bar graphs help you compare the sizes of things. You can draw bar graphs that
give you all sorts of information in picture form , from the consumer price index
during the last twelve months to the amount of money you will accumulate in
your savings account over the next ten years. Figure 5.4 and Figure 5.5 are exam­
ples of typical bar graphs.

A bar is just a black rectangle. To print out a sequence of bars, we will put a
paintrect command inside a loop.

1059 Population in millions

730

272 234
160

96 131 119 94 85

China USSR Indonesia t Japan Pakistan
India Brazil Bangladesh Nigeria

Figure 5.4 A bar graph of the populations of the world 's ten most populous countries.

172 Conditional Sta tements, Rectangles, and Bar Graphs

AVG KWH
PER DAY

40
THIS IS YOUR ENERGY USE PROFILE

36

32

28

24

20

16

12

8

4

0

t-

I-

t- ,..--,

I-

I-

I-

t-

I-

I-

A
83

,........,

,......,

M J

~

1

,........,

·U

J A

,--.,
r'"'1

n

S 0 N
MONTHS

Figure 5.5 A bar graph that comes with an electr ic bil l.

Program BarGraphOne

,......, ,..--,

D J

,--.,

I•
F

.......,

M

,........,

A
84

Our fi rst bar graph program will print a picture that is barely a bar graph at all
(see Figure 5.6) .

Figure 5.6 Output for program BarGraphOne.

5 .8 Bar Graphs 173

The bars are identical except that each one has a different vertical position.
All have the same left boundary, the same right boundary, and the same thick­
ness . And the gaps between the bars are all the same size.

program BarGraphOne;
{PRINTS 10 HORIZONTAL BARS ON LEFT SIDE OF DRAWING WINDOW}
const
Left = O;
Right = 100;
Separation = 7;
Thickness = 12;
BarCount = 10;

var
BarNumber,Top,Bottom : integer;

begin
{BOTTOM IS INITIALIZED TO O, WHICH IS THE TOP OF THE WINDOW}
Bottom := O;
BarNumber : = 1;
while (BarNumber (= BarCount) do
begin

Top :=Bottom+ Separation;
Bottom := Top + Thickness;
paintrect(Top,Left,Bottom,Right);
BarNumber .- BarNumber + 1

end
end.

After Bottom and BarNumber are initialized, the while loop is executed,
and the bars are drawn.

In order to paint a rectangle, we must determine the values of Top, Left,
Bottom, and Right. In this program Left and Right are fixed , so we need to de­
termine values only for Top and Bottom.

Top has for its value the previous or initial value of Bottom plus the separa­
tion between the bars.

Top := Bottom+ Separation "---Bottom } Separation
1----~--Top

I

In the first iteration of the loop, Top is assigned the initial value of Bottom, 0,
plus the separation between the bars, which is a constant.

17 4 Conditional Statements, Rectangles, and Bar Graphs

Once we know the value for the top of a rectangle, we can calculate the
value for its bottom by adding the thickness of a rectangle:

Bottom := Top + Thickness

-Top }
Thickness

~---..__-Bottom

I

Each loop iteration draws one bar, and, because the number of loops equals
BarCount, we will get BarCount (in this case 10) bars .

EXERCISE 6 a. How would you change program BarGraphOne so that there are twelve
bars separated by eight units?

b. Change the program so that the bars start at the right instead of at the
left. -

BarGraphTwo

Next let's rotate the graph so that the bars are vertical, which is the traditional
way of displaying bar graphs (see Figure 5.7). Program BarGraphTwo on page
175 does the trick.

~D 'Drawing

Figure 5.7 · Output for program BarGraphTwo.

5.9 Writing in the Drawing Window 175

program BarGraphTwo;
{PRINTS 10 VERTICAL BARS NEAR BOTTOM OF DRAWING WINDOW}
const
Bottom = 180;
Top = 100;
Separation = 7;
Thickness = 12;
BarCount = 10;

var
BarNumber,Left,Right : integer;

begin
{BOTTOM IS INITIALIZED TO O, WHICH IS THE TOP OF THE WINDOWl
Right := O;
BarNumber : = 1;
while (BarNumber (= BarCount) do
begin
Left := Right + Separation;
Right := Left+ Thickness;
paintrect(Top,Left,Bottom,Right);
BarNumber .- BarNumber + 1

end
end.

This time Left and Right are variables, and Top and Bottom are constants.
We have made Bottom 180 instead of 200 so that there will be room underneath
the bars for labels. We will show you how to add the labels in a moment. Inside
the loop we calculate Left first, adding the previous (or initial) value of Right to
the constant value for Separation.

---5.9 Writing in the Drawing Window _____________ _

In order to create a real bar graph, we need to be able to label the bars. We can't
use write or writeln, because they print text in the Text window. To print text
or numbers in the Drawing window, we'll use the MacPascal instructions
writedraw and moveto. Moveto tells MacPascal where in the Drawing window
you want your words and numbers to appear.

Imagine that the Drawing window comes with a pen. The moveto instruc­
tion places the tip of the pen at the point where you want something printed
in the Drawing window. The writedraw command prints text at the pen posi­
tion. Figure 5.8 illustrates how moveto and writedraw work.

176 Conditional Statements, Rectangles, and Bar Graphs

~ s file Edit Search Run Windows

•' .

.· .·
: ·

~ ~ .

. . .

·.·.·. · .·.: .:

Instant

[no 11

drawline(lOO, O, 100, 200) ;
'moveto(lOO, 30) ;
wri tedrow('T est i ng');
moveto(100, 60);
wri tedrew(1);
moveto(100, 90);
writedrew(2 : 1);
moveto(lOO, 120);
wri tedraw(3 14159 : 7 : 5);
moveto(1 oo, 150);
writedraw(4444444 : 7);
moveto(lOO, 180);
wri tedrew(' <<<<<«<<<');
moveto(100, 180);
writedrew('> > > > > > > > > > ')

~ ·.·

:o

.-
-:·

Drawing

~esting

~.14159

~444444

.. ·.
. ·.·.

-:. :. :- :. :- : -:-:

: : . ;.:.:-:.:

Figure 5.8 The writedraw command, along with the moveto command, prints words and
numbers in the Drawing window. The word Testing starts at point (100,30). Note that a dec­
imal point takes up less space than a full character.

We're almost ready to draw a real bar graph with labels. But first we need
to make the typeface of the print on the screen smaller so that the labels will fit
under the bars. This is done by opening the Windows menu and choosing Type­
Size.

Program GraphOfSquares

Program GraphOfSquares draws a series of bars that represent the squares of the
integers l through 10 (see Figure 5.9). It also labels the bars with their heights.

program GraphOfSquares;
{GRAPHS THE SQUARES OF THE INTEGERS FROM 1 TO 10.l
const
Bottom = 180;
Separation = 7;
Thickness = 12;
BarCount = 10;

var
BarNumber,Left,Right,Top,Height integer;

5.9 Writing in the Drawing Window 177

begin
{BOTTOM IS INITIALIZED TO O, WHICH IS THE TOP OF THE WINDOW}
Right := O;
BarNumber : = 1;
while (BarNumber (= BarCount) do
begin
Left : = Right + Separation;
Right := Left + Thickness;

{CALCULATE HEIGHT}
Height := BarNumber * BarNumber;

{CALCULATE TOPl
Top := Bottom - Height;

{DRAW BAR}
paintrect(Top,Left,Bottom,Right);

{LABEL BAR}
moveto(Left,Bottom + 10);
writedraw(Height : 1);

{INCREMENT BAR NUMBERl
BarNumber . - BarNumber + 1

end
end.

~D Drnwing-

- _ .•• 111
1 4 9 16 25 36 49 64 81 100

121

Figure 5.9 The output for program GraphOfSquares.

178 Conditional Statements, Rectangles, and Bar Graphs

In program GraphOfSquares the height of the bar is the value of the vari­
able Height. Once we know the value of Height, we can calculate Top:

Top := Bottom - Height;

This calculation looks backward, but it isn't. As the bars get bigger, the values of
Top get smaller, because a small value for Top means that the top of the bar is
closer to the top of the window.

Each time the loop is executed, the program draws a bar and then inserts
a label. The moveto instruction starts the label 10 units below the left corner
of each bar. Then writedraw prints out the height of the bar. Like writeln,
writedraw allots an 8-space field width for integers, which you can override
using colon notation.

--5.10 A Compound-Interest Bar Graph Program--------­
Now we are ready to draw a much fancier bar graph. Program InterestGraph
will show how compound interest makes a sum of money grow in your bank
account year by year. You enter any principal, any interest rate, and any num­
ber of years in the account, and the program prints a bar graph that shows how
the balance in your account will increase. Each bar represents the amount of
money in the account at the beginning of a year.

Program InterestGraphOne includes some code from program Interest in
Chapter 4. It's always a good idea to see whether you can borrow pieces of old
programs when you're writing new ones. Doing so can save you a lot of time and
energy. This is not cheating; it's being economical.

After program InterestGraphOne reads in values for Principal, Rate, and
TotalYears, a figure is calculated for the variable Scale:

Scale := FirstBar/Principal

FirstBar is a constant that gives the height of the first bar, which we have set at
80. If Principal= $1000.00, Scale= .08. This means that one dollar= .08 units
in the Drawing window. When we print a bar, we multiply Scale times
MoneyinBank and round off the product to get the Height of a bar:

Height := round(MoneyinBank *Scale);

After MoneyinBank is initialized to Principal, the main loop in the program
draws labels and bars. Then it calculates MoneylnBank for the next year. Here is
the program.

5.10 A Compound-Interest Bar Graph Program 179

program InterestGraphOne;
{READS IN PRINCIPAL, INTEREST RATE, AND YEARS IN BANK . }
{PRINTS OUT GRAPH OF MONEY ACCUMULATED IN BANK.I
const
Separation = 30;
Thickness = 30;
Bottom = 190;
FirstBar = 80; {FIRSTBAR REPRESENTS PRINCIPAL}

var
MoneyinBank,NewMoney,Principal,Rate : Real;
Scale : real; {ADJUSTS HEIGHT OF BARSl
Left,Right,Top,Height,Year,TotalYears : integer;

begin
writeln('Type in princ ipal, i nterest rate, and years in bank.');
readln(Principal,Rate,TotalYears);
if (Principal () 0 .0) then
Scale .- FirstBar / Principal

else
Scale .- 0.0;

Year ·:= O;
Left := O;

{INITIALIZE MONEY IN BANKl
MoneyinBank .- Principal;
while (Year (= TotalYears) do
begin

{CALCULATE AND PAI NT RECTANGLE}
Right := Left +Thickness;
Left := Right + Separat i on;
Height := round(MoneyinBank *Scale) ;
Top := Bottom - Height;
paintrect(Top,Left,Bottom,Right);

{DRAW TOP LABEL, 3 UNITS ABOVE BARI
moveto(Left,Top - 3);
writedraw(MoneyinBank : 5 : 2);

{DRAW BOTTOM LABEL}
moveto(Left,Bottom + 13);
writedraw(Year : 1);

{CALCULATE NEXT YEAR'S MONEYl
Year := Year+ 1;
NewMoney : = MoneyinBank * Rate;
MoneyinBank . - MoneyinBank + NewMoney

end
end.

180 Conditional Statements, Rectangles, and Bar Graphs

~[Drawing

'

167.71
153.86

141.16

118.81
129.50

100.00
109.00

0 1 2 3 4 5 6

l2J

Figure 5.1 0 The output for program lnterestGraphOne.

Now let's look at Figure 5.10 for the output.
As you can see, something is drastically wrong with this bar graph-no

bars! Let's try to figure out where the bug is.

Debugging Program lnterestGraphOne with the Observe Window

The Observe window is a terrific debugging tool, but it is no substitute for care­
ful thinking on your part. When you run into a bug, study your code carefully
and learn as much as you can just from reading before you turn to the Observe
window. You may be completely stumped when you start out, but simple rea­
soning will often enable you to make progress isolating the problem. If you still
can't locate the bug, go to the Observe window.

If we think about the bug in program InterestGraphOne, we'll come up
with this: The error has to do with the paintrect command. Either it is not being
executed at all, ·or there is something wrong with the values of Top, Left, Bot­
tom, and Right. But we are not sure which, so it's time to turn to the Observe
window.

After we open the Observe window, let's identify Top, Left, Bottom, and
Right as the variables we want to watch and then place a stop next to paintrect.

Now we'll run the program using Go. Go-Go wouldn't help much here, be­
cause we can find out what we need to know by watching the very first iteration
of the loop. Here's what we need to know: Why wasn't the first bar drawn? Was
paintrect ever executed? And if it was, what were the values of its variables?

5.10 A Compound-Interest Bar Graph Program 181

When we run the program , here's what we get:

!110 Obserue
I 00 Top

49 Left

1HO Bottom I
24 Right Q

The Observe window gives us a big clue. We can tell that paintrect was executed
in the original program run , because the stop next to the paintrect command
brings the program to a halt. But the values of the variables were faulty. Top is
smaller than Bottom , which is correct . But Right is smaller than Left-that is ,
Right is to the left of Left. The rectangle has negative width, which is why it
didn't appear on the screen.

To finish debugging, we need to reason backward: How were the values of
Left and Right determined? Left is initialized to 0- the left wall. Then, inside
the loop, Right is assigned Left + Thickness = 0 + 24 = 24. Now Left is assigned
another value: Right + Separation = 49. So Left > Right , and this is our bug.

The statement

Left := Right +Separation;

must come before the statement

Right := Left + Thickness ;

This will guarantee that Right is larger than Left by an amount equal to the
thickness of a bar . If the two assignment statements come in this order, Right
must be defined initially, because the other calculations depend on the initial
value of Right. So, instead of using the initialization Left : = 0 just before the
loop , we'll use

Right : = O;

Here is the corrected program, and Figure 5.11 gives a sample of output for
this program.

program InterestGraphTwo ;
(READS IN PRINCIPAL, INTEREST RATE , AND YEARS IN BANK.}
(PRINTS OUT GRAPH OF MONEY ACCUMULATED IN BANK . l
const
Separation = 30 ;
Thickness = 30;
Bottom = 190;
FirstBar = 80; (FIRSTBAR REPRESENTS PRINCIPAL}

(co11ti1111 ed)

182 Conditional Statements, Rectangles, and Bar Graphs

Drewing

167.71
153.86

129.50
141.16

109.00
118.81

100.00

I I
0 2 3 4 5 6

Figure 5.11 Typical output for program lnterestGraphTwo.

var
MoneyinBank,NewMoney,Princ ipal,Rate : Real;
Scal e : real; {ADJUSTS HEIGHT OF BARS}
Left,Right , Top,Height,Year,TotalYears : integer;

begin
writeln('Type in princ i pal, interest rate, and years in bank. 1);

readln(Principal,Rate,TotalYears);
if (Principal () 0 . 0) then
Scale .- FirstBar / Principal

else
Scal e .- 0 . 0;

Year := O;
Ri ght : = O;

{INITIALIZE MONEY IN BANK}
MoneyinBank .- Principal;
while (Year (= TotalYears) do
begin

{CALCULATE AND PAINT RECTANGLE}
Left := Right +Separation;
Right := Left +Thickness;
Height := round(MoneyinBank *Scale);
Top := Bottom - Height;
pai ntrect(Top,Left,Bottom,Right);

!DRAW TOP LABEL, 3 UNITS ABOVE BAR}
moveto(Left,Top - 3);
writedraw(MoneyinBank : 5 : 2);

{DRAW BOTTOM LABEL}

moveto(Lef t,Bottom + 13);
writedraw(Year : 1);

{CALCULATE NEXT YEAR'S MONEY}
Year := Year + 1;
NewMoney := MoneyinBank * Rate;
MoneyinBank .- MoneyinBank + NewMoney

end
end.

5.11 Oval Graphics 183

With InterestGraphTwo, the usefulness of our programs has taken a quan­
tum leap. Give it a try, using a few different values and see how it does .

--5.11 Oval Graphics-----------------­
MacPascal has four more standard procedures for drawing pictures. The com­
mands frameoval, paintoval, invertoval, and eraseoval draw ovals in the Draw­
ing window. When you create an oval on the screen, it is inscribed inside an
imaginary rectangle. The top, left, bottom, and right values for this rectangle
determine the shape and position of the inscribed oval. These two instructions

framerect (l0,15,180,70);
frameoval(l0,15,180,70)

draw a rectangle with an oval inside it (see Figure 5.12).

-o Drawing

7\.
I \

\ I
il_

~

Figure 5.12 An oval inside a rectangle.

184 ·Conditional Statements, Rectangles, and Bar Graphs

EXERCISE 7 Draw these pictures.

a. b. c.

Program Cone

Program Cone draws 100 ovals, each a little lower on the screen and a little
narrower than the one before. You have to see the program running to appreci­
ate it. Figure 5.13 shows the final picture that is produced.

Figure 5.13 Output for program Cone.

program Cone;
const
Rate = 2;

var
Top,Left,Bottom,Right,ConeNumber

begin
Top := O;
Left := O;
Bottom := 60;
Right := 200;
ConeNumber : = 1;
repeat

frameoval(Top,Left,Bottom,Right);
Top := Top +Rate;
Bottom := Bottom+ Rate;
Left := Left +Rate;
Right := Right - Rate;
ConeNumber := ConeNumber + 1

until (ConeNumber) 100)
end.

Program OvalsAndRecs

5.11 Oval Graphics 185

integer;

Program OvalsAndRecs uses an if-then-else statement to draw alternating ovals
and rectangles. Whenever the variable Grow is odd, the program paints an oval;
otherwise it paints a rectangle (see Figure 5.14).

program OvalsAndRecs;
var

Grow : integer;
begin

Grow := 10;
repeat
if odd(Grow) then

invertoval(Grow,2 * Grow,2 * Grow,4 * Grow)
else

invertrect(Grow,2 * Grow,2 * Grow,4 *Grow);
Grow := Grow + 11

until (Grow) 100)
end .

In program OvalsAndRecs we use the function odd. Odd is an unusual func­
tion. Unlike sqrt, sqr, and round, which return numerical answers, odd returns

186 Conditional Statements, Rectangles, and Bar Graphs

Drawing -

Figure 5.14 Output for program OvalsAndRecs.

an answer that is either true or false. Because odd gives a true or false answer, it
can appear in the (test) position of a conditional statement, and that's how it is
used in this program.

EXERCISE 8 What does program OvalsAndRecs do if the assignment statement Grow
: = Grow + 11 is changed to Grow : = Grow + 10? -

Program Globe

Using two repeat-until . loops, program Globe draws a globe in the standard
Drawing window with the vertical, longitude lines drawn in first (See Figure
5.15). If you change the value of the constant GrowthRate, you can build other
dramatic versions of the output.

program Globe;
const
GrowthRate = 6;

var
Top,Left,Bottom,Right integer;

begin
Top := O;
Left := O;
Bottom := 200;
Right := 200;

{DRAWS LONGITUDE LINES.}
repeat

frameoval(Top,Left,Bottom,Right);
Left := Left + GrowthRate;
Right := Right - GrowthRate

until (Left)= 100);
Top := O;
Left := O;
Bottom := 200;
Right := 200;

!DRAWS LATITUDE LINES}
repeat
frameoval(Top,Left,Bottom,Right);
Top := Top + GrowthRate;
Bottom := Bottom - GrowthRate

until (Top)= 100)
end.

5.11 Oval Graphics 187

Figure 5.15 Output for program Globe.

188 Conditional Statements, Rectangles, and Bar Graphs

___ TEST YOURSELF---------------
1. What are Pascal's conditional statements?

2. What is a dangling else?
3. What is the "nearest if-then" rule?

4. What is idiot-proofing?
5. Describe the Scratchpad principle.
6. What MacPascal instruction writes text in the Drawing window?

7. Explain the generate-and-test method.

8. What does the instruction moveto do?

9. What Pascal arithmetic operation gives remainders?
10. What MacPascal instruction whites out the standard Drawing window?

11. What is a run-time error?
12. What instruction inverts everything in the standard Drawing window?

-~-PROBLEMS __________________ _

1. Would program BetterTwoSort work differently if the if-then statement
used the test (FirstNumber < = SecondNumber)?

2. a. Type in program ExplodeRect to see how it works. Now speed it up so
that the explosion happens faster.

b. Rewrite program ExplodeRect using a repeat-until loop.
3. Write a program that will draw a cube like this in

the Drawing window. Hint: Use two framerect
instructions and four drawline instructions.

4. Homer has 1038 eggs. Write a Pascal expression that tells how many eggs he
will have left after he sells as many complete dozens as he can.

5. Using the equation 8 mod 7 = 1, you can figure out that, if today is
Tuesday, 8 days from now will be I day later in the week, or Wednesday.
Suppose that this year isn't a leap year and that January 22 falls on a
Tuesday. On what day of the week does January 22 fall next year? What if
this year is a leap year?

Problems 189

6. Modify program GraphOfSquares so that it graphs the cubes of the numbers
from I to 10. Be sure to scale the heights of the bars so that the graph fits in
the Drawing window.

7. Write an interactive program in which you supply the coordinates of a point
in the Drawing window: horizontal then vertical. The program draws and
labels the point. For example, if you type in 50,50, it will respond with

•(50,50)

(Hint: To draw the point, use paintcircle with a small value for the radius.)

8. Write an interactive program that reads in the horizontal and vertical coor­
dinates of a point in the Drawing window and also the top, left, bottom,
and right values representing the borders of a rectangle. The program deter­
mines whether the point lies inside the rectangle and prints its answer in the
Text window.

9. Write an interactive program, similar to the one in Problem 8, that deter­
mines whether a point lies inside a circle. The circle should be represented
by three integers: the horizontal and vertical coordinates of the center and
the radius.

10. Write an interactive program that reads in the top, left, bottom, and right
values of a rectangle and yields as output the rectangle flipped over on its
right side. For example,

[1 D
(90,90) (90,90)

Input Output

190 Conditional Statements, Rectangles, and Bar Graphs

11. Write an interactive program that reads in the top, left, bottom, and right
values of a rectangle. Instead of drawing that rectangle, the program should
draw a square with the same area as the rectangle. The square should ap­
pear in the lower-left corner of the standard Drawing window. Make the
area of the square as close as possible to the area of the rectangle.

12. Are there any two-digit numbers that equal the sum of the squares of their
digits?

13. In what percentage of two-digit numbers does the sum of the squares of the
digits exceed the number?

14. Write an interactive program that reads in the coordinates of the center of a
circle and a radius. If the radius is less than or equal to zero, the program
tells you it has received a bad input. Otherwise it draws the outline of a cir­
cle, using the frameoval command.

15. Using the generate-and-test method, write a program that reads in a
positive integer and prints out all positive integers that evenly divide the one
you typed. (Hint: b divides a evenly if and only if (a mod b) = 0.)

16. Podunk Power and Light has a new rate schedule. Customers now pay the
life-line rate for the first 249 kilowatt hours, the low regular rate for the next
250 kilowatt hours, and the high rate on all additional power used. Modify
program ElectricBillTwo to handle this rate change. Idiot-proof your pro­
gram so that if a negative number is typed, the program responds with "Bad
input-start over."

Solving
rocedures

We have come to the most important chapter in the book. Here you'll learn
about a method for attacking any complicated problem without getting lost in
the details.

This method is called top-down programming. When you use it to solve a
big problem, you divide the problem into small, easy-to-code pieces. Then you
deal with each piece separately. This "divide and conquer" strategy relies on
Pascal's all important procedure command.

We've seen procedure commands before-the standard procedures such as
writeln, paintcircle, and drawline. These instructions are built into MacPascal,
and each does some special job. Now we are going to show you how to write your
own procedures. From here on, when we say procedure we mean the kind you
make up yourself. We'll refer to the built-in procedures as standard procedures.

___ 6.1 Creating Your Own Procedures ____________ _

Like a standard procedure, any procedure you make up yourself does some spe­
cial job. Let's consider a simple example of how procedures work. Suppose we
want to write a program that prints out the first verse of "Old MacDonald." We
can create a procedure called Refrain that will print out the refrain. Wherever
the word Refrain appears in the body of the program, the program will print
"Ei , ei, o."

program OldMac;
{PRINTS THE FIRST VERSE OF OLDMACDONALDJ

{THE PROCEDURE DECLARATION}
procedure Refrain;
begin
writeln('Ei, ei, o. ')

end; (continued)

191

192 Problem Solving with Procedures

{THE BODY OF THE PROGRAM}
begin
writeln('Old MacDonald had a farm,');
Refrain; {THE PROCEDURE STATEMENT}
writeln('And on that farm he had some pigs,');
Refrain {THE PROCEDURE STATEMENT}

end.

Like all procedures, procedure Refrain has two parts: a procedure declara­
tion and a procedure statement. The procedure declaration comes in the declara­
tion part of the program between the variable declarations and the body. The
declaration looks almost like a program: It has a heading line followed by a
body. The body of a procedure declaration consists of a statement or a series of
statements sandwiched between a begin and an end.

The procedure statement is simply the name of the procedure, Refrain.
When the statement Refrain is executed in the body of the program, it com­
mands the computer to follow the instruction in the procedure declaration.

__ 6.2 Executing Procedure Refrain ____________ _

When you run program OldMac, Pascal first takes note of the declaration for
procedure Refrain. Then it goes to the body of the program and executes the first
writeln statement, printing

Old MacDonald had a farm,

Next comes the procedure statement Refrain. This statement tells the computer
to follow the instructions listed in the procedure declaration. So it prints out

Ei, ei, o.

Now the computer returns to the body of the program and executes the next
statement, printing

And on that farm he had some pigs,

Another Refrain statement is next. Once again the Macintosh jumps to the
declaration for Refrain, printing out

Ei, ei, o.

Finally the Macintosh returns to the main program. There are no more in­
structions, so execution ends.

If you type in program OldMac and step it, you can see how the Macintosh
executes the procedure statement. The stepper hand jumps to the declaration
portion of the program when the computer is carrying out the instructions for the
procedure.

6.3 Program SquashedGlobe 193

When the computer executes the instructions in a procedure declaration, we
say it is doing a procedure call. The main program calls the procedure to do the
job that the procedure is dedicated to. When the procedure call is finished, the
computer goes on to the next instruction in the main program. This is called a re­
turn from the procedure call.

You can think of the main program as a general contractor who is building a
house and calls up a carpenter to do the carpentry work. The procedure is like
the carpentry work. And the instructions in the procedure are like the specific
steps the carpenter follows . When the carpentry work is finished, the contractor
calls another worker to do some other special job.

__ 6.3 Program SquashedGlobe-------------­
Next let's look at a more ambitious program called program Squashed Globe that
uses three procedures to draw the flattened globe shown in Figure 6.1. Here's a
tip on how to read programs with procedures: Always read the body of the main
program first. It will tell you about the program as a whole. Once you under­
stand what the big pieces of the program do, you can go back and look at the de­
tails of the procedures.

l1D Drawing

Equator

Figure 6.1 The output of program SquashedGlobe.

194 Problem Solving with Procedures

Learning to read programs is an important skill. Don't sell it short! The best
programmers learn a lot from reading other people's programs.

program SquashedGlobe;

procedure DpawLati tude1ines ;.
{DRAWS THE HORIZONTAL LINES}
const
LatitudeSpread = 15;
Left = 100;
Right = 400;

var
Top,Bottom : integer;

{BODY OF PROCEDURE}
begin

Top := 50;
Bottom := 250;
repeat
frameoval(Top,Left,Bottom,Right);
Top := Top + LatitudeSpread;
Bottom := Bottom - LatitudeSpread

until (Top)= Bottom)
end;

procedure DrawLongi tu.deLines;
!DRAWS THE VERTICAL LINES}
const
LongitudeSpread = 15;
Top '." 50;
Bottom = 250;

var
Left,Right : integer;

{BODY OF PROCEDURE}
begin
Left := 100;
Right; := 400;
repeat

frameoval(Top,Left,Bottom,Right);
Left := Left + LongitudeSpread~
Right := Right - LongitudeSpread

until (Left >= Right;)~
end;

procedure DrawEquator; : : .
{DRAWS STRAIGHT HORIZONTAL LI$}
begin
drawline(!00,150,400,150);
move to (JO, 150) ;
writedraw(1Equator 1)

end;

{MAIN PROGRAM}
begin
DrawLatitudeLines;
DrawLongitudeLines;
DrawEquator

end.

6.3 Program SquashedGlobe 195

The main program tells a great deal about what program SquashedGlobe
does. It draws the horizontal latitude lines, then the vertical longitude lines, then
the equator line with its label. These three actions form the flattened globe in the
Drawing window.

When you run program SquashedGlobe, execution begins in the main pro­
gram. First comes a call to procedure DrawLatitudeLines. The computer jumps
to the declaration for this procedure and carries out the instructions listed there.
When it comes to a constant such as Left or to a variable such as Top, it uses the
value it finds inside the procedure. Because they are declared inside the proce­
dure, Left is called a local constant and Top is called a local variable.

When execution of DrawLatitudeLines is complete, the computer returns
to the main program and executes the next instruction, which is the procedure
statement DrawLongitudeLines. Again the computer jumps to the declaration
part of the program-this time to the declaration for DrawLongitudeLines. It
follows these instructions, drawing the vertical lines on the globe, and then re­
turns to the main program.

Finally, procedure DrawEquator is executed. The computer jumps one
more time to the declaration part, executes the instructions that add the equator
line and its label, and then returns to the main part, where program execution
ends.

Procedure Syntax
Procedure syntax and program syntax are practically the same. Procedure
DrawLatitudeLines, for example, starts with a heading line, includes a declara­
tion part, and has a body that's surrounded by a begin-end pair. The declaration
has its own constants and variables, and the body includes a loop.

So far we have seen just two differences between procedure syntax and pro­
gram syntax. A procedure heading line starts with the word procedure instead of
the word program, and procedures end with a semicolon instead of a period.

196 Problem Solving with Procedures

This brings us to an important point. A procedure is a self-contained unit.
Constants and variables that are declared locally can be used only in the in­
structions within that procedure. In program SquashedGlobe, procedure
DrawLatitudeLines and procedure DrawLongitudeLines seem to have con­
flicting declarations: Top is a variable in DrawLatitudeLines and a constant in
DrawLongitudeLines. But there is no conflict. The constants and variables
declared in DrawLatitudeLines are inaccessible to instructions in DrawLongi­
tudeLines, and vice versa. No instruction in the main program can include them,
either.

__ 6.4 Flexible Procedures-Procedures with Parameters _____ _
The procedure DrawLatitudeLines has one job: drawing the latitude lines in a
picture of a squashed globe. But a procedure does not have to be limited to a sin­
gle job. We can invent a procedure that is flexible-a procedure with a parame­
ter. A parameter is like an input variable in an interactive program. For each
value of the parameter, the procedure does a somewhat different job.

Program Horizontallines
To show how parameters work, let's invent a procedure called DrawHLine that
can draw any horizontal line across the Drawing window. When procedure
DrawHLine appears in the body of a program, it must be followed by a number
or expression that stands for the vertical position of the line. This number is the
parameter for DrawHLine. The procedure statement

DrawHLine(lOO)

draws a line at height 100.
Program HorizontalLines includes the declaration for DrawHLine and two

DrawHLine procedure calls. When you run it, you get the output shown in Fig­
ure 6.2.

program HorizontalLines;

{THE PROCEDURE DECLARATION!
procedure DrawHLine(Height : integer);
begin
drawline(O,H~ight,200,Height)

end; ·

{THE BOD.Y OF THE PROGRAM l
begin
DrawHLine(lOO);
DrawHLine(lJO)

end.

6.4 Flexible Procedures-Procedures with Parameters 197

~D Drawing

Q]

Figure 6.2 Output for program Horizontal lines.

The heading line for the procedure

procedure DrawHLine(Height : integer);

names the procedure and then lists the procedure's formal parameter, Height,
along with its type. A formal parameter is sometimes called a dummy parame­
ter, because it is simply a place-holder inside the declaration. It does nothing
until a procedure call gives, or passes, a value to take its place. Height holds two
places in the body of the procedure. Both places are in the drawline statement:

drawline(O,Height,200,Height)

The procedure statement in the body of the program,

DrawHLine(lOO)

passes the value 100 to the procedure declaration. This value is called the actual
parameter.

When the statement

DrawHLine(lOO)

is executed, the procedure call first assigns the value 100 to Height. So the
drawline statement in the procedure,

drawline(O,Height,200,Height)

is executed as though it looked like

drawline(0,100,200,100)

198 Problem Solving with Procedures

The type of the actual parameter must match the type declaration of the for­
mal parameter given in the heading line. The heading line for DrawHLine,

procedure DrawHLine(Height : integer);

dictates that the quantity passed to Height must be an integer. The procedure
statement

DrawHLine(98.6)

won't work. You'll get an error message if you try it.

Program HorizontallinesTwo
Once you've included a procedure declaration in a program, the procedure state­
ment can be used in the main program like any other statement. Program
HorizontalLinesTwo uses DrawHLine in a while loop to fill the standard Draw­
ing window with horizontal lines 10 units apart (see Figure 6.3).

program HorizontalLinesTwo;
{FILLS DRAWING WINDOW WITH HORIZONTAL LINES 10 UNITS APART.I
const
Separation 10;

var
LineHeight integer;

{THE PROCEDURE DECLARATION}
,!1,prawHLine(He' ,

{THE BODY OF THE PROGRAM}
begin
LineHeight := O;
while (LineHeight (200) do
begin
PrawHLinef:LirJ.~He~@~); {THE PROCEDURE STATEMENT}
LineHeight .- LineHeight + Separation

end
end.

Program HorizontalLinesTwo contains a new idea: The actual parameter
in the procedure call is a variable, not simply a fixed integer value.

When the computer executes the procedure call

DrawHLine(LineHeight);

it assigns the value of the actual parameter LineHeight to the formal parameter
Height. Then it does the instruction in the body of the procedure. Each time the

6.4 Flexible Procedures-Procedures with Parameters 199

~D Drnwing

~

Figure 6.3 Output for program HorizontallinesTwo.

procedure is called, the value of LineHeight is greater by 10, and a line is drawn
10 units farther down in the Drawing window.

Don't confuse the formal parameter Height with the variable LineHeight.
LineHeight is the actual parameter for DrawHLine in this program. When the
procedure is called, the value of the actual parameter LineHeight gets assigned
to the .formal parameter Height.

The program uses separate locations or cells in memory for the values of
Height and LineHeight. When DrawHLlne is called, the vaiµe of the actual pa­
rameter LineHeight is copied into the cell assigned to the formal parameter
Height (see Figure 6.4).

DrawHLine DrawHLine

D D D []
LineHeight Height LineHeight Height

(a) (b)

Figure 6.4 The actual and formal parameters for procedure brawHLine (a) just after the
procedure ca ll is made and (b) just before the return from the procedure call.

200 Problem Solving with Procedures

Suppose you make this procedure call:

DrawHLine(LineHeight + 1)

This will work fine. Now the actual parameter is a complex expression,
LineHeight + 1, not simply a variable. If the value of LineHeight is 0, the value
of LineHeight + 1 is 1, and this is the value the computer copies into Height's cell
in memory.

When you write a program, you can give the formal parameter the same
name that you give the variable used as the actual parameter. You can also give
them similar names, as we did here, or you can give them names that are
completely different from each other. In this book we will generally use names
that are similar, in order to remind you that one is a formal parameter and that
the other is a variable used as the actual parameter.

EXERCISE 1 a. What does program Lines do?

program Lines;
const
Separation 10;

var
LineHeight integer;

{THE PROCEDURE DECLARATION}
procedure DrawSLine(Height : integer);
begin
· drawline(O,Height,200,Height - 2q)
end;

{THE BODY OF THE PROGRAM}
begin

LineHeight := O;
while (LineHeight (= 200) do
begin
DrawSLine(LineHeight);
LineHeight .- LineHeight + Separat ion

end
end .

b. What would program Lines do if the drawline instruction in procedure
DrawSLine looked like this?

drawline(O,Height,100,Height - 200) ..

6.4 Flexible Procedures-Procedures with Parameters 201

Procedure DrawVLine
Now let's invent a companion procedure for DrawHLine called DrawVLine,
which draws vertical lines. Here is the declaration for procedure DrawVLine:

procedure DrawVLine(HDistance : integer);
begin

drawline(HDistance,O,HDistance,200)
end;

The formal parameter, HDistance, determines the distance from the line to the
left wall of the Drawing window. Using this declaration, the procedure
statement

DrawVLine(lOO)

will draw a vertical line 100 units from the left wall of the window.

Program Grid-a Program with Two Procedures
We can put DrawHLine and DrawVLine together in a program that draws
grids in the standard Drawing window. Program Grid draws a grid of horizontal
and vertical lines. It allows you to determine the spacing between the lines in the
grid.

program Grid;
{YOU SPECIFY THE SPACING BETWEEN THE HORIZONTAL LINES}
{AND BETWEEN THE VERTICAL LINES. PROGRAM DRAWS A GRID.}
var
Position,HSpacing,VSpacing : integer;

~I'()~e~µz'e .. · Dra'V{H~:fm. : integer }j
begin
drawline(O,Height,200,tleight)

end;

procedure DrawVLine(HDistance : integer);
begin

drawline (HDistance, O:tH@istance, 200)
end;

{MAIN PROGRAM}
begin
writeln('Type in horizontal and vertical spacing between lines.');
readln(HSpacing,VSpacing);

(continued)

202 Problem Solving with Procedures

{DRAWS HORIZONTAL LINES l
Position := 0;
while (Position (= 200) do
begin
DrawHLine(Position);
Position . - Position + HSpacing

end;

{DRAWS VERTICAL LINES}
Position := O;
while (Position (= 200) do
begin
DrawVLine(Position);
Position .- Position+ VSpacing

end
end .

Program Grid has two loops. One uses procedure DrawHLine to draw the
horizontal lines. The other uses procedure DrawVLine to draw the vertical lines .
The variables HSpacing and VSpacing determine the spacing between the lines.
Position is the control variable used to increment each loop, and it is also the
actual parameter in both procedure calls .

When you type in a value of 10 for HSpacing and a value of 40 for
VSp;icing, this is what happens: The first time DrawHLine is executed, the value
of the actual parameter, :Position, is 0, and a line is drawn along the top of the

§0 Drawing

1'21

Figure 6.5 Output for program Grid.

6.5 Procedures with Several Parameters 203

window. Then Position is incremented by 10, and a line is drawn 10 units down.
Each successive line is drawn 10 units lower than the line before.

After the first loop is over, Position is re-initialized to zero and the same pro­
cess happens for DrawVLine. The first vertical line is drawn at the left wall, and
each successive line is drawn 40 units over (see Figure 6.5).

--6.5 Procedures with Several Parameters -----------
Just as an interactive program can have any number of input variables, a Pascal
procedure can have any number of parameters. These parameters can be of dif­
ferent types. To see how this works, let's look at some procedures with several
parameters.

Program ElectricBill

We've modified program ElectricBill from Chapter 5 so that you can now enter
the electric rates interactively. The program uses a procedure called CalcCost to
calculate the cost of electricity. It has three parameters, one of type integer and
two of type real.

program NewElectricBill;
{YOU READ IN THE RATES AND THE KILOWATT HOURS USED. I
{PROGRAM CALCULATES THE BILL.}
var
LifeLineRate,RegRate : real;
KWHUsed : integer;

procedure CalcCost(LifeLine,Reg real;
KWH : integer);

const
LifeLineCutOff = 250; {LOCAL CONSTANT}

var
Cost : real; {LOCAL VARIABLE}

begin
if (KWH (LifeLineCutOff) then
Cost .- LifeLine * KWH

else
Cost .- Reg* KWH;

writeln('Your electric bill is$' ,Cost 5 2)
end;

{BODY OF THE PROGRAM }
begin
writeln('Type in lifeline rate, regular rate, and KWH used.');
readln(LifeLineRate,RegRate,KWHUsed);
CalcCost(LifeLineRate,RegRate,KWHUsed)

end .

204 Problem Solving with Procedures

Procedure CalcCost has a parameter list-that is, a list of the formal param­
eters, along with their types. The syntax for declaring parameters of different
types is the same as the syntax for declaring variables of different types in a pro­
gram: Parameters of the same type may be grouped together, separated by com­
mas. A semicolon separates declarations for parameters of different types.

Note that once again we have called the formal parameters and the actual
parameters by similar but different names. Remember: Only the values of the
actual parameters matter to the procedure. The names we choose make no dif­
ference.

The actual parameters in a procedure call are matched with the formal pa­
rameters in the formal parameter list by position:

procedure CalcCost(LifeLine,Reg : real;KWH : integer);

/ / /
CalcCost(LifeLineRate,RegRate,KWHUsed);

If the call to CalcCost had listed the actual parameters this way:

CalcCost{RegRate,LifeLineRate,KWHUsedl ;

the program would have run to completion, but it would have given the wrong
answer. The formal parameter LifeLine would have been assigned the value of
RegRate, and Reg would have been assigned the value of LifeLineRate. With
this mix-up in the actual parameters, Podunk Power and Light would charge a
lower rate for people who waste electricity!

On the other hand, if the call had been made this way:

CalcCost(LifeLineRate,KWHUsed,RegRate)

the program wouldn't have run at all, because the formal and actual parameters
don't match up by type.

Procedure Flicker
Here is another example of a procedure with several parameters: procedure
Flicker. Procedure Flicker is quite versatile. You can use it in any program in
which you want a ball to flicker and roll across the screen. Procedure Flicker
paints and then inverts a circle of fixed radius at any point on the Drawing
window.

program RollBall;
{ROLLS A BALL ACROSS THE DRAWING WINDOW}
var
Position : integer;

6.5 Procedures with Several Parameters 205

procedure Flicker(Horizontal,Vertical integer);
const
Radius = 20;

begin
paintcircle(Horizontal,Vertical,Radius);
invertcircle(Horizontal,Vertical,Radius)

end;

{BODY OF THE PROGRAM)
begin
for Position := 20 to 180 do
Flicker(Position,80)

end.

Here we have used procedure Flicker in a program called RollBall, which
rolls a ball horizontally across the Drawing window. To show how useful proce­
dure Flicker is , we'll make several changes in the body of program RollBall to
produce a number of different cartoons.

First, suppose we substitute this for statement for the body of program
RollBall:

for Position := 20 to 180 do
Flicker(Position,Position) ;

If we run the program, we will get the ball to roll like this:

/
/

/
/

206 Problem Solving with Procedures

Now suppose we add two new variables, HPosition and VPosition, and re­
place the body of program RollBall with this code:

begin
HPosition := O;
VPosition := 100;
while (HPosition (= 200) do
begin

Flicker(HPosition,VPosition);
HPosition .- HPosition + 1;
VPosition .- 100 + (HPosition div 2)

end
end.

We will get a ball rolling downhill . It starts at the point (0,100) and ends at
the point (200,200). For every 2 units the ball rolls horizontally, it drops 1 unit
vertically.

EXERCISE 2 a. Change the body of program RollBall so that it makes the ball roll down
the left wall.

b. Change the body of program RollBall so that it makes the ball roll along
the top wall, left to right. -

In procedure Flicker, Radius is a constant. We can create a procedure that's
more flexible than Flicker, however, by making Radius a third formal parame­
ter. This procedure, which we'll call BigFlicker, will make a circle of any radius
flicker anywhere in the Drawing window. Here is the declaration for our new
procedure.

procedure BigFlicker(Horizontal,Vertical,Radius : i nteger);
begin
paintcircle(Horizontal,Vertical,Radius);
invertcircle(Horizontal,Vertical,Radius)

end;

If we use BigFlicker to rewrite program Planetln3D from Chapter 2, the
body of the program becomes

for Position := 0 to 200 do
BigFlicker(Position,Position,Position div 5);

for Position := 200 downto 0 do
BigFlicker(Position,Position,Position div 5)

6.6 Procedures and Program Planning 207

EXERCISE 3 Use procedure BigFlicker to write a
program that will make a planet move
like this:

-
---6.6 Procedures and Program Planning-----------­

We have now arrived at a key section of the book. Here we are going to show you
a method for tackling even the most complex problems by reducing them to a se­
ries of procedures. When you have mastered the next few pages, you will no
longer be a beginner!

This problem-solving technique is called top-down programming. When
you use it, along with Pascal's procedure instruction, you will be able to orga­
nize, and then solve, even the most mind-boggling programming problems.

Top·Down Programming

In top-down programming, you apply the "divide and conquer" method. That
is , you break a complicated problem into a number of smaller sub-problems. If a
sub-problem is especially complex, you solve it using a procedure.

When you do top-down programming, you concentrate first on the main
program , which is also called the top level of the program. You postpone work­
ing out the details of the procedures, which are considered lower-level parts of
the program. Coding the procedures is the last thing you do .

This approach helps you think clearly about the problem without getting
bogged down in the details. The top level of a well-written program should be
very simple. It might not be much more than a list of procedure statements like
the top level of program SquashedGlobe:

DrawLatitudeLines;
DrawLongitudeLines;
DrawEquator

Now let's use top-down design and the procedure command to solve a sam­
ple problem.

208 Problem Solving with Procedures

--6.7 The Thermometer Problem--------------
We want to write a program that converts a temperature given in degrees
Fahrenheit to its equivalent in degrees Celsius. The program will also print out a
picture of a thermometer. The height of the mercury will indicate the tempera­
ture, which is labeled in both scales . If you specify 32.0 degrees, for example, the
program should print the picture shown in Figure 6.6.

~D Orn wing

32.0 F 0.0 C

Figure 6.6 Typical output for program Thermometer.

Thinking

Let's brainstorm about how to solve this problem. The Fahrenheit-to-Celsius
conversion is easy. We will use the formula

C = 5/9 x (F - 32.0)

Here Fis the Fahrenheit temperature and C is the Celsius equivalent. The
following table gives some representative temperatures on both scales .

Degrees Degrees
Fahrenheit Celsius

32.0 0.0
212.0 100.0
-40.0 -40.0

98.6 37.0

6. 7 The Thermometer Problem 209

How do we lay out the picture? We can use framerect for the thermometer
tube, paintrect for the mercury, and paintcircle for the bulb.

We have to make some arbitrary decisions about the design of the thermom­
eter. Let's give the bulb a radius of 15 and put its center at the point (100,160).
The tube will be 10 units wide and will end 10 units from the top of the window
(see Figure 6.7).

15

Width= 10-.

-40F

Center= (100,160)

Radius= 15

Figure 6.7 The thermometer.

We must also decide how to handle the scale on the thermometer . Let's have
l degree Fahrenheit equal 1 vertical unit on the screen. And let's make the scale
start at the bottom of the tube where the temperature will read -40 degrees
Fahrenheit.

___________ DATA TABLE -----------

Input Variables

FTemp

Constants

none

Top-Down Planning

Output Variables

FTemp, CTemp

Formulas

C = 5/9 x (F - 32.0)

Program Variables

none

Loops

none

Now we will begin planning the program, keeping our plan simple at first.

210 Problem Solving with Procedures

Plan I
1. Read in the Fahrenheit temperature.
2. Calculate the Celsius equivalent.

3. Draw and label the thermometer.

We have divided our problem into three simpler su
two are easy. We can quickly convert them to Pascal cc
drawing and labeling the thermometer, is more complicat
hie if we try to code it directly. So our strategy will be to
handle this step.

When you name a procedure, it's a good idea to use
the action the procedure performs, such as DrawLatitud
the name DrawThermometer.

Now we come to the most important idea in the to­
method: We should not code DrawThermometer right a~
clarify what DrawThermometer is supposed to do and ttterr·gu 011 co-c.'Otle c .. v

body of the main program. When the top level has been completed, then we go
back and finish DrawThermometer.

To clarify a procedure, we do two things. We write the procedure heading
line, and we do a paper check to determine whether the heading we've come up
with is what we want.

How to Clarify Procedure DrawThermometer
Our first job is writing procedure DrawThermometer's heading line. This means
deciding on its parameter list. So we must ask ourselves the question "What
quantities does DrawThermometer depend on?" DrawThermometer is sup­
posed to draw and label a thermometer with a Fahrenheit temperature and its
Celsius equivalent, so these two quantities should be named in the parameter
list. Here is our proposed heading line:

procedure DrawThermometer(F,C : real);

A reminder: F and C are dummy parameters. Their names don't matter.
We could have named them FT and CT or FTemp and CTemp.

Next let's do a paper check to determine whether we are satisfied with this
choice of parameters. When we do a paper check, we draw a diagram or make a
table that shows what the procedure is supposed to do when the main program
passes it some typical parameters. On page 211 are diagrams for DrawTher­
mometer(72.0,22.2) and DrawThermometer(-40.0, -40.0).

The paper check is useful because it helps us find out whether we have
passed enough information to a procedure to get the answers we are looking for.
In the case of DrawThermometer, we seem to have succeeded. Now let'!! go back
to the top-level plan and finish the program at that level.

6.7 TheThermometerProblem 211

72.0 F 22.2 C

DrawThermometer (72.0,22.2) DrawThermometer(-40.4, -40.0)

Now that DrawThermometer has been clarified, the plan looks like this:

Plan II

1. Read the Fahrenheit temperature.

2. Calculate the Celsius equivalent.

3. DrawThermometer(FTemp,CTemp).

We can now go on and code the top level.

Coding the Top Level
Here is our code for the main program:

begin
writeln('Type in a Fahrenheit temperature -- a real number. 1);

readln(FTemp);
CTemp := 5/9 * (F - 32.0);
DrawThermometer(FTemp,CTemp)

end.

This completes the top level. Now we go back and complete DrawThermometer.

Planning and Coding DrawThermometer
Plan for DrawThermometer

1. Draw the tube.

2. Draw the bulb.

3. Calculate the height of the mercury and paint it.

4. Label the Fahrenheit temperature.

5. Label the Celsius temperature.

212 Problem Solving with Procedures

Calculating the height of the mercury is the only complicated part. One de­
gree Fahrenheit equals 1 unit of height. But, because we started the scale at
-40.0 degrees, the height doesn't equal the Fahrenheit temperature. We need to
add 40 to the Fahrenheit temperature to get the correct value for height.

The program reads in real numbers for Fahrenheit temperatures and prints
out real numbers for both scales on the thermometer. But the height of the mer­
cury must be an integer. So we must use the round function to calculate Height
from the Fahrenheit temperature.

Now we can code procedure DrawThermometer and put the program to-
gether. Here is the complete program:

program Thermometer;
{YOU TYPE IN THE TEMPERATURE IN DEGREES FAHRENHEIT. THE PROGRAM DRAWS Al
{THERMOMETER AND LABELS TEMPERATURE IN FAHRENHEIT AND IN CELSIUS.I
var

FTemp,CTemp : real;

procedure DrawThermometer (F,C : real);
Val:'
H~ight/Top : · £nteget; lto~AL vAi:{•t.ABLES'~'

begin

lp~W T~~}. <• .. ·. .•·•·····•···••·· frrunerect(10,98,160,io5);
{DRAW BULB}
pat~tcirGle (1o'q,170,.:{5);
{RQUND OFF F TEMP ANI)CALCULATE HEIGHT.OF MERCURY}
Height := round(F) +40;
!DRAW MERCURY}
Tqp.:= 1.60 - H~ight;J160 IS BOTTOM OF TUBE.}
if• (Top } 160) 'then •· ··. >•'• ·· · .. i. . .·· ·.~··
Top : = 160; {KEEP LABELS . FROM GOING TOO rnW'i

P~tptre9~(Top r~5, ~69,105) i.
{LABEL TEMPERATURE IN FAHRENHEIT}
moveto(JO,Top);
W"~ttedr~W"(F : 4): 1, 'F');
fLABEL TEMPERATURE IN CELSIUS}
moveto (1JO, Top) ;
WrftedraW(C ; 4 ; 1, IC I)

end;

!BODY OF PROGRAM}
begin
writeln('Type in a Fahrenheit temperature -- a real number.');
readln(FTemp);
CTemp := 5 I 9 * (FTemp - 32.0);
D:r;:aw':l'her(llollleter(FTemp, CTemp)

end.

6. 7 The Thermometer Problem 213

When you run program Thermometer, you type in FTemp and the program
calculates CTemp. Then the main program passes to procedure DrawThermom­
eter the values of the actual parameters FTemp and CTemp. Finally the proce­
dure draws and labels the thermometer. The if-then statement in the procedure
guarantees that, when the temperature falls below - 40F, the labels will be even
with the bottom of the tube.

Testing and Debugging Program Thermometer

To test program Thermometer, try running it on a variety of temperatures.
What happens when you type in a high temperature? You've got a problem. The
mercl.lry zips up too far, goes right out of the thermometer, and hits the.top of the
window. How would you fix this bug? Hint: Use a conditional statement like the
one that keeps the labels from going too low.

EXERCISE 4 Fix program Thermometer so that the mercury remains in the thermometer
tube even at very high temperatures. -

The Structure of Program Thermometer

Let's look at the structure of program Thermometer from a different angle. Here
is a diagram that shows how we handled the problem.

TOP LEVEL

I Read F I I CalculateC I [DrawThermometerJ

j
LOWER LEVEL

I Draw Tube I I Draw Bulb I loraw Mercury ! J LabelF I I LabelC I

At the very top we divided the program into three pieces. The first two
pieces were easy to convert to code, and we did this directly. The last part was
harder. We specified what procedure DrawThermometer was supposed to do,
but we did not code it until we had finished coding the top level. Then we
descended to the next level, where we planned and then coded the five separate
pieces of procedure DrawThermometer. This is top-down programming.

214 Problem Solving with Procedures

Procedure DrawThermometer, like procedure CalcCost in program New­
ElectricBill, has its own private or local variables, Height and Top. Because
Height and Top are declared inside the procedure, they make sense only for in­
structions inside the procedure. You would get an error if you referred to Top or
Height in the body of the program.

--6.8 Creating a Checkerboard -------------­
Let's work through another top-down programming example. This time let's
write a program that creates in the Drawing window a checkerboard like the one
shown in Figure 6.8 . First we'll paint a series of black horizontal stripes, using
paintrect commands alternating with framerect commands. Then we'll paint a
series of vertical stripes, using invertrect and framerect.

Figure 6.8 Typical output for program Checkerboard .

Superimposing the inverted stripes over the painted stripes creates the
checkerboard effect. Invertrect turns to black the white horizontal stripes it
crosses, while turning the black stripes it crosses to white. We'll make the pro­
gram interactive so we can read in any number of stripes. This problem is harder
than it looks, so we must plan carefully.

6.8 Creating a Checkerboard 215

Thinking

What really happens in this program? First we read in the total number of black
and white stripes. There will be an equal number of horizontal and vertical ones,
because the standard Drawing window is square. The program calculates how
wide to make each stripe. Then the first loop alternately paints and outlines a se­
ries of rectangles to create the horizontal stripes. For example, if we read in five
stripes, the first loop will draw this picture:

Next the second loop uses invertrect and framerect to create the vertical
stripes. When invertrect is used, it reverses the colors of the stripes it crosses, and
we get our checkerboard.

Because the·number of horizontal stripes and the number of vertical stripes
are the same, we need only one variable for the number of stripes. Let's call it
NumOfStripes. We won't need any output variables, because our output is a
drawing.

But we will need a program variable for the width of the stripes, which we'll
call Stripe Width. We can determine Stripe Width by dividing the size of the win­
dow by the number of stripes. So we'll need this formula:

StripeWidth = window size div NumOfStripes

While we're at it, let's make WindowSize a constant.
From this information we can create our data table:

----------DATA TABLE ---------­

Input Variables

NumOfStripes

Program Variables

Stripe Width

Formulas

Output Variables

picture

Loops

Constants

WindowSize = 200

one to draw the horizontal stripes
one to draw the vertical stripes

StripeWidth = WindowSize div NumOfStripes

216 Problem Solving with Procedures

Planning

Now we know enough to do a rough first plan.

Plan I
1. Type in the number of stripes.

2. Calculate the width of the stripes.

3. Draw the horizontal stripes .

4. Draw the vertical stripes.

Step 1 is easy. In step 2, we can calculate the width of the stripes, using the
formula

StripeWidth = WindowSize div NumOfStripes

So both of these steps can be coded without difficulty-a task we'll put off for the
time being.

Steps 3 and 4 (drawing the stripes) are the hard parts. So let's make each of
these steps into a procedure and call them DrawHStripes and DrawVStripes.
This will make the top level of our program very simple. It will look a lot like
Plan I.

Our next step is to clarify what procedure DrawHStripes and procedure
DrawVStripes are supposed to do. We must propose heading lines for the two
procedures and then do paper checks to determine whether they will behave
properly.

Clarifying Procedure DrawHStripes

To clarify DrawHStripes we must first determine the quantities that
DrawHStripes depends on. To draw any particular stripe, we must have values
for its top, left, bottom, and right boundaries. In this procedure, the left and
right boundaries are constant; they are the left and right boundaries of the
Drawing window.

{ !
1 x Thickness

Thickness

1--~~~~~~~4

2 x Thickness 3 x Thickness

6.8 Creating a Checkerboard 217

The bottom of the first (or highest) stripe has a value equal to the thickness ·
of one stripe. The bottom of the second stripe has a value equal to twice the thick­
ness of one stripe. Similarly, the bottom of each additional stripe is a multiple of
the stripe thickness. And the top of each stripe is the bottom of the stripe above it.
So the data that the procedure needs, in order to draw all the stripes in its loop,
are

1. The thickness, or Width, of a stripe

2. The number of stripes to be drawn, or StripeCount

And so we propose this heading line for DrawHStripes:

procedure DrawHStripes(Width,StripeCount : integer);

Let's do a paper check to find out whether these two quantities are sufficient,
given that the left and right boundaries of the rectangle are the left and right
sides of the window.

DrawHStripes (20, 10) DrawHStripes (25,8) DrawHStripes (50,2)

EXERCISE 5 Sketch what you think procedure DrawHStripes(45,4) will do. -

Here's something peculiar . The first two examples we've drawn fit the prob­
lem: They completely fill the window with stripes. The third paper check, how­
ever, fills only about half of the window. Does this irregularity make procedure
DrawHStripes incorrect? Not at all. It simply means that the procedure is capa­
ble of drawing other patterns beside the ones that the main program will call for.

The main part of the program does the job of stripe bookkeeping-reading
in the number of stripes needed and figuring out how wide each should be to fill
the window. And procedure DrawHStripes does the job of drawing the
stripes-any number of them; of any thickness.

· This is the "divide and conquer" method in action: One tough job has been
split into two easy ones-a bookkeeping job and a stripe-drawing job.

218 Problem Solving with Procedures

Clarifying Procedure DrawVStripes
DrawVStripes can be clarified by the same reasoning we used for DrawHStripes.
DrawVStripes, too, depends on the width of a stripe and on the number of
stripes, so we get this heading line, which has the same parameters as
DrawHStripes:

procedure DrawVStripes(Width,StripeCount : integer);

And here are some examples of a DrawVStripes paper check.

DrawVStripes (40,5) DrawVStripes (25,8) DrawVStripes (50,2)

Because we have done our paper check against an all-white background,
our diagrams for procedure DrawVStripes are misleading. In the actual pro­
gram, DrawVStripes draws stripes, using invertrect, against the background
prepared by DrawHStripes. When the vertical stripes are drawn, they reverse
the background pattern, and we get our checkerboard.

Coding the Top Level

Now that we understand the procedures and have written their heading lines,
we can code the top level of the program:

begin
writeln('How many stripes do you want?');
readln(NumOfStripes) ;
Width := WindowSize div NumOfStripes;
DrawHStripes(StripeWidth,NumOfStripes);
DrawVStripes(StripeWidth,NumOfStripes)

end. ·

We can now go on to tackle the procedures.

6.8 CreatingaCheckerboard 219

Thinking, Planning, and Coding Procedure DrawHStripes
Thinking
What exactly will procedure DrawHStripes do? It will alternately paint a rect­
angle and then frame a blank rectangle until it has drawn NumOfStripes num­
ber of rectangles. We want DrawHStripes to draw a series of stripes, so it will
need a loop.

DrawHStripes receives as input the parameters in its parameter list: Width
and StripeCount. These are its input data. It needs a control variable to keep
track of which stripe it is drawing. Let's call this control variable CurrentStripe.

Planning
Now we can start sketching out the loop for drawing the stripes. Here is a first
plan. (Look back at program Grid and see how similar this loop is to the while
loop we used there.)

Plan I

while (CurrentStripe < = StripeCount) do
begin

draw a stripe
increment CurrentStripe

end

Now we come to something a bit tricky-how to get the loop to paint a
stripe and then frame a stripe. We can distinguish between the painted stripes
and the blanks by using the standard function odd. If CurrentStripe is odd, a
paintrect command will paint a rectangle across the screen. For the even stripes,
a framerect instruction will leave the rectangle white.

Plan II
while (CurrentStripe (= StripeCount) do

begin
if odd(CurrentStripe) then paint a stripe
else frame a stripe
increment CurrentStripe

end

Before we move on to the coding phase, we should think through what
paintrect andjramer.ect need in order to do their jobs. They need values for the
top, left, bottom, and right sides of a rectangle. Left and right are constant, so
we will define them as constants inside the procedure. Top and bottom vary with
each stripe, so we will declare them as variables within the procedure. We can
get the value of Bottom by multiplying CurrentStripe by Width. And we can get
the value of Top by subtracting Width from Bottom.

220 Problem Solving with Procedures

Coding DrawHStripes
Knowing all this, we can begin to code. As always, it is important to remember
to initialize the variables.

procedure DrawHStripes(Width,StripeCount : integer);
const
Left = O;
Right = 200;

var
CurrentStripe,Top,Bottom integer;

begin
CurrentStripe := 1;
while (CurrentStripe (= StripeCount) do
begin
Bottom := CurrentStripe * Width;
Top := Bottom - Width;
if odd(CurrentStripe) then
paintrect(Top,Left,Bottom,Right)

else
framerect(Top,Left,Bottom,Right);

CurrentStripe .- CurrentStripe + 1
end

end;

Procedure DrawVStripes
Procedure DrawVStripes is like procedure DrawHStripes, with this important
difference: To create the alternating black and white squares, it uses invertrect
instead of paintrect. Also Top and Bottom are constants here instead of Left and
Right. The local variable Right equals CurrentStripe times Width. And the vari­
able Left equals Right minus Width. The variables and constants in procedure
DrawVStripes are completely independent of the variables and constants in
DrawHStripes and are not affected by them.

Here is the complete program:

program Checkerboard;
canst
WindowSize = 200;

var
NumOfStripes,Width : integer;

procedure DrawHStripes(Width,StripeCount integer);
canst
Left = O;
Right = 200;

6.8 Creating a Checkerboard 221

var
.. · . CµrrentStripe, Top, Bottom integer;
begi'.ri · · ·
,Qurrentptripe : = 1;
while (CurrentStripe <= StripeCount) do
·beglli··.:.

Bottom .. : = Cur.rentStripe * Widtn;
TCip . Bottom - wiathf ...
. JI' .o~~ (Gµr;ren;tStripe) then

;}la:intrect (Top, Left ,Bottom, Right)
else
framerect(Top,Left,Bottom,Right);

CurrentStripe . - CurrentStripe '+ 1 ·
end

end;

procedure DrawVStripes(Width,StripeCount integer);
const

Top = O;
Bottom = 200;

var ... ·
Curr$n~Strfpe,Left,Right integer;

l:?.~g¥1 ... i
·currentStripe := 1;
wtl,ile. (C,urrentS.tripe <<= StripeCoi!nt) .. d9
. begll>. .· ·

Right .: = CurrentStripe· * Width;
Left := Right - Width;
if. odd(CurrentStripe) then··
invertrect(Top,Left,Bottom,Right)

eise
frame:rect(Top,Left,Bottom,Rignt);

CurrentStripe := CurrentStripe + 1
end

end;

{MAIN PROGRAM)
begin
writeln('How many stripes do you want?');
readln(NumOfStripes);
Width := WindowSize div NumOfStripes;
DrawHStripes(Width,NumOfStripes);

·orawV'Stripes(Widtb,NumOfStripes)
end.

222 Problem Solving with Procedures

Testing and Debugging
Now try running program Checkerboard, reading in three or four stripes. The
program draws a fairly symmetrical checkerboard. But when you read in a larger
figure for the number of stripes, the picture is distorted. This happens because the
black line around the white stripes takes up proportionally more of the white
space as the white stripes get smaller. You can correct this distortion by making
the white stripes completely blank instead of creating them usingframerect.

EXERCISE 6 How would you alter procedure DrawHStripes and proci:idure
DrawVStripes so that the white stripes are blank instead of being out-
lined? -

That was a challenging program! But it is an important one to master. You
should read and reread it until you are sure you understand it . Remember: The
whole point of top-down programming is to give you a framework for
transforming one complicated problem into several easy ones. That is what we
did here. Pascal's procedure instruction enabled us to program the pieces of the
problem separately and then put them together into a single working program.

___ TEST YOURSELF---------------
1. What is a procedure call?

2. What is a formal parameter?

3. What is an actual parameter?

4. What is the top level of a program?

5. What is a local variable?

6. What part of a complex program should you read first?

7. Why is a formal parameter called a dummy?

8. What happens when program execution returns from a procedure call?

9. How does the syntax of a procedure differ from the syntax of a program?

10. How do you clarify a procedure?

___ PROBLEMS _________________ _

1. Using a procedure, write a program that prints the verse of the Hokey Pokey
given on page 64 of Chapter 2.

2. Create your own drawline procedure from scratch, using the moveto and
lineto instructions. (See Problem 6 in Chapter 3.) Call this procedure

Problems 223

DrawLineTwo. DrawLineTwo(a,b,c,d) should draw a line from the point
(a,b) to the point (c,d), where a, b, c, and d are integers. Use procedure
DrawLineTwo in a program that draws a tic-tac-toe board in the standard
Drawing window.

3. Use the frameoval instruction to create a procedure called FrameCircle.
The command FrameCircle(H, V ,Radius) should draw the outline of a cir­
cle with its center at the point (H, V) and its radius equal to Radius. Use
FrameCircle in a program that draws this picture:

4. Write an interactive program that divides the Drawing window into verti­
cal "cells." Use a procedure called VertDivide, which has the heading line

procedure VertDivide(Cells : integer);

Procedure VertDivide divides the standard Drawing window into Cells
number of cells:

VertDivide(2) VertDivide(6)

When Cells ~ 1, the program should leave the Drawing window empty.

5. Rewrite program CircleOrbit from Chapter 4, using procedure Flicker.

6. Rewrite program Yo Yo from Chapter 3, using procedure Flicker.

7. Rewrite program Targets from Chapter 4, using a procedure called
DrawTarget with parameters HCenter, VCenter, StartRadius,
Sizelncrease, and CircleCount.

224 Problem Solving with Procedures

8. Using procedure Flicker, write a program called
PerimeterRoll that rolls a ball all around the pe­
rimeter of the Drawing window.

9. Modify program Grid so that it draws a picture
like the one at the right.

10. Using procedures, write program OneBounce, which makes the following
cartoon appear in the Drawing window:
a. A ball falls down the center of the Drawing window.
b. When it reaches the bottom, it "squashes" so that it becomes an oval

twice as wide as it is high.
c. Then it resumes its normal shape and bounces back to the top of the win­

dow.

11. Write an interactive program that will brick up
the Drawing window with bricks of any size. The
picture on the right shows typical output.

This is quite a hard problem. Don't get discouraged if you have to change
your original plan several times.

So far in our introduction to Pascal, we have seen just two types of data: integer
and real. They are built into the language and are two of Pascal's standard data
types . Now we want to show you how to invent new types that aren't stan­
dard-enumerated types . We'll also introduce another standard type-type
char. Type char is made up of the characters you type at the keyboard .

In this chapter we'll also show you how a different kind of formal parameter
can make the procedure command more flexible.

--7.1 Enumerated Types -----------------
Pick almost any subject for a computer program-days of the week, months of
the year , New England states, clothes, planets, meals-and Pascal gives you the
power to turn that subject into a made-up enumerated type. This type gets its
name from the fact that it lists, or enumerates, related things one after another.

When you invent an enumerated type, you write a definition for it in the
declaration part of your program. Here are definitions of some enumerated
types.

type
DaysOfWeek = (Mon,Tue , Wed , Thur , Fri, Sat ,Sun) ;
YearAtSchool = (Freshman , Sophomore,Junior ,Senior) ;
meals = (breakfast , lunch , dinner, mi dn i ghtsnack) ;
Directions = (North , Nor thEast,East ,SouthEast ,

South , SouthWest , West , NorthWest) ;

225

226 Enumerated Types, the Type Char, and More on Procedures

Here's how you can use an enumerated type in a program. Program Days
(see Figure 7 .1) lists the days of the week in order in a column, exactly as they are
named in the type definition.

r w file Edit Se11rth Run Windows
.,

Days §0_ TeHt _ .

program Days,
Mon ~ · type Tue

DaysOfWeel(= (Mon , Tu e, \'led, Thur, Ft-i , Sat , Sun); Wed

Yllr Th1.ir

Day : D1lysOfWeek; Fri :

begin Sat
for Day = r1on to Sun do Sun

write 1 n(Day) :

end.

i
Figure 7_1 Program Days and its output.

You also can list consecutive members of a type in reverse order with a back­
ward for loop, as illustrated in program Class (see Figure 7.2).

EXERCISE 1

r W file Edit Se11rth Run Windows
.,

Class §0§ TeHt

progrom Class; Senior ~
type Junior

VearAt.Sct10 ol =(Freshman, Sophomore, ~iunior , Senior) ; Sophomor e
Yllr Fre ::. hman

l'e!lr : 'learAl.School ;
begin
for Vear := Senior downto Freshman do

writeln(Vear)
end.

~
Figure 7.2 Program Class and its output.

Write a program that lists the elements of the enumerated type meals, from
lunch to midnightsnack. Use the type definition given on page 225 . -

7.1 EnumeratedTypes 227

Whenever you define an enumerated type, you list the elements of that type
in a specific order. Each element holds a numbered position in the type, begin­
ning with 0. In the type DaysOfWeek, for example, the position of Mon is 0, that
of Tue is 1, that of Wed is 2, and so on.

Pascal has a standard function called ord that gives you the position of any
member of an enumerated type.

ord(Mon) 0
ord(Tue) = 1
ord(Wed) = 2

If you make the following change in the writeln statement in program Days:

writeln(Day,ord(Day))

it will print out

Mon 0
Tue 1
Wed 2
Thur 3
Fri 4
Sat 5
Sun 6

Because members of an enumerated type hold fixed positions in the type def­
inition, you can use the relational operators with them. The value of the expres­
sion (Wed (Thur) is true, just as the value of the expression (5 (6) is true.

Variables that go with an enumerated type behave just like variables of type
integer or type real. The declaration

var
Day : DaysOfWeek;

creates a location in memory for the variable Day. The only kind of value this lo­
cation may hold is a day of the week-one of the seven values listed in the type
definition. When the computer executes the assignment statement

Day := Thur

Thur becomes the value of Day, and this value is copied into the location or cell
in memory set aside for the variable Day:

I Thur I
Day

Day has the value Thur in the same way in which the integer variable Number
has the value 3 after this assignment statement is executed:

Number := 3

Number

228 Enumerated Types, the Type Char, and More on Procedures

When you include more than one enumerated type in a program, you must
be sure that there is no overlap in the names of the elements. You will get an error
message if you put the following two definitions in the same program:

type
HeavenlyBodies = (sun,moon,stars);
DaysOfWeek = (Mon,Tue,Wed,Thur,Fri,Sat,Sun);

Because the Macintosh ignores capital letters when it compares the names of
identifiers, sun is the same as Sun and the definitions overlap.

__ 7.2 Successor and Predecessor _____________ _

Two standard Pascal functions are often used with enumerated types: successor
and predecessor. These functions allow you to step through the elements of a
type. The successor function, succ, gives the next element in the type:

succ(Tue) = Wed
succ(lunch) = dinner

The predecessor function, pred, works just like succ, only it goes backward:

pred(Sat) = Fri
pred(lunch) = breakfast

What happens when you write succ(Sun)? You're in trouble. Because Sun is
the last element in the type, it has no successor. So the value of succ(Sun) is
undefined, and you will get an error message if you include this kind of expres­
sion in a program. For example, this program won't run properly:

program Time;
type
Timezone = (Eastern,Central,RockyMt,Pacific);

var
Zone : Timezone;

begin
Zone := Eastern;
while (Zone (= Pacific) do
begin
writeln(Zone);
Zone .- succ(Zone)

end
end.

After the while loop increments the value of Zone to Pacific, Pacific is
printed out. Then Pascal tries to evaluate the right side of this statement:

Zone := succ(Zone)

But Pacific-the value of Zone-has no successor, so the program crashes.

7.3 Program WeekPlan-Using a Global Constant 229

Just as succ doesn't work with the last element in a type, pred doesn't work
when it is applied to the first element. Pred(Mon), for example, is undefined.

Question: Does program Months do what the comment says it's supposed to
do?

program Months; {LISTS THE MONTHS OF THE YEAR}
type MonthsOfYear = (Jan,Feb,Mar,April,May,June,July,

Aug,Sept,Oct,Nov,Dec);
var

Month : MonthsOfYear;
begin

Month := Jan;
repeat
wri teln(Month);
Month := Succ(Month)

until (Month = Dec)
end.

The answer is no. You cannot use a repeat-until loop to step all the way
through an enumerated type. The loop will end before it prints the last member
of the type. So program Months never prints Dec.

Looping Through an Enumerated Type
Let's summarize what we have learned about looping and enumerated types.
The function succ allows you to step forward through a type, and the function
pred allows you to step backward. But if you use pred or succ, you will not be
able to loop all the way through a type. With the while statement, you step past
the last element in the type and get an error message. With repeat-until, you un­
dershoot by one and don't cover the entire type.

Moral: Use a for statement when you want to loop all the way through an
enumerated type. The control line of the for loop can name the first and last
members of the type, so there is no problem stepping all the way to the end.

__ 7.3 Program WeekPlan-Using a Global Constant _______ _
Next let's look at a program that prints out a weekly planning sheet using an
enumerated type (see Figure 7 .3).

Program WeekPlan uses the enumerated type DaysOfWeek. Procedure
VertDivide, which we assigned as Problem 4 of Chapter 6, divides the Drawing
window into 7 columns, and procedure LabelColumns writes a day of the week
at the top of each column.

Before you run the program, enlarge the Drawing window so that it fills the
entire screen. The dimensions of the enlarged window are 500 units by 300 units.

230 Enumerated Types, the Type Char, and More on Procedures

program WeekPlan;
{PRINTS OUT A WEEKLY PLANNING SHEET}

const
HeightOfLabels = 15; {GLOBAL CONSTANT}
WindowWidth = 500; {GLOBAL CONSTANT}

type
DaysOfWeek = (Mon,Tue,Wed,Thur,Fri,Sat,Sun);

procedure VertDivide(Cells : integer);
{DIVIDES THE DRAWING WINDOW INTO EQUAL-SIZED COLUMNS}
const

Top = O;
Bottom = JOO;

var
Left,Right,Width,CellNumber integer;

begin
CellNumber := 1;
if (Cells) 0) then
begin

Width := WindowWidth div Cells;
while (CellNumber (= Cells) do
begin
Right := CellNumber * Width;
Left := Right - Width;
framerect(Top,Left,Bottom,Right);
CellNumber .- CellNumber + 1

end
end

end;

procedure LabelColumns;
var

Day : DaysOfWeek;
Width : integer;
Hpos : integer; {HORIZONTAL POSITION OF DAY LABELS}

begin
Width := WindowWidth div 7;
for Day := Mon to Sun do
begin

Hpos := ord(Day) * Width;
moveto(HPos + 5,HeightOfLabels);
writedraw(.Day)

end
end;

7.3 Program WeekPlan-Using a Global Constant 231

begin
VertDivide(7); {DIVIDES DRAWING WINDOW INTO 7 COLUMNS}

{DRAWS LINE UNDER DAY LABELS}
drawline(O,HeightOfLabels + 5,WindowWidth,HeightOfLabels + 5);
LabelColumns {LABELS COLUMNS· WITH DAYS OF WEEK}

end.

There's one new idea in program WeekPlan. Both VertDivide and
LabelColumns use the width of the Drawing window to make calculations. So
we've defined the constant WindowWidth in the declaration part of the main
program instead of putting it in the declaration part of each procedure. This
makes WindowWidth a global constant.

When the Macintosh executes VertDivide and comes to the statement

Width := WindowWidth div Cells

it checks the declaration part of the procedure to determine whether there is a
constant or a variable by that name. When it finds none, it searches one level up,
in the main program, for a value for WindowWidth. WindowWidth is defined
there, and this is the value the Macintosh uses.

The same process goes on during execution of procedure Label Columns. No
value for WindowWidth can be found inside the procedure, so the computer
looks for the value of WindowWidth one level up in the main program.

The constant HeightOfLabels is also a global constant. When the Macintosh
executes procedure Label Columns, no definition of the constant can be found in
the procedure, so the computer uses the definition that appears in the declaration
part of the main program.

~[Dr11wing

Mon Tue Wed Thur Fri Set Sun

~

Figure 7.3 Program WeekPlan's output.

232 Enumerated Types, the Type Char, and More on Procedures

EXERCISE 2 a. Explain what the procedure call VertDivide(O) does .

b. How would you change procedure LabelColumns so that the name of
each day starts at the middle of each cell? -

--7.4 The Case Statement----------------
Suppose you want a program to help you keep track of your weekly activities. It
might work this way: You read in a day of the week, and the program responds
with your planned activities for the day, according to a schedule such as this:

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

work in cafeteria
basketball
Outing Club meeting
basketball
none
shopping and laundry
none

You could write the program using a giant if-then-else statement that begins

if Day = Mon then
writeln('work in cafeteria')

else if Day = Tue then
writeln('basketball')

else if Day = Wed then
writeln('Outing Club meeting')

But you can do the same thing more efficiently using Pascal's case statement (see
Figure 7.4).

The case statement is bracketed by the reserved words case and end. The
variable Day is called the case selector. When you type in a day of the week, the
case statement looks down the list of days, which are called case labels. When it
finds the label-that is, the day you have typed in-it executes the instructions
after the colon.

The action named after the colon can be any Pascal statement. Note that, in
the case of Saturday, it is a compound statement with two instructions sand­
wiched between a begin and an end.

When the same instruction is to be executed in more than one case, you can
list those days on one line, foll9wed by a colon and the instruction.

Tue,Thur : writeln('basketball');

However, you can't use the same label twice. This will cause an error:

Sat writeln('wash car');
Sat : writeln('mow lawn');

7 .4 The Case Statement 233

,.. s File Edit Search Run Windows
.,

Rcti1.1ities :
:

protr Mn Activities;
{YOU TYPE IN THE DAY. PROGRAM PRINTS ACTIVITIES FOR THAT DAY .}

tvP•
Day sOfw' eek = (Mon, Tu., 'w' ed , Thur, Fri, Sat, Sun) ;

Y<lr
Day : DaysOf'w'eek ;

bl' gin
writeln('Type in dalj . ') ; ~ TeHt
readln(Dalj); Type in day . ~ CHl' Day of Sat

Mon : shopping
writeln('work in cafeteria'); :

Tue, Thur :
laundry

write ln('basketba 11 ') ;
Wed :

writeln('Outing C~ meeting') ; :
Fri , Sun :

~
write ln('none');

Sat :
b•gin

write ln(·shopping') ;
writeln('laundry ')

l'ftd
l'lld {ENI> ll' CASE STATEMENT}

•nd .

~ .~

Figure 7.4 Program Activities and its output.

Case statements can also include an otherwise clause. We can use one in pro­
gram Activities for Friday and Sunday, which have the same instruction
-writeln('none').

case Day of
Mon :
writeln(' work in cafeteria');

Tue,Thur :
writeln('basketball');

Wed :
writeln('Outing Club meeting');

Sat :
begin
writeln('shopping');
writeln('laundry')

end;
otherwise
wri teln ('none')

end

234 Enumerated Types, the Type Char, and More on Procedures

Note that there is no colon after otherwise in this statement. In fact , other­
wise is never followed by a colon. Note also that there is no semicolon at the end
of the case statement because it is followed by the word end. (If you do put one
in, however , Pascal won't object.)

Case Statement Syntax
We can summarize case statement syntax as follows:

case (selector) of
labell : (statementl);

labeln : (statementn);
otherwise (statement)

enc;l;

Program Equipment

Here is another example that uses an enumerated type in a case statement. Pro­
gram Equipment is a crude version of the kind of program used by computerized
cash registers.

Suppose you work in a ski equipment store. Every time a customer makes a
purchase, you type in the items, and the program adds up the cost and prints out
the total bill , including the tax. Program Equipment is shown on page 235. Fig­
ure 7.5 shows some sample output of program Equipment.

~D Te Ht

Type In boots, skis, poles, bindings, or done . :Q:J
>boots
How many pairs of boots purchased?
>2
The 2 pairs of boots cost $ 69 .90.
Type in boots, skis, poles, bind ings, or done.
>skis
How many pairs of skis purchased?
>2
The 2 pairs of skis cost $147 .90 .
Type in boots, skis, poles, bindings, or done.
>done
The total cost is $217.60 .

Figure 7.5 Some sample output of program Equipment.

program Equipment;
const
TaxRate = 0.05;
Discount = 10.00;

type
SkiEquipment (boots,skis,poles,bindings,done);

var
Number,Count integer;
Tax,Cost,TotalCost : real;
Item : SkiEquipment;

begin
TotalCost := 0.00;
Cost := 0.00;
repeat
writeln('Type in boots,skis,poles,bindings,or done.');
write (') ') ;
readln(Item);
if (Item () done) then
begin
writeln('How many pairs of ',Item,' purchased?');
write(')');
readln(Number);

!CASE STATEMENT}
case Item of
poles :
begin

Tax := 12.95 * TaxRate;
Cost := (12.95 +Tax) *Number

end;
bindings
begin

Tax := 19.95 * TaxRate;
Cost := (19.95 + Tax) * Number

end;
boots :
Cost := J4.95 * Number; {NO TAX ON CLOTHING}

skis :
begin

Tax := 79.95 * TaxRate;
Cost := (79.95 - Discount + Tax) * Number

end
end; {END OF CASE STATEMENT}
TotalCost := TotalCost + Cost;
writeln('The ',Number : 1,' pairs of ',Item,' cost $',

Cost : 6 : 2, '.')
end !END OF IF STATEMENT}

until (Item= done);
writeln('The total cost is $',TotalCost 6 2, '. ')

end.

235

236 Enumerated Types, the Type Char, and More on Procedures

The prompt in the repeat-until loop in program Equipment asks you to type
in either the name of a piece of ski equipment or the word done. If you type in
done, no action is taken and the loop is terminated.

But if you type in poles, for example, the loop continues and another prompt
asks you how many pairs of poles are being purchased. Then you type in an inte­
ger, say 2.

Poles is now the value of the case selector variable, which is called Item. So
the computer searches for the label poles among the list of case labels. When it
finds this label among the case labels, it calculates the cost of the two pairs of
poles.

Then execution returns to the beginning of the loop, and you can read in the
name of another item of ski equipment. This process continues until you enter
done. Finally the total cost is printed, and program execution ends.

In program Equipment, we've added a new feature to our style of writing
interactive programs. We've included the statement

write(')');

before each readln statement. The symbol) serves here as a second prompt. It
signals you to enter data. This symbol makes the Text window display easier to
read, as you can see from the sample output in Figure 7.5.

Made-up enumerated types come in handy when you are writing programs
about every-day topics such as days of the week and ski equipment. Now let's
look at another type-the standard type char.

--7.5 The Type Char----------------~
Pascal's third standard type is the type char, which is pronounced like the sylla­
ble car- in carrot. Char is short for "character," and the type includes letters,
numbers, punctuation, and every other symbol on the keyboard. Even the blank
space you get when you press the space bar is an element of type char.

Char is laid out like an enumerated type. This means that there are a limited
number of items in the type and that they are arranged in a definite order. But
you don't need to define type char at the beginning of a program, because it is
built into Pascal.

In this and later chapters, we will be looking at many programs that use
type char to process text. Some of these form the basis of word-processing pro­
grams such as Mac Write that allow you to type in, edit, and print out letters, pa­
pers, and other documents.

Let's begin with a very simple example. Program StandardKeyboard (see
Figure 7.6) lists in the Text window the elements of type char that appear on
many standard typewriter keyboards, beginning with a blank space and ending
with - , which is called a tilde. (There are actually other members of the type,
which we will tell you about later.)

7 .5 The Type Char 237

~ s File Edit Senrth Run Windows
.,

St11nd11rdKeybo11rd

program StenderdKeyboerd; -o Te Ht Yllr
[Q Character : char;

begin !"•$~&'()*•,- . /0123456789 : ;< •> ?@

for Choracter := · · to ·-· do ABCDEFGHIJKLMHOPQRSTUUUXYZ(\] A_'
wri te(Cherncter) abcdefghijklmnopqr5tuvwxyz{I)-

~ end. Q]

Figure 7.6 Program StandardKeyboard and its output.

In this program, Character is a variable of type char. The declaration

var Character : char;

sets aside a location in memory for the variable Character. This location holds
the value of the variable Character, which is one character. A character is a
value of type char in the same way in which a whole number is a value of type in­
teger and Thur is a value of type DaysOfWeek.

Initially, the value of Character in the for loop of program PrintCharacters
is a space-the character that is typed when you press the space bar. The for
statement advances through the members of the type that follow the space sym­
bol until it reaches the tilde.

The symbols that serve as the lower and upper limits of the loop (the space
and the-) are surrounded by single quotation marks. The single quotation marks
tell the computer to treat the symbol between them as a character and not as a
variable or some other kind of symbol. If you leave out the quotation marks, the
computer will "assume" that you typed in a variable rather than a character, and
you will get an error message.

Because the members of type char are arranged in a specific order, you can
use succ and pred with members of the type. For example,

succ(A) = B
pred(z) = y

You can also use the relational operators to compare the positions of the charac­
ters. For example,

'a' ('b' is true

And you can use ord to find out the position of a character in the type. For
example,

ord(' 1
) = 32

This equation means "a blank space holds the thirty-second place in the list of
characters in the type char."

238 Enumerated Types, the Type Char, and More on Procedures

w file. Edit ~e.orc:h Run Ulindows

AllCharacters

program Allet·1ai-act en; : j o- TeHt

Figure 7.7 Program AllCharacters and its output.

The characters in the type that hold positions 0 through 31-such as escape,
carriage return , and backspace-are part of type char, but they are not standard
printing characters. They are called non-printing control characters. There are
also characters beyond the tilde. You can find out more about these additional
characters in Appendix E of the Macintosh Pascal Technical Appendix.

Pascal has a function chr (pronounced "cur"), which is the inverse of the
function ord for type char: ord('!') = 33, and chr(33) = !. The chr function
works only for integer values from 0 to 255, because there are 256 characters
available on the Macintosh. Program All Characters (see Figure 7. 7) uses the chr
function to step through all 256 character positions. Most non-printing control
characters appear as blanks or as the symbol =.

The capital letters come before the lowercase letters in type char. But the
distance between 'A' and 'a' or 'B' and 'b' is 32 positions, not 26, as you might sus­
pect, because there are 6 symbols between the capitals and the lowercase letters.
We will use this fact later in programs that convert capital (uppercase) letters to
lowercase letters, or vice versa.

EXERCISE 3 Examine the output of program AllCharacters to figure out the answers to
the following questions.

a. true or false? 'A'= 'a'

b. true or false? '5' < '7'
c. succ('@ ') = ?

Answer: A

d. succ(succ('@')) = ?
e. true or false? pred('l')) succ('A') -

7.6 WritedrawandDrawchar 239

The next point is very important. The integer 2 and the character 2 (that is,
'2') are not the same. The character 2 is merely a name for a number, and you
cannot add it to the number 2 or to another character 2 to get the answer 4.
Hence the following program will not work:

program VeryBad;
var Character : char;

Number : integer;
begin

Character := '2';
Number := 2;
Number := Number + Character;
writeln(Number)

end.

The plus sign and the other arithmetic operators work only for numeric
data-that is, for values of type integer or type real. In program Very Bad we are
trying to add a character to a number, and this makes no sense to Pascal.

· To understand the difference between the integer 2 and the character 2,
think about the following riddle:

What is the longest word in the world?

Answer: Smiles-there is a mile between the two s's.

This riddle is based on the difference between the quantity one mile and the
name for this quantity-the word mile. The two kinds of 2 differ in the same
way. The integer 2 is a quantity. The character 2 is a name for this quantity. The
computer expects you to keep them separate by using single quotation marks
when you refer to the character 2 in a program.

~~~7.6 Writedraw and Drawchar~~-=-~-"""""'~---~----=-
You have already seen two of Macintosh Pascal's instructions for writing in the 
output windows-writeln and writedraw. Writeln prints in the Text window 
and writedraw prints in the Drawing window. MacPascal has a third command 
for printing text-drawchar. Like writedraw, drawchar prints in the Drawing 
window, so it must be preceded by a moveto statement that positions the elec­
tronic pen. Unlike both writeln and writedraw, drawchar can print only one 
character at a time. When the Macintosh executes the following commands 

moveto(l00,100); 
drawchar( 'o'); 
drawchar( 'x'); 



240 Enumerated Types, the Type Char, and More on Procedures 

it first sets the pen at position (100,100). Then it prints the letter oat that posi­
tion. Next it advances the pen the width of one character. The second drawchar 
statement prints out the o, and you see 

OX 

in the Drawing window. 

__ 7.7 Echoing in the Drawing Window-Read and Readln _____ _ 
Now let's look at a program that uses drawchar. Program ReadlnEcho reads in a 
character in the Text window and then prints the character in the Drawing win­
dow. When the computer prints in one of the output windows a duplicate of a 
character or phrase you have just typed, we say that it is echoing your input. 

In this example and others to come, we will use the name Ch (pronounced 
"see H'') for a variable of type char. 

program ReadlnEcho; 
var 

Ch : char; 
begin 
writeln('Type in one character .' ) ; 
write(')'); 
readln(Ch); 
moveto(l00,100); 
drawchar(Ch) 

end. 

When you run program ReadlnEcho, the prompt is printed in the Text win­
dow, and the prompt symbol ) appears on the next line. Now the program comes 
to the readln statement. To execute it, you must type a character and then type a 
carriage return . The readln statement isn't finished until a carriage return is 
typed. Then moveto positions the pen, and drawchar prints the character you've 
typed in the Text window at the pen tip. 

Now look at this program: 

program ReadEcho; 
var 

Ch : char; 
begin 
writeln( ' Type in one character .' ); 
write(')'); 
read(Ch); 
moveto(l00,100); 
drawchar(Ch) 

end. 



7 .8 Echoing a Whole Sentence to the Drawing Window 241 

Program ReadEcho is exactly the same as program ReadlnEcho, except that we 
have replaced the statement readln(Ch) with the statement read(Ch). Unlike 
readln, the read statement is over as soon as you type a character. No carriage re­
turn is needed to finish executing the read statement. After you type a character, 
the Macintosh goes immediately to the next statement. 

In character-processing programs, we use the read statement to read whole 
phrases or sentences a character at a time, because we don't want to type car­
riage returns between characters. If we used readln in a character-processing 
program, each letter would show up on a different line, because we would have 
to include a carriage return after each letter. 

--1.8 Echoing a Whole Sentence to the Drawing Window _____ _ 
Now let's look at a program that echoes a whole sentence to the Drawing win­
dow (see Figure 7.8). 

Program Draw Echo contains several new ideas. First of all, it has a constant 
of type char called Period, which we use to make the test in the while loop easier 
to read: 

while (Ch () Period) do 

~ ii File Edit Search Run Windows 
., 

DrawEcho 

program DrewEcho; 
con st Te Ht 

Period = .. Type a sentence ending with a period . . , 
Blank = · ·; >Beware of dog . 

vnr 
Ch . chor ; 

begin r-
Ch := Blank; 
moveto( 1, 30); 
writeln( 'Type a sentence ending with a period.'); 
wri te(Y) ; ~D Drawing 
while (Ch<> Period) do 
begin 

Beware of dog. reod(Ch); 
drewchar(Ch) 

end 
end. 

£; 

. . . . . . . . . . . . . . ... . . . . . ... . . . . . . . . . . . . . . . . . . . . . . ..... . ... 
:·:-:·: :: :::::::: . . . . . .. . . . .. ·.·. ·.·.·. ·.·.·.· . . . . . . . . :-:.;.;.;.;.;.;. ;.:-: ..i 

Figure 7.8 Program DrawEcho and its output. 



242 Enumerated Types , the Type Char, and More on Procedures 

We could have written it as 

while (Ch () 1
• ' ) do 

but the statement would have been harder to understand. In the constant defini­
tion, the quotation marks around the period symbol are absolutely necessary. 
They tell the Macintosh that you mear. the character period, not a decimal point. 

We have also included a constant definition for a blank space, and we've 
called this constant Blank. We wrote the definition by typing a single quotation 
mark, a space, and then another single quotation mark . 

In the body of the program we have initialized Ch to Blank. This makes the 
value of Ch the blank symbol. 

The value blank space is not an undefined value. When we say the value of a 
variable is undefined, we mean that the variable has not yet been assigned any 
value and that the location for that variable in memory is empty. 

Now look at the while loop in program DrawEcho . It loops as long as the 
value of Ch is not a period. 

What happens when you type this? 

Beware of dog . 

Each time through the loop , one character is processed, beginning with the B 
and ending with the period. After each character is printed in the Drawing win­
dow, drawchar automatically advances the tip of the electronic pen. 

EXERCISE 4 a. How would you change program Draw Echo so that the echo is printed in 
doubled characters? That is , if you typed 

Bye . 

it would respond 

BByyee .. 

b. How would you change program DrawEcho so that the echo printed a 
space between characters? That is , if you typed 

Bye . 

it would respond 

B y e . -

Program AdEcho 

Here is one more character-processing program. Sometimes the cost of a want ad 
in a newspaper is figured by the character-two cents per character, for exam­
ple. So ads are often placed with all the vowels removed , except for those that 
come at the beginning of a word. For example, 



7. 9 The Standard Function Chr 243 

Student seeks apartment for summer. 

would become 

Stdnt sks aprtmnt fr smmr. 

Program AdEcho (see Figure 7.9) reads in a full one-sentence ad in the Text 
window, and then prints the abbreviated form in the Drawing window. 

After the read statement is executed inside the while loop, a case statement 
processes each character that has been read. If you read in a vowel, the a-e-i-o-u­
A-E-I-0-U case is selected. If the previous character is a blank, the if-then test is 
true and the vowel gets printed in the Drawing window. But if the previous 
character is not a blank, the if-then case _is false, so the program prints nothing in 
the Drawing window. 

r- • file Edit Searc:h Run Windo111s 
RdEc:ho 

program AdEch" ; 
{YOU TYPE IN AN AD . PROGRAM REMOVES VOWELS AND PRINTS AD IN DRA'w'lr·m WINDOW.) 

const 
Blank = ' '; TeHt 
Period = '.' ; l':Jpe an cidver l i ;r.emen t ending IJJi!_h Cl per iod . 

Yiaf" >Col l ege student seeks apar·tmenl. for summer . 
Ch, PreviousCh : char; 

begin 
Ch :=Blank ; t-
PreviousCh := Blank _; 
movefo( 1 , 25) ; 
\\•riteln('Type an adver\i,-emerit ending wi\h a period.') _; 
··11rite( · > '); 
while (Ch o Perio,d) do -0 Drawing 

begin 
read(Ch) ; 
case Ch of 

·a· .. 'e ' , 'i' , 'o', ·u·, 'A ', r , T , ·o·, ·u· : 
Cllg stdnt sks aprtmnt ir smmr . 

if (PreviousCh = Blar1k) then 
drawchar(Ch); 

otherwise 
dnwchar(Ch) 

end; {END OF CA'°:E STATEMENT} Q] 
F'reYiousCh := Ch 

end {END OF 'w'HILE LOOP}. 
end . 

~ :1 

Figure 7.9 Program AdEcho with some sample output. 

--7.9 The Standard Function Chr--------------
Let's look at a special application for the functions chr and ord. Because 
(ord('A') + 32) gives the position of 'a' in type char, the following relationship 
holds: 

'a' = chr(ord( ' A') + 32) 



244 Enumerated Types, the Type Char, and More on Procedures 

This relationship holds for all letters: 'w' = chr(ord('W') + 32), and so on. Thus 
we can use it to convert capital letters to lowercase letters. Program 
ChangeToLowercase reads in a sentence, converts all the capital letters to lower­
case letters, and then echoes the output back to the Drawing window: 

program ChangeToLowercase; 
{YOU TYPE IN A SENTENCE. PROGRAM CHANGES CAPITAL LETTERS TOl 
{LOWERCASE AND ECHOES THE SENTENCE IN THE DRAWING WINDOW.I 
const 
Blank = ' '; 
Period '. '; 
OffSet = 32; {LOWERCASE LETTERS COME 32 POSITIONS AFTER UPPERCASE.} 

var 
Ch : char; 

begin 
Ch := Blank; 
moveto(l,50); 
writeln('Type in a sentence,ending with a period.'); 
write(')'); 
while (Ch () Period) do 
begin 

read(Ch); 
if (Ch )= 'A') and (Ch(= 'Z') then 

Ch := chr(ord(Ch) + OffSet); 
drawchar(Ch) 

end 
end. 

The if-then statement in the while loop first checks to determine whether 
the value of Ch is a capital letter. If it is, the ord function calculates the position 
of this value in type char. Then an Offset of 32-the gap between the position of 
a capital letter and the position of its corresponding lowercase letter-is added 
in. This calculation gives the position of the lowercase version of Ch's value. Next 
the function chr looks up the character at this position and assigns it to Ch. 

Now we want to use program ChangeToLowercase to illustrate a very im­
portant idea in Pascal. 

--7.10 Variable Parameters-----------------
Changing uppercase letters to lowercase letters turns out to be something we will 
frequently want to do in character-processing programs. So it would be useful to 
turn program ChangeToLowercase into a procedure called MakeLowercase 



7 .10 Variable Parameters 245 

that we can insert into a program. Let's do this conversion. In the process we'll 
discover a new and more powerful way to write procedures. 

How do we want procedure MakeLowercase to work? First the main pro­
gram should pass a character to the procedure. If the character is an uppercase 
letter, the procedure should change it to lowercase. Otherwise it should leave the 
character unchanged. Then the procedure should pass the character back to the 
main program. 

G---
procedure 

Make Lowercase --.-g 

Here is the procedure inside a program called program Lowercase. 

program Lowercase; 
const 
Blank =' '; 
Period ='. '; 

var 
Ch : char; 

procedure MakeLowercase(ThisChar: char); 
canst 
OffSet = J2; {LOWERCASE LETTERS COME J2 POSITIONS AFTER UPPERCASE.} 

begin 
if (ThisChar )= 'A') and (ThisChar (= 'Z') then 
ThisChar .- chr(ord(ThisChar) + OffSet) 

end; 

{MAIN PROGRAM} 
begin 

Ch := Blank; 
moveto(l,50); 
writeln('Type in a sentence,ending with a period.'); 
write ( ')'); 
while (Ch () Period) do 
begin 

read(Ch); 
MakeLowercase(Ch); 
drawchar(Ch) 

end 
end. 



246 Enumerated Types, the Type Char, and More on Procedures 

When you type in the letter G , it is stored in the cell set aside for the variable 
Ch. The actual parameter Ch is passed to MakeLowercase, and the computer 
sets aside a location in memory for the formal parameter ThisChar. G is assigned 
to ThisChar and copied into that location: 

program Lowercase 

procedure MakeLowercase 

Ch ThisChar 

Next the commands in the procedure are executed, changing G to g. 

program Lowercase 

procedure MakeLowercase 

Ch ThisChar 

Now comes the crucial part. The Macintosh returns from the procedure call 
and does the writeln statement. It looks up the value of Ch , which is still G, and 
prints out this value-a capital G. But G is not what we wanted. What's going 
on here? 

The procedure changes the value of ThisChar from G to g. But the main 
program doesn't print out a lowercase g because the value of the formal parame­
ter ThisChar is completely isolated from the instructions in the main program. 
The new value of ThisChar has absolutely no effect on the value of the actual pa­
rameter for procedure MakeLowercase, or on any variable in the main program. 

This example illustrates an important limitation of the kind of parameter 
we have been using in procedures. vVith this kind of parameter, there's nothing 
that a procedure can do to affect the value of a variable in the main program. A 
procedure call can pass information in one direction only: from the main pro­
gram to the procedure. 



7 .10 Variable Parameters 24 7 

Procedures that work this way can use data from the main program to draw 
pictures and bar graphs, and they can print text in the output windows. They 
can also change the data they receive from the main program and print out the 
altered data. But they can't send altered data back to the main program. This 
one-way information flow is a serious limitation. 

There is a simple way to get procedure MakeLowercase to do what we 
want. We can make ThisChar a variable parameter. The value of a variable pa­
rameter can be passed back to the main program . This will allow information to 
flow in two directions-from the main program to the procedure, and from the 
procedure back to the main program. 

The kind of formal parameter we have been using up until now is called a 
value pqrameter. Value parameters cannot be passed back to the main program . 

To change the formal parameter ThisChar from a value parameter into a 
variable parameter , all we have to do is add the word var to the procedure head­
ing line: 

procedure MakeLowercase( var ThisChar : char) 

The word var identifies ThisChar as a variable parameter. Now when you 
run program Lowercase, passing parameters between the main program and the 
procedure works differently. When you pass the actual parameter Ch to the pro­
cedure, the value of Ch is not copied into a separate, private memory location re­
served for ThisChar. Instead , ThisChar becomes a second name for the memory 
location reserved for the actual parameter Ch: 

program Lowercase 
~~~~~~~~~~~ 

procedure Makelowercase

Ch ThisChar

When the value of the formal parameter ThisChar is changed during the
procedure call , the value of the actual parameter Ch is also changed , because
ThisChar and Ch share a common cell in memory:

Ch GJ ThisChar

When Pascal returns from the procedure, the value stored in Ch is g, and
this is what the program prints out.

248 Enumerated Types, the Type Char, and More on Procedures

When the computer is executing commands in the main program, the cell is
named Ch and instructions in the main program control the value it holds. When
the computer is executing commands in the procedure, the cell is called
ThisChar, and its value is controlled by instructions in the procedure.

Here is our revised version of program Lowercase, which we have called
Lowercase Two.

program LowercaseTwo;
{YOU TYPE IN A SENTENCE. PROGRAM CHANGES CAPITAL LETTERS TOI
{LOWERCASE AND ECHOES THE SENTENCE IN THE DRAWING WINDOW.}
canst
Blank = I I;

Period= '.';
var

Ch : char;

procedure MakeLowercase(var ThisChar : char);
{CHANGES CAPITAL LETTERS TO LOWERCASE.I
(RETURNS OTHER CHARACTERS UNCHANGED.I
canst
OffSet = 32; (LOWERCASE LETTERS COME 32 POSITIONS AFTER UPPERCASE.I

begin
if (ThisChar)= 'A') and (ThisChar (= 'Z') then
ThisChar .- chr(ord(ThisChar) + OffSet)

end;

{MAIN PROGRAM}
begin

Ch := Blank;
moveto(l,50);
writeln('Type in a sentence,ending with a period.');
write (') ') ;
while (Ch () Period) do
begin
read(Ch);
MakeLowercase(Ch);
drawchar(Ch)

end
end.

A cell in memory for a variable parameter is like a mail box in which the main
program and a procedure exchange messages. When a procedure is called, the
main program leaves in the box a message for the procedure. The procedure takes
this message, processes it, and leaves a new message in the box. When program ex­
ecution returns from the procedure, the main program picks up its new message.

EXERCISE 5

7 .10 Variable Parameters 249

What value does program ParameterTest print?

program ParameterTest;
var

Number : integer;
procedure ChangeNumber(var Num
begin

Num . - 10
end;

!MAIN PROGRAM}
begin

Number := 5;
ChangeNumber(Number);
writeln(Number)

end.

Answer: 10 -

integer);

When you use a variable parameter, the actual parameter passed in a proce­
dure call must be a variable. It can't be a value such as 8, or a constant, or a com­
plex expression. For example, in the following program, all three calls to proce­
dure ChangeNumber are illegal.

program ParameterTestTwo;
const
Twenty = 20;

var
Number : integer;

procedure ChangeNumber(var Num
begin

Num . - 10
end;

begin
Number := 5;

integer);

ChangeNumber(8); {ILLEGAL}
ChangeNumber(2 *Number); {ILLEGAL}
ChangeNumber(Twenty) ; {ILLEGAL}
writeln(Number)

end.

250 Enumerated Types, the Type Char, and More on Procedures

This restriction makes sense. A variable formal parameter becomes a second
name for the actual parameter's cell in memory. But only variables can be names
for cells. Values, constants, and complex expressions such as (2 * Number) can­
not be names for cells.

An actual parameter can be a constant, a value, or a complex expression if
the corresponding formal parameter is a value parameter. With a value parame­
ter, only the value of the actual parameter matters. First the Macintosh figures
out the value of the actual parameter. Then it assigns that value to the formal
parameter.

__ 7.11 Getmouse-A MacPascal Standard Procedure--------
Standard procedures can have variable parameters, too . The MacPascal stan­
dard procedure getmouse, for example, has two variable parameters. Let's see
how getmouse works in program MouseReport (see Figure 7.10), which reports
in the Text window the location of the tip of the pointer.

' s File Edit Search Run Window s

MouseReport Te Ht

program f1ou~:eRepo1-t ;
I 39 9

{REPORTS POSITION OF POINTrn}
Yilr

H, v: integer; 1--1

begin
H := O;

D Ornwing

V := O_; ~
getrnouse(H. V) :
··N r iteln(H, V)

end.

~

Figure 7.10 Program MouseReport and its output.

7 .11 Getmouse-A MacPascal Standard Procedure 251

When you use program MouseReport, it is awkward to choose Go from the
Run menu and then quickly position the pointer where you want it on the screen.
Luckily there is another, mouseless way to run a program.

First place the pointer where you want it on the screen. Then hold down the
command key (the one with the clover leaf), and press the G key. The program
will run and report in the Text window the position of the pointer.

It is also possible to execute other commands on the Run menu using the key­
board instead of the mouse. The keyboard methods are listed alongside the com­
mands in the menu (see Figure 7.11).

c:neck :!CK
Reset

Go 3CG
Go ·ho
Step 3CS
Step- Step

Stops In

Figure 7.11 Keyboard symbols that can be used to run, step, or check a program are
listed next to the items on the menu.

When the standard procedure getmouse is called, the procedure is passed
the actual parameters Hand V, which have been intialized to zero. When pro­
gram execution returns from the procedure call, the variable H holds the value of
the horizontal position of the tip of the pointer, and the variable V holds the
value of its vertical position.

If you position the pointer outside the Drawing window, you will still get a
value for Hand V when you run the program. The values are calculated in rela­
tion to the upper-left corner of the Drawing window. With the pointer in the
upper-left corner of the screen, for example, you will get two negative numbers
for output.

The two variable parameters for getmouse must be of type integer. But no
matter what values these variables hold before they are passed to the procedure,
getmouse passes back values that correspond to the horizontal position and the
vertical position of the tip of the pointer. So the values returned by the procedure
are not related to the values passed to the procedure. Because it ignores the values
of the actual parameters passed to it, getmouse is an unusual procedure.

252 Enumerated Types, the Type Char, and More on Procedures

We use getmouse again in the program W atchMouse (see Figure 7 .12). This
program reports the position of the tip of the pointer continuously until you
move the pointer to the left of the Drawing window.

~ .t File Edit Searc:h Run Ulindows

='° UlatchMouse TeHt

program lt·/81.chr1ouse j ~ 56 6t;
p

143 S'' vor -'-

H, v · integer-; 140 3

begin
I-°'

H := O; Drawing
v := 0_:

~ while (H >= 0) do
begin

getrnouse(H, V) ;
wr-iteln(H, \/)

·~-
end

end.

f01
r;;:i I IC:> ~

Figure 7.12 Program WatchMouse and its output as it runs using the Step command.

In program W atchMouse, the getmouse procedure is inside a while state­
ment. The while statement loops continuously, reporting the current values of H
and V during each iteration. When you move the mouse pointer across the left
wall of the Drawing window, H becomes less than zero and you terminate the
loop.

__ 7.12 Drawing with Getmouse---------------
Using getmouse, we can draw spectacular pictures in the Drawing window. Pro­
gram OvalDraw below draws ovals 80 units high and 20 units wide all over the
screen as you move the mouse (see Figure 7.13).

The frameoval command in program OvalDraw draws an oval located in
an imaginary rectangle whose upper-left corner is the point (H, V).

7 .12 Drawing with Getmouse 253

(H,V) (H + 20,V)

(H,V + 80) (H + 20,V + 80)

As long as you keep the pointer to the right of the left wall of the Drawing
window-that is, as long as

H)= 0

the while statement continues to loop. During each iteration, getmouse reports
the current position of the pointer, and the program draws an oval.

~ a File Edit Search Run Windows

OualDraw

program Ov81Draw;
var
H, v : integer;

begin
H := O;
while (H >= 0) do

begin
getrnouse(H, V);
fn.i rneoval(V . H, V +BO. H + 20)

end
end

Figure 7.13 Program Oval Draw and its output.

Te11t

Drawing

254 Enumerated Types, the Type Char, and More on Procedures

One small change in program OvalDraw will make its output more dramat­
ic. If we use this jrameoval command

frarneoval(V,H,V + 80,H + V)

ovals drawn near the bottom of the screen will be wider, and ovals drawn near
the top of the screen will be narrower. With an enlarged Drawing window, your
output will look something like Figure 7 .14.

~D Dnnuing

Figure 7.14 The output of modified program OvalDraw.

__ 7.13 Cryptography ________________ _

Since the Second World War, computers have become indispensable in cryptog­
raphy-the science of making and breaking secret messages. But work with
codes began long before the computer age.

Secret ciphers are almost as old as writing itself. About 3500 years ago, a
pottery maker in Mesopotamia used a cipher to write down his private formula
for putting a glaze on his pots. In most ancient civilizations, secret writing was
something of a game. One could fool people with it, conceal recipes for magic
potions, and use it in love letters .

7 .14 Creating a Secret Cipher 255

The first to use cryptography for military purposes were apparently the
Spartans in ancient Greece. In the fifth century B.C., they invented a cipher that
worked like this: First a strip of cloth, parchment, or leather was wound around
a rod. Then the message was written, one character on each loop, down the
length of the rod. When the strip was unwound, the random letters made no
sense. On a messenger's cloth belt they might seem like decorations, and h.e could
go on his way unsuspected. When he delivered the belt, it was wrapped around a
rod the same size as the original. Restored to their proper order, the letters
spelled out the message.

In the first century B.C ., Julius Caesar used a scheme called a linear substitu­
tion cipher for his secret military messages. A linear substitution cipher is created
when each letter in a message is replaced with another letter that comes a fixed
number of positions later in the alphabet. When each letter is shifted two posi­
tions, for example, c becomes e and z becomes b. Using this method, the message

hide immediately

becomes

jkfg koogfkcvgna

If you intercept an enciphered message that's long enough, a linear substitu­
tion cipher is easy to break using letter-frequency data. Suppose the letter g oc­
curs most often in the message. Because the letter e is the most common letter in
English (about 13 percent of all letters are e's), you will probably be right if you
guess that the message has been enciphered with a shift of 2.

__ 7.14 Creating a Secret Cipher ______________ _

Now let's write a linear substitution enciphering program, which we'll call pro­
gram Cipher . It will convert a sentence you enter at the keyboard into an
enciphered message. We'll make it interactive so that you can specify a different
shift and create a different cipher each time you read in a text.

Program Cipher will work this way: First you type in two letters that deter­
mine the shift . If you want the a's to become e's, for example, you type in an a
and then an e. Then you type in a message ending with a period, and the pro­
gram enciphers this message, shifting each letter ahead 4 letters. The enciphered
message will be printed in the Drawing window. For simplicity, we'll print the
enciphered output using all lowercase letters.

This is our first big program using variable parameters, so we'll go over it in
detail.

256 Enumerated Types, the Type Char, and More on Procedures

Thinking
Let's begin by summarizing what program Cipher will do. First it reads in the
two letters that determine how the letters will be shifted, and it calculates the
shift. Next you type in a sentence. The program reads the sentence letter by
letter, enciphering and printing each letter as it goes. Because we want lowercase
output, each character will also be converted to lower case as soon as it is read.

We will use Chl and Ch2 as the names of the input variables that determine
the shift in the cipher, and we'll read each letter of the original sentence using the
variable Ch.

We'll use a loop to read each character, change it to lower case, encipher it,
and print it out. To make the program easier to read, we'll define two constants:
the period and the blank symbol. We'll use the blank symbol to initialize the
variable Ch. And we'll use the period in the test part of the control line of the
loop.

----------DATA TABLE _________ _

Input Variables
Chl,Ch2,Ch : char;

Constants

Period, Blank

Loops

Output Variables
Ch

Formulas

None

Main loop reads and then enciphers letters

Planning

Program Variables
Shift : integer;

From our initial description we can formulate this first plan for the program.

Plan I

1. Read the first character.
2. Read the second character.
3. Calculate the shift.

4. Read and encipher the message character by character until a period is
reached:
a. Read a character.
b. Change the character to lowercase.
c. Encipher the character.
d. Print the enciphered character in the Drawing window.

This is a good start. Now let's turn it into a more concrete algorithm.

7 .14 Creating a Secret Cipher 257

Plan II

ReadFirstChar(Chl)
ReadSecondChar(Ch2)
calculate shift
while (Ch O Period) do

begin
read(Ch)
MakeLowerCase(Ch)
Encipher(Ch,Shift)
drawchar(Ch)

end

This plan is close to the actual top-level code. It includes four procedures,
which handle four of the smaller jobs the program does.

The "calculate shift" part of the plan is very simple. It's just

Shift := ord(Ch2) - ord(Chl)

so we won't bother to put it inside a procedure. If Ch2 is an e and Chl is an a,
then Shift will be assigned 101 - 97, or 4. Note that, if Ch2 comes before Chl in
the alphabet, Shift will be negative.

Clarifying the Procedures

ReadFirstChar and ReadSecondChar

ReadFirstChar has the heading line

procedure ReadFirstChar(var Chl : char) ;

Chl is a variable parameter, because it is passed to the procedure undefined and
is passed back as a character. We'll diagram its paper check this way:

ReadFirstChar

Ch1 Ch1

ReadSecondChar is almost identical to ReadFirstChar, and it is clarified in the
same way.

MakeLowercase

We have already written this procedure. It has the heading line

procedure MakeLowercase(var Ch : char);

258 Enumerated Types, the Type Char, and More on Procedures

Encipher

Encipher is the most interesting procedure in the program. Its heading line in­
cludes both a variable parameter and a value parameter:

procedure Encipher(var Ch : char; Shift : integer);

Here are two Encipher paper checks-one for a positive shift of three characters
forward and one for a negative shift of 2 characters back.

& ~8 ~0
Ch Ch Ch Ch

Encipher Encipher

IT~ &~
Shift Shift

When we write a paper check for a procedure that has both a variable parameter
and a value parameter, we treat all the formal parameters as inputs to the proce­
dure, but only the variable parameters will be treated as procedure outputs. This
makes sense because only variable parameters return information to the main
program.

Now we know enough to code the top level.

begin
ReadFirstChar(Chl);
ReadSecondChar(Ch2);
Shift := ord(Ch2) - ord(Chl);
Ch := Blank;
moveto(l,100);
writeln('Type in message ending with a period.');
write(')');
while (Ch () Period) do
begin

read(Ch) ;
MakeLowercase(Ch);
Encipher(Ch,Shift);
drawchar(Ch)

end
end.

7 .14 Creating a Secret Cipher 259

Thinking, Planning, and Coding Procedure Encipher
Procedure Encipher is the most complicated of the four procedures, so let's look
at it in detail.

The main program passes procedure Encipher two values-a character,
Ch, and a value for Shift, which can be any integer. Encipher passes Ch back to
the main program. If the character passed is a letter, Encipher passes that letter
back in cipher. Otherwise it returns the character unchanged.

The tricky part of the procedure is the "wrap-around" effect, which shifts a
letter at the end of the alphabet so that it becomes a letter at the beginning of the
alphabet. For example, a positive shift of 3 changes z to c. We handle the wrap­
around problem in two stages. First we identify each letter with a number from 0
to 25 so that 0 stands for a, 1 stands for b, and so on. Next, we add in the shift. If
we add 3 to z's position, which is 25, we get 28. Then, for the wrap-around oper­
ation, we use the mod operator. When we calculate 28 mod 26 we get 2, which is
e's position in the alphabet when we number the letters beginning with zero.

What happens when the shift is negative? Suppose the shift is -3 and we
want to encipher b. We get the right answer by counting backward from b 3 po­
sitions and wrapping around to the end of the alphabet: a-z-y. Sob becomes y.
We can use the mod operator to calculate the negative wrap-around in the same
way we used it for the positive wrap-around. With negative numbers, mod is
defined to work as follows. Suppose Numberl and Number2 are both greater
than 0. Then

-Numberl mod Number2 = (Number2 - Numberl) mod Number2

So

-2 mod 26 = (26 - 2) mod 26 = 24 mod 26 = 24.

This formula gives the correct answer, because 24 is the position of the letter y.
To make the position of each letter equal to a number from 0 to 25, we'll

subtract ord ('a') = 97 from the letter's position: ord ('a') - 97 = 0, ord ('b') -
97 = 1, and so on. The procedure will use a constant that we'll call PositionOLa.

We'll need a variable called ChPosition to hold the number from 0 to 25 that
represents the value of Ch in terms of its distance from a. For example, for the
letter c, ChPosition = 2.

We will also create a variable called EncipheredChPosition to hold the
number of Ch's position after the shift has been applied. EncipheredChPosition
can equal less than 0 or more than 25.

We can write this plan for the procedure:

if Ch is a lowercase letter
then

calculate ChPosition from 0 to 25
add the shift to get EncipheredChPosition
calculate the new letter value for Ch

260 Enumerated Types, the Type Char, and More on Procedures

Now we can code procedure Encipher:

procedure Encipher(var Ch : char;
Shift : integer);

const
PositionOf_a = 97;

var
ChPosition, EncipheredChPosition integer;

begin
if (Ch)= 'a') and (Ch(= 'z') then
begin
ChPosition := ord(Ch) - PositionOf_a;
EncipheredChPosition := ChPosition + Shift;
Ch .- chr((EncipheredChPosition mod 26) + PositionOf_a)

end
end;

Here's what the procedure does. Suppose the program passes the procedure
the letter z and a shift of 3. The procedure subtracts 97 from ord(z) and comes up
with 25. Then it adds a shift of 3 to get 28. Next it calculates 28 mod 26, which
gives 2. Then it adds 2 to 97 and gets 99. And finally, chr(99) = c.

Here is the complete program Cipher:

program Cipher;
const

Blank = ' ';
Period= '. ';

var
Chl,Ch2,Ch : char;
Shift : integer;

procedure ReadFirstChar(var FirstChar : char);
begin
writeln('Type in a lowercase letter.');
write (') ') ;
read(FirstChar);
writeln

end;
procedure ReadSecondChar(var SecondChar : char);
begin

writeln('What lowercase letter do you want
the first letter to be shifted to?');

write (') ') ;
read(SecondChar);
writeln

end;

7.14 CreatingaSecretCipher 261

procedure MakeLowercase(var ThisChar : char);
canst
OffSet = 32; {THERE ARE 32 POSITIONS}

{BETWEEN CAPITAL AND LOWERCASE LETTERS.}
begin
if (ThisChar)= 'A') and (ThisChar (= 'Z') then
ThisChar .- chr(ord(ThisChar) + OffSet)

end;

procedure Encipher (var Ch char;
Shift : integer);

canst
PositionOf_a = 97;

var
ChPosition,EncipheredChPosition : integer;

begin
if (Ch)= 'a') and (Ch (= 'z') then
begin

{CALCULATE POSITION OF CH, A NUMBER FROM 0 TO 25}
ChPosition := ord(Ch) - PositionOf_a;
{CALCULATE ENCIPHERED POSITION OF CH: IT MAY BE (0 or) 25}
EncipheredChPosition := ChPosition + Shift;
{USE MOD TO CALCULATE THE ENCIPHERED VALUE OF CHl
Ch .- chr((EncipheredChPosition mod 26) + PositionOf_a)

end
end;

!THE MAIN PROGRAM!
begin
ReadFirstChar(Chl);
·ReadSecondChar(Ch2);
Shift := ord(Ch2) - ord(Chl);
Ch := Blank;
moveto(l,50);
writeln('Type in a message, ending with a period.');
write(')');
while (Ch () Period) do
begin

read(Ch);
MakeLowercase(Ch);
Encipher(Ch,Shift);
drawchar(Ch)

end
end.

262 Enumerated Types, the Type Char, and More on Procedures

___ TEST YOURSELF---------------
1. What is an enumerated type?

2. What does the Pascal function ord do?

3. What does chr do?

4. Explain the difference between 3 and '3'?

5. What does the otherwise part of a case statement do?

6. What is a case label?

7. What is a case selector?

8. What is a value parameter?

9. What is a variable parameter?

10. How many elements are there in type char?

11. Name three of Pascal's standard types .

12. What is a global constant?

1. Write a program that lists all the directions in type Directions in Section 7 .1.
Do the program two ways: first list the directions forward, then list them
backward.

2. Make up a type called vehicles (car, truck, bus, and so on) with six elements.
Then write a program that lists each element along with its position in the
type .

3. Write a program that lists the capital letters A through Z across the top of
the Drawing window and that lists the lowercase letters a through z across
the bottom of the window.

4. Modify program DrawEcho so that the vowels in the sentence you type in
are echoed as stars. "Pass the pepper." would become "P*ss th* p*pp*r."

5. The following procedure alters a rectangle in some way. What does it do?
(Hint: Draw a picture. Then put the procedure in a program and run it to
check your answer .)

Problems 263

procedure ChangeRec(var Top,Left,Bottom,Right integer);
var
Scratchpad: integer;

begin
Scratchpad := Left;
Left := Top;
Top := Scratchpad;
Scratchpad := Right;
Right := Bottom;
Bottom := Scratchpad

end;

Give an example of a rectangle that procedure ChangeRec leaves
unchanged.

6. Write a program called program ThreeSort that reads in three real numbers
and then prints them out, largest to smallest. In your program, use a proce­
dure called SwapNumbers with the heading line

procedure SwapNumbers(var First,Second : real);

When your program passes SwapNumbers two numbers, it passes them
back with their positions switched.

7. Write an interactive program that reads in a sentence and prints out the
number of letters, both capital and lowercase, that you have typed.

8. Write an interactive program that reads in two characters and then a sen­
tence. If the two characters appear consecutively in the sentence, the pro­
gram reports this by printing out this character in the Text window.

9. Write an interactive program using the enumer­
ated type Directions defined in Section 7 .1. You
type in a direction-say, SouthWest-and the
program draws this picture:

w

N

E

s

10. Write a program that reads in several sentences and then prints out the per­
centage of all letters in the text that come from the first half of the alphabet
(A through Mand a through m). In order to read in more than one sentence,
you need to end the reading loop with some character other than a period.
Use a dollar sign in the while statement control line:

while (Ch () '$') do

264 Enumerated Types, the Type Char, and More on Procedures

11. Write a calendar program. You type in the name of a month, the number of
days in that month, and the day of the week that the month starts on, and it
prints out a calendar for that month. If you type in

January 31 Tue

the program prints out

JANUARY

Mon Tue Wed Thur Fri Sat Sun

1 2 3 4 5 6

7 8 9 10 11 12 13
14 15 16 17 18 19 20

21 22 23 24 25 26 27
28 29 30 31

12. How would you change program DrawEcho so that all a's in a text are
replaced with e's, all e's with i's, all i's with o's, all o's with u's, all u's with
y's, and all y's with a's?

The Type Boolean
and Subrange Types

True and False are important values in Pascal. When we say that an expression
such as

(Number (= 4)

is a test, we mean that True and False are its possible values. These two values
make up the type boolean-the major topic of this chapter.

We'll also talk about subrange types. A subrange type, which is a subtype of
another type, makes a program easier to understand.

__ 8.1 The Type Boolean: Pascal's True/False Type-------­
The type boolean-Pascal's fourth standard type-is surprisingly simple. It has
only two elements, the values True and False.

We can print out the elements of type boolean with program
BooleanElements, which appears in Figure 8.1. It prints the elements of type
boolean just the way program All Characters in Chapter 7 prints the Macintosh's
character set.

In the type boolean, ord(False) = 0 and ord(True) = 1, so (False (True)
just as ('A' ('a') in type char and (Mon (Wed) in the enumerated type
DaysOfWeek.

The variable declaration in program BooleanElements,

var
Test : boolean;

sets aside a location in memory for a variable of type boolean. The values that
can go in that location are limited to the two boolean values, True and False.

265

266 The Type Boolean and Subrange Types

r • file Edit Search Run Windows

BooleonElements

program BooleenElements;
Yllr

Test : boolean;
begin

for Test := False to True do
writeln(Test)

~o Te Ht
False
True

Figure 8.1 Program Boolean Elements and its output.

.,

Boolean variables work just like other variables. You can use boolean vari­
ables in readln, writeln,, and assignment statements, as we have done in program
BooleanDerrio, which appears in Figure 8 .2. If you type in True after the
prompt, the program will print o~t True.

r e Fiie Edit Searth Run Windows

BooteonDemo

jprogr11m BooleenDemo;
Y8r

Test Value , Answer : boolean;
begin

writeln('Type in a boolean value: True or False');
write('>');
readln(Test Value) ;
Answer := TestVolue;
writeln('The value you just typed is: ', Answer)

end.

Figure 8.2 Program BooleanDemo and its output.

Type in a
boolean value :
True or False
>False
The value you
just typed is :
False

.,

The type boolean is important because many Pascal commands-while, re­
peat-until, if-then-else-include (test) slots. A (test) slot can be filled by any
variable or expression that has a boolean value ~ Let's look at the connection be­
tween tests, boolean values, and boolean variables more closely.

8.2 Boolean Values and Tests 267

--- 8.2 Boolean Values and Tests---------------
Any expression that has or returns a boolean value is a boolean expression. Hence
odd(Number + 5) is a boolean expression, and so is (Number (= 5). We can use
a boolean expression in any (test) position.

Because a boolean expression has a value of True or False, we can assign its
value to a boolean variable. For example, suppose MoreToPrint is a boolean
variable. Then we can write the assignment

MoreToPrint := (Number (= 5)

This statement seems peculiar, but it's perfectly valid. When you run a pro­
gram that includes this statement, the computer evaluates the right side of the as­
signment first. Because the right side is a test, the result of the evaluation is a
boolean value. The type of the value on the right matches the declared type of
MoreToPrint, so the assignment goes through without a hitch.

Because MoreToPrint has a boolean value, we can use it in the test position
of a while statement, as we have in program NumberList.

program NumberList;
var

Number : integer;
MoreToPrint : boolean;

begin
Number := 1;
MoreToPrint := True;
while MoreToPrint do
{WHILE MORETOPRINT IS TRUE DOl
begin

writeln(Number);
Number := Number+ 1;
MoreToPrint := (Number (= 5)
{MORETOPRINT IS TRUE IF NUMBER IS LESS THAN OR EQUAL TO 5l

end
end.

The control line in the while loop

while MoreToPrint do

means

"While MoreToPrint is true, do the following."

Looping will continue as long as MoreToPrint is true, and MoreToPrint will
remain true as long as Number is less than or equal to 5. When Number exceeds
5, MoreToPrint becomes false and looping stops.

268 The Type Boolean and Subrange Types

EXERCISE 1 a. In program IfTest, what is the value of the boolean variable
FirstNumberlsGreater after you type in the values 6 and 7? What does
the program print?

program IfTest;
var
FirstNumberisGreater : boolean;
FirstNumber,SecondNumber : integer;

begin
writeln('Type in two integers.');
write(')');
readln(FirstNumber,SecondNumber);
FirstNumberisGreater := (FirstNumber) SecondNumber) ;
if FirstNumberisGreater then
writeln('The first number is greater than the second.')

else
writeln('First number is less than or equal to second.')

end.

b. What does program MoreNumbers print?

program MoreNumbers;
var

Number integer;
TooBig boolean;

begin
Number .- O;
TooBig .- False;
repeat

Number := Number+ 2;
writeln(Number);
TooBig := (Number) 10)

until TooBig
end.

Answer: 2-4-6-8-10-12 in a column -

---8.3 The Logical Connectives and, or, and not---------­
Look at the following if-then-else statement:

if (Top (Bottom) and (Left (Right) then
paintrect(Top,Left,Bottom,Right)

else
writeln('Sorry -- no rectangle')

The expression in test position includes two tests tied together by the re­
served word and. The word and, along with the words or and not, are Pascal's

8.3 The Logical Connectives and, or, and not 269

logical operators or logical connectives. Using logical operators, you can build
complex boolean expressions such as the one above in the (test) position.

Here is an example of an expression using the logical connective or, which
we could use to idiot-proof program Interest from Chapter 4.

if (Years (0) or (Principal (0.0) then
writeln('Bad input -- restart program. 1

)

else ...

The then part is executed if either one of the tests (Years (0) or (Principal (0.0) is
true.

The logical operator not is type boolean's flip-flop connective. It changes
the value of the variable or expression that comes after it. In program
RecurringHunger , the not changes the value of the variable Hungry each time
through the loop.

program RecurringHunger;
var
Count : integer;
Hungry : boolean;

begin
Hungry : = False;
for Count := 1 to 4 do
begin
Hungry := not(Hungry);
writeln('Am I hungry? 1 ,Hungry)

end
end.

Here is a summary of how the logical connectives work. We've used the
boolean variables p and q to illustrate the rules:

1. The expression (p and q) is true only if both parts of the expression are true.
That is, if p is true and q is true, then (p and q) is true.

2. The expression (p or q) is true if either part of the expression is true-that is,
if either p is true or q is true, or both are true.

3. The expression (not p) is true if pis false. And the expression (not p) is false if
p is true. Hence the not operator flips the value of a boolean variable or
expression.

Important: When you write a complex expression using several logical con­
nectives, always use parentheses to make the meaning clear. Where you place
the parentheses affects the value of the expression. For example,

not(p) and (q or r)

can have a different value from

not(p and (q or r))

270 The Type Boolean and Subrange Types

EXERCISE 2 a . What does program Easy print?

program Easy;
const
EasyToDo = True;

begin
wri te l n(not (EasyToDo));
wr i tel n(EasyToDo and not (EasyToDo));
writ eln(EasyToDo or not (EasyToDo))

end .

Answer: False False True printed in a column.

b. What does program Tastelt print?

program Tasteit ;
const

Edible = True;
var
Tasty,Appeal i ng,IMightTryit boolean;

begin
Tasty := True;
Appealing := False;
IMightTryit := Tasty and (Appeal i ng and Ed i ble);
writ el n(IMi ghtTryit)

end.

Answer: False

c . What does program Vote print?

program Vote ;
var
Experi enced,Honest,Corrupt,
NobodyElseBetter,IWillVoteForHer boolean;

begin
Experi enced := True;
Honest := True ;
Corrupt := not (Honest) ;
NobodyElseBetter := True;
IWi llVoteForHer := (Experienced and not (Corrupt))

or NobodyElseBet ter;
wri teln(IWi l l VoteForHer)

end .

Answer: True -

8.4 Flags 271

--8.4 Flags---------------------
Now we come to an important application of boolean variables-the flag. A flag
is a boolean variable that causes looping to end early when some special condi­
tion is met. Let's see how flags work by looking at a program that processes text,
that is, a program that works on data of type char.

Programs that process text often search for something-a vowel, a period,
or perhaps a special pattern of characters such as a word or a combination of
symbols. In this kind of program a loop is usually terminated in one of two ways:
Either you reach the end of the text, or you find what you are looking for (a dou­
bled letter, for example) and looping ends early. To end a loop early after you
find what you're looking for, you need a flag.

Program DoubledChar looks for doubled characters (such as the t's in Otto)
in a phrase or sentence. The program includes a flag called Found. Initially
Found is False. It changes from False to True when a doubled character is
encountered.

program DoubledChar;
{YOU TYPE IN A SENTENCE. PROGRAM REPORTS}
{FIRST PAIR OF DOUBLED CHARACTERS.}
const
Period ='. ';
Blank =' ';

var
Ch,PreviousChar : char;
Found : boolean; {THE FLAGJ

begin
Found :=False; {THE FLAG IS INITIALIZED TO FALSE.}
writeln('Type a sentence ending with a period.');
write(')') ;
read(Ch);
PreviousChar := Ch;
while (Ch () Period) and (not(Found)) do
begin

read(Ch);
if (PreviousChar = Ch) then
Found :=True; {IF FOUND BECOMES TRUE, LOOP ENDS EARLY.I

PreviousChar .- Ch
end;

writeln;
if Found then
writeln('The character ',PreviousChar,' is doubled in the sentence.')

else
writeln('There are no doubled characters in the sentence.')

end.

272 The Type Boolean and Subrange Types

Program DoubledChar includes two variables of type char-Ch and
PreviousChar. When Ch = PreviousChar, we have found a doubled character.

Before looping begins, the flag (Found) is initialized to False. Then a first
value for Ch is read in and assigned to PreviousChar as well.

If the first character you type is a period, the while loop is skipped altogeth­
er. Because Found is initially False, when the final if-then-else statement is
executed, the program reports that no doubled characters have been found.

If the first character is not a period, the while loop begins and another value
is read into Ch. Now PreviousChar is one character "behind" Ch, and the two
are compared to determine whether they are equal. If they are, Found is set to
True.

Then PreviousChar is assigned the value of Ch, and the loop test is evaluated
again.

If Found is True or if Ch is a period, looping is over and the final if-then-else
statement uses the value of Found to determine which output to print. Other­
wise, the loop does another iteration. See Figure 8.3 for sample output.

TeHt
Type a sentence ending with a period . ~
>Go c l lmb a tree
The character e Is doubled In the sentence .

~
121

Figure 8.3 Sample output for program DoubledChar.

Let's alter the program slightly so that it finds a doubled lowercase letter in­
stead of any doubled character. To do this, we will add a boolean variable called
IsALetter to the program and replace the if-then statement inside the while loop
with these statements:

IsALetter := ('a' (=Ch) and ('z')=Ch);
if (PreviousChar = Ch) and IsALetter then
Found := True;

If Ch is a lowercase letter, the variable IsALetter is set to True; otherwise it
is set to False. Next the (test) part of the if-then statement, which has two parts
connected by an and, is executed. It checks whether the current character equals
the previous character and whether the current character is a lowercase letter.
Once this if-then statement is added, you won't trip the flag if you type in two
blank spaces or two capital letters in a row.

Note: Program DoubledChar finds only the first set of doubled characters in
a sentence.

8.5 Matching Parentheses-A Proofreading Program 273

--8.5 Matching Parentheses-A Proofreading Program------­
Suppose that you open the Instant window, type

writeln(2 * 2))

and click on Do It. Immediately you are notified of your mistake:

~D lm~tant

How does MacPascal "know" that you failed to match the parentheses properly
in the writeln instruction?

As MacPascal processes your instruction, it checks the syntax of the expres­
sion in the writeln statement. The techniques and algorithms it uses are part of
syntactic analysis, an important and thoroughly studied area of computer sci­
ence. One small but significant part of the MacPascal program checks to deter­
mine whether parentheses match up. It is this algorithm that has complained
about your writeln statement.

For every left parenthesis in a statement, there must be a right parenthesis .
And in each pair, the left parenthesis must always come first. Here are some ex­
amples of matched and unmatched parentheses:

Matched

()
() ()
(())
((())())
()(())

Unmatched

((((
(((()))
())
)
())(()

If the parentheses in a program are not "legally" matched, Pascal won't run your
program .

Pascal checks other patterns as well. Turn back to program Checkerboard
in Chapter 6. If you ignore all the words and symbols except begin and end, you
will see the following pattern:

begin begin end end begin begin end end begin end
I L___.I I I L___.I I L___.I

Begin-end pairs in a program must match up according to the same rules
that determine whether parentheses are matched properly.

27 4 The Type Boolean and Subrange Types

Many other elements of a program must also match up according to the
rules for matching parentheses. In fact, the structure of matched parentheses
underlies much of the syntax of Pascal and nearly every other programming
language.

Let's write a program that checks whether the parentheses in a string of
characters match up. To write it, we need to state precisely what is required for a
string to be legal.

A string of parentheses is legal if two conditions are met . First, every paren­
thesis must have a partner, so there must be an equal number of left and right pa­
rentheses. Second, the left parenthesis must come first in each pair.

EXERCISE 3 Tell which of the following strings of parentheses are invalid, and explain
why.

a. ((())

b. ()) () (

c. (() ()) () -

We can use the following algorithm to spot violations of these conditions.
We'll invent a variable called Counter that has an initial value of zero. As we
read across the string from left to right, we will perform the following opera­
tions:

• Add I to Counter for every left parenthesis .

• Subtract I from Counter for every right parenthesis .

Here's how we decide whether the string of parentheses is legal:

1. If the value of Counter ever becomes negative, reject the string. (This de­
tects a right parenthesis that comes before its partner.)

2. If Counter ends up at a value greater than zero, reject the string. (This de­
tects left parentheses without partners.)

3. If Counter ends up at zero without ever going negative, accept the string.
(This means that left and right parentheses even out and that a right paren­
thesis never precedes its matching left parenthesis .)

Here is an example:

string: (() ())
Counter: I 2 I 2 I 0

accept

Here is another example:

string: (()) ()) (
Counter: I 2 I 0 I 0 -1 0

reject

8.5 Matching Parentheses-A Proofreading Program 275

Program ParenCheck is an interactive program that does this analysis. If
you type in a string such as (()), it will check whether the parentheses match
up. And because it ignores all characters except the parentheses, you can even
type in an entire program as the input to program ParenCheck. Program
ParenCheck will determine whether the parentheses match up properly in the
program you typed in as input.

program ParenCheck;
{PROGRAM CHECKS WHETHER A STRING OF PARENTHESES IS MATCHED PROPERLY.}
const
Period = ' . ' ;
Blank = ' ';

var
Counter integer;
Ch : char;
Acceptable : boolean;

procedure ProcessCharacter (Ch : char;
var Counter : integer;
var Acceptable : bool ean);

begin
if Ch= '(' then
Counter := Counter+ 1;

if Ch= ')' then
Counter := Counter - 1;

if (Counter (0) then
Acceptable := False

end;
{MAIN PROGRAM}

begin
Counter := O;
Ch := Blank;
Acceptable := True;
writeln('Type in a string of symbols, ending with a period.');
write(')');
while Acceptable and (Ch () Period) do
begin

read(Ch);
ProcessCharacter(Ch,Counter,Acceptable)

end;
writeln;
if (Counter = 0) and Acceptable then
writeln('***accept***')

else
writeln('***reject***')

end.

276 The Type Boolean and Subrange Types

Where Did the Word Boolean Come From?

Type boolean was named in honor of George Boole, an Irish mathematician.
Boole's father was a poor shoemaker who couldn't afford to send his son to
school. So as a boy Boole learned mathematics by himself, and by the time
he was sixteen , in 1831 , he was teaching math in a private academy. Later,
although he had never gone to college or university, he became professor of
mathematics at Queens College in Cork, Ireland.

Boole was interested not only in math but also in the process of th ink­
ing and reasoning. It seemed to him that it should be possible to set up strict
rules by which one could inquire into a subject and arrive at the correct an­
swer-the kind of reasoning that is called logic.

Boole wrote a book cal led An Investigation of the Laws of Thought. He
also discovered that he could use symbols in logical thinking. This meant
that logical reasoning began to look more like mathematics, and mathema­
tic ians became interested in the subject. Today Pascal uses these same
rules of logic to govern how the log ical operators behave when you use them
in boolean expressions.

We have used a boolean variable, Acceptable, to break out of the loop if
we discover early that the string is unacceptable. Acceptable is our flag .
If Acceptable ever becomes False, the loop ends. Note that it is passed as a var­
iable parameter to procedure ProcessCharacter. It is always True when
ProcessCharacter is called (Can you explain why?) but the procedure changes
the value of Acceptable if Counter becomes negative.

EXERCISE 4 What does program ParenCheck print if the first character is a period? -

Here are some sample data:

Input
(()

(a +(b + c))

) (

Output

reject

accept
reject

--8.6 The Mouse Button-----------------
MacPascal includes a standard function called button that reports True if the
mouse button is down and False if it isn't . Program ClickPoint, which appears in
Figure 8.4, shows how button works.

When you run program ClickPoint, the first repeat-until statement loops
continuously until you press the mouse button. Pressing the button terminates

8.6 The Mouse Button 277

,. s File Edit Search Run Windows
ClickPoint Te Ht

progrnm ClickPoint;
Posit i on of point is

-.c 161
{PROGRAt1 REPORTS POSITION OF THE}

L ·J

{PO INTER 'V'/HEN t'lOUSE BUTTON IS PRES SED}
iTHEN DRAWS A DOT AT THAT POINT} H

Ynr 0 Ora111ing
H, V : integer;

begin
repent

{LOOP DOES NOTHING}
{UNTIL BUTTON IS PRESSED}
until button:
repent

getrnouse(H . V)
unt i I not (b1.1tton) ;
wri tel n('Posi ti on of point is ').
writeln(H · 4, I/ : 4) : •
paintcircle(H, V, 1) ~

end.

lQJI

Figure 8.4 Program ClickPoint and its output.

the first loop. Then the second loop runs until you release the mouse button. Dur­
ing each iteration of the second loop, getmouse returns the current position of the
pointer, using the variables Hand V.

When you release the button, the location of the pointer (the final values of
Hand Vin the second 109p) is printed in the Text window, and a tiny circle is
drawn at this location in the Drawing window.

Button is a standard function that, like the function odd, returns a boolean
value. Odd takes as input the integer you put between parentheses. The input for
button doesn't come from inside the program at all. It comes from your finger:
Either you are pressing the button, and button returns True, or you're not, and
button returns False.

Here is another program that uses the button function. Program
Rectanglelnvert allows you to draw a pattern of black and inverted rectangles in
the Drawing window (see Figure 8.5). To create a rectangle, you press the mouse
button, drag the pointer down and to the right, and release the button. The
point where you start to drag the pointer will be the upper-left corner of the rect­
angle, and the point where you release the button will be the lower-right corner.
To stop the program, position the pointer to the left of the Drawing window and
click.

EXERCISE 5 Explain why rectangles show up only when you drag the pointer from the
upper left to the lower right. -

278 The Type Boolean and Subrange Types

'~ • File Edit Searrh Run Windows

program RectanQlelnvert.:
var

Rectangle I nuert

Top , Left .• Bottom , Right , H, v : integer .:
procedure Upperleft (var Left , Top : integer) ;
begin

repeat
getmouse(Left , Top)

until button
end ·
pro~edul"e LowerRight (val" Right , Bottom : integer) ;
begin

repeat
getmouse(Right, Bottom)

until not (button)
end ·

begin' {THE MAIN PROGRAM}
Left ·= o·
vhil~ (L~ft >= 0) do

begin
Uppet·Left(Left .• Top);
LowerRight(Right, Bottom) ;
invertrect(T op, Left, Bottom, Right)

•nd
end .

Figure 8.5 Program Rectanglelnvert with output.

Drawing

Here is one more program using the function button.

program Slinky;
{USES THE MOUSE TO DRAW A SERIES OF OVALS}
var
H,V,OvalType : integer;

procedure DrawAnOval(OvalType : integer);
{DRAWS ONE OF FOUR DIFFERENT KINDS OF OVAL.}
{OVALS ARE WIDER WHEN POINTER IS AT BOTTOM OF WINDOW.}
begin

case OvalType of
0 :

frameoval(V,H,V + 80,H + V) ;
1 :
paintoval(V,H,V + 80,H + V);

2 :
invertoval(V,H,V + 80,H + V);

3 :
eraseoval(V,H,V + 80,H + V)

end
end;

{MAIN PROGRAM}
begin
repeat
getmouse(H,V);

8. 7 Logic and Computers 279

OvalType := H mod 4; {H mod 4 PRODUCES A NUMBER FROM 0 TO).l
DrawAnOval(OvalType)

until button
end.

Program Slinky draws ovals like the ones in program OvalDraw in Chapter
7. In this program you click the mouse button to terminate the oval-drawing
loop. Slinky draws four different kinds of oval (see Figure 8.6).

Drowing

Figure 8.6 Sample output for program Slinky.

--8.7 Logic and Computers----------------
Type boolean is fundamental to computer science, because it is closely related to
an important area of mathematics known as mathematical logic. This subject
begins with the study of expressions built up from boolean variables and the logi­
cal operators and, or, and not. When is an expression true? This is the central
question of mathematical logic.

280 The Type Boolean and Subrange Types

Logic is important for computer science, because many basic questions in
computing can be answered with certainty only by using mathematical logic.
Here are three questions that computer people worry about every day:

1. Will a program do what we think it will do?

2. Does a program contain an infinite loop?

3. Will two programs that seem to do the same thing actually give identical
output when we give them identical input?

Computer scientists have studied these questions intensely. Using mathe­
matical logic, they have shown that for each of these questions, a "yes" answer
can be given if a certain formula of mathematics can be proved . If a formula can
be proved, we say it is a theorem. The formula is stated in the language of
mathematical logic, so it involves boolean expressions built up from and, or, and
not, as well as certain other symbols .

To see how this works, let's take as an example an enormous computer pro­
gram, tens of thousands of lines long, that NASA uses to guide spacecraft. There
is no margin for error in a guidance program, so NASA would like to know
whether there is some set of inputs that will cause their program to go into an in­
finite loop.

Computer scientists give this answer: Transform your program into a giant
formula. If you can prove it, your astronauts will have one less worry. No infinite
loop in a guidance program will strand them in space.

But who's going to prove that the formula is a theorem? So far no one can
come close to proving the kind of theorem that NASA would need to prove in
order to certify that its guidance program is free from infinite loops. But some
day computers may be able to do this. In an area of computer science known as
computational logic, researchers are hard at work constructing programs to
prove theorems.

This is why the type boolean is fundamental. It is Pascal's type for doing
logic. Coming up is a very simple, very crude, cut-rate theorem prover. NASA
would never buy it, but it will work.

--8.8 The Truth Table-----------------
Suppose you are interested in the boolean expression p or q. When is it true and
when is it false? The answers to this basic question of mathematical logic are usu­
ally reported in a truth table. Here is the truth table for the expression p or q.

p q p or q

False False False
False True True
True False True
True True True

8.8 The Truth Table 281

The first row of the truth table says that, if pis false and q is false, then p or q
is false. The table lists all the possible combinations for the values of p and of q,
and for each combination it lists the value for the boolean expression p or q. You
can write a truth table for any boolean expression.

EXERCISE 6 Complete the following truth table for p and (not q).

p q p and (not q)

False False False
False True ?
True False ?
True True ? -

Now let's use the computer to build a truth table for the boolean expression
(not p) or (not q). To generate the four possible combinations of truth-table val­
ues for p and q, we will use a nested loop.

program TruthTable;
{PRINTS TRUTH TABLE FOR THE BOOLEAN EXPRESSION: (not p) or (not q)l
var
p,q,Answer boolean;

begin
writeln('p' 10, 'q' : 10, 'Answer' 10);
writeln;
for p := False to True do
for q := False to True do
begin
Answer .- (not p) or (not q);
writeln(p : 10,q : 10,Answer : 10)

end
end.

The first writeln statement prints the labels for the top line of the truth
table . Next Pascal begins execution of the outer for loop . Because there is only
one statement in its body-the inner for loop-the body of the outer loop does
not need a begin-end pair. The first for statement initializes the boolean variable
p to False. Then the computer comes to the inner loop, where the second for
statement initializes q to False.

Now the computer gets to the line

Answer := (not p) or (not q);

First it evaluates the boolean expression on the right side of the assignment
statement. Because both p and q are False during the first trip around the two

282 The Type Boolean and Subrange Types

loops, the formula is true. (Make sure you believe this!) So the value True is
copied into the variable Answer. The writeln statement is then executed, print­
ing the first row of the truth table:

False False True

The colon notation right-justifies the output in a field 10 spaces wide, keeping
the rows of the truth table straight.

Next the inner loop is done again, this time with q holding the value True.
Again Answer is true, and the next row in the truth table is printed:

False True True

This ends the first complete execution of the inner loop.
Now the outer loop variable, p , is set to True and the inner loop is executed

again, printing the last two rows of the truth table . The complete output is
shown in Figure 8. 7.

=D Te Ht
p Q Answer IQ]

False Fal se True
False True True
True False True
True True Fal se

~
l2J

Figure 8.7 Output for program Tru thTable.

__ 8.9 Truth Tables and Theorems _____________ _

A boolean expression is a theorem if, in each row of its truth table, the entry in
the Answer column is True. For example, the expression

p or not(p)

is a theorem, because it is true no matter what value p has. Similarly, the
expression

(p or q) or (not(p) and not(q))

is a theorem, because it is true for any combination of values for p and q.
We will build our theorem prover using the truth table for a boolean expres­

sion. If we ever find the value False in the Answer column, we will know we
have a non-theorem on our hands (see Figure 8.8) .

8.9 Truth Tables and Theorems 283

~D Te Ht
Truth Table for (p or q) or (r or not(r)) ~

p q r Answer

False False False Trlie
False Fal se True True
False True Fa 1.se True
Fal se True Trlie True
True False Fal se True
True False True True
True True False True
True True TrLrn TrL1e

It's a theorem! ~
~

Figure 8.8 Output for program TheoremProver.

program TheoremProver;
{PROGRAM PRINTS A TRUTH TABLE FOR A BOOLEAN FORMULA)
{AND DECIDES WHETHER THE FORMULA IS A THEOREM.)
var
p,q,r,Answer,Theorem : boolean;

begin
Theorem := True ;
wr i teln('Truth Table for (p or q) or (r or not (r)) ');
writeln;
wr i teln('p': 8,' q ': 8, ' r ' : 8,' Answer ' : 14) ;
wr i teln;
for p : = False to True do
for q := False to True do
for r := False to True do
begin

Answer := (p or q) or (r or not (r)) ;
Theorem : = Theorem and Answer;
writeln(p : 8, q : 8,r : 8,Answer : 14)
{PRINTS TRUTH TABLE}

end ;
writeln;
if Theorem then
wri te l n(' It ' 's a t heorem ! ')

else
wri teln (' Not a theorem. ')

end .

284 The Type Boolean and Subrange Types

Let's see how the theorem prover decides whether a formula is a theorem.
First the boolean variable Theorem is initialized to True: The program assumes
that the formula it is working on is a theorem until the value False is found in the
Answer column of the truth table.

As long as only the value True is found in the Answer column, the boolean
variable Theorem remains true, because the formula

Answer and Theorem

is true as long as both Answer and Theorem are true.
But suppose a value False is found for Answer. Then the statement

Theorem := Theorem and Answer;

sets Theorem to False. Theorem will remain false, because the value of the
boolean expression (Theorem and Answer) is false.

A Pascal curiosity: The line

writeln('It''s a theorem');

does not have a typo in it. In order to get Pascal to print an apostrophe, you must
use two single quotation marks right next to each other.

Our theorem prover works fine, but it has two major limitations. First, it
can attempt to prove theorems that have at most three boolean variables, and
these variables must be named p, q, and r.

Second, the theorem prover is not interactive. When you try it out on a new
formula, you must change the line in the program that lists the formula. For ex­
ample, if you want to try to prove the theorem

p or (q or r)

you have to change the line of the program that reads

Answer := (p or q)and(r or not(r))

to

Answer := (p or q or r)

Now we come to an important point. An interactive program takes input
data and applies a list of instructions to the data. Then it prints an answer. When
you run it again on new data, the same instructions work on the new data to pro­
duce a new answer. The program's input is separate from the program itself.

Our theorem prover doesn't work this way. Every time you change the for­
mula you want to prove-that is, every time you change the data that the pro­
gram works on-you actually have to change one of the program's instructions.
Changing an instruction every time you run a program can make program
testing and debugging very difficult, so writing this kind of non-interactive pro­
gram is generally not good programming practice.

8 .10 Subrange Types 285

Still, we have included the theorem prover because it is a good illustration of
the type boolean in action. And for now, writing an interactive theorem prover,
which completely separates data from instructions, would be too complex a
project.

EXERCISE 7 a. How many rows in the truth table for the formula (p or q) or r have True
entries in the Answer column? Check your answer using the theorem
prover.

b. How many rows in the truth table for the formula (p and q) and r have
True entries in the Answer column? Check your answer using the theo­
rem prover. -

__ 8.10 Subrange Types ________________ _

Suppose you write a program to record your weekly activities, and the program
includes the enumerated type DaysOfWeek:

DaysOfWeek = (Mon , Tue ,Wed, Thur , Fri, Sat ,Sun) ;

Now suppose that , in one part of the program , you want to calculate your
weekday earnings. In Pascal you can identify the weekdays, Mon through Fri,
and make them a separate type called a subrange type. To do this , you first de­
clare the parent type DaysOfWeek, and then you declare the subrange:

type
DaysOfWeek = (Mon,Tue ,Wed,Thur,Fri, Sat , Sun) ;
Weekdays = Mon .. Fri;

Note the syntax: After the parent type has been defined, you name the
subrange type (Weekdays). Then you define it by naming an element of the par­
ent type (Mon), followed by two dots , followed by a later member of the same
type (Fri).

Weekdays is now a genuine type, so you can declare a variable of type
Weekdays:

var
Workday : Weekdays;

Here are some other examples of subranges.

Letters= 'a' .. ' z'; !PARENT TYPE IS CHAR}
Digits= '0' .. '9'; I PARENT TYPE IS CHARl
SmallNumbers = 0 .. 9; {PARENT TYPE IS INTEGER}
JulyDays = 1 .. Jl ; I PARENT TYPE IS INTEGER}
TwentiethCentury = 1900 .. 1999; !PARENT TYPE IS INTEGER}
OvalType = O .. J; {PARENT TYPE IS INTEGER}

286 The Type Boolean and Subrange Types

Subranges are useful because they make programs more understandable.
But subranges have several limitations. You can't have a subrange of type real.
Also, elements from a subrange must run consecutively in the parent type. This
means that the letters of the alphabet, which appear one after another in type
char, can be represented by the subrange

'a' .. 'z'

But you cannot make a subrange of the vowels a, e, i, o, and u, because they
don't appear one after the other within type char.

Program QuizScores reads in a list of ten quiz scores and then, using two
subrange types, calculates and reports both the total score and the average score.

program QuizScores;
{YOU TYPE IN 10 QUIZ SCORES.}
{PROGRAM CALCULATES TOTAL SCORE AND AVERAGE SCORE.}
const
QuizCount = 10;

type
Quizzes= 1 .. QuizCount; {QUIZZES IS A SUBRANGE OF TYPE INTEGER.}
ScoreRange = 0 .. 100; {SCORERANGE IS SUBRANGE OF TYPE INTEGER.}

var
TotalScore integer;
Average : real;
Quiz : Quizzes;
Score : ScoreRange;

begin
{LOOP READS IN THE SCORES & CALCULATES TOTAL SCORE}
TotalScore := O;
for Quiz := 1 to QuizCount do
begin
writeln('Type in score from 0 to 100 on quiz number ',Quiz 1);
write(')');
readln(Score);
TotalScore := TotalScore + Score

end;
{CALCULATES AVERAGE SCORE}
Average := TotalScore / QuizCount;
{REPORTS TOTAL SCORE AND AVERAGE SCORE}
writeln('The total score is ',TotalScore : 1);
writeln('The average score is ',Average : 3 : 1)

end.

Note how the subranges make the program more readable. ScoreRange, for
example, tells us how quizzes are graded-on a scale from 0 to 100. If we had
made Score a variable of type integer, we would know less about the problem
when we looked at the program.

Problems 287

The definition of the constant QuizCount and the declaration of the type
Quizzes work together to make the program easy to modify. If the number of
quizzes changes from 10 to 12, all you have to do is change the constant
QuizCount.

EXERCISE 8 Suppose your instructor decides to give 5 bonus points on each quiz so that
the highest score can now be 105. How would you alter program QuizScores
to handle this change? -

---TEST YOURSELF---------------
1. What is pred(True)?

2. What is one of the basic questions of mathematical logic?
3. Give an example of a subrange type with parent type integer.

4. What is a boolean expression called when all entries in the Answer column
of its truth table are True?

5. What is a flag?
6. When you write a program to check whether begin-end pairs match up

properly, what area of computer science are you working in?
7. What are Pascal's logical connectives?
8. Can you make a subrange out of the digits 1 through 9?
9. Can you make a subrange that consists of the letters A through Zand the let­

ters a through z?

___ PROBLEMS-----------------
1. Suppose Tall , Dark , and Handsome are boolean variables, and suppose Tall

is false but Dark and Handsome are true. What are the values of the follow­
ing boolean expressions?
a. (Tall or Dark) and Handsome
b. not (Tall) and (Handsome or Dark)
c. Tall and (Handsome and Dark)
d. not (Tall and (Dark and Handsome))

2. What does program Display print?

program Display ;
var
p,q : boolean;

begin
for p := True downto False do
for q : =True downto False do
writeln(p : 8,q : 8)

end.

288 The Type Boolean and Subrange Types

3. Suppose that Hand V are the coordinates of a point in the Drawing window
and that Top, Left, Bottom, and Right determine the boundaries of a rect­
angle. Write a boolean expression that is True when the point (H, V) lies in­
side (or on the border of) the rectangle and is False otherwise.

4. True or false: A boolean expression made up of boolean variables and's and
or's-but no not's-can never be a theorem.

5. Rewrite program DoubledChar using a repeat-until loop. (Hint: The until
part of the loop should read as follows: until Found or (Ch= Period).

6. Write a program that reads in a sequence of characters interactively and
prints ***acceptable*** if there are equal numbers of lowercase a's and
lowercase b's.

7. a. Using pencil and paper, do the truth table for

if p then q else r

Remember: This expression means

if pis true
then the value of q is the answer
else the value of r is the answer

Hint: For the row p =True, q =False, r =True, the value in the An­
swer column should be the value of q-False.

b. Use program TheoremProver to print the truth table, using the expres­
sion

if p then
Answer .- q

else
Answer .- r

8. Change program TheoremProver so that it doesn't do extra loops once it has
discovered a False row in the truth table.

9. Suppose program ParenCheck has the following bug in it. Instead of being
declared as a variable parameter in the heading line of procedure
ProcessCharacter, the formal parameter Acceptable is identified as a value
parameter. Give an example of an illegal string that this faulty version of
program ParenCheck would report as acceptable.

10. Write a program that reads in a sentence ending with a period and prints
out the number of words in the sentence. Assume that (in addition to letters)
only spaces, commas, and the period are allowed.

11. Write a program that reads in a sentence ending with a period and echoes
the sentence to the Drawing window with all extra spaces between words
deleted.

.::.

.-. J .,)

4 6
c 10 ._I

6 1 c ._I

"') 21 I

fi .-, .:.
LU

4 Arrays
10 c 1

._I I

20 15 6
·:·c ·:·c 21 "')
._l._1 ._1._I I

c .- 70 56 ·-1 ·::· i3 ._1t1 .:: IJ

Many computer programs process huge amounts of information. In order for
them to read in, store, and process masses of data, the data need to be organized,
or structured. In this chapter we will discuss one important way to organize in­
formation-the array.

__ 9.1 The Rutland Street Survey: A First Look at Arrays -------
Suppose you are given a special assignment in your sociology class : You are to do
a series of computer surveys of your street.

0000000000 0 0
2 3 4 5 6 7 8 9 10 11 12

You live on Rutland Street, where the houses are numbered from 1 through
12. After you find out how many people live in each house, your assignment is to
write a program that calculates the total number of people on the street , the av­
erage number of people per household, and the largest household . So you make a
trip down Rutland Street, asking at each house how many people live there and
recording the answers on paper in preparation for doing your programming as­
signment.

To do the required calculations in Pascal, you need a variable of type integer
for each house on the block. Each variable will hold a value for the number of
people living in a particular house.

You could declare the variables this way:

var
RutlandStl,RutlandSt2,RutlandStJ,RutlandSt4,
RutlandSt5,RutlandSt6,RutlandSt7,RutlandSt8,
RutlandSt9,RutlandStl O,RutlandStl l,
RutlandSt12 : integer;

289

290 Arrays

But writing out this giant declaration is tedious. And there's more trouble ahead.
To enter the data, you need 12 groups of statements like these 3 for RutlandStl:

writeln('How many people live at 1 Rutland St? ');
write(')');
readln(RutlandStl);

Imagine how painful things could get if Rutland Street had 50 or 100 houses!
This is where arrays come in. Using an array variable, you can declare the

12 Rutland Street variables all at once. They will be named RutlandSt[l],
RutlandSt[2] , RutlandSt[3], and so on, up to RutlandSt[l2].

Each of the 12 variables is called a component of the array, or a component
variable. And each of the components is identified by a number in square brack­
ets, which is called the index of that variable.

Don't let the square brackets confuse you. The component variables­
RutlandSt[l], RutlandSt[2], and so on-are legitimate variables that can be used
in assignment statements, writeln statements, or any other kind of statement
we've seen so far.

You must write RutlandSt[5] with square brackets when you refer to the
fifth RutlandSt variable. No RutlandSt(5) allowed!

To create the array variable RutlandSt , you first give a type definition.
Then you give the RutlandSt variable declaration .

type
StreetSurvey = array[l .. 12] of integer;

var
RutlandSt : StreetSurvey;

The StreetSurvey definition and the RutlandSt declaration instruct the
Macintosh to create the 12 RutlandSt variables. The definition and declaration
also command the Macintosh to set aside in memory 12 locations, or cells, in­
dexed by the numbers l through 12. When you run the program , these cells hold
the values of the component variables . The type definition specifies that only in­
teger values can go in the cells. After it has been declared , the array will look like
this in memory:

RutlandSt

cells

indexes 2 3 4 5 6 7 8 9 10 11 12

The numbers that label the cells in this diagram are abbreviations for the full
name of the component variable. The label 5, for example, is short for
RutlandSt[5].

The index of an array variable-what's written between the brackets-can
be a number, a variable, or even a complex expression. If the variable
HouseNumber has the value 8, then

9.1 The Rutland Street Survey: A First Look At Arrays 291

RutlandSt[HouseNumber]

refers to the eighth component variable of the array, or RutlandSt[8].
RutlandSt[HouseNumber + l] is the component RutlandSt[9].

Now let's look at our first survey program, which merely reads in and then
prints out the number of residents in each house on the street. The first loop reads
in the number of people who live in each house. HouseNumber is the control
variable for the loop and the index for the array. As HouseNumber advances
from 1to12, the expression RutlandSt[HouseNumber] stands, in turn, for each
of the component variables from RutlandSt[l] to RutlandSt[l2]. The readln
statement puts values into these 12 variables, one after another.

The second loop prints a table. Each row in the table lists a house number
followed by the number of people at that house.

program Survey;
{YOU READ IN THE NUMBER OF PEOPLE THAT LIVE IN EACH HOUSEi

' {ON RUTLAND ST. PROGRAM PRINTS A TABLE OF THE POPULATION DATA.I
type
StreetSurvey = array[l .. 12] of integer;

var
HouseNumber : integer;
RutlandSt : StreetSurvey;

begin
{DATA ENTRY LOOP}
for HouseNumber := 1 to 12 do
begin
writeln('How many people live at ',HouseNumber 1,' Rutland St?');
write(')');
readln(RutlandSt[HouseNumber])

end;

{PRINT TABLE HEADINGS}
writeln;
writeln('House Number People');

{PRINT SURVEY DATA}
for HouseNumber := 1 to 12 do
writeln(HouseNumber : 6,RutlandSt[HouseNumber] : 13)

end.

Here's what happens when you run program Survey. When the statement

readln(RutlandSt[HouseNumber]);

is first executed inside the data-entry loop, the value of HouseNumber is 1. So
RutlandSt[l] receives the value you type, and that value is stored in the first cell
in memory that has been created for the array.

292 Arrays

During the second iteration of the loop , HouseNumber is 2, so you read in a
value for RutlandSt[2]. The data entry process continues, filling each cell of the
array, until the twelfth loop is completed.

Then the second for loop is executed. The first time

writeln(HouseNumber : 6,RutlandSt [HouseNumber] : 13)

is executed, the value of HouseNumber is 1. So a 1 is printed, followed by the
value of RutlandSt[HouseNumber].

The Macintosh figures out the value of RutlandSt[HouseNumber] in two
steps. First it looks up the value of HouseNumber to determine which of the com­
ponent variables it is working on. It finds that HouseNumber is 1. So it looks up
the value of RutlandSt[l], which is stored in the first cell set aside in memory for
the array. There it finds the value that you typed in, and this is the value that's
printed.

The loop goes through 12 iterations, each time printing a new house num­
ber, followed by the number of people who live in that house.

If you read in the values 3, 5, 7, 2, 4, 9, 1, 6, 4, 3, 4, and 5 for the number of
residents in each house, the array RutlandSt will look like this in memOFy:

RutlandSt

cells 3 5 7 2 4 9 6 4 3 4 5

indexes 2 3 4 5 6 7 8 9 10 11 12

And here is what program Survey's output will look like:

~D Te Ht

House Number People
1 3
2 5
3 7
't 2
5 't
6 9
7 1
8 6
9 't

10 3
11 't
12 5

EXERCISE 1

9.2 The Blueprint for an Array-Array Type Definitions 293

Assume that the array RutlandSt is filled as we have just indicated, and find
the value of:
a. RutlandSt[lO]
b. RutlandSt[7] + RutlandSt[3]

Answer: 8

c. RutlandSt[7 + 3]

Answer: 3

d. Suppose we change the second for loop in program Survey to the follow­
ing:

HouseNumber := 12;
while (HouseNumber) 0) do
begin
writeln(RutlandSt[HouseNumber]);
HouseNumber := HouseNumber - 1

end

Tell what this change does. -

The array variable RutlandSt is set up to match the layout of the houses on
the street: 12 houses, 12 variables, and 12 locations in memory. Whenever you
write a program involving a group of related quantities (the number of people in
each of 12 houses, the amount of money you earn each month, the distance from
the sun to each of the planets), you will need to use an array. Getting an array
declaration right, so that it matches an application, requires careful thinking,
and this is what we want to talk about next.

__ 9.2 The Blueprint for an Array-Array Type Definitions _____ _

Let's look at array declarations more closely. When you run program Survey, the
Macintosh first takes note of StreetSurvey's type definition.

type
StreetSurvey = array[l .. 12] of integer;

var
RutlandSt : StreetSurvey;

Then it comes to the variable declaration for RutlandSt and sees that RutlandSt
is of this type. So it looks back to the type definition, which it uses as a kind of
blueprint. The blueprint tells the Macintosh to create 12 variables and set aside
12 cells in memory to hold their values. The blueprint also specifies that the vari­
ables and their cells in memory will be indexed by the numbers 1 through 12.

294 Arrays

Component Type
In addition, the type definition tells what kinds of value can go in the cells. A
component of an array variable of type StreetSurvey can hold integer values
only. The type integer in the definition is called the component type for arrays of
type StreetSurvey.

Index Type
The portion of the type definition in brackets,

1. .12

is called the index type. The index type for StreetSurvey is a subrange of type in­
teger. The values in the subrange-the numbers 1 through 12-identify, or
index, the component variables created by an array declaration of type
StreetSurvey. The index type also tells how many component variables there are.

What if Rutland Street has 15 houses numbered 11 through 25? Then we
write

type
StreetSurvey = array[ll .. 25] of integer;

var
RutlandSt : StreetSurvey;

Now StreetSurvey is a blueprint for arrays with 15 variables. The RutlandSt
array declaration creates RutlandSt variables running from RutlandSt[ll]
through RutlandSt[25] and 15 cells in memory to hold the integer values of these
variables. The notation 11..25 defines the index type, which is the subrange of
type integer running from 11 through 25.

The component variables of an array do not have to be identified by num­
bers. You can use letters or elements of an enumerated type to identify compo­
nents. This is a wonderful feature of Pascal: The components of an array can be
labeled with characters, days of the week, months, states, countries, planets
-you name it. The types real and integer won't work, however, because they
don't have a fixed range. But subranges of type integer will work, and so will
subranges of enumerated types and subranges of type char.

Suppose you were doing your survey in an apartment building at 34 Kellogg
Avenue. If the apartments were labeled A through J, your array declaration
would look like this:

type
AptBldg = array['A' .. 'J'] of integer;

var
ThirtyFourKellogg : AptBldg;

9.3 Keeping a Running Total-Program PeopleOnBlock 295

As before, the component type is integer, because the value of a component vari­
able represents the number of people in an apartment. But the index type is the
subrange of char 'A' .. 'J'. The. component variable ThirtyFourKellogg[(A)]
stands for the number of people living in apartment A. ThirtyFourKellogg[(B)]
stands for the number of people living in apartment B, and so on.

When you are writing a type definition for an array, it often helps to tie the
index type to concrete objects that are the subject of your program . Instead of
imagining memory divided into abstract cells, imagine that the cells in memory
are a street of houses numbered 1 through 12, a row of passenger seats in an air­
plane that are designated A through F, or planets in the solar system from Mer­
cury to Pluto.

EXERCISE 2 For each of the following array declarations, give the component type, the
number of component variables, and the index type.

a. type
ScoreByinnings = array[l .. 9] of integer;

var
Scores : ScoreByinnings;

b. type
LetterFrequency = array['a' .. 'z'] of integer;

var
LetterScore : LetterFrequency;

c. type
MonthlyRainfall = array[Jan .. Dec] of real;

var
LastYearsRain : MonthlyRainfall;

What type do you need to define before you define the array type
MonthlyRainfall? -

__ 9.3 Keeping a Running Total-Program PeopleOnBlock _____ _
Now let's use an array to do a simple but very important kind of calculation.
Your assignment asks for the total population and the average household size on
Rutland Street . If you did this by hand, you might visit the houses on the street,
adding in the number of residents in each house as you go. At the end of the block
you would have the total population figure, which you could divide by 12 to get
the average household size.

296 Arrays

Program PeopleOnBlock works in just this way. After you fill the array
RutlandSt with the number of people living in each house, the program "visits"
each component of the array. It adds in the value of each component to the vari­
able TotalPop, which keeps a running count of the street population. Here is pro­
gram PeopleOnBlock.

program PeopleOnBlock;
{YOU READ IN NUMBER OF PEOPLE THAT LIVE IN EACH HOUSE ON STREET)
{PROGRAM PRINTS OUT TOTAL POPULATION AND AVERAGE SIZE OF HOUSEHOLD.)
type
StreetSurvey = array[l .. 12] of integer;

var
RutlandSt : StreetSurvey;
TotalPop,HouseNumber : integer;
AverageNumber : real;

begin
{READ IN NUMBER OF PEOPLE IN EACH HOUSE)
for HouseNumber := 1 to 12 do
begin
writeln('How many people live in house number '

HouseNumber : 1, '?');
readln(RutlandSt[HouseNumber])

end;

{CALCULATE TOTAL POPULATION OF RUTLAND ST.l
TotalPop := O;
HouseNumber := 1;
while (HouseNumber <= 12) do
begin
TotalPop : = TotalPop + RutlandSt[HouseNumber];
HouseNumber .- HouseNumber + 1

end;

{CALCULATE AVERAGE NUMBER OF PEOPLE PER HOUSE)
AverageNumber := TotalPop / 12;

{PRINT OUT TOTAL POPULATION AND AVERAGE SIZE OF HOUSEHOLD)
writeln('There are ',TotalPop : 1,' people on the block.');
writeln('Average number of people per house is '

AverageNumber : 4 : 2)
end.

As before, the first loop reads in the value for each of the 12 component vari­
ables for the array RutlandSt.

9 .4 Finding the Largest Household 297

The second loop calculates the number of people living on the block by
keeping a running total. First, TotalPop is initialized to zero. Then the loop adds
the number of residents living in each house to the value of TotalPop. Each time
through the loop, the value of the next array variable is added to TotalPop, and
then the index of the variable is incremented by l.

Finally, the average number of people per household is calculated, and the
total number and the average are printed out.

EXERCISE 3 Suppose Rutland Street is numbered with the odd houses on the north side of
the street and the even houses on the south side, like this:

000000
North 3 5 7 9 11

00000 0
South 2 4 6 8 10 12

The following loop calculates the number of occupants on the south side.

TotalPop := O;
HouseNumber := 2;
while (HouseNumber (= 12) do
begin

TotalPop := TotalPop + RutlandSt[HouseNumber];
HouseNumber := HouseNumber + 2

end;

Write a loop that calculates the number of occupants on the north side. -

__ 9_4 Finding the Largest Household------------­
Suppose you want to find the largest household on Rutland Street. Finding the
component of an array that holds the largest value is a very common and very
important calculation. When you search for the largest household, you are
looking for the index that identifies the component variable with the largest
value. To find this index, you will need a new variable of type integer to repre­
sent the number of the house with the most residents. We'll call this variable
MostFolks. The following piece of code tacked onto the body of program
PeopleOnBlock will find the largest household.

{LARGEST HOUSEHOLD LOOPl
MostFolks := 1; {ASSUME LARGEST HOUSEHOLD IS AT # ll
for HouseNumber := 1 to 12 do
if RutlandSt[HouseNumber]) RutlandSt[MostFolks] then
MostFolks := HouseNumber;

writeln('Biggest household is at ',MostFolks : 1,' Rutland Street.')

298 Arrays

We start out by assuming that house number l has the most people:

MostFolks := 1;

Then we loop through the houses, comparing the number of residents at the cur­
rent largest household with the number of residents in each house. That is , we
compare the value of RutlandSt[MostFolks] with the value of RutlandSt[2] ,
RutlandSt[3] , and so on. Whenever we find a house with more residents than the
current MostFolks household, we change the value of MostFolks to the number
of this house.

If the problem had asked for the number of people in the largest household ,
and not for the address of the house, the code would be the same except for the
final statement , which would now read

wr iteln('Biggest household has ', RutlandSt[MostFolks] : 1, ' residents')

EXERCISE 4 a. Will we get the right answer if the control line of the largest household
loop looks like this?

for HouseNumber := 2 to 12 do

b. Suppose the RutlandSt array is filled with the values in the diagram on
page 292. If you ran the Largest Household loop with these values in the
array, MostFolks would initially have the value l and would end with
the value 6. What other values would MostFolks have as it stepped
through the loop?

c. What are the component type and the index type for the array type
HouseKind given below? Explain what the variable RutlandHouseKind
keeps track of.

type
ConstructionType = (WoodFrame,Brick , Cinderblock,Stone,Adobe);
HouseKind : array [l .. 12] of ConstructionType;

var
RutlandHouseKind : HouseKind ; ..

--9.5 The Scoreboard Principle---------------
You can use an array to do more complicated kinds of record keeping. For exam­
ple, you can use an array as a kind of scoreboard. Imagine a scoreboard during
the fourth inning of a baseball game:

Home team runs 0 2

Inning 2 3 4 5 6 7 8 9

9.5 The Scoreboard Principle 299

Every time the home team scores a run in the fourth inning, the number in the
fourth cell of the scoreboard is incremented by l. If we were to represent the
scoreboard with an array called HomeTeamRuns, we would show that the home
team scored another run in the fourth inning by writing

HomeTeamRuns[4] := HomeTeamRuns [4] + 1;

When we use an array in this way to tally up data in a program, we are using the
scoreboard principle.

Program QuestionDay

Let's see how the scoreboard principle can help with our Rutland Street survey.
Suppose you want to write a program that reads in the day of the week that you
visited each house on the block. Then the program prints the number of houses
you visited on each day of the week.

If you wrote down the day you visited each house, you might come up with
a chart something like this one:

Chart 1: When Visited

Day visited

Tue Tue Tue Tue Tue Wed Wed Thur Sat Mon Sun Sun

2 3 4 5 6 7 8 9

House number

If you made this chart into an array, its type would be

array[l .. 12] of DaysOfWeek

10 11 12

Now suppose you use paper and pencil to calculate how many houses you
visited each day. You might tally the information from the When Visited chart in
a second chart like the following one, which serves as a scoreboard:

Chart 2: Surveys per Day

Number of houses visited ._I _' __,f_"ffll-_~l _11__.I __ ~-~-~-'-' ~
Day Mon Tue Wed Thur Fri Sat Sun

If you declared the second chart as an array, it would have type

array[DaysOfWeek] of integer

Now let's create two arrays called WhenVisited and SurveysPerDay, and
use them in a program called QuestionDay. Program QuestionDay stores the

300 Arrays

day you visited each house in When Visited, and tallies the number of houses
visited each day in the scoreboard array SurveysPerDay. Here is the program:

program QuestionDay;
{TYPE IN THE DAY YOU VISITED EACH HOUSE ON RUTLAND STREET.}
{PROGRAM PRINTS TABLE OF THE NUMBER OF SURVEYS DONE EACH DAY.}
type

DaysOfWeek = (Mon,Tue,Wed,Thur,Fri,Sat,Sun);
VisitDay = array[l .. 12] of DaysOfWeek;
SurveyRecord = array[DaysOfWeek] of integer;

var
SurveysPerDay : SurveyRecord; {THE SCOREBOARD ARRAY}
WhenVisited : VisitDay; {STORES DAY EACH HOUSE WAS VISITED}
HouseNumber : integer;
Day : DaysOfWeek;

begin
{DATA ENTRY LOOP}
for HouseNumber := 1 to 12 do
begin
writeln('Type in day of week you visited ',

HouseNumber: 2,' Rutland Street.');
write(')');
readln(WhenVisited[HouseNumber]);
writeln

end;

{INITIALIZE THE ARRAY SURVEYSPERDAYl
for Day := Mon to Sun do
SurveysPerDay[Day] := O;

HouseNumber := 1;
{TALLY WHENVISITED INFORMATION IN SURVEYSPERDAYl

while (HouseNumber (= 12) do
begin

Day := WhenVisited[HouseNumber];
SurveysPerDay[Day] := SurveysPerDay[Day] + 1;
HouseNumber := HouseNumber + 1

end;

{PRINT TALLY OF THE NUMBER OF SURVEYS DONE EACH DAY}
writeln('DAY OF WEEK SURVEYS DONE');
for Day := Mon to Sun do
writeln(Day : 8,SurveysPerDay[Day] : 10)

end.

The data-entry loop in program QuestionDay fills the array When Visited.
Then the tally loop transfers this data to the array SurveysPerDay, the score­
board array.

9.6 Out-of-Range Errors: Program HowManyNeighbors 301

In the tally loop, the first statement assigns to the variable Day the day
when a particular house is visited. In the second statement, the value of Day be­
comes an index for the array SurveysPerDay, and the variable with that index is
incremented by 1.

This is an important part of the scoreboard principle. A value in the data­
entry array has become an index in the scoreboard array. For example, in the
tally loop of program QuestionDay, every time the value of WhenVisited
[HouseNumber] is Tue, the value of SurveysPerDay[Tue] is incremented by 1.

Note that we initialized the components of the array SurveysPerDay before
using it as a scoreboard. If we hadn't initialized the array, all of the
SurveysPerDay component variables would be undefined or would hold arbi­
trary values when the program reached the tally loop. So the program might be­
have strangely the first time it tried to execute the statement:

SurveysPerDay[Day] := SurveysPerDay[Day] + 1;

--9.6 Out-of·Range Errors: Program HowManyNeighbors -----­
One kind of bug, called an out-of-range error, is very common in programs that
include arrays. Out-of-range errors show up so often that you should look care­
fully for them before you run any program that contains an array. To see how
these errors might get you into trouble, let's look at program HowManyNeigh­
bors.

Program HowManyNeighbors calculates the number of next-door neigh­
bors for each house on Rutland Street. All houses except houses 1 and 12 have
neighbors on both sides. These two have neighbors on one side only. To
distinguish the houses on the ends from the houses in the middle, we'll use a case
statement.

program HowManyNeighbors;
{YOU TYPE IN THE NUMBER OF PEOPLE IN EACH HOUSE. PROGRAM}
{CALCULATES THE NUMBER OF NEIGHBORS THAT EACH HOUSE HAS.l
type
StreetSurvey = array[l .. 12] of integer;

var
RutlandSt : StreetSurvey;
HouseNumber,Neighbors : integer;

begin
{DATA ENTRY LOOP}
for HouseNumber := 1 to 12 do
begin

writeln('How many people live at ',
HouseNumber: 1,' Rutland Street?');

write (1) 1) ;

readln(RutlandSt[HouseNumber])
end;

(continued)

302 Arrays

HouseNumber := 1;
while (HouseNumber (= 12) do

begin
{CALCULATE NUMBER OF NEIGHBORS}
case HouseNumber of

1 :
Neighbors . - RutlandSt[HouseNumber +

12 :
Neighbors . - RutlandSt[HouseNumber -

otherwise
Neighbors . - RutlandSt[HouseNumber -

RutlandSt[HouseNumber +
end;
{PRINT NUMBER OF NEIGHBORS}

1];

1];

1] +
1]

writeln('House number 1 ,HouseNumber : 1, 1 has 1
,

Neighbors : 1, 1 next-door neighbors. 1
);

HouseNumber .- HouseNumber + 1
end

end.

In program HowManyNeighbors we need to use a case statement so that
houses with neighbors on only one side are treated differently from the others.
We would get an out-of-range error if we treated all the houses the same and
tried to do the n~ighbors calculation this way:

f or HouseNumber := 1 t o 12 do
Neighbors := RutlandSt[HouseNumber - 1] + RutlandSt[HouseNumber + 1];

When HouseNumber is 1, RutlandSt[HouseNumber - l] is out of range because
the variable RutlandSt[O] doesn't exist. And RutlandSt[HouseNumber + l] is
out of range when HouseNumber is 12, because it refers to a nonexistent
RutlandSt[l3].

Referring to array variables that are out of range is one of the most common
mistakes in programs with arrays, so watch out for this kind of error. One good
way to make sure an array index is in range is to check the index value at the
beginning and the end of a loop. In the for statement that we have just discussed,
checking the body of the loop at the lower and upper loop limits (that is, when
HouseNumber = 1 and HouseNumber = 12) reveals the two out-of-range errors.

EXERCISE 5 Suppose the word neighbor means not only those who live in a house right
next door but also those who live two doors away. How would this new defi­
nition change program HowManyNeighbors? -

9. 7 Using an Array Variable as a Parameter for a Procedure 303

__ 9.7 Using an Array Variable as a Parameter for a Procedure ____ _
Programs in Pascal (except for the very simplest ones) are generally written in
top-down fashion as a series of procedures. So it is important to know how to use
procedures in programs that include arrays.

Program SurveyGraph, which draws a graph showing the number of peo­
ple who live in each house on Rutland Street, consists of two procedures: Proce­
dure GetStreetData reads in the number of people who live in each house, and
procedure DrawLineGraph prints the graph. Each procedure is passed an array
as a parameter.

Let's take a look at the program. Remember: Always read the main pro­
gram first.

program SurveyGraph;
!YOU READ IN NUMBER OF PEOPLE IN EACH HOUSE ON RUTLAND ST.}
{PROGRAM PRINTS LINE GRAPH OF STREET POPULATION.}
const
ScaleFactor = 10;

type
StreetSurvey = array[l .. 12] of integer;

var
HouseNumber : integer;
RutlandSt : StreetSurvey;

procedure GetStreetData(var Street StreetSurvey);
var
HouseNumber : integer;

begin
for HouseNumber := 1 .to 12 do
begin
writeln('How many people live at ',HouseNumber 2,' Rutland St?');
write(')');
readln(Street[HouseNumber])

end
end;

procedure DrawLineGraph(Street StreetSurvey;
Scale : integer);

const
Bottom = 175;
Separation = 18;
CharWidth = 4;

var
HouseNumber,Height,HPosition,Top integer;

(continued)

304 Arrays

begin
moveto(20,20);
writedraw('GRAPH OF STREET POPULATION');
HPosition := O;
for HouseNumber . - 1 to 12 do
begin

{DRAW LINEl
HPosition := HPosition + Separation;
Height := Scale * Street[HouseNumber];
Top := Bottom - Height;
drawline(HPosition,Top ,HPosition,Bottom) ;

{DRAW LABEL -- CENTER LABEL BY SUBTRACTING CHARWIDTHl
moveto(HPosition - CharWidth, Bottom+ 12);
writedraw(HouseNumber : 1)

end
end;

{MAIN PROGRAM l
begin
GetStreetData(RutlandSt);
DrawLineGraph(RutlandSt,ScaleFactor)

end.

:D Drawing

GRAPH OF STREET POPULATION

I I I
2 3 4 5 6 7 B 9 101112

Figure 9.1 Typical output for program SurveyGraph .

9.8 RotatinganArray-Program VolleyBall 305

The procedure heading line

procedure DrawLineGraph(Street: StreetSurvey; Scale : integer);

lists two formal parameters and their types. Street is of type StreetSurvey, our
array type, and Scale is of type integer.

You can use an array variable as a parameter just the way you use a simple
variable. When the main program calls DrawLineGraph, the Macintosh assigns
the actual parameter RutlandSt to the formal parameter Street. Then the proce­
dure is executed, and the Macintosh draws the graph that represents the number
of people who live in each house on Rutland Street (see Figure 9.1).

--9.8 Rotating an Array-Program VolleyBall ---------­
Let's look at another program in which we pass arrays to a procedure. Suppose
you coach a volleyball team and you want to see a diagram of your players on the
court. Here is your team

Lee
Jan

Dana
Leslie

Sandy
Jamie

-------------------net-------------------

Y ou also want to see the positions of your players after each clockwise rotation.
Program VolleyBall rotates your players through all six arrangements and

prints diagrams of these arrangements in the Text window.

program VolleyBall;
{ROTATES MEMBERS OF VOLLEYBALL TEAM THROUGH 6 ARRANGEMENTS}
{OF PLAYERS AND PRINTS DIAGRAMS OF THE ARRANGEMENTS.}
const
Net= 1 --------------net------------- 1 ;

type
Players = (Jan,Leslie,Jamie,Lee,Dana,Sandy);
RowPositions = (Left,Center,Right);
Row = array[RowPositions] of Players;

var
FrontRow,BackRow : Row;
RotationNumber : integer;

procedure MakeinitialTeam(var FrontRow,BackRow Row);
begin

FrontRow[Left] := Jan;
FrontRow[Center] := Leslie;
FrontRow[Right] := Jamie;
BackRow[Left] := Lee;
BackRow[Center] := Dana;
BackRow[Right] .- Sandy

end;
(continued)

306 Arrays

procedure- PrintTeam(FrontRow,BackRow : Row);
begin

writeln(BackRow[Left] : 10,BackRow[Center] : 10,BackRow[Right] : 10);
writeln(FrontRow[Left] : 10,FrontRow[Center] : 10,FrontRow[Right] : 10);
writeln(Net)

end ;

procedure RotateTeam(var FrontRow,BackRow : Row);
var
TempPosition : Players; {TEMPPOSITION IS A SCRATCHPAD VARIABLE}

begin
TempPosition := BackRow[Right];
BackRow[Right] := BackRow[Center];
BackRow[Center] := BackRow[Left];
BackRow[Left] := FrontRow[Left];
FrontRow[Left] := FrontRow[Center];
FrontRow[Center] := FrontRow[Right];
FrontRow[Right] := TempPosition

end ;
{MAIN PROGRAM}

begin
RotationNumber := 1;
MakeinitialTeam(FrontRow,BackRow);
PrintTeam(FrontRow,BackRow);
writeln;
repeat
RotateTeam(FrontRow,BackRow);
PrintTeam(FrontRow,BackRow);
writeln;
RotationNumber := RotationNumber + 1

until (RotationNumber = 6)
end.

We have created two array variables, FrontRow and BackRow, each of
type Row. The two arrays can be diagrammed this way:

FrontRow BackRow

Left Center Right Left Center Right

Procedure MakelnitialTeam assigns the initial arrangement of players to the
rows. The formal parameters FrontRow and BackRow are variable parameters
because the procedure alters the arrays. They come in empty and are passed back
with the players in place.

9.8 Rotating an Array-Program Volley Ball 307

Procedure PrintTeam, on the other hand, has value formal parameters. The
procedure merely reports the members of the team on the screen .

Procedure RotateTeam is more interesting. Because it is passed one arrange­
ment of players and passes back the next arrangement, both of its formal param­
eters, FrontRow and BackRow, are variable parameters. Inside the procedure,
the local variable TempPosition holds the name of one player temporarily so that
the others can be moved from position to position. TempPosition is a Scratchpad
variable.

When RotateTeam is called, the name of the player in BackRow[Right] is
copied into the variable TempPosition so that each of the other players can be
rotated.

Then five assignment statements advance all the other players ahead one
position. First an assignment statement copies the name of the player in
BackRow[Center] into position BackRow[Right] . The assignment overwrites
and destroys the name of the player in BackRow[Right]. This is not a problem,
because we have saved a copy of that player's name in TempPosition.

0 08
~.,.............

BaokR[Lee Dana Sandy 0

Fc~ow
left center right

Jan Jamie

left

0
center(D right

After the other players are rotated one position, the last assignment statement
copies the player in TempPosition into FrontRow[Right]. The output for pro­
gram VolleyBall is shown in Figure 9.2 .

EXERCISE 6 Write an array-variable declaration for a basketball team, using this
enumerated type for a team's players.

type
BBPositions = (guard1,guard2,forward1,forward2,center) ..

308 Arrays

:o Ttrnt
Lee Dana Sandy ·(~I
Jan Les I ie Jamie ~

---- ----------n .. t------------- o/

Lee Dana ~~~
:: ;:::

Les I i e Jamie Sandy ';:i:i
--------------net------------- ,,,,.,

::·:= ·

Les I ie .Jan Lee \'
Jam i e Sandy Dana

- - ------------net------------- !U:
.Jamie Les I ie
Sand1:1 Dana Lee ;:;: ~:

------------ --ne 1_ ---------- - -- .l:m

Les I ie ln
H~

Jan 'n
- -------------net------------- :=::::

Sand•~
Dana

.Jam i e
Lee

Dana Sandy clam i e '')
Lee clar1 Les I i e ~

- -------------net------------- LnJ

~
121

Figure 9.2 The output for program VolleyBall.

--9.9 Strings-Program TextEcho --------------
Because character processing is so important in computing, Macintosh Pascal has
a special built-in kind of array called a string that makes character processing
easy. To see how strings work, let's start with program TextEcho. Program Text­
Echo reads in a text of up to 100 characters and then prints it out a few lines far­
ther down in the Text window, as shown in Figure 9.3.

Program TextEcho begins with an array declaration:

var
StringOfChar : string[lOO];

This declares StringOfChar to be a string variable. Note that the program has no
type definition. You can think of this variable declaration as shorthand for

type
CharString

var
array[l .. 100] of char;

StringOfChar : CharString;

String variables are like regular array variables with component type char, but
they have some special properties.

9.9 Strings-Program TextEcho 309

TeHtEcho

progrom Te xtEcl10;
{VDU TYPE IN SOME TEXT . PROGRAM "ECHOES" THE TE XT}
{BY PRINT ING IT AGAIN IN THE TE XT WINDO\I/)
var

Str ingO fC har : string[100];
begin

wri te l n('Type in a sentence, then press the rnturn key.');
write('>');

D Te Ht reedl n(Str i ngOfChar) ,
wri t el n; Type in a sentence, t hen press t he !{£
write ln ; re t ur n key .
wri t el n(Stri ngClfCl1ar) >The fut ure I i e8 ahead ,

end.

The f uture I i es ahead .

~
I,> ' ·'<l

Figure 9.3 Program TextEcho and sample output.

Strings make it much easier for you to read in text, because you can read a
sequence of characters into the component variables of a string all at once. You
don't need to read in characters one at a time using a loop. The command

readln(StringOfChar)

keeps filling the cells of StringOfChar with the characters you type at the key­
board until you type a return. The return terminates the readln instruction . If
you type in fewer than 100 characters before pressing the return key, the 100-cell
string will be only partially filled, which is not a problem. If you type in more
than 100 characters, however, you will get an error message .

Strings also make it easier to print out a sequence of characters. You don't
need to put the writeln statement in a loop and print the contents of one compo­
nent variable during each iteration. The single command

writeln(StringOfChar)

prints the whole string StringOfChar in the Text window, and the instructions

moveto(l,100);
writedraw(StringOfChar)

prints the string across the middle of the Drawing window.

310 Arrays

The largest possible string declaration is string[255]. If you leave off the
brackets entirely and simply write

var
Stri ngOfChar : string;

Macintosh Pascal assumes that you mean string[255]. Omitting the number in
the brackets is a good idea unless you know that the string variable you declare
will always hold far fewer than 255 characters. In that case you should declare a
smaller size for your string variable. This will save space in the Macintosh's main
memory so that there will be more room left for your program.

__ 9.10 More on Strings-Program PrintBackward ________ _

Because strings are actually arrays, you can refer to the values of individual cells
just as you can with other arrays. Program PrintBackward (see Figure 9.4) illus­
trates how this works. A text is read in, via a single readln statement, and then
stored in a string variable called StringOfChar. StringOfChar[1] holds the first
character you type in, StringOfChar[2] holds the second character, and so on .

r- e Fiie Edit Seurth Hun Wlnduw:s
.,

PrintBackward

pnonm PrintBackward;
{YOU TYPE IN TEXT . PROGRAM PRINTS IT OUT BACKWARD .}

V•f'
StringOfChar : sfring;
Lastc., 11 , Position : int"g"r ;

begin
{TYPE IN TEXT}

wri1eln('Type in a text , then press the return key.') ;
write(' >') ;
readln(StringOfChar);

§0 Te Ht writeln ;
{CALCULATE STRING LENGTH} Type i n a text, then press the .return key . ~ Lastc.,11 : ~ length(StringOfChar); >O say can you see

Position := LastCell;
{PRINT STRING IN REVERS£} ees uoy nae yas 0

while (Position > 0) do
beoin

~
write(Strin90fChar [Position)) ;
Position := Position - 1

•nd
"nd .

lo.!

Figure 9.4 Program PrintBackward and its output.

9 .11 An Array of Strings-Program RutlandStRoster 311

To print the string in reverse, you need to know the position of the cell that
contains the final character you typed. Macintosh Pascal has a standard function
called length that does this calculation for you. The statement

LastCell := length(StringOfChar)

assigns to the integer variable LastCell the length of StringOfChar-that is, the
number of cells in the string variable StringOfChar that are actually in use.

The length of a string is not the same as its size. A string's size is the number
in square brackets in the variable declaration, or 255 if string is not followed by a
number in brackets. When we write

StringOfChar : string[lOO]

StringOfChar has size 100. In the sample output for program PrintBackward,
the length of StringOfChar is 17, because that is the num her of characters typed
before the return.

EXERCISE 7 What does program WonderWhat do?

program WonderWhat;
var
Position,StringLength integer;
StringOfChar : string;

begin
writeln(1Type in a string of characters.');
write(')');
readln(StringOfChar);
StringLength := length(StringOfChar);
Position := 1;
while (Position (= StringLength) do
begin

writeln(StringOfChar[Position]);
Position .- Position+ 1

end
end. -

--9.11 An Array of Strings-Program RutlandStRoster-------­
We have examined arrays whose components hold integers and enumerated
types. Now we're going to show you an array that holds a string in each compo­
nent variable. Let's go back to Rutland Street and create an interactive program
that keeps track of the names of the people on the block.

In program RutlandStRoster, procedure Enter Names asks you to type in the
name of the family living at each house. Then comes a question-and-answer

312 Arrays

loop: The program asks for a house number, you respond with the number, and
then it gives you the name of the family at that address. This loop continues until
you type a 0, which ends the while loop. Then the program prints "Session over."
and execution ends. Figure 9.5 shows some typical output.

program RutlandStRoster;
type
NameList = array[l .. 12] of string[20];

var
WhoLivesAt : NameList;
HouseNumber : integer;

procedure EnterNames(var WhoLivesAt NameList);
var
HouseNumber : integer;

begin
for HouseNumber := 1 to 12 do
begin

writeln('Who lives at ',HouseNumber 1,' Rutland St?');
write(')');
readln(WhoLivesAt[HouseNumber])

end
end;
procedure PrintPrompt;
begin
write('To find out who lives in house, type number from 1 to 12. ');
writeln('When you want to end the session, type a zero.');
writeln

end;
{MAIN PROGRAM}

begin
EnterNames(WhoLivesAt);
PrintPrompt;
HouseNumber := 1;

{A QUESTION AND ANSWER LOOPl
while (HouseNumber () 0) do
begin
write(')');
readln(HouseNumber);
if (HouseNumber (0) or (HouseNumber) 12) then
writeln('Bad input -- try again.');

if (HouseNumber)= 1) and (HouseNumber (= 12) then
writeln(WhoLivesAt[HouseNumber],' lives at ',

HouseNumber: 1,' Rutland St.')
end;

write('Session over.')
end.

9 .12 The Palindrome Problem 313

::O Tex t

>5
Lee I i '!e3 at 5 Rut I and St .
>6
Chang I i ves at 6 Rut land St .
>7

7 Flut I and St · 11111111
Prestopino Ii ves at
>B
Washington I ives at B Rutland St,
>9
Jackson I ives at 9 Rutland St ,
> 1 (I
Datz I ives at 10 RL~t land St .
> 11
01 son I i ves at 11 Rut I and St .
>12
Mayw it I i 1,.1b at 12 Rut I ond ~; t .

>O
~;ess ion over .

Figure 9.5 Typical output for program RutlandStRoster.

The one tricky part of the program is the following definition:

NameList = array[l .. 12] of string[20];

It is a blueprint for creating 12 cells in memory, where each cell can hold a string
that is up to 20 characters long. When an array of type NameList is declared,
each of its 12 cells is partitioned into 20 subcells . When you run program
RutlandStRoster, each of these 12 cells will hold a string of up to 20 characters.

-- 9.12 The Palindrome Problem---------------
A man, a plan, a canal, Panama!

This phrase is a palindrome; the sequence of letters is the same whether you read
forward or backward. When you read from right to left (ignoring spaces, capital
letters, and punctuation), you encounter exactly the same words as when you
read from left to right .

To check a phrase or a sentence to determine whether it is a palindrome, you
must first change the uppercase letters to lowercase letters and delete all the
punctuation and blank spaces. Then you must find out whether the first and the
last characters are the same, whether the second and the next-to-last characters

314 Arrays

Palindromes

Palindromes have been around for a long time. The earliest known palin­
drome in the English language is

Lewd did I live, & evil I did dwel.

(The word dwell was spelled differently then.)

are the same, and so forth. When all the characters match up with their oppo­
sites at the other end of the string, you've found a palindrome. If a string has an
odd number of letters, as does

Madam, I'm Adam

the center letter doesn't pair up with anything. So you don't have to check it
against any other letter.

Our palindrome program works this way: After you type in a possible palin­
drome, the program changes all uppercase letters to lowercase letters, using a
procedure called MakeAllLowercase. (Remember that, in type char, capital and
lowercase letters are not equal.) Procedure MakeAllLowercase works like proce­
dure MakeLowercase in Chapter 7, except that MakeAllLowercase is passed an
entire string, not just a character.

Next comes the problem of removing all spaces and punctuation so that a
string such as

Sit on a potato pan, Otis.

turns into

sitonapotatopanotis

We have created a procedure called Compress to do the job. Compress uses the
standard procedure delete. Here's how delete works. Suppose we have a string
called StringOfChar whose value is "I am undone." The command

delete(StringOfChar,6,2)

begins deleting at position 6 (the u) and deletes two characters (the u and then).
So the new value of StringOfChar is "I am done."

Important: The length of StringOfChar has changed. Before the delete pro­
cedure was applied, StringOfChar's length was 12. Now it is a different string,
and its length is 10.

9.12 The Palindrome Problem 315

EXERCISE 8 Suppose StringOfChar has the value "Able was I, ere I saw Elba." What is
the value of StringOfChar after each of the following delete operations?

a. delete(StringOfChar,5,4)
b. delete(StringOfChar,9,1)
c. delete(StringOfChar,2,10)

In each case, what is the new length of StringOfChar? -

Once the string is compressed, we check to determine whether it is a palin­
drome. If we create a variable called StringLength, which holds the value for the
length of the string, we can compare

StringOfChar[1]
StringOfChar[2]
StringOfChar[3]

against
against
against

StringOfChar[StringLength]
StringOfChar[StringLength - 1]
StringOfChar[StringLength - 2]

and so on, until we get to the center of the string.
The program uses a procedure called Pal Check to determine whether it has

been handed a palindrome. Procedure Pal Check is passed the compressed string
and a boolean variable, OkSoFar, which has been initialized to True. The for­
mal parameter, Ok, is a variable parameter. If the string is ever found to be a
non-palindrome, the formal parameter Ok (and therefore the actual parameter
OkSoFar) becomes False.

The variable p~rameter Ok is used as a flag inside the loop in Pal Check. Ok
becomes False if a mismatch is ever found between paired characters, and this
will end the loop . If no mismatch is found , Ok remains True and the program
will report a palindrome as you can see in Figure 9.6

One final point. If ~ formal parameter in a procedure heading is of type
string, then it must not be followed by a size value in brackets . Declarations such
as string[lOO] or even string[255] are unacceptable in procedure headings; you
will get an error message if you try them .

i=o Text
Type in ti string of character s. IQ.
>Able was I ere I saw Elba .

ablewas iere isawelba

A pa I i ndrome !

Figure 9.6 Typica l output for program Palindrome.

316 Arrays

program Palindrome;
{YOU TYPE IN A STRING OF CHARACTERS. PROGRAM DETERMINES}
{WHETHER STRING IS A PALINDROME.}
var
StringOfChar : string;
Position,Center,StringLength integer;
OkSoFar : boolean;

procedure EnterString (var StringOfChar : string);
·begin

writeln('Type in a string of characters.');
write(')');
readln(StringOfChar);
writeln

end;

procedure MakeAllLowercase (var StringOfChar string);
var
Position,StringLength : integer;
Ch : char;

begin
Position := 1;
StringLength := length(StringOfChar);
while (Position (= StringLength) do
begin

Ch := StringOfChar[Position];
if (Ch)= 'A') and (Ch (= 'Z') then
StringOfChar[Position] := chr(ord(Ch) + 32);

Position .- Position + 1
end

end;

procedure Compress (var StringOfChar string);
var
Position : integer;

begin
Position := length(StringOfChar);
while (Position) 0) do
begin
if (StringOfChar[Position] ('a') or

(StringOfChar[Position]) 'z') then
delete(StringOfChar,Position,1);

Position .- Position - 1
end

end;

9.12 The Palindrome Problem 317

procedure PalCheck (StringOfChar string; .
var Ok : boolean);

var
Position,Center,StringLength integer;

begin
Position := 1;
StringLength := length(StringOfChar);
Center := StringLength div 2;
while (Position (= Center) and Ok do
begin

if (StringOfChar[Position] ()
StringOfChar[StringLength - Position+ 1]) then

Ok := False;
Position .- Position + 1

end
end;

{MAIN PROGRAM}
begin
EnterString(StringOfChar);
MakeAllLowercase(StringOfChar);
Compress(StringOfChar);
writeln(StringOfChar);
writeln;
OkSoFar := True;
PalCheck(StringOfChar,OkSoFar);
if OkSoFar then
writeln('A palindrome!')

else
writeln('Not a palindrome.')

end.

Try running these:

Step on no pets.

Never odd or even.

No evil Shahs live on.

Able was I ere I saw Elba.

Remarkable was I ere I saw Elba, Kramer.

Live dirt up a sidetrack carted is a putrid evil.
Straw? No! Too stupid a fad! I put soot on warts.
Doc: Note I dissent. A fast never prevents a fatness-I diet on cod.
Saippuakauppias (the Finnish word for soap salesman)

318 Arrays

EXERCISE 9 a. How would you change program Palindrome so that it prints out the
number of characters in the entry?

b. When you type in "No evil Shahs live on," how many iterations does the
final while statement in procedure PalCheck do? -

--9.13 A Universal Line Graph Procedure -----------­
Let's look again at program SurveyGraph (page 303) and the graphing proce­
dure it includes, procedure DrawLineGraph. This procedure is quite limited: It
will work only in programs that include the type definition for StreetSurvey.

We can alter procedure DrawLineGraph so that it can be used to graph the
contents of any array with component type integer and an index type that is a
subrange of type integer. This will make DrawLineGraph a universal graphing
procedure-that is, a graphing procedure that will work in a wide variety of
programs.

Here is program SurveyGraph with the new, universal procedure
DrawLineGraph.

program SurveyGraphTwo;
IYOU READ IN NUMBER OF PEOPLE IN EACH HOUSE ON RUTLAND ST.l
{PROGRAM PRINTS LINE GRAPH OF STREET POPULATION.}
const
First = 1;
Last = 12;
ScaleFactor 10;

type
NumberCells array[First .. Last] of integer;

var
CellPosition : integer;
RutlandSt : NumberCells;

procedure GetStreetData (var Street NumberCells);
var

HouseNumber : integer;
begin
for HouseNumber := 1 to 12 do
begin
writeln('How many people live at ',HouseNumber 2,' Rutland St?');
write(')');
readln(Street[HouseNumber]);
writeln

end
end;

9.13 A Universal Line Graph Procedure 319

procedure DrawLineGraph(Numbers : NumberCells;
Scale : integer);

{A UNIVERSAL LINE GRAPH PROCEDURE}
{FIRST AND LAST ARE GLOBAL CONSTANTS OF TYPE INTEGER.}
{NUMBERCELLS IS AN ARRAY[FIRST .• LAST] OF INTEGER.}
const
Bottom = 175;
Separation = 18;
Chl;l.rWidth = 4;

var
Position,Height,HPosition,Top integer;

begin
HPosition := O;
for Position := First to Last do
begin

{DRAW LINE}
HPosition := HPosition +Separation;
Height :=Scale* Numbers[Position];
Top := Bottom - Height;
drawline(HPosition,Top,HPosition,Bottom);

{DRAW LABEL -- SUBSTRACTING CHARWIDTH CENTERS LABEL}
moveto(HPos.ition - CharWidth,Bottom ·+ 12);
writedraw(Position : 1)

end
end;

{MAIN PROGRAM}
begin
GetStreetData(RutlandSt);
DrawLineGraph(RutlandSt,ScaleFactor)

end.

Note first that we have given StreetSurvey a more abstract name: Now it is
NumberCells. The index type for the array is also as general as possible:

First .. Last

In the declaration part of the program, we have defined First as 1 and Last as 12.
Given any array with component type integer and index type of the form

First. . Last, procedure DrawLineGraph will graph the array for you. By
changing the definitions for First and Last, you can graph an array with any
number of component variables.

This means you don't have to rewrite the procedure every time you want to
include a graph in your program output. Instead, you simply write definitions

320 Arrays

for First and Last and for type NumberCells. Then you copy procedure
DrawLineGraph from program SurveyGraphTwo into your new program. You
can transfer a copy of the procedure from one program to another by using Copy
and Paste. The Copy command saves a copy on the electronic Clipboard, and the
copy remains there when you switch between MacPascal documents.

You now have a single instruction that will allow you to display any array of
integers, indexed with any integer subrange, in graphic form in any program
you write.

To see how convenient this can be, let's look at another example. Suppose
you want to graph the number of complete miles you jog each day during
the month of January. Using the universal graphing procedure procedure
DrawLineGraph, you can easily create a program that displays your jogging rec­
ord (see Figure 9. 7).

;;;O Dr11wing

5 miles

I II I II 1 11 I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

GR APH OF MILES JOGGED IN JANU ARY

Figure 9.7 Typical output for program JanuaryJog.

program JanuaryJog;
const
First = 1;
Last = Jl;
ScaleFactor 20;

type
NumberCells array [First .. Last] of integer;

var
CellPosition : integer;
JanJog : NumberCells;

Q:]

procedure GetJoggingData(var Numbers NumberCells);
var

Day : integer;
begin

for Day := 1 to 31 do
begin
writeln('Type an integer for the number of miles

jogged on Jan ',Day : 2);
write(')');
readln(Numbers[Day]);
writeln

end
end;

{THE UNIVERSAL LINE GRAPH PROCEDURE}
procedure DrawLineGraph(Numbers : NumberCells;

Scale : integer);
{FIRST AND LAST ARE GLOBAL CONSTANTS OF TYPE INTEGER.}
{NUMBERCELLS IS AN ARRAY{FIRST. ~LAST]OF INTEGER.}.
const
Bottom = 175;
Separation = 15;
CharWidth = 4;

var
Position,Height,HPosition,Top integer;

begin
HPosition := O;
for Position := First to Last do
begin

fDRAW LINEl
HPosition := HPosition + Separation;
Height := Scale* Numbers[Position];
Top := Bottom - Height;
drawline(HPosi tion,.Top ,HPosi tion,Bottom);
{DRAW LABEL)
moveto(HPosition - CharWidth,Bottom + 12);
writedraw(Position : 1)

end
end;

procedure LabelGraph;
begin

drawline(0,75,500,75);
moyeto(l0,70);
writedraw('5 miles');
moveto(15,205);
writedraw('GRAPH OF MILES JOGGED IN JANUARY')

end;
(continued)

321

322 Arrays

{MAIN PROGRAM}
begin

GetJoggingData(JanJog);
DrawLineGraph(JanJog,ScaleFactor) ;
LabelGraph

end.

Note that First and Last are global constants. It is for precisely this reason
that procedure DrawLineGraph is so easy to use. As long as the main program
gives a type definition for NumberCells and constant definitions for First and
Last , procedure DrawLineGraph can be used almost without alteration. In pro­
gram January Jog, the only change has been a reduction in the value of the con­
stant Separation. Separation represents the distance between lines in the graph,
and the reduction is necessary so that the graph will fit on the screen. (You also
need to run the program using the small type size.)

BLAISE PASCAL

In 1635 a French boy named Blaise Pascal found a mistake in Rene Des­
cartes's famous geometry book. Geometry fascinated young Pascal, but he
had to study it secretly because his father thought he was too young to be
learning math. By the time the boy was 16, he had written a scientific paper
about sound and another about a difficult problem in geometry. Meanwhile
the elder Pascal had been given an important job in the French province of
Normandy. He was now responsible for deciding who should pay taxes and
how much they should pay. This meant doing an enormous amount of
paperwork, if his records were to be accurate and honest. He was a consci­
entious man-too conscientious, some people thought-and his strict tax
collecting once caused disgruntled citizens to riot.

To help his father with all the necessary record keeping , 19-year-old
Blaise Pascal invented a calculating machine. Called the Pascaline, it
worked somewhat like an automobile odometer: Addition and-subtraction
were done by counting the revolutions of meshing wheels. In the next 10
years, Pascal built more than 50 improved versions of the Pascaline, which
became the model for later adding machines, electric meters, and other
measuring devices.

As a tribute to this early contribution to the science of mechanical
computing, Niklaus Wirth, the creator of the programming language Pascal ,
named the language after Blaise Pascal.

One area of math that intrigued Pascal was a remarkable table of num­
bers that Greek and Chinese mathematicians had studied in ancient times.
Pascal studied the table carefully, and he figured out how the table could be
used in probability calculations and in about a dozen other ways. Soon peo­
ple began calling the table Pascal's triangle. This table is still important in
mathematics today.

9.14 Pascal'sTriangle 323

A caution comes with this style of programming. When a procedure relies
on global definitions, it becomes difficult to understand. If we hadn't included a
comment, it would have been impossible to see the relationship between First
and Last and the type NumberCells . When you write a universal procedure that
relies on global values, be sure to include comments that explain the procedure's
behavior without reference to a main program .

Pascal: Public and Private

For experienced programmers there are really two Pascals. First there is public
Pascal. This is the language of the textbooks and manuals, and it includes all the
standard Pascal and Macintosh Pascal instructions.

The second Pascal is private. As a seasoned programmer, you will accumu­
late an ever-growing collection of procedures (such as DrawLineGraph) that do
a variety of important jobs. Using Copy and Paste, you can move "universal"
procedure declarations from one program to another with ease, so that your
invented instructions will almost seem built-in. As you enlarge your private stock
of universal procedure instructions, the Pascal you use to solve problems will be­
come increasingly powerful.

--9.14 Pascal's Triangle ------------------
Let's use what we have learned about arrays to print a portion of Pascal's trian­
gle. Here are the first nine rows, which we have numbered beginning with zero .
(That way, the second entry in a row gives the row number in every row except
the first one.)

Row 0 1
Row 1 1 1
Row 2 1 2 1
Row 3 1 3 3 1
Row 4 1 4 6 4 1
Row 5 1 5 10 10 5 1
Row 6 1 6 15 20 15 6 1
Row 7 1 7 21 35 35 21 7 1
Row 8 1 8 28 56 70 56 28 8 1

Beginning with row 1, each entry in the triangle is the sum of two numbers
from the row above: the number directly above the entry and the number to the
left of that number, if there is one. In the following triangle, the 3 with the arrow
pointing to it is the sum of the two circled numbers.

RowO
Row 1
Row2
Row3

1
1
1
1

1
®
3 1

324 Arrays

Pascal's triangle is more than a curiosity: It has great importance in proba­
bility theory and in other areas of mathematics. To see how Pascal's triangle re­
lates to probability theory, look at row 3, which reads 1-3-3-1. The numbers in
this row add up to 8.

The entries in the row (1-3-3-1), and the sum of the numbers in the row (8)
have special significance. These numbers are related to the probability of getting
a particular pattern of heads or tails when you flip three coins.

Suppose you toss three coins on the table. Each of the three coins can come
up either heads (H) or tails (T), so there are 2 x 2 x 2 = 8 possible outcomes of
your toss.

all heads

2 heads
and 1 tails

®®®
000
000
CD®®

all tails

2 tails
and 1 heads

000
00®
0®0
®00

There is only one way a coin toss can come up all heads, and there is only one
way a coin toss can come up all tails. These two "one's" correspond to the l's on
each end of the row: 1-3-3-1.

There are three ways that you can get two heads and one tails. The one tails
could be the first coin, it could be the second coin, or it could be the third coin.
Similarly, one heads and two tails can happen in three ways. So the 1-3-3-1 pat­
tern in the row gives a profile of all possible head-tail outcomes when you toss
three coins on a table.

Row 4 (1-4-6-4-1) gives you a profile of the possible outcomes when you toss
four coins. The sum of the numbers in the row is sixteen, and there are sixteen
possible outcomes. There's one way for you to get all heads and one way to get all
tails. There are four ways to get one heads and three tails and four ways to get
one tails and three heads. Finally there are six ways you can get two heads and
two tails.

You can also use Pascal's triangle to compute probabilities. When you
toss three coins, getting two heads can happen in three ways from among the
eight possible outcomes. So the probability of getting two heads out of three
is 3/8 = .375. And the probability of tossing four coins and getting three heads
is 4/16 = .25 .

EXERCISE 10 Suppose you toss five coins. What is the significance of each of the numbers
in row 5: 1-5-10-10-5-1? -

9.14 Pascal'sTriangle 325

Now let's use our standard think-plan-code-test-and-debug method to write
a program that prints rows 0 through 8 of Pascal's triangle.

Thinking

The top row in Pascal's triangle, row 0, consists of a single 1. Each subsequent
row can be calculated from the one before it. The Pascal's triangle problem can
be solved by printing the first row and then repeatedly calculating each subse­
quent row and printing it out.

The rows are of different lengths, which is a problem if we want to use a sin­
gle array variable to hold all the rows of the triangle. We can get around this dif­
ficulty by making all the rows the same length and putting zeros in the empty
spots. When a row is printed, the program will simply skip over an entry if it is a
zero.

Because the rows are the same length, we will be able to use the same array
to hold the values of each row in the triangle. We'll call this array Row, and we'll
call its type TriangleRow. The component type will be integer, and the index
type will b~ the subrange O .. EndOfRow, where EndOfRow = 8.

We can use a variable called RowNumber to keep track of the number of
the row we are working on from 0 up to LastRow, where LastRow also has the
value 8.

___________ DATA TABLE __________ _

Input Variables

none

Output Variables
Row: TriangleRow;

Loops

Program Variables

RowNumber: integer;
Row: TriangleRow;

Special formulas
none the loop calculates and prints the triangle

Constant and Type Definitions
EndOfRow = 8;
LastRow = 8;
type TriangleRow = array[O .. EndOfRow] of integer;

Planning
Here is our first plan:

1. Fill an array with values for the first row.

2. Print the first row.
3. Go through the remaining rows.

Calculate a row.
Print that row.

326 Arrays

This rough plan identifies three actions that should be packaged as proce­
dures: Fill the first row, which we'll call FillFirstRow; print a row, which we'll
call PrintRow; and calculate the next row, which we'll name CalcRow. We can
refine our plan to this:

1. FillFirstRow

2. PrintRow
3. while (RowNumber (= LastRow) do

begin
CalcRow
PrintRow
RowNumber : = RowNumber + 1

end

Now let's clarify these three procedures.

Clarifying FillFirstRow

The first row is different from the other rows, because it is not calculated from
the row above it. It consists of a 1 followed by eight O's, and we want to use
FillFirstRow to put this pattern of numbers in the cells of the array variable
Row. FillFirstRow's formal parameter must be a variable parameter, because
the procedure alters the array that it is passed: The array comes in empty and is
passed back out filled. Here is our proposed heading line:

procedure FillFirstRow(var Row : TriangleRow);

Our paper check for FillFirstRow looks like this:

I I I I I I I I I
Input

Clarifying PrintRow

I- procedure
FillFirstRow __,...11 jo jo lo Io Io jo Io jo I
~------' Output

PrintRow has the job of printing the contents of a row, except for the O's, in a sin­
gle line. Because it doesn't change the array, but only writes the contents on the
screen, we'll use a value parameter in its heading line:

procedure PrintRow(Row : TriangleRow);

Here is our paper check for PrintRow:
Upon receiving the input

I 1IJIJl1lololololo I
PrintRow prints

1 3 3 1

9.14 Pascal's Triangle 327

Clarifying CalcRow

CalcRow is passed a row of Pascal's triangle and must pass back the next row. So
it requires a variable parameter. Its proposed heading line is

procedure CalcRow(var Row : TriangleRow);

And here is our paper check:

J 1 J 2 J 1 I a I a I a I a I a I a 1- ~:~~~:e -I 1 13 13 1 1 I a I a 1 a 1 a 1 a 1
Input

Now we know enough to code the top level.

begin
FillFirstRow(Row);
PrintRow(Row);
RowNumber := 1;
while (RowNumber (= LastRow) do
begin

CalcRow(Row);
PrintRow(Row);
RowNumber .- RowNumber + 1

end
end.

Output

We have broken our problem into three simpler problems-writing the
three procedures FillFirstRow, PrintRow, and CalcRow. The first two aren't
hard, so we won;t go over how to plan and code them. But let's work through
CalcRow carefully.

Thinking through CalcRow
Remember that the first row is given and that each subsequent row is calculated
from the one before it. The rule for calculating a row is this: Each entry in
Pascal's triangle .is the sum of two numbers-the number directly above it and
the number to left of that number. When we calculate the next row in the trian­
gle using a single array, we have to overwrite the old values in the array with
new entries that will make up the next row in the triangle.

CalcRow is tricky. Working from left to right-the obvious way to create
the new values in the array from the old values-won't work. To see why, let's
take a typical row:

1 2 1 0 0 0 0 0 0

If we start at the left and add the first two values, we get 3. Now, if we put this
sum in the second position of the array, our row becomes

1 3 1 0 0 0 0 0 0

328 Arrays

So far so good. But what happens when we add the value in the second and
third positions to get the new entry for the third position? We get 4, but we're
supposed to get 3. This scheme didn't work because we should have added the
old value in the second position, which is 2, to the 1 in the third position. Instead
we used the new value in the second position.

So let's try another approach. This time we'll enter new values in the array
working from right to left.

Suppose that we are filling cells from right to left and that we are working
on the circled entry:

1331 @ 0000

The new entry in the circle will be the sum of the old entry in the circle and the
entry to its left. So the sum will be 1.

Now we go to calculate the next entry:

133 Q) 10000

Its new value is the sum of 3 and 1, which are both old values. The new values
are off to the right and out of the way. They won't affect future sums. So we get

1 3 3 4 1 0 0 0 0

If we continue in this way, we'll get the full row:

1 4 6 4 1 0 0 0 0

EXERCISE 11 To make sure you see how to get the correct row of numbers when working
from right to left, write down the following sequence on a sheet of paper:

1 4 6 4 1 0 0 0 0

Now, beginning at the right , cross out each entry and write below each
cross-out the sum of that number and the number to its left. When you're
done, you will have the next row of the triangle. -

Once you have figured out how to do it, CalcRow turns out to be remark­
ably simple. The body of the procedure is this single for statement:

for Position := EndOfRow downto 1 do
Row[Position] := Row[Position] + Row[Position - 1]

Row is of type TriangleRow, which has index type O .. EndOfRow. Because the
for loop runs down to 1, not to 0, we won't be out of range the last time through
the loop.

Here is the complete Pascal's triangle program:

program PascalsTriangle;
{PRINTS OUT ROWS 0 THROUGH 8 OF PASCAL'S TRIANGLE}
canst
LastRow = 8;
EndOfRow = 8;

type
TriangleRow = array[O .. EndOfRow] of integer;

var
Row : TriangleRow;
RowNumber : integer;

procedure FillFirstRow(var Row TriangleRow);
var
Position : integer;

begin
Row[O] := 1;
for Position := 1 to EndOfRow do
Row[Position] .- 0

end;

procedure PrintRow(Row TriangleRow);
var
Position : integer;

begin
for Position := 0 to EndOfRow do
if (Row[Position]) 0) then
write(Row[Position]: 6);

writeln
end;

procedure CalcRow(var Row TriangleRow);
var
Position : integer;

begin
for Position := EndOfRow downto 1 do

Row[Position] := Row[Position] + Row[Position - 1]
end;

{MAIN PROGRAM}
begin

FillFirstRow(Row);
PrintRow(Row);
RowNumber : = 1;
while (RowNumber (= LastRow) do
begin

CalcRow(Row);
PrintRow(Row);
RowNumber .- RowNumber + 1

end
end.

329

330 Arrays

EXERCISE 12 Change the values of RowPosition and BottomRow from 8 to 10 and see
what you get. -

---TEST YOURSELF---------------
1. What is the component type of an array?

2. What is the index type?

3. Explain the scoreboard principle.

4. What is an out-of-range error?

5. What is a string?

6. What is a palindrome?

7. How can you transfer a procedure from one program to another electroni­
cally?

8. How are the rows in Pascal's triangle calculated?

----PROBLEMS----------------~

1. Write a program that includes an array with 10 cells. Using a loop , the pro­
gram stores the following pattern of numbers in the cells:

I o i 10 I o I 20 I o I 30 I o I 4o I o I 50 I
and then prints them , from last to first, in a column in the Text window.

2. Suppose your survey assignment includes calculating the percentage of
houses on the street that have a garden. Write a declaration for an array
variable called Rutland Gardens, using the following two-element enumer­
ated type:

type
Garden= (HaveAGarden,NoGarden);

Use the variable RutlandGardens in a program that reads in the street's gar­
den data and calculates the percentage of houses on the street that have a
garden.

3. a. A freight train has 10 cars and there are 4 kinds of car-locomotives, coal
cars, oil cars, and cattle cars. Define an array type called FreightTrain.
What is the index type for FreightTrain? And what is the type of the com­
ponents? Hint: First declare an enumerated type for the 4 kinds of car.

b. Now declare a variable called AltoonaLimited of type FreightTrain.
c. Write a program that reads in the kind of each of the 10 cars in the

Altoona Limited and prints out this information in a column.

Problems 331

d. Modify the program you wrote in part c so that it prints a table showing
the number of each kind of car on the train. (Hint: Use the scoreboard
principle.)

4. Your school has 3 outstanding sprinters, Jesse, Frankie, and Hilary, whom
you have listed in an enumerated type:

type
Runners = (Jesse,Frankie,Hilary);

They all run in the 50- and 100-yard dashes, and you want to compare their
racing times (accurate to the nearest tenth of a second), using the following
2 array variables:

var
Fifty,Hundred : SprintResults;

a. Give the type definition for SprintResults.
b. Write a program that reads in the time in seconds for each runner in each

race and prints the name of the runner who has the best time in each
race.
Hint: The prompt should look like this:

Give times for Jesse in the 50 and 100 yard dashes.

5. Write a program that fills a IO-cell array with the cubes of the numbers
from 1to10-1, 8, 27, 64, and so on-and then prints these values out in a
column.

6. Write a program that reads in Fahrenheit temperature data for a week in
March. The data should be accurate to the nearest tenth of a degree, and
they should be stored in an array. After you read in the temperatures, the
program should convert them to Celsius and then print them in a table.

7. Modify the program you wrote in Problem 6 so that it prints out the average
Fahrenheit temperature for the week.

8. Invent another universal line graph procedure, called DrawRealLine­
Graph, that is passed an array with component type real instead of compo­
nent type integer. Then use the procedure to graph the Celsius temperatures
you found in Problem 6.

9. Write a program that includes an array called DigitPositions with the char­
acter subrange 'O' . .'9' as index type and component type integer. The pro­
gram should fill this array with the ord of each digit and then print the con­
tents of the array in a table in the Text window. The output should begin
like this:

digit
0
1

ord value
48
49

332 Arrays

10. You work for the Turnpike Authority. The Turnpike Authority has just
bought automatic toll-collecting machines. Your job? Write an interactive
program that takes the number of pennies, nickels, dimes, and quarters
tossed into the machine and calculates whether the driver paid the correct
toll. Your program should include a global constant called TollAmount for
the amount of the toll, which will be less than one dollar. If the money
deposited in the machine is less than TollAmount, the program should print
a message asking for more cash. If the money deposited is equal to (or
greater than!) the amount of the toll, the program should print the message
"Thank you-drive carefully."

11. The Fibonacci numbers are a famous number sequence in mathematics that
starts like this: 1, 1, 2, 3, 5, 8, 13, ... beginning with the 2, each entry is
the sum of the two numbers that precede it: 8 = 5 + 3, for example. Write a
program that calculates the first 20 Fibonacci numbers, stores them in an
array, and prints them out in a column in the Text window.

12. Write program DietRecord. You read in the number of calories in the food
you consume each day for a month, and this information is stored in an
array. You also enter a "cut-off' figure-the maximum number of calories
you wish to eat in a day. For output, the program should print a line graph
of the calories you have eaten. It should also print the total number of calo­
ries you ate in a month, your average daily caloric intake, and the percent­
age of days on which the number of calories you consumed was less than
your "cut-off' figure.

13. Invent a universal bar graph procedure, and change program DietRecord so
that it prints a bar graph of your daily caloric intake.

· •• •• ·.: . : -·.. I
"'l'.... • \,, . . l .. ··.,. '"" . _ .. ,. ··.· .. ·, • !

• "•1, ' • •I I
• • • • .': •I

• \ • • '-'• • • • • ,• •·• • '.' I '~•

.. • ' r • • •

f •• •• • •• \,... •• .. • • • • • • : ••••1
~ • • • z .. • • &' " • • l ...
I • • • a • ' { • :• /'•

· · · : · :.: ·· fUiictions·~and
,. .. I • • • • • .• : "'• • •... /' •

: ::·.·-:· :.: .. .-:.:.".RaridomNumbers
• • • \ " 'i-f•

• •• • •• .- l .. " • .. 1. • • "' . · : .. ·. _,
• •• : • : ' •, •••• • '· ·- •· •• • 0 • --------------·

•• • • • • • • •./ • • • ~ • • ¥ • ·. . .· ~ . . ·.· .. ;' ..
I . .r· " ·,. .. .·
• .. . r"(• ·.• ..

• -- • • • 't

• • • ••• 'Lr-~-';_ .. -.: •• . .· ... ---
--~-:------ . -: . "" ..

' .
·.

When you use Pascal to solve a complicated problem , you divide the problem
into manageable pieces and create a procedure to handle each piece. Each proce­
dure is a little subprogram . Now we're going to tell you about another subpro­
gram instruction, the junction.

Functions, like procedures, are instructions that do some special job. The
main difference between functions and procedures is that a function gives you a
single value as output. We say that a function returns a single value.

Just as Pascal has standard procedures, it has standard functions, many of
which we introduced in Chapter 4. We will first review how these standard
functions work. Then we'll show you how to make up your own functions and
how to use them in your programs. Finally, we will tell you how to use a special
function called random, which generates random numbers.

--10.1 Standard Functions: A Review-------------
Round, sqrt, and odd are standard functions. Each one returns a single value as
an answer. For example,

round (3 . 14) = 3
sqrt(4.0) = 2.0
odd (3) = True

Round rounds off a real number and gives you the closest integer as its single an­
swer. Sqrt gives the square root of a number as its single answer. And odd checks
whether an integer is odd and gives True or False as its answer.

333

334 Functions and Random Numbers

When the assignment statement

Number := round(J.14)

is executed, the right side is evaluated first. Then the value that the function re­
turns is assigned to the variable Number. When the Macintosh evaluates
round(3 . l4), it is doing a junction call . The number inside the parentheses, 3.14,
is called the actual parameter of the function. It is sometimes called the
argument of the function.

As a rule, the actual parameter of a function must be of a particular type.
For example, the argument of the function odd must be an integer. Odd(4)
makes sense-it returns the value False. But odd(98.6) is nonsense.

There are some exceptions to the rule that the parameter of a function can
be of one type only. For example, sqrt behaves properly with either a real or an
integer argument. So both sqrt(2.0) and sqrt(2) are acceptable.

The value a function returns is always of a particular type, too . Round re­
turns an answer of type integer. Odd returns an answer of type boolean. And sqrt
returns an answer of type real . The type of the value that a function returns is
called the result type.

Now here's something interesting. Sqrt can take a real number as input, and
it will give a real number as output. This means you can put a sqrt function call
inside another sqrt function call. For example, the following expression takes the
square root of the square root of 2-that is, it takes the fourth root of 2.

sqrt(sqrt(2.0))

This is known as a nested function call.
The Macintosh evaluates nested function calls from the inside out. Here it

evaluates sqrt(2.0) first and returns a real-number value, 1.414. Then it uses
1.414 as the actual parameter for the outer function call and takes the square
root of this value.

When you put a function call inside a function call, you must be sure that
the type of the answer from the inner function will work as a parameter for the
outer function. For example;

writeln(sqrt(odd(6)))

won't work. The odd function returns the value False, and you can't take the
square root of False.

EXERCISE 1 Which of the following nested function calls will work?

a. sqrt(sqrt(9.9))
b. sqrt(round(9 .9))
c. sqrt(odd(9.9))
d. round(sqrt(9. 9))
e. round(round(9.9))

f. round(odd(9.9))

g. odd(odd(9))
h. odd(round(9.9))

i. odd(sqrt(4))

10.2 Creating Your Own Functions 335

Try them in the Instant window to test your hypotheses. -

Odd, round, and sqrt are built-in, standard functions because the jobs they
do are so important that everybody uses them . We have also used other standard
functions in this book, such as abs, sqr, chr, ord, pred, and succ. Length is a stan­
dard function too, but it appears only in Macintosh Pascal and not in most other
versions of the language.

We will need one other standard function in this chapter, the function copy.
Copy is a MacPascal standard function with three parameters-a string value
followed by two integers. The function call

copy(AString,Position,NumberOfChars)

returns a string value. This value is a substring of AString that begins at location
Position in AString and is NumberOfChars long. The function call

Copy('Hi there' ,4,J)

returns the value the . .
Inside the front cover you will find a list of all the standard functions we use

in this book.

--10.2 Creating Your Own Functions------------­
When you are working on a programming problem, you often identify a
subproblem that requires a single-value answer, but no standard function gives
the answer you need. This is the time to create your own Pascal function. For ex­
ample, you can make up functions that will

• Take a capital letter and return a lowercase letter

• Take a number and give its cube root

• Take two numbers and give the average of the two

• Take a word and give the word with the letters printed in reverse

• Take a principal, an interest rate, and a number of years in the bank, and
return the money accumulated

Creating your own functions helps you break complex problems into easy­
to-code subproblems. Functions clarify a program in the same way that proce­
dures do. And once you make up a useful function, you can often reuse it in other
programs.

336 Functions and Random Numbers

--10.3 How to Declare Your Own Functions-----------
How do you make up a function? Suppose you are writing a program and you
need to know whether a number falls between two other numbers. That is, you
need to know whether it's the same as or larger than the first and whether it's the
same as or smaller than the second. This problem calls for a single answer: True
or False. So this is a job for a function.

Suppose we create one called Between. If we pass function Between three
numbers, it will tell us whether the middle number is between the other two.
Here is the heading line for the function:

function Between(Smaller,Middle,Larger : integer) : boolean;

A function declaration starts with the word function, which is followed by
the name of the function. Then comes a formal parameter list, which in this case
has three entries called Smaller, Middle, and Larger. These are all value formal
parameters. (Variable parameters are possible with functions, but they are sel­
dom used.)

The word integer specifies that the parameters must be of type integer. And
the word boolean at the end of the heading line specifies the result type of the
function-the type of the single value that the function returns. In the case of
function Between, a boolean answer is returned.

Now let's look at the complete function declaration:

identifier

i
function Between(Smaller,Middle,Larger

parameters

""'
parameter type

~
: integer)

result type

i
boolean;

begin
if (Smaller (= Middle) and (Middle (= Larger) then
Between .- True

else
Between .- False

end;

The body of the function says this: If the value of Smaller is less than or
equal to the value of Middle, and the value of Middle is less than or equal to the
value of Larger, then the function returns the value True; otherwise it returns
the value False.

All this makes good sense. But there is something peculiar about the body of
a function. The name of the function is actually used inside the function defini­
tion. When the name Between shows up in the body of the function, it acts al­
most like an ordinary variable of type boolean, and it gets assigned a value-ei­
ther True or False. This value is the answer that the function returns.

Important: For now, the name of the function can appear only on the left
side of an assignment statement inside the function definition. We will tell you
about an important exception to this rule later.

10.4 Program PointlnRec-Preparing for Mouse Control 337

EXERCISE 2 What is the value of each of the following function calls?

a. Between(5,7,9)

b. Between(5,10,9)

c. Between(5,5,9)

d. Between(l0,11,5)

Answers: Only a and c are True. -

--10.4 Program PointlnRec-Preparing for Mouse Control _____ _
Here is an intriguing use for function Between in a program called PointlnRec.
You read in a point and a rectangle, and the program tells you whether the point
is inside the rectangle. Then it draws the point and the rectangle in the Drawing
window (see Figure 10.1).

Program PointlnRec is more than just an interesting novelty. The principle
used in the program is an important part of the program that operates the
Macintosh's menus . Think about what happens when you pull down a menu,
drag the pointer to a row, and release the mouse button. How does the computer
know what menu choice you've made? It decides by taking the position of the tip
of the arrow when you release the button-a point- and checking to see inside
which of the rectangular menu bars the point lies.

The check we are about to do in program PointlnRec is exactly the same
kind of test the Macintosh does when it figures out which menu item you've
chosen. In the next chapter, we'll show you how to create your own rectangular
menu items. And we'll show you how to control programs by placing the pointer
in one of these menu items and clicking the mouse .

Here is program PointlnRec.

~ 9 file Edit Searth Run Windows
.,

Te wt ;;0 Drawing
Type in values for the top , I ef t ,
bottom, and right sides of a
rectangle .
>30 50 140 180

Type in the horizontal then the •
1:

vert ical position of a point . 11

>70 80
Yes! Point is inside rectang le .

'2l

Figure 10.1 Typ ical output for program Point lnRec.

338 Functions and Random Numbers

program PointinRec;
{PROGRAM DECIDES IF POINT IS INSIDE RECTANGLE. IT ALSOl
{DRAWS THE RECTANGLE AND THE POINT.I
var

Top,Left,Bottom,Right : integer; {WALLS OF RECTANGLE}
HPoint,VPoint : integer;

function Between(Smaller,Middle,Larger : integer) : boolean;
begin
if (Smaller (= Middle) and (Middle (= Larger) then
Between .- True

else
Between .- False

end;
procedure DrawPoint(Horizontal,Vertical integer);
begin
moveto(Horizontal,Vertical);
lineto(Horizontal,Vertical)

end;
procedure EnterRectangle(var Top,Left,Bottom,Right integer);
begin
writeln('Type in values for the top, left, bottom,

and right sides of a rectangle.');
write(')');
readln(Top,Left,Bottom,Right);
writeln

end;
procedure EnterPoint(var HPoint,VPoint : integer);
begin
writeln('Type in the horizontal and then the vertical

position of a point.');
write(')');
readln(HPoint,VPoint)

end;
{MAIN PROGRAMl

begin
EnterRectangle(Top,Left,Bottom,Right);
EnterPoint(HPoint,VPoint);
if Between(Left,HPoint,Right) and Between(Top,VPoint,Bottom) then
writeln('Yes! Point is inside rectangle.')

else
writeln('Point is not inside rectangle.');

{DRAWS POINT, THEN RECTANGLE}
DrawPoint(HPoint,VPoint);
framerect(Top,Left,Bottom,Right)

end.

10.4 Program PointlnRec-Preparing for Mouse Control 339

And here's how function Between works in program PointlnRec. In the
function call

Between(Left,HPoint,Right)

the variables Left, HPoint, and Right are actual parameters. They hold the val­
ues that you have entered interactively. The actual parameters are passed to the
function, where the formal parameters- Smaller, Middle, and Larger-take on
these values. Then Between returns a value-True or False. Next comes a second
function call, and Between is passed another set of values-Top, VPoint, and
Bottom. If both function calls return the value True, the program reports

Yes! Point is inside rectangle.

If one or the other or both of the function calls return the value False, the pro­
gram prints

Point is not inside rectangle.

A function includes formal parameters in the heading line of its declaration
and actual parameters or arguments in the function call. When the call is made,
the values of the actual parameters in the call are assigned to the formal parame­
ters in the heading line. As with procedures, it doesn't matter what names you
pick for the parameters, although it is sensible to choose names that suggest their
use.

Important: The actual parameters in a function call must be listed in the
same order as the formal parameters in the function heading line. Accordingly, if
you write a function with more than one formal parameter, make sure that the
order of the arguments in a call agrees with the order in the heading.

function Between(Smaller,Middle,Larger :integer) : boolean;

t t t
Between(Left,HPoint,Right);

Note where we placed the declaration for function Between. It is in the dec­
laration part of the program after the variable declarations. Function declara­
tions, like procedure declarations, always come at the end of the declaration part
of a program just before the body.

EXERCISE 3 a. How would you declare function InBetween, which returns the value
True if Smaller is strictly less than Middle (rather than less than or equal
to) and Middle is strictly less than Larger?

b. What will program PointlnRec report when the point lies exactly on the
edge of the rectangle? What happens when the point lies exactly on a cor­
ner of the rectangle?

340 Functions and Random Numbers

c. What do you think function Tomorrow does? What is the formal param­
eter? What is the type of the parameter? What is the result type?

function Tomorrow(Today : DaysOfWeek) : DaysOfWeek;
begin
if Today = Sun then
Tomorrow .- Mon

else
Tomorrow . - succ(Today)

end;

d. Write a companion function called Yesterday. -

Now let's work through two more examples of made-up functions, one with
result type char and the other with result type integer.

--10.5 Function Capitalize-----------------
Function Capitalize· capitalizes lowercase letters and returns other characters
unchanged. It has result type char.

function Capitalize(Ch : char) : char;
{FUNCTION CAPITALIZES LOWERCASE LETTERS AND LEAVES OTHERS UNCHANGED.}
const
OffSet = 32; {EACH CAPITAL LETTER COMES 32 POSITIONS EARLIER}

{IN TYPE CHAR THAN ITS LOWERCASE EQUIVALENT }
begin
if (Ch)= 1 a 1

) and (Ch(= 1 z 1
) then

Capitalize .- chr(ord(Ch) - OffSet)
else
Capitalize .- Ch

end;

When the function call passes a character to Capitalize, the value of the
character is assigned to the formal parameter Ch. If Ch is a lowercase letter, the
function returns the uppercase equivalent, which appears 32 elements earlier in
type char. Otherwise, Capitalize returns the original value of Ch. The function
will always return a value, no matter what character it is passed.

This last point is an important one. A function must return a value for every
value it is passed. If you write a function that returns a value for only some of the
actual parameters it can be passed, you incur the risk of a run-time error.

10.5 Function Capitalize 341

EXERCISE 4 What is the value of each of the following calls to Capitalize?

a. Capitalize ('A')

b. Capitalize (1 a 1)

c. Capitalize ('#')

d. Capitalize('3') -

Note that Capitalize has a local constant, OffSet. Function declarations can
include constants, variables, type definitions, and even procedures and other
functions. Like a procedure, a function is a complete subprogram that can be
every bit as complex as many programs.

Let's look at Capitalize in action. Suppose you have a summer job doing lay­
out work for a publisher. Some of your work involves titles and headings, and, in
this part~cular publisher's books, the first letter of each word in a title or heading
is capitalized. Let's use the function we have just written in a program that capi­
talizes words for you.

Program TitlesAndHeadings reads in a text and then prints the text with the
first letter of every word capitalized, as you can see in Figure 10.2. (As you ex­
amine program TitlesAndHeadings, remember to start by reading the main
program.)

program TitlesAndHeadings;
{YOU TYPE A TITLE OR HEADING .I
{PROGRAM CAPITALIZES FIRST LETTER OF EVERY WORD.I
var
CharString : string;

function Capitalize(Ch : char) : char;
{FUNCTION CAPITALIZES LOWERCASE LETTERS AND LEAVES OTHERS UNCHANGED.}
const
OffSet = 32; {EACH CAPITAL LETTER COMES 32 POSITIONS EARLIER}

{IN TYPE CHAR THAN ITS LOWERCASE EQUIVALENT}
begin
if (Ch)= 'a') and (Ch(= 'z') then
Capitalize .- chr(ord(Ch) - OffSet)

else
Capitalize .- Ch

end;
(continued)

342 Functions and Random Numbers

procedure CapFirstLett ers(var CharStri ng : string);
!PROCEDURE CAPITALIZES FIRST LETTER OF EACH WORD IN CHARSTRINGl
{AND LEAVES OTHER CHARACTERS UNCHANGED. }
const
Blank =' ';

var
StringLength,Position : i nteger;

begin
Stri ngLength := length(CharStri ng) ;
if (StringLength) 0) then
begin

CharString[l] := Cap i talize(CharSt ring[l]) ; {FUNCTION CALL}
Pos it ion : = 2;
while (Pos i t i on (= StringLengt h) do
begin
if (CharStr i ng [Pos it ion - 1] = Blank) then
CharStri ng[Posit i on] : = Cap i tal i ze(CharString [Position]) ;

Position . - Position+ 1
end

end
end ;

procedure EnterStri ng(var CharSt r i ng : string);
begin
writel n(' Type i n a t i t l e or a headi ng, fo llowed by a return .') ;
write(') ');
r eadln(CharString)

end ;

{MAIN PROGRAM}
begin
EnterString(CharStri ng);
CapFirst Letters(CharString);
writeln;
writeln(CharString)

end .

=o Te Ht
Type in a title or a heading, followed by a return. ~
>a Connecti cu t yankee in King Arthur's court

A Connecticut Yankee In Ki ng Arthur's Court ~

'2l

Figure 10.2 Typical output for program TitlesAndHeadings.

10.6 Another Math Puzzle-Finding Perfect Numbers 343

After you type in a string of characters, procedure CapFirstLetters is called
with the actual parameter CharString. It capitalizes the first letter in the string,
and thereafter it capitalizes any letter that is preceded by a blank. To capitalize a
letter, it makes a call to function Capitalize.

Notice that procedure CapFirstLetters checks to determine whether
CharString has length greater than zero before it goes to work capitalizing. This
is necessary because you might type a carriage return immediately after the
prompt . A carriage return would end the readln statement without filling the
first cell of the string, so CharString would have length 0 . When the procedure
attempted to capitalize the character in CharString[l], it would find an
undefined value, and a run-time error would occur. •

One final reminder: The declaration for function Capitalize comes before
the declaration for procedure CapFirstLetters. You would get an error if you
declared them in the opposite order.

A function or procedure that is called by another function or procedure
must be declared before the calling function or procedure. That is, it must be
declared above the calling subprogram in the declaration part of the program.

EXERCISE 5 What would program TitlesAndHeadings do if Position were initialized to 1
instead of 2 in procedure CapFirstLetters?

Hint: The indexes for the components of a string variable begin at 1, not
atO. -

--10.6 Another Math Puzzle-Finding Perfect Numbers-------
Now let's look at a function with result type integer. We will use it in a program
that does a calculation that has fascinated mathematicians for thousands of
years. Program Perfect will tell you whether a number is a perfect number. A
perfect number is a positive integer that's the sum of all its proper divisors. That
is, it is the sum of all the numbers (except the number itself) that divide it evenly.
Because the numbers 1, 2, and 3 are the proper divisors of 6, and the sum of 1, 2,
and 3 is 6, 6 is a perfect number.

EXERCISE 6 What is the sum of the proper divisors of each of the following numbers?

a. 11

Answer: 1

b. 15
Answer: 9

c. 24

Answer: 36 -

344 Functions and Random Numbers

The ancient Greek mathematician Euclid knew about perfect numbers in
the third century B.C., but mathematicians still do not completely understand
them. Nobody knows whether a largest perfect number exists or whether there
are infinitely many of them. And, though the perfect numbers that have been
found so far are all even numbers, there may be odd ones that nobody knows
about.

Program Perfect checks each of the numbers from I to 500 to determine
whether it is a perfect number, and prints out any perfect numbers it finds. The
function called ProperDivisorSum calculates the sums of the divisors of a num­
ber. Note that function ProperDivisorSum has its own private or local variables,
Divisor and Sum. Sum accumulates the sum of the divisors of the value of the for­
mal parameter Number. Then, in the last statement in the function declaration,
the function identifier ProperDivisorSum is assigned the value of Sum, and this
value becomes the value returned by the function.

program Perfect;
{PRINTS PERFECT NUMBERS FROM 1 TO 500l
canst
Limit = 500;

var
Number : integer;

function ProperDivisorSum(Number : integer) : integer;
{CALCULATES THE SUM OF THE PROPER DIVISORS OF A NUMBER}
var
Divisor,Sum : integer;

begin
Divisor : = 1;
Sum := O;
while (Divisor (= Number div 2) do
begin
if (Number mod Divisor = 0) then

Sum := Sum+ Divisor;
Divisor := Divisor + 1

end;
ProperDivisorSum := Sum

end;
{MAIN PROGRAM}

begin
for Number := 1 to Limit do
if (Number= ProperDivisorSum(Number)) then
writeln(Number : 1,' is a perfect number.')

end.

10. 7 Passing an Array to a Function-Program ReportHottestDay 345

For each value of Number, ProperDivisorSum checks only values that are
less than or equal to half the value of Number. No number greaterthan this value
can be a proper divisor. Even though this cuts in half the number of values to be
checked, the program takes a long time to run. When execution is over, you will
see in the Text window the four perfect numbers from I to 500: I, 6, 28 and 496.

What would happen if, instead of using Sum to accumulate the sum of the
divisors, we used the identifier ProperDivisorSum inside the function as though
it were a regular variable and wrote the loop this way?

Divisor := 1;
ProperDivisorSum := O;
while (Divisor (= Number div 2) do
begin
if Number mod Divisor = 0 then
ProperDivisorSum := ProperDivisorSum + Divisor;

Divisor .- Divisor+ 1
end;

It wouldn't work. ProperDivisorSum can't appear on the right side of an as­
signm·ent statement inside the function declaration the way a regular variable
can. For now, it can appear only on the left side of an assignment statement.

--10.7 Passing an Array to a Function-Program ReportHottestDay __ _
The functions we have created so far use characters or integers as parameters.
Arrays can also be used as parameters. Let's see how this works.

Suppose you keep weather records and you want to find the hottest day in
July. You can invent a function called HottestDaythat will find the day with the
highest temperature. The program passes the function a 31-component array
with a real number temperature in each cell, and the function passes back the
number of the cell that holds the highest temperature. (The principle here is the
same one that we used in program LargestHousehold in Chapter 9.)

Here is the complete program:

program ReportHottestDay;
{YOU TYPE IN THE HIGHEST TEMPERATURE FOR EACH DAY IN JULY.}
{PROGRAM REPORTS THE HOTTEST DAY IN JULY.l
type
MonthlyTemp = array[l .. 31] of real;

var
JulyTemp : MonthlyTemp;
Scorcher,HottestDay : integer;

(continued)

346 Functions and Random Numbers

procedure EnterTemperatures(var Temp MonthlyTemp);
var
Date : integer;

begin
for Date := 1 to 31 do

begin
writeln('Type in the highest temperature on July ',Date 1);
write (') ') ;
readln(Temp[Date])

end
end;

function FindHottestDay(Temperature MonthlyTemp): integer;
var
Date : integer;

begin
Date := 1;
HottestDay : = 1;
while (Date (= 31) do
begin
if (Temperature[Date]) Temperature[HottestDay]) then
HottestDay := Date;

Date := Date + 1
end;

FindHottestDay .- HottestDay
end;

{MAIN PROGRAM}
begin
EnterTemperatures(JulyTemp);
Scorcher := FindHottestDay(JulyTemp);
writeln('The hottest day of the month was July', Scorcher 1)

end.

The formal parameters in a function declaration can be any type we have
seen so far: integer, real, char, boolean, an enumerated type, an array, or a
string (as long as string is not followed by a size value in brackets). However,
there are restrictions on the result type of a function. A function's result type can­
not be an array or a string with a size qualifier.

10.8 APlanningExample-LetterFrequency 347

__ 10.8 A Planning Example-Program LetterFrequency ______ _
Now that you understand how to create your own functions, we can examine
how to use them in top-down programming. The next two programs depend on
many nested functions and procedures to divide up programming tasks. Each
program solves a complex character analysis problem.

Every writer has a characteristic style and uses a characteristic vocabulary.
This fact can sometimes be used to solve mysteries about who wrote certain an­
cient texts. Even knowing how often an author uses each letter of the alphabet
can sometimes help investigators decide whether that author wrote a particular
work.

Let's write a program called program LetterFrequency that prints a line
graph of the letter frequencies in a text you type in. Using procedures and func­
tions, we can transform this complicated programming problem into a series of
manageable subproblems.

Thinking
The program will read in a text. Then it will calculate the letter frequencies, and
finally it will print out a line graph representing the frequency with which each
letter shows up in the text.

Let's start by building a data table. We'll need an input variable of type
string, which we'll call CharString. The output is a graph with 26 vertical lines
representing the frequencies in the text of the letters of the alphabet.

It will help our analysis of the problem to identify the most important typi­
cal action the program will take: The program will examine a single character in
a string. If that character is a letter, the program will record this occurrence in a
scoreboard of the letter frequencies. This means we should develop our program
around the scoreboard principle, and we must therefore include a scoreboard
array in our data table.

The scoreboard array will be indexed by the letters of the alphabet. Each
component will have an integer value that represents the number of times a par­
ticular letter appears in the text. Let's call the array variable Scoreboard and de­
fine an array type called LetterChart:

type
LetterChart = array['A' •. 'Z'] of integer;

var
Scoreboard : LetterChart;

When a C turns up in the text, the computer will update the scoreboard with this
statement:

Scoreboard['C'] := Scoreboard['C'] + 1;

348 Functions and Random Numbers

The main loop of the program will cycle through CharString character by
character, and every time it comes to a letter, it will increment by I a cell in the
scoreboard. Here is our data table.

__________ DATA TABLE _________ _

Input Variable
CharString: string

Constants
none

Main Loop

Output Variable
a line graph

Formulas
none so far

Program Variable
Scoreboard : LetterChart;

cycles through Charstring, filling Scoreboard in the process

Type Definitions

type
LetterChart = array[' A' .. 'Z'] of integer;

Planning
Our first plan for program LetterFrequency is just a restatement of the problem.

Plan I
I. Enter the text.
2. Calculate the letter frequencies.
3. Print out a graph.

We can make each of these steps into a procedure. When we do, our second
plan looks like this:

Plan II
I. EnterString
2. CalcFrequency
3. PrintGraph

When we calculate the letter frequencies, we will use a scoreboard array.
Because of the way a scoreboard works, it's important to initialize the scoreboard
before it is passed to a procedure. Here is the third version of our plan.

Plan III
I. EnterString
2. lnitScoreboard
3. CalcFrequency
4. PrintGraph

10.8 A Planning Example-LetterFrequency 349

Now let's clarify the procedures by writing their heading lines and doing
paper checks.

procedure Ent erString(var CharString string) ;

~~~~~it~~~g ~ T [ h [ i [ n [ k [ [ b [ [ g [ 

CharString with empty cells CharString with full cells 

procedure InitScoreboard(var Scoreboard LetterChart); 

n I I I I I I 
procedure 

_, o l o l o l I 0 I 0 I 0 I ... In itScoreboard 
A B c x y z A B c x y z 
Scoreboard with 26 empty cells Scoreboard with 26 cells 

procedure CalcFrequency(CharString : string; 
var Scoreboard : LetterChart) 

1° 1°1°1 ... 1°1°1° 1 
procedure 
CalcFrequency 

containing O's 

A B C X Y Z A B C 

0 0 0 

x y z 
Scoreboard Scoreboard 

l a l b l c l----1 
CharString 

procedure PrintGraph(Scoreboard LetterChart; 
Scale integer) ; 

I 0 I 0 I 0 I 
A B C x y z 

Scoreboard 

10 1--~~~~~....-i 

Scale 

procedure 
PrintGraph 

A B C x y z 
Graph in Drawing window 



350 Functions and Random Numbers 

Now that we have clarified the procedures, we can code the top level. 

{MAIN PROGRAM} 
begin 
ReadString(CharString); 
InitScoreboard(Scoreboard); 
CalcFrequency(CharString,Scoreboard); 
PrintGraph(Scoreboard,Scale) 

end. 

Next we need to go back and plan the procedures. EnterString and 
InitScoreboard are easy to code. So is PrintGraph: It's like the universal line 
graph procedure we wrote in Chapter 9, except that it graphs an array whose 
index is made up of letters instead of integers. Procedure CalcFrequency is the 
heart of the program, so let's plan it next. 

Thinking About CalcFrequency 

The inputs to procedure CalcFrequency are the string CharString and the array 
Scoreboard. The output is the variable parameter Scoreboard. Typically, 
CalcFrequency takes a character from CharString and, if the character is a let­
ter, tallies that letter in the array Scoreboard. The tally is done by incrementing 
by 1 the component variable that has that letter as its index. So the main loop of 
CalcFrequency moves down the string, checking for letters and scoring them on 
the scoreboard. 

To loop through CharString we'll need a control variable for the loop­
Position-and we'll need an upper limit for the loop-StringLength = 

Zength(CharString). We can create the following data table for CalcFrequency. 

-----------DATA TABLE----------­

Input 
Scoreboard, CharString 

Types 
none 

Loops 

Output 
Scoreboard 

Formulas 
none 

Program Variables 
Position, StringLength 

Constants 
none 

loop moves down CharString, letter by letter, tallying letters in 
Scoreboard 



10.8 APlanningExample-LetterFrequency 351 

Planning Procedure CalcFrequency 
Plan I 

loop through CharString 
if. CharString[Position] is a letter then 
record it in Scoreboard 

Plan II 

Position := l; 
StringLength := length(CharString); 
while (Position ( = StringLength) do 
begin 

if CharString[Position] is a letter then 
add 1 to the appropriate component of Scoreboard 

end; 

We're almost there-except that we have to change all letters to uppercase, 
because the uppercase letters are the index type of Scoreboard. We can use func­
tion Capitalize to make this change. 

In order to make the code more readable, we have added a new program 
variable called ThisChar, which we use to store the value of Capitalize-the 
capital-letter version of CharString[Position]. If ThisChar is a capital letter, not 
a blank space or a punctuation mark, we can use it as an index for Scoreboard, 
which has index type 'A' .. 'Z'. 

Plan III 

Position := l; 
StringLength := length(CharString); 
while (Position ( = StringLength) do 
begin 

ThisChar := Capitalized version of CharString[Position]; 
if ThisChar is a capital letter then 
add 1 to Scoreboard[This Char] 

end; 

Let's farm out to a function we'll call IsCapitalLetter the job of checking 
whether ThisChar is a capital letter. The function will return a boolean value. 
When IsCapitalLetter(ThisChar) is True, we'll increment the value of Score­
board[ThisChar] by 1. 

Now we are ready to code procedure CalcFrequency. 



352 Functions and Random Numbers 

procedure CalcFrequency(CharString : string; 
var Scoreboard : LetterChart); 

var 
StringLength,Position : integer; 
ThisChar : char; 

begin 
Position := 1; 
StringLength := length(CharString); 
while (Position <= StringLength) do 
begin 
ThisChar := CharString[Position]; 
ThisChar := Capitalize(ThisChar); 
if IsCapitalLetter(ThisChar) then 
Scoreboard[ThisChar] := Scoreboard[ThisChar] + 1; 

Position .- Position+ 1 
end 

end; 

Next we need to code function lsCapitalLetter. The input for the function is 
a character, so let's call its formal parameter Ch. The output will be boolean. 
Here is the function declaration. 

function IsCapitalLetter(Ch : Char) : boolean; 
begin 
if (Ch)= 'A') and (Ch(= 'Z') then 
IsCapitalLetter .- True 

else 
IsCapitalLetter .- False 

end; 

And here is the full program LetterFrequency. See Figure 10.3 for sample 
output. 

program LetterFrequency; 
{TYPE TEXT OF UP TO 255 CHARACTERS. PROGRAM GRAPHS LETTER FREQUENCY.} 
const 
Scale = 10; {SCALING FACTOR FOR LINE GRAPH} 
Period = ' . ' ; 

type 
Letters= 'A' .. 'Z'; 
LetterChart = array[Letters] of integer; 

var 
CharString 
Scoreboard 

string; 
LetterChart; 



10.8 APlanningExample-LetterFrequency 353 

procedure PrintGraph(Scoreboard LetterChart; 
Scale : integer); 

const 
Bottom = 180; 
Separation = 16; 
CharWidth = 4; {USED TO CENTER LABEL UNDER LINE.} 

var 
Ch : Letters; 
HPos : integer; {HORIZONTAL POSITION OF LINE} 
Height : integer; 

begin 
HPos := O; 
for Ch .- 'A' to 'Z' do 
begin 

HPos .- Hpos + Separation; 
Height :=Bottom - (Scale* Scoreboard[Ch]); 
drawline(HPos,Bottom,HPos,Height); 
moveto(HPos - CharWidth, Bottom+ 15); {PLACE PEN UNDER LINE} 
drawchar(Ch) {WRITE LETTER LABEL} 

end; 
moveto(l0,20); 
writedraw('LETTER FREQUENCY CHART') 

end; 

procedure EnterString(var CharString : string); 
begin 
writeln('Type in a text of up to 255 characters. 

Then type a carriage return.'); 
write ( ' ) ' ) ; 
readln(CharString) 

end; 

procedure InitScoreboard(var Scoreboard LetterChart); 
var 

Ch : char; 
begin 

for Ch := 'A' to 'Z' do 
Scoreboard[Ch] .- 0 

end; 

(continued) 



354 Functions and Random Numbers 

function Capital ize(Ch : char) : char; 
begin 
if (Ch )= ' a ' ) and (Ch (= ' z ' )then 

Cap i talize .- chr(ord(Ch) - 32) 
else 

Cap i tal i ze . - Ch 
end ; 

function I sCapitalLetter(Ch : char) : boolean; 
begin 
if (Ch )= ' A' ) and (Ch( = ' Z' ) then 
IsCapitalLetter .- True 

else 
IsCapitalLetter .- False 

end; 

procedure CalcFrequency(CharString : string; 
var Scoreboard : LetterChart); 

var 
StringLength,Pos i tion : i nteger; 
ThisChar : char; 

begin 
Pos i t i on := 1; 
StringLengt h := l ength(CharStri ng) ; 
while (Pos i t i on ( = StringLength) do 
begin 

Thi sChar := CharStri ng [Posit i on]; 
ThisChar := Capital ize(Thi sChar); 
if IsCapital Letter(Thi sChar) then 
Scoreboard[ThisChar] := Scoreboard[ThisChar] + 1; 

Pos i tion . - Positi on + 1 
end 

end; 
{MAIN PROGRAM} 

begin 
Ent erStri hg(CharStr i ng) ; 
InitScoreboard(Scoreboard); 
CalcFr equency(CharStri ng,Scoreboard); 
Print Graph(Scoreboard,Scale) 

end . 

EXERCISE 7 Does the output of the program change if we make CharString a variable 
parameter in procedure CalcFrequency? -



10.9 Program WordFrequency 355 

r .S Fi~ Edit Search Run Windows 

Te Ht 
T!:lpe i r1 o text of up to 255 characters , Then type a carriage return. 
>The quick brown fo x j Limps over· the laz!:I dog. 

H 

-0 Drawing 

LETTER FREQUENCY CHART 

. 

I I I I I I I I I I I I I I I I I I I I I I I I I I 
A B c D E F G H I J K L t1 N [I p (I R c 

~· T u \,I \~I ~: v z 
'2:l 

Figure 10.3 Typ ical output for program LetterFrequency. 

Your private version of Pascal has begun to grow. It now includes three val­
uable functions: IsCapitalLetter, Between, and Capitalize. 

--10.9 Program WordFrequency --------------­
Let's look at a program that Mosteller and Wallace could have used in their study 
(see boxed discussion of disputed authorship on page 356) . Program 
WordFrequency reads in a text of up to 255 characters that ends with a period. 
Then it reads in a single word and prints out the number of times this word oc­
curs in the text as you can see in Figure 10 .4. 

Program WordFrequency consists of many nested functions and proce­
dures. The top level does five separate jobs: Procedure EnterString reads in a 
text; procedure EnterWord reads in the word you want to search for; function 
ChangeToLowercase converts the input string to lowercase letters; function 
CountOccurrences counts the number of occurrences of the word in the string; 
and finally, a writeln statement prints out this count. 



356 Functions and Random Numbers 

Disputed Authorship and Computers 
Should the Un ited States stay united? That question was almost answered 
"No! " in July of 1788, when New York had to vote on whether to accept the 
newiy written American Constitution. Many New Yorkers were against 
acceptance, which would unite the former colonies in a federation of states. 
What could persuade them to vote in favor of federation? Perhaps 
newspaper articles and pamphlets could do the trick. So three prominent 
men-Alexander Hamilton, John Jay, and James Madison-decided to pub­
lish their arguments in favor of accepting the Constitution . The pieces 
(which were signed simply " Publ ius") were very well written , and there is no 
doubt that they influenced many people. New York voted " Yes" for federa­
tion . 

All the pieces were finally put together in a book called The Federalist. 
Then arguments began. Which man had written which piece? It was agreed 
that Jay was the author of five and that Hamilton and Madison had 
collaborated on some. But there were twelve that caused dispute. Some 
people said Hamilton alone wrote them. Others gave the credit to Madison. 
The argument might have died if the papers themselves had not been impor­
tant ; lawyers have often c ited them in-cases that involve interpretations of 
the Constitution. But for almost 200 years there seemed to be no way to set­
tle the quest ion of authorsh ip. Now computer studies have almost certainly 
given us the answer. 

According to F. Mosteller and D. Wallace, identifiable patterns recur in 
most writers' use of certain common words, such as on, of, enough, also, 
while, and upon. So these two men wrote a program that analyzed material 
known to have been written by each of the Federalist authors. Hamilton, 
they discovered, used the word upon f ive times more often than did 
Madison. This and other clues led Mostel ler and Wallace to conclude that 
the author of all twelve disputed papers was very probably Madison. 

-D Te Ht 
Type in a text, ending 1J1 i th a period then a car·t' i oge ret.1.Jrn . lfr1 

>Should you put a colon after the word otherwise? No, no, no! 
Pascal wi I I not al low it . 

tfou1 type in a u1ord, t.JS i ng a I I I owerca::;e I et t ers. 
;' no 

The word no occurs 3 times in the text . 

Figure 10.4 Typical output for program Word Frequency. 



10.9 Program WordFrequency 357 

program WordFrequency; 
{YOU TYPE IN A TEXT AND A WORD. PROGRAM REPORTS THE NUMBER} 
{OF TIMES THE WORD OCCURS IN THE TEXT.} 
var 
Count : integer; 
Word : string; 
CharString : string; 

function Lowercase(Ch : char) : char; 
begin 
if (Ch)= 'A') and (Ch(= 'Z') then 
Lowercase .- chr(ord(Ch) + 32) 

else 
Lowercase .- Ch 

end; 

function IsALetter(Ch : char) : boolean; 
begin 
if _((Ch >= 'A') and ((Ch (= 'Z')) or 

((Ch )= 'a') and (Ch(= 'z')) then 
IsALetter .- True 

else 
IsALetter .- False 

end; 

function ChangeToLowercase(CharString string) string; 
var 
Position,StringLength : integer; 

begin 
StringLength := length(CharString); 
Position := 1; 
while (Position (= StringLength) do 
begin 

CharString[Position] := Lowercase(CharString[Position]); 
Position := Position + 1 

end; 
ChangeToLowercase .- CharString 

end; 

function CountOccurrences(Word,CharString : string) : integer; 
{THE DECLARATION PART OF FUNCTION COUNTOCCURRENCES HAS LOCAL} 
{DECLARATIONS FOR THE NESTED FUNCTIONS OKONENDS AND MATCH.} 
var 
Position,StringLength,WordLength,Count : integer; 

(continued) 



358 Functions and Random Numbers 

function Match (Word : string; 
CharString : string; 
Position : integer) boolean; 

var 
SubPiece : string; 

begin 
SubPiece .- copy(CharString,Position,length(Word)); 
Match .- (SubPiece = Word) 

end; 

function OkOnEnds(Word : string; 
CharString : string; 
Position : integer) : boolean; 

{THE DECLARATION PART OF FUNCTION OKONENDS CONTAINS DECLARATIONS} 
{FOR TWO NESTED FUNCTIONS -- OKONFRONT AND OKONBACK.l 

function OkOnFront(CharString : string; 
Position : integer) : boolean; 

const 
Blank 

begin 
- I I, 
- ' 

if (Position = 1) then 
OkOnFront := True 

else 
OkOnFront .- (CharString[Position - 1] = Blank) 

end; 

function OkOnBack(CharString : string; 
PositionAfterWord : integer) : boolean; 

begin 
if IsALetter(CharString[PositionAfterWord]) then 
OkOnBack := False 

else 
OkOnBack .- True 

end; 

{BODY OF FUNCTION OKONENDSl 
begin 

OkOnEnds .- OkOnFront(CharString,Position) and 
OkOnBack(CharString, Position+ length(Word)) 

end; 



10.9 Program WordFrequency 359 

{BODY OF FUNCTION COUNTOCCURRENCESJ 
begin 
Count := O; 
StringLength := length(CharString); 
WordLength := length(Word); 
Position := 1; 
While (Position(= (StringLength - WordLength)) do 
begin 
if (Match(Word,CharString,Position) and 

OkOnEnds(Word,CharString,Position)) then 
Count := Count + 1; 

Position := Position + 1 
end; 

CountOccurrences .- Count 
end; 

procedure EnterWord(var Word : string); 
begin 
writeln('Now type in a word, using all lowercase letters.'); 
write ( ' ) ' ) ; 
readln(Word); 
writeln 

end; 

procedure EnterString(var CharString : string); 
begin 
writeln('Type in a text, ending with a period 

then a carriage return.'); 
writeln; 
write(')'); 
readln(CharString); 
writeln 

end; 
{MAIN PROGRAM} 

begin 
Count := O; 
EnterString(CharString); 
EnterWord(Word); 
CharString := ChangeToLowercase(CharString); 
Count := CountOccurrences(Word, Charstring); 
writeln('The word ',Word,' occurs ',Count : 1, 1 times in the text. 1 ) 

end. 



360 Functions and Random Numbers 

The workhorse of the program is function CountOccurrences , which has 
several other functions nested inside it. Let's examine how it works. The follow­
ing diagram illustrates the structure of the functions that are used inside function 
CountOccurrences. 

CountOccurrences 

Match 

OkOnEnds 

OkOnFront 

OkOnBack 

CountOccurrences "slides" the word along the string, looking for a match . 
But checking for a match is not done directly inside the body of the function. In­
stead, this job is handed to another function called Match with result type 
boolean. Match uses yet another function , the standard function copy, to extract 
the characters from the string that the word is checked against. 

A successful match does not guarantee that the word has been found. If you 
are looking for the word up, you don't want to count the up in upon. So you must 
make sure the character after the pis not a letter. You must also rule out the up in 
stirrup, because it is not preceded by a blank. 

CountOccurrences requires that the word match a piece of CharString and 
that the matching piece from CharString be both preceded by a blank space and 
not followed by a letter. Once again, function CountOccurrences passes along a 
job to another function. A function called OkOnEnds checks the character that 
comes before the matching substring and the character that comes after it. 

Even function OkOnEnds has its own private functions, OkOnFront and 
OkOnBack. OkOnFront checks whether the string is preceded by a blank. And 
OkOnBack makes sure the string is not followed by a letter. (The program as­
sumes that the last character in the input string is a period.) 

When you write a function such as CountOccurrences, and you encounter a 
complex part that will require more than two or three statements, you can keep 
the body of the function from getting too complicated by packaging the complex 
part as a separate function or procedure subprogram. We've been able to keep 
the body of function CountOccurrences simple by farming out the two main 
pieces of its job to functions Match and OkOnEnds. 



10.10 Sorting and Alphabetizing 361 

ChangeToLowercase is another function that gives part of its job to a 
simpler function. It takes in a string of characters and returns the string with all 
the letters changed to lowercase letters. As it loops through the characters, func­
tion ChangeToLowercase calls function Lowercase, which actually changes 
each capital letter to a lowercase letter. 

We have placed the declaration for Lowercase outside function ChangeTo­
Lowercase in order to make Lowercase available to other functions and proce­
dures in the program, as well as to ChangeToLowercase. Lowercase is a fairly 
general function ; if we add to program WordFrequency, we might want to use it 
in our addition. 

Note that the variable Count has both a global definition in the declaration 
part of the program and a local declaration inside function CountOccurrences. 
Global and local variable declarations work exactly the way global and local 
constant definitions do. When a variable is used inside a function or procedure, 
the Macintosh first checks locally for its value. If it can't find one, it looks up a 
level for a more global value. The variable Count is declared in the function 
CountOccurrences, so inside the function the Macintosh uses the local value of 
Count rather than the one that appears in the main program . 

_ 10.10 Sorting and Alphabetizing _____________ _ 

An astronomer prints out a list of the meteorites found on earth this year, in order 
of increasing weight. A businesswoman brings up her list of employees and prints 
out their names in alphabetical order. A sports writer prints out a listing, in 
order, of the top 50 hitters in the major leagues. 

In each case, a list of items has been sorted-that is, put in numerical or al­
phabetical order-by a computer program. Sorting is one of the most important 
operations in computing. 

First we will examine how we can sort numbers. Then we'll write a pro­
gram that puts a list of names in alphabetical order. 

Suppose we want to sort five numbers in an array, putting the smallest first. 

51 32 44 18 20 

2 3 4 5 

First we'll locate the smallest number in the array. It is 18, in position 4. Then 
we'll swap the numbers in positions 1 and 4. 

18 32 44 51 20 

t 
2 3 4 5 



362 Functions and Random Numbers 

We have made some progress: The number 18 is in the right place. Now we 
can focus our attention on the part of the array that runs from position 2 through 
position 5. This is called a tail of the array. A tail can start anywhere in the array, 
and it goes all the way to the end. 

If we look at the tail that starts at position 2, we find that the smallest num­
ber is 20, in position 5. So we exchange the number in position 2 for the 20 in po­
sition 5. 

18 20 44 51 32 

2 3 4 5 

Now the first two numbers are in place. So we search once again for the 
smallest number, this time looking in the tail that starts at position 3. If we con­
tinue comparing nulllbers in the tail and swapping their positions, we can sort 
any list of numbers. 

One of the great features of Pascal is that we can use exactly the same swap­
ping technique for alphabetizing a list of words or names. Macintosh Pascal al­
lows us to use relational operators to compare strings . For example, if you type in 
the Instant window 

writeln('money' ( 'monkey') 

and click on Do It, the Macintosh will print True in the Text window because e 
comes before k. And if you try 

writeln('bake' ( 'baker') 

it will also print True. MacPascal's rules for putting strings in alphabetical order 
using relational operators are similar to those used in telephone books or 
dictionaries. This way of ordering strings is called lexicographic ordering, and it 
is built into MacPascal. Note: 'Bill' ( 'bill' and 'Bill' ( 'aardvark', because 'B' ( 'b' 
and 'B' ( 'a' in type char. 

Let's look at a program that alphabetizes names. 

program NameSort; 
{YOU READ IN 8 NAMES. PROGRAM PRINTS THEM IN ALPHABETICAL ORDER.} 
const 
Size = 8; {THE NUMBER OF NAMES TO BE SORTED) 

type 
ListOfWords = array[l .. Size] of string[JO]; 

var 
NameList : ListOfWords; 



10 .10 Sorting and Alphabetizing 363 

procedure EnterNames(var NameList ListOfWords) ; 
var 

NameNumber : integer; 
begin 

for NameNumber := 1 to Size do 
begin 
writeln( 'Type in a name. ' ); 
write ( ' ) ' ) ; 
readln(NameList [NameNumber]); 
writel n 

end 
end; 

procedure SortNames(var NameLi st : ListOfWords) ; 
var 
StartPosition,PositionOfNextName : i nteger; 

{DECLARATION PART OF PROCEDURE SORTNAMES CONTAINS} 
{FUNCTION NEXTNAMEINTAIL AND PROCEDURE SWAP.} 

function NextNameinTai l(St art Pos i t i on : integer; 
NameList : Li stOfWords) : integer; 

{RETURNS POSITION IN THE TAIL OF THE NAME THAT SHOULD COME NEXT} 
var 
Pos i t i on : integer ; 
PositionOfNextName integer; {INDEX OF NAME THAT SHOULD COME} 

{NEXT IN THE ALPHABETIZED ARRAY} 
begin 
Posit i onOfNextName . - StartPos i t i on ; {ASSUME THAT THE NAMEl 

{INDEXED BY STARTPOSITION SHOULD COME NEXT} 
Position := StartPosition + 1; 
while (Position (= Size) do 
begin 
if (NameList[Position] ( NameList[Pos i tionOfNextName]) then 
PositionOfNextName : = Posit i on ; 

Posit i on := Posit i on + 1 
end ; 

NextNameinTail . - PositionOfNextName 
end; 

(continued) 



364 Functions and Random Numbers 

procedure Swap(StartPosition,PositionOfNextName : integer; 
var NameList : ListOfWords); 

{USES THE SCRATCHPAD PRINCIPLE TO EXCHANGE NAME AT POSITION} 
{STARTPOSITION WITH NAME AT POSITION POSITIONOFNEXTNAMEl 

var 
TernpName : string[30]; {THE SCRATCHPAD VARIABLE} 

begin 
TernpName := NameList[StartPosition]; 
NameList[StartPosition] := NameList[PositionOfNextName]; 
NameList[PositionOfNextName] .- TernpName 

end; 
{BODY OF PROCEDURE SORTNAMESl 

begin 
for StartPosition := 1 to (Size - 1) do 
begin 
PositionOfNextName := NextNameinTail(StartPosition,NameList); 
Swap(StartPosition,PositionOfNextNarne,NarneList) 

end 
end; 

procedure PrintNarnes(NarneList ListOfWords); 
var 

NarneNurnber : integer; 
begin 
for NarneNumber := 1 to Size do 
writeln(NarneList[NarneNurnber]) 

end; 
{MAIN PROGRAM} 

begin 
EnterNarnes(NarneList); 
SortNames(NarneList); 
PrintNarnes(NarneList) 

end. 

Program NameSort has been organized around three procedures: 
EnterNames, SortNames, and PrintNames. Procedure SortNames is the interest­
ing part of the program, so let's see how it works. 

After procedure EnterNames reads eight names into the array NameList, 
procedure SortNames is called and is passed this array of strings. Using a single 
for statement with two functions as its body, procedure SortNames arranges the 
names alphabetically. Function NextNamelnTail finds the position of the name 
that should come next. And function Swap swaps the name at this position for 
the name at the beginning of the tail. 



10.10 Sorting and Alphabetizing 365 

The loop in procedure SortNames advances the control variable 
StartPosition from 1 to Size - 1. With StartPosition equal to 1, function 
NextNamelnTail locates the position of the name you want to put first. This 
value is stored in the variable PositionOfNextName. Then function Swap ex­
changes the name in that position for the name in StartPosition. This swap moves 
to position 1 the name that should appear first. 

StartPosition = 1 
Tail 

Dubin Poe Blazier Chang Bilka Allen Vader Cobb 

7 8 

Then StartPosition is advanced to 2, and the body of the loop in SortNames 
works on the tail of the array that begins at position 2. The position of the name 
that should come next is found . Then that name is swapped for the name in posi­
tion 2. 

StartPosition = 2 
Tail 

Allen Poe Blazier Chang Bilka Dubin Vader Cobb 

6 7 8 

Procedure SortNames continues in this fashion until the whole array has 
been sorted. Procedure PrintNames then prints the names in alphabetical order, 
as you can see in Figure 10. 5. 

=o 

A 11 en 
Ei i I ko 

BI 1n: i er 
Chang 

Cobb 
Dubin 

Poe 

Uader 

T"Ht 

Figure 10.5 Output for program NameSort. 



366 Functions and Random Numbers 

EXERCISE 8 a. Why does the loop in the body of procedure SortNames have Size - 1 
instead of Size as its upper limit? 

b. Why is NameList a variable parameter in procedure Swap? -

_ 10.11 A Brief Look at Recursion _____________ _ 

Many problems in computing and mathematics can be solved by using the fol­
lowing general approach: Find a solution to a smaller version of the problem. 
Then use this solution to solve the original problem. When you solve a problem 
in this way, you have given a recursive solution. Recursive problem solving is 
easy to do in Pascal, and we will show you how it is done in a moment. But first 
let's look at a simple example of recursive problem solving from mathematics. 

When you raise a number to a power, you multiply the number by itself 
some number of times: 

x"=xxxxxx ··· xx 

n times 

You can calculate the value of a number raised to a power by using the following 
two equations. 

XO= 1 

x" = xxx" - 1 ifn)O 

The two equations say, "If the exponent of xis 0, x" is equal to 1. Otherwise, x" 
equals x times x raised to the power n - 1. " 

We can turn these two equations into an algorithm that recursively calcu­
lates the value of a number raised to a power. To find a value for x", we calculate 
a value for x raised to a smaller power: x" - 1

• That is , we create a simpler problem 
to solve. When the simpler problem is solved, we multiply its answer by x. This 
solves the original problem. Let's use two equations to calculate recursively the 
value of 53

• 

Because the exponent in 53 is greater than zero, the second equation applies, 
yielding 

53 = 5 x 52 

We have made progress because the exponent is smaller: Now it's 2. 
Next we apply the second equation again, this time to the 52 term. We get 

53 = 5 x 5 x 51 



10.11 A Brief Look at Recursion 367 

Now we use the second equation for the last time and get 

53 = 5 x 5 x 5 x 5° 

The first equation now applies, and yields 

53 = 5 x 5 x 5 x 1 = 5 x 5 x 5 = 5 x 25 = 125 

This method for calculating the value of a number raised to a power is called 
a recursive method, because instances of the problem that become progressively 
simpler recur over and over. 

Now let's see how Pascal handles recursion. Unlike many other program­
ming languages, Pascal allows this recursive style of calculation in a function. 
The resulting function is called a recursive junction. We'll show you how this 
works by turning our two equations for calculating powers into a Pascal 
recursive function that does exponentiation inside a program called program 
Expo. 

program Expo; 
{YOU TYPE AN INTEGER AND A NON-NEGATIVE INTEGER POWER, THE EXPONENT.} 
{PROGRAM PRINTS THE VALUE OF THE FIRST INTEGER RAISED TO THE POWER.} 
var 
X : integer; {THE NUMBER TO BE RAISED TO A POWER} 
N : integer; {THE EXPONENT} 
Answer : integer; 

function Power(X,N : integer) : integer; 
{CALCULATES RECURSIVELY THE VALUE OF A NUMBER RAISED TO A POWER} 
{IF THE EXPONENT IS NEGATIVE OR ZERO, POWER RETURNS THE VALUE 1.} 

begin 
if (N (= 0) then 
Power := 1 

else 
Power := X * Power(X,N - 1) 

end; 
{MAIN PROGRAM} 

begin 
writeln('Type in an integer followed by a non-negative exponent'); 
write(')'); 
readln(X,N); 
Answer := Power(X,N); 
writeln; 
writeln(Answer) 

end. 



368 Functions and Random Numbers 

When program Expo calculates the value of 53
, it makes this function call: 

Power(5,3). Inside the function declaration, X will be equal to 5 and N equal to 
3. Because N is positive, the else part of the body of the function is followed. The 
else part says that the value of Power is 5 x Power(5,2). 

We have something new here. Inside the function, the name of the function 
appears on the right side of an assignment statement. Power has actually called 
itself. This is a recursive function call . 

What happens when Power calls itself? The original function call , 
Power(5,3), isn't over yet; it has just been suspended. The answer to the original 
call will be 5 times the result of the internal call to Power. Note that the internal 
function call now has the actual parameters 5 and 2. 

Now Power(5,2) is computed. Again the else part of the if statement is 
executed, and the function call Power(5,2) is also suspended. It is set aside with 
an answer equal to 5 times the result of another computation: Power(5,l). In the 
same way, Power(5,l) is executed, and then suspended, with a value of 
5 x Power(5,0). 

We are almost done. Power(5,0) returns a definite value: 1. So we can now 
calculate Power(5,l). The value of Power(5, l) is 5 x Power(5,0) = 5 x 1 = 5. 
Power(5,2) can now be calculated. Its value is 5 x Power(5, l) = 25. Finally, we 
can compute Power(5,3). Its value is 5 x Power(5,2) = 125. 

As you can see, calculation by recursion has a different flavor from the 
looping techniques we have seen so far. Many problems that can be solved with 
looping can also be solved with recursive functions and recursive procedures. 
And, because the recursive description of a problem is often especially clear and 
succinct, a recursive solution can be very pleasing. On the other hand, recursive 
functions and procedures often require extra memory when they are executed, 
and this can be a problem if you aren't careful. 

- 10.12 Random Numbers----------------
Suppose you open the Instant window and type 

writeln(random) 

When you click on Do It, the Macintosh chooses an element of type integer at 
random. That is, it chooses a number from -32767 to 32767. Then it prints its 
choice in the Text window . Random, like button, is a built-in function with no 
parameters. Its result type is integer. 

If you click on Do It ten times in a row, you will get a list of ten numbers 
chosen at random, such as that shown in Figure 10.6. 

What does "random" really mean? You can't actually say that a single num­
ber, such as 5, is random. But you can talk about a random sequence. A sequence 



D Text 
-9526 

-2Ei966 
25513 

12099 
1101 

-26472 
15'1'15 

474Ei 
- 9246 

-110Ei5 

10.13 Simulating a Coin Toss 369 

Figure 10.6 Ten random numbers produced by the standard function random. 

is random when the numbers in the sequence have nothing to do with each other: 
Looking at the first few numbers of a random sequence doesn't help you guess the 
next number. This sequence is definitely not random: 

10,20,J0,40 

If you cover up the last number and ask a friend to guess what it is , you will al­
most certainly hear the right answer. 

Random numbers have many applications in computing. In the rest of this 
chapter we will tell you about three of them. First we will talk about using ran­
dom numbers to simulate events in real life. Then we'll look at "Monte Carlo" 
methods, which are used for estimating the values of important numbers in 
mathematics . Finally, we'll show how random numbers can be used for pro­
gram testing. 

- 10.13 Simulating a Coin Toss---------------
Random numbers are often used in computing to help perform simulations of 
events that occur in real life. Suppose you want to simulate a coin toss. Because 
the function random produces numbers at random, it is just as likely to produce 
an odd number as it is to produce an even number. When you compute 

random mod 2 

you will get 0 if the number is even and 1 if the number is odd. Therefore (ran­
dom mod 2) is just as likely to give you a 0 as a 1. If we use 1 to represent heads 
and 0 to represent tails, (random mod 2) simulates a coin toss. This is what we've 
done in program TossOneCoin. 



370 Functions and Random Numbers 

program TossOneCoin; 
{PROGRAM SIMULATES THE TOSS OF A COIN. YOU TYPE IN FLIP} 
{AND THE PROGRAM REPORTS EITHER HEADS OR TAILS.) 
type 
Commands= (Flip,Quit); 
Toss = (Heads,Tails); 

var 
Command : Commands; 
Number : integer; 
TossResult : Toss; 

procedure EnterCommand(var Command : Commands); 
begin 
writeln('Type in a command: Flip or Quit.'); 
write(')'); 
readln(Command) 

end; 

procedure PrintResult(TossResult Toss); 
begin 
writeln(TossResult); 
writeln 

end; 
{MAIN PROGRAM) 

begin 
EnterCommand(Command); 
while (Command <> Quit) do 
begin 

Number := random mod 2; 
case Number of 
0 : 
TossResult .- Tails; 

1 : 
TossResult .- Heads 

end; 
PrintResult(TossResult); 
EnterCommand(Command) 

end 
end. 

When you run program TossOneCoin, the prompt asks you to type in either 
Flip or Quit. If you type Flip, random mod 2 is calculated. When a 0 is returned, 
the variable TossResult is assigned Tails. When a 1 is returned, TossResult is 
assigned Heads. In either case, the result is printed and you are prompted to give 
another command-Flip or Quit. 

The principle we used to simulate coin flipping also works for simulating a 
throw of dice. Because dice have six sides, we need an expression that will pro-



10.13 SimulatingaCoinToss 371 

duce each of the numbers 1through6 with equal likelihood. The expression ran­
dom mod 6 produces the numbers 0, 1, 2, 3, 4, and 5 with equal likelihood, so 

(random mod 6) + 1 

is equally likely to return any value from among the values 1, 2, 3, 4, 5, and 6. 

EXERCISE 9 a. Write an expression that chooses at random a number from 1 to 3. 

Answer: (random mod 3) + 1 

b. Give an expression that chooses at random a number from 10 to 20. 

c. What range of values can Number hold after the following assignment 
statement has been executed? 

Number := (random/32768 ) 

Answer: -1 (Number ( +l 

d. What range of values can Number hold after the following assignment 
statement has been executed? 

Number := abs(random)/32768 .. 

A Coin Toss Experiment 

Let's write a program that does a more ambitious simulation using random num­
bers. Program CoinFlip uses the function random to simulate tossing 8 coins 
some large number of times-say 1000. Each time the 8 coins are tossed, we will 
get between no heads and 8 heads. The program will keep track of the number of 
times out of the 1000 tosses that we get no heads, 1 heads, 2 heads, and so on. The 
program's output will be a graph that displays how the tosses have come out . 

We can obtain the theoretical probabilities for the outcomes of the 8 coin 
tosses from row 8 of Pascal's triangle, which is 

1 8 28 56 70 56 28 8 1 

Each of the 8 coin flips has 2 possible outcomes: heads or tails. So each time you 
flip 8 coins, 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 256 outcomes are possible. The 
probability distribution has the following profile: 

0 heads= 1/256 = .0039 = .39 % 
1 heads= 8/256 = .0312 = 3.12 % 
2 heads= 28/256 = .1094 = 10.94 % 
3 heads= 56/256 = .2187 = 21.87 % 
4 heads= 70/256 = .2734 = 27.34 % 
5 heads= 56/256 = .2187 = 21.87 % 
6 heads= 28/256 = .1094 = 10.94% 
7 heads= 8/256 = .0312 = 3.12 % 
8 heads = 1/256 = .0039 = .39 % 



372 Functions and Random Numbers 

This table shows that , when you flip 8 coins, you should get no heads and 8 
tails about .39 % of the time and that you should get 4 heads and 4 tails about 
27 % of the time. If you flip 8 coins 1000 times, you can expect this output profile 
on average: 

0 heads = . 0039 x 1000 - 4 times 
1 heads = .0312 x 1000 - 31 
2 heads = .1094 x 1000 - 109 
3 heads= .2187 x 1000 - 219 
4 heads= .2734 x 1000 - 273 
etc . 

In other words, you should get no heads and all tails about 4 times, and you 
should get 4 heads and 4 tails about 273 times. Figure 10. 7 shows a graph of the 
theoretical profile. 

4 

0 

109 

.1 
2 3 

273 

4 

109 

1. 
5 6 7 

4 

8 

Figure 10.7 The approximate theoretical profile of the outcome of flipping 8 coins 1000 
times. 

Now let's look at program CoinFlip. When you run it, you type in the num­
ber of times you want to toss 8 coins. The program simulates these tosses, and 
then graphs the distribution of the number of heads. 

The body of program CoinFlip consists of five statements that divide the 
program into five subjobs. First, EnterTossCount reads in the number of tosses 
you want to make and stores this value in the variable TossCount. Then 
InitScoreboard initializes the scoreboard array that tallies the result of each toss. 
FlipAndTally does the real work of the program: It tosses 8 ,coins TossCount 
number of times, and it records the result of each round of 8 tosses in the score­
board. Then function CalcScale calculates a scaling factor for the bar graph out­
put, and finally procedure PrintGraph draws the graph in the Drawing win­
dow. Here is program CoinFlip. 



program CoinFlip; 
{YOU READ IN HOW MANY TIMES YOU WANT 8 COINS TO BE FLIPPED. PROGRAM} 
{PRINTS GRAPH OF THE NUMBER OF TIMES THE OUTCOME WAS NO HEADS,} 
{1 HEADS, 2 HEADS, AND SO ON UP TO 8 HEADS.} 

const 
NumberOfCoins = 8; 

type 
Chart = array[O . . NumberOfCoins] of integer; 

var 
TossCount : integer; 
Scoreboard : Chart; 
Scale : real; 

function RandomToss(NumberOfCoins integer) 
var 
CoinNumber,Count,Flip : integer; 

begin 
Count := O; 
for CoinNumber := 1 to NumberOfCoins do 
begin 
Flip := (random mod 2); 

integer; 

if (Flip = 1) then {FLIP = 1 MEANS THE OUTCOME WAS HEADS} 
Count := Count + 1 {ADD ONE TO THE NUMBER OF HEADS} 

end; 
RandomToss := Count 

end; 
procedure PrintGraph(Scale real; 

Numbers : Chart); 
const 
Bottom = 180; 
Thickness = 20; 
Separation = 10; 

var 
Top,Left,Right,Height,BarNumber integer; 

begin 
Right := O; 
for BarNumber . - 0 to NumberOfCoins do 
begin 
!DRAW BARSl 
Height := round(Numbers[BarNumber] *Scale); 
Top : = Bottom - Height; 
Left := Right +Separation; 
Right := Left + Thickness; 
paintrect(Top,Left,Bottom,Right); 

{DRAW LABELS} 
moveto(Left, Top - 5); 
writedraw(Numbers[BarNumber] 
moveto(Left,Bottom + 13); 
writedraw(BarNumber : 1) 

end 

1) j 

end; (continued) 

373 



procedure EnterTossCount(var TossCount : integer); 
begin 
writeln('Type in the number of times you want ',NumberOfCoins 1, 

' coins to be tossed.'); 
write(')'); 
readln(TossCount) 

end; 

procedure InitScoreboard(var Scoreboard Chart); 
var 

Outcome : integer; 
begin 

for Outcome := 0 to NumberOfCoins do 
Scoreboard[Outcome] := 0 

end; 

procedure FlipAndTally(TossCount integer; 
var Scoreboard : chart); 

var 
TossNumber,Outcome integer; 

begin 
TossNumber := 1; 
while (TossNumber (= TossCount) do 
begin 

Outcome := RandomToss(NumberOfCoins); 
Scoreboard[Outcome] := Scoreboard[Outcome] + 1; 
TossNumber .- TossNumber + 1 

end 
end; 

function CalcScale(Scoreboard : Chart) : real; 
const 
CenterBar = 150; {THE HEIGHT OF THE CENTER BAR WILL ALWAYS BE 150l 

var 
MidPosition,MiddleValue : integer; 

begin 
MidPosition := (NumberOfCoins div 2); 
MiddleValue := Scoreboard[MidPosition]; 
if (MiddleValue () 0) then 
CalcScale .- CenterBar / MiddleValue 

else 
CalcScale .- 0.0 

end; 
{MAIN PROGRAM} 

begin 
EnterTossCount(TossCount); 
InitScoreboard(Scoreboard); 
FlipAndTally(TossCount,Scoreboard); 
Scale := CalcScale(Scoreboard); 
PrintGraph(Scale,Scoreboard) 

end. 

374 



~ s File Edit Search Run Windows 

I. he munber c1 f 
you want B coins 
t ose•ed . 

t. he m1mbe1 .. of 
you mont 
t. 0:3sed , 

0 • 
LI co 1 ns 

29 • 

10.13 SimulatingaCoinToss 375 

6 6 

ll o 
2 3 4 5 6 7 8 

113 113 

I 1,-• 4 

2 ' 4 5 6 7 8 

Figure 10.8 Two sample outputs for program Coin Flip. 



376 Functions and Random Numbers 

Look carefully at function Random Toss. It returns a value from 0 to 8. This 
figure represents the number of heads in a round of 8 tosses. Random Toss uses a 
for loop to do 8 coin flips and counts the number of heads that turn up. Note that 
the values 0 through 8 are not equally likely to occur. Function Random Toss will 
return 4's much more often than O's or S's. This is because, according to the laws 
of probability, we are likely to get 4 heads about 27% of the time, whereas we 
expect no heads or 8 heads only about .39 % of the time. 

In program CoinFlip we have a tougher scaling problem than in previous 
graphing programs. If we had used a constant value for the scaling factor, as we 
have done before, the bars would be too tall when we flip the coins 1000 times or 
too small when we flip them 100 times. So we have created function CalcScale to 
make the bars about the same height no matter how many times the coins are 
tossed. 

Function CalcScale makes the center bar 150 units high no matter how 
many coins are tossed. Then it returns a value using the following formula: 

CenterBar/MiddleValue 

This value is assigned to the variable Scale in the main program, and Scale is then 
passed to procedure PrintGraph. PrintGraph uses Scale to adjust the heights of 
the bars. Figure 10.8 shows two examples of output from program CoinFlip, 
each with a different number of coin flips. 

Each time you run the program, you get a slightly different distribution of 
heads and tails. The more times you flip the coins, the more closely the graph 
should resemble the graph of the theoretical probability of getting from no heads 
to 8 heads (Figure 10. 7) . 

-10.14 The Monte Carlo Method-------------
Monte Carlo applications have nothing to do with gambling. They involve using 
random numbers and the laws of chance to calculate some result in mathemat­
ics-square roots, for example. 

Suppose we want to calculate the square root of 2. We know that the square 
root of 2 lies between 1 and 2, because 1 squared equals 1, which is less than 2, 
and 2 squared equals 4, which is greater than 2. Suppose we pick at random 1000 
values between 1 and 2. Imagine that each number is a point that lies between 
1.0 and 2.0 on a line. 

-----+-------1----x __ __,__ __ 

\ 2.0 
A typical random point 

1.0 

Somewhere along the line there is a point that represents the square root of 2. If 
we take any one of the 1000 points, we can tell, just by squaring its value, 
whether it falls to the left or to the right of the square root of 2. For example, 
(1.5)2 = 2.25, so 1.5 is greater than the square root of 2. 



10.15 Estimating Pi with the Monte Carlo Method 377 

Now here's the interesting part: If the 1000 numbers are chosen truly at ran­
dom, they should be distributed uniformly between l and 2. Therefore, we 
should get a reasonable estimate for the square root of 2 from the proportion of 
the 1000 random values that lie to the left of the square root of 2. The square root 
of 2 is about 1.414. If we pick 1000 numbers at random between l and 2, on av­
erage 414 of them should fall to the left of the root. 

Figure 10.9 shows the program that estimates the square root of 2 using ran­
dom numbers. Each time we run the program, we will probably get a slightly 
different answer, because the random numbers will be different. If we change 
the constant Sample to a number larger than 1000, the program will take longer 
to run, but the program's estimate of the square root of 2 should be more 
accurate . 

r • file Edit Se11rc:h Hun lllintlow~ 

RootofT1110 

progrnm RootofT ''l'lO ; (ESTIMATES THE SQUARE ROOT OF 2 USING} 
const {RANDOt·1 NUl1BERS} 

SarnpleSize = 1000.: 0 Te Ht 
vor 

The 0 f 2 i ~· ~ Choice · reel ; square r·oot 

ChoiceNurntier, Count . integer; ob out 1'415 

begin ~ Count := 0; 
for Cl1oi ceNurntier := 1 to SarnpleSize do 

begin 
CMi ce := 1 + (ab~: (random) / 32766); 

{CHOICE I~: A~:SIGNED A RANDot1 VALUE BETWEEN 1.0 AND 2 0) 
if (sqr(Choi ce) < 2) then 

Cowit := Count + 1 {THE NUMBER OF VALUE~: THAT ARE LESS THAN} 
{THE SQUARE ROOT OF 2 IS INCREASED BV ONE) 

end .: 
writeln(The square root oi 2 is atiout ·, ( 1 +(Count / '.3arnpleSize)) : c: 3) _, 

end. 

Figure 10.9 Program RootOfTwo and its output. 

_ 10.1 5 Estimating Pi with the Monte Carlo Method _______ _ 

We can use random numbers to do a Monte Carlo application that is even more 
intriguing-estimating the value of 7r. We'll do this problem using random 
points. If we choose two numbers between 0 and 199, we can put them together 
and interpret the pair as the random point (H, V) . 

H . - random mod 200; 
V .: = random mod 200 



378 Functions and Random Numbers 

Now suppose we draw a quarter-circle with radius 200 
in the Drawing window. 

The area of the quarter-circle is 1!4?r x Radius2 = 1/4 x ?r x (200) 2 = 10,000?r. 
The area of the standard Drawing window, which is a square 200 units on a side, 
is 40 ,000 , so the ratio of the area of the quarter-circle to the area of the square is 
?r/4. When we choose points at random inside the square, on average ?r/4 of them 
should fall inside the arc of the circle. 

We can approximate the value of ?r/4 by dividing the number of random 
points inside the arc by the total number of points in the Drawing window. To 
get an estimate for ?r, we multiply this value by 4. 

A randomly chosen point (H, V) lies inside the quarter circle when the dis­
tance from that point to point (0,0)-the center of the circle-is less than or 
equal to the radius of the circle. To find this distance we can use the distance for­
mula we derived in Section 4.14. A point (H, V) lies inside the arc if JH2 + V 2 

<= 200. But there is no need to take the square root: We may as well just ask 
whether H2 + V2 < = 40 ,000. 

Here is program CalculatePi. Its output is shown in Figure 10.10. 

~ s File Edit Se11rr.h Run Windows 

Te Ht 
How large a sample of 

points would you 

3. 136 

Figure 10.10 Output for program CalculatePi. 

Drawing 



10.15 Estimating Pi with the Monte Carlo Method 379 

program CalculatePi; 
{ESTIMATES THE VALUE OF PI USING RANDOM NUMBERS} 
var 
H,V,Score,SampleSize,Test : integer; 
SqrOfDistance : longint; {SQUARE OF DISTANCE FROM (H,V) TO (O,O)l 
PiOverFourRatio : real; 

procedure FrameCircle(X,Y,Radius : integer); 
begin 

frameoval(Y - Radius,X - Radius,Y + Radius,X + Radius) 
end; 

procedure MakePoint(H,V : integer); 
begin 
paintcircle(H,V,1) 

end; 

procedure ReadSampleSize(var SampleSize : integer); 
begin 
writeln('How large a sample of random points would you like?'); 
write(')'); 
readln(SampleSize) 

end; 
{MAIN PROGRAM) 

begin 
ReadSampleSize(SampleSize); 
FrameCircle(0,0,200); 
Score := O; 
for Test := 1 to SampleSize do 
begin 
H := random mod 200; 
V := random mod 200; 
MakePoint(H,V); 
SqrOfDistance := H * H + V * V; 
if (SqrOfDistance (= 40000) then 
Score := Score + 1 

end; 
PiOverFourRatio := Score / SampleSize; 
writeln('Pi is about ',4 * PiOverFourRatio 5 3) 

end. 

There are much better ways to estimate 7r, and Monte Carlo estimates of the 
number are rarely done. The Monte Carlo method is most often used when a 
problem is so "messy" and uncommon that no one has worked out a more effec­
tive way to find a solution. 



380 Functions and Random Numbers 

_ 10.16 Using Random Numbers to Test Programs~~....,,.-----­
There is a third major use for random numbers in computer programming. Sup­
pose you are part of a programming team that is developing a new piece of soft­
ware. You have been assigned the job of testing the program. 

As program tester, your chores are different from those of the coders on your 
software development team. They write code; you take their code and try to 
"break" it. That is, you try to get the program to crash, to give wrong answers, to 
go into an infinite loop, or to perform poorly in any way you can think of. You 
are a detective snooping for bugs. 

There are some obvious, crude things you can do to try to make bugs show 
up. For example, you can type with your elbows. If the program responds with 

Bad command, try again. 
it's doing fine. If it crashes, you know it's not idiot-proof. 

You can also try the code out on extreme values. If the program prints the 
prompt 

Type in a real number that is greater than 10.0 
for example, try typing 10.0001 and see what happens. Programs often fail when 
you give them values that are at or near the upper or lower limits of allowable 
inputs. 

Another effective way to test a program is to use a barrage of random values 
as test data. Let's see how to use random data to test a sorting procedure. 

Suppose your software team has asked you to test a procedure called proce­
dure SortList, which puts in order, from smallest to largest, a list of integers that 
have been stored in an array. You must determine whether the procedure (which 
is similar to the alphabetizing procedure in program NameSort) reliably puts 
numbers in order. 

You can test procedure SortList by inserting it into a program that will pass 
it an array of random numbers. An interactive program called program SortTest 
will do the job. When you run it, you type in the number of times you want to 
test the procedure. For each test, the program passes procedure SortList a list of 6 
random numbers to be sorted. After the sort has been performed, another proce­
dure checks whether it was done successfully. 

program SortTest; 
{YOU READ IN THE NUMBER OF TIMES YOU WANT TO TEST PROCEDURE} 
{SORTLIST. FOR EACH TEST PROGRAM GENERATES 6 RANDOM NUMBERS FORl 
{SORTLIST TO TEST AND REPORTS WHETHER THE SORT WAS SUCCESSFUL.} 
canst 
Size = 6; {THE NUMBER OF VALUES TO BE SORTED} 

type 
Numbers= array[l .. Size] of integer; 

var 
TestCount,TestNumber : integer; 
NumberList : Numbers; 

(continued) 



10.16 UsingRandomNumberstoTestPrograms 381 

procedure GenerateList(var NumberList Numbers); 
var 
Position : integer; 

begin 
for Position := 1 to Size do 
NumberList[Position] .- random 

end; 

procedure SortList(var NumberList : Numbers); 
var 
StartPosition, PositionOfNextNumber : integer; 

{DECLARATION PART OF PROCEDURE SORTLIST CONTAINS} 
{FUNCTION NEXTNUMBERINTAIL AND PROCEDURE SWAP.} 

function NextNumberinTail(StartPosition : integer; 
NumberList : Numbers) : integer; 

{RETURNS POSITION OF THE NUMBER IN THE TAIL THAT SHOULD COME NEXTl 
var 

Position,PositionOfNextNumber : integer; 
begin 

PositionOfNextNumber := StartPosition; 
Position := StartPosition + 1; 
while (Position (= Size) do 
begin 
if (NumberList[Position] ( NumberList[PositionOfNextNumber]) then 
PositionOfNextNumber := Position; 

Position := Position + 1 
end; 

NextNumberinTail .- PositionOfNextNumber 
end; 

procedure Swap(StartPosition,PositionOfNextNumber : integer; 
var NumberList : Numbers); 

{USES THE SCRATCHPAD PRINCIPLE TO EXCHANGE THE NUMBER AT POSITION} 
{STARTPOSITION WITH THE NUMBER AT POSITION POSITIONOFNEXTNUMBERl 
var 

TempNumber : integer; {THE SCRATCHPAD VARIABLE} 
begin 

TempNumber := NumberList[StartPosition]; 
NumberList[StartPosition] := NumberList[PositionOfNextNumber]; 
NumberList[PositionOfNextNumber] .- TempNumber 

end; 
(continued) 



{BODY OF PROCEDURE SORTLISTJ 
begin 

for StartPosition := 1 to (Size - 1) do 
begin 

PositionOfNextNumber := NextNumberlnTail(StartPosition,NumberList); 
Swap(StartPosition,PositionOfNextNumber,NumberList) 

end 
end; 
procedure PrintList(LineLabel string; 

NumberList : Numbers); 
var 
Position : integer; 

begin 
write(LineLabel : 15); 
for Position := 1 to Size do 
begin 
write(NumberList[Position]) 

end; 
writeln 

end; 

procedure CheckList(NumberList Numbers); 
var 
Position : integer; 
OkSoFar : boolean; {FLAG} 

begin 
OkSoFar : = True; 
Position := 1; 
while (Position (= (Size - 1)) and OkSoFar do 
begin 
if (NumberList[Position] ) NumberList[Position + 1]) then 
OkSoFar .- False; 

Position := Position + 1 
end; 

if OkSoFar then 
begin 
writeln; 
writeln('The list of ',Size : 1, 

writeln 
end 

else 
begin 
writeln; 

' numbers has been sorted successfully.'); 

writeln('The list of ',Size : 1, 
' numbers has not been sorted properly'); 

writeln('There is a bug in procedure SortList'); 
writeln 

end 
end; 

382 



10.16 UsingRandomNumbe.rstoTestPrograms 383 

{MAIN PROGRAM} 
begin 

writeln('How many times would you like to test procedure SortList?'); 
write(')' ) ; 
readln(TestCount ) ; 
f or TestNumber := 1 to TestCount do 
begin 
GenerateList(NumberList); 
PrintList(' t est list:' ,NumberList); 
SortList(NumberList); 
PrintList('sorted list:' ,NumberList); 
CheckList(NumberList) 

end 
end. 

The main loop of program SortTest consists of five procedure calls. First 
procedure GenerateList generates 6 random values and copies them into the 
array Number List. Then procedure PrintList prints this array of random num­
bers. Next procedure SortList puts in order the numbers in the array. Then 
PrintList is called again. This time it prints the array of sorted numbers. Finally 
procedure CheckList checks whether the array has been sorted correctly and re­
ports the result. Figure 10.11 shows some typical output for program TestSort. 

If you do a large number of test runs and the lists of numbers have all been 
properly arranged, you can conclude only that procedure SortList probably 
works right. But using random numbers to test a program is not 100 % foolproof. 
To be absolutely certain that procedure SortList works correctly, you would 
need to prove the kind of theorem we talked about in Section 8. 7. 

-o Text 

How mony ti mes would you Ii ke to test procedure ~;ortlist? 
>2 

test I i st: 25753 -19:110 3912 20757 -4 510 -27563 
sorted I i s t: -275Ci~i -19~i 10 -4510 3912 20757 25753 

The I i st of 6 numbers hLis been sorted success f u I I y, 

test I is!. : 
o;or··ted I isl : 

19699 
-1953 

3553 20515 27365 -1953 13616 
3;:;53 13616 19699 2051 s 27:165 

The I isl o f 6 numbers has been sorted succe~·sii.11 ly . 

Figure 10.11 Samp le output for program TestSort. 



384 Functions and Random Numbers 

We have now seen three of the most important applications of random num­
bers in computer programming: simulations, Monte Carlo mathematics, and 
program testing. Random-number techniques are one of the most fascinating 
areas in computing. You can spend a lifetime exploring them and never lose 
interest. 

___ TEST YOURSELF ______________ _ 

1. What are the values of the following expressions? 
a. ('up' ( 'down') 
b. ('fish' = 'Fish') 
c. ('McDonald' ) 'MacDonald') 

2. What does a function do? 
3. Give another name for the argument of a function. 

4. Can a function have no arguments? 

5. What restrictions are there on the type of a formal parameter for a function? 

6. What restrictions are there on a function's result type? 

7. Where in a program should you put the declaration for a function? 

8. What is a recursive function call? 

9. How does Pascal evaluate a nested function call? 

10. Write an expression that will produce a number from 100 to 200 at random. 

11. What are three important uses for random numbers in computing? 

12. What is a Monte Carlo method? 

1. Write a function called OneOver that takes an integer argument and re­
turns a real value, the reciprocal of the input value. For example, 
One0ver(4) = 0.25. On input 0, have your function declaration return 0.0 
as the value of OneOver. Then use the function in a program that adds 112, 
114, 118, and so forth, up to 11256. What do you think the answer will be? 

2. Write a function called InsideCircle that tests whether a point lies inside a 
circle. Then write an interactive program that uses the function. The pro­
gram should read in a point, then read in a circle (a point and a radius), and 
then report whether the point is inside the ci1:cle. 

3. Write function Compoundlnterest, which takes as input a principal, an in­
terest rate, and a number of years and returns the amount of money 
accumulated during the specified time interval. Use the function in an 
interactive program that reads in a principal, an interest rate, and a number 
of years and prints out the money accumulated. Then the program asks you 
to quit or to submit another set of figures. 



Problems 385 

4. Write a function called !Power that raises a real number to some integer 
power. For example, 1Power(2.0,5) = 32.0. Note: Any number raised to the 
power 0 is 1, so IPower(l0.0,0) = 1.0. 

5. The factorial function is defined this way: factorial(O) = 1, and facto­
rial(N) = N x (N - 1) x (N - 2) x ... x 2 x 1, where N ) 1. Factorial(5) 
= 5 x 4 x 3 x 2 x 1. Write a recursive function that calculates the factorial 
function in Pascal. Then put it inside an interactive program and test it. 

6. Now write and test a Pascal function that calculates factorial without using 
recursion. 

7. Two positive integers are amicable numbers if the sum of the proper divisors 
of the first number equals the second number and if the sum of the proper 
divisors of the second number equals the first number. Find all amicable 
pairs in which one of the numbers is less than or equal to 1200. 

8. Write a program like program CoinFlip that simulates tossing dice. 

9. Write a program that reads in ten real numbers, puts them in numerical 
order from largest to smallest, and prints the sorted list of numbers. 

10. The integer square root of a positive integer is the integer part of the 
number's square root: IntegerSqrt(lO) = 3, and IntegerSqrt(l6) = 4. With­
out using the sqrt function, create a function that calculates the integer 
square root of a positive integer. Then put the function inside an interactive 
program and test it. 

11. Write a function that calculates batting averages. 

12. Write program RandomRollBall, which races six 
balls across the Drawing window. 

The program chooses at random which ball to advance next. Announce the 
winner in the Text window. 

13. Write a program called LetterPairs, which works this way: You type in a 
text and a sequence of two letters, and the program reports how many times 
in the text the two letters appear in sequence. 

14. Redesign function RandomToss in program CoinFlip so that the coin that is 
tossed is biased and will come up heads two times out of three, on the aver­
age. Be sure to modify CalcScale so that your graph will remain inside the 
Drawing window. 



386 Functions and Random Numbers 

15. Use random numbers to estimate the cube root of 10. 

16. To get out of the rain, a drunk steps into the opera house and ends up in the 
cloakroom just as a performance is ending. He cheerfully hands out umbrel­
las at random to the opera buffs (they all brought umbrellas). Mathemati­
cians have shown that no one will get his or her own umbrella about 37 % of 
the time, no matter how many people are at the opera (as long as there are at 
least a few). Use the random function to verify this surprising figure experi­
mentally. 

(Hint: Write an interactive program. You type in a number of trials, say 
100, and the program should simulate the drunk's umbrella handout 100 
times. Then the program should report the number of times no one got his or 
her umbrella. Use a global constant called NumberOfPatrons to stand for 
the number of patrons attending the opera.) 



I 
I Advanced Topics: 

The Mouse, Records, 
and Files 

Now we are ready to look at several advanced topics. We will begin with a large 
program that's based on the Macintosh application program MacPaint. Our pro­
gram, which is called MiniPaint, allows you to draw pictures with the mouse. 

In this chapter we will also discuss a new way to organize information called 
a record type. A variable of type record can have several components, and the 
components can be of different types. 

Finally we will discuss files. A file is a collection of data that a program 
stores on a disk rather than in main memory. Files allow you to save permanently 
information that you create or organize in a program. The data remain intact 
even when the Macintosh is turned off. 

__ 11.1 Program MiniPaint-----------------
Program MiniPaint is an interactive program that uses the mouse and a menu of 
labeled rectangles to control program execution. The program brings together 
several important topics that we have developed over the last few chapters: func­
tions and procedures, the mouse, and the notion of a private Pascal-a personal 
collection of functions and procedures that you can recycle in any program you 
write. It's important that you study this program carefully. We will reuse parts 
of it later in the chapter. 

Program MiniPaint creates its own menu. The menu, which is shown in 
Figure 11 .1, consists of rectangles at the top of the Drawing window labeled 
with MiniPaint commands-Quit, Circle, and MakeLine. When you run 
MiniPaint, you choose a command by clicking the mouse button inside one of the 
rectangular menu boxes. 

To get MiniPaint to work properly, you must set up the Drawing and Text 
windows in the arrangement you see in Figure 11.1. When you run it, the menu 
appears at the top of the Drawing window. Using the mouse to operate the 
menu, you can produce drawings like the one shown in Figure 11.2. 

387 



388 Advanced Topics: The Mouse, Records, and Files 

r s File Edit Search Run lUindows 

Te Ht 
: tlo t,•e pointer into one of the menu boxes and c Ii ck . 

=o Drawing 
Quit JCircle JMakeline 

~ 

121 : :,., 

Figure 11.1 The program MiniPaint menu. 

Quit Circle Mokeline 

Figure 11.2 Typical output for program MiniPaint. 

After you click on Go , the MiniPaint menu appears and you are ready to 
begin painting. If you click in the box labeled Circle, the program executes a pro­
cedure called ExplodeCircle. First a prompt appears in the Text window at the 
top of the screen , asking you to type in a radius. Then you click the mouse in the 
Drawing window, and a circle is "exploded" where you clicked. The circle grows 
until its radius equals the radius you typed in. 



11.1 Program MiniPaint 389 

If you click on MakeLine, you can use the mouse to draw a line in the Draw­
ing window. Just hold the button down and slide the pointer around the win­
dow. Releasing the button ends the drawing loop. 

When you click on Quit, program execution ends. 
MiniPaint is the longest program we've seen so far. Although it is complex, 

each of the many nested procedures and functions is understandable and is built 
on ideas that we have seen before. Let's start by looking at the main program. As 
you read the next few pages, you may find it helpful to look ahead to the diagram 
of the program in Figure ll.3. (The complete program appears on page 390.) 

{BODY OF PROGRAM MINIPAINTl 
begin 
writeln('Move pointer into one of one menu boxes and click.'); 
LayOutMenu; 
ClickPoint(H, V); 
Command := ChooseCommand(H,V); 
while (Command () Quit) do 
begin 

DoCommand(Command); 
ClickPoint(H,V); 
Command .- ChooseCommand(H,V) 

end 
end. 

First procedure LayOutMenu draws the boxes for the menu and inserts the 
labels. Then you click the mouse button in one of the menu boxes-MakeLine, 
for example. Procedure ClickPoint reports the position of the pointer, using the 
variables H and V. Function ChooseCommand uses the values of H and V to de­
termine that you've clicked in the MakeLine box. Then it assigns the command 
MakeLine to the variable Command. 

Now procedure DoCommand is called with MakeLine as its parameter. 
The body of DoCommand is the program's "switchboard." 

{BODY OF PROCEDURE DOCOMMANDl 
begin 
case Command of 
Bad : 
begin 

sysbeep(lO); 
writeln('Bad command -- enter another.') 

end; 
Circle : 
ExplodeCircle; 

Make Line 
Lines 

end 
end; 



390 Advanced Topics: The Mouse, Records, and Files 

Procedure DoCommand takes the command you select by clicking and con­
nects it to the procedure that does the command. When you click on MakeLine, 
DoCommand calls procedure Lines, which allows you to draw lines in the 
Drawing window. 

Procedure Lines uses a MacPascal standard procedure called pensize, which 
sets the width of the lines drawn on the screen. Ordinarily, when you draw a 
line, each point on the line is a tiny square 1 unit high by 1 unit wide. The proce­
dure call pensize(3,3) sets the Macintosh's electronic pen for a thicker line made 
up of points 3 units high by 3 units wide. 

Procedure Lines draws lines with the standard procedure lineto, which we 
discussed in Problem 6 of Chapter 3. Lineto(H, V) draws a line from the current 
position of the pen to the point (H, V), moving the pen as it goes. If the pen is at 
the point (0,0), then lineto(200,200) draws a diagonal across the Drawing win­
dow. After lineto(200,200) is executed, the pen is at the position (200,200). 

Clicking on MakeLine lets you draw a line 3 units wide in the Drawing win­
dow as you drag the pointer with the button depressed. To stop drawing, you re­
lease the mouse button. 

When you click again in the MakeLine or the Circle box, the while loop in 
the body of the main program will do another iteration. 

The commands Quit, Circle, and MakeLine are all members of the 
enumerated type Commands, which is declared in the declaration part of the 
program: 

type 
Commands = (Bad,Quit,Circle,MakeLine); 

There is another element in the type-Bad. When you click outside the menu 
boxes, the command Bad is chosen, and the Macintosh signals with a beep to let 
you know that you have clicked in the wrong place. 

Here is program MiniPaint. 

program MiniPaint; 
{ALLOWS YOU TO USE THE MOUSE TO DRAW LINES AND EXPLODE CIRCLES} 
const 

CommandCount = 4; 
BoxHeight = 20; 
WindowWidth = 500; 

type 
Commands = (Bad,Quit,Circle,MakeLine); 

var 
H,V : integer; 
Command : Commands; 



11.1 ProgramMiniPaint 391 

pr0cedure ClickPoint(var H,V integer); 
begin 
repeat 

mo NOTHING} 
until button; 
repeat 
getmouse(H,V) 

until not (button) 
end; 

procedure LayOutMenu; 
var 
BoxWidth : integer; 

procedure DrawAndLabelBoxes(BoxWidth,BoxCount integer); 
var 
BoxNumber,Position : integer; 
Command : Commands; 

procedure PrintLabel(Position : integer; 
Command : Commands); 

{LABEL STARTS A LITTLE IN FROM LINE, HALFWAY DOWN MENU BOXJ 
begin 

moveto(Position + 1, BoxHeight div 2); 
writedraw(Command) 

end; 

{BODY OF DRAWANDLABELBOXESJ 
begin 

Command := Bad; 
BoxNumber := O; 
Position .- O; 
repeat 

Command .- succ(Command); 
BoxNumber := BoxNumber + 1; 
drawline(Position,O,Position,BoxHeight); 
PrintLabel(Position,Command); 
Position := Position+ BoxWidth 

until (BoxNumber = BoxCount) 
end; 

(continued) 



392 Advanced Topjcs: The Mouse, Records, and Files 

{BODY OF LAYOUTMENUl 
begin 

drawline(O,BoxHeight,WindowWidth,BoxHeight); 
BoxWidth := WindowWidth div (CommandCount - 1); 

{THE COMMAND "BAD" DOESN'T GET A BOX) 
DrawAndLabelBoxes(BoxWidth,CommandCount - 1) 

end; 

function ChooseCommand(H,V : integer) : Commands; 
{FUNCTION CHOOSECOMMAND CONTAINS 3 OTHER FUNCTIONS) 
var 

BoxNumber : integer; 

function VerticalOk(V : integer) : boolean; 
begin 
if (V )= 0) and (V ( BoxHeight) then 
VerticalOk .- True 

else 
VerticalOk .- False 

end; 

function HorizontalOk(H : integer) : boolean; 
begin 
if (H )= 0) and (H ( WindowWidth) then 
HorizontalOk .- True 

else 
HorizontalOk .- False 

end; 

function SelectCommand(BoxNumber integer): Commands; 
var 

Box : integer; 
CommandChoice : Commands; 

begin 
Box := BoxNumber; 
CommandChoice := Quit; 
while (Box ) 0) do 
begin 

Box := Box - 1; 
CommandChoice := succ(CommandChoice) 

end; 
SelectCommand .- CommandChoice 

end; 



11.l Program MiniPaint 393 

{BODY OF FUNCTION CHOOSECOMMANDl 
begin 
if VerticalOk(V) and HorizontalOk(H) then 
begin 

BoxNumber := ((CommandCount - l)*H) div WindowWidth; 
ChooseCommand . - SelectCommand(BoxNumber) 

end 
else 

ChooseCommand .- Bad 
end; 

procedure DoCommand(Command Commands); 

procedure ExplodeCircle; 
var 

H,V,Radius,BigRadius : integer; 
begin 

writeln('Type in a maximum radius.'); 
write(')'); 
readln(BigRadius); 
writeln('Now click in the Drawing window.'); 
ClickPoint(H,V); 
for Radius := 1 to BigRadius do 
paintcircle(H,V,Radius) 

end; 

procedure Lines; 
var 

H, V : integer; 
begin 
pensize(3,J); 
writeln('To draw a line, depress button and drag pointer.'); 
writeln('Release the mouse button to quit drawing.'); 
repeat 

getmouse(H,V) 
until button; 
moveto(H,V); 
repeat 

getmouse(H,V); 
lineto(H,V) 

until not (button) 
end; 

(continued) 



394 Advanced Topics: The Mouse, Records, and Files 

{BODY OF PROCEDURE DOCOMMANDl 
begin 

case Command of 
Bad : 
begin 
sysbeep(lO); 
writeln('Bad command -- enter another.') 

end; 
Circle : 
ExplodeCircle; 

Ma.keLine 
Lines 

end 
end; 

{BODY OF PROGRAM} 
begin 
writeln('Move pointer into one of the menu boxes and click.'); 
LayOutMenu; 
ClickPoint(H,V); 
Command := ChooseCommand(H,V); 
while (Command () Quit) do 
begin 

DoCommand(Command); 
ClickPoint(H,V); 
Command .- ChooseCommand(H,V) 

end 
end. 

Program MiniPaint is quite long and complex, but it's worth typing in and 
trying. Be sure to save it. We'll be using parts of it later in the chapter. 

Figure 11.3 is a diagram of the procedures and functions in the program. 
Examining this diagram will help you understand the structure of MiniPaint. 
Note that the procedures and functions are more deeply nested than in any previ­
ous program. For example, procedure PrintLabel is nested three levels down 
from the top level. 

Adding to Program MiniPaint 
Program MiniPaint is structured so that new painting commands are easy to 
add. Note how general the main program is. It doesn't mention any commands 
related to painting circles or drawing lines. All of the graphics instructions are 
relegated to nested procedures within procedure DoCommand. So, when you 



11.1 Program MiniPaint 395 

program Minipaint 

I procedure ClickPoint 

procedure LayOutMenu 

procedure DrawAnd labelBoxes 

I procedure Print Label 

function ChooseCommand 

I function VerticalOk 

I function HorizontalOk 

I function SelectCommand 

procedure DoCommand 

I procedure Exp lodeCircle 

I procedure Lines 

Figure 11.3 Diagram of the procedures and functions in program Mini Paint. 

add another command, you will need to adjust the declarations in the main pro­
gram and alter DoCommand, but LayOutMenu and ChooseCommand aren't 
changed at all. Let's see how simple this addition will be. 

Suppose you want to add an erase command. You can use the command to 
erase a square 10 units on a side, which you can drag around the Drawing win­
dow using the mouse. See Figure 11.4. Here is the procedure you need to include: 



396 Advanced Topics: The Mouse, Records, and Files 

procedure Erase; 
const 
EraserSize = 10; 

var 
Top,Left,Bottom,Right 

begin 
repeat 

mo NOTHING} 
until button; 

{BUTTON IS NOW DOWN} 
repeat 
getmouse(Left,Top); 

integer; 

eraserect(Top,Left,Top + EraserSize,Left + EraserSize ) 
until not (button) 

end; 
To include Erase in program MiniPaint, you must make the following 

changes: 

1. Add 1 to CommandCount, changing it from 4 to 5. CommandCount is a 
constant that specifies the number of commands in the enumerated type 
Commands. The program uses CommandCount to divide the menu into the 
proper number of equal-sized boxes. 

2. Add Eraser to the type definition for Commands. 
3. Insert the declaration for procedure Erase into the declaration part of 

DoCommand, and add the command Eraser to the case statement in 
DoCommand. 

And you're done. You have now added an eraser to your mouse-driven 
MiniPaint program-and you have changed only DoCommand and the declara­
tion part of the main program. 

=ri "LJ 
(luit Circle 

Drawing 
l"lekeline Re.fl ect 

Figure 11.4 Program MiniPaint's output using the eraser. 

Ernser 



EXERCISE 1 

11.l ProgramMiniPaint 397 

Add a fifth command called Reflect to MiniPaint. When you choose Reflect , 
you draw using the mouse. As you draw, the line you make is reflected on 
the opposite side of the window, creating a horizontal mirror image of your 
sketch. Here is the procedure that draws reflected lines: 

procedure ReflectLines ; 
var 
H,V,LeftLastH,RightLastH,LastV integer ; 

begin 
pens ize (3 , J) ; 
repeat 
getmouse(H , V) 

until button; 
repeat 
LastV : = V; 

{RECORDS PREVIOUS LOCATIONS OF PEN ON THE LEFT AND ON THE RIGHT} 
LeftLastH := H; 
RightLastH := Wi ndowWidth - H; 

{REPORTS PRESENT LOCATION OF POINTER} 
getmouse(H,V); 

{DRAWS LINE FROM LAST LEFT POINT TO NEW LEFT POINT} 
moveto(LeftLastH , LastV) ; 
lineto(H, V) ; 

{DRAWS LINE FROM LAST RIGHT POINT TO NEW RIGHT POINT} 
moveto(RightLas tH,LastV) ; 
lineto(WindowWidth - H,V) 

until not (button) 
end; 

-
Figure 11.5 Output of program MiniPaint using Reflect. 



398 Advanced Topics: The Mouse, Records, and Files 

Figure 11. 5 shows the output of program MiniPaint using Reflect. Pro­
cedure ReflectLines works on the following principle: If the mouse pointer 
is at the point (H, V) , the horizontal reflection of the pointer is at the 
point(WindowWidth - H, V). Type it in and try it. -

After you understand how program MiniPaint works, you'll be able to cre­
ate your own menus to use in any interactive program. The procedures that cre­
ate the menu in program MiniPaint will be part of your growing private collec­
tion of Pascal functions and procedures . The phone book program that we pre­
sent at the end of the chapter will use the MiniPaint style, so be sure to study the 
program carefully before reading on. 

__ 11.2 Records--------------------
So far in our study of Pascal, the idea of the value of a variable has had a very 
simple meaning. It is a number, character, string, element of an enumerated 
type, or true/false value that is written in the location in memory assigned to that 
variable. Now we will look at a new kind of variable that enables you to keep 
track of more complex units of information. 

Suppose we want to invent a variable that represents a baby's weight. (We 
will use the English system of weight-pounds and ounces.) When we say, "John 
and Sheila's baby weighs 9 pounds, 12 V2 ounces," we are actually using two val­
ues to describe the baby's weight: one for the pounds and one for the ounces . It 
would be handy to have one variable, called Weight, to hold both pieces of infor­
mation. 

This is where Pascal's record type comes in. Using a record type, we can cre­
ate a variable called Weight that comes with two separate components, one for 
pounds and the other for ounces. The cell in memory that holds the value of the 
record variable Weight will be divided into two separate parts, one for the value 
of pounds (an integer value) and the other for the value of ounces (a real value). 

1:251 
pounds 

ounces 

record variable Weight 

Here is the type definition that _sets up the two-part memory cell: 

type 
EnglishWeight = record 

Pounds integer; 
Ounces : real 

end; 



11.2 Records 399 

English Weight is the name of the record type. Now we can declare variable 
Weight of type English Weight: 

var 
Weight : EnglishWeight; 

The type definition for the record English Weight is a blueprint for the declara­
tion of the record variable Weight. When the computer sets aside a location in 
memory for Weight, the location is divided into a part for pounds and a part for 
ounces, each part with its own type. 

We can now use one assignment statement to fill the pounds part and anoth­
er to fill the ounces part of the record variable. The statement 

Weight.Pounds := 9; 

assigns the value 9 to the pounds part of Weight. The dot between Weight and 
Pounds (no spaces allowed) tells where the 9 goes-into the pounds part. Simi­
larly, the followiqg assignment statement copies 12.5 into the ounces part. 

Weight.Ounces := 12.5 

Now let's use the record type English Weight in a program that reads in a 
weight in kilograms and prints out this weight in pounds and ounces. 

program KilogramsToPounds; 
{TYPE WEIGHT IN KILOS. PROGRAM PRINTS WEIGHT IN LBS AND OUNCES.} 
canst 
OzPerKg = 35.28; 

type 
EnglishWeight = record 

Pounds integer; 
Ounces : real 

end; · 
var 
Weight : EnglishWeight; 
Kilograms : real; 
TotalOunces : real; 

begin 
writeln('Type in a number of kilograms.'); 
write ( ' ) '); 
readln(Kilograms); 
TotalOunces := OzPerKg * Kilograms; 
Weight.Pounds := trunc(TotalOunces/16); 
Weight.Ounces := TotalOunces - (Weight.Pounds * 16); 
writeln('English weight is ',Weight.Pounds : J,' pounds ', 

Weight.Ounces : 4 : 1,' ounces.') 
end. 



400 Advanced Topics: The Mouse, Records, and Files 

When you run program KilogramsToPounds, a two-part memory cell is set 
aside for Weight. After you type in a value for Kilograms, the statement 

TotalOunces := OzPerKg *Kg; 

converts kilograms to ounces. Next comes this statement: 

Weight.Pounds := trunc(TotalOunces/16) 

First the right side of the assignment calculates the number of whole pounds . 
TotalOunces/16 gives the number of pounds as a real number. The function 
trunc takes this number, throws away the decimal-fraction part, and gives a 
whole-number answer. This integer answer is then assigned to the pounds part of 
the record variable Weight. 

Now the program does the following assignment statement: 

Weight.Ounces := TotalOunces - (Weight.Pounds* 16); 

After the right side of the assignment statement calculates the number of ounces , 
that value is assigned to the ounces subcell of the record variable Weight. 

Finally the writeln statement prints out the values of the two subcells of the 
record variable Weight. If you read in 65 .0 kilograms, it will print the output 
shown in Figure 11.6. 

-o re.li t 
Type in a number of kilog rams . 
>65 .D 
English weight is 113 pounds 5.2 ounces . 

Figure 11.6 Sample output of program KilogramsToPounds. 

--11.3 Record Syntax-----------------­
A type definition for a record always begins with the name of the record , an 
equal sign , and the reserved word record. A record definition always ends with 
the word end. Between the word record and the word end are the fields of the 
record. The first field in the definition of English Weight is this line: 

Pounds : integer; 

A record field consists of an identifier called a field selector, followed by a colon 
and a type definition for the selector. 

When the Macintosh reaches the variable declaration for Weight in pro­
gram KilogramsToPounds, the record type definition for English Weight tells the 
computer how to lay out the memory cell assigned to Weight. The definition also 
specifies what type restrictions govern the values that will appear in the subcells. 



ll.4 Program Checks 401 

--11.4 Program Checks----------------­
Using a somewhat more complicated record variable, program Checks can help 
you keep track of your checking account. At the end of the month you read in in­
formation about each check: to whom you wrote it, for how much, and whether 
the payment is tax-deductible. The program prints the total amount of money 
paid out that month and how much of it is tax-deductible, along with a list of the 
people to whom you wrote checks and the amount of each check (see Figure 
11. 7). Here is program Checks. 

program Checks; 
!FOR EACH CHECK, YOU READ IN WHO IT IS TO, HOW MUCH IT IS FOR,} 
{AND WHETHER IT IS DEDUCTIBLE. PROGRAM PRINTS TOTAL AMOUNT} 
!PAID OUT FOR THE MONTH AND DEDUCTIBLE AMOUNT.} 
const 
StartHeightForTable = 10; 

type 
ACheck = record 

WhoTo : string; 
Amount : real; 
Deductible : boolean 

end; 
var 

Check : ACheck; 
TotalAmount : real; 
DeductibleAmount : real; 
Done : boolean; 
HeightOfRow : integer; {OUTPUT IS SERIES OF ROWS IN DRAWING WINDOW} 

procedure Gatherinfo(var Check : ACheck; 
var Done : boolean); 

begin 
writeln('Type in amount of check, 

or type negative number to end entry loop.'); 
write(')'); 
readln(Check.Amount); 
if (Check.Amount ( 0.0) then 
Done := True 

else 
begin 

writeln('Who is check to?'); 
write(')'); 
readln(Check.WhoTo); 
writeln('Is check deductible? Type True or False.'); 
write(')'); 
readln(Check.Deductible) 

end 
end; (continued) 



402 Advanced Topics: The Mouse, Records, and Files 

procedure PrintEntry(Check : ACheck; 
var Height : integer); 

const 
SeparationBetweenLines = 15; 

begin 
moveto(l,Height); 
writedraw(Check.WhoTo); 
moveto(150,Height); 
writedraw(Check.Amount : 6 : 2); 
Height := Height + SeparationBetweenLines 

end; 

procedure UpdateTotals(Check : AChec~; 
var TotalAmt,DeductibleAmt : real); 

begin 
TotalAmt := TotalAmt + Check.Amount; 
if Check.Deductible then 
DeductibleAmt := DeductibleAmt + Check.Amount 

end; 

procedure ReportTotals(TotalAmount,DeductibleAmount real); 
begin 
writeln; 
writeln('Amount paid out this month is$' ,TotalAmount 6: 2); 
writeln('Deductible amount paid out this month is$', 

DeductibleAmount : 6 : 2) 
end; 

{MAIN PROGRAM} 
begin 
TotalAmount := 0.0; 
DeductibleAmount := 0.0; 
Done := False; 
HeightOfRow := StartHeightForTable; 
while not (Done) do 
begin 
Gather!nfo(Check,Done); 
if not (Done) then 
begin 
UpdateTotals(Check,TotalAmount,DeductibleAmount); 
PrintEntry(Check,HeightOfRow) 

end 
end; 

ReportTotals(TotalAmount,DeductibleAmount) 
end. 



11.4 Program Checks 

,.. s File Edit Search Run Windows 
·.·.·.·.·.·.·.·.·.·.·.·.·.··::..-... :::::::::::::::::::::::::·:·:···-·.·:.· .·.·.·.·.·.·.-.·.·.·.·.··::: .. :·:::::·::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::: .... ·.·.·.·:.·.:::::::::::::::::::::::::: .... ·.··· 

Te Ht 
: Type in amount of check, or type 
; negati ve number to end entry loop . 
• >60. 00 
: Who is check t o? 
: >Troy tiesbit 

Is check deductible? Type True or 
: Fa I se. 

• >Fal se 
• Type in am ount of check , or type 
: negati ve number t o end entry loop . 
• >-1 

• Amount paid out th is month is $51 9 .65 
• Deduct ible amount paid out thi s month 

is $419 .00 

§0 Drawing 
Adritrnne Polumbo 
Fi rst Neti onel Bank 
Josh Grossman 
IRS 
Loui s Foods 
Troy Nesbit 

5.89 
239.00 

9 99 
180.00 
24.77 
60.00 

403 

Figure 11.7 Typical output for program Checks. When you type a negative number, the 
program reports your checking totals. 

The data you enter is collected by the procedure Gatherlnfo. When you 
type the amount of a check, the program stores this value in the Amount field of 
the variable Check. If the amount is greater than zero, the procedure fills the 
Who To and Deductible fields. Then Check is passed to procedure UpdateTotals, 
where the contents of the record are added into the monthly totals . Next Check is 
passed to procedure PrintEntry, which prints the contents of the variable in the 
Drawing window. 

The main loop in the body of the program continues as long as you keep 
entering positive values for Check.Amount. After you end the loop by typing a 
negative value, procedure ReportTotals reports the values of TotalAmount and 
DeductibleAmount, and program execution ends. 

Program Checks gives you a glimpse of the importance of records for busi­
ness computing. If you work at a bank, or if you want to keep small business rec­
ords or personal banking records on a computer, using records is an ideal way for 
you to organize data. Because a record can have any number of fields , you can 
define types that are completely tailored to your needs. For example, you could 
easily keep a more extensive record for your checks that includes the following 
information: 



404 Advanced Topics: The Mouse, Records, and Files 

Check Records 

who to 
check number 
amount 
deductible 
month 
day 
year 
canceled check returned 

An important point: Be careful when you use a field selector such as Month 
that has for its type an enumerated type. You must define this type before you use 
Month in the definition for ACheck. 

EXERCISE 2 Complete this revised type definition for ACheck by filling in the types for 
the field selectors. 

type 
ACheck = record 

WhoTo : string; 
CheckNumber : c::::::=J; 
Amount : real; 
Deductible : boolean; 
Month : Months; 
Day : 1. .Jl; 
Year : c::::::=J; 
CanceledCheckBack c::::::=J 

end; -

--11.5 Employee Records----------------
Let's look at another illustration of a record structure in business computing. 
Suppose you are hired by Aristotle Software Company to computerize its em­
ployee information records . Here is a table of the kinds of information about 
each employee the firm would like to have. 

Name Lilly French-Smith 
Social Security number 177-36-3810 
Employee number 133 
Salary 24950.00 
Married True 
Years with company 6 

Work schedule 10 10 10 5 0 

Mon Tue Wed Thur Fri 



11. 6 Arrays of Records 405 

You could use the following record structure to organize this information: 

type 
Employee = record 

Name : string; 
SocSecNumber : string[ll]; 
EmployeeNumber : integer; 
Salary : real; 
Married : boolean; 
YearsWithCompany : integer; 
Hours : array[Mon .. Fri] of i nteger 

end; 

The last field of the record is an array. If you declared a record variable 
called Worker of type Employee, you could refer to the Hours field using an as­
signment statement such as 

Worker.Hours[Tue] : = 7 

Worker.Hours is an array with index type DaysOfWeek, and Work­
er.Hours[Tue] is the Tues component of the array. 

EXERCISE 3 Consider the declaration 

var 
Worker : Employee; 

a. Write a statement that assigns the name Alvin Bosco to the name field of 
Worker. 

b. Tell what the following statement does . 

Worker.Married :=not (Worker.Married); 

c. Write a statement that increases by 1 the number of years Bosco has been 
with the firm. 

d. Tell what the following program fragment does. 

Total := O; 
for Day := Mon to Fri do 
Total := Total + Worker.Hours[Day]; .. 

--11.6 Arrays of Records-----------------
Records are a powerful way to organize data. With a record, you collect related 
pieces of information of different types and tie them together with a single vari­
able. Arrays organize data differently. An array collects related pieces of data of 
the same type and enables you to give these data a common name. 



406 Advanced Topics: The Mouse, Records, and Files 

Records and arrays are two data structures that are built into Pascal. They 
make organizing complex data easy and convenient. We will introduce another 
data structure, the file, in a moment. But first we want to explore an important 
hybrid structure that combines records and arrays. 

Let's look at an example of a collection of records of the same type, which 
have been combined into an array. Suppose Aristotle Software has 50 employees. 
To calculate the company's monthly payroll, we can write a program that uses 
an array of 50 elements of type Employee. Here is the declaration part of the 
program. 

const EmployeeCount = 50; 
type 
Employee = record 

Name : string; 
Age : integer; 
MonthlySalary : real; 
SocSecNumber : string[ll] 

end; 

PayrollRecords = array[l .. EmployeeCount] of Employee; 
var 
Roster : PayrollRecords; 
NumberOfEmployee : integer; 

The array variable, which we have called Roster, has index type 
1 .. EmployeeCount and component type Employee. Each component has four 
subcells. Here is a diagram of the array variable Roster. 

Name 

Age 
Salary 

SocSecNumber 

Array Variable Roster 
"\/'-

... 
-v 

2 50 

To print a list of the employees along with their monthly salaries, we can use 
this loop: 

for NumberOfEmployee := 1 to EmployeeCount do 
writeln(Roster[NumberOfEmployee].Name, 

Roster[NumberOfEmployee].Salary: 10 2); 



11.7 Program ReflectOvals 407 

Suppose we want to find the oldest employee. The following loop uses an integer 
variable called Oldest to do the trick. 

EXERCISE 4 

Oldest := 1; 
NumberOfEmployee := 1; 
while (NumberOfEmployee (= EmployeeCount) do 
begin 
if (Roster[NumberOfEmployee].Age ) Roster[Oldest].Age) then 
Oldest := NumberOfEmployee; 
NumberOfEmployee := NumberOfEmployee + 1 

end; 
writeln(Roster[Oldest].Name, 1 is the oldest employee. 1

); 

writeln( 1Age: 1 ,Roster[Oldest].Age) 

a. Using the array variable Roster, write a loop that prints a list of employ­
ees and their Social Security numbers. 

b. Using the array variable Roster, write a loop that prints the names of the 
employees under 25 who earn more than $2000 per month. -

--11.7 Program ReflectOvals---------------
Our next example is a complete program called ReflectOvals, which uses an 
array of records. Program ReflectOvals builds on program OvalDraw from Sec­
tion 7.12. In that program we used the mouse to draw a pattern of ovals in the 
Drawing window. We will draw a pattern of ovals in program ReflectOvals, 
too. This time, however, we will store the ovals as we draw them in an array 
consisting of 100 records. After 100 ovals have been drawn, the program will 
print the reflection of the pattern in the Drawing window, as shown in Figure 
ll.8. 

The data used to frame an oval are stored in a record of type Oval, which is 
declared as follows: 

type 
Oval = record 

Top : integer; 
Left : integer; 
Bottom : integer; 
Right : integer 

end; 

We will use an array variable called Picture of type Drawing to hold the infor­
mation needed to draw the reflection of the original drawing. 

Each of Picture's 100 components has 4 subcells labeled Top, Left, Bottom, 
and Right. The component type for Picture is Oval, and the index type is the 
subrange of integer l .. Size (Size is a constant whose value is 100) . 



408 Advanced Topics: The Mouse, Records, and Files 

Here is program ReflectOvals. 

program ReflectOvals; 
canst 
Size = 100; 
WindowWidth 500; 

type 
Oval = record 

Top : integer; 
Left : integer; 
Bottom : integer; 
Right integer 

end; 
Drawing= array[l .. Size] of Oval; 

var 
Picture Drawing; 
H,V,OvalNumber : integer; 

procedure Reflect(var Pix Drawing; 
Last : integer) ; 

var 
NewLeft,NewRight,OldTop,OldBottom,OvalNumber integer; 

begin 
for OvalNumber := Last downto 1 do 
begin 

OldTop := Pix[OvalNumber]. Top; 
OldBottom := Pix[OvalNumber].Bottom; 
NewLeft := WindowWidth - Pix[OvalNumber].Left; 
NewRight := WindowWidth - Pix[OvalNumber].Right; 
if (NewLeft ( NewRight) then 
frameoval(OldTop,NewLeft,OldBottom,NewRight) 

else 
frameoval(OldTop,NewRight,OldBottom,NewLeft) 

end 
end; 

procedure StoreOval(H,V,OvalNumber integer; 
var Picture : Drawing); 

begin 
Picture[OvalNumber].Top := V; 
Picture[OvalNumber].Left := H; 
Picture[OvalNumber].Bottom := V + 80; 
Picture[OvalNumber].Right .- H + V; 

end; 



{MAIN PROGRAM} 
begin 

OvalNumber := 1; 
while (OvalNumber (= Size) do 
begin 
repeat 

{DO NOTHING} 
until button; 

11. 7 Program ReflectOvals 409 

while (OvalNumber (= Size ) and button do 
begin 

getmouse(H , V); 
frameoval(V , H, V + 80 ,H + V); 
StoreOval(H , V,OvalNumber , Picture); 
OvalNumber .- OvalNumber + 1 

end 
end; 

Reflect(Picture , Si ze) 
end. 

The program includes two procedures: procedure StoreOval , which is in­
side the while loop , and procedure Reflect , which comes at the end of the pro­
gram. The procedure call 

StoreOval(H ,V,OvalNumber,P i cture); 

passes to the procedure the parameters Hand V-the coordinates for the upper­
left corner of the rectangle that frames the oval you have just drawn. It also 
passes the number of the oval and the array variable Picture, which holds the 

Drawing 

Figure 11.8 A typical picture drawn using program ReflectOvals. 



410 Advanced Topics: The Mouse, Records, and Files 

ovals. Each time StoreOval is called, the procedure fills 1 more component of the 
array Picture, until each of the 100 components is filled with the 4 pieces of infor­
mation needed to frame an oval. 

Picture is a variable parameter. Each time procedure StoreOval is called, 
the procedure changes the value of the actual parameter Picture by copying into 
the next component of the array the 4 walls that frame the most recent oval 
you've drawn. 

After all 100 ovals have been drawn and stored in the array, the while loop 
ends and procedure Reflect draws reflected ovals, starting with the last oval in 
the array. The procedure call 

Reflect(Picture,Size) 

passes the array variable Picture and the constant Size, which is the index of the 
last element in the array. 

The parameter list for Reflect is peculiar. Reflect does not change the array 
in any way, yet we have made Picture a variable rather than a value parameter. 
Why? 

Picture is a large array; it has 100 cells that hold 4 integers each. We can 
make the array even larger simply by increasing the value of the constant Size. 
The Macintosh's main memory is limited, so we have declared Picture as a vari­
able parameter because it takes up less memory than a value parameter would. 
Here's why. 

When Reflect is called, the procedure's formal parameter Pix becomes a sec­
ond name for the array Picture. At all times there is just one copy in memory of 
the array. 

procedure Reflect 

Picture Pix 

If Pix had been a value parameter, the computer would have made a complete 
second copy of the array in main memory each time procedure Reflect is called, 
and the second copy of the array might use up so much space in memory that the 
program wouldn't run. 



11.8 The With Statement 411 

procedure Reflect 

D D 
Picture Pix 

When a program passes to a procedure a large array, especially a large array 
of records, it's a good idea to make the formal parameter a variable parameter 
even if the procedure is not supposed to change the array. Using a·variable pa­
rameter saves space in main memory. However, when you use a variable param­
eter in this way, be careful: If the procedure does alter the contents of the array, 
a bug might be created that would be difficult to track down. 

When you type in program ReflectOvals , you will quickly discover that 
keying in the four statements that involve 

Pix[OvalNumber] 

is particularly tedious. Pascal offers a way around this problem by streamlining 
references to record variables, as we will see in the next section . 

__ 11.8 The With Statement----------------
Pascal's with statement makes typing in record variables easier and makes pro­
grams with records more readable. Let's see how we can use a with statement to 
simplify procedure Gatherlnfo from program Checks. 

procedure Gatherinfo( var Check : ACheck; 
var Done : boolean) ; 

begin 
writeln( ' Type in amount of check, 

or type negative number to end entry loop.'); 
write(')'); 
readln(Check.Amount ); 
if (Check .Amount ( 0. 0) then 
Done . - True 

else (continued) 



412 Advanced Topics: The Mouse, Records, and Files 

begin 
writeln('Who is check to?'); 
write(')'); 
readln(Check.WhoTo); 
writeln('Is check deductible? Type True or False.'); 
write(')'); 
readln(Check.Deductible) 

end 
end; 

Procedure Gatherlnfo includes several occurrences of the record variable 
Check along with a record field selector. Using the with statement, we can re­
write the procedure this way: 

procedure Gatherinfo(var Check : ACheck; 
var Done : boolean); 

begin 
with Check do 
begin 
writeln('Type in amount of check, 

or type negative number to end entry loop.'); 
write(')'); 
readln(Amount); 
if (Amount ( 0.0) then 
Done := True 

else 
begin 
writeln('Who is check to?'); 
write(')'); 
readln(WhoTo); 
writeln('Is check deductible? Type True or False.'); 
write(')'); 
readln(Deductible) 

end 
end {END OF WITH STATEMENT) 

end; 

Inside the scope of the with statement, you don't have to identify the vari­
able Check. Whenever the computer encounters a field selector for Check inside 
the with statement, it assumes you mean to preface that selector with "Check." 

Inside the with statement, Amount is short for Check.Amount, WhoTo is 
short for Check.WhoTo, and Deductible means Check.Deductible. 

The with statement can also help simplify procedure Reflect from program 
ReflectOvals. The procedure has four assignment statements involving 
Pix[OvalNumber]. Remember: Pix is an array of ovals, and Pix[OvalNumber) is 
a component variable of the array. The component is of type Oval, which is a 
record. 



procedure Reflect(var Pix Drawing; 
Last : integer); 

var 

11.8 The With Statement 413 

NewLeft,NewRight,OldTop,OldBottom,OvalNumber integer; 
begin 
for OvalNumber := Last downto 1 do 
begin 

OldTop := Pix[OvalNumber].Top; 
OldBottom := Pix[OvalNumber].Bottom; 
NewLeft := WindowWidth - Pix[OvalNumber].Left; 
NewRight := WindowWidth - Pix[OvalNumber].Right; 
if (NewLeft ( NewRight) then · 
frameoval(OldTop,NewLeft,OldBottom,NewRight) 

else 
frameoval(OldTop,NewRight,OldBottom,NewLeft) 

end 
end; 

Using the with statement, we can clarify the procedure considerably by 
eliminating all of the Pix[OvalNumber] references in the body of the with: 

EXERCISE 5 

procedure Reflect(var Pix : Drawing; 
Last : integer) ; 

var 
NewLeft,NewRight,OldTop,OldBottom,OvalNumber integer; 

begin 
for OvalNumber := Last downto 1 do 
with Pix[OvalNumber] do 
begin 

OldTop := Top; 
OldBottom := Bottom; 
NewLeft := WindowWidth - Left; 
NewRight := WindowWidth - Right; 
if (NewLeft ( NewRight) then 
frameoval(OldTop,NewLeft,OldBottom,NewRight) 

else 
frameoval(OldTop,NewRight,OldBottom,NewLeft) 

end 
end; 

The with statement has the following syntax: 

with RecordVariable do 
(statement) 

Rewrite procedure StoreOval using a with statement. -



414 Advanced Topics: The Mouse, Records, and Files 

__ 11.9 Files---------------------
All the programs we have seen so far have suffered from one shortcoming: Any 
data that are generated while a program is running disappear from main memo­
ry as soon as you turn off the Macintosh. Your program is stored permanently on 
the disk, but data produced by the program are lost from the computer forever. 

You can get around this limitation by using a data structure called a file. 
Files make it possible to save large amounts of data permanently on a disk. Once 
you run a program that creates a file, you can write other programs that read the 
information stored in that file. 

A file consists of a sequence of entries called components. The components 
must be of the same type. Files can be very large because they are not stored in 
main memory. A file can hold, in principle, up to maxlongint, or 2, 14 7, 483, 64 7, 
data items. 

While you are running a program that uses a file, the program is in main 
memory but the file is still on the disk. You can copy data from the file into your 
program one entry at a time. But the file as a whole is never in main memory. 
For this reason files are often referred to as external files. (In this book we will as­
sume that external files are on the Pascal disk, but this is not always true in 
MacPascal. For example, it is possible to use file commands to send data to a 
printer or modem.) 

Macintosh Pascal has two facilities for working with files, a sequential file 
facility and a random-access file facility. Each consists of a set of commands for 
working with external files. Sequential file commands are part of every Pascal 
system. Pascal systems that include random-access file commands are less com­
mon. 

Sequential file commands are adequate for saving, or archiving, large 
bodies of information that you don't expect to change. If you want to keep a rec­
ord of the distance you jog every day, for example, sequential file commands are 
sufficient: You probably won't want to go back and change any of the figures. 
Using sequential file commands is awkward, however, if you want to alter the 
data that you have stored in a file. 

Random-access file commands do not share this limitation. They are easy to 
use both for archiving data and for storing data that you expect to change 
frequently. Because of this flexibility, the random-access file system is a much 
more powerful file structure. Accordingly, in our brief introduction to files, we 
will present material on random-access file commands only. 

_ 11.10 Random·Access File Commands------------
To see how random-access files work, let's look at program Temperatures. When 
you run program Temperatures for the first time, a file command creates a file 
called JulyHighTemps on the Pascal disk; JulyHighTemps is the title of the file. 
Then, in a data entry loop, you enter the 31 high temperatures for the month of 



11.10 Random-Access File Commands 415 

July. These values are sent one by one to the file on the disk. Next the program 
reads back the values from the file, one by one, and prints them in the Text win­
dow. After program execution is over, J ulyHighTemps is a Macintosh document, 
which is permanently on the disk. Here is program Temperatures: 

program Temperatures; 
{YOU TYPE IN THE HIGH TEMPERATURES FOR EACH DAY IN JULY. PROGRAM} 
{SENDS THIS DATA TO A FILE. THEN IT READS THE DATA FROM THE FILE} 
{AND PRINTS IT IN THE TEXT WINDOW.} 
const 
DaysinMonth = 31; 

var 
Date : integer; 
Temperature : real; 
TemperatureData : file of real; 

begin 
open(TemperatureData,'JulyHighTemps'); 

{DATA ENTRY LOOP} 
for Date := 1 to DaysinMonth do 
begin 
writeln('Give temperature for July ',Date 1, 

' in degrees Fahrenheit.'); 
write(')'); 
readln(Temperature); 
write(TemperatureData,Temperature) 

end; 
reset(TemperatureData); 

{DATA DISPLAY LOOPl 
Date := 1; 
while not (eof(TemperatureData)) do 
begin 
read(TemperatureData,Temperature); 
writeln('The temperature for July ',Date 1, 

' was ',Temperature : 4 : l); 
Date := Date + 1 

end; 
close(TemperatureData) 

end. 

The declaration 

var 
TemperatureData : file of real; 

creates a file variable called TemperatureData that will act as a link between the 
program and a file on the disk. Because TemperatureData is declared to be a 



416 Advanced Topics: The Mouse, Records, and Files 

file of real values, all the components in an external file associated with 
TemperatureData must be of type real. 

When you run program Temperatures for the first time, the open command 

open(TemperatureData, 'JulyHighTemps') 

creates the file JulyHighTemps on the disk and links the file with the program 
using the file variable TemperatureData. 

The file variable comes with a file pointer-an imaginary arrow (you never 
see it) that "points to," or specifies, a particular component in the external file. 
The components of a file hold positions that are numbered consecutively begin­
ning with zero. Just after the open command is executed, the pointer points to 
position 0 at the beginning of the external file. 

When the open command is finished, the computer comes to the data entry 
loop. The writeln statement prompts you for the temperature on July 1 and you 
type in a value, say 91.0. The readln statement reads 91.0 into the variable 
Temperature. 

Next comes the statement that sends the value of Temperature to the exter­
nal file: 

write(TemperatureData,Temperature) 

The first parameter of the write command, TemperatureData, directs the write 
statement to send, or write, the value of Temperature, 91.0, to the external file 
associated with TemperatureData. When a write statement has a file variable as 
its first parameter, the value of the second parameter is sent to the file variable's 
associated external file and not to the Text window. 

The value of Temperature is sent to the position in JulyHighTemps that is 
indicated by the file pointer. The pointer starts out at the beginning of the file. 
Therefore the temperature for July 1 is stored in position 0. After the write state­
ment writes a value to a file, it advances the pointer to position 1. See Figures 
ll.9(a) and (b). 

When the first iteration of the loop is over, thirty more iterations are done. 
After the thirty-first entry is read in, main memory and the disk look as shown in 
Figure ll.9(c). There is nothing in the external file JulyHighTemps except a se­
quence of real-number values-no program, or any part of a program. 

Now the program has finished writing to the file and is about to start read­
ing back from it. First the command 

reset(TemperatureData) 

is executed. The standard procedure reset repositions TemperatureData's file 
pointer at the beginning of the file. 

Next comes the while statement, which reads each component from the file 
and then prints the component in the Text window. The while loop is controlled 



program Temperatures 

EJ 
Temperature 

TemperatureData 
(file variable) 

Main Memory 

program Temperatures 

EJ 
Temperature 

TemperatureData 
(file variable) 

Main Memory 

program Temperatures 

186.0 I 

Temperature 

TemperatureData 
(file variable) 

Main Memory 

11.10 Random-Access File Commands 417 

JulyHighTemps 
(external file) 

• 
I I 

... 
0 

1 
File Pointer Disk 

(a) 

JulyHighTemps 
(external file) 

__!_ 

191 .0 I 
I 

... 
0 1 

1 
File Pointer Disk 

(b) 

JulyHighTemps 
(external file) 

191 .0 188.5 1 ... 
186.0 I 

1 
File Pointer 

(c) 

0 1 30 

Disk 

__!_ 

I 
31 

Figure 11.9 (a) Main memory and the Pascal disk after you type the first value for Temper· 
ature but before the statement write(TemperatureData, Temperature) is executed. (b) Main 
memory and the Pascal disk after the statement write(TemperatureData, Temperature) is 
executed . (c) Main memory and the Mac Pascal disk after 31 entries have been written to 
JulyHighTemps. 



418 Advanced Topics: The Mouse, Records, and Files 

by the standard function eof, which stands for end of file. The function eof re­
turns a boolean value. In the while control line 

while not(eof(TemperatureData)) do 

the expression not(eof(TemperatureData)) is true as long as the file pointer for 
TemperatureData points to a component in the file. It becomes false once the 
pointer advances past the last entry. 

After the reset command is executed, TemperatureData's file pointer points 
to the first of the 31 entries in JulyHighTemps. Hence not(eoj(Tempera­
tureData)) is true, and the loop is executed beginning with the read statement: 

read(TemperatureData,Temperature) 

The first parameter of the read statement, TemperatureData, instructs the 
computer to read from TemperatureData's associated external file, 
JulyHighTemps. The read statement reads into the variable Temperature the 
value of the component specified by TemperatureData's file pointer. Then the 
read statement advances TemperatureData's pointer to the next entry in the ex­
ternal file . 

Next the writeln statement prints the value of Temperature in the Text win­
dow, completing one iteration of the loop. The file pointer now points to the sec­
ond entry. We have not yet reached the end of the file, so the while test 
not(eof(TemperatureData)) is still true, and a second iteration is executed. 

After the thirty-first execution of the read statement copies the last entry of 
the file into Temperature, the pointer advances past the last entry, and 
not(eof(TemperatureData))becomes false. This terminates the loop. A portion of 
the output of this loop is printed in the Text window as is shown in Figure 11.10. 

Finally, the close statement, 

cl ose(TemperatureData) 

is executed. The close statement breaks the association between the file variable 
TerhperatureData and the external file JulyHighTemps. 

-o Text 

The t emperot Lff'e f Of"' ci1J I y 23 was 94.0 r¥. 
The t emperat ur·e. for clL1 I y 24 was 96.0 

!ilili The t empet' at ure fo r ,lu I y 25 was 99 .0 
The. t emperature. for· July 26 was 99.0 .!·/II 
The t emperat Lff·e fo r clu I y 27 was 66.0 :::::: 

The t emperat Lire for July 28 ti5 ' 0 ······ was 
rn ! ~! 

The temperature. for ,lu I y 29 wa~; 93.D µ 
The t emperat Lire f Ot' clu I y 3(1 UlaS 85 .0 
The t emperat Lir·e. fo r clu I y 31 lUQ8 S6.D ~ 

Q] 

Figure 11.10 A portion of the output for program Temperatures. 



11.10 Random-Access File Commands 419 

JulyHighTemps is now a Macintosh document. It is represented by an icon 
in the Pascal disk window. But you cannot qpen JulyHighTemps by clicking on 
the icon and choosing Open from the File menu. You can, however, create other 
programs that will read the data from JulyHighTemps, as we shall see in the next 
section. 

EXERCISE 6 Suppose you want to keep monthly records of the number of laps you swim · 
each day at your community pool. In a program you are writing to record 
and report the data, you create a file variable called MonthlySwim, with 
the declaration 

var 
MonthlySwim : file of integer; 

a. How would you open the file variable MonthlySwim and associate it 
with an external file called JuneLaps? 

b. The following program fragment prints the entries in J uneLaps in a col-
umn, using the variable Laps. What command goes in the box? 

reset(MonthlySwim); 
Date := 1; 
while not (eof(MonthlySwim)) do 
begin 

writeln(Date 1, Laps J); 
Date := Date + 1 

end; -

The Seek Command 

Now suppose you want to go back to the data in the external file JulyHighTemps 
and find out how hot it was on the fourth of July (or any other day of the month). 
You can get this information using program ReportTemperatures. When you 
run the program, you type in a date, and the program responds by printing the 
high temperature for that July day. 

Program ReportTemperatures locates data in the external file using the seek 
command. The command 

seek(FileVariable,Position) 

places File Variable's file pointer at location Position in a file. If Position is larger 
than the number of components in the file , the pointer is placed at the end of the 
file , just after the last entry. 



420 Advanced Topics: The Mouse, Records, and Files 

program ReportTemperatures; 
var 
Date : integer; 
Temperature : real; 
TemperatureData : file of real; 

begin 
open(TemperatureData, ' JulyHighTemps ' ); 
Date := 1; 
while (Date () 0) do {QUESTION AND ANSWER LOOP} 
begin 

writeln( 'For which day do you want to know the high temperature? ' ); 
writeln( ' Type a number from 1 to 31, or type a 0 to quit.'); 
write(') ' ); 
readln(Date); 
if (Date ( 0) or (Date ) 31) then 
writeln('Bad date -- try again.') 

else if (Date ) 0) then 
begin 

seek(TemperatureData,Date - 1); 
read(TemperatureData,Temperature); 
wr i teln('The high temperature on July ' Date 1,' was ' 

Temperature : 4: 1,'. '); 
writeln 

end 
end; 

close(TemperatureData) 
end. 

When you run program ReportTemperatures , the open command opens the 
external file JulyHighTemps, which is now permanent on the Pascal disk. 
Using the file variable TemperatureData, the open command associates 
JulyHighTemps with the program. 

Next comes a question and answer loop, which prompts you for a date. Sup­
pose you type 4. The readln statement reads 4 into the variable Date. Then the 
command 

seek(TemperatureData, Date-1 ) 

positions TemperatureData's file pointer at position Date - l = 3. The entry for 
July 4 is at position 3 because file components are numbered beginning with 0 . 

Next read(TemperatureData, Temperature) reads the value at position 3 
into the variable Temperature . Then the writeln statement prints the high tem­
perature for the fourth of July, as you can see in Figure 11.11. Finally, the close 
statement breaks the link between TemperatureData and JulyHighTemps . 



11.10 Random-Access File Commands 421 

D Te Ht 

For which day do you want to know the high temperature? 
T~pe a number from 1 to 31, or type a 0 to quit . 

I-. ~ 1,·, 

The high temperat ure on July 1 was 96.0 . 

For which day do you want to know the high temperature? 
Type a number from 1 to 31, or type a 0 to quit. 
>0 

Figure 11.11 Typical output for program ReportTemperatures. 

Passing a File to a Procedure 

Program HotDays illustrates how to pass a file to a procedure. Using monthly 
temperature data from an external file such as JulyHighTemps, the program re­
ports the number of days in a rnonth that were hotter than a particular cutoff 
temperature (see Figure 11.12). 

D Te Ht 

T\jpe in the tit le oi the file IJOU want to examine . 
>,lu I 1JH I gh Temp:; 
Type in a cutoff temper!Jture . 
>Ei5 .0 
Ther e were 16 days when the temperature exceeded 65.0 degrees . 
This dot a comes i rom the f i I e ,lu I 1,1H i gh Temps . lo1 

~ 

Figure 11.12 Typical output for program HotDays. 

program HotDays; 
{YOU TYPE IN A CUTOFF TEMPERATURE. PROGRAM REPORTS THE NUMBER OFl 
{DAYS IN THE MONTH THAT WERE HOTTER THAN THE CUTOFF TEMPERATURE.) 
type 
FileOfReals = file of real; 

var 
Cutoff : real; 
FileNarne : string; 
TemperatureData : FileOfReals; 

(continued) 



422 Advanced Topics: The Mouse, Records, and Files 

procedure ReportHotDays(var TempData : FileOfReals; 
CutOff : real); 

{WHEN YOU PASS A FILE TO A PROCEDURE, THE FORMAL PARAMETER MUST BE Al 
{VARIABLE PARAMETER AND ITS TYPE MUST BE DEFINED EARLIER IN PROGRAM.} 
var 

HotCount : integer; 
Temperature : real; 

begin 
HotCount := O; 
reset( TempData) ; 
while not (eof(TempData)) do 
begin 

read(TempData,Temperature); 
if (Temperature ) Cutoff) then 
HotCount := HotCount + 1 

end; 
writeln( 'There were ',HotCount : 2,' days when the temperature exceeded ' 

Cutoff : 3 : 1,' degrees.'); 
writeln( 'This data comes from the file ',FileName,'. ') 

end; 
{MAIN PROGRAM} 

begin 
writeln('Type in the title of the file you want to examine.'); 
write (')'); 
readln(FileName); 
open(TemperatureData,FileName); 
writeln('Type in a cutoff temperature.'); 
write(')'); 
readln(CutOff); 
ReportHotDays(TemperatureData,CutOff); 
close(TemperatureData) 

end. 

When you run program HotDays, you type in the name of an external file , 
such as JulyHighTemps. If you had already created other files of monthly tem­
perature data such as May High Temps or JuneHighTemps, you could type in one 
of these file names and the program would examine the data in that file. 

The procedure call passes the file variable TemperatureData and the cutoff 
temperature to procedure ReportHotDays. Let's examine the heading line to see 
how to pass a file to a procedure: 

procedure ReportHotDays(var TempData : FileOfReals; 
CutOff : real); 

The formal parameter TempData is declared to be of type FileOfReals, 
which we have declared in the declaration part of the program. We were 



Summary of Random-Access File Commands and Concepts 

Open 

The open command associates a program with an external file. It opens 
the file for reading or writing. A file must be open before data canoe sent 
to it or read from it. The open command has two parameters, a file vari­
able and an external file name or title. The title has type string. 

open(FileVariable,TitleOfExternalFile ) 

Close 

The close command breaks the association between a file variable and an 
external file, and it closes the external file. It has only one parameter: 

close(FileVariable) 

File Pointer 

Every file variable comes with a file pointer. When a file variable be­
comes associated with an external file, the file variable's pointer points to 
some entry in the file or to the end of the file. Immediately after an open 
or reset command is executed, the file variable pointer points to the first 
position in the file , position 0. 

Reset 

The command reset(FileVariable) positions File Variable's file pointer at 
the beginning of the file variable's associated external file. 

Eof 

Eof is a function with one parameter, a file variable. The function re­
turns a boolean value. Eoj(File Variable) is True if the file variable's 
pointer is past the last component in the file. 

Seek 
Seek(FileVariable,n) positions the file variable's pointer at position n in 
the file variable's associated external file. The entries in the file are 
numbered beginning at 0. If the position of the last component is less than 
n, seek(FileVariable,n) positions the pointer just past the last entry in the 
file-even if n greatly exceeds the position of the last entry in the file. Files 
can have up to maxlongint entries; so the command seek(FileVari­
able,maxlongint) will always place the pointer just past the last entry. 

Passing a File to a Procedure or Function 

When a file is used as a parameter for a procedure or function, it must be 
a variable parameter. Furthermore the type of the formal parameter 
must be defined not in the parameter list but at some higher level of the 
program; 

423 



424 Advanced Topics: The Mouse, Records, and Files 

required to create type FileOfReals because the type of a formal parameter must 
be either a type that has been defined in the declaration part of the program or a 
standard type. 

You would get an error message if you tried to use the following heading line 
for procedure ReportHotDays: 

procedure ReportHotDays(var TempData : file of real; CutOff : real); 

This would not work because TempData's type is defined inside the parameter 
list of the procedure. 

Note that TempData is a variable parameter, although the procedure does 
not alter the external file in any way. When the formal parameter for a proce­
dure or function is a file, it must always be a variable parameter. If it were possi­
ble to pass a file as a value parameter, the procedure would have to make a copy 
of the entire file.· But there is not enough space iri main memory to accommodate 
a large file. For this reason Pascal requires that files be passed as variable 
parameters. 

Files that hold entries of type real or integer are not uncommon. But file ap­
plications most often involve files of records. A corporation's employee payroll 
file, an inventory file for an auto parts store, the membership file of a union 
local-all of these files involve complex data items, making a file of records the 
appropriate data structure. For our last example, we will show you how to work 
with a file of records. 

-11.11 The Leist Program-Program PhoneBook--------­
We will end this book with a final program that creates an electronic telephone 
book. Program PhoneBook creates a file of names and phone numbers. Each 
entry is stored as a record. After you type in your entries, you can list the whole 
directory or look up a phone number by searching for a particular name. Be­
cause the names and numbers are stored in a random-access file, you can easily 
change old entries or add new ones. 

All this is accomplished using the menu procedures we introduced in pro­
gram MiniPaint. There are five menu items in this program, as you can see in 
Figure 11.13. 

If you click on Directory, the program lists all the telephone book entries. 
Clicking on AddEntry lets you add a new name and number to the phone book. 
Search enables you to search for a particular name. And Alter allows you to 
change a name or number. If you make several entries and then click on Direc­
tory, your screen will look something like the screen in Figure 11.13. 



11.11 The Last Program-Program PhoneBook 425 

r S File Edit Search Run UJindows 

~D Drawing 
•Quit JDi r-ect.1)ry lMdEnt.ry JSean:l1 JAlter 

'21 
Te Ht 

• Move po int.er into one of the menu boxes and c Ii ck the mouse . 
• fli 11 Smith, beekeeper 598-0067 
• Li 1 ly Bosco 213-556-5590 

• tied .Jones, beekeeper 556-4008 
• 11 i ke and tlarc i •J 617-265-4193 
• Randy .Johnson Ml-9867 
• .Jose 11 i c:hado 213-448-9967 
: ################ 

t--1 

. . . . . . . . . . . . . . . . ' ........... 

Figure 11.13 Program PhoneBook's menu in the Drawing window, along with a sample 
directory in the Text window. 

Program PhoneBook uses a file of records as its principal data structure. The 
record data structure is called PhoneBookEntry, and it has the following defini­
tion: 

PhoneBookEntry = record 
Name : string; 
PhoneNumber : string[20] 

end; 

The Main Program 

The main program uses the mouse and menu body from program MiniPaint, 
with two additions-an open command at the beginning of the main program 
and a close statement at the end . The first statement in the body of the program, 

open(NameList, 'NamesAndNumbers ' ); 

opens the file variable NameList and associates it with the external file 
NamesAndNumbers. The last statement in the body, 

close(NameList) 

closes the file. 



426 Advanced Topics: The Mouse, Records, and Files 

The four commands in the menu-Directory, AddEntry, Search, and 
Alter-are implemented as procedures and are included inside procedure 
DoCommand. 

Directory 
Directory is the simplest command. When you click on Directory, procedure 
ListEntries lists all names and numbers that appear in the external file. 

procedure ListEntries; 
var 
Entry : PhoneBookEntry; 

begin 
reset(NameList); 
while not(eof(NameList)) do 
begin 
read(NameList,Entry); 
PrintContentsOf(Entry) 

end 
end; 

First, reset positions the pointer at the beginning of the external file 
NamesAndNumbers. Then the while loop is executed until the pointer reaches 
the end of the file. During each iteration, the read statement reads an entry from 
the external file into the variable Entry. PrintContentsOf is a one-line procedure 
that prints out Entry.Name followed by Entry.PhoneNumber in the Text 
window. 

Add Entry 
When you click on AddEntry, procedure AddAnEntry is called. You are 
prompted for a name and a phone number. Then the name and number you type 
in are sent to the external file. 

procedure AddAnEntry; 
var 
Entry : PhoneBookEntry; 

begin 
seek(NameList,maxlongint); 
PromptAndRead-String('Enter a name.',Entry.Name); 
PromptAndReacL.String('Enter a phone number.' ,Entry.PhoneNumber); 
if (length(Entry.Name) ) 0) then 
write(NameList,Entry) 

end; 



11.11 TheLastProgram-ProgramPhoneBook 427 

First, the command 

seek(NameList,maxlongint); 

advances the file pointer to the end of the file, just after the last entry. Next you 
enter a name and a number. These are stored in the local record variable Entry. 
Then the value of Entry is written out to the external file. Because NameList's 
pointer points to the end of the file NamesAndNumbers, the contents of Entry 
are placed at the very end of the file. 

Search 
When you click on Search, procedure HuntForAllOccurrences is called, and a 
prompt appears in the Text window asking you to type in a name or phrase. 
After you type one in, the procedure looks for your entry in the file. 

HuntForAllOccurrences works like procedure ListEntries, except that, in­
stead of printing every component of the file, it prints only those components 
that contain the name or phrase you have entered. 

To identify entries that contain the name or phrase you entered, the proce­
dure uses the MacPascal string function pos, which has result type integer. In the 
function call 

pos(SubString,CharString) 

the variable Substring has as its value the name or phrase you entered. If 
SubString occurs as a part of the string CharString, pos returns the position of the 
character in CharString where the match begins. So pos('ab','abcd') = 1, and 
pos('cd','abcd') = 3. Pos returns 0 if SubString is not a substring of CharString. 
For example, pos('ac', 'abed') = 0. 

When the name or phrase you have entered occurs in the Name field of any 
of the entries, the pos function returns a value greater than zero and the proce­
dure prints those entries out. This means that you don't have to type a complete 
name or even a complete last name to look up someone's number. You can list all 
the Walters in your telephone book, along with their numbers, just by typing 
Walter. 

The Search command also enables you to do keyword searches. Suppose 
your phonebook entries include not only names, but also short descriptions for 
some or all of the entries. For example, you might include the entry 

Bill Smith, beekeeper 598-0067 

If you click on the Search command and then type bee, all entries that include 
the substring bee in the Name field will be printed out, and you will get a listing 
of all the beekeepers in your telephone book, as you can see in Figure 11.14. 



428 Advanced Topics: The Mouse, Records, and Files 

~ • flle um 3ellrtt1 llun lllindaws 

:=o D nuu i n_g_ 
isearch : Quit jDi rector~ _f-ddEntry JA1ter 

~ 
Teat 

'. f1Dt!e po inter into one of the men1.1 boxes and c Ii ck the mouse . 
• Ent er a name or phrase . 

>bee 
Entries foLmd : 

'. Bi 11 Smith , beekeeper 598-0067 
• Ned .Jo nes , beekeeper 556-1008 

################ 

f---

...... •l 

Figure 11.14 The output windows after a search has been done for the word bee. 

Alter 

Here is the code for procedure HuntForAllOccurrences. 

procedure HuntForAllOccurrences; 
var 
NameOrPhrase : string; 
ThisEntry : PhoneBookEntry; 

begin 
PromptAndRead_String('Enter a name or phrase .' ,NameOrPhrase); 
reset(NameList); 
writeln('Entries found:'); 
while not(eof(NameList)) do 
begin 

read(NameList,ThisEntry); 
if (pos(NameOrPhrase,ThisEntry.Name) ) 0) then 
PrintContentsOf(ThisEntry) 

end 
end; 

When you click on Alter, the procedure ChangeEntry is executed. ChangeEntry 
first asks for a name or phrase to use in locating the entry you want to change. 
Then the Find function is called. Find returns the file position of the first entry 



11.11 The Last Program-Program PhoneBook 429 

that contains the name or phrase you entered, if it can find one. Otherwise it re­
turns - I, and ChangeEntry asks you to try again. 

Find uses the standard function jilepos to locate the entry you are looking 
for. Filepos has one argument, a file variable. It returns the position of the file 
variable's pointer in its associated external file. 

If Find does turn up an entry, the seek command positions the pointer there, 
and the contents of that entry are printed out. Then you supply a replacement 
entry. 

Next, because the read statement has advanced the pointer I position, an­
other seek command repositions the file pointer back I position. 

Finally, the write statement writes your alternative entry out to the file. The 
record variable NewEntry holds the altered entry you want to insert, and the 
statement 

write(NameList,NewEntry) 

overwrites the entry you want to change. 
Here is the code for ChangeEntry. 

procedure ChangeEntry; 
var 
NameOrPhrase : string; 
Location : integer; 
OldEntry,NewEntry : PhoneBookEntry; 

begin 
reset(NameList); 
PromptAndRead...Btring('Whose number do you want to look 

for? ',NameOrPhrase); 
Location := Find(NameOrPhrase); 
if (Location ( 0) then 
writeln('Name or phrase not found -- try again.') 

else 
begin 

seek(NameList,Location); 
read(NameList,OldEntry); 
PrintContentsOf(OldEntry); 
PromptAndRead_String('Type in a new name.' ,NewEntry.Name); 
PromptAndRead._String('Type a new number.' ,NewEntry.PhoneNumber); 
seek(NameList,Location); 
write(NameList,NewEntry) 

end 
end; 

Here is the complete program, the last program in the book. 



430 Advanced Topics: The Mouse, Records, and Files 

program PhoneBook; 
const 

CommandCount = 6; 
BoxHeight = 20; 
WindowWidth = 500; 

type 
Commands= (Bad,Quit,Directory,AddEntry,Search,Alter); 
PhoneBookEntry = record 

Name : string; 
PhoneNumber : string[20] 

end; 
var 

H,V : integer; 
Command : Commands; 
NameList : file of PhoneBookEntry; 

procedure PromptAndReacL.string(Prompt string; 
var WhatisRead : string); 

begin 
writeln(Prompt); 
write ( ' ) ' ) ; 
readln(WhatisRead) 

end; 

procedure ClickPoint(var H,V integer); 
begin 
repeat 
getmouse(H,V) 

until button; 
repeat 

getmouse(H,V) 
until not (button) 

end; 

procedure LayoutMenu; 
var 

I 
BbxWidth : integer; 

procedure DrawAndLabelBoxes(BoxWidth,BoxCount 
var 

BoxNumber, Position : integer; 
Command : Commands; 

procedure PrintLabel(Position integer; 
Command : Commands); 

integer); 



11. ll The Last Program-Program PhoneBook 431 

begin 
moveto(Pos i t i on + 1,BoxHeight div 2); 
writedraw(Command) 

end; 
!BODY OF DRAWLABELSANDBOXESl 
begin 

Command := Bad; 
BoxNumber : = O; 
Position . - O; 
repeat 

Command . - succ(Command) ; 
BoxNumber : = BoxNumber + 1; 
dr awline(Posit i on , O,Pos it ion , BoxHe i ght) ; 
Print Label(Pos it ion,Command); 
Pos ition := Posit i on + BoxWi dth 

until (BoxNumber = BoxCount) 
end; 

{BODY OF LAYOUTMENUl 
begin 

drawli ne(O,BoxHeight,WindowWidth , BoxHeight); 
BoxWi dth : = WindowWi dth div (CommandCount - 1); 
DrawAndLabelBoxes(BoxWidth , CommandCount - 1) 

end; 

function ChooseCommand(H,V i nteger) 
var 

BoxNumber : integer; 

Commands ; 

function Vert i calOk(V : integer) : boolean; 
begin 
if (0 ( = V) and (V ( BoxHe i ght) then 
Vert i cal Ok .- True 

else 
Vert i cal Ok .- False 

end; 

function Hori zontalOk(H : i nteger) : boolean; 
begin 
if (0 ( = H) and (H ( WindowWidth) then 

HorizontalOk . - True 
else 
Horizontal Ok . - False 

end; 
(continued) 



432 Advanced Topics: The Mouse, Records, and Files 

function SelectCommand(BoxNumber integer) 
var 

Box : integer; 
CommandChoice : Commands; 

begin 
Box := BoxNumber; 
CommandChoice := Quit; 
while (Box ) 0) do 
begin 

Box : = Box - 1; 
CommandChoice := succ(CommandChoice) 

end; 
SelectCommand := CommandChoice 

end; 
{BODY OF PROCEDURE CHOOSECOMMAND} 
begin 
if VerticalOk(V) and HorizontalOk(H) then 
begin 

Commands; 

BoxNumber := ((CommandCount - 1)*H) div WindowWidth; 
ChooseCommand .- SelectCommand(BoxNumber) 

end 
else 

ChooseCommand := Bad 
end; 

procedure DoCommand(Command : Commands); 

procedure PrintContentsOf(ThisEntry : PhoneBookEntry); 
begin 

writeln(ThisEntry.Name,' ', ThisEntry.PhoneNumber) 
end; 

procedure ListEntries; 
var 
Entry : PhoneBookEntry; 

begin 
reset(NameList); 
while not (eof(NameList)) do 

begin 
read(NameList,Entry); 
PrintContentsOf(Entry) 

end 
end; 

procedure AddAnEntry; 
var 
Entry : PhoneBookEntry; 



begin 
seek(NameList,maxlongint); 
PromptAndRead_String('Enter a name. 1 ,Entry.Name); 
PromptAndRead_String('Enter a phone number. 1 ,Entry.PhoneNumber); 
if (length(Entry.Name) ) 0) then 
write(NameList,Entry) 

end; 

procedure HuntForAllOccurrences; 
var 
NameOrPhrase : string; 
ThisEntry : PhoneBookEntry; 

begin 
PromptAndRead_String('Enter a name or phrase. 1 ,NameOrPhrase); 
reset(NameList); 
writeln( 'Entries found:'); 
while not (eof(NameList)) do 
begin 

read(NameList, ThisEntry); 
if (pos(NameOrPhrase,ThisEntry.Name) ) 0) then 
PrintContentsOf(ThisEntry) 

end 
end; 

function Find(NameOrPhrase : string) : integer; 
{FIND REPORTS THE FIRST OCCURRENCE OF NAMEORPHRASE IN THE PHONEBOOKl 
var 
Position : integer; 
Found : boolean; 
ThisEntry : PhoneBookEntry; 

begin 
reset(NameList); 
Found := False; 
while not (eof(NameList)) and not (Found) do 

begin 
read(NameList, ThisEntry); 
if (pos(NameOrPhrase,ThisEntry.Name) ) 0) then 
begin 

Found := True; 
Position := filepos(NameList) - 1 

{FILEPOS IS A STANDARD FUNCTION THAT RETURNS THE POSITION} 
{OF THE FILE POINTER.} 

end 
end; 
if Found then 
Find .- Position 

else 
Find .- -1 

end; (continued) 

433 



434 Advanced Topics: The Mouse, Records, and Files 

procedure ChangeEntry; 
var 

NameOrPhrase : string; 
Location : integer; 
OldEntry,NewEntry : PhoneBookEntry; 

begin 
reset(NameList); 
PromptAndReaci...String('Whose number do you want to look for?', 

NameOrPhrase); 
Location := Find(NameOrPhrase); 
if (Location < 0) then 
writeln('Name or phrase not found -- try again.') 

else 
begin 

seek(NameList,Location); 
read(NameList,OldEntry); 
PrintContentsOf(OldEntry); 
PromptAndRead...String('Type in a new name.' ,NewEntry.Name); 
PromptAndReaci...String('Type in a new number.', 

NewEntry.PhoneNumber); 
seek(NameList, Location); 
write(NameList, NewEntry) 

end 
end; 

{BODY OF DOCOMMANDl 
begin 

case Command of 
Bad: 
begin 

sysbeep(20); 
writeln('Bad command -- enter another') 

end; 
Directory: 
ListEntries; 

AddEntry: 
AddAnEntry; 

Search: 
HuntForAllOccurrences; 

Alter : 
ChangeEntry 

end; 
writeln( 1################ 1 ) 

end; 



{BODY OF PROGRAM} 
begin 

open(NameList, 'NamesAndNumbers'); 
writeln('Move pointer into one of the menu boxes 

and click the mouse.'); 
LayoutMenu; 
ClickPoint(H,V); 
Command := ChooseCommand(H,V); 
while (Command () Quit) do 
begin 

DoCommand(Command); 
ClickPoint(H,V); 
Command := ChooseCommand(H,V) 

end; 
close(NameList) 

end. 

Problems 435 

Program PhoneBook is long and complex, but it's worth studying until you 
understand it completely. Using it as a model , you can write programs that bal­
ance your checkbook, manage inventories, or keep track of data in a scientific ex­
periment. Some of these projects are outlined in the problems at the end of this 
chapter. 

You have now seen most of the programming language Pascal. After you 
have mastered files and records, which enable you to store almost unlimited 
amounts of structured data on disks, you will be able to write programs that are 
truly useful. 

___ TEST YOURSELF---------------
1. What is a record field? 

2. What is a field selector? 

3. What does the command seek do? 

4. Where are data in an external file stored? 

5. What does the string function pas do? 

6. What does the MacPascal standard procedure pensize do? 

7. What does eof test for? 
8. What does the command open do? 

--~PROBLEMS-----------------
1. Add a straight line instruction to MiniPaint: You click twice in the Drawing 

window, and the program draws a line between the two points where you 
clicked. 



436 Advanced Topics: The Mouse, Records, and Files 

2. The Reflect command we presented in Exercise 1 on page 397 reflects any 
line you draw horizontally in the Drawing window. Change the command 
so that it reflects any line you draw both horizontally and vertically, like 
this: 

You draw 
this line 
using the mouse. 

These lines are 
drawn in as reflections 
by the program. 

3. Change program Survey in Chapter 9 so that RutlandSt is an array of rec­
ords. Each component in the array should record the number of people in a 
house and the day you made your visit. The output of the program should be 
a table that shows (1) the household size for each house on the street and (2) 
the day you visited the house. 

4. Define a point to be a record consisting of two integers. Then define an 
array of points with index type 1..20, and write a program that generates 
the points in the array randomly. The program should then draw a picture 
that consists of lines connecting all the points. 

5. Suppose you have a special telephone service that allows you to call to an 
adjacent area code inexpensively. The first hour of calls is free each month, 
and each additional minute costs 6 cents. Write a program that calculates 
how much you owe for the special service each month. Every day you type 
in the number of minutes you talk. At the end of a month, the program 
prints how much you owe the phone company. The program should use a 
random-access file to keep track of your phone records. 

6. Write a program that keeps track of two health statistics for a month-say, 
daily weight and hours of sleep. The program stores this information in an 
external file. One part of the program should allow you to add new data to 
the external file. The entries in the file should be of this type: 

type 
Healthlnfo = record 
Weight : integer; 
Sleep : real 

end; 

Each morning you should be able to get up, weigh yourself, count the hours 
you slept, and then enter these data in your health information file. 



Problems 437 

Another part of the program should display the data in the file as two 
line graphs-one for Weight, the other for Sleep, like this: 

l l Weight 

l l Sleep 

1 2 3 4 5 Date 

(Hint: Don't write the whole program at once. The program should include 
a procedure called DisplayData. In your first version of the program , 
DisplayData should print the data in a simple table. Once you get this 
simpler version of the program running, you can change procedure 
DisplayData so that it prints the output as a graph.) 

7. Write a program that keeps track of the checks you write during the year , 
using a random-access file . A check has record type ACheck. 

type 
ACheck = record 

Month : Months; 
Date : 1. .Jl; 
CheckNumber : integer; 
Amount : real; 
WhoTo : string; 
Returned : boolean 

end; 

Use the MiniPaint functions and procedures in your program, and include 
the following commands: 

• AddCheck. AddCheck adds a check entry to the file. 

• CheckNumberlnfo. You type a check number, and the program prints 
all information about that check. 

• ListAllSince. You type a date, and the program lists all checks written 
since that date. 

• AmtlnMonth. You type a month, and the program prints the amount of 
money you spent by check during the month. 



Glossary 

Actual parameter Tl\e variable or expression in a 
procedure or function call that is actually passed 
to a procedure or function. See also parameter. 

Algorithm A step-by-step plan for solving a 
problem or writing a program. 

Argument An actual parameter. 

Array A group of related variables that are 
declared with a common name in a single variable 
declaration. The variables all have the same type, 
which is called the component type of the array. 
Each variable is identified by an index, which is 
given in square brackets after the name of the 
variable. The index indicates the position of the 
variable in the array. 

Assignment statement A statement that assigns 
a value to a variable. The left side of an assign­
ment statement must be a variable. 

Body of a program The main part or statement 
part of a program. Everything that follows the 
declaration part of a program. 

Boolean One of Pascal's standard types. There 
are only two members of type boolean, true and 
false . See also type. 

Boolean expression An expression made up of 
boolean variables and the boolean operators and, 
or, and not. A boolean expression has a boolean 
value. That is, it is either true or false. 

Boolean variable A variable that is declared to 
be of type boolean. The value of a boolean vari­
able is either true or false. 

ISraces The symbols { } , which are used to en­
close comments. 
Bug A mistake in a program. When you correct 
a mistake, you debug the program. 

Case statement A statement that allows selec­
tion of one of several possible actions. A single case 
statement can often do the job of a series of nested 
if statements. 
Cell A location in memory. 
Central processing unit The "brain" of the com­
puter. It controls how the computer does 
arithmetic and logic, and it fetches and executes 
machine-language instructions that are stored in 
memory. Abbreviated as CPU. 
Char One of Pascal's standard types. Type char, 
which is short for character, includes letters, dig­
its, punctuation, and every other symbol on the 
keyboard. See also type. 
Code To convert an algorithm into a Pascal pro­
gram. 

Comment A note inserted in a program that ex­
plains something about the program. A comment 
is surrounded by braces and does not affect pro­
gram execution. 

439 



440 Glossary 

Compiler After a program is typed in, Pascal 
commands must be translated into machine lan­
guage-a binary code that tells the computer 
what actions to take. With most versions of 
Pascal, a program called a compiler does this 
translation step. Only after the whole program 
has been compiled (a process that can take several 
minutes), is it ready to be executed. With Macin­
tosh Pascal, the translation into machine lan­
guage is done by a program called an interpreter, 
which translates Pascal commands, line by line, 
during program execution. Because MacPascal 
programs are interpreted, they are ready to run as 
soon as they are typed in. See also interpreter. 

Component of an array One of a group of relat­
ed variables, all of the same type, that make up an 
array. The position that each component occupies 
in the array is specified by the component's index. 

Component of a file An entry in an external 
file. 

Compound statement A sequence of statements 
separated by semicolons and listed between the 
word begin and the word end. Pascal treats com­
pound statements as a single statement. 

Computational logic The area of computer sci­
ence that deals with formal reasoning by comput­
er. Theorem proving by computer is part of this 
field. 

Conditional statement An if-then or if-then-else 
statement. 
Constant An identifier that has been given a 
fixed value. 
Control line of a for statement The first line in a 
for statement. It sets the number of times the loop 
is to be executed. 

Control line of a while statement The first line 
in a while statement. The control line contains a 
test, and looping continues until the test becomes 
false. 

CPU See central processing unit. 
Dangling else The else part of an if-then-else 
statement that has been nested inside an if-then 
statement. 

Data structure An organizing scheme for data in 
a program. Arrays, records, and files are data 
structures. 

Data table A table that includes information 
about input variables, output variables, program 
variables, loops, constants, type definitions, and 
special formulas used in a program. Making up a 
data table is useful in the thinking stage of pro­
gram writing. 

Debug To fix an error in a program. See also bug. 

Declaration part of a program The part of a 
program that comes before the statement part and 
consists of declarations for variables, procedures 
and functions, and definitions for constants and 
types. Procedures and functions also have decla­
ration parts. See also statement part. 

Disk A platter that the computer uses to store 
programs and files. The Macintosh can use both 
floppy disks and larger hard disks. Unlike main 
memory, disks store data and programs perma­
nently. 

Divide-and-conquer strategy An approach that 
involves breaking a large problem into small parts 
and then solving the parts one by one. See also 
top-down programming. 

Echoing Reading in a text and then printing it 
out unchanged in one of the output windows. 

Empty statement A nonexistent statement, 
which is considered to exist when two separator 
symbols, such as a semicolon and an end, appear 
next to each other in a program. The empty state­
ment tells the computer to take no action. 

Enumerated type A type that a programmer 
makes up. An enumerated type consists of an or­
dered collection of identifiers listed in a type defi­
nition. 

Execute To carry out an instruction or a series of 
instructions. 

Expression A grouping of values, constants, 
variables, or functions. Number, 5, (5 * Number), 
and sqrt(5 * Number) are all expressions. 

External file A Macintosh document that holds 
data generated by a Pascal program. 

Field selector The identifier for a field of a rec­
ord variable. 

Field width When MacPascal prints out a 
value, it allots a space, or field width, for the 
value. It right-justifies the value in the allotted 
space, leaving any extra spaces to the left of the 



value. The field width for a parameter of a 
writeln or write statement can be specified by a 
colon followed by the number of spaces to be al­
lotted for the value. 

File A collection of data that a program stores 
permanently on a disk. See also external file. 

File pointer An imaginary pointer that comes 
with a file variable and identifies a specific loca­
tion in an external file. 

File variable A variable of type file that links a 
program with an external file. A file variable 
comes with a file pointer. 

Flag A boolean variable that is part of a test in a 
loop. A flag is used to end looping early when 
some special condition is met. 

Floppy disk See disk. 

Formal parameter An identifier that is declared 
in the heading line of a procedure or function. See 
also actual parameter, variable parameter, and 
value parameter. 

Function A kind of subprogram that always re­
turns a single value. 

Function call A statement that tells the comput­
er to execute a function subprogram. The func­
tion call can pass actual parameters to the func­
tion declaration. 

Generate and test method A problem-solving 
method that uses a loop to generate a set of values 
and to apply some test to each element in that set 
of values. 

Global identifier An identifier that has meaning 
throughout a program, not merely in one section 
of it. A global constant, for example, is a constant 
whose value can be used in the main program as 
well as in any procedure or function defined in the 
program. Global identifiers are defined in the 
declaration part of the main program. 

Heading line The first line of a program, func­
tion, or procedure. 

Identifier Any word that you use as a name for a 
program, variable, constant, function, or proce­
dure. An identifier cannot be a reserved word. 

Idiot-proofing Protecting a program against in­
appropriate input values. 

Increment To increase the value of a variable. 

Glossary 441 

Index A value that identifies a component of an 
array. The index follows the name of the array 
and is enclosed in square brackets. The index type 
of an array specifies how the components of an 
array are identified. See also array. 

Infinite loop A loop that repeats forever because 
the condition that terminates the loop is never 
met. 

Initialize To give a beginning value to a vari­
able. 

Input Data that are given to a program while 
the program is running. Input can be supplied 
interactively (typed in while the program is run­
ning) or it can be supplied from an external file. 

Integer One of Pascal's standard types. Type in­
teger consists of the whole numbers from -32, 767 
to 32,767. See also maxint. 

Interactive program A program that receives 
values for some of its variables directly from the 
keyboard during program execution. 

Interpreter A program that translates Pascal 
commands into machine language, instruction by 
instruction, while a program is running. Macin­
tosh Pascal is interpreted, which means that pro­
grams are ready to run as soon as they are typed 
in; most other versions of Pascal are compiled. See 
also compiler. 

Iteration One repetition of a looping statement. 

Local identifier A constant or variable that is 
declared inside a procedure or function. See also 
global identifier. 

Longint One of Macintosh Pascal's standard 
types. It includes all the whole-number values 
from -2,147,483,647 to 2,147,483,647. See also 
maxlongint. 

Loop A command that instructs the computer to 
repeat an instruction or group of instructions over 
and over. There are three looping commands in 
Pascal: the for loop, the repeat-until loop, and the 
while loop. 

Machine language A primitive code that uses 
patterns of zeros and ones to control a computer. 
Programs written in Pascal and other high-level 
programming languages must be translated into 
machine language before the computer can exe­
cute them. 



442 Glossary 

Main memory The storage locations inside the 
Macintosh where a program is stored temporarily 
while it is being written or used. When the Macin­
tosh is turned off, main memory goes blank. 

Main program The statement part, or body, of a 
program. Everything that comes after the decla­
ration part of a program. 

Maxint The largest value in type integer: 32767. 

Maxlongint The largest value in type longint: 
2,147,483,647. 

Mixed-mode expression An expression in which 
both real and integer values or variables are used. 

Monte Carlo method A method that uses the 
laws of chance to calculate results in mathe­
matics. 

Nesting Placing one kind of statement inside an­
other statement of the same kind, as in a nested for 
loop. 

Operator A symbol or word used in mathemat­
ical calculations. The arithmetic operators are +, 
- , •, I, div, and mod. Another group of opera­
tors, called the relational operators, are = , < , 
> , < > , < = , and > = . Pascal also uses logical 
operators that work only with boolean expres­
sions. The logical operators are and, or, and not. 

Parameter A special kind of variable used in a 
procedure or function. 

Parent type See subrange type. 

Pretty printing Macintosh Pascal style for dis­
playing programs. Reserved words are automati­
cally printed in boldface, and the lines in a pro­
gram are automatically indented to follow the 
logical structure of the program. 

Procedure A subprogram that does part of the 
work of a program. A procedure has two parts: a 
declaration part and a statement part. A proce­
dure declaration lists the instructions that the pro­
cedure will carry out. A procedure statement tells 
the computer to execute the instruction in the pro­
cedure declaration. 

Procedure call Execution of a procedure state­
ment. 

Prompt A message printed in the Text window 
that tells a person who is using an interactive pro­
gram to type in some information. 

Random-access file Macintosh Pascal's file sys­
tem includes random-access-file commands. 
These commands make it possible to access file 
components in any order. The seek command 
advances a file variable's pointer directly to a par­
ticular component in a file. This is not possible 
with sequential files. See also file and sequential 
file. 

Random number A number with an unpredict­
able value. The MacPascal function random gen­
erates random numbers. 

Real One of Pascal's standard types. The type 
consists of numbers that are decimal fractions. 

Record A data structure with component vari­
ables that need not be of the same type. 

Recursion A calculating technique in which a 
function or procedure calls itself. 

Relational operator A symbol that tests the rela­
tionships between values. The relational opera­
tors are = , < , > , < > , < = , and > _= . See also 
operator. 

Reserved word Words such as program, var, 
begin, and end that have special meanings in 
Pascal. A complete list of reserved words is given 
inside the back cover of this book. These words 
may not be used as identifiers. 

Result type ·The type of the value returned by a 
function. 

Run To execute a program. 

Run-time error A bug that shows up during pro­
gram execution. 

SANE An abbreviation that stands for Standard 
Apple Numerics Environment. SANE is a system 
for doing arithmetic with real numbers. Macin­
tosh Pascal's arithmetic operators are part of 
SANE. 

Scientific notation A system that represents real 
numbers using exponents. Macintosh Pascal out­
put is printed in scientific notation unless colon 
notation is used to specify the number of digits to 
the right of the decimal point. Scientific notation 
is also called floating-point notation. 

Scoreboard principle A method of using an 
array to keep a running tally of data generated in 
a program. 



Scratchpad principle A programming tech­
nique in which a "scratchpad" variable is used to 
hold a value temporarily while values of two or 
more variables are exchanged. 

Sequential file Pascal's traditional file system 
uses sequential file commands exclusively. With 
the sequential file facility, the components of a 
file must be read sequentially, begining with the 
first component. It is not possible to advance a file 
variable's pointer directly to a particular location 
in a file. This feature makes it inconvenient to 
alter data entries in a sequential file. See also 
random-access file. 

Standard function A predefined function, such 
as round or sqrt, that is built into MacPascal. Like 
other functions, a standard function returns a sin­
gle value. 

Standard procedure A predefined procedure, 
such as writeln or paintcircle, that is built into 
Macintosh Pascal. 

Standard type The Macintosh Pascal standard 
types are integer, longint, real, char, string, and 
boolean. See also type. 

Statement part of a program The program body 
or main program, which comes after the declara­
tion part of the program; the series of statements 
that make up the action part of a program. See 
also declaration part of a program. 

String A sequence of characters. The standard 
type string allows you to manipulate a sequence of 
characters directly. 

Subprogram A Pascal procedure or function. 

Subrange type A type that consists of a number 
of consecutive elements from another type, called 
the parent type. The parent type can be integer, 
char, an enumerated type, or even another 
subrange type. 

Syntactic analysis The study of the techniques 
and algorithms that are needed to analyze the syn­
tax of a program. 

Syntax The rules that determine the proper 
arrangement of symbols and words that make up 
a command or program. 

Syntax diagram A diagram used to specify the 
syntax rules that govern Pascal commands. Some­
times called a bubble diagram. 

Glossary 443 

Test An expression that can be either true or 
false. See also boolean expression. 

Theorem A boolean expression that is always 
true, no matter what values its boolean variables 
have. See also boolean expression and boolean 
variables. 

Top-down programming A method for writing 
programs that consists of breaking a big program­
ming problem into small, manageable parts and 
solving each part separately. 

Truth table A table that lists the possible values 
of a boolean expression. See also boolean expres­
sion. 

Type In Pascal all variables must be declared to 
be of a specific type. Numbers are of type integer, 
type longint, or type real. Letters, symbols, and 
the digits 0 to 9 are of type char. Type boolean 
consists of the two values true and false. Integer, 
longint, real, char and boolean are standard 
types. The type string is also considered a stan­
dard type. Enumerated types are types made up 
by a programmer. 

Value parameter A formal parameter of a pro­
cedure or function that is assigned the value of the 
actual parameter when a procedure or function is 
called. The value of an actual parameter asso­
ciated with a value parameter cannot change dur­
ing execution of the subprogram. See also variable 
parameter. 

Variable An identifier whose value changes as a 
program runs. Every variable has an associated 
location in memory, where the variable's value is 
stored. 

Variable parameter A formal parameter in a 
procedure or function that becomes a second 
name for an actual parameter. The value of both 
a formal value parameter and its corresponding 
actual parameter can change during execution of 
the subprogram. For this reason, an actual pa­
rameter that corresponds to a variable formal pa­
rameter must be a variable rather than a fixed 
value or expression. 



Solutions to Exercises 
and Selected Problems 

____ chapter1-------------------
Exercises 

1. a. (100,100) 

2. a. diagonal b. diagonal c. vertical 

3. pai ntcircle(l00, 100,100 ) 

Problems 

3. a. 2. b. 3 

9. a triangle 

c. 1 

13. b. program ThreeCircles; 

d. 2 

begin 
invertcircle(l00,66,66); 
invertcircle(66,1J4,66); 
invertcircle(1J4,1J4,66) 

end. 

14. program OverAndOver; 
var 

PledgeNumber : integer; 
begin 
for PledgeNumber := 1 to 500 do 
begin 

writeln(PledgeNumber); 

e. 3 

writeln('I will not talk in class. ' ) 
end 

end. 

d. horizontal e. slanted 

445 

I 



446 Solutions to Exercises and Selected Problems 

15. a. program RollDownLine; 
var 
Position : integer; 

begin 
writeln('The First Cartoon!'); 
drawline(99,0,99,200); 
for Position := 20 to 180 do 
begin 
paintcircle(120,Position,20); 
invertcircle(120,Position,20) 

end 
end. 

b. program Perpendicular; 
var 
Position : integer; 

begin 
for Position := 20 to 180 do 
begin 

drawline(99,0,99,200); 
drawline(0,100,200,100); 
paintcircle(120,Position,20); 
invertcircle(120,Position,20); 
paintcircle(Position,80,20); 
invertcircle(Position,80,20) 

end 
end. 

----Chapter2 -------------------
Exercises 

1. a. 4 

2. a. 2 

b. 0 

b. 0 c. 47 

3. b. program FirstLoopOne; 
var 

Number : integer; 
begin 

for Number := 1 to 4 do 
begin 
writeln(J * Number) 

end 
end. 



pro~am FirstLoopTwo; 
var 

Number : integer; 
begin 

Solutions to Exercises and Selected Problems 44 7 

for Number := 0 to 3 do 
begin 
writeln(J * Number) 

end 
end. 

program FirstLoopThree; 
var 

Number : integer; 
begin 
for Number := -1 to 2 do 
begin 
writeln(2 * Number) 

end 
end. 

program FirstLoopFour; 
var 

Number : integer; 
begin 
for Number := -4 to -1 do 
begin 
writeln(2 * Number) 

end 
end. 

4. (4 * LeapYear) 

Problems 

1. b. 1038 div 12 = 86 

5. b. program NotSure_b; 
var 
Point : integer; 

be gill 
for Point := 0 to 10 do 
begin 

drawline(0,200,200,20 * Point) 
end 

end. 



448 Solutions to Exercises and Selected Problems 

8. program OffCenterDiamond; 
var 
MeetingPoint : integer; 

begin 
for MeetingPoint := 0 to (200 div 4) do 
begin 

drawline(0,100,50,4 * MeetingPoint); 
drawline(200,100,50,4 * MeetingPoint) 

end 
end. 

13. d. program NumberColumn_d; 
var 

Number : integer; 
begin 
for Number := 9 downto 5 do 
begin 
writeln(Number * 10) 

end 
end. 

g. program NumberColumn_g; 
var 

Number : integer; 
begin 
for Number := 0 to 8 do 
begin 
writeln(Number div 3) 

end 
end. 

17. a. program RailRoadTracks; 
var 
Position : integer; 

begin 
drawline(0,80,200,80); 
drawline(0,120,200,120); 
for Position := 1 to 5 do 
begin 

drawline((40 *Position) - 20,80,(40 *Position) - 20,120) 
end 

end. 



Solutions to Exercises and Selected Problems 449 

____ Chapter3 __________________ _ 

Exercises 

1. Eliminate the begin and end that surround the drawline statement. 

3. a. The loop prints "Polly want a cracker?" 200 times. 

4. a. Change the value of the constant Radius to 30 and the value of Line­
Height to 175. 

b. Change Radius to 45 and LineHeight to 195. 

5. The program reads in two numbers, adds them, and then prints their sum. 
The first two writeln statements are prompts. The program would produce 
unreliable output if you moved the last writeln statement from the end to 
the beginning of the body of the program, because the two variables in the 
writeln statement would have arbitrary values. 

6. The answer is (a). To get the output in (b), reverse the order of the writeln 
statements. 

7. a. Be there or be square. 
b. Be there or be square. 
c. Be there or · 

be square. 

8. b. 19.95 
-126.0 
0.0 
0.342 
0.25 
3.96e5 or 396000.0 

9. a. writeln(5/7 : 12 : 10) 
b. writeln(l00/7 : 9 : 6) 
c. writeln('My bucket of night crawlers costs$', 2.98 4 2) 

Problems 

3. program Grid; 
var 

LineNumber : integer; 
begin 
for LineNumber := 1 to 20 do 
begin 

drawline(0,10 * LineNumber,200,10 * LineNumber); 
drawline(lO * LineNumber,0,10 * LineNumber,200) 

end 
end. 



450 Solutions to Exercises and Selected Problems 

7. program Line2; 
var 

V : integer; 
begin 
moveto(O,O); 
writeln('Type in a vertical position.'); 
readln(V); 
lineto(200,V); 
lineto(0,200) 

end. 

8. program LineJ; 
var 

V : integer; 
begin 
moveto(O,O); 
for V := O to 4 do 
begin 

lineto(200,20 + (40 * V)); 
lineto(0,40 + (40 * V)) 

end 
end. 

12. Little equals 4 and Big equals 5. 

13. The program prints 21-14-7-24-16-8-27-18-9 in a column. 

14. program TimesTable; 
var 

M,N : integer; 
begin 
writeln(' The times table'); 
writeln; 
for N := 1 to 10 do 
begin 
for M := 1 to 10 do 
write(M * N : 4); 

writeln 
end 

end. 



Solutions to Exercises and Selected Problems 451 

15. program CrossHatch; 
const 
Separation = 40; 

var 
Width : integer; 

begin 
for Width := O to 10 do 
drawline(Separation * Width,0,0,Separation *Width); 

for Width := -5 to 5 do 
drawline(Separation * Width,0,200,200 - Separation * Width) 

end. 

-----Chapter4-------------------
Exercises 

5. a. The program prints 2-4-6-8 in a column. 
b. The program prints 2-4-8 in a column. 

7. a. The program prints 3-6-9-12-15. 
b. When Number reaches the value 32, 766, the Macintosh will be unable to 

execute the assignment statement Number:= Number+ 3. To print out 
just 5 numbers, change the test to (Number= 18). 

c. It draws horizontal lines ten units apart across the standard Drawing 
window. 

8. a. The program goes into an infinite loop, or it crashes if V eventually be­
comes smaller than -maxint or larger than maxint. 

b. The ball leaves at the bottom of the Drawing window. 
c. HChange must be some positive even integer, and VChange must be 

-(Hchange div 2). For example, if HChange is 2 and VChange is -1, the 
ball will leave the window at the corner. 

9. c. 1 d. 1 e. 1 

10. If the two points lie on a vertical line, then (H2 - H1) = 0 and Dis­
tanceApart is assigned the value of V2 - V1• If the points lie on a horizontal 
line, (V2 - V1) = 0 and the variable DistanceApart is assigned the value of 
H2 - H1. 

11. Instead of following the lower semicircle of its orbit, the planet moves from 
right to left, retracing the path it followed in the first part of the program. 



452 Solutions to Exercises and Selected Problems 

Problems 

1. a. -5 b. 4 

5. a. program PrintNumbers_while; {PRINTS NUMBERS IN LAST COLUMN.} 
var 

Number : integer; 
begin 

Number := JO; 
while (Number )= 6) do 
begin 

wri teln(Number); 
Number .- Number - 6 

end 
end. 

b. program PrintNumbers_repeat; {PRINTS NUMBERS IN LAST COLUMN.} 
var 

Number : integer; 
begin 

Number := JO; 
repeat 
writeln(Number); 
Number := Number - 6 

until (Number ( 6) 
end. 

7. program CrossHairs; 
var 
HPosition,VPosition,Radius : integer; 

begin 
writeln('Specify the horizontal and vertical position 

of a point. ' ) ; 
readln(HPosition,VPosition); 
writeln('Now specify the radius of a circle.'); 
readln(Radius); 
drawline(HPosition,O,HPosition,200); 
drawline(O,VPosition,200,VPosition); 
invertcircle(HPosition,VPosition,Radius) 

end. 

8. program Compoundinterest; 
var 
Years,Schedule,TimesCompounded integer; 
Principal,Rate,Amount : real;-



Solutions to Exercises and Selected Problems 453 

begin 
writeln( 'Type in the start i ng princ i pal .' ); 
readln(Pri ncipal) ; 
wr i teln( 'Type in the i nt erest rat e. ' ) ; 
readl n(Rate); 
writeln ' (Type in the number of years i n bank .' ); 
readln(Years); 
writeln( 'Type number of t i mes i nterest is compounded per year .' ) ; 
readln(Schedule) ; 
Amount := Principal; 
for TimesCompounded := 1 to (Schedule * Years) do 

Amount := Amount+ Amount* (Rate/ Schedule) ; 
wr itel n( ' Amount after ', Years : 1,' years i s$ ' , Amount 4 2) 

end . 

11. 23 
13. program TriangleArea; 

var 
a , b , c,s ,Area : real; 
Hposl, Vposl,Hpos2,Vpos2, HposJ,VposJ integer ; 

begin 
wri teln('Type positi on of first corner of triangle .' ); 
readln(Hpos l ,Vpos l ) ; 
writeln( 'Type pos ition of second corner of tr i angle . ') ; 
readln(Hpos2,Vpos2) ; 
wr iteln( 'Type pos i tion of th i rd corner of tr i angl e .' ) ; 
readln(HposJ,VposJ) ; 

!DISTANCE BETWEEN (Hposl, Vpos l ) & (Hpos2,Vpos2) IS al 
!DISTANCE BETWEEN (Hpos2,Vpos2) & (HposJ,VposJ) IS bl 
!DISTANCE BETWEEN (HposJ,VposJ) & (Hposl,Vposl) IS cl 

a . - sqrt(sqr(Hpos2 - Hposl) + sqr(Vpos2 Vpos l )) ; 
b := sqrt(sqr(HposJ - Hpos2) + sqr(VposJ - Vpos2)); 
c := sqrt(sqr(Hpos l - HposJ) + sqr(Vposl - VposJ)); 
s := (a + b + c)/2; 
drawl ine(Hpos l ,Vposl,Hpos2 , Vpos2) ; 
drawline(Hpos2 , Vpos2 ,HposJ,VposJ); 
drawline(HposJ,VposJ ,Hposl, Vpos l ) ; 
Area := sqrt(s * (s - a) * (s - b) * (s - c)); 
writeln( 'Area of triangl e is ' , Area : 6 1,' square units . ') 

end. 

14. program AngleRoll; 
canst 
Radius = 20 ; 

var 
H, V,Hstart , Vstart,Hchange , Vchange integer; 

(continued) 



454 Solutions to Exercises and Selected Problems 

begin 
HStart := O; 
writeln('Type vertical starting position of ball.'); 
readln(Vstart); 
write('Type in horizontal change and vertical change. '); 
write('Horizontal change must be a positive integer,but ' ) ; 
writeln('vertical change can be either positive or negative.'); 
readln(Hchange,Vchange); 
H := Hstart; 
V := Vstart; 
repeat 
paintcircle(H,V,Radius); 
invertcircle(H,V,Radius); 
H := H + Hchange; 
V ·- V + Vchange 

until (H ) 180) 
end. 

____ Chapters ___________________ _ 

Exercises 

1. a. The first writeln statement would print the smaller number, and the 
second writeln statement would print the larger number. 

b. The larger number is 5. 
The smaller number is 5. 

c. All three variables will get the original value of FirstNumber. 

2. a. 5,2,1 ,0,3 
b. The program prints 1-2-3-4-0-1-2-3-4-0 in a column. 

5. a. paintrect(0,0,200,200) 
b. invertrect(75,0,125,200) ; 

invertrect(0,75,200,125) 

6. a. Define the constants this way: 
BarCount = 12; 
Separation = 8; 
Thickness= 8; 

b. Use these values for the constants Left and Right: 
Left= 100; 
Right= 200; 

7. a. paintoval(0,75,200,125 ) ; 
framerect(0,75,200,125 ) 

b. paintoval(0,0,100,200); 
paintoval(l00,0,200,200); 
drawline(0,100,200,100) 



Solutions to Exercises and Selected Problems 455 

c. paintoval(0,0,100,200); 
paintoval(l00,0,200,200); 
invertoval(50,0,150,200) 

8. Grow is always even, so the then part of the if-then-else statement is never 
executed and only rectangles are drawn. 

Problems 

3. program Cube; 
begin 

framerect(75,25,175,125); 
framerect(25,75,125,175); 
drawline(25,75,75,25); 
drawline(25,175,75,125); 
drawline(125,175,175,125); 
drawline(125,75,175,25) 

end. 

4. 1038 mod 12 = 6 
7. program DrawPoint; 

var 
Horizontal,Vertical : integer; 

begin 
writeln('Type in horizontal and vertical position of point.'); 
readln(Horizontal,Vertical); 
paintcircle(Horizontal,Vertical,2); 
moveto(Horizontal,Vertical + 12); 
writedraw('(' ,Horizontal : 1, ', 1 ,Vertical 1, 1 ) 1 ) 

end. 
8. program IsPointinRectangle; 

var 
Horiz,Vert,Top,Left,Bottom,Right : integer; 

begin 
writeln('Type in horizontal and vertical position of point.'); 
readln(Horiz,Vert); 
writeln('Type top,left,bottom and right sides of rectangle.'); 
readln(Top,Left,Bottom,Right); 
paintcircle(Horiz,Vert,2); 
framerect(Top,Left,Bottom,Right); 
if (Horiz )= Left) and (Horiz (= Right) 
and (Vert )= Top) and (Vert (= Bottom) then 
writeln('The point is inside the rectangle!') 

else 
writeln('The point is not inside the rectangle.') 

end. 



456 Solutions to Exercises and Selected Problems 

11. program RectangleToSquare; 
var 
Top,Left,Bottom,Right,SideOfSquare,Number,Area : integer; 

begin 
writeln('Type in top,left,bottom and right sides of a rectangle.'); 
readln(Top,Left,Bottom,Right); 
framerect(Top,Left,Bottom,Right); 
for Number := 1 to 1000 do 

lFOR LOOP DELAYS FLIP BY EXECUTING THE EMPTY STATEMENT 1000 TIMES.I 
Area := (Bottom - Top) * (Right - Left); 
SideOfSquare := round(sqrt(Area)); 
Top := 200 - SideOfSquare; 
Right := SideOfSquare; 
framerect(Top,0,200,Right) 

end. 
12. No. 
13. 46.7% 

----Chapter6-------------------
Exercises 

1. a. Program Lines draws parallel lines that slant upward from left to right. 
b. The lines would slant at a 45°angle. The last line drawn would be the 

diagonal from the lower left to the upper right corner. 
2. a. begin 

HPosition := 20; 
VPosition := 20; 
while (VPosition (= 180) do 
begin 

Flicker(HPosition,VPosition); 
VPosition .- VPosition + 1 

end 
end. 

b. begin 
HPosition := 20; 
VPosition := 20; 
while (HPosition (= 180) do 
begin 

Flicker(HPosition,VPosition); 
HPosition .- HPosition + 1 

end 
end. 



Solutions to Exercises and Selected Problems 457 

3. program FallingPlanet; 
const 
Horizontal = 100; 

var 
Vertical,Radius : integer; 

procedure BigFlicker(Horizontal,Vertical,Radius 
begin 
paintcircle(Horizontal,Vertical,Radius); 
invertcircle(Horizontal,Vertical,Radius) 

end; 

!BODY OF THE PROGRAM} 
begin 
Radius := O; 
for Vertical := 20 to 200 do 
begin 
BigFlicker(Horizontal,Vertical,Radius); 
Radius .- round(Vertical div 2) 

end 
end. 

4. if (Top ( 10) then 
Top := 10; 

5. 

6. Eliminate the else part of the if statements that begin: 
"if odd(CurrentStripe) II 

Problems 

2. program TicTacToe; 

procedure DrawLineTwo(Hl,Vl,H2,V2 
begin 

moveto(Hl,Vl); 
lineto(H2,V2) 

end; 

integer); 

integer); 

(continued) 



458 Solutions to Exercises and Selected Problems 

begin 
DrawLineTwo(66,0,66,200); 
DrawLineTwo(133,o,133,200); 
DrawLineTwo(0,66,200,66); 
DrawLineTwo(0,133,200,133) 

end. 

3. program Curves; 
var 
Radius : integer; 

procedure FrameCircle(H,V,Radius 
var 
Top,Left,Bottom,Right : integer; 

begin 
Top := V - Radius; 
Left := H - Radius; 
Bottom := V + Radius; 
Right := H + Radius; 
frameoval(Top,Left,Bottom,Right) 

end; 

begin 
Radius := 50; 
while (Radius (= 250) do 
begin 

FrameCircle(O,O,Radius); 
Radius .- Radius + 50 

end 
end. 

6. program Yoyo; 
var 

integer); 

Position,YoyoCount,YoyoBounce : integer; 

procedure Flicker(Horizontal,Vertical : integer); 
const 
Radius = 20; 

begin 
paintcircle(Horizontal,Vertical,Radius); 
invertcircle(Horizontal,Vertical,Radius) 

end; 



Solutions to Exercises and Selected Problems 459 

begin 
writeln('How many yoyo drops would you like to see?'); 
readln(YoyoCount); 
for YoyoBounce = 1 to YoyoCount do 
begin 

for Position:= 20 to 170 do {YO YO DROPS.l 
begin 

drawline(l00,0,100,Position); 
Flicker(100,Position) 

end; 
for Position:= 170 downto 20 do {YO YO RETURNS.} 
begin 
drawline(l00,0,100,Position); 
Flicker(lOO,Position) 

end 
end 

end. 

11. program BrickUp; 
const 
WindowSize = 200; 

var 
Height,Width,Left,Top,RowNumber,BricksPerRow integer; 

procedure DrawRow(Width,Height,BricksPerRow, 
LeftEdge,Top : integer); 

var 
BrickNumber,LeftSide,RightSide,Bottom : integer; 

begin 
BrickNumber := 1; 
LeftSide := LeftEdge; 
RightSide := LeftSide +Width; 
Bottom := Top + Height; 
while (BrickNumber (= BricksPerRow) do 
begin 

framerect(Top,LeftSide,Bottom,RightSide); 
LeftSide := LeftSide + Width; 
RightSide := LeftSide + Width; 
BrickNumber .- BrickNumber + 1 

end 
end; 

(continued) 



460 Solutions to Exercises and Selected Problems 

{BODY OF PROGRAM} 
begin 

writeln('How many units wide are the bricks?'); 
readln(Width); 
writeln('How high are the bricks?'); 
readln(Height); 
BricksPerRow .- WindowSize div Width+ 1; 
RowNumber .- O; 
Top := O; 
repeat 

RowNumber := RowNumber + 1; 
if odd(RowNumber) then 
Left .- 0 

else 
Left .- -Width div 2; 

DrawRow(Width,Height,BricksPerRow,Left,Top); 
Top := Top + Height 

until (RowNumber * Height ) 200) 
end. 

----Chapter7-------------------
Exercises 

1. program prnMeals; 
type 
meals = (breakfast,lunch,dinner,midnightsnack); 

var 
Meal : meals; 

begin 
for Meal := lunch to midnightsnack do 
writeln(Meal) 

end. 

2. a. It does nothing. 
b. Change the moveto instruction to 

moveto(Hpos + (Width div 2),HeightOfLabels) 

3. a. False b. True d. B e. False 

4. a. After the statement drawchar(Ch) add another identical drawchar(Ch) 
statement. 

b. After the drawchar statement add the statement: 

drawchar(Blank) 



Solutions to Exercises and Selected Problems 461 

Problems· 

1. a. program Which Way; 
type 
Directions 

var 

(North,NorthEast,East,SouthEast,South, 
SouthWest,West,NorthWest); 

Direction Directions; 
begin 
for Direction := North to Northwest do 
writeln(Direction) 

end. 

b. program WhichWayBackwards; 
type 
Directions 

var 

(North,NorthEast,East,SouthEast,South, 
SouthWest,West,NorthWest); 

Direction Directions; 
begin 
for Direction := NorthWest downto North do 
writeln(Direction) 

end. 

5. The procedure takes the four sides of a rectangle and changes them to form 
the sides of a new rectangle. The new rectangle is the reflection of the old 
one across the diagonal that goes from the upper-left corner of the Drawing 
window to the lower-right corner. Any square with its upper-left corner on 
this diagonal is left unchanged by the procedure. A square with this 
property is called a fixed point of the procedure. 

6. program ThreeSort; 
var 

First,Second,Third : real; 

procedure SwapNumbers(var First,Second real); 
var 

Temp : real; 
begin 

Temp := First; 
First := Second; 
Second .- Temp 

end; 
(continued) 



462 Solutions to Exercises and Selected Problems 

begin 
writeln('Type in three real numbers, separated by spaces.'); 
write ( ' ) ' ) ; 
readln(First,Second,Third); 
if (First ( Second) then 
SwapNumbers(First,Second); 

if (First ( Third) then 
SwapNumbers(First,Third); 

if (Second ( Third) then 
SwapNumbers(Second,Third); 

writeln(First : 10 : 2,Second 10 2,Third 10 2) 
end. 

9. program DrawCompass; 
{FACE OF COMPASS IS A CIRCLE OF RADIUS 60.l 
{POINTS ON THE CIRCLE THAT STAND FOR NE, SE, SWl 
{AND NW ARE 58 UNITS FROM THE CLOSEST WALL.} 
const 
DistanceToWall = 58; 

type 
Directions (North,NorthEast,East,SouthEast, 

South,NorthWest,West,SouthWest); 
var 
Direction Directions; 

procedure EnterDirection(var Direction Directions); 
begin 
writeln('Type in a direction.'); 
write(')'); 
readln(Direction) 

end; 

procedure DrawBackground; 
begin 

frameoval(40,40,160,160); 
{DRAWS CIRCLE OF RADIUS 60l 

moveto(l00,20); 
writedraw( 'N'); 
moveto(l00,180); 
wri tedraw( 'S'); 
moveto(20,100); 
writedraw( 'W'); 
moveto(180,100); 
writedraw( 'Er) 

end; 



Solutions to Exercises and Selected Problems 463 

procedure DrawNeedle(Direction Directions); 
begin 

case Direction of 
North : 
drawline(l00,100,100,40); 

West : 
drawline(l00,100,40,100); 

South : 
drawline(l00,100,100,160); 

East : 
drawline(l00,100,160,100); 

Northwest : 
drawline(l00,100,DistanceToWall,DistanceToWall); 

NorthEast : 
drawline(l00,100,200 - DistanceToWall,DistanceToWall); 

SouthWest : 
drawline(l00,100,DistanceToWall,200 - DistanceToWall); 

SouthEast : 
drawline(l00,100,200 - DistanceToWall,200 - DistanceToWall) 

end 
end; 

{MAIN PROGRAM} 
begin 
EnterDirection(Direction); 
DrawBackground; 
DrawNeedle(Direction) 

end. 

11. program Calendar; 
{MAKE DRAWING WINDOW EXTEND ACROSS SCREEN} 
const 
StartHeight = 20; 
Separation = 25; 
ColumnWidth = 50; 
LeftStart = 10; 

type 
Months = (Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sept,Oct,Nov,Dec); 
DaysOfWeek. = (Mon,Tue,Wed,Thur,Fri,Sat,Sun); 

var 
MonthName : Months; 
Day,StartDay : DaysOfWeek; 
Date,DaysinMonth,Height,Row : integer; 

procedure TypeMontQJ)ayCount_Day(var Name Months; 
var DaysinMonth : integer; 
var StartDay : DaysOfWeek); 

(continued) 



464 Solutions to Exercises and Selected Problems 

begin 
writeln('Type in name of month.'); 
write(i)'); 
readln(Name); 
writeln('Type in number of days in month.'); 
write(')'); 
readln(DaysinMonth); 
writeln('Type in first day of week in month.'); 
write ( ' ) ' ) ; 
readln(StartDay) 

end; 

procedure PrintRow(var Date : integer; 
var StartDay : DaysOfWeek; 
Height : integer); 

var 
HPos : integer; 
Day : DaysOfWeek; 

begin 
Hpos := LeftStart; 
moveto(HPos,Height); 
for Day := Mon to Sun do 
begin 
if (Day )= StartDay) and (Date (= DaysinMonth) then 
begin 

writedraw(Date : 2); 
Date := Date + 1 

end; 
HPos := HPos + ColumnWidth; 
moveto(HPos,Height) 

end 
end; 

procedure PrintDaysOfWeek(Height integer); 
var 

HPos : integer; 
Day : DaysOfWeek; 

begin 
HPos := LeftStart; 
for Day := Mon to Sun do 
begin 
moveto(HPos,Height); 
writedraw(Day); 
HPos .- HPos + ColumnWidth 

end 
end; 



Solutions to Exercises and Selected Problems 465 

procedure PrintNameOfMonth(Name Months; 
Height : integer); 

const 
Center = 160; 

begin 
moveto(Center,Height); 
writedraw(Name) 

end; 
{BODY OF PROGRAM} 

begin 
TypeMonth...DayCount_Day(MonthName,DaysinMonth,StartDay); 
Day : = StartDay; 
Date := 1; 
Height := StartHeight; 
PrintNameOfMonth(MonthName,Height); 
Height := Height + Separation; 
PrintDaysOfWeek(Height); 
Height := Height + Separation; 
for Row := 1 to 6 do 
begin 
PrintRow(Date,Day,Height); 
Height := Height + Separation; 
Day .- Mon 

end 
end. 

----Chapter8-------------------
Exercises 

1. a. FirstNumberlsGreater has the value False, so the program prints "The 
first number is less than or equal to second." 

3. a. Invalid. There are more left parentheses than right parentheses. 
b. Invalid. The second right parenthesis is not preceded by its matching left 

parenthesis. 
c. Valid. 

4. ***accept*** 

5. If you drag in any other direction, top would be greater than or equal to 
bottom, or left would be greater than or equal to right, so no rectangle 
would be drawn. 

6. False 
True 
False 



466 Solutions to Exercises and Selected Problems 

7. a. 7 b. 1 

8. You must change the definition of the ScoreRange subrange type to: 

ScoreRange = 0 .. 105; 
You must also change the prompt in the main loop so that it reads: 

"Type in score from 0 to 105 ... " 

Problems 

4. True. The value of a boolean expression that doesn't use the operator not 
must be false when all the boolean variables in the expression are false. 

5. program DoubledChar; 
{YOU TYPE IN A SENTENCE. PROGRAM REPORTS) 
{FIRST PAIR OF DOUBLED LETTERS.) 
const 
Period = ' . ' ; 
Blank = I I; 

var 
Ch,PreviousChar : char; 
Found : boolean; {THE FLAG} 

begin 
Ch := Period; 
PreviousChar := Period; 
Found:= False; {THE FLAG IS INITIALIZED TO FALSE.) 
writeln('Type a sentence ending with a period.'); 
write (')'); 
repeat 
read(Ch); 
if (Ch () Period) then 
if (PreviousChar = Ch) then 
Found :=True; {IF FOUND BECOMES TRUE, LOOP ENDS EARLY.) 

PreviousChar := Ch 
until Found or (Ch= Period); 
writeln; 
if Found then 
writeln('The character ',PreviousChar, 

' is doubled in the sentence.') 
else 
writeln('There are no doubled characters in the sentence.') 

end. 

9. The program would accept any sequence with an equal number of left 
and right parentheses. For example, the program would accept the 
string ) ) ) ( ( (. 



Solutions to Exercises and Selected Problems 467 

11. procedure DeleteExtraSpaces; 
const 
Blank = ' '; 
Period = ' . ' ; 
DollarSign = '$'; 

var 
PreviousCh,Ch : char; 

begin 
moveto(5,100); 
PreviousCh := DollarSign; {INITIALIZE PreviousCh TO ARBITRARY 

CHARACTER} 
writeln('Type in a sentence ending with a period.'); 
write ( ' ) '); 
while (Ch () Period) do 
begin 

read( Ch); 
if (PreviousCh () Blank) or (Ch () Blank) then 
drawchar(Ch); 

PreviousCh . - Ch 
end 

end. 

----Chapter9-------------------
Exercises 

1. a. 3 
d. It lists the number of people in each house on the street, beginning with 

house 12 and ending with house 1. 

2. a. The component type is integer, and there are 9 component variables. The 
index type is the subrange of integer l .. 9. 

b. The component type is integer. There are 26 component variables. The 
index type is the char subrange 'a'.. 'z' . 

c. The component type is real. There are 12 component variables. The 
index type is an enumerated type that consists of the months of the year. 
We would have to define a type called Months before we gave the defi­
nition for the array type MonthlyRainfall. 

3. The loop would be the same, but HouseNumber should be initialized to 1 
instead of 2. 

4. a. Yes. b. 2,3 



468 Solutions to Exercises and Selected Problems 

c. The component type is the enumerated type ConstructionType. The 
index type is the subrange of integer 1 .. 12. The variable RutlandHouse­
Kind keeps track of the construction type for each house on the street. 

5. case HouseNumber of 
1 : 
Neighbors. : = RutlandSt [HouseNumber + 1] + 

RutlandSt[HouseNumber + 2]; 
2 : 

Neighbors := RutlandSt[HouseNumber - 1] + 
RutlandSt[HouseNumber + 1] + RutlandSt[HouseNumber + 2]; 

12 : 
Neighbors := RutlandSt[HouseNumber - 1] + 

RutlandSt[HouseNumber - 2]; 
11 : 
Neighbors := RutlandSt[HouseNumber - 2] + 

RutlandSt[[HouseNumber - 1] + RutlandSt[HouseNumber +1]; 
otherwise 
Neighbors := RutlandSt[HouseNumber - 1] + 

RutlandSt[HouseNumber + 1] + RutlandSt[HouseNumber - 2] + 
RutlandSt[HouseNumber + 2] 

end; 

6. Assume there is an enumerated type called Names consisting of players' 
names. Then this type definition for Team defines the basketball team: 

Team = array[BBPositions] of Names; 

7. Program Wonder What reads in a string and then prints this string vertically 
in the Text window. 

8. a. Able I, ere I saw Elba. 23 characters. 
b. Able wasl, ere I saw Elba. 26 characters. 
c. A ere I saw Elba. 17 characters. 

9. a. Add the statement writeln(length(StringOfChar)) as the second state­
ment in the body of the program. 

b. 8 

10. The l's on the ends represent the number of ways you can get all heads or all 
tails. The 5's represent the ways you can get exactly 1 heads or exactly 1 tails. 
The lO's represent the ways you can get 2 heads or 2 tails. 



Solutions to Exercises and Selected Problems 469 

Problems 

3. c. program RailRoad; 
type 
CarType = (Locomotive,CoalCar,OilCar,CattleCar); 
FreightTrain = array[l .. 10] of CarType; 

var 
AltoonaLimited : FreightTrain; 
Number : integer; 

begin 
for Number := 1 to 10 do 
begin 
writeln('Type in Locomotive,CoalCar,OilCar or CattleCar.'); 
writeln('What kind of car is number ',Number : 1, '?'); 
write(')'); 
readln(AltoonaLimited[Number]) 

end; 
for Number := 1 to 10 do 
writeln(AltoonaLimited[Number]) 

end. 

d. program RailRoad; 
type 
CarType = (Locomotive,CoalCar,OilCar,CattleCar); 
FreightTrain = array[l .. 10] of CarType; 
CarsPerType = array[Locomotive .. CattleCar] of integer; 

var 
AltoonaLimited : FreightTrain; 
Number : integer; 
NumberOfCars : CarsPerType; 
WhichCar : CarType; 

begin 
for Number := 1 to 10 do 
begin 
writeln('What kind of car is number ',Number : 1, '?'); 
writeln('Type in Locomotive,CoalCar,OilCar or CattleCar.' ); 
write(')'); 
readln(AltoonaLimited[Number]) 

end; 
Number := 1; 
while (Number (= 10) do 
begin 

WhichCar := AltoonaLimited[Number]; 
NumberOfCars[WhichCar] := NumberOfCars[WhichCar] + 1; 
Number .- Number+ 1 

end; 
(continued) 



4 70 Solutions to Exercises and Selected Problems 

writeln; 
writeln(' LOCOMOTIVE COALCAR OILCAR CATTLECAR'); 
write(NumberOfCars[Locomotive] : 13); 
write(NumberOfCars[CoalCar] : 13); 
write (NumberOfCars [OilCar] · : 13); 
write(NumberOfCars[CattleCar] : 13) 

end. 

4. program Races; 
type 
Runners= (Jesse,Frankie,Hilary); 
SprintResults = array[Runners] of real; 

var 
Fifty,Hundred : SprintResults; 
Name,Winner : Runners; 

procedure RecordRaceResults(var Fifty,Hundred SprintResults); 
var 

Name : Runners; 
begin 

for Name := Jesse to Hilary do 
begin 
writeln('Give time for ',Name,' in 50 and 100 yard dashes.'); 
write(')'); 
readln(Fifty[Name],Hundred[Name]) 

end 
end; 

procedure FindWinner(RaceTime : SprintResults; 
var Winner : Runners); 

var 
Runner : Runners; 

begin 
Winner := Jesse; 
for Runner := Jesse to Hilary do 
if (RaceTime[Runner] ( RaceTime[Winner]) then 
Winner := Runner 

end; 
{MAIN PROGRAM} 

begin 
RecordRaceResults(Fifty,Hundred); 
FindWinner(Fifty,Name); {Name WILL HOLD NAME OF 50 YD DASH WINNER} 
writeln('The winner of the 100 yard dash is ',Name); 
FindWinner(Hundred,Name); {Name WILL HOLD NAME OF 100 YD DASH WINNER} 
writeln('The winner of the 50 yard dash is ',Name) 

end. 



Solutions to Exercises and Selected Problems 4 71 

9. program DigitDisplay; 
type 
Digits = '0' .. '9'; 
DigitValues = array[Digits] of integer; 

var 
DigitPositions : DigitValues; 
Digit : Digits; 

begin 
for Digit := '0' to '9' do 
DigitPositions[Digit] := ord(Digit); 

writeln('digit' : 8, 'ord value' : 12 ) ; 
writeln; 
for Digit := '0' to '9' do 
writeln(Digit 6,DigitPositions[Digit] 10) 

end. 

10. program Turnpike; 
const 

TollAmount = 65; 
type 

CoinType = (penny,nickel ,dime,quarter); 
CoinChart = array[CoinType] of integer; 

var 
TollPayment : CoinChart; 
AmountDeposited : integer; 

procedure ReadPayment(var TollPayment CoinChart); 
var 

Coin : CoinType; 
begin 
writeln( ' Type in coins deposited in a t oll booth transaction.'); 
writeln; 
for Coin := penny to quarter do 
begin 
writeln('Type in ',Coin,' count.'); 
write(')'); 
readln(TollPayment[Coin]) 

enq; 
writeln 

end; 

procedure CalcPayment(Tol lPayment : CoinChart; 
var AmountDeposited : integer); 

var 
Coin : CoinType; 

(continued) 



4 72 Solutions to Exercises and Selected Problems 

begin 
AmountDeposited := O; 
for Coin := penny to quarter do 
case Coin of 
Penny : 
AmountDeposited .- AmountDeposited + TollPayment[Coin]; 

Nickel : 
AmountDeposited .- AmountDeposited + 5 * TollPayment[Coin]; 

Dime : 
AmountDeposited .- AmountDeposited + 10 * TollPayment[Coin]; 

Quarter : 
AmountDeposited .- AmountDeposited + 25 * TollPayment[Coin] 

end 
end; 

{MAIN PROGRAM} 
begin 
ReadPayment(TollPayment); 
CalcPayment(TollPayment,AmountDeposited); 
if (AmountDeposited)= TollAmount) then 
writeln('Thank you -- drive carefully.') 

else 
begin 
write('Please deposit '); 
writeln(TollAmount - AmountDeposited 2,' cents more.') 

end 
end. 

11. program Fibonacci; 
type 
Numberlist = array[l .. 20] of integer; 

var 
Fibo : NumberList; 
Number : integer; 

begin 
for Number := 1 to 20 do 
Fibo[Number] .- O; 

Fibo[l] := l; 
Fibo[2] := l; 
for Number := 3 to 20 do 
Fibo[Number] := Fibo[Number - 1] + Fibo[Number - 2]; 

for Number := 1 to 20 do 
writeln(Fibo[Number]) 

end. 



Solutions to Exercises and Selected Problems 4 73 

____ Chapter 10 ------------------­
Exercises 

1. a, b,d,e,h 

3. a. function InBetween(Smaller,Middle,Larger : integer) 
begin 
if (Smaller ( Middle) and (Middle ( Larger) then 
Between . - True 

else 
Between . - False 

end; 

boolean; 

b. In both cases, the program reports that the point lies inside the rectangle. 
c. Function Tomorrow takes a variable of type DaysOfWeek as its 

argument, and it returns the next day. Today is the formal parameter; it 
has type DaysOfWeek. The result type is also DaysOfWeek. 

d. function Yesterday(Today : DaysOfWeek) : DaysOfWeek; 
begin 
if (Today = Mon) then 
Yesterday .- Sun 

else 
Yesterday .- pred(Today) 

end; 

4. a. A b. A c. # d. 3 

5. The test (CharString[Position - l] Blank) in procedure CapFirstLetters 
would cause an out-of-range error. 

7. No. 

8. a. If the upper limit were Size, the final iteration of the loop would involve 
a tail of length 1, and with a tail that has only one element further 
rearrangement would be unnecessary. 

b. Procedure Swap alters NameList. 

9. b. (random mod 11) + 10 
d. 0 :::; Number< 1 

Problems 
1. program OneOverTest; 

var 
Number : integer; 
Sum : real; 

(continued) 



4 7 4 Solutions to Exercises and Selected Problems 

function OneOver(Number integer) real; 
begin 
if (Number = 0) then 
OneOver .- 0.0 

else 
OneOver .- 1 / Number 

end; 
{MAIN PROGRAM} 

begin 
Sum := 0.0; 
Number := 2; 
while (Number (= 256) do 
begin 

Sum :=Sum+ OneOver(Number); 
Number := 2 * Number 

end; 
writeln('Sum is ',Sum: 6 4) 

end. 

5. program FacTest; 
var 

Number : longint; 

function Factorial(N integer) 
{A RECURSIVE FUNCTION} 
begin 
if (N (= 0) then 
Factorial := 1 

else 

longint; 

Factorial := N * Factorial(N - 1) 
end; 

{MAIN PROGRAM} 
begin 
writeln('Type in a non-negative integer value.'); 
write(')'); 
readln(Number); 
writeln('Factorial of ',Number 2,' is'); 
writeln(Factorial(Number) : 2) 

end. 

10. program IntegerSquareRoot; 
var 

Number : integer; 

function IntegerRoot(N integer) 
var 
Root : integer; 

integer; 



Solutions to Exercises and Selected Problems 4 75 

begin 
if (N <= 0) then 
IntegerRoot .- 0 

else 
begin 
Root := O; 
while (sqr(Root + 1) <= N) do 
{BODY OF WHILE STATEMENT IS A SIMPLE STATEMENT.} 
Root := Root + 1; 

IntegerRoot .- Root 
end 

end; 
{MAIN PROGRAM} 

begin 
writeln('Type in a non-negative integer.'); 
write ( ' ) ' ) ; 
readln(Number); 
write('The integer square root of ',Number 2,' is '); 
writeln(IntegerRoot(Number) : 1, '. ') 

end. 

12. program BallRace; 
const 
BallCount = 6; 
WindowSize 200; 

type 
BallRecord array[l .. BallCount] of integer; 

var 
BallNumber,ChosenBall,Separation,Radius : integer; 
HPos : BallRecord; 

{KEEPS TRACK OF HORIZONTAL POSITION OF EACH BALL} 
VPos : BallRecord; 

{KEEPS TRACK OF VERTICAL POSITIONS OF EACH BALL} 

procedure InitializeVPositions(var VPos : BallRecord); 
var 
VCenter,BallNumber : integer; 

begin 
VCenter := Separation div 2; 
BallNumber : = 1; 
while (BallNumber (= BallCount) do 
begin 

VPos[BallNumber] := VCenter; 
VCenter := VCenter +Separation; 
BallNumber .- BallNumber + 1 

end 
end; 

(continued) 



4 76 Solutions to Exercises and Selected Problems 

procedure DrawBackGround; 
var 

Number : integer; 
begin 

Number := O; 
repeat 

Number := Number + Separation; 
drawline(O,Number,WindowSize,Number) 

until (Number )= WindowSize) 
end; 

procedure StartRace(var HPos BallRecord); 
var 
BallNumber : integer; 

begin 
for BallNumber := 1 to BallCount do 
begin 

HPos[BallNumber] := Radius; 
paintcircle(HPos[BallNumber],VPos[BallNumber],Radius) 

end 
end; 

function PickABall : integer; 
begin 

PickABall .- (random mod BallCount) + 1 
end; 

procedure Advance(ChosenBall : integer; 
var HPos : BallRecord); 

const 
Speed = 5; 

begin 
{ERASE THE BALL THAT'S BEING ADVANCED} 

invertcircle(HPos[ChosenBall],VPos[ChosenBall],Radius); 
{UPDATE THE POSITION OF THE BALL BEING ADVANCED} 

HPos[ChosenBall] := HPos[ChosenBall] +Speed; 
{PAINT THE NEW POSITION OF THE BALL THAT WAS MOVED} 

paintcircle(HPos[ChosenBall],VPos[ChosenBall],Radius) 
end; 

function ABallisDone(HPos BallRecord) boolean; 
var 
BallNumber : integer; 



Solutions to Exercises and Selected Problems 4 77 

begin 
ABallisDone := False; 
for BallNumber := 1 to BallCount do 
if (HPos[BallNumber] )= (WindowSize - Radius)) then 
ABallisDone .- True 

end; 
{MAIN PROGRAM} 

begin 
Radius := WindowSize div (2 * BallCount); 
Separation := 2 * Radius; 
InitializeVPositions(VPos); 
DrawBackGround; 
StartRace(HPos); 
repeat 
ChosenBall := PickABall; 
Advance(ChosenBall,HPos); 
DrawBackGround 

until ABallisDone(HPos) 
end. 

17. program DrunkAtOpera; 
canst 
NumberOfPatrons 6; 

type 
UmbrellaHolders = array[l •. NumberOfPatrons] of integer; 

var 
UmbrellaNumber,WhichPosition,TrialNumber : integer; 
TrialCount,Score : integer; 
People : UmbrellaHolders; 

function PickUmbrella(UmbrellaNumber : integer; 
People : UmbrellaHolders) integer; 

var 
Umbrella,N,Position : integer; 

begin 
Umbrella .- random mod (NumberOfPatrons - UmbrellaNumber + 1) + 1; 
N := 1; 
Position .- 1; 
while (Umbrella ) 0) and (Position (= NumberOfPatrons) do 
begin 
if (People[Position] = 0) then 
Umbrella := Umbrella - 1; 

if (Umbrella ) 0) then 
Position := Position + 1 

end; 
PickUmbrella .- Position 

end; 
(continued) 



4 78 Solutions to Exercises and Selected Problems 

procedure Place(WhichUmbrella,Position integer; 
var People : UmbrellaHolders); 

begin 
People[Position] .- WhichUmbrella 

end; 

function NoPatronGetsOwnUmbrella(People UmbrellaHolders) 
var 
SomeoneGetsHerOwn : boolean; 
N : integer; 

begin 
SomeoneGetsHerOwn := False; 
N := 1; 
while (N (= NumberOfPatrons) and not (SomeoneGetsHerOwn) do 
begin 
if (People[N] = N) then 
SomeoneGetsHerOwn .- True; 

N := N + 1 
end; 

NoPatronGetsOwnUmbrella .- not (SomeoneGetsHerOwn) 
end; 

procedure InitializeHandout(var People UmbrellaHolders); 
var 
UmbrellaNumber : integer; 

begin 
for UmbrellaNumber := 1 to NumberOfPatrons do 
People[UmbrellaNumber] .- 0 

end; 

procedure DoDrunkenHandOut(var People : UmbrellaHolders); 
var 
UmbrellaNumber,WhichPosition : integer; 

begin 
for UmbrellaNumber := 1 to NumberOfPatrons do 
begin 
WhichPosition := PickUmbrella(UmbrellaNumber,People); 
Place(UmbrellaNumber,WhichPosition,People) 

end 
end; 

boolean; 



Solutions to Exercises and Selected Problems 4 79 

{MAIN PROGRAM} 
begin 
write( ' Type in the number of times '); 
writeln('you want to s imulate umbrella handout .' ); 
write(')'); 
readln(TrialCount); 
Score := O; 
for TrialNumber := 1 to TrialCount do 
begin 

InitializeHandOut(People); 
DoDrunkenHandOut(People); 
if NoPatronGetsOwnUmbrella(People) then 
Score := Score + 1 

end; 
write((Score / TrialCount) * 100 : 4 : 2, ' %of the time ' ); 
writeln('no one gets her own umbrella.') 

end . 

____ Chapter 11 ------------------­
Exercises 

2. CheckNumber : integer; 
Year : i nteger; 
CanceledCheckBack : boolean 

3. a. Worker.Name : = 'Alvin Bosco'; 

b. It changes the marital status of Worker from married to not married, or 
from not married to married . 

c. if (Worker .Name := 'Alvin Bosco') then 
Worker.YearsWithCompany := Worker .YearsWithCompany + 1; 

d. It calculates the total number of hours that Worker works in a week. 

4. a. NumberOfEmployee : = 1; 
while (NumberOfEmployee ( = EmployeeCount) do 
begin 

write(Roster[NumberOfEmployee] .Name : 25); 
writeln(Roster[NumberOfEmployee] .SocSecNumber 20); 
NumberOfEmployee := NumberQfEmployee + 1 

end; 

b. NumberOfEmployee : = 1; 
while (NumberOfEmployee ( = EmployeeCount) do 
begin 
if (Roster[NumberOfEmployee].Age ( 25) and 

(Roster[NumberOfEmployee].MonthlySalary) ) 2000 . 00) then 
writeln(Roster[NumberOfEmployee].Name); 
NumberOfEmployee . - NumberOfEmployee + 1 

end ; 



480 Solutions to Exercises and Selected Problems 

5. procedure StoreOval(H,V,OvalNumber integer; 
var Picture : Drawing); 

begin 
with Picture[OvalNumber] do 
begin 

Top := V; 
Left := H; 
Bottom := V + 80; 
Right .- H + V 

end 
end; 

6. a. open(MonthlySwim, 'JuneLaps') 

b. read(MonthlySwim,Laps) 

Problems 

1. procedure DrawStraightLine; 
{A NEW MINIPAINT INSTRUCTION) 
var 
Hl,VI,H2,V2: integer; {THE POINTS (Hl,Vl) AND (H2,V2)l 

begin 
ClickPoint(Hl,Vl); 
ClickPoint(H2,V2); 
drawline(Hl,Vl,H2,V2) 

end; 

4. program ConnectRandomPoints; 
{TO RUN, FILL ENTIRE SCREEN WITH DRAWING WINDOW) 
const 
Size = 20; 

type 
Point = record 

H : integer; 
V : integer 

end; 
ListOfPoints = array[l .. Size] of Point; 

var 
PointList : ListOfPoints; 

procedure GeneratePoints(var List ListOfPoints); 
var 
PointNumber : integer; 



· Solutions to Exercises and Selected Problems 481 

begin 
for PointNumber := 1 to Size do 
begin 
List[PointNumber].H .- random mod 501; 
List[PointNumber].V .- random mod JOl 

end 
end; 

procedure ConnectPoints(List : ListOfPoints); 
var 
StartPoint,EndPoint : integer; 

begin 
for StartPoint := 1 to (Size - 1) do 
for EndPoint := (StartPoint + 1) to Size do 
begin 
moveto(List[StartPoint].H,List[StartPoint].V); 
lineto(List[EndPoint].H,List[EndPoint].V) 

end 
end; 

{MAIN PROGRAM} 
begin 
GeneratePoints(PointList); 
ConnectPoints(PointList) 

end. 

7. program CheckRecords; 
canst 

CommandCount = 6; 
BoxHeight = 20; . 
WindowWidth = 500; 

type 
Commands = (Bad,Quit,AddCheck,CheckNumberinfo, 

ListAllSince,AmtinMonth); 
Months = (Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sept,Oct,Nov,Dec); 
ACheck = record 

Month : Months; 
Date : integer; 
CheckNumber : integer; 
Amount : real; 
WhoTo : string; 
Returned : boolean 

end; 
(continued) 



482 Solutions to Exercises and Selected Problems · 

var 
H,V : integer; 
Command : Commands; 
Check : ACheck; 
CheckFile : file of ACheck; 

procedure ClickPoint(var H,V integer); 
begin 
repeat 

{DO NOTHING} 
until button; 
repeat 
getmouse(H,V) 

until not (button) 
end; 

procedure PromptAndRead_Month(Prompt string; 
var MonthName : Months); 

begin 
writeln(Prompt); 
write(')'); 
readln(MonthName) 

end; 

procedure PromptAndRead_Integer(Prompt string; 
var Number : integer); 

begin 
writeln(Prompt); 
write ( ' ) ' ) ; 
readln(Number) 

end; 

procedure PromptAndRead_Real(Prompt string; 
var Number : real); 

begin 
writeln(Prompt); 
write ( ' ) ' ) ; 
readln(Number) 

end; 

procedure PromptAndRead_String(Prompt string; 
var Str : string); 

begin 
writeln(Prompt); 
write ( ' ) ' ) ; 
readln(Str) 

end; 



Solutions to Exercises and Selected Problems 483 

procedure PromptAndRead_Boolean(Prompt string; 
var Test : boolean); 

begin 
writeln(Prompt); 
write(')'); 
readln(Test) 

end; 

procedure LayOutMenu; 
var 
BoxWidth : integer; 

procedure DrawAndLabelBoxes(BoxWidth,BoxCount 
var 
BoxNumber,Position : integer; 
Command : Commands; 

procedure PrintLabel(Position : integer; 
Command : Commands); 

integer); 

{LABEL STARTS A LITTLE IN FROM LINE, HALFWAY DOWN MENU BOXl 
begin 

moveto(Position + 1,BoxHeight div 2); 
writedraw(Command) 

end; 

{BODY OF DRAWANDLABELBOXESl 
begin 

Command := Bad; 
BoxNumber := O; 
Position .- O; 
repeat 

Command .- succ(Command); 
BoxNumber := BoxNumber + 1; 
drawline(Position,O,Position,BoxHeight); 
PrintLabel(Positon,Command); 
Position : = Position + BoxWidth 

until (BoxNumber = BoxCount) 
end; 

{BODY OF LAYOUTMENUl 
begin 

drawline(O,BoxHeight,WindowWidth,BoxHeight); 
BoxWidth := WindowWidth div (CommandCount - 1); 

{THE COMMAND "BAD" DOESN'T GET A BOX} 
DrawAndLabelBoxes(BoxWidth,CommandCount - 1) 

end; 
(continued) 



484 Solutions to Exercises and Selected Problems 

function ChooseCommand(H , V : int eger) : commands; 
{FUNCTION CHOOSECOMMAND CONTAINS 3 OTHER FUNCTIONS} 
var 

BoxNumber : integer ; 

function Ver ticalOk(V : i nteger) : boolean ; 
begin 
if (V )= 0) and (V < BoxHei ght) then 
Vert i calOk . - True 

else 
Vert i calOk . - Fal se 

end; 

function Horizontal Ok(H : integer) : boolean; 
begin 
if (H ) = 0) and (H < Wi ndowWi dt h) then 
Horizontal Ok .- True 

else 
Horizontal Ok .- False 

end ; 

function Sel ectCommand(BoxNumber intege:) 
var 

Box : i nteger; 
CommandCho i ce : Commands ; 

begin 
Box : = BoxNumber; 
CommandCho i ce := Qu it; 
while (Box ) 0) do 
begin 

Box := Box - 1; 
CommandCho i ce := succ(CommandChoice) 

end; 
SelectCommand : = CommandCho i ce 

end; 

{BODY OF FUNCTION CHOOSECOMMANDl 
begin 
if VerticalOk(V) and Hori zontal Ok(H) then 
begin 

Commands; 

BoxNumber := ((CommandCount - 1) * H) div Wi ndowW i dth; 
ChooseCommand .- SelectCommand(BoxNumber) 

end 
else 

ChooseCommand .- Bad 
end ; 



Solutions to Exercises and Selected Problems 485 

procedure DoCornrnand(Cornrnand Commands); 

procedure PrintEntry(Check : ACheck); 
begin 
writeln('Recipient: ',Check.WhoTo); 
writeln( 'Date:', Check.Month : 8, Check.Date J); 
writeln( 'Number ',Check.CheckNumber); 
writeln('For: ',Check.Amount : 6 : 2); 
writeln('Returned?: ',Check.Returned) 

end; 

procedure AddACheck ; 
var 

Check : ACheck; 
begin 

seek(CheckFile,maxlongint); 
PromptAndRead_Month('Type in month of check.' ,Check.Month); 
PromptAndReacl._Integer('Type in day of check.' ,Check.Date); 
PromptAndRead_Integer('Type in check number.' ,Check.CheckNumber); 
PromptAndRead_Real('Type in amount of check.' ,Check.Amount); 
PromptAndReacl._String('Type in who check is to.' ,Check.WhoTo); 
PromptAndRead_Boolean('Type in if check has been returned.', 

Check.Returned); 
write(CheckFile,Check) 

end; 

procedure ListSinceDate; 
var 

Check : ACheck; 
SinceMonth : Months; 
SinceDay : integer; 

begin 
PromptAndRead_Month( 'Type in cut off month .' ,SinceMonth) ; 
PromptAndReacl._Integer('Type in cut off day.' ,SinceDay); 
reset(CheckFile); 
while not (eof(CheckFile)) do 
begin 

read(CheckFile, Check); 
if (Check.Month ) SinceMonth) or ((Check.Month SinceMonth) 

and (Check.Date )= SinceDay)) then 
PrintEntry(Check) 

end 
end; 

(continued) 



486 Solutions to Exercises and Selected Problems 

procedure Numberinfo; 
var 

Number : integer; 
Found boolean; 
Check : ACheck; 

begin 
reset(CheckFile); 
Found := False; 
PromptAndRead_Integer('Type in number of check.' ,Number); 
while not (eof(CheckFile)) and not (Found) do 
begin 

read(CheckFile,Check); 
if (Check.CheckNumber Number) then 
begin 
PrintEntry(Check); 
Found .- True 

end 
end; 

if not (Found) then 
writeln('Check not found') 

end; 

procedure MonthAmt; 
var 

Mo : Months; 
Amt : real; 
Check : ACheck; 

begin 
PromptAndRead_Month('Type in a month.' ,Mo); 
reset(CheckFile); 
Amt := 0.0; 
while not (eof(CheckFile)) do 
begin 

read(CheckFile, Check); 
if (Check.Month = Mo) then 

Amt := Amt + Check.Amount 
end; 

writeln('Amount spent in' ,Mo 5,' is:$' ,Amt 6 2) 
end; 



Solutions to Exercises and Selected Problems 487 

{BODY OF PROCEDURE DOCOMMANDl 
begin 
case Command of 
Bad 
begin 

sysbeep(lO); 
writeln('Bad command -- enter another.') 

end; 
AddCheck : 

AddACheck; 
ListAllSince 
ListSinceDate; 

CheckNumberinfo 
Number Info; 

AmtinMonth 
MonthAmt 

end 
end; 

{BODY OF PROGRAM} 
begin 

open(CheckFile, 1 Checks84 1
); 

writeln('Move pointer into one of the menu boxes and click.'); 
LayOutMenu; 
ClickPoint(H, V); 
Command := ChooseCommand(H,V); 
while (Command () Quit) do 

begin 
DoCommand(Command); 
writeln( 1 ################## 1 ); 

ClickPoint(H,V); 
Command := ChooseCommand(H,V) 

end; 
close(CheckFile) 

end. 



Index 
to Programs 

AdEcho , 243 Dangle, 162 InteractiveHowManySteps, 142 
AngleRoll, 141 Days, 226 Interest, 123 
AssignOne, 117 Diamond, 62 InterestGraphOne, 179 
Average, 159 DoubledChar, 271 InterestGraphTwo, 181 

DoubleMoney, 133 
BadOne, 128 DrawEcho, 241 JanuaryJog, 320 
BarGraphOne, 173 
BarGraphTwo, 175 EightOrbits , 87 KilogramsToPounds, 399 
Beep, 57 ElectricBill, 160 
BetterTwoSort, 155 ElectricBillTwo, 161 LetterFrequency, 352 
BlocksNeeded, 120 Equipment, 235 LongLongLoop, 131 
Blowup, 90 Explode, 59 LongLoop, 130 
BooleanDemo, 266 ExplodeRect , 170 LowercaseTwo, 248 
BooleanElements, 266 Expo,367 

MiniPaint, 390 
CalcDistance, 145 FirstLoop, 29 MouseReport, 250 
CalculatePi, 379 FirstWhile, 124 
Cartoon, 32 Forever, 128 NameSort, 362 
ChangeToLowercase, 244 NewCartoon, 89 
Checkerboard, 220 Globe, 186 NewElectricBill, 203 
Checks, 401 GraphOfSquares, 176 NinesOne, 58 
Cipher, 260 Grid, 201 NinesTwo, 58 
CircleArea, 100 
CircleOrbit, 147 HockeyScore, 105 OldMac, 191 
Class, 226 HorizontalLines, 196 OvalDraw, 253 
ClickPoint, 277 HorizontalLinesTwo, 198 OvalsAndRecs, 185 
CoinFlip, 373 HotDays, 421 OverAndOver, 31 
Cone, 185 HowManyNeighbors, 301 
CrossCountryTtip, 102 HowManySteps, 135 Palindrome, 316 
CubeSum, 167 HowManyStepsTwo, 137 ParenCheck, 275 

489 



490 Index to Programs 

PascalsTriangle, 329 
PeopleOnBlock, 296 
Perfect, 344 
PhoneBook, 430 
Planetln3D, 70 
PointlnRec, 338 
Prin$ackward, 310 

QuestionDay, 300 
QuizScores, 286 

ReadEcho, 240 
ReadlnEcho, 240 
Rectanglelnvert, 278 
RecurringHunger, 269 
ReflectOvals, 408 
ReportHottestDay, 345 
ReportTemperatures, 420 

RollBall, 204 
RootOfTwo, 377 
RutlandStRoster, 312 

SecondLoop, 30 
Slinky,278 
SortTest, 380 
SquashedGlobe, 194 
StackOfRectangles, 171 
Survey,291 
SQrveyGraph, 303 
SurveyGraphTwo, 318 

Targets, llO 
Temperatures, 415 
Tens, 58 
TextEcho, 309 
TheoremProver, 283 

Thermometer, 212 
TitlesAndHeadings, 341 
TossOneCoin, 370 
TruthTable, 281 
Tuna, 158 
TwoSort, 153 
TwoStreaks, 81 

V erticalLines, 93 
VolleyBall, 305 

W atchMouse, 252 
W eekPlan, 230 
WordFrequency,357 

Yoyo, 93 



abs, 143 
active window, 7 
actual parameter, 197-200, 334 
Ada, Countess Lovelace, 136 
algorithm , 64, 65 
and,244,268-269 
archiving, 414 
argument, 334 
arithmetic, performing, 53-59 
arithmetic operators, 53-55 
array,289-290,345 
array as parameter, 303-305 
array declaration, 290, 293 
array elements , 294 
array ofrecords, 405-411 
array of strings, 311 
array type,290,293 
array variable, 290, 406-407 
assignment statement , 30 , 

117-122 
assignment symbol, 118 
averages , calculating, 158-160 

Babbage, Charles, 136 
backward for loop, 69-70 
bar graphs, 171-183 
begin,14, 34,35, 81-82 
binary number system, 43-44 
bit , 44 
body of a for statement, 83 
body of a program, 14 

-Index 

body of a while statement, 
124-125 

Boole, George, 276 
boolean, 129, 265-285 
boolean expressions, 267 
boolean operator, 268-269 
boolean type, 265 
boolean values, 265-267, 

276 
boolean variables , 266, 267 
braces, 9, 72 
bringing up , 32 
bug, 12 
built-in functions , 143 
button, 276-279 
byte, 44 

calling program , 193 
case, 232 
case label , 232 
case selector, 232 
case statement, 232-236 
cell , memory, 398-400 
central processing unit (CPU), 

44-47 
char,236-239 
charactertype,236 
chr,238,243-244 
Clipboard, 27 
close, 418 , 420, 423 
close box, 7 

coding (step in writing 
programs) , 64, 67, 105, 110 

colon notation, 95, 101 
comma, 87 
comments, 9, 72-73 
comparing character strings, 

315 
compiler, 35-36 
component of a file , 414 
component of an array, 290 
componenttype,294 
component variable, 290 
compound statement, 83 
computational logic, 280 
conditional statement, 

153-162 
const, 88-89 
constants , 88-89 
constant definition , 89 
control line of a for statement, 

29 
control line of a while 

statement, 125 
control variable, 30 
Copy (command) , 25-26 
copy (function), 335 
counter, 134-137 
CPU (central processing unit), 

44-47 
cryptography, 254-261 
Cut, 27 

491 



492 Index 

dangling else, 162 file, passing to a procedure, insertion point, 9, 10 
data, 44 421-424 Instant window, 8-10, 36 
data structure, 406 file components, 414 integer, 130-132 
data table, 104, 108 file declaration, 415 integers, 30, 53 
debugging, 65, 68, 106, file menu, 4 interactive program, 90-94 

180-181 file pointer, 416, 423 interest, calculating, 122-124, 
declaration part, 30 filepos, 429 133-134,178-183 
default field width, 95 file variable, 415-416 interpreter, 35-36 
delete, 314 flag, 271-272 invertcircle, 24, 82 
deleting, 10 floppy disk, 2 invertoval, 183 
desktop, 3 formal parameter, 197-200 invertrect, 169 
dialog box, 27 for statement,'29, 46, 81-82, 83, iteration, 59 
disk, 2, 3 127 
disk window, 4 jrameoval, 183 keyboard,9-10,12,15 
div, 53-54 jramerect, 167-168 
divide-and-conquer strategy, function, 142-143, 333-336, length, 211, 335 

191,207,217 340,345-346 lexicographic ordering, 362 
division operators, 53-54 function call, 334-343 lineto, 112-113, 390 
do,29,34 function declaration, 336, 339, literal field, 94 
document, 89 346 loading Pascal, 3-6 
Dolt box, 8 function parameter, 334 local constant, 195 
down to, 69-70 local declaration, 361 
dragging, 4 generate-and-test method, local variable, 195, 361 
drawchar, 239-240 166-167 logical connectives, 268-269 
Drawing window, 7, getmouse, 250-254 logical operators, 268-269 

16-17 global constant, 231, 322 longint, 130-132 
drawline, 18, 82 global declaration, 361 loop control variable, 30 
dummy parameter, 197 global variable, 361 looping,29-31,46-47,56-57 

Go, 16, 51 
echoing, 240-243 Go-Go, 51-52 machinelanguage,45 
electronic desktop, 3 graphing,318-322 MacPascal, 1, 45 
electronic pen, 112, 390 main memory, 2-3 
else, 157-162 Halt, 52 main program, 14 
empty statement, 84 heading line, 14 mathematical logic, 279-280 
end,14,34,35,81-82 highlighting, 4, 9, 10, 11 maxint, 130 
enumerated type, 225-236 maxlongint, 131, 414 
eof, 418, 423 I-beam, 7 memory, 2-3, 44 
eraseoval, 183 identifier, 34, 73-74, 400 memory cell, 398-400 
eraserect, 169 idiot-proofing, 160 menu,4 
error message, 12 if,154-155 mixed-mode expression, 103 
execute, 7 if-then-else statement, 157-161 mod, 162-163 
external file, 414 if-then statement, 153-155 Monte Carlo method, 376-379 

increment, 125 mouse,2,337,387-390 
false, 125, 129, 265 index, 290 moveto, 112-113, 175-178 
fields, 94-96 index type, 294 
field selector, 400 infinite loop, 128 nested function call, 334 
field width, 95-96 initialize, 120 nested loops, 83, 87-88 
file, 414-415 input, 90-94 nested statement, 161 



non printing control characters, 
238 

not, 268-269 

Observe window, 47-53, 68, 
180-181 

odd,185-186,277,333-335 
of, 233 
open, 420,423 
operator,53-55,129,268-269, 

362 
or,268-269 
ord,227,243-244 
otherwise, 233-234 
out-of-range error, 301-302 
output, 7, 94-97 

paintcircle, 20, 82 
paintoval, 183 
paintrect, 169 
palindromes, 313-317 
papercheck, 210,217,218 
parameters, 196-206, 244-250, 

303-305,334,345-346 
parameter list, 204 
parentheses, 14,269,273-275 
Pascal, Blaise, 322 
Pascal's triangle, 323-330 
pass file to a procedure, 421-424 
passing a parameter, 197 
Paste, 25-26 
Pause, 51-52 
pensize, 390 
perfect number, 343-345 
period, 14, 35 
planning (step in writing 

programs), 64, 67, 105, 109 
pos, 427 
pred, 228,229 
pretty printing, 15 
printing, 33-34 
procedure,15,34, 191-192, 

195-196 
procedure call, 193 
procedure declaration, 192 
procedure statement, 192 
procedure syntax, 195 

procedure with parameters, 
196-203 

procedure with several 
parameters, 203-206 

program, 1, 2-3 
program body, 14 
program documentation, 89 
program heading line, 14 
programs, writing, 60-71 
program syntax, 195 
program testing, 380-383 
Program window, 6-7 
prompt, 91 
punctuation, 35 

quitting, 13, 28 
quotation marks, singie, 10, 

12-13, 14 

random, 369-384 
random-access file , 414-424 
random number, 368-369 
read, 241, 420 
readln,91,92,240-241 
real, 98 
real numbers, 98-103 
record, 400 
record field, 400 
recordtype,398-399 
record variable, 405 
recursion, 366-368 
recursive function , 367 
recursive method, 367 
relational operator, 129, 362 
repeat-until statement, 138-139 
reserved word, 15 
reset, 416, 423 
result type , 334 
return, 142, 333 
round, 143 , 333-335 
run , 7 
run-time error, 160 

save vs. save as , 33 
saving, 27-28, 33 
scientific notation, 98-99, 101 
scoreboard principle, 298- 301 

Index 493 

scratchpad principle, 155-157 
secondary memory, 2, 3 
seek,419-420,423 
semicolon, 10, 11- 12, 35 , 

80-81,84,158 
separator symbol , 10 
sequential file , 414 
simple statement, 82 
simulation, 369-376 
size box, 7 
sorting, 153, 155, 361-362 
special-case input , 159 
sqr, 143 
sqrt, 143,333-335 
squaring, 143 
standard Drawing window, 

17 
standard functions, 333-335 
standard procedures, 15, 34, 

191 
standard type. See boolean; 

char; integer; real; string 
statements, 14, 29-30, 46, 

81-84,117-122,124-128, 
132-139, 153-162, 
232-236, 411-413 

statement part, 14 
stepping, 22-23 
stops, 47, 49-51, 52-53 
string, 308, 310 
string declaration, 310 
string length, 311 
string size, 311 
string value, 310, 335 
string variable, 308 
strings vs . characters, 308-309 
su bcell , 400 
subproblems, 207, 210, 335 
subprogram, 333 
subrangetype,285-287 
succ,228 
syntactic analysis , 273 
syntax, 79, 85, 86 
syntax diagram , 73-7 4 
syntax error, 85 
syntax notation , 85 
sysbeep, 57 



494 Index 

tail of an array, 362 
test, 124-125, 129,135-137 
testing (step in writing 

programs), 65, 68, 106 
test slot, 266 
Text window, 7 
then, 153- 155 
theorem , 280,282-285 
thinking (step in writing 

programs) , 64, 66-67, 
108 

to, 34 
top-down design, 207 
top-down planning, 209-210 
top-down programming, 191, 

207-222 

true, 125, 129, 265 
trunc, 143 
truth table, 280-285 
type , 225 
type definition , 400 
Type Size, 8 

universal graphing procedure, 
318-323 

until, 138-139 

vacation test, 73 
value parameter, 247 
var, 30, 34,87,247 
variable, 30, 35, 47, 48, 117, 

398 

variable declaration, 30 
variable parameter, 244-250 

while, 124 
while loop, 124- 128 
while-loop syntax , 132 
while statement, 124-128, 

132- 133 
windows, 6-13 
Windows menu, 7-8 
Wirth , Niklaus, 35, 322 
with statement, 411-413 
write, 97-98 
writedraw, 175-178, 239 
writeln , 10, 82, 94-97 



and 
array 
begin 
case 
const 
div 
do 
down to 

Macintosh Pascal Reserved Words 
else label procedure 
end mod program 
file nil record 
for not repeat 
function of set 
goto or string 
if 
in 

otherwise then 
packed to 

Program Outline 
program heading line; 

{DECLARATION PART OF PROGRAM} 
canst definitions; 
type definitions; 
var .declarations; 
procedure and function declarations; 

{STATEMENT PART OF PROGRAM} 
begin 

statements 
end. 

type 
until 
uses 
var 
while 
with 

Arithmetic Operators 
+, - , *, I, div, mod 

Operators 
Logical Operators 
and, or, not 

Relational Operators 
), = ,(, ) =' ( = ' 0 






