b4

h Pascal

!\Iloll/ Folsom

£ 10 *counte




Macintosh Pascal Standard Procedures Used in this Book

Procedure Section Procedure Section
close 1110 open 11.10
delete 9.12 paintcircle 1.7
drawchar 7.6 paintoval 5.11
drawline 1.6 paintrect 5.7
eraseoval 5.11 pensize 1.1
eraserect 5.0 read Tl
frameoval 5.11 readin 3.6
framerect 5.7 reset 11.10
getmouse 1l seek 11.10
invertcircle 1.9 sysbeep 2.8
invertoval B:11 write 3.8
invertrect 5.7 writedraw 5.9
lineto 1318 writeln 1.3
moveto 5.9

Macintosh Pascal Standard Functions Used in this Book

Function Section Function Section
abs 4.14 pos 1 W
button 8.6 pred 8
chr 7.9 random 10.12
copy 10.1 round 4.14
eof 11.10 sqr 4.14
filepos 1411 sqrt 4.14
length 9.10 succ 7.2
odd 5.11 trunc 4.14

ord 7ol |



Macintosh
Pascal



Macintosh
Pascal

Robert Moll

University of Massachusetts, Amherst

Rachel Folsom
In Conjunction with THINK Technologies, Inc.

Consultant: Mary Elting

Houghton Mifflin Company
Boston Dallas Geneva, Illinois
Lawrenceville, New Jersey Palo Alto



Macintosh is a trademark licensed to Apple Computer, Inc;

Copyright © 1985 by THINK Technologies, Inc. All rights reserved.

No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying a;ad recording, or by
any information storage or retrieval system, except as may he expressly permit-
ted by the 1976 Copyright Act or in writing by the Publisher. Requests for per-
mission should be addressed to Permissions, Houghton leﬂln Company, One
Beacon Street, Boston, Massachusetts 02108. |

Printed in the U.S.A.
Library of Congress Catalog Card Number: 84-81937
ISBN: 0-395-37574-6

BCDEFGHIJ-H-898765



Contents

Preface Xi

1 AFirst Look at Pascal 1

—
WMo —=Oo

Pt ek ok ottt ke ot o gl o
o~

p—
o]
Ut

1.16

Getting Started 1

Taking a Look at Windows 6

The Instant Window 8

Quitting 13

Your First Program 13

Points, Lines, and the Drawing Window
Circles 20

Stepping 22

How to Move the Ball 23

Saving Your Program 27

Looping 29

Let’s Get the Ball Rolling 31
Saving Your Revised Program 33
Printing Program Cartoon 33

The Nuts and Bolts of Programs 34
Pascal and Macintosh Pascal 35

Test Yourself 36
Problems 37

16

2 Machine Organization and Program Planning 43

2.1
2.2

2.3 How Program Cartoon Is Stored in Memory

Binary Numbers and Memory 43
Where Does MacPascal Fit In? 45

45




vi

Contents

2.4 What Happens When You Run Program Cartoon 46
2.5 The Value of a Variable 47

2.6 Watching Variables with the Observe Window 47
2.7 Arithmetic with Integers in MacPascal 53

2.8 Arithmetic and Looping 56

2.9 Solving Arithmetic Problems 58

2.10 Using Arithmetic in Program Explode 59

2.11 Planning a Graphics Program—Drawing Diamonds 60
2.12 Thinking, Planning, Testing, and Coding and Debugging

2.13 An Orbiting Planet 65

2.14 Getting the Planet to Return—Backward For Loops 69

2.15 Outside the Standard Drawing Window 70

2.16 Comments 72

2.17 Good Names, Bad Names, and Syntax Diagrams 73
Test Yourself 74

Problems 74

64

3 Syntax, Interactive Programs, and Real Numbers 79

3.1 Pascal Syntax—How to Beat the Bugs 79

3.2 What Is a Statement? 82

3.3 Syntax Notation 85

3.4 Nested Loops 87

3.5 Constants 88

3.6 Interactive Programs 90

3.7 More on Output—Fields and Field Widths 9
3.8 The Write Statement 97

3.9 Real Numbers 98

3.10 Writing Programs with Real Numbers 100
3.11 Getting Around Scientific Notation 101

3.12 Arithmetic with Real Numbers 102

3.13 Program HockeyScore—Planning an Interactive Program
3.14 Program Targets—Donuts and Bull's-eyes 106
Test Yourself 111

Problems 111

4 Assignment Statements and More on Looping 117

103

4.1 Assignment Statements 117

4.2 The Staircase Problem 119

4.3 Back to Money—Compound Interest 122
4.4 The While Statement 124



Contents

4.5 While-Loop Pitfalls 128

4.6 Relationships and Relational Operators 129
4.7 Longint—a Second Integer Type 130

4.8 While-Loop Syntax 132

4.9 The Natural Superiority of the While Statement 133
4.10 Back to Double-Your-Money 133

4.11 Tests and Counters 135

4.12 Yet Another Way to Loop: Repeat-Until 138
4.13 The Pitfalls of the Repeat Loop 141

4.14 Math Formulas and Functions 142

Test Yourself 148

Problems 148

5 Conditional Statements, Rectangles, and Bar Graphs 153
5.1 Conditional Statements—a Two-Number Sort 153

5.2 A Better Two-Number Sort—The Scratchpad Principle 155
5.3 If-Then-Else: Pascal’s Other Conditional Statement 157
5.4 The Case of the Dangling Else 162

5.5 The Mod Operator 162

5.6 A Math Puzzle 163

5.7 Drawing Rectangles 167

5.8 Bar Graphs 171

5.9 Writing in the Drawing Window 175

5.10 A Compound-Interest Bar Graph Program 178
5.11 Oval Graphics 183

Test Yourself 188

Problems 188

vii

6 Problem Solving with Procedures 191

6.1 Creating Your Own Procedures 191

6.2 Executing Procedure Refrain 192

6.3 Program SquashedGlobe 193

6.4 Flexible Procedures—Procedures with Parameters 196
6.5 Procedures with Several Parameters 203

6.6 Procedures and Program Planning 207

6.7 The Thermometer Problem 208

6.8 Creating a Checkerboard 214

Test Yourself 222

Problems 222



viii

Contents

7 Enumerated Types, the Type Char, and More on Procedures

7.1 Enumerated Types 225

7.2  Successor and Predecessor 228

7.3 Program WeekPlan—Using a Global Constant 229

7.4 The Case Statement 232

7.5 The Type Char 236

7.6 Writedraw and Drawchar 239

7.7 Echoing in the Drawing Window—Read and Readln 240
7.8 Echoing a Whole Sentence to the Drawing Window 241
7.9 The Standard Function Chr 243

7.10 Variable Parameters 244

7.11 Getmouse—A MacPascal Standard Procedure 250

7.12 Drawing with Getmouse 252

7.13 Cryptography 254

7.14 Creating a Secret Cipher 255

Test Yourself 262

Problems 262

8 The Type Boolean and Subrange Types 265

225

8.1 The Type Boolean: Pascal’s True/False Type 265
8.2 Boolean Values and Tests 267

8.3 The Logical Connectives and, or, and not 268
8.4 Flags 271

8.5 Matching Parentheses—A Proofreading Program 273
8.6 The Mouse Button 276

8.7 Logic and Computers 279

8.8 The Truth Table 280

8.9 Truth Tables and Theorems 282

8.10 Subrange Types 285

Test Yourself 287

Problems 287

9 Arrays 289

9.1 The Rutland Street Survey: A First Look at Arrays 289
9.2 The Blueprint for an Array—Array Type Definitions 293
9.3 Keeping a Running Total—Program PeopleOnBlock 295
9.4 Finding the Largest Household 297

9.5 The Scoreboard Principle 298

9.6 Out-of-Range Errors—Program HowManyNeighbors 301



Contents

9.7 Using an Array Variable as a Parameter for a Procedure 303
9.8 Rotating an Array—Program VolleyBall 305

9.9 Strings—Program TextEcho 308

9.10 More on Strings—Program PrintBackward 310

9.11 An Array of Strings—Program RutlandStRoster 311

9.12 The Palindrome Problem 313

9.13 A Universal Line Graph Procedure 318

9.14 Pascal’s Triangle 323

Test Yourself 330

Problems 330

10 Functions and Random Numbers ~ 333

10.1 Standard Functions: A Review 333

10.2 Creating Your Own Functions 335

10.3 How to Declare Your Own Functions 336

10.4 Program PointInRec—Preparing for Mouse Control 337
10.5 Function Capitalize =~ 340

10.6 Another Math Puzzle—Finding Perfect Numbers 343
10.7 Passing an Array to a Function—Program ReportHottestDay
10.8 A Planning Example—Program LetterFrequency 347
10.9 Program WordFrequency 355

10.10 Sorting and Alphabetizing 361

10.11 A Brief Look at Recursion 366

10.12 Random Numbers 368

10.13 Simulating a Coin Toss 369

10.14 The Monte Carlo Method 376

10.15 Estimating Pi with the Monte Carlo Method 377

10.16 Using Random Numbers to Test Programs 380

Test Yourself 384

Problems 384

11 Advanced Topics: The Mouse, Records, and Files 387

11.1 Program MiniPaint 387
11.2 Records 398

11.3 Record Syntax 400

11.4 Program Checks 401

11.5 Employee Records 404
11.6 Arrays of Records 405
11.7 Program ReflectOvals 407
11.8 The With Statement 411

345




Contents

11.9 Files 414

11.10 Random-Access File Commands 414

11.11 The Last Program—Program PhoneBook 424
Test Yourself 435

Problems 435

Glossary 439
Answers to Exercises and Selected Problems 445
Index to Programs 489

Index 491



_ Preface

Macintosh Pascal is an introductory programming textbook written specifically
for Macintosh Pascal. Developed for Apple’s Macintosh computer, MacPascal
includes a number of improvements on the standard language, which make it far
easier to use than traditional versions of Pascal.

Macintosh Pascal is more than a generic Pascal text with additional sections
that explain MacPascal features. Working closely with THINK Technologies,
the software firm that developed the language for Apple, we sought to create a
book that would take maximum advantage of the features that make MacPascal
so easy to learn and so exciting.

The book has been designed for a one-semester introductory course in Pascal
programming. It is suitable for students who have no experience in computing.
Some high school algebra is needed, but nothing more. The book is also suitable
for students who have some programming experience.

Organization Of The Book

The book divides into two parts. The first five chapters cover in detail a core of
programming fundamentals: looping, graphics, interactive programming, con-
ditional statements, and program design. Chapters 6-11 cover more advanced
topics: procedures, types, arrays, strings, functions, random numbers, records,
and random-access files.

Chapter 1 explains how to type in, edit, execute, save, and print programs.
We use the Instant window to introduce the writeln statement and graphics
commands. Then, using simple examples, we present the rudiments of program
structure. Finally we demonstrate how the for loop works with a program that
rolls a “ball” across the Drawing window. Because looping is the single most im-
portant part of programming, it is taught as early as possible and is examined in
great detail throughout the first five chapters.

X1



xii

Preface

In Chapter 2 we discuss how a computer executes a Pascal program, and we
show how to use the Observe window to “view” program execution. The second
half of the chapter is devoted to the principles of top-down programming.

Chapter 3 introduces Pascal syntax, interactive programs, and real num-
bers. The chapter ends with two detailed examples of program planning.

We complete our presentation of elementary Pascal concepts in Chapters 4
and 5. Chapter 4 explains assignment statements, the while loop, and the repeat-
until loop. Chapter 5 discusses conditional statements and introduces bar
graphs, which play an important part in many applications later in the book.
The chapter ends with a carefully developed debugging example.

Chapter 6 is the central chapter of the book. Here we introduce procedures
and incorporate them into our program planning method. We illustrate the role
procedures play in top-down programming with two elaborate examples.

In Chapter 7 we present enumerated types, type char, and more material on
procedures. We also introduce the MacPascal standard procedure getmouse,
which reports the location of the pointer on the screen. Getmouse is the basis for
the more ambitious mouse-driven applications presented in Chapter 11.

Chapter 8 is devoted to type boolean. After discussing boolean variables and
flags, we present a program that checks for matched parentheses. The chapter
ends with a section that discusses the relationship between programming and
mathematical logic.

Chapter 9 provides an unusually thorough presentation of arrays and
strings, topics that often give beginners trouble. We demonstrate the use of
arrays with a street survey application, and then develop a number of variations
on the street survey theme to illustrate important array ideas.

Chapter 10 discusses functions. We demonstrate the use of functions in two
large programs dealing with textual analysis: a letter frequency program, which
graphs the relative frequency of letters in a text; and a word frequency program,
which imitates an early computer study done to determine the authorship of the
Federalist Papers. The chapter ends with a discussion of random numbers that
includes elementary material on simulations, Monte Carlo methods, and pro-
gram testing using randomly generated data.

Chapter 11 presents a complex program called MiniPaint, which is modeled
on the Macintosh application program MacPaint. MiniPaint creates a mouse-
operated menu in the Drawing window that is used to control program execu-
tion. We then discuss records and, finally, files. The file section culminates in an
electronic phone book program that reuses MiniPaint’s mouse and menu “front
end.”

Special Features of the Text

® Emphasis on Problem Solving and Top-Down Design. The text develops a
systematic method for problem solving and presents detailed solutions for
ten large programming problems using top-down design.



Preface xiii

m Graphics. Extensive use is made of MacPascal’s graphics procedures so that
even the simplest programs produce interesting output.

m The Mouse. Mouse commands are usedfrequently in the second half of the
book to augment traditional Pascal input and output instructions.

m Private Pascal. The book develops the idea of a “private” Pascal—a library
of procedures and functions that a programmer creates, which can be used
repeatedly in a variety of programs. The menu and mouse “front end” used
in programs MiniPaint and PhoneBook illustrate the private Pascal concept.

m Problems and Exercises. Macintosh Pascal includes almost 200 program-
ming problems, some of which are quite challenging. Many problems in-
volve graphics and others are applicable to everyday life. Numerous short
exercises are also sprinkled throughout the text. Solutions to selected prob-
lems and exercises are included at the end of the book.

m History of Computing. From time to time the book includes notes on the
history of computing that put into perspective the material on Pascal.

m Glossary. A comprehensive glossary explains Pascal terms and concepts as
well as those terms specific to Macintosh Pascal.

Acknowledgments

We would like to thank Andrew Singer, Mel Conway, and Frank Sinton of
THINK Technologies for proposing that we write Macintosh Pascal and for
giving us early access to the language. Special thanks go to Dennis Lauro for
coordinating the project. Thanks also to Fleet Hill for her support. We greatly
appreciate the technical help we got from Terry Lucas and Peter Maruhnic, the
implementors of Macintosh Pascal.

Sandy Pratcher, Don Enns, Mary Alice Wilson, Felicia DeMay, and Clem
Wang read portions of the manuscript and gave us many thoughtful comments.
Jon Butah, Meg Beeler, and Peggy Redpath of Apple reviewed the manuscript
and made particularly helpful suggestions about organization and style. The fol-
lowing people reviewed the manuscript in detail, providing many useful recom-
mendations: Howard V. Carson, Ralph DeBoard, James Gips, William B.
Jones, Helene Kershner, Thomas W. Osgood, Rita Ann Richards, Lynn Arthur
Steen, Bernard Taheny, and Philip Tucker. The contributions of all of these peo-
ple are gratefully acknowledged.

We also are indebted to Martin Robbins and Albert Meyer for teaching us a
great deal about writing. We would like to thank Karen Strickholm, Susan
Dunnington, and Ron Feintech for their help and moral support. Finally, we are
grateful to Franklin Folsom, who ate out of the freezer for months while his
wife, Mary Elting, worked on Macintosh Pascal.

R.M.
R.F.
M.E.



Macintosh
Pascal



i

A First Look
at Pascal

a Welcome to Macintosh Pascal!

Macintosh Pascal, or MacPascal for short, is a language for giving instructions to
the Macintosh. In this book we’ll show you how to write MacPascal programs to
make an electronic phonebook; calculate electric bills; invent your own version
of the Macintosh application program MacPaint that you can use for drawing
pictures on the screen; tabulate the results of surveys; chart the time you spend
each day jogging (or sleeping or working); and even make animated “cartoons”
of shapes that move across the screen. :

The first program you’ll write will produce an animated “cartoon.” The
program will create a ball on a line and then roll it across the screen.

A program is simply a list of instructions that you give to a computer. In a
Pascal program, some instructions tell the computer to print messages on the
screen. Others are commands for doing arithmetic. Still others can make the
computer draw lines or circles. And some instructions tell a computer to repeat
other instructions over and over again.

MacPascal is itself just a very large program. It tells the computer what to
do in response to the words and symbols you use when you write programs in
Macintosh Pascal. MacPascal interprets the instructions in a program and passes
these commands along to the computer.

Getting Started

If you've never used the Macintosh before, you need to learn some fundamentals
before tackling the rest of this chapter. The best way to begin is by listening to the
cassette tape that comes with the machine: “A Guided Tour of Macintosh.” A
disk that goes with the tape demonstrates on the computer screen how to use the



r

2

A First Look at Pascal

Figure 1.1 When you roll the mouse on a flat surface, the pointer on the screen follows
its every move. Courtesy of Apple Computer, Inc.

Macintosh, and it gives you some practice with the mouse—the gadget, attached
by a wire to the Macintosh, that moves a pointer around on the screen. (See Fig-
ure 1.1.)

If you don’t have the tape and the disk, you can find out what you need to
know by referring to the manual that comes with the Macintosh and to the refer-
ence manual that comes with the MacPascal disk. The Glossary at the end of this
book will also answer many of your questions.

To understand what will happen in a moment when you insert the Mac-
Pascal disk, you have to know something about how the Macintosh (and almost
every other computer) works. The Macintosh stores information in two places:
main memory and secondary memory. Main memory is located on tiny comput-
er chips inside the computer itself. You never see it. Floppy disks make up sec-
ondary memory. (The Macintosh floppy disks don’t look floppy because they
come in hard covers.)

The computer can get to main memory quickly. But there is only a limited
amount of main memory, and it is already partially filled with the program that



1.1 Getting Started 3

runs the machine itself. The MacPascal program and the programs you write go
in the empty part of main memory.

Secondary memory on floppy disks can store a huge amount of information,
but the computer can’t use this information directly. It can use only what has
been stored in main memory. So you must copy the information from a floppy
disk into the empty part of main memory when you want the Macintosh to use it.

MacPascal, the language you will use to give instructions to the Macin-
tosh, is stored on the floppy disk. Now let’s see how to copy or load it into main
memory.

Loading MacPascal

B First switch on the Macintosh. In a moment you will see, in the middle of
the screen, a little picture of a disk with a blinking question mark.

B [nsert the MacPascal floppy disk in the slot at the front of the machine. The
electronic desktop will now appear on your screen. It’s called a desktop be-
cause it’s the place where the computer’s work will appear. (See Figure 1.2.)

Menu Headings MacPascal Disk Icon

e e ——

& File Edit Diew Special X

¥

k

Figure 1.2 The electronic desktop.



4

A First Look at Pascal

m To load the MacPascal language into main memory, you must first open the
MacPascal disk window. Note that the MacPascal disk icon—the little pic-
ture of a disk in the upper-right corner of the desktop—is already
highlighted. That is, it is black and is labeled with white letters. This means
that the MacPascal disk window is ready to be opened.

m Using the mouse, move the pointer, which is in the shape of an arrow, to the
word File at the top of the screen.

m Now press the mouse button. A box will appear right under the word File.
Because the words in the box offer you a choice of commands that you can
give to the computer, the box is called a menu. (See Figure 1.3.)

Edit - View Special

Puptidute
Get Iinfo %8I

File Menu— Pt Back

finse
fipse #i
Print

Eject ®E

Figure 1.3 Screen with File menu open.

m With the mouse button held down, move the pointer to the row in the menu
labeled “Open.” Moving the pointer with the button held down is called
dragging the pointer.

m Next release the button. This opens the MacPascal disk window.

The File menu will disappear, and the MacPascal disk window will appear
on top of your desktop (see Figure 1.4). In the disk window you will see several
other icons. The MacPascal icon is the one we are interested in. Note that this
icon is different from the MacPascal disk icon on the desktop.



1.1 Getting Started 5

MacPascal lcon MacPascal Disk Icon

" & File Edit Uiew Special

=== rosce| =
392K in djsk 8K available |

S=n mi

O

Macintosh Pascal

1 [ ]

Tools Information Demos  System Folder

2l

MacPascal Disk Window

Figure 1.4 The MacPascal disk window on the desktop.

Now you are ready to load MacPascal. There are two ways to do this.

Loading—Choice 1

m Select MacPascal by moving the pointer to the MacPascal icon in the
MacPascal disk window and clicking the mouse button. To click the mouse
button is to press and release it quickly. This will highlight the icon.

m Next move the pointer to the File menu again and choose Open. That is,
hold down the mouse button, drag the pointer to Open, and release.

Loading— Choice 2
B Move the pointer to the MacPascal icon.

m Then quickly click the mouse button twice.

Once you are used to the mouse, you will probably use the second method
most of the time because it’s faster. Both methods give the load command, which



6 A First Look at Pascal

instructs the computer to copy the MacPascal program from the floppy disk into
the empty part of main memory. The program is still stored on the disk as well;
it’s there permanently. Later, when you turn off the computer, MacPascal will
vanish from main memory. You will have to load it again the next time you want
to use the language.

The noises you hear come from the floppy disk spinning like a phonograph
record. When the whirring stops, the disk window will disappear and your
screen will display the picture shown in Figure 1.5.

Title Bar Text Window
€ File Edit Search Run Windows :
E=——= Untitled =—"r———=%| Tent
s program Lntitied; 4
Highlighted ) Seaur declarations! }
Program L g heqgin E
: .
Skeleton ] our program statement st :
{ Gl 2 Drawing
Pointer >
i Drawing
4 Window
Program
. ——-
Window :
: o}
&l [

Figure 1.5 Here is what you will see when you have finished loading MacPascal.

—1.2 Taking a Look at Windows

Your screen now has three windows: the Program window, the Text window,
and the Drawing window.

The big window on the left is the Program window. When you type in a
program at the keyboard, it will appear there. The highlighted material in that
window is a skeleton of a Pascal program that will be useful when you start pro-
gramming. Right now the Program window is labeled “Untitled,” because you
don’t have a program there yet.



1.2 Taking a Look at Windows 7

Note that, when the windows appeared on the screen, the pointer changed
shape. The arrow became something like the capital letter I. When it is in this
shape, the pointer is called the I-Beam. If you move the pointer up to the top of
the screen, it turns into an arrow again.

When you run, or execute, a program, something happens in one of the two
windows on the right. Either a picture appears in the Drawing window, or
words or numbers appear in the Text window. What appears in these two win-
dows is called output, so they are both output windows.

Right now the Program window is the active one, the one in which some-
thing either is happening or is about to happen. You can tell it is active because it
has horizontal lines that run across the title bar. Using the mouse, you can make
a different window the active one. Just move the pointer inside that window and
click: As soon as you do this, the title bar of that window will have horizontal
lines across it.

The windows you see are not comipletely fixed. With a few moves of the
mouse, you can drag a window around on the screen, change its size, and even
make it completely disappear. Try moving the Drawing window.

m First activate it by positioning the pointer in that window and clicking.
®m Then place the pointer on the Drawing window title bar, and drag the

pointer. The window will follow the pointer around.

It is also possible to change a window’s size. First activate it, and then place
the pointer on the size box, the square in the lower-right corner of the window.
Try this with the Text window. (See Figure 1.6.)

m Drag the pointer to the left or toward the top of the screen. The window gets
smaller.

m Now drag the pointer toward the lower-right corner of the screen. The win-
dow gets larger.

Suppose you want to fill the screen completely with a window,

m First move the window to the upper-left corner of the screen.

m Then drag the size box to the lower-right corner. Try this with the Drawing
window.

Suppose you want to make the Drawing window disappear and reappear.

m Move the pointer to the close box in the upper-left corner of the Drawing
window, and click the mouse. The window will disappear. Don’t worry.
It’s easy to make it reappear.

m Now open the Windows menu (see Figure 1.6), and choose the Drawing
window. The Drawing window will reappear.



8 A First Look at Pascal

s 143

Close Box
" & File Edit Search Run ?
' Untitled UntitledX (he==== 1eut =]
] Instant 7y
program Untitled; Observe L
{Your declarations}
b?gm tatements}| TeKt 0
Your program statements Bl size Box
end. Browing Drawing
Clipboard
Type Size...

3

Windows Menu

Figure 1.6 The Windows menu open. Note that only the active window has a close box
and a size box.

We will show you how to use the Observe window in the next chapter, and
an explanation of the Clipboard is coming up soon. The Type Size row in the
Windows menu lets you use smaller or larger type in your programs and your
output.

The Instant Window

There is another window, which you can’t see right now—the Instant window.
Using the Instant window is a great way to get acquainted with MacPascal. You
can use it to try out individual MacPascal instructions.

B To open the Instant window, move the pointer to the Windows menu and
press the button to open the menu.

B Now choose the row labeled “Instant.”
The Instant window will appear, overlapping the Program window (see

Figure 1.7). The Instant window became the active window when you brought
it up. Inside the Instant window is a box labeled “Do It.”



1.3 The Instant Window 9

" & File Edit Search Run Windows
Untitled g Tent

program Untitled;
{Your declarations}

begin
{Your program statements} : [
end. 7 Drawing

R

B e——— Instonl s

Comment

Figure 1.7 The Instant window.

In addition, the Instant window contains the following highlighted message
inside braces:

{Any statements, any time.}

This is called a comment. Comments are not instructions in Pascal for your com-
puter to follow. They are simply notes in English about the instructions you have
written. Macintosh Pascal will ignore your comments as long as you remember
to type them inside the braces. The foregoing comment shows up automatically
in the Instant window.

Now let’s try out some Pascal instructions in the Instant window.

m First type a space (press the space bar). The highlighted comment in the In-
stant window will disappear. Whenever you want to get rid of any high-
lighted text on the screen, just type a space. Note the blinking vertical line
that appears under the Do It box. This is the insertion point. Whatever you
type at the keyboard will show up at the insertion point.

B Next type the following instruction exactly as you see it here:
writeln('Hi there!')

These words will show up in the Instant window just to the left of the inser-
tion point. As each new letter or symbol appears, the insertion point moves
along so that it is always to the right of the last character you have typed.



10 A First Look at Pascal

B Now move the pointer to the Do It box and click.

This executes the writeln (pronounced “write line”) instruction, or state-
ment. The message Hi there! will appear in the Text window. The writeln in-
struction commands the computer to print in the Text window whatever is writ-
ten between the single quotation marks.

Weriteln also tells the computer to start printing the next message (if there is
one) on a new line. This is what the In part of writeln means.

To see how this works, let’s type in two new writeln statements. First delete
the writeln statement you've just written. There are two ways to do this.

Deleting— Choice 1

B First make sure the insertion point is to the right of the right parenthesis in
the writeln statement. 1f it isn’t, place the I-Beam to the right of the semico-
lon and click. The insertion point will show up where you clicked.

B Then backspace until the whole statement disappears.

Deleting— Choice 2

B Depress the mouse button, drag the pointer through the instruction to
highlight it, and release the button. Learning to highlight exactly what you
want takes some practice. If you highlight the wrong words, don’t worry.
Just click the mouse button anywhere in the window and the highlighting
will disappear. Now you can try again.

B After you've highlighted the whole line, type a space or a backspace. At this
point, writeln(‘Hi there!’) will disappear.

Now you are ready to add two new writeln statements.

B Type this in the Instant window:
writeln('Hello');

B Then press the return key and type this:
writeln('world')

Don’t forget the semicolon between the two statements! The semicolon
shows up a lot in Pascal. It is a separator symbol. It tells the computer that
one instruction is over and another is about to begin.

B Now click on Do It. Here’s what will show up in the Text window:
Hello

world

The Macintosh prints world underneath Hello because each writeln statement
prints its message on a separate line.



1.3 The Instant Window 11

Highlighting Shortcuts
To highlight a whole line, position the I-Beam somewhere on that line.
Then triple click. That is, click quickly three times.

To highlight a single word, place the I-Beam anywhere on the word and
double click.

A Bug—A Missing Semicolon

Suppose you forget the semicolon between the two statements. What happens?
Try taking out the semicolon and see.

B Place the I-Beam to the right of the semicolon, and click. This will position
the insertion point just to the right of the semicolon.

B Now backspace to get rid of the semicolon.

B Now try Do It.

r )

& File Edit Search Run Windows

A semicolon (;) is required on this line or above but one has not
g? been found.

begin
{Your program statements}
end.

Instant
-: faing i a5
writeln('Hello") 3
B@writeln('world')
0]

] o)

Figure 1.8 Error message for a missing semicolon.



12

A First Look at Pascal

The Macintosh will protest with three electronic beeps. Then you will get an
error message to help you locate the bug, or mistake, in your program. With this
kind of bug, the error message consists of two clues: A hand with its thumb down
appears in the Instant window. And a box with a picture of a bug in it appears at
the top of the screen, giving you a message about what’s wrong. (See Figure 1.8.)

If you run into a bug, don’t panic.

B Read the error message carefully, and use the clues to figure out what went
wrong. Then move the pointer inside the error message box, and click. This
makes the error message box disappear.

Now fix the mistake. In this case you have to insert a semicolon. Here’s how:

B First move the I-Beam to the place where the semicolon belongs, and click.
This deposits the insertion point where you need it.

B Now type the semicolon. It will appear at the insertion point.

The insertion point will remain to the right of the semicolon until you move
it again by placing the I-Beam somewhere else and clicking. If you don’t depress
the mouse button, the insertion point always stays put while you move the point-
er around.

Important: Note that MacPascal actually points a finger at the line after the
one where the missing semicolon should go. Because there was no semicolon
MacPascal interprets the two commands as though they were one:

writeln('Hello')writeln('world")

But there is no such command. Macintosh Pascal “discovers™ that these two
writeln statements, taken together, aren’t an acceptable command only after the
second one has been read. Therefore the hand points to the second writeln state-
ment when your bug is reported.

You will find that the hand often points to the line after the error. If you get
an error message that you can’t figure out, always look back one line to see
whether that’s where the problem is.

Another Bug—A Missing Quotation Mark

What happens when you leave out a quotation mark inside a writeln statement?
Let’s see.

B Delete what’s in the Instant window, and try typing this:
writeln('Go for it!)

You seem to get away with it—for a moment.

B Now press the return key. MacPascal catches the missing quotation mark
and signals you by changing the typeface in the instruction, as shown in Fig-
ure 1.9.



1.5 Your First Program 13

= Instant =c—F—~—

writeln ( "8e fer 120}

l—

i
& |

Figure 1.9 This is how MacPascal signals you that a quotation mark is missing.

B Fix the bug by placing the I-Beam between the | and the right parenthesis,
clicking the mouse, and typing in the single quotation mark.

B Click on Do It. The typeface will return to normal and then the Macintosh
will execute the statement.

———1.4 Quitting
If you are ready to end your programming session, here’s how to do it:
B First open the File menu and choose Quit. This takes you back to the elec-
tronic desktop with the Pascal window open.
B Now click in the close box to close the Pascal icon window.
B Next open the File menu again and choose Eject. Your disk will pop out.
B Finally, turn off the machine.

———1.5 Your First Program

In this chapter we want to create a “cartoon” of a ball rolling along a line across
the middle of the Drawing window (see Figure 1.10). So let’s start by writing
a program that will print in the Text window a caption for the cartoon. It will
say

The First Cartoon!

We could make the caption appear in the Text window just by typing this
instruction in the Instant window:

writeln('The First Cartoon!')



14

A First Look at Pascal

Figure 1.10 The First Cartoon!

But this time we want to write the following complete MacPascal program:

program Cartoon;

begin

writeln('The First Cartoon!')
end.

Let’s look carefully at the four lines in this program.
program Cartoon;

This line is the program heading line. It consists of the word program fol-
lowed by the name of the program—and it always ends with a semicolon. Here
the semicolon says the heading line is over.

The next three lines are the body of the program. The body is also called the
main program, and its official name is the statement part of the program. The
body must start with the word begin and end with the word end, followed by a
period. If you forget the begin, the end, or the period, you will get an error mes-
sage.

In between begin and end, you can put any number of instructions. In our
first program there is only one:

writeln('The First Cartoon!')

Parentheses and single quotation marks surround the message to be printed.
Here, too, you’ll get an error message if you leave any of them out. The single
quotation marks tell the Macintosh to print exactly what appears between them.



1.5 Your First Program 15

The words program, begin, and end, which are printed in boldface, are
called reserved words. These are part of the basic vocabulary of Pascal, and they
have special meanings. There are many other reserved words, which we have
listed inside the front cover of the book.

Writeln has a special meaning in Pascal, too, but it is not a reserved word.
It’s called a standard procedure. A procedure is an instruction that does some
special job, such as write a message, draw a line, or paint a circle.

We have worked out this program for you, so all you need to do is type it in
the Program window.

Typing in Program Cartoon

B [fyour machine is off, you will need to turn it on and load MacPascal again.
See page 3 if you forget how.

® Make sure the Program window (the one labeled “Untitled”) is active. If it
isn’t, move the pointer into the window and click.

We want to type this program in from scratch. So let’s get rid of the high-
lighted program skeleton first.

B Press the space bar or the backspace key. The whole block of highlighted
text will disappear.

B Now type the first line, press the return key, and see what happens. You type
program Cartoon;
and you get
program Cartoon;
B Next type
begin
followed by a return. Then type the command
writeln('The First Cartoon!')

followed by another return. Again, what you type is not what you get. The
word begin appears in boldface. And the Macintosh automatically indents
the writeln statement one space. This rearrangement of the lines in a pro-
gram is called pretty printing. It makes your program more readable.

B Type in the word end followed by a period. You have a complete program.
Now you're ready to run it.

B Move the pointer to the word Run at the top of the screen and open the Run
menu. (See Figure 1.11.)



16 A First Look at Pascal

" & Frile edit search JETIN Windows

E[J==———=—= Untitled Check XK : Tent
; Reset A
program Cartoon; : LAy
begin ;
writeln('The First Ca : : E
Ga-b8 ¢ —t:
end] b jis
S A TRIINg
Step-Step i
Stops In
; ol
Kl [

Figure 1.11 The Run menu open, with Go highlighted.

B Choose the row labeled “Go.” The Macintosh will run your program. This
message will appear in the Text window:

The First Cartoon!

You have run your first complete Pascal program.

——1.6 Points, Lines, and the Drawing Window

Now that we’ve printed the caption, we can write the part of the program that
actually draws the cartoon. Remember, the program will roll a ball along a line
in the Drawing window. So we'll start by drawing the line. This is easy in
MacPascal. But first you need to know how the Drawing window is laid out.

The standard-size Drawing window that shows up on the screen when you
load MacPascal is a 201-unit-by-201-unit square made up of more than 40,000
invisible points. You can locate any point in the window using twe numbers. The
first number tells how far the point is from the left side of the window, and the
second number tells how far it is from the top. The upper-left corner is the point
(0,0). (See Figure 1.12.) Note that this convention differs from usage that is com-
mon in mathematics. In geometry, the origin point (0,0) is positioned at the
lower-left corner.




1.6 Points, Lines, and the Drawing Window 17

FD-——:————-————— Drawing
0,0)

®—1(200,0)
100 @ (100,50)
_5.0_¢ @ (100,100) & (200,100)
(50,100)
(0,200) (200,200)
! 15

Figure 1.12 The point (50,100) is located 50 units over from the left side and 100 units
down from the top.

If you have trouble remembering which number tells you the horizontal po-
sition and which tells you the vertical position, just remember that the numbers
come in alphabetical order: horizontal then vertical.

If you enlarge the Drawing window, the same system of locating points still
applies. When you make it fill the whole screen, the Drawing window is 500
units wide and 300 units from top to bottom. The point (500,300) would lie at
the lower-right corner. When we talk about the standard Drawing window, we
mean the 201-by-201 Drawing window that comes up when you load Mac-
Pascal.

EXERCISE 1  a. Which point is higher, (100,100) or (100,200)?

b. Examine the accompanying picture. In which Drawing Window
region does each of the following points fall?
(50,50), (50,120), (150,150), (180,0)

Answer: A, D, C,B mm




18 A First Look at Pascal

Now you know enough about the Drawing window to start drawing lines.
There is a single MacPascal instruction for this, drawline. The instruction

drawline(50,0,200,175)

tells the computer to draw a line from the point (50,0) to the point (200,175). Try
it out in the Instant window.

B Bring up the Instant window by choosing Instant on the Windows menu.

B Clear any text you see in the Instant window by highlighting it and then
backspacing.
B Next open the Run menu and choose Reset. This clears the output windows.

B Now type in the drawline instruction, and then click on Do It. Figure 1.13
shows the picture it will produce in the Drawing window.

& File Edit Search Run Windows

Untitled : Tent
program Cartoon; :
begin
writeln('The First Cartoon!’)
end. E —
] Drawing

e

drawline(50, 0, 200, 175)

I

&

Figure 1.13 Here is the picture that the instruction drawline(50,0,200,175) produces in
the Drawing window. By the way, the instruction drawline(200,175,50,0) draws exactly the
same line.

EXERCISE 2 What kind of line does each of the following instructions draw? Make a
sketch for each on a piece of paper, and then use the Instant window to de-
termine whether your guess is right.



1.6 Points, Lines, and the Drawing Window 19

a. drawline(0,0,200,200)
b. drawline(0,200,200,0)

¢. drawline(100,0,100,200)
d. drawline(0,100,200,100)
e. drawline(0,0,200,100) ==

Now let’s add to program Cartoon an instruction that will draw a horizon-
tal line.

B First make the Program window active by clicking in that window.

B Next move the insertion point to the end of the writeln statement, and type a
semicolon to separate the writeln statement from the drawline statement.

W Press the return key. This will push the word end down one line.
B Now type the following instruction in the blank line:

drawline(0,100,200,100)
B Try running this new version of program Cartoon.

The Drawing window will clear when you choose Go, as it prepares for a
new run. This time it will print the caption in the Text window and then draw a
line across the Drawing window. The screen should look like this:

" & File Edit Search Run Windows

e Uniillel e Text
: {Mhe First Cartoon!

program Cartoon;
begin
writeln('The First Cartoon!’);
drawline(0, 100, 200, 100)
end. : Drawing




20 A First Look at Pascal

—_1.7 Circles

We are finally ready to work on the part of the cartoon that rolls the ball. To cre-
ate the ball, we will use MacPascal’s paintcircle instruction. Suppose we want to
draw a circle that has a radius of 45 and has its center located at the point
(50,80). The following statement will make it appear in the Drawing window:

painteirele(50,80,45)

This paintcircle instruction tells the Macintosh to paint a black circle. The num-
bers in the parentheses tell the Macintosh that the center of the circle should be at
horizontal position 50 and vertical position 80 and that the radius of the circle
should be 45. Let’s see how this works by running the paintcircle instruction
using the Instant window.

Open the Windows menu, and choose Instant.

Then, after clearing the Instant window, type in the paintcircle instruction.

Next clear the output windows by opening the Run menu and choosing
Reset.

B Now click on Do It. The screen will then look as shown in Figure 1.14.

V= lraving ==

Figure 1.14 The circle’s centeris 50 units from the left wall and 80 units from the top, and
its radius is 45 units.



1.7 Circles 21

EXERCISE 3  What instruction would you type in the Instant
window to make the accompanying picture?

Choose Reset from the Run menu. Now type in the paintcircle instruction
and see whether you get the right circle. wm

Suppose we want to draw a circle of radius 20 like the one shown in Figure
1.15;

20

20

Figure 1.15 A circle of radius 20 with its center at the point (20,80).

This instruction will do the job:
paintecirele(20,80,20)

The numbers mean that the center of the circle is 20 units from the left wall
and 80 units from the top and that the circle has a radius of 20. Before going on,
make sure you understand why 20, 80, and 20 are the right numbers.



22 A First Look at Pascal

B Now insert the foregoing paintcircle instruction in program Cartoon to get
this new program:

program Cartoon;

begin
writeln('The First Cartoon!');
dzawline(0,100,200,100);
paintcircle(20,80,20)

end.

B Run it. You will see the cartoon’s first frame:

= hnwing ==

=

——1.8 Stepping

When a computer runs a program, it carries out the instructions one at a time,
usually in order. Ordinarily this happens so quickly that the output appears all at
once. But MacPascal allows you to run programs slowly, one step at a time, so
that you can watch each instruction doing its job. This is called stepping.

B To make your Macintosh step, open the Run menu, but this time choose
Step instead of Go. A little hand will appear next to the word begin.

B Then hold down the command key. (The command key is the one with the
symbol on it.)

B Next, with the command key still down, press the S key. The little hand will
jump down to the writeln statement.



1.9 How to Move the Ball 23

B Next, still holding the command key down, press the S key again. The com-
puter will execute the writeln instruction, and the caption will appear in the
Text window. At the same time the hand will advance to the drawline in-
struction (see Figure 1.16).

& File Edit Search Run Windows

E=————= Unlitled =o—| Text
] K3fihe First Cartoon!

program Cartoon;

begin

1 writeln(The First Cartoon!);
@» drawline(0, 100, 200, 100);
: paintcircle(20, 80, 20) ! Drawing
end.

Figure 1.16 The drawline statement is about to be executed.

B Once more, hold the command key down and press the S key. The line will
be drawn across the Drawing window and the hand will advance to the
paintcircle instruction. The finger always points to the instruction that will
be done next. Each time you press, the hand advances to the next instruc-
tion. And with each advance of the hand, one more piece of the program is
executed.

—— 1.9 How to Move the Ball

Next we're going to show you the best part—how to animate your cartoon. You
can do this by making the circle appear and then disappear over and over again
very quickly, each time shifting its center a little bit to the right. The circle will
appear to be a rolling ball, and it will flicker like an old-time movie.



24

A First Look at Pascal

To make the circle dissappear, we will use the MacPascal command
invertcircle. The invertcircle instruction paints a black circle if the background is
white, and it paints a white circle if the background is black. If an invertcircle
overlaps a black region, the overlapping part will be white and the rest will be
black. For example, these two instructions

paintcirele(70,70,50);
invertcirele(130,130,50)

produce in the Drawing window the picture shown in Figure 1.17.

EDE—_ Drawing

o

Figure 1.17 An invertcircle overlapping a paintcircle.

Try it out:

m First use the Reset command from the Run menu to clear the output win-
dows.

B Then bring up the Instant window, and after clearing it, type in the two
foregoing commands. See what happens when you click on Do It.

Now suppose you've written a program with a painicircle instruction, and
you add an invertcircle instruction with the same radius and location. The pro-
gram will paint a black circle, and immediately it will reverse the color of that
circle from black to white, making the circle disappear. This is exactly what we
want for program Cartoon.



1.9 How to Move the Ball 25

B So now add an invertcircle command to the program. This is what the pro-
gram will look like:

program Cartoon;

begin
writeln('The First Cartoon!');
drawline(0,100,200,100);
painteirele(20,80,20);
inverteirele(20,80,20)

end.

B Step it and see what happens. What you see in the Drawing window is the
first frame of the animated cartoon.

Now let’s add a few more statements to extend the cartoon with new frames.

Don’t type these in yet: We're going to show you a shortcut for adding the four
new instructions.

program Cartoon;

begin

writeln('The First Cartoon!');
drawline(0,100,200,100);
{FRAME 1}
paintecirele(20,80,20);
invertcirele(20,80,20);
{FRAME 2}
paintcirele(21,80,20);
invertcirecle(21,80,20);
{FRAME 3}
paintecirele(22,80,20);
invertcirele(22,80,20)

end.

The three pairs of paintcircle and invertcircle instructions will draw the first
three frames of the cartoon by painting and erasing circles along the line. Frame
2 is almost identical to frame 1, except that the horizontal position of the circle
has been shifted one unit to the right. In frame 3, it has been shifted one more
unit to the right.

Shortcuts—Copy and Paste, Cut and Paste

Because the instructions for frames 2 and 3 are so similar to the commands in
frame 1, we can use a shortcut to add the new text. Our shortcut employs the
Macintosh Copy and Paste commands.



26

A First Look at Pascal

m First highlight the paintcircle and invertcircle lines in the program.

program Cartoon;

begin
writeln('The First Cartoon!');
drawline(0,100,200,100);
paintcirele(20,80,20);
invertcircle(20,80,20)

end.

B Then go to the Edit menu and choose Copy. The Copy command instructs
the Macintosh to make a copy of the highlighted text.

m Position the pointer after the right parenthesis in the invertcircle instruction
and click. The insertion point will appear there.

m Next open the Edit menu and choose Paste. Copies of the two instructions
you highlighted will appear right under the original ones. The reason why
the new text does not show up at the insertion point is that the MacPascal
prettyprinter moves it down a line.

m Now position the pointer just after the first invertcircle command, and type
a semicolon. Because you have just added more instructions, you need a
semicolon here to separate the old invertcircle instruction from the new
paintcircle instruction.

m Now move the insertion point so that it is just to the right of the last
invertcircle instruction. You do this by positioning the I-Beam there and
clicking the mouse.

m Next open the Edit menu, and choose Paste again. Another copy of the two
instructions will show up beneath the others.

m Once again, add the missing semicolon.

m Now, to get the program to move the ball, all you have to do is change the
first 20 in each of the new instructions. Change the first pair of 20’s to 21 and
the second pair to 22.

m To see what these new statements do, run the program. (Don’t step it this
time.) The ball should seem to flicker and to roll along the line, just like an
animated cartoon.

But there’s one problem. The ball rolls only a little way, and the program is
already 8 instructions long. It would take another 316 instructions to get the ball
to roll all the way across the screen. This would be tedious even if you used Copy
and Paste. There must be a better way!

And there is. Like most computer languages, Pascal has a looping com-
mand, a command that tells the computer to execute an instruction, or a group
of instructions, over and over again.



1.10 Saving Your Program 27

The Clipboard: Cut and Copy

There is another command in the Edit menu: Cut. If you highlight a line
and choose Cut, the line disappears from the text. Now you can Paste
that line anywhere you want.

When you highlight text and choose either Cut or Copy, the Macin-
tosh stores the text in the electronic Clipboard. It stays there until you
highlight something else and choose Copy or Cut again. You can actu-
ally see what is in the Clipboard by opening the Windows menu and
choosing Clipboard.

Before we begin looping, let’s set aside the version of program Cartoon
we've written so far by saving it—that is, by making a permanent copy of the
program on the MacPascal disk.

——1.10 Saving Your Program

When you save a program, you put it in a MacPascal document on the MacPas-
cal disk. Here’s how:
m Click on the Program window to make it active.

m Open the File menu, and choose Save As. This will open a dialog box, which
appears on the screen like this:

Save your program as i Pascal

| | )

( save ] [ cCancel )

m Now type the name you want to use for this document. It’s best to use the
name of your program, Cartoon, so that you can find it again. But any
name will do.

m Then click on Save.

Your program will be stored on the MacPascal disk, and the dialog box will
disappear. But your program will still be on the screen for you to work on. Only
one thing will be different. The Program window will be labeled “Cartoon™ in-
stead of “Untitled.”



28 A First Look at Pascal

Saving on a Separate Disk

You may want to store your program on a separate disk so that it doesn’t take up
space on the MacPascal disk. Here’s how to do it.
B Open the File menu and choose Save As.

B When the dialog box comes up, type in the name of the program and then
click on Eject. The disk will pop out.

B Now insert the other disk, and click on Save. The computer will copy the
program onto that disk and then eject it. After that a message will appear,
telling you to insert the original disk.

B [nsert the original disk. Program Cartoon will appear on the screen again,
ready to be run.

Quitting
You may want to end your programming session now. If you do, here’s how:
B Go to the File menu and choose Quit.

MacPascal windows will disappear, and the desktop will appear with the
MacPascal disk window open on top of it. The MacPascal window will hold a
new icon—the icon labeled “Cartoon.” (See Figure 1.18.)

B Now choose Eject from the File menu. The disk will pop out.
B Don’t forget to turn off the machine.

ED Pascal
7 items - 393K in disk 7K available
(O] g
Dwgw'
Open Me Cartoon Macintosh Pascal
Tools Information Demos  System Folder
RV

Figure 1.18 The MacPascal disk window with the Cartoon document icon.



1.11 Looping 29

——1.11 Looping

We'll get back to the rolling ball in a moment, but first we’ll show you how to
loop with a much simpler example.
Suppose we want to print this column of numbers:

ik
2

3
2

One way to do this is to make a column of writeln statements. (Note that, in the
following writeln statements, there are no single quotation marks inside the pa-
rentheses. We'll explain why in a moment.)

program NumberList:
begin

writeln(1);
writeln(2);
writeln(3);
writeln(4

end.

— —

This is tedious. A more efficient way to print the list would be to use a Pascal in-
struction called the for statement to create a loop, like this:

program FirstLoop;
var
Number : integer;
begin
for Number := 1 to 4 do
begin
writeln(Number)
end
end.

There are several new things in program FirstLoop. We'll look at the for
statement first. The for statement in this program has two parts: a control line:

for Number := 1 to 4 do
and a body:

begin
writeln(Number)
end

The control line tells the computer, “For each Number from 1 to 4, do the in-
structions listed in the body.” The control line advances Number from 1 to 4, so
the writeln instruction in the body is executed four times.



30

A First Look at Pascal

Program FirstLoop tells the computer:

1. First substitute the integer 1 for the word Number in the writeln statement.
The symbol := tells the Macintosh to make this substitution, or assignment,
and then do the writeln statement, which prints a 1 in the Text window.
(Note: There is never a space between the colon and the equal sign.)

2. Then substitute 2 for the word Number, and do the writeln statement.

d

Next substitute 3 for the word Number, and do the writeln statement.
4. Finally, substitute 4 for the word Number, and do the writeln statement.

Note that there are no quotation marks inside the parentheses in the writeln
statement. Quotation marks tell the computer to print out exactly what is be-
tween them. When we leave out the quotation marks we are telling the comput-
er to print out the value of Number instead of the word Number. And each time
the for loop is executed, this value is different. First it is 1, then 2, then 3, then 4.

What about the words begin and end surrounding the writeln statement?
They tell the Macintosh that the statements between them are the instructions in
the body of the loop.

Because the value of Number changes in the program, Number is a variable.
In Pascal you must tell the computer the names of the variables that you will use
in a program. You put this information at the beginning of the program in the
variable declaration part. The variable declaration in program FirstLoop is

var
Number : integer;

In addition to telling the computer that Number is a variable, this declara-
tion says that Number must be an integer. (Integers are whole numbers; they can
be either positive or negative. For example: —1, 2,3, —4, 5, and 0 are integers. A
fraction, such as 22/7, isn’t an integer. Neither is a real number with a decimal
point, such as 3.1416.)

Number is a special kind of variable in program FirstLoop. Because it is
used in the control line of the for statement to determine the number of times the
loop is executed, it is called a control variable.

Loops give programs their power. You can’t do much programming with-
out them. Writing a program to print out long lists of numbers, for example,
would be an overwhelming task if you didn’t use a loop. Take the following
program:

program SecondLoop;
var
Number : integer;
begin
for Number := 500 to 1000 do
begin
writeln(Number)
end
end.



1.12 Let’s Get the Ball Rolling ol

Program SecondLoop prints out a column of 501 numbers in the Text win-
dow, beginning with 500 and ending with 1000.
What do you think the next program does?

program OverAndOver;
var
PledgeNumber : integer;
begin
for PledgeNumber := 1 to 500 do
begin
writeln('I will not talk in class.')
end
end.

Program OverAndOver is interesting because the control variable in the for
loop—PledgeNumber—does not appear anywhere in the writeln instruction. So
the program prints the same line 500 times:

I will not talk in class.

—1.12 Let’s Get the Ball Rolling

Now that you know about loops and variables, we can get on with our cartoon.
We want to create a loop that will shift the center of the circle to the right, one
unit at a time, until the circle reaches the right wall of the window.

The center of the ball starts at position (20,80). As the ball rolls, the position
of the center changes to (21,80), (22,80), (23,80), and so on until it reaches
(180,80), where the ball just touches the right wall of the Drawing window. The
vertical position of the center stays the same (80), but the horizontal position var-
ies (see Figure 1.19).

(20,80)  (60,80) (180,80)

Radius = 20 : ) Bl——

Figure 1.19 Three steps in the ball’s journey from left to right.



32

A First Look at Pascal

So let’s invent a variable called Position to stand for the horizontal position
of the circle’s center as the ball rolls. Our program must include the following
declaration:

var
Position : integer;

This declaration says we have a variable called Position, which must be an inte-
ger.

Now let’s do the for loop. We want circles to be drawn from horizontal posi-
tion 20 to horizontal position 180. And we want the body of the loop to include
the instruction paintcircle, followed by invertcircle. Here is the loop that will
make the ball flicker and roll across the screen:

for Position := 20 to 180 do
begin
paintcircle(Position,80,20);
invertcircle(Position,80,20)
end

Now let’s put this loop in program Cartoon. First you must bring up pro-
gram Cartoon.

Bringing up Program Cartoon

B [f your Macintosh is off, turn it on, insert the disk, and open the MacPascal
Disk icon. In the MacPascal window you will see not only the MacPascal
icon but also an icon labeled “Cartoon.”

B To bring up program Cartoon, double click on the Cartoon icon. You don’t
have to load MacPascal, because the Macintosh does this for you automati-
cally when you bring up a MacPascal program.

B Now change program Cartoon so that it looks like this:

program Cartoon;
var
Position : integer;
begin
writeln('The First Cartoon!');
drawline(0,100,200,100);
for Position := 20 to 180 do
begin
painteircle(Position,80,20);
invertcircle(Position,80,20)
end
end.

The first cartoon program is now complete!

B Try running it. Watch the ball roll all the way across the Drawing window.



1.14 Printing Program Cartoon 33

——1.13 Saving Your Revised Program

Now that you have a running cartoon program, you will probably want to save
your final version of the program so that you can run it later. Here’s how to re-
place the permanent copy you stored on the disk with the new version on the
screen.

B Make sure the program window is active. If you forget to do this, you won’t
be able to save your new version.

B Open the File menu, and choose Save instead of Save As. (If you have for-
gotten to activate the program window, the word Save in the menu will be
dimmed—that is, printed in grey—and it will be impossible to choose
Save.) You won't get a dialog box this time. The Macintosh will just replace
the old version on the disk with a copy of the new version on the screen.

Save and Save As

Use Save As when you save something for the first time and you need to
give the document a name. Use Save when you want to save a different
version of a document that already has a name. But be careful here.
When you use Save, the old version is lost forever.

———1.14 Printing Program Cartoon

If you have a printer, you will probably want to print out your program. Here’s
how.
®m First make sure the Program window is active.

B Then turn on your printer and choose Print from the File menu. A dialog
box will appear (see Figure 1.20), asking you some questions about how you
want your document printed.

B Just click on OK. The printer will print out your program.

Quality: O High @ Standard O Draft
Page Range: @ Ail O From: I:j To: E]

Copies:

Paper Feed: @ Continuous () Cut Sheet

Figure 1.20 A print dialog box.




34 A First Look at Pascal

What if you want to print out the picture in your Drawing window or the
caption in the Text window?

m First activate the window you want to print.

B Then, holding down the shift and command keys, press the 4 key. The entire
active window will be printed.

You can also print out the entire screen.

m Press the caps lock key.

B Then, holding down the shift and command key, press the 4 key. This will
give you a screen dump, or print-out, of the entire screen.

——1.15 The Nuts and Bolts of Programs

All MacPascal programs use the same simple building blocks. The first building
blocks you have met are the reserved words, which are always printed in bold-
face in MacPascal. The reserved words that appear in program Cartoon are pro-
gram, var, for, to, do, begin, and end. A complete list of the reserved words in
MacPascal appears inside the back cover of this book.

A word you pick out yourself to use as a name for a program or a variable is
called an identifier. Program Cartoon has two identifiers: Cartoon (the name of
the program) and Position (the name of the control variable in the for loop).

The identifiers you make up can use either capital or lowercase letters in any
combination. The Macintosh doesn’t care whether you write Cartoon or cartoon
or even cARTOON. And it doesn’t even mind if you mix things up and use capi-
tal letters the first time and lowercase the next time you use a name in the same
program. In this book we will generally capitalize identifiers to make them
easier to read.

What about the word integer in this line?

var
Position : integer;

In Pascal the word integer is called a type. A type in a variable declaration tells
what type of value the variable can have. This variable declaration says that the
variable Position can have only an integer value.

Program Cartoon also has certain instructions called standard procedures.
A procedure is an instruction that does some complicated special job. The stan-
dard procedures in the cartoon program are writeln, drawline, paintcircle, and
invertcircle. There is a complete list of the MacPascal standard procedures in the
reference manual. We list the standard procedures used in this book inside the
front cover.



—1.16

1.16 Pascal and Macintosh Pascal 35

Finally, MacPascal has punctuation. In our first program we've used semi-
colons, commas, parentheses, single quotation marks, a colon, a colon followed
by an equal sign, and a period.

MacPascal has very definite rules for building a program from reserved
words, identifiers, types, standard procedures, and punctuation. Here are the
rules that we’ve seen so far.

1. The program heading line must end with a semicolon.

2. Two statements next to each other must be separated by a semicolon. A
statement followed by the reserved word end does not need to be followed
by a semicolon, however. And there should be no semicolon following the
word do in a for statement control line.

3. A program must end with a period.

4. The body of a Pascal program must begin with the word begin and end with
the word end.

5. Variables must be declared at the beginning of the program.

Pascal and Macintosh Pascal

The programming language known as Pascal was developed in Europe in the
late 1960’s by Niklaus Wirth. Since then it has become very popular in the United
States, and it is now widely used as teaching language in American colleges
and universities. There are a number of different versions of the language, but
most of them closely conform to the description of the language Wirth gave in
1974.

For the most part, Macintosh Pascal conforms to this standard, too. But
MacPascal has some spectacular additions. Because it runs on the Macintosh, it
includes instructions for controlling the mouse, for drawing lines and circles, and
for working with menus and windows. If you learn MacPascal, you should have
little trouble using other versions of the language.

In the past, Pascal systems have required a program called a compiler,
which prepares a program you've typed in so that a computer can execute it.
With a compiled Pascal, you must instruct the computer to compile your pro-
gram before the program can be executed.

Compiling takes time—as much as several minutes for a big program. And
you must use the compiler every time you make a change in a program. This
means that experimenting with a lot of changes in your programs can become
quite tedious. What’s more, learning to use a compiler is sometimes complicated.

MacPascal doesn’t have a compiler. A different kind of program, called an
interpreter, prepares a MacPascal program for execution. Because interpreters
work much faster than compilers, a MacPascal program is ready to run as soon as
you type it in.




36

A First Look at Pascal

There is a price to pay, however, for an interpreter’s quickness. A program
that has been prepared for execution with a compiler will run about ten times
faster than the interpreted version of the same program. This is a significant
speed-up that can be important if your program will be used repeatedly in some
scientific or business application. But if you are just learning Pascal, you will
spend most of your time writing, testing, and debugging small practice pro-
grams. You will barely notice an interpreted Pascal’s slower execution speed.

The Instant window is a unique feature of MacPascal. Compiled versions of
Pascal allow you to run only complete programs. In MacPascal, you can run one
or several instructions that aren’t in a program by using the Instant window.

In this book, when we talk about Pascal, we are referring to an instruction
or idea that is part of all versions of Pascal. When we say MacPascal, we are talk-
ing about something peculiar to Macintosh Pascal that you probably won’t find
in other versions of the language.

TEST YOURSELF

1. Before you turn on the Macintosh, where is MacPascal stored?
Where is the point (0,100) in the Drawing window?
What are two synonyms for the word instruction?

e

How many units wide is the standard Drawing window? And how long is it
from top to bottom?

What kind of word is begin? What kind of word is writeln?
What happens to main memory when you load MacPascal?
Which three words must be in every program?

9,1 =1 g e

What punctuation mark must come at the end of the heading line of a pro-
gram?
9. What punctuation mark must come after the word end at the very end of a
program?
10. What is stepping?
11. What does a loop do?
12. What is an identifier?
13. What does the semicolon do in MacPascal?
14. What's wrong with each of these programs? Find all of the errors.

a. program Bad b. program NoGood
begin begin.
writeln('This will not work) writeln("No way!")
writeln('Why not?') end.
end.

Hint: There are a total of three errors in program Bad and four errors in
program NoGood.



Problems 37

PROBLEMS
1. Use the mouse to lay out the MacPascal windows in the following arrange-
ments: :
Drawing Text
Text Drawing
Screen 1 Screen 2
Clipboard l
Instant |
Text ]
Drawing
Screen 3

2. What is the output of each of the following programs?

a. program OuchOne; b. program OuchTwo;
var var
Throb : integer; Throb : integer;
begin begin
for Throb := 1 to 250 do for Throb := 1 to 250 do
begin begin
writeln('Have I got a headache!') writeln('Have I got');
end writeln('a');
end. writeln('headache!')
end

end.



38 A First Look at Pascal

3. Suppose the Drawing window is divided into four
parts, as shown in the accompanying figure. In
which regions do the following points fall?

a. (101,20)

b. (101,150)
c. (50,70) : 4 3
d. (150,70)

e. (150,170)

4. Read the following program and try to figure out what it does. Now run it
and test your hypothesis.

program Whoosh;

var
HDistance : integer;
begin
for HDistance := 20 to 100 do
begin .

paintcircle(HDistance,100,HDistance);
invertcircle (HDistance,100,HDistance)
end
end.

5. What do you think this program does? After you decide, type it in, run it,
and see.

program Explode;

var
Radius : integer;

begin

for Radius := 1 to 100 do
begin

paintcirele(100,100,Radius)

end

end.

6. a. What does this program do? Figure it out; then type it in and run it.
program WhoKnows;

var
Position : integer;

begin

for Position := 0 to 200 do
begin

paintecircle(Position,Position,20);
invertcircle(Position,Position,20)
end
end.



a.

Problems 39

b. What happens when you change the paintcircle and invericircle com-
mands in program WhoKnows to the following pair?

paintcirecle(Position,Position,Position);
invertcircle(Position,Position,Position)

7. What do you think program Implode does? Before you run it, see if you can
figure out what will happen.

program Implode;

var
Radius : integer;

begin '

for Radius := 100 downto 1 do
begin

painteirele(100,100,Radius);
inverteirele(100,100,Radius)
end
end.

8. Can you guess what shape this program prints out? Try it.

program Zag;

begin
drawline(0,200,50,0);
drawline(50,0,100,200);
drawline(100,200,150,0);
drawline(150,0,200,200)

end.

9. Can you figure out what shape this program draws? Now try it.

program WhatShape;

begin
drawline(100;,50,150,150);
drawline(150,150,50,150);
drawline(50,150,100,50)

end.
10. Using the drawline instruction, write programs to draw the following
shapes.
b. : c. d. e.

AN VAN
VA

L




40 A First Look at Pascal

11. Write your initials using the drawline instruction.
12. What do you think this program does? Now try it.

program Mystery;
var
Number : integer;
begin
for Number := 2 to 5 do
begin
writeln(Number + 10)
end
end.

13. Can you figure how to use invertcircle commands to draw the following pic-
tures? Remember that invertcircle paints a white circle if the background is
already black and that it paints a black circle if the background is white.

b.

14. Change program OverAndOver in Section 1.11 so that it prints out this:
; 1
I will not talk in class.
2
I will not talk in class.

3

I will not talk in class.

and so on, for 50 repetitions.

15. Now try some variations on program Cartoon.

along a line that goes down the middle of the

a. Change program Cartoon so that the ball rolls '
screen like this: S




Problems 41

b. Next create two balls that roll perpendicular to '
each other, like this:

Hint: Put all four circle instructions and the two
drawline instructions in one loop. ) 1

c. Now redo part (b), only this time put the invertcircle instruction before
the paintcircle instruction.



— 2]

Machine Organization
and Program Planning

This chapter begins with a look at what really goes on when the Macintosh is
running a MacPascal program. Then we’ll discuss a four-step technique for
problem solving with Pascal.

Binary Numbers and Memory

You've been using the decimal system for so long that it may seem like the only
imaginable way to do arithmetic. For computers, though, it turns out to be
much more practical to use the binary number system. In the binary system the
only digits are 0 and 1. Here’s a table that shows how binary and decimal num-
bers correspond.

Decimal Binary

1

10
11
100
101
110
111
1000
1001
10 1010
11 1011
12 1100

O© 00 ~10 Ut WO —

43



44

Machine Organization and Program Planning

The Macintosh’s memory is made up of hundreds of thousands of rows of
tiny electronic switches. Each row has eight switches and is called a byte of mem-
ory. Each switch is called a bit. While the Macintosh is running, some switches
are open and some are closed. This is where the binary number system comes in.
If you think of an open switch as the digit 0 and a closed switch as the digit 1,
then a pattern of open and closed switches can stand for a binary number (see
Figure 2.1). For example, 10100010 stands for the number 162.

0

Figure 2.1 Open and closed switches.

The same pattern of switches can also have other meanings. The sequence
10100010 also stands for the symbol ¢. So one byte of memory, with its eight
switches, can hold the symbol ¢ or the number 162. Larger numbers require
more than one byte.

A binary pattern can also stand for a particular computer instruction, such
as writeln or paintcircle. This point is very important. The computer’s memory
can hold not only data—that is, numbers and characters such as letters and
punctuation marks—but also instructions, which you type on your keyboard in
the form of words. Here is the binary pattern for an instruction that adds the
numbers 2 and 3:

0111 1010 1001 0001 the addition instruction
1000 0000 0000 0010 the number 2
1000 0000 0000 0011 the number 3

You may find it strange that the same binary pattern can stand for a num-
ber, a letter, or an instruction. But a part of the computer that’s separate from
memory—the central processing unit—has been programmed to tell which is
which.

The central processing unit, or CPU for short, is the computer’s brain. The
CPU doesn’t really “know” whether a particular binary sequence is a number, a
letter, or,an instruction. But it has been programmed to expect instructions in
certain parts of a program and numbers in other parts of a program. For exam-
ple, the CPU always interprets the first byte after the word begin in the body of a
program as part of an instruction.



a0

LS

2.3 How Program Cartoon Is Stored in Memory 45

Where Does MacPascal Fit In?

MacPascal is a giant master-program that works like the director of a theatrical
production. You are the script writer, and the CPU is the actor. After you have
written a script (a program), you give it to the director (MacPascal). MacPascal
translates what you've written so that the actor (the CPU) can follow the instruc-
tions in your script. The CPU then performs its part by carrying out your instruc-
tions, and you see your play on one of the output windows.

The translation step is absolutely necessary, because the CPU does not un-
derstand anything except instructions written in patterns of ones and zeros. This
is called machine language.

If you wanted to talk directly to the CPU, you would have to write your in-
structions in machine language—long sequences of zeros and ones. This is far too
tedious and time-consuming. If you wrote the following simple instruction

writeln(2 + 3)
in machine language, it would look something like this:

0000 0001 0000 1010
0010 0010 0010 1100
0111 1010 1001 0001
1000 0000 0000 0010
1000 0000 0000 0011

As you can see, machine language is nearly incomprehensible. It takes many
machine-language commands to do one writeln instruction, because machine-
language commands are very primitive. “Fetch the byte at memory location
1024 and move it to memory location 1036” is a typical machine-language in-
struction translated into English.

The beauty of Pascal is that you can create your program using instructions
that closely resemble phrases in English. And once you've typed these in, Mac-
Pascal will see to it that the CPU gets a faithful, machine-language translation.

How Program Cartoon Is Stored in Memory

Programs are translated into machine language in two steps. First as you type in
each command, the Macintosh converts the instruction into a binary code that is
not actually machine language and stores the code in main memory. Later,
when you run the programs, each coded command is translated into machine
language and then executed.

What happens when you type in program Cartoon? First you type in the
heading line, and MacPascal stores the name of the program in memory. The
next thing you type in is the declaration for the variable Position.




46 Machine Organization and Program Planning

a2

This declaration directs the CPU to set aside a location in memory for the vari-
able you have named Position. (The location is two bytes long.) When you run
the program, this location in memory holds a number that represents the value of
the variable. Usually this number changes as the program runs. For the moment
no number is stored there, because the program isn’t running.

Then the word begin alerts MacPascal to convert into binary code the body
of the program—all the instructions you type in between the first begin and the
final end. MacPascal puts the binary form of each instruction into consecutive
rows of memory in the order in which the instructions appear in the program.
MacPascal also tells the CPU to record where in memory the first instruction is
stored. Then, when you run the program, MacPascal “knows” where to find the
first statement of the body.

What Happens When You Run Program Cartoon

The CPU starts execution of the program by translating the writeln statement
into machine language and then executing it. This prints “The First Cartoon!” in
the Text window. Next the CPU translates and executes the drawline statement,
which draws a line across the Drawing window.

Now the CPU comes to the for statement. First it goes to the location set
aside in memory for the value of the variable Position, and it puts a value
there—the integer 20.

B

Position

The statement paintcircle(Position,80,20) is translated next. The CPU looks
up what number has been stored in the location labeled “Position.” It finds the
integer 20. So it executes the machine-language translation of the instruction
paintcircle(20,80,20).

Then the CPU does the same with the instruction invertcircle(Position,
80,20).

Now comes the complicated part. In most cases the CPU simply goes to the
next instruction when it finishes a command. But here it recognizes that it is
doing a for statement, and it must take a special action: Before executing the in-
structions in the body of the loop, it must determine whether looping is over. To
do this, it checks to see whether the current value of Position (20) equals the
upper limit of the loop (180). Because 180 is larger than 20, the Macintosh con-
tinues looping. It increases the value of Position by 1, replacing the number 20
with the number 21 at the location labeled “Position.”

Position



2.6 Watching Variables with the Observe Window 47

e for loop

ion,80,20);
ion,80,20)

ssition is increased by 1 until 180 is reached. When that

(at the number at location Position equals the value that

{oop. This terminates the loop. And, because there are no
ogram execution ends.

—

—_—2.6

The Value of a Variable

What do we mean when we say “the value of the variable Position?” We mean
that the value of a variable is the number in the location in memory assigned to
that variable.

The value of a variable is very concrete; it is the number that has been writ-
ten down inside memory next to the variable’s name. Usually a variable’s value
changes during program execution. When execution of program Cartoon starts,
the value of Position is undefined: No value has been copied into Position’s loca-
tion yet. At the beginning of the for loop, Position’s value is set at 20. Then it be-
comes 21, then 22, and so on up to 180.

If you get confused by the idea of the value of a variable, just think of a little
box in memory with a number written inside and a name written underneath:

180

Position

Watching Variables with the Observe Window

Now let’s take a closer look at program execution, using MacPascal’s Observe
window. When the computer runs program Cartoon, it executes the instructions
one by one. The value of the variable Position is undefined until the for loop is
executed. Then its value advances from 20 to 180. With each change in the value
of Position, the circle is painted and erased a little farther to the right.

Using the Observe window, you can get step-by-step reports on the value of
Position as the ball rolls across the screen. To get these reports, you have to open
the Observe window and identify Position as the variable you want to watch.
Then you must deposit stops inside the program. Stops tell the Macintosh where
to stop and make reports.



48 Machine Organization and Program Planning

X’s, Y’s, and Z’s—The History of Variables

After printing with movable type appeared in Europe, about 550 years ago,
printers began to turn out bibles, playing cards—and books on mathemat-
ics. Some math books were in Latin, others were in the language of the writ-
er, and each writer had his own way of handling variables in algebra prob-
lems. Some used the Latin word res, meaning “thing.” Italians used cosa,
also meaning ‘“thing.” And Germans used zah/, the word for “number.” In a
big book, the repeated use of the same three- or four-letter word could cause
trouble: Type was expensive and printers often had limited supplies of the
letters.

Then, in 1637, the French mathematician René Descartes came up with
a new idea in a geometry book he was writing. He started using the single
letters x, y, and z for variables. But toward the end of his book, the letters y
and z appeared less and less often. Why?

Most books in France at that time were written in French or Latin, and
words in those languages have more x’s in them than y’s or z’s. The French
printers who set the type for Descartes’s book used up most of the y’s and
Z’s they had in stock in the early chapters. Probably they told the author to
finish his book using x as often as possible. Descartes’s book was very pop-
ular, and his use of letters for variables caught on.

When computers were first invented, programmers often used single
letters to name the variables in their programs. Computer memory was very
limited, and a single letter takes up less memory than a complete word. But
names for variables in programs have started to get longer and longer. Since
the cost of computer memory has come down, saving a few bytes by calling
avariable x instead of Position has become foolish. Computer people recog-
nize that a good program must be a clear program, and using descriptive
names for variables makes programs much easier to understand. So you
won’t find many y’s or z’'s—or even x’s—in this book.

Let’s observe the value of Position every time the invertcircle command is
about to be executed.

m First type in program Cartoon, or, if you saved a copy, bring it up. If you
don’t remember how to bring up a program, see page 32 in Chapter 1.

Setting up the Observe Window

B Now open the Observe window, and move it to the lower-left corner of the
screen. This prevents it from blocking the text in the Program window (see

Figure 2.2).



2.6 Watching Variables with the Observe Window 49

% File Edit Search Run Windows
Cartoon Tent

program Cartoon; *

var
Position : integer;
begin
writeIn('The First Cartoon!'); B Drawing

drawline(0, 100, 200, 100);
for Position := 20 to 180 do
begin
paintcircle(Pasition, 80, 20);
invertcircle(Position, 80, 20)

end
end.
{{(==== observe ==
Enter an expression || i3
— 5
&l =E
e e e I

Figure 2.2 The Observe window.

B Type “Position” in the upper-right box in the Observe window, where the
insertion point is located. This tells the Macintosh you want to watch the
variable Position.

Putting in Stops

Now you must indicate exactly where in the program you want to watch Posi-
tion. Because you want to watch Position between the paintcircle and the
invertcircle commands, you must put a stop to the left of the invertcircle instruc-
tion. To deposit a stop, take the following steps:

m First make the Program window active by clicking in that window. The
Observe window will disappear behind the Program window.

® Next open the Run menu and choose Stops In. This adds a Stop column at
the left of the Program window with a tiny stop sign at the bottom (see Fig-
ure 2.3). Now you are ready to insert a stop.

B Move the pointer to the Stop column. Something peculiar happens when
you do this. The pointer changes shape from an arrow to a stop sign.



50 Machine Organization and Program Planning

£ ==——=—= Cartoon

program Cartoon;
var
Pasition : integer;
begin
writeln('The First Cartoon!’);
drawline(0, 100, 200, 100);
™| for Position := 20 to 160 do
begin
paintcircle(Position, 80, 20);
invertcircle(Position, 80, 20)
end

&

Stop
Column

end. o

Figure 2.3 Program window with Stop column.

B To deposit a stop sign, move the stop sign pointer opposite the invertcircle
command, and click the mouse. When you slide the pointer away from this
position, the deposited stop sign will remain (see Figure 2.4).

[I—=—— (artoon —r——=|

o

program Cartoon;
var
Pasition : integer;
begin
writeln('The First Cartoon!');
drawline(0, 100, 200, 100}
for Position := 20 to 180 do
begin
paintcircle{Position, 80, 20);
@ invertcircle(Position, 80, 20}
end

end.

el

Figure 2.4 A stop sign next to invertcircle.



2.6 Watching Variables with the Observe Window

Running Program Cartoon with Stops

Now let’s see what happens when you run the program with a stop in it.

51

m First open the Windows menu and bring up the Observe window again.

B Run the program by choosing Go. The program will execute until it runs

into the stop sign. When it stops, you will see on the screen the caption, the
line, and the first frame of the cartoon—a black circle. A little hand will be
pointing to the next line to be executed—the invertcircle instruction. And
the Observe window will report the value of the variable Position—20.

e (userye e
20 |Position K3

Enter an expression

<]

Choose Go again. The Macintosh will go through the stop and continue
executing until it reaches that stop sign again one loop later. Now the value
of Position is 21, as you can see in the Observe window.

Choose Go two or three more times. Each time, the ball will move one unit
to the right and the Observe window will report the new value of Position.
This is too slow! Let’s start over and observe Position in a speedier way.

Open the Run menu and choose Reset. Reset clears the output windows and
readies the Macintosh for another run.

Running with Go-Go

There’s another way to watch a variable change after you have inserted stops.
When you run the program by choosing Go-Go, the cartoon runs in slow motion.

® Open the Run menu and choose Go-Go. As the program executes, it pauses

momentarily at the stop, prints the new value of Position in the Observe
window, and then resumes execution. Using Go-Go, you get a step-by-step
report on the value of Position as the ball rolls slowly across the screen.

Pause and Halt

Note that, whenever you run a program, a new menu heading called Pause ap-
pears at the top of the screen (see Figure 2.5). You can use the two commands in
that menu to stop program execution. Now get ready to use Pause in the middle
of execution.



52 Machine Organization and Program Planning

B € fije it Search Bup Wingows WG

Cartoon Halt Tent
program Cartoon; The First Cartoon!
var
Position : integer;
begin L]
writeln('The First Cartoon!’); Drawing

drawline(0, 100, 200, 100);
for Position := 20 to 180 do
begin
paintcircle(Position, 80, 20);
& invertcircle(Position, 80, 20)

end
end.

L —————
33 |Position K3):

Enter an expression

&

Figure 2.5 Pausing during execution with the value of Position equal to 33.

B Try Go-Go again and, when Position gets to 100, move the pointer to Pause
and hold down the mouse button. This stops the program temporarily.

B Release the button. Execution will start up again, and the program will run
to completion. Next get ready to freeze the program with Halt.

B Try Go-Go once more, and this time, when Position gets to 100, open the
Pause menu and choose Halt. This stops program execution. The cartoon in
the Drawing window is in suspended animation, and the current value of
Position is reported in the Observe window.

B Choose Go-Go again. You will see the rest of the cartoon. If you don’t want
to watch the rest of the cartoon, you can Halt once more and then open the
Run menu and choose Reset.

Taking Out the Stops

When you want your program to run normally again, you must remove the
stops.

B First activate the Program window.

B Move the pointer to the stop sign, and click. The unwanted stop will dis-
appear. (Note: This step is optional.)



e O

2.7 Arithmetic with Integers in MacPascal 53

B Now eliminate the Stop column from your program by choosing Stops Out
on the Run menu.

Right now the Observe window is useful only because it helps you under-
stand how variables work. Its real use comes when programs aren’t working
right—that is, when you have a bug. Then you can use the Observe window to
see whether the way you think the program is working squares with what’s really
going on. We will show you how to do this later.

Our next topic is Pascal arithmetic. First we’ll look at how Pascal handles
simple arithmetic. Then we’ll show you how the arithmetic operations can affect
looping—sometimes with spectacular results.

Arithmetic with Integers in MacPascal

Adding, subtracting, and multiplying are easy in Pascal. You use the plus sign
(+) to add, the minus sign ( —) to subtract, and the asterisk (*) to multiply. For
example, if you type

writeln((5 + 2) * (6 — 4))

in the Instant window and click on Do It, the integer 14 will show up in the Text
window.

Doing division is a little trickier; there are two different ways to divide in
Pascal. One way uses the symbol /. This is the kind of division you are used to:

10/4 = 2.50
9:0/3.0 = 3.0

The other kind of division uses the reserved word div, which means “divided by.”
Div works only with integers, or whole numbers. With div, you must always
divide one integer by another integer, and the answer will always be an integer.
For example,

5divi3 =1

This is so because 5 divided by 3 = 1 2/3, and div discards the fraction, leaving
the integer 1 as the answer. Using div is like doing long division and throwing out
the remainder. For example, if you wanted to calculate how many whole weeks
there are in March, you would divide 31 by 7, like this:

4
7)31
28
3

31 div 7 = 4 (throw out the remainder of 3)



54 Machine Organization and Program Planning

Because we're working only with integers in this chapter, we’ll be using only div.
Here are some other examples of how div works:

6 div 3
v div 3
8 div 3
9 div 3
-9 div 3
3 div 9
-9 div 4 = -2

1
O W LWL NN

Note: A smaller positive number divided by a larger one (both integers) always
comes out zero: Smaller div Larger = 0. And one more thing: 6 div 0 doesn’t
make sense, because we are never allowed to divide by 0. If you try to, your pro-
gram will bomb. That is, program execution will stop dead and you will get an
error message.

At first glance, div might seem weird and useless to you. But there are lots of
situations that require a whole-number answer.

Take these problems, for example: How many dozen eggs does your hen lay
a year, if she lays an egg a day? The answer is 365 div 12, or 30 dozen. How many
days has an astronaut been in orbit if she’s been up for 115 hours? The answer is
115 div 24, or 4 days.

EXERCISE 1  What is the value of each of these expressions?

a 9 div 2
b. 3 div 4

c. 3 div (-4) (Answer:0)

d. -20 div 8 (Answer: —2)
e. -10 div -3 (Answer: 3) wm

What happens when you use several operators in a single statement, like
this?

writeln(2 + (3 * 4) - (5 div 6))

Try it with pencil and paper. You should get 14, because 5 div 6 = 0.
But what does the computer print when you type in the following instruc-
tion?

writeln(5 + 4 ¥ 2)



2.7 Arithmetic with Integers in MacPascal 55

Does Pascal add 5 and 4 first and then multiply by 2, giving 18? Or does it multi-
ply 4 and 2 first and then add 5, giving 13? You can get either answer if you use
parentheses. The Macintosh will print 18 if you place the parentheses like this:

writeln((5 + 4) * 2)
And it will print 13 if you place the parentheses like this:
writeln(b + (4 % 2))

But if you leave out parentheses, Pascal has a rule that tells which operations are
done first. Pascal does multiplications and divisions first, in the order in which
they appear left to right. Then it does the additions and subtractions, also in the
order in which they appear. This means that

5+ 4 %2=54+8=13
and
8-3dlv5=8-10=8
How about this?
5+ 3-2%6div 4
In this case, 2 * 6 is done first (because * comes before div), leaving
5+ 3 - 12 div 4
Next 12 div 4 is done, leaving
2+ 3 =3

And then the addition is done, followed by the subtraction. So the answer is 5.

The Rules of Arithmetic in MacPascal

1. First do all the multiplications and divisions from left to right.
2. Then do all the additions and subtractions from left to right.

EXERCISE 2 What should these statements print out? Work out the answers with pencil
and paper. You can check yourself using the Instant window.
a. writeln(2 + 4 div 6 * (8 - 10))
b. writeln(100 div 5 div 4 div 3 div 2)
c. writeln(10 div 2 ¥ 10 — 10 div 3) ==



56 Machine Organization and Program Planning

———2.8 Arithmetic and Looping

The real power of arithmetic in programming comes when you do arithmetic in-
side a loop. To see how this works, let’s take a look at program FirstLoop, which
prints the numbers 1 through 4 in a column.

program FirstLoop;
var
Number : integer;
begin
for Number := 1 to 4 do
begin
writeln(Number)
end
end.

If we make this change in the writeln statement
writeln(Number + 1)

We'll get this column of numbers instead:

A A VU V]

And if we change it to
writeln(Number - 3)

the column will look like this:

To print out the first four even integers,

2
4
6
8
we need to use this writeln statement:

writeln(Number * 2)



2.8 Arithmetic and Looping 57

And with
writeln(Number div 2)
in the loop, we'll get

0
1k
1
2

One last example. The MacPascal standard procedure sysbeep commands
the Macintosh to make an electronic beep. The instruction sysbeep(10) produces
a beep that lasts for 10 * .022 seconds. Sysbeep(20) sounds the beep for 20 * .022
seconds. What do you think the following program does?

program Beep;
var
Number : integer;
begin
for Number := 10 to 20 do
begin
sysbeep(5 % Number)
end
end.

EXERCISE 3  a. What does this version of program FirstLoop print?

program FirstLoop;
var
Number : integer;
begin
for Number := 1 to 4 do
begin
writeln(Number * Number div 5)
end
end.

Answer: 0-0-1-3 in a column

b. Change program FirstLoop so that it prints out each of the following col-
mns of numbers.

3. 0 <=2 =8

6 3 0 -6
9 6 2 4
2. 9 b 2 =m



58 Machine Organization and Program Planning

24

Solving Arithmetic Problems

Now you know enough about using arithmetic in Pascal to write programs that
will solve problems. Let’s see how to solve this one: Print out all the years from
1901 to 1999 that end in zero.

To write this program, you need to know that there are nine years between
1901 and 1999 that end in zero. This means that there will be nine repetitions of
the loop.

program Tens;
var
TenYearPeriod : integer;
begin
for TenYearPeriod := 1 to 9 do
begin
writeln(1900 + (10 * TenYearPeriod))
end
end.

If you want to print out all the years from 1900 to 1999 that end in 9, you

can write the program in two different ways (at least). Here is one way.

program NinesOne;

var

TenYearPeriod : integer;
begin

for TenYearPeriod := 1 to 10 do

begin

writeln(1899 + (10 * TenYearPeriod))

end
end.

Here is another.

EXERCISE 4

program NinesTwo;
var
TenYearPeriod : integer;
begin
for TenYearPeriod := 0 to 9 do
begin
writeln(1909 + (10 ¥ TenYearPeriod))
end
end.

How about printing the leap years in the twentieth century? Leap years are
years that are divisible by 4, except for some century years such as 1900. Be-
cause there are 24 leap years from 1900 to 1999, the program looks like this:



2.10 Using Arithmetic in Program Explode 59

program Leap;

var
LeapYear : integer;

begin

for LeapYear := 1 to 24 do
begin
writeln(1900 + 1)
end

end.

What expression should go in the box to instruct the computer to print out
all the leap years in the twentieth century? mm

———2.10 Using Arithmetic in Program Explode

Now let’s use what we’ve just learned to do some fancy geometry programs,
starting with a variation of program Explode (Problem 5 at the end of Chapter
1). Let’s use multiplication in the for loop to make this program more exciting.
Here’s the original program:

program Explode;

var
Radius : integer;

begin

for Radius := 1 to 100 do
begin
painteirele(100,100,Radius)
end

end.

Bring up program Explode, or, if you don’t have a permanent copy on a
disk, type the program in. Now run it. Note that the exploding circle grows
slowly. This happens because, each time the paintcircle instruction in the for
statement is executed, the radius of the circle grows by just one unit.

To speed up the explosion, let’s make the radius grow by two units each time
through the loop. This means that we will need only 50 repetitions, or iterations,
of the loop (instead of 100) to end up with a circle that has a radius of 100. The
for statement in program Explode will now look like this:

for Radius := 1 to 50 do

begin

paintecirele(100,100,2 * Radius)
end

Make this change and test it out. And while you're at it, play around with
program Explode, making the explosion happen even faster—say, in 10 or 15
iterations.



60 Machine Organization and Program Planning

———2.11 Planning a Graphics Program—Drawing Diamonds

In this and the next example, we are going to explain how to write programs.
Programming is a problem-solving skill that requires concentration, persistence,
attention to detail, and (above all) practice.

In the first of these two examples, we want to write a program that draws a
diamond like the one shown in Figure 2.6. We'll call it program Diamond.

(100,0)

(0,100) (200,100)

(100,100)

(100,200)

Figure 2.6 The diamond consists of 201 pairs of line segments, but only 5 are shown
here.

When we solve a problem using the computer, we begin simply by thinking
about the problem until we are sure we know exactly what is required. This is
what we come up with:

The diamond has 201 pairs of line segments, and each pair meets halfway
across the screen at horizontal position 100. The first two lines meet at the top.
Each time the program draws another pair of lines, the point where the segments
meet is one unit farther down. The vertical position of the meeting point of the
two segments starts at 0 and goes down to 200. Because the meeting point is what
varies in the picture, MeetingPoint will be a variable in our program. It will rep-
resent the vertical position of the point where the line segments meet.

Now we know enough to make a rough plan for the program. Here’s the
plan:

As MeetingPoint of the line segments goes from 0 to 200,
draw the left segment
draw the right segment



2.11 Planning a Graphics Program—Drawing Diamonds 61

>

This looks promising! Now let’s change the “As. . .” statement into a Pascal for

statement:

for MeetingPoint : = 0 to 200 do
draw the left segment
draw the right segment

Let’s refine our plan by concentrating on how to draw the left segments. All
the left segments are anchored at point (0,100), and they all end halfway across
the screen (see Figure 2.7).

(100,0)

(100,50)

(0,100) (100,100)

(100,150)

(100,200)

Figure 2.7 The left segments of the diamond.

In other words, the horizontal position of the right endpoints of the line seg-
ments on the left is fixed; it is always 100 units over from the left. The vertical
position of the right endpoints does vary; with each successive line, it gets one
unit farther down from the top. So with each line, the value of the variable

MeetingPoint gets one unit larger. The instruction that draws each left segment
should be

drawline(0,100,100,MeetingPoint)

The instruction that draws the right segments looks almost the same. The
right segments are anchored at the point (200,100), so the instruction should be

drawline(200,100,100,MeetingPoint)



62

Machine Organization and Program Planning

We're almost there. But first we'll have to write a variable declaration for
MeetingPoint.

var
MeetingPoint : integer;

Now we can put the complete program together.

program Diamond;

var
MeetingPoint : integer;

begin

for MeetingPoint := 0 to 200 do
begin

drawline(0,100,100,MeetingPoint);
drawline (200,100, 100,MeetingPoint)
end

end.

What happens when you run program Diamond? Program Diamond draws
a picture that looks pretty exciting as it appears on the screen. But there’s a prob-
lem. The lines are so close together that they blend into a solid black diamond
(see Figure 2.8). To fix this problem, we can spread out the lines and draw fewer
of them. This means doing fewer repetitions of the for loop and moving the meet-
ing point correspondingly farther down the screen with each iteration. Let’s
draw the picture with about one-fourth as many lines. For the upper limit of the
for loop we’ll use the expression 200 div 4, which equals 50. The meeting points
will be four units apart. Here’s how the loop should look:

for MeetingPoint := 0 to (200 div 4) do
begin
drawline(0,100,100,4 ¥ MeetingPoint);
drawline(200,100,100,4 % MeetingPoint)
end

This time when you run program Diamond, you can see the individual lines. See
Figure 2.9(a).

When we run the program with just one-seventh as many lines, using this
loop

for MeetingPoint := 0 to (200 div 7) do
begin
drawline(0,100,100,7 * MeetingPoint);
drawline(200,100,100,7 % MeetingPoint)
end

we get the picture shown in Figure 2.9(b). This picture is a little peculiar, if you
look closely, because of the way div works. The picture doesn’t quite reach the



2.11 Planning a Graphics Program—Drawing Diamonds 63

EO=———= prowing =——|

)

Figuré 2.8. Program Diamond’s 201 pairs of lines blend together to form a completely
black diamond.

E[1==== Drawing ﬁ| = hnwing ===

(a) The div 4 version. (b) The div 7 version.

Figure 2.9 Program Diamond debugged.



64 Machine Organization and Program Planning

bottom of the Drawing window, which is 200 units down from the top. This is so
because the value of the upper limit in the loop is 200 div 7 = 28. So, at the last
loop iteration, MeetingPoint has the value 28. After the loop repeats 28 times,
the last meeting point is 196 units down, because 7 * 28 = 196. This is 4 units
short of the bottom.

For more on program Diamond, try Problems 6, 7, 8, and 9 at the end of
this chapter.

Algorithms and the Man from Khwarizm

A little more than 1200 years ago, the Caliph of Baghdad invited a scientist
named Muhammad, son of Moses, to teach and study at the House of Wis-
dom, an academy of learning in Baghdad. The scientist came to be known
as the Man from Khwarizm, the province in Central Asia that had been his
home. In Arabic his name was Al-Khwarizmi.
Al-Khwarizmi was especially interested in solving problems by using
equations, and he wrote a book about his method. One of the Arabic words
. in the title of his book was al-jabr. When it was translated into Latin, that
word became algebra. From then on, mathematicians called Al-Khwarizmi’s
method of solving problems algebra. In Europe his name was pronounced
“Algorismus,” and gradually the art of doing arithmetic came to be called
algorism or algorithm. Today mathematicians use the word algorithm to
mean a careful, step-by-step method of calculating. And in computer sci-
ence, it means a detailed plan for solving a problem using the computer.

—2.12 Thinking, Planning, Coding, and Testing and Debugging

Before we go on to our next example, let’s summarize the steps we went through
as we wrote program Diamond.

1. First we went through a thinking step, in which we described our program-
ming problem in detail. In the thinking step it is often helpful to work the
problem with pencil and paper first. Making a diagram can also be useful if
the purpose of the program is to draw a picture.

2. Our second step was a planning step. We divided the problem into clear,
understandable units and wrote them down in English phrases. After we
formulated a loose plan, we refined it and converted it to a tight plan, or al-
gorithm. Algorithms are written in English phrases mixed with Pascal.



2.13 AnOrbiting Planet 65

3. Coding was our third step. In this phase we actually converted our tight
program plan, or algorithm, into Pascal instructions.

4. Our final step was testing and debugging. We tested program Diamond by
running it. And, when we weren’t satisfied with the picture we got, we
debugged the program by spreading the line segments in the Drawing win-
dow.

So there are really four separate steps to programming: thinking, planning,
coding, and testing and debugging. What you probably think of as program-
ming is actually just the coding part—writing down the MacPascal instructions
that will solve your problem. But there is much more to programming than
coding.

Algo-what?

You are probably wondering exactly what the word algorithm means. An al-
gorithm is a list of informal instructions that will systematlcally get some
job done. Even though you may not have heard of algorithms before, you use
them every day. A pancake recipe, for example, is an algorithm. It’s a step-
by-step list of instructions for making pancakes. And the instruction booklet
that comes with a camera mcludes an algonthm for changmg a roll of fllm
Even this is an algorithm:

You put your right foot in,

You put your right foot out,

You put your right foot in,

And you shake it all about.

for doing the Hokey Pokey . .

——2.13 An Orbiting Planet

Next we want to design and write a spectacular program called program
PlanetIn3D. Here’s what the program will do. A planet (a flickering ball) will
move from the upper-left corner of the output window diagonally across the
screen and will exit from the window at the lower-right corner. (See Figure
2.10.)

As it moves, the planet will also grow in size—let’s say from radius 0 at the
upper-left corner to radius 40 at the lower-right corner. (W=z’ve chosen 40 for the
final radius of the circle for no special reason except that it looks good. The final
size of the planet will be less than half the size of the standard Drawing window.)



66 Machine Organization and Program Planning

I/

.

Figure 2.10 The planet will move from the upper-left corner to the lower-right corner.

Now let’s work through the four programming steps with program

PlanetIn3D.

Thinking 00)

@— (50,50)

(150,150)

(100,100)

Radius = 40

(200,200)

Let’s look at the accompanying diagram to see what it tells us about our prob-
lem. Notice where the planet enters the window and where it leaves. It starts
with its center at point (0,0). And it stops at point (200,200). In between, the



2.13 An Orbiting Planet 67

center goes to (1,1), then to (2,2), and so on. At each position we want the planet
to flicker (appear and disappear) just like the ball in program Cartoon. Now we
understand the problem well enough to start planning the program.

Planning

Here is our first rough plan for the program.

PlanI
As the planet moves from the upper-left corner to the lower-right corner,

make the planet flicker and grow

Now we can make the plan more specific and turn it into an algorithm.

Plan II—The Algorithm
As the horizontal and vertical positions of planet go from 0 to 200,

make planet flicker and grow from radius 0 to radius 40.

Coding

We are now ready to translate our algorithm into Pascal. Let’s look at the dia-
gram on page 66 again. As the planet moves diagonally across the screen, it does
three things: It moves across, it moves down, and it gets bigger. This might lead
you to think, “Aha! Three things change so we need three variables.” Luckily
this isn’t so. Here’s why.

The center of the circle starts at (0,0) and goes to (1,1), then to (2,2) and so
on. The value of its vertical position is always the same as the value of its horizon-
tal position. This means that we need only one variable for the horizontal and
vertical positions. Let’s call the variable PlanetPos.

The radius gets bigger as the value of PlanetPos increases, so let’s try using
PlanetPos to stand for the radius, too. (We are deliberately making an error so
that we can show you how to debug later.) Here is the program:

program PlanetIn3D;

var
PlanetPos : integer;

begin

for PlanetPos := 0 to 200 do
begin

paintcircle(PlanetPos,PlanetPos,PlanetPos);
invertcircle(PlanetPos,PlanetPos,PlanetPos)
end
end.



68

Machine Organization and Program Planning

Testing and Debugging

The final step in programming involves testing the program to see whether it
does what we want—and debugging it if it needs fixing. Let’s test the program
by running it. When you try, you'll see that. . . well, it almost works. The prob-
lem is that, when the circle reaches the lower-right corner, it’s huge. But the
problem’s specification, or description, says that the planet’s radius should be
only 40 when the planet reaches the right wall of the window. The program has
a bug.

Here’s a pencil-and-paper trick for debugging loops. You can use it from
now on, whenever you program. If a loop isn’t working right (and this one isn’t),
see what the loop is doing at the first iteration and at the last iteration. In this
case, looking at the first iteration doesn’t help much. The program does the two
instructions:

paintecirele(0,0,0);
invertcirele(0,0,0)

But looking at the last iteration is more promising. The program executes these
two instructions:

paintcirele(200,200,200);
invertcircle(200,200,200)

And here is our bug. When the planet reaches the right side it has radius
200—and we want it to have radius 40.

Debugging with the Observe Window

This is a place where the Observe window can help us. To make use of it,
we need to bring it up and enter PlanetPos as the expression to watch.
Then we can deposit a stop just before the invertcircle command and run
the program using Go-Go. We can watch the successive values of
PlanetPos as the planet moves across the screen and becomes more and
more oversized.

We want the radius to start at 0, growing smoothly until it reaches 40,
which is exactly one-fifth of 200. We can get this to happen if we make the radius
one-fifth of PlanetPos throughout the entire loop. Now the planet will be the
right size when we get to the last iteration, and our bug will be fixed. Here’s the
new program.



2.14  Getting the Planet to Return—Backward For Loops 69

program PlanetIn3D;

var
PlanetPos : integer;

begin

for PlanetPos := 0 to 200 do
begin

paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)
end

end.

— 2.14 Getting the Planet to Return—Backward For Loops

Suppose we want to extend the code in PlanetIn3D so that the planet retraces its
steps, as shown in Figure 2.11. This will be easy once we’ve mastered Pascal’s
backward for loop construction.

e

Figure 2.11 The planet retraces its steps.

The backward for loop makes the value of the variable go down by 1 with
each iteration, instead of up by 1. Here’s an easy example of how this works:

for Number := 4 downto 1 do
begin

writeln(Number)

end;



70 Machine Organization and Program Planning

This loop prints the column

4

3
2
1

With the backward for loop, we can get the planet to return by using the fol-
lowing statement:

for PlanetPos := 200 downto O do
begin
painteircle(PlanetPos,PlanetPos,PlanetPos div 5);
inverteircle(PlanetPos,PlanetPos,PlanetPos div 5)
end

Here is a complete orbiting planet program:

program PlanetIn3D;

var
PlanetPos : integer;

begin

for PlanetPos := 0 to 200 do
begin

paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcirecle(PlanetPos,PlanetPos,PlanetPos div 5)
end;

for PlanetPos := 200 downto O do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)
end

end.

Note: If you have already typed in the first loop and you want to add the sec-
ond loop, use Copy and Paste.

——2.15 Outside the Standard Drawing Window

One final touch. Note that the planet is still half on the screen at the end of the
first loop. We can make it completely disappear by executing the for loop a few
more times. Try increasing the limit in both loops from 200 to 250 and see what
you get.

Something mysterious happens when you do this. The planet disappears at
the lower-right corner of the window and hesitates for a while before it comes
back. What’s going on?

-



2.15  Outside the Standard Drawing Window 71

It turns out that you can write commands to draw shapes outside the limits
of the standard Drawing window. When you run the program, the commands
are executed, but you don’t see them on the screen—that is, unless you enlarge
the Drawing window. If you use the Size box to make the Drawing window
larger, you will be able to see the planet go through all 250 loops.

You can write commands that will do imaginary drawings that extend way
beyond the borders of the Drawing window, even when it is at its largest. Think
of the Drawing window as a window that looks out onto an area that is far bigger
than the actual Macintosh screen.

Tuning Your Planet

Unhappy with the speed of your planet as it moves across the Drawing win-
dow? Try speeding it up.

Make it move two or three times as fast by adjusting how far the planet
moves between flickers. Right now it’s slow because it flickers at the point
(0,0), then at (1,1), then at (2,2), and so on. Make it flicker at (0,0), (2,2), (4,4),
and so on.




72 Machine Organization and Program Planning

—2.16 Comments

With program PlanetIn3D we have reached a milestone. Our programs are now
so complex that we need to include notes, or comments, in the program text to
explain how the program works. Remember, a comment in Pascal is a message in
English, enclosed in braces:

{THIS IS WHAT A COMMENT LOOKS LIKE.}

Pascal skips over whatever is inside these braces and doesn’t treat it as part of
the program. So we can write whatever we like inside the braces, and it won’t
affect the output of the program. We include comments to explain to ourselves
and to others what our programs are all about. In this book we use all capital let-
ters in comments to distinguish them from program instructions. But either capi-
tal or lowercase letters will work in comments.

To show you how helpful comments are, we’ve gone back and put them in
our last program. With comments in place, PlanetIn3D is much more under-

~ standable for anyone who tries to read it (including you a couple of months from
now).

Here’s PlanetIn3D with comments:

program PlanetIn3D;
{PLANET MOVES FROM UPPER LEFT TO LOWER RIGHT AND GROWS.!}
{THEN IT REVERSES ITS PATH AND SHRINKS.}
var
PlanetPos : integer;
begin
{PLANET MOVES FROM UPPER LEFT TO LOWER RIGHT.}
for PlanetPos := 0 to 200 do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)
end;
{PLANET RETURNS FROM LOWER RIGHT TO UPPER LEFT.}
for PlanetPos := 200 downto O do
begin
painteircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)
end
end.

The first comment in a program should go right under the heading line and
should summarize the purpose of the program. Often it is helpful to putin a com-
ment that explains what a variable stands for. Each of the other comments
should explain the purpose of the instructions that follow it.

Note that in PlanetIn3D we don’t go overboard explaining what’s obvious.
In deciding what comments to use, you should go back and look at your plan,
which tells the purpose of each step in the program.



P 4 |1

2.17 Good Names, Bad Names, and Syntax Diagrams 73

Comments should be in English and not in Pascal. Good comments are
often similar to or the same as the steps you identified in your program plan.

When have you done a good job of commenting? One way to decide is to
apply the “vacation test.” Imagine that you are going on vacation for a month.
When you return, will you be able to understand the programs you wrote before
you left?

From now on, all but the simplest programs you write should include com-
ments. Don’t be tempted to skip them. At the very least, you should put a one-
line comment that states the purpose of the program just below the heading line.

Good Names, Bad Names, and Syntax Diagrams

When you make up a name for a program, it can’t be just anything you think of.
For example, reserved words such as begin, end, and do can’t be used in a made-
up name in a Pascal program. A list of the reserved words appear inside the front
cover of this book.

MacPascal rules forbid us to use certain names such as 3DPlanet, although
PlanetIn3D is OK. The rule says that any identifier—a name you make up and
assign to a program or a variable—must begin with a letter. Digits and the un-
derscore symbol may appear elsewhere in the name, however. This means, for
example, that you could name a program R2__D2.

Pascal has lots of rules like the identifier rule, so the designers of the lan-
guage use syntax diagrams to help make the rules clear. The syntax diagram for
identifiers is shown in Figure 2.12.

How does this diagram help us? To check whether R2_D2 is OK, we start at
the left and match the first symbol (R) against the first box, which is labeled
“letter.” R is a letter, so we can go on.

The next symbol is the digit 2. If we follow one of the loops after the first let-
ter box, we come to a digit box, so 2 is also OK.

Then we follow the loop with the underscore box to determine whether the
underscore is OK. It is.

Identifier——p|  letter

v

( b
T

oo/
forsorele

Figure 2.12 The syntax diagram for identifiers.




74

Machine Organization and Program Planning

Next we match the D against the letter loop and the 2 against the digit box,
and we're finished. The identifier R2_D2 has made it through the syntax dia-
gram, so it’s OK as an identifier.

How about 3D? As you have probably figured out, 3D is not OK. Starting at
the left, the first box in the diagram is labeled “letter.” Because 3 is not a letter,
and because there’s no alternative route to get past this part of the diagram, 3D is
not allowed as an identifier. D3 is OK as an identifier, but D 3 (with a space in
the middle) is not. When Pascal gets to the space in the middle, it “thinks” it has
come to the end of the name. Then Pascal runs into the 3 and doesn’t know what
to make of it.

Here’s a tip on making up identifiers: When you invent names for variables,
use names that are as close as possible to the actual idea they represent. If you
want a variable to represent the position of a planet as it orbits, don’t call it X, or
Number, or even Spot. Call it PlanetPos.

TEST YOURSELF

1. What is the CPU?

2. What do we mean when we say, “The value of the variable is of type
integer”?

3. What is the value of 5 * 4 div 3? of 5 div 4 * 37 of 5 div (4 * 3)?

4. When you run a program using Go-Go, what happens when a stop is
encountered?

What is an algorithm?

What is the “vacation test” for comments?
What are the four steps in programming?
What happens in the coding step?

What is a byte?

10. What is a bit?

O© o 31 S U

PROBLEMS

1. a. Give the values of the following Pascal arithmetic expressions.
Check yourself using the Instant window.

2+3div2 %6 -5
5+ (2 % 2)
2+3-(5%3)div4d +2

b. Homer has 1038 eggs he wants to sell. Give a Pascal expression that tells
how many full dozens of eggs Homer can take to market.



Problems 75

2. What picture does this program draw? Figure it out before you try it.

program MakeLines;

var
EndPoint : integer;

begin

for EndPoint := 0 to 100 do
begin
drawline(0,0,200,2 % EndPoint)
end

end.

3. Modify the for loop in program MakeLines so that the lines drawn are twice
as far apart.

4. a. What does this program do?

program NotSure;

var
Point : integer;

begin

for Point := 0 to 200 do
begin
drawline(0,Point,Point,Point)
end

end.

b. What happens when you try program NotSure with this drawline in-
struction?

drawline(0,2 * Point,2 * Point,2 % Point)
c¢. What about this one?

drawline(2 % Point,0,2 % Point,2 % Point)
d. And this one?

drawline(0,Point,2 * Point,Point)

5. How could you change program NotSure to get these pictures?
a. b. c.




76

Machine Organization and Program Planning

10.

Change program Diamond so that the diamond
appears on its side. Use the think-plan-code-test-
and-debug method to solve this problem.

Change the lower and upper limits in the for loop
of program Diamond so that you get a picture like (100,50)
this:

(100,150)
How could you shift the meeting point in program (50,0)
Diamond 50 units to the left so that the program
draws this picture?

(50,200)

Change program Diamond so that all the left segments are drawn first and
then all the right segments are drawn.

(Hint: You’ll need two loops).

Which of the following are legal identifiers?
. D2_R2

. Monkey_Business

. 5_Easy_Pieces

. Five Dollar Bill

. NO_Way

No Way

—e a0 o



Problems

77

11. Look at the accompanying syntax diagram. Which of the following sen-

tences are OK for this diagram?

stirred

| the cake

batter

. Jamie stirred and stirred and stirred the cake batter.

a
b. Luke stirred stirred the cake batter.
. Jamie and Luke stirred the cake batter.
d. Jamie or Luke stirred the cake batter.
e. Luke stirred the cake batter.

Answer: a and e

12. Draw this picture in the Drawing window.

(e

13. Write programs that print out the following columns of numbers:

a. 0 b. 5 c. 9 d. 90
0 6 8 80

0 7 7 70

0 8 6 60

9 5 50

14. What does this program print?

program Question;
var
Number : integer;
begin
for Number := 5 downto O do
begin
writeln(Number)
end
end.

e. 51
52
53
54
55

f. 2
2

AW Ww

MOV RERPEROOO



78 Machine Organization and Program Planning

15. What does this program do?
program What;

var
Position : integer;

begin

for Position := 0 to 200 do
begin

inverteirele(100,Position,40);
invertcirele(100,Position,40)
end
end.

16. Try to figure out what this program does, and then run it.

program MoreLines;
var
Point : integer;
begin
for Point := 0 to 20 do
begin
drawline(0,10 ¥ Point,200,200 — 10 % Point)
end
end.

Now change program MoreLines so that the image it produces is rotated 90
degrees and looks like a vertical hourglass.

17. Write programs that draw these pictures.

a. b. c.
80
80 80
40
o | 777 7l
—— (——
40 40
——




—_—13.1

Syntax,
Interactive Programs,
and Real Numbers

Pascal has a lot of rules for arranging and punctuating programs, and we will
talk about them in this chapter. You have to know them, or your programs just
won’t run. These rules make up the syntax of Pascal. When you master them,
you will be able to write your own programs from scratch. The better you know
the rules, the fewer bugs you’ll have.

We are also going to show you how to write interactive programs. When
you run an interactive program, it stops in the middle of execution and asks you a
question about what to do next.

Finally, we’ll show you how to use real numbers—numbers with decimal
points. Real numbers are important for doing scientific calculations, working
with percentages, and making calculations with money.

Pascal Syntax—How to Beat the Bugs

PlanetIn3D is the most complicated program we've seen so far. Let’s use it to ex-
plore Pascal’s syntax rules.

program PlanetIn3D; (1)

var
PlanetPos : integer; @
begin
for PlanetPos := 0 to 200 do
begin

paintcircle(PlanetPos,PlanetPos,PlanetPos div 5); (:)
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)

end;

for PlanetPos := 200 downto 0 do

begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5); (:)
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)

end

end.

79



80

Syntax, Interactive Programs, and Real Numbers

Semicolons

Placing semicolons correctly is an important part of mastering Pascal syntax.
Semicolons separate statements. They also mark the end of the heading line of a
Pascal program, and they end variable declarations.

Look at the five semicolons in PlanetIn3D. The first one separates the head-
ing line from the variable declaration. The second semicolon separates the
variable declaration from the body. The third and fifth semicolons separate
paintcircle instructions from invertcircle instructions. And the fourth semicolon
separates the two for statements.

The invertcircle instructions are not followed by semicolons. Why? Because
each is followed by the reserved word end and not by another statement. A semi-
colon is never needed before an end, because the word end also serves to separate
statements. (Pascal is generous here. If you put a semicolon after the invertcircle
statements, it will not object.)

You don’t need a semicolon after the word end in the second loop either. It’s
not followed by another statement. But, as before, Pascal doesn’t mind if you put
one in.

Let’s make some changes in PlanetIn3D that illustrate another important
syntax rule. We'll call the new program TwoStreaks. See Figure 3.1 for sample
output.

[ Drawing =——=

oy

Figure 3.1 The output for program TwoStreaks.




3.1 Pascal Syntax—How to Beat the Bugs 81

program TwoStreaks;

var
PlanetPos : integer;
begin
for PlanetPos := 0 to 200 do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5)
end;
for PlanetPos := 200 downto 0O do
begin
paintecircle(PlanetPos,200 - PlanetPos,PlanetPos div 5)
end
end.

In program TwoStreaks the paintcircle instructions are no longer followed
by semicolons. Why? In each case the instruction is followed by the reserved
word end, not by another statement.

Begin and End

We can simplify the form of program TwoStreaks by getting rid of the begin and
the end inside each for loop:

program TwoStreaks;
var
PlanetPos : integer;
begin
for PlanetPos := 0 to 200 do
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
for PlanetPos := 200 downto O do
paintecircle(PlanetPos,200 - PlanetPos,PlanetPos div 5)
end.

Because there is only one instruction in each for statement, the begin-end
pair that usually frames the for body is not necessary. When the body of the for
statement doesn’t start with the word begin, the for control line applies only to
the next statement and to no others.

Now that we’ve eliminated the begin-end pair, we need a semicolon after
the paintcircle instruction in the first for statement, because the second for state-
ment follows directly after it.

Be careful when you get rid of the begin-end pair in a for statement: If you
try to include two statements instead of just one in the for loop, you’ll get into



82 Syntax, Interactive Programs, and Real Numbers

trouble. For example, if you write the first for loop in program PlanetIn3D like
this:

for PlanetPos := 0 to 200 do
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5);

the program will behave strangely. Because the begin and end have been omit-
ted, the for statement will apply only to the painicircle statement. This leaves the
invertcircle command dangling—it’s not in the body of the loop. But it includes
the control variable PlanetPos, which gets its value from the control line.

When program execution reaches that statement, you won’t actually get an
error message. Something worse will happen. MacPascal will assign an arbitrary
value to PlanetPos and execution will continue. You won’t see what you expect-
ed, and you won’t know where to start looking for the problem.

EXERCISE 1  On a piece of scratch paper, insert the punctuation that should appear in the
following program. Then see whether your version conforms to the listing in
Problem 2 of Chapter 2.

program MakeLines

var
EndPoint integer

begin

for EndPoint O to 100 do
begin
drawline 0 O 200 2 ¥ EndPoint
end

end

What can you do to simplify the program? ==

—— 3.2 What Is a Statement?

Semicolons separate statements. To place them correctly, you need to under-
stand exactly what a statement is.-

In Pascal, the term statement is the official name for an instruction or com-
mand. So far we have seen three different kinds of statement. The simplest state-
ments are the standard procedures: writeln, paintcircle, invertcircle, and
drawline. These are called simple statements.




3.2 WhatlIs a Statement? 83

Next come compound statements. A compound statement is a kind of pack-
age of statements that starts with the word begin and ends with the word end. It
has this form:

begin
statement 1;
statement 2;

statement n - 1;
statement n
end

Even if there’s only one statement between the begin and the end, the package is

considered a compound statement. In fact, it is still a compound statement if you

put nothing between the begin and the end. We'll talk about this in a moment.
Finally there are for statements, which have this form:

for control-variable := initial-value to final-value do
statement;

The body of a for statement is itself a statement. It can be a simple state-
ment:

for Number := 1 to 5 do
writeln(Number);

a compound statement:

for Position := 20 to 180 do
begin
paintcircle(Position,80,20);
invertcircle(Position,80,20)
end;

or even another for statement:

for Number := 1 to 3 do
for PledgeNumber := 1 to 500 do
writeln('I will not talk in class.');

All three of these examples are legal statements. In each case the body of the
for statement is also a statement. In the first example, the body is a simple state-
ment. In the second it’s a compound statement. And in the third it’s actually an-
other for statement.

A loop that comes inside another loop is called a nested loop. The nested
loop in the third example prints three blocks of 500 copies of “I will not talk in
class.” That is, the writeln statement is executed 1500 times. We'll tell you more
about nested loops a little later.



84 Syntax, Interactive Programs, and Real Numbers

Because for statements are legal statements, you need to use a semicolon to
separate a for statement from any statement following it.

The Empty Statement
Now suppose you open the Instant window and type in

begin
end

What happens when you click on Do It? MacPascal does not complain. It
happily runs this little compound statement according to the following philoso-
phy: “If you don’t want me to execute any instructions, I won’t consider what
you’ve done a mistake.” However, MacPascal does consider there to be a state-
ment between the begin and the end. It is called the empty statement.

More nonsense: Suppose you open the Instant window and type in

begin

end

Again no complaints. MacPascal sees two empty statements, one before the semi-
colon and one after. When you run it, this compound statement does noth-
ing—twice!

Will Pascal accept the following program?

program Test;
var
Number : integer;
begin
for Number := 1 to 5 do
begin
writeln(Number);
end
end.

Yes. Each time through the loop, Pascal does the writeln statement. When it hits
the semicolon, it thinks another statement is coming. Then it comes to the end,
and it figures you've included an empty statement, so it just goes on about its
business. In fact, it would even accept this:

for Number := 1 to 5 do
begin
writeln(Number);;

end

Pascal would just figure that you've included two empty statements after
the writeln.



3.3 Syntax Notation 85

——3.3 Syntax Notation

You now know about four different kinds of statement: simple statements, com-
pound statements, for statements, and empty statements. When we want to indi-
cate that a statement of some kind must appear at a particular place in a pro-
gram, we use this notation:

{(statement)
And the syntax of a for statement has this general form:

for control-variable := initial-value to final-value do
{statement)

Pascal expects every for statement to have this form. For example, we have
the following match-ups with the for loop in program Test which is shown on

page 84.
for control-variable := initial-value to final-value do
for Number := 1 to 5 do
begin
writeln(Number); |[«———(statement)
end

You will get an error message if your for statements don’t conform to this general
pattern.

Syntax diagrams are another way to show how the syntax of a statement
works. For the for statement, we can draw the diagram shown in Figure 3.2.

If we trace through the for loop in program Test, we find that everything in
the loop matches up with an essential feature of the for loop in the syntax dia-
gram. Thus we know the syntax of the loop is correct.

In the Macintosh Pascal reference manual, syntax diagrams are the stan-
dard way of describing Pascal syntax. From time to time we will also use syntax
diagrams to clarify the syntax for a particular instruction.

—> control-variable @—>

&@

Figure 3.2 A syntax diagram.



86 Syntax, Interactive Programs, and Real Numbers

EXERCISE 2

Use the for-loop syntax diagram to check the three for loops on page 83 to
determine whether they are legal. wm

Syntax Rules
Let’s sum up what we’ve discovered so far about Pascal’s syntax rules.

1. Every program must have a heading line, a declaration part, and a
body.
2. You must use semicolons:
a. After the heading line
b. After each variable declaration
c. Between statements

3. So far, we have seen four kinds of statement:
a. Simple statements consisting of standard procedures
b. Compound statements, which have the form
begin
{statement);

(statement)
end

c. For statements, which have the form

for control-variable := initial-value to final-value do
{statement)

d. The empty statement

4. The body of a for statement is itself a statement. It can be:
a. A simple statement
b. A compound statement
c. Another for statement (a nested loop)
d. An empty statement

5. A for statement whose body contains a single statement does not
need a begin-end pair.

6. You do not need a semicolon:
a. After a statement if that statement is followed by the reserved
word end
b. After the reserved word end if end is followed by another end.

7. Every program ends with a period.




3.4 Nested Loops 87

—— 3.4 Nested Loops

In the third example in the previous section, we introduced something new—a
loop within a loop, or a nested loop.

Let’s look at a more interesting example of a nested loop. We will expand
PlanetIn3D so that the planet makes a total of eight identical orbits. To do this,
we'll use a variable called OrbitNumber, which will be the control variable of an
outer loop and will count out the orbits. The OrbitNumber loop contains the
other two loops, and it makes them repeat their jobs eight times.

program EightOrbits;

var
PlanetPos,OrbitNumber : integer;
begin
for OrbitNumber := 1 to 8 do
begin
for PlanetPos := 0 to 200 do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)
end;
for PlanetPos := 200 downto O do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)
end
end
end.

Program EightOrbits has two variables. Note how they are declared.
PlanetPos and OrbitNumber are separated by a comma. They could also be
declared like this:

var
PlanetPos : integer;
OrbitNumber : integer;

Either way, you have to put in a colon before the word integer. But the reserved
word var can appear only once in the declaration part of a program.

When program EightOrbits is executed, the outer loop starts up first.
OrbitNumber starts with the value 1, and then the two for statements in the
body of the outer loop are executed. After the first inner for statement goes
through 200 iterations, the second inner for statement does its 200 iterations.
This completes one repetition of the body of the outer for statement.



88 Syntax, Interactive Programs, and Real Numbers

Now OrbitNumber is advanced from 1 to 2, and the inner for statements are
executed again. This pattern repeats 8 times before the outer loop is over and exe-
cution terminates.

EXERCISE 3  What do these nested loops print?

a. for Number := 1 to 4 do
for StatementNumber := 1 to 50 do
writeln('Polly want a cracker?');

.b. for FirstNumber := 1 to 2 do
for NextNumber := 10 to 12 do
writeln(FirstNumber * SecondNumber);

Answer: 10, 11, 12, 20, 22, 24 printed in a column mm

—3.5 Constants

In Pascal, a constant is a quantity that is fixed throughout the program. Some-
times it is useful to give this kind of fixed quantity a name. For example, in pro-
gram PlanetIn3D, the width of the standard Drawing window is fixed at 200.
We can give the number 200 a name: WindowWidth.

program PlanetIn3D;
const
WindowWidth = 200; {A CONSTANT DEFINITION}
var
PlanetPos : integer;
begin
for PlanetPos := 0 to WindowWidth do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)
end;
for PlanetPos := WindowWidth downto 0 do
begin
paintcircle(PlanetPos,PlanetPos,PlanetPos div 5);
invertcircle(PlanetPos,PlanetPos,PlanetPos div 5)
end
end.



3.5 Constants 89

Constants are defined in the declaration part of the program. Constant defi-
nitions must appear immediately after the program heading and before the vari-
able declarations. Each definition must end with a semicolon.

Constants are useful for several reasons. First of all, remember the vacation
test: Imagine yourself taking a look at program PlanetIn3D next fall after your
summer vacation. When you’ve been away from the computer for a few months,
do you think you will remember what 200 stands for? Maybe. But if you replace
200 in the body with the constant WindowWidth, the meaning of the number
will be absolutely clear.

When we use constants to clarify what certain numbers mean, we say we
are using them to document the program. A well-named constant often elimi-
nates the need for a comment.

You can change a program more easily if the program has been written
using constants. Here is program Cartoon redone, using a list of constants that
explains all the numerical values in the program.

program NewCartoon;

const
LineHeight = 100;
Radius = 20;

LeftWall = 0;
RightWall = 200;
var
Position : integer;
begin
writeln('The First Cartoon!');
drawline(LeftWall,LineHeight,RightWall,LineHeight);
for Position := (LeftWall + Radius) to (RightWall - Radius) do
begin
paintcircle(Position, (LineHeight - Radius),Radius);
invertcircle(Position, (LineHeight - Radius),Radius)
end
end.

Now suppose you want to roll a ball of radius 40 along a line 80 units from
the top of this screen. You can do this simply by changing Radius to 40 and
LineHeight to 80. (See Figure 3.3.)

EXERCISE 4  Add the constant definitions we have just presented to your version of pro-
gram Cartoon. Now do the following:

a. Roll a ball of radius 30 along a line of height 175.
b. Roll a ball of radius 45 along a line of height 195. =m



90 Syntax, Interactive Programs, and Real Numbers

Radius  LineHeight — Radius
LineHeight —-

\

74

(LeftWall + Radius)

Figure 3.3 Position (the horizontal position of the center of the circle) starts at
(LeftWall + Radius) and ends up at (RightWall — Radius). The vertical position of the ¢en-
ter of the circle is always at (LineHeight — Radius).

Interactive Programs

Now we are going to show you how to write a kind of program that’s much more
exciting than any you have seen before: an interactive program. When you run
an interactive program, you give the computer information while the program is
running, and this information affects what the program does. Let’s see how this
works by transforming program Explode from Chapter 1 into an interactive pro-
gram called program Blowup.

While program Blowup is running, it will stop and ask for a value for the
speed of the explosion. After you type this value in and press the return key, the
program resumes execution, exploding the circle on the screen at the speed you
requested. Each time you run it, you can make the explosion happen at a differ-
ent speed.

program Blowup;

var
Speed,Radius : integer;

begin
writeln('Type in speed of explosion, an integer from 1 to 100.');
readln(Speed);

for Radius := 1 to (100 div Speed) do
paintcirele(100,100,Radius * Speed)
end.



3.6 Interactive Programs 91

The program works this way. First the writeln statement prints the follow-
ing message in the Text window.

Type in speed of explosion, an integer from 1 to 100.

This message is called a prompt. Now the Macintosh comes to the readlIn state-
ment.

readln(Speed);

At this point, the integer variable Speed has a location assigned to it in memory,
but that location is empty: Speed is undefined. When the Macintosh reaches the
readln statement, program execution stops and waits for you to type an integer
value at the keyboard. As you type in a value, the number appears in the Text
window underneath the prompt:

= Tesl ==
Type in speed of explosion, KX

an integer from 1 to 100.
q

<]

When you press the return key, the readln statement copies or reads the value
you've typed into Speed’s location in memory. Speed now has this value.

Then program execution resumes and the for loop is executed a number of
times equal to 100 div Speed. If you type in a speed of 4, the for loop is executed
25 times; during each iteration the radius of the exploding circle grows by 4.

Before every readln statement, you should always have a writeln statement
to serve as a prompt. The prompt should be a complete sentence and should state
as clearly as possible what the person using the program should type. When you
run the program, this writeln instruction prints a message in the Text window
telling you what sort of value to type in.

The next point is very important. The readIn statement supplies the pro-
gram with a value for the input variable. You must place the readln statement
before any statement in the program that uses the input variable, so that the vari-
able will have a value. If you put the readln statement after an instruction con-
taining the input variable, your program won’t work properly. Take this pro-
gram, for example:

program BadExplode;

var
Radius,Speed : integer;

begin

writeln('Type in speed of explosion, an integer from 1 to 100');
for Radius := 1 to (100 div Speed) do
paintcirele(100,100,Radius * Speed);

readln(Speed)

end.



92 Syntax, Interactive Programs, and Real Numbers

Program BadExplode will behave strangely. First the Macintosh sets aside a

location in memory for the variable Speed. Then the for loop is executed, but be-
cause you haven’t supplied a value for Speed yet, the variable holds some arbi-
trary value and the program runs unpredictably.

Observing the Readln Statement

To see more clearly how readln works, type in program Blowup, bring
up the Observe window, and then type Speed in the upper-right box.
Now insert a stop next to the for statement, and run the program using
Go. The program will prompt you for a value. Type one in. Then execu-
tion will resume and the program will immediately run into the stop.
When this happens, you will see in the Observe window the number you
supplied as the value of the variable Speed.

EXERCISE 5

What does this program do? Which statements are the prompts? Will the
program run if the last statement in the body is moved to the beginning of
the body? Why or why not?

program AddNumbers;

var

FirstNumber,SecondNumber : integer;

begin

writeln('Give me a number.');
readln(FirstNumber);

writeln('Give me another number.');
readln(SecondNumber) ;
writeln(FirstNumber + SecondNumber)
end. ==

Program Yoyo

Program Yoyo drops a yo-yo on a string from the top of the Drawing window
and then pulls it back in (see Figure 3.4). The yo-yo is a flickering circle and the
string is a line. The program does this yo-yoing a number of times equal to
YoyoCount. YoyoCount has a value that you supply interactively. This value is
the upper limit of the outer for loop, and it determines the number of times yo-
yoing is done. In one iteration of the outer loop, the first inner loop lowers the yo-
yo and the second inner loop raises it.



3.6 Interactive Programs 93

& fie f£dit Search Bup iiis‘mﬁtm;s% :

How many yoyc drops would you
like to see?

o>

program Yoyo;
var
Fosition, YoyoCount, YoyoBounce : integer;
begin
writeln('How man;_; yoyo drops would you like to see?");
readin(YoyoCount); %
for YoyoBounce = 1 to YoyoCount do Drawing
begin
for Position = 20 to 170 do
begin
drawline(100, 0, 100, Position);
! paintcircle(100, Position, 20);
% invericircle(100, Position, 20)
: end;
for Position = 170 downto 20 do
begin
drawline(100, 0, 100, Position);

painteirele(100, Position, 20); ;
inverteirele(100, Fosition, 20)
end
end

Gl

Figure 3.4 Program Yoyo and its output in the middle of execution.

Program VerticalLines

Suppose we want to write a program that will draw any number of vertical lines
in the Drawing window. To do this, we need to read in the values for two differ-
ent variables, which we will call TotalLines and Separation. We can read in
both of these variables with one readln statement.

program Verticallines;

var

TotallLines,Separation,LineNumber : integer;
begin

writeln('Type in the number of lines you want to draw.');

writeln('Then type an integer value for the separation between lines.');
readln(Totallines,Separation);

for LineNumber := 1 to TotalLines do

drawline(Separation % LineNumber,0,Separation % LineNumber,200)
end.

First the Macintosh will prompt you with the following message:

Type in the number of lines you want to draw and separation.
Then type an integer value for the separation between lines.



94

Syntax, Interactive Programs, and Real Numbers

T

(= Drawing ——=|

&

Figure 3.5 The output of program VerticalLines.

In response, you must type in two integers separated by a space. The first value
gives the number of lines you want drawn. The second value tells the computer
how far apart you want the lines to be. When you press the return key, program
execution resumes. The for statement draws the picture, using the two values
you’ve supplied interactively to determine the layout of the picture. (See Figure
3.5.)

More on Output—Fields and Field Widths

Now that you are acquainted with one of Pascal’s input statements, readln, it’s
time to learn more about Pascal’s output statement writeln and its companion in-
struction, write.

Just as readln can handle more than one input, writeln can handle more
than one output. The statement

writeln('The tallest tree in the world is a ', 367,' foot redwood')

prints in the Text window
The tallest tree in the world is a 367 foot redwood

The writeln statement has three regions, or fields, that are separated by commas.
The first region is a phrase in quotation marks. It is sometimes called a literal
field, because the single quotation marks command the Macintosh to print
literally (that is, print exactly to the letter) what is between the quotes. The mid-
dle field holds an actual number, 367, and this is what is printed. The last field is
another literal field.



3.7 More on Output—Fields and Field Widths 95

6 3>

The output is a little peculiar, however: There is a big gap between the “a
and the “367.”

The tallest tree in the world is a 367 foot redwood

The gap in the middle field appears because MacPascal always allows 8 spaces
when it prints out an integer, and it right-justifies the number in this 8-space
tield. That is, it prints the number as far over to the right as possible in the 8
spaces allotted to it.

If you don'’t like the gap, you can control the number of spaces allotted to a
field by inserting a colon followed by a positive integer. The statement

writeln('The tallest tree in the world is a ', 367 : 3,' foot redwood')
lays out the line this way
The tallest tree in the world is a 367 foot redwood

The value 3 following the colon determines the field width allotted to 367. Now,
instead of using the automatic or default width of 8, the program uses the field
width we have specified: 3.

What happens if we specify a field width of 1?

writeln('The tallest tree in the world is a ', 367 : 1,' foot redwood')

Now we have requested just 1 space, but of course the number 367 requires 3
spaces. So the Macintosh improvises: It takes the 1 space you've given it and,
when it “realizes” that it needs 2 more, it just takes them. So again you get

The tallest tree in the world is a 367 foot redwood

Now let’s look at the field-width specification in program HeightConver-
sion.

program HeightConversion;

var

Feet,Inches : integer;

begin

writeln('Type in your height in feet and inches.');
readln(Feet,Inches);

writeln('Your height is',12 % Feet + Inches : 3,' inches.')
end.

Program HeightConversion reads in your height in feet and inches and
prints this quantity out in inches. If you are 6 feet, 6 inches tall, after the prompt
you must type 6 6, and the program will print out

= e

Type In your helght In feet and Inches.g

66

Your helght Is 78 inches. )
&




96

Syntax, Interactive Programs, and Real Numbers

The field-width value 3 in the middle field leaves 3 spaces for your height in
inches. Unless you are a giant, your height in inches will require only 2 digits.
But we need the extra space because we've left no space after the word is in the
first field to keep the two fields apart.

There is a better way to separate them, however: Leave a space at the end of
the literal field after is and specify the exact field width that you need.

writeln('Height is ',12 % Feet + Inches : 2,' inches.')

This method is better because it leaves no chance that the first two fields will ever
run together.

EXERCISE 6  Examine program CheckFieldWidth. Now decide which output belongs

to program CheckFieldWidth, (a) or (b)? How can you alter program
CheckFieldWidth to get the other output?

program CheckFieldWidth;

var
Number : integer;
begin
for Number := 1 to 5 do
begin

writeln(Number : 5);
writeln(Number : Number)
end

end.

a b.
= Tent —= ET= Text ==
1 G )
1 1
2 2
2 2
3 3
3 3
4 4
4 4
5 5
3 5
> o
0 = -




3.8 The Write Statement 97

One last feature of writeln: If you use it with no fields—that is, with nothing
after it—it causes a blank line to be printed. So program Numbers prints num-
bers on every other line, in a column.

program Number;

var
Number : integer;
begin
for Number := 1 to 3 do
begin
writeln(Number);
writeln
end
end.
Si=——4I1
1
2
3

——3.8 The Write Statement

The write statement works exactly like the writeln statement, except that two
consecutive write statements print their output on the same line. For example,
the two instructions

write('Tuna on rye, ');
write('hold the mayo.')

print this:
Tuna on rye, hold the mayo.
But with the two instructions

writeln('Tuna on rye, ');
write('hold the mayo.')

you get

Tuna on rye,
hold the mayo.



98 Syntax, Interactive Programs, and Real Numbers

EXERCISE 7 What does each of the following statements print? After you decide, check

your answers in the Instant window.

a. writeln('Be there ','or ','be square.')
b. write('Be ', 'there ');

writeln('or ','be square.')
c. write('Be there ');

writeln('or');

write('be square.') mm

Now that you know how to use fields and how to specify field widths, you
are ready to tackle real numbers.

Real Numbers

A number with a decimal point (such as 98.6, 19.95, and —0.04) is a real num-
ber. Temperature, money, miles per gallon, percentages, batting aver-
ages—these quantities are ordinarily represented as real numbers with decimal
points.

In Pascal, real numbers belong to a separate type called real, which is dis-
tinct from the type called integer.

Because Pascal is an important language for scientists and engineers, it uses
scientific notation as the standard way of writing real numbers. In scientific no-
tation, 93,000,000 is written

9.3 x 107

A number in scientific notation has two parts. The first part consists of a
number with a decimal point, such as 9.3. It is usually written with just one digit
to the left of the decimal point. The second part is 10 raised to some power, such
as 7.

To write a large number such as 93,000,000 in scientific notation, first make
it a real number by adding a decimal point followed by a zero: 93,000,000.0.
Now there are eight digits to the left of the decimal point. Move the decimal
point to the left until only one digit remains to its left. Each step to the left divides
the number by 10, so you must multiply by 10 for every place you move the deci-
mal point. In the number 93,000,000.0, you move the decimal point seven places
to the left.

90850 0, 03 O Ox 0 o 0

5 4 3 2.1




3.9 Real Numbers 99

So, to keep the value of the number the same, you multiply 9.3 by 107. This gives
the number in scientific notation: 9.3 x 107.

For a decimal fraction such as .00025, move the decimal point to the right
until one non-zero digit appears on the left:

. 0A 040, 2.5
1 2 3 4

Now count the number of places you have moved the decimal point, but this
time use a negative exponent instead of a positive exponent. Because you have
moved the decimal point four places to the right, .00025 in scientific notation is
2.5x 107,

In Pascal, scientific notation looks a little different because the computer
can’t print powers, which appear slightly above the line of type. Pascal uses the
letter e, which stands for “exponent,” followed by a plus or a minus sign,
followed by a power:

9.3e+7
2.5e—4

Here are some numbers in scientific notation, with their familiar equivalents.

Decimal Scientific Pascal

Quantity Number Notation Notation
Hairs on head (blond) 90,000 9.0 x 10* 9.0e+4 or 9e+4
Hairs on head (black) 110,000 o 1.1e+5or 11e+4
Coldest recorded -63.0 —-6.3 x 10 —6.3e+1
temperature in Canada
(Snag, Yukon), °C
Average man’s daily .015 1.5 x 1072 1.5e—2 or 15e-3
whisker growth in
inches

Pascal requires that every real number have either a decimal point or an e.
When Pascal expects a real number, you can write the number in various ways.
Pascal will accept 110000.0, 1.1e5, 1.1e+ 5, 11.0e4, or even 11e4. However, you
have to have a digit on both sides of a decimal point. The numbers 110000. and
.367 won’t work. And one more thing. Other symbols such as dollar signs and
commas are also not permitted: $64,000.00 is unacceptable.



100 Syntax, Interactive Programs, and Real Numbers

EXERCISE 8  a. Which of the following numbers are legal Pascal real numbers?

123.4 —-000.004
-1,234.5 -0.0
-.26 $19.95

Answer: The numbers 123.4, —000.004, and —0.0 are legal.

b. Write each of the following as a Pascal real number.

$19.95 .342
-126 1/4
0 396,000 ==

——3.10 Writing Programs with Real Numbers

Now let’s use real numbers in a program.

program CircleAresa;

const

Pi = 3.14159;
var

Radius : real;
begin

writeln('How long is the radius? Type in a real number.');
readln(Radius);

writeln('The area of the circle is: ',Pi ¥ (Radius ¥ Radius) : 5 :
end.

Program CircleArea is interactive. When you run it, the writeln statement
prints a prompt asking you to specify the value of the radius. Then you type in
how big the radius is. When you press the return key, the program reads in the
value for the variable Radius, and then it calculates the area according to this fa-

miliar formula:

Area = 7 % Radius?

The variable Radius has type real. This means that the value it holds must
be a real number. When the writeln statement prints the prompt, you are sup-

posed to type a Pascal real number, such as 15.0 or 2e4.

What happens if you type an integer? This will work, too. Pascal automati-
cally converts your input to type real and stores it in real number form in the lo-

cation in memory that is set aside for the variable Radius.

Note that the constant Pi is written without a type declaration. Because its
defined value, 3.14159, includes a decimal point, Pascal knows that Pi is a real

constant. In Pascal the type of a constant is never declared.



ERNRER 1)

3.11 Getting Around Scientific Notation 101

When you run the program, you may not like the answer you get because it
will be in Pascal’s form of scientific notation. If you type in 10.0 as your radius,
the program will print 3.1e+2 instead of 314.159. You don’t get the answer
3.14159e+2, because MacPascal’s scientific notation shows you only one digit to
the right of the decimal point.

If you don’t want scientific notation, you can get the program to print out
314.159. You do this by changing the writeln instruction.

Getting Around Scientific Notation

The number 314.159 is 7 characters long: 6 digits and the decimal point. So,
when we print out this number, we want a field width of at least 7. But it’s not
enough just to include “ : 7” in the writeln statement. We also need to specify that
we want 3 digits to the right of the decimal point. These two numbers, 7 and 3,
are the figures we need to make the writeln statement print the area of a circle
the way we want it.

writeln('Area of circle is ',Pi ¥ (Radius % Radius) : 7 : 3 )

The value after the first colon tells how many spaces to allow for the num-
ber—including the digits, the decimal place, and a sign if the number is nega-
tive. The number after the second colon tells how many digits to show to the
right of the decimal point.

If Pascal runs out of space, it will override your directive and use as much
space as it needs, the way it does when you specify too narrow a field width for
integers. For example, if Radius equals 1000.0, the foregoing writeln statement
will print

Area of circle is 3141590.000

Pascal follows your instructions and shows 3 digits to the right of the decimal
point. Then it goes ahead and uses 11 spaces for the answer, although you
specified a field width of only 7.

EXERCISE 9  Give writeln statements for printing the values in a and b.

a. 5/7. Show 10 places to the right of the decimal point.
b. 100/7. Show 6 places to the right of the decimal point.

c. Use two fields in a writeln statement that will print: “My bucket of night
crawlers costs $2.98” ==



102 Syntax, Interactive Programs, and Real Numbers

—3.12 Arithmetic with Real Numbers

Arithmetic with real numbers is almost the same as arithmetic with integers. The
operators +, —, and * work for real numbers in just the same way they work for
integers. The only difference is that the answer is always a real number. This is
true even for an expression such as 3.14 — 0.14, which gives a value of 3.00, not
the integer 3.

You must use the conventional division symbol / to divide with real num-
bers. Division with / gives familiar answers: 1.0/4.0 = 0.25. The operator div
won’t work with real numbers: Try (1.4 div 7), and see what happens.

When you have a complicated expression like

2.0 + 6.0/3.0 = 2.0 + 2.0 = 4.0

the arithmetic operators follow the rules for doing arithmetic with integers. Mul-
tiplication and division are done first in order from left to right; then addition
and subtraction are done in order.

Program CrossCountryTrip

To see how arithmetic with real numbers works in a program, look at program
CrossCountryTrip (see Figure 3.6).

% File Edit Search Run Windows
CrossCountrylrip

program CroszCountryTrip;
¥yar
People : integer; k
Miles, Gallons , MoneySpent : real;
begin
writeln( ‘Type in number of peaple on trip.);
readin(People)
writeln{'Tupe in miles traveled, gas used, maoney spent.’);
readin({Miles, Gallans, MoneySpent);
writeln('Miles per gallon: ', Miles / Gallons 4 :1);
writeln('Cost per mile: $°, MonsySpent ¢ Miles : 4 : 2);
~writeln('Cost per persor: $', MoreySpent / Feople 1 6 : 2)
end.

Type in number of pecple on trip.

Tupe in miles traveled, gas used, money spent.
2159 109.8 365,20

Hiles per gallon: 28.8&

Cost per mile: $0.12

Cost per person:  § ?%.06

|52

Figure 3.6 Program CrossCountryTrip and output.



3.13 Program HockeyScore—Planning an Interactive Program 103

Program CrossCountryTrip is an interactive program that calculates trip
statistics for a cross-country trip you take with friends. First you type in the num-
ber of people on the trip who are sharing the costs. Then you type the distance
traveled, the number of gallons of gasoline used, and the total amount of ex-
penses. The program calculates and prints out miles per gallon, cost per mile,
and cost per person.

When you type in the input values, you should separate them with a space,
although readln will also accept a carriage return as a separator between input
values.

Note that we have entered an integer—3159—for the miles traveled in the
sample run. When the Macintosh sees this value, it immediately converts it to
type real, because the variable Miles is declared to be of this type.

Now look at the expression MoneySpent/People. This is called a mixed-
mode expression, because the types are mixed: MoneySpent is type real, and Peo-
ple is type integer. You can mix real and integer types in arithmetic expressions,
and Pascal will convert integer values to real for you as it evaluates the expres-
sion. In the sample run, first Pascal converts 365.29/5 to 365.29/5.0. Then it does
the division.

—3.13 Program HockeyScore—Planning an Interactive Program

Suppose we want to keep track of the wins, ties, and losses of our hockey team,
the Sharks. In North America hockey scoring usually works this way:

win: 2 points
tie: 1 point
loss: 0 points

Our program will read in the wins, ties, and losses for the Sharks. Then it
will calculate the number of points accumulated, the percentage of games won,
and the percentage of games won or tied.

We'll write program HockeyScore by adding some new ideas to our think-
ing, planning, coding, and testing and debugging scheme.

Thinking
First we must formulate the problem: Given figures for wins, ties, and losses, we
want to calculate and print out three things: total points, percentage of wins,
and percentage of wins and ties.

When we write an interactive program, we can usually organize our think-
ing around the following general format:

1. Read in the input data.
2. Make some calculations and print the output.



104

Syntax, Interactive Programs, and Real Numbers

For input we will need values for number of wins, ties, and losses. For out-
put we want a value for the number of points, as well as for percentage of games
won and percentage of games won or tied.

To calculate the number of points, we will use the expression

points = 2 X wins + ties

We can calculate the percentage of games won by using the formula
Percentage won = wins/(wins + ties + losses) x 100

To get the percentage of games won or tied, we'll use
Percentage won or tied = (wins + ties)/(wins + ties + losses) x 100

Before going on, it’s a good idea to collect all this information, and some
other information besides, in a chart called a data table. A data table lists the
input variables, the output variables, the program variables (variables needed
for calculations and loops), the constants, the loops, and any formulas to be used
in a program.

DATA TABLE
Input Variables Output Variables Program Variables
Wins, Ties, Losses none none
Constants Loops
none none

Formulas

points = 2 X wins + ties
percentage won = wins/(wins + ties + losses) X 100
percentage won or tied = (wins + ties)/(wins + ties + losses) x 100

We have included space for other variables, constants, and loops in our data
table, even though there aren’t any in this program. In the next example we’ll see
a more complex data table.

It’s a good idea to save your data table and keep it with the printout of your
program. It will help you figure out how your program works when you shake
the dust off it next year.



3.13 Program HockeyScore—Planning an Interactive Program 105

Planning

In the planning step, we will use a mixture of English and Pascal to state roughly
what the program will do. We won’t be concerned if we haven’t figured out how
to do all of the steps we are planning. We'll get to that later.
For this interactive program we can start with a general plan:
1. Read the input data.

2. Calculate and print the output data.
Now we can refine the plan and turn it into an algorithm:
1. Read the wins.
Read the ties.
Read the losses.
Print out the total points.
Print out the percentage won.
Print out the percentage won or tied.
Each of these steps is straightforward; we can move on to the coding step.

> Uk o

Coding

In this step we convert the pieces of our final plan into Pascal statements. For the
steps that involve reading in values, we use a prompt followed by a readln state-
ment. For the steps that involve printing a result, we use a writeln statement.

program HockeyScore;
{READS IN WINS, TIES, AND LOSSES.}
{PRINTS TOTAL POINTS, PERCENT WON, AND PERCENT WON OR TIED.}
var
Wins,Ties,Losses : integer;
begin
writeln('Type in games won.');
readln(Wins);
writeln('Type in games tied.');
readln(Ties);
writeln('Type in losses.');
readln(Losses);
writeln('Total points: ',2 % Wins + Ties : 5);
writeln('Percentage of games won: ',
Wins/(Wins + Ties + Losses) % 100 : 5 : 1,'%');
writeln('Percentage won or tied: !,
(Wins + Ties)/(Wins + Ties + Losses) % 100 : 5 : 1,'%3'")
end.



106 Syntax, Interactive Programs, and Real Numbers

—_3.14

Testing and Debugging

Always test an interactive program by running it with a variety of inputs. Then
check your answers with pencil and paper. For program HockeyScore, try
supplying numbers that could be actual numbers of wins, ties, and losses. It’s also
a good idea to try exceptional input values, such as 0 or even negative numbers.

Program Targets—Donuts and Bull’s-eyes

Program Targets draws pictures using the invertcircle command. Two
invertcircle instructions with the same center but different radii create a pattern
like a donut. For example, the two instructions

invertcirele(100,100,25);
invertcircle(100,100,50)

print out this picture:

E[J===——== Drawing

0

And three invertcircle commands, all with the same center, give you a pattern
that looks like a target. The three instructions

invertcirele(100,100,25);
invertecircle(100,100,50);
inverteirele(100,100,75)

produce the picture at the top of page 107.
The program we are going to write will draw target patterns in the Draw-
ing window. When you run program Targets, you will be able to draw as many



3.14 Program Targets—Donuts and Bull’s-eyes 107

I=

= === Drawing

2

targets in the Drawing window as you like (see Figure 3.7). Again, each target
will be made up of a series of concentric circles. And, in each target, each circle
will be larger than the one inside it by a fixed amount. You enter data about the
number of targets and the description of each target interactively.

Target 1

Target 2 —

bDrawing

P

—Target 3

izl

Figure 3.7 Sample output for program Targets. Target 2 has its center at (60,160). The
BullseyeRadius is 10. There are 3 circles in the pattern, and the Sizelncrease is 12.



108

Syntax, Interactive Programs, and Real Numbers

Thinking

Program Targets is more complicated than the other interactive programs in the
chapter. A good way to approach a complex program is to think about it as if you
are telling a story about what happens when you run the program. The story of
program Targets goes like this:

First you read in the number of targets you want. Next, for each target, you
read in information about the location of the center, the radius of the innermost
circle, the size difference between successive circles, and the number of circles
you want in that target. Then the program draws the target. Next you go
through another cycle of reading in target specifications, and another target is
drawn. This goes on until all the targets are drawn.

Let’s see if we can use this description to fill in a data table for the program.

We won’t need any output variables, because the output is all pictures. For
input variables, we will use TargetCount, Heenter, Vcenter, BullseyeRadius,
SizeIlncrease, and CircleCount. All are of type integer.

Program variables—the other variables in the program—are often control
variables in loops. So we should try to understand looping in the program before
we decide what program variables we’ll need.

We'll need one loop (the main loop in the program) to gather data about a
single target and then draw that target. This loop will repeat a number of times
equal to TargetCount; TargetCount gives the total number of targets you want
to draw. We’ll use a variable called TargetNumber as a control variable for this
loop. ‘

We will need a second loop to draw a series of concentric circles using
invertcircle. This loop will repeat a number of times equal to CircleCount, and
the control variable for this loop will be CircleNumber.

Now we can prepare the data table.

DATA TABLE
Input Variables Output Variables Program Variables
TargetCount none TargetNumber
Hcenter CircleNumber
Vcenter
StartRadius
Sizelncrease
CircleCount
Constants Loops T Formulas
none the TargetCount loop none

the CircleCount loop




3.14 Program Targets—Donuts and Bull’s-eyes 109

Planning

When you do the planning step, always start with the most general plan you are
sure of. But don’t get carried away! The one-step plan

do everything

is a little foo general to help out with the assignment that’s due tomorrow. This
two-step plan is more helpful:

Read in the number of targets to be drawn
Draw the targets

Now we’re getting somewhere. The first step is ready to be coded: It consists of a
prompt and a readIn statement for the input variable TargetCount. So let’s put
off working on the first part and move on to the second part of the plan.

How many targets shall we draw? The number of them will be equal to
TargetCount. So we can refine our plan to this form:

read in TargetCount
for TargetNumber : = 1 to TargetCount do
draw a target

Now we need to plan how to draw a single complete target. Here’s our new
plan, with the “draw a target” part refined:

read in TargetCount
for TargetNumber : = 1 to TargetCount do
read in center of circle
read in radius of the bull’s-eye
read in size increase
read in number of circles
draw a target

And here is our final plan, or algorithm. Note that it is a mixture of English
and Pascal.

read in TargetCount
for TargetNumber : = 1 to TargetCount do
read in Center
read in BullseyeRadius
read in Sizelncrease
read in CircleCount
for CircleNumber : = 1 to CircleCount do
draw an inverted circle



110 Syntax, Interactive Programs, and Real Numbers

This concludes the planning session. There’s one point we should empha-
size, though. Planning involves much more trial and error than we have shown
here. Don’t get discouraged if you find you have to start over or make changes
part of the way through the planning step. This happens to everyone.

Coding

Here is the program, with each part of the plan coded. Note that we made one
small change from our final plan. The inner loop that draws a complete target
has been changed so that it runs from 0 to CircleCount — 1. That way, the bull’s--
eye has a radius equal to BullseyeRadius.

Also, we have added a dotted line that will appear in the Text window be-
fore each new round of prompts for each target. This will help you notice that
input for one target is over and that it is time to work on the next.

program Targets;
{YOU READ IN HOW MANY TARGETS YOU WANT, WHERE THEIR CENTERS SHOULD}
{BE, HOW MANY CIRCLES PER TARGET, AND HOW MUCH BIGGER EACH CIRCLE}
{SHOULD BE THAN THE ONE INSIDE IT. PROGRAM PRINTS OUT TARGETS.}
var
Heenter,Vcenter,SizeIncrease,BullseyeRadius : integer;
CircleCount,CircleNumber, TargetNumber, TargetCount : integer;
begin
{ENTER NUMBER OF TARGETS YOU WANT TO DRAW}
writeln('How many targets 'do you want to draw?');
readln(TargetCount);
{GATHER INFORMATION ON EACH TARGET TO BE DRAWN. THEN DRAW TARGET.}
for TargetNumber := 1 to TargetCount do
begin
writeln('-—-=mm—emmov ");
write('Type in values for the horizontal ');
writeln('and vertical position of the center.');
readln(Hcenter,Vcenter) ;
writeln('Type in the starting radius.');
readln(BullseyeRadius);
writeln('Type in the number of circles in the target.');
readln(CircleCount);
writeln('Type in the increment in the size of the circles.');
readln(SizelIncrease);
for CircleNumber := 0 to (CircleCount - 1) do
invertcircle(Hcenter,Vcenter,
BullseyeRadius + CircleNumber * SizeIncrease)
end
end.



Problems 111

Testing and Debugging

Try program Targets with all sorts of different inputs. There is no end to the va-
riety of pictures you can draw with this program.

4
N
\
J
/
4
TEST YOURSELF

1. What do semicolons do?
2. Where can you leave out a semicolon?

When can you omit a begin and an end in a for loop?

Where do you have to use colons?

Where do you use the symbol : = ?

What is mixed-mode arithmetic?

Name one of Pascal’s input statements.

What must a real number look like to be acceptable to Pascal?

g L S S e

What is the empty statement?
10. Which comes first, the readin statement or the prompt?

PROBLEMS

1. Examine program HockeyScore and list all of the simple statements, com-
pound statements, for statements, and empty statements that you find.

2. What do you think Pascal will do with the following statement? Why? After
deciding on your answer, try it in the Instant window and see whether you
are right.

begin
begin
35
end
end



112 Syntax, Interactive Programs, and Real Numbers

3. Supply the missing semicolons for the following program, and then see
whether it will run.

program Grid
var
LineNumber : integer
begin
for LineNumber := 1 to 20 do
begin
drawline(0,10 * LineNumber,200,10 * LineNumber);
drawline(10 * LineNumber,0,10 ¥ LineNumber,200)
. end
end.

4. Write an interactive program that reads in a baseball player’s at-bats and
number of hits and then computes the player’s batting average.
5. There are 1760 yards in a mile and 0.9144 meters in a yard. Calculate, accu-

rate to five decimal places, the number of meters a runner covers in a mara-
thon: 26 miles, 385 yards. (You can do this in the Instant window.)

6. The Drawing window comes with an electronic
pen that can be controlled by two commands,
lineto and moveto. When you give the command
moveto(15,75), you place the tip of the pen at the (15,75)
point (15,75) in the window. Then, if you follow
the moveto instruction with the lineto instruction
lineto(100,25), the pen moves from (15,75) to
(100,25), drawing this line as it goes:

(100,25)

Here are some examples of moveto and lineto in action.

moveto(20,30);
lineto(100,190) (20,30)

(100,190)
moveto(20,30); (200,0)
1ineto(100,190) (20,30
1ineto(200,0)

(100,190)




10.

11.

Problems 113

Using moveto and lineto, write a 0.0)
program that draws this picture:

(200,100)
(0,200)
Now write a program that draws (0.0
this picture, with the value of
Vpoint supplied interactively.
»(200,Vpoint)
(0,200)
Write a program using moveto 20
2 Fa 40
and lineto that draws this picture: 40
q
J
L
V20

Which of the following are valid Pascal numbers of type real?

1.05 385
—-0.003 34567.890
-3 3.0e5

3. .943-6

An exam has 55 true-false questions. Write an interactive program that
reads in the number of correct answers a student gets and then prints the
student’s percentage correct, accurate to one decimal place.

Sample input: 48
Output: 87.3% correct

Write a program that prints

1 2 3 4 5 6 il 8 9 10
2 4 6 8 10 12 14 16 18 20



114 Syntax, Interactive Programs, and Real Numbers

12.

13.

14.

15.

The following loop prints out this column of numbers:

4
8
12
5
10
15

for Numberl := Little to Big do
for Number2 := 1 to 3 do
writeln(Numberl * Number2)
What are the values of Little and Big?
What does this nested for loop print?
for Numberl := 7 to 9 do

for Number2 := 3 downto 1 do
writeln(Numberl * Number2);

Write a program that prints out the full 10 x 10 multiplication table. Hin¢:
Use a nested loop. Another hint: Use the writeln statement

writeln

with no numbers after it to space the lines in your table.
Write a program that draws this picture: 40

140

16. Redo the program in Problem 15, but this time supply the spacing between

the lines interactively.



Problems 115

17. Look at the following program and its output. Why do the last two entries
spill over on the right?

& File Edit Search Run Windows

Untitled == Toul =

program RealTest; 0.1
var 0.14
SignificantDigits : integer; 0.143
begin 0.1429
for SignificantDigits := 1 to 10 do 0.14286
writeln{1 / 7 : 10 : SignificantDigits) 0.142857
end. 1 0.1428571
10.14285714

10.142857143

10.1428571429




Assignment Statements
- and More on Looping

Looping is one of the most important actions in programming. So far we have
worked only with the for loop, but Pascal has two others: the while loop and the
repeat-until loop. These looping commands are more versatile than the for loop.
But they require a new kind of statement—the assignment statement. We'll talk
about assignment statements first. An assignment statement allows you to
change the value of a variable.

Assignment Statements

The time has come for another look at variables. Remember that, when you de-
clare a variable, you instruct the Macintosh to choose a location in memory
where the variable’s value will be stored. Let’s keep this in mind as we look at the
following program. It contains a new kind of simple statement called an assign-
ment statement.

program AssignOne;

var
Number : integer;

begin

Number := 5;
writeln(Number)

end.

A colon directly followed by an equal sign makes up the assignment symbol,
and the instruction

Number := 5

is an assignment statement. In words, it says, “Number is assigned the value 5” or
“Number becomes 5.” When Pascal translates the declaration for Number into

117



118 Assignment Statements and More on Looping

machine language, Number is given a location in memory. Then, when the as-
signment statement is executed, the value 5 is copied into Number’s location. So,
when you run the program, it prints 5 in the Text window.

Here is a program with two assignment statements:

program AssignTwo;

var

Number : integer;
begin

Number := 3;

Number := Number + 3;
writeln(Number)
end.

This program prints 6. First, the assignment statement
Number := 3

is executed, and a 3 is copied into Number’s location in memory. Then the assign-
ment statement

Number := Number + Number

is executed. The right side of an assignment statement is always evaluated first.
So the value of Number + 3 is calculated, yielding a value of 6. Pascal calculates
this sum in the central processing unit (CPU). When the calculation on the right
is complete, the Macintosh transfers the answer to Number’s location in mem-
ory. As this happens, the old value of Number—that is, 3—is written over and
destroyed.

Finally, the writeln statement is executed. The value of Number is now 6,
and that is what the Macintosh prints.

The statement

Number := Number + 3

may look strange to you because it seems to violate the rules of algebra. After all,
the equation

Number = Number + 3

makes little sense. But there is a big difference between the equal symbol and the
assignment symbol. In algebra, the symbol = means that the value on the left
side equals the value on the right side.

In Pascal, the assignment symbol : = stands for an action command. It says,
“First calculate the value of the expression on the right side of the statement.
Then copy this value into the location in memory set aside for the variable
named on the left side.” So it really isn’t illogical to write Number := Num-
ber + 3.



4.2 The Staircase Problem 119

EXERCISE 1  Before you read on, try to figure out what the next two toy programs do.
Make sure you understand how to get the right answers.

a. program ToyOne;

var
Number : integer;
begin
Number := 3;
Number := Number + Number + 10;
writeln(Number)
end.
Answer: 16

b. program ToyTwo;
var
Numberl,Number? : integer;
begin
Numberl := 10;
Number?2 := 100;

Number2 := Numberl + Number2;
Number2 := Number2 + 1;
writeln(Number2)

end.

Answer: 111 =m

——4.2 The Staircase Problem

Now let’s write a more intriguing program. This one uses assignment statements
and a for loop.

Suppose your Uncle Harold decides to build a staircase out of cinder blocks.
The stairs will be 6 steps high and 1 block wide. How many blocks will he need?
Starting from the top, step 1 has 1 block, step 2 has 2 blocks, and so on. So the
loop

for StepNumber := 1 to 6 do
writeln(StepNumber);

-

o O WN

reports the number of blocks in each step: 1-2-3-4-5-6. The problem asks us to
add these numbers, which we can do as follows.



120

Assignment Statements and More on Looping

First we'll create a variable called BlockCount that will keep track of the
number of blocks Harold needs. We'll give it an initial value of 0:

BlockCount := 0;

Then, in each iteration of the loop, we’ll add to the current value of BlockCount
the value of StepNumber during that iteration:

BlockCount := 0;
for StepNumber := 1 to 6 do
BlockCount := BlockCount + StepNumber;

These statements, which we've included in program BlocksNeeded, solve
Harold’s problem.

program BlocksNeeded;
{CALCULATES NUMBER OF BLOCKS NEEDED TO BUILD}
{A SIX-STEP STAIRCASE, ONE BLOCK WIDE.}

var

StepNumber,BlockCount : integer;
begin

BlockCount := 0;

for StepNumber := 1 to 6 do

BlockCount := BlockCount + StepNumber;
writeln('Harold needs ',BlockCount : 2,' blocks.')
end.

Note how the value of BlockCount accumulates. It starts at 0. Then, each
time through the loop, the number of blocks in the next step—StepNumber—is
added to its old value. The sixth time through, the loop is over and the writeln
statement prints

Harold needs 21 blocks.

The assignment statement BlockCount : = 0 is very important. It initializes,
or gives an initial value to, the variable BlockCount. If we had left this instruc-
tion out, the program might behave strangely the first time through the for loop,
when it encounters

BlockCount := BlockCount + StepNumber;

This is so because Pascal tries to evaluate the expression on the right side
first. Because you haven't initialized BlockCount, the variable will hold some
arbitrary value, and the program will be executed with this value as
BlockCount’s starting value.

Suppose Harold had put the staircase on a
18-block base, like this:




4.2 The Staircase Problem 121

We would have initialized the variable BlockCount with the assignment state-
ment

BlockCount := 18;

EXERCISE 2  What does each of the following programs print?

a. program NumbersOne;
var
Number,PrintNumber : integer;
begin
PrintNumber := 1;
for Number := 1 to 4 do
begin
writeln(PrintNumber);
PrintNumber := PrintNumber + 1
end
end.

Answer: 1-2-3-4 in a column

b. program NumbersTwo;
var
Number,PrintNumber : integer;
begin
PrintNumber := 1;
for Number := 1 to 4 do
begin
writeln(PrintNumber);
PrintNumber := PrintNumber + 2
end
end.

Answer: 1-3-5-7 in a column

c¢. program NumbersThree;
var
Number,PrintNumber : integer;
begin
PrintNumber := 1;
for Number := 1 to 4 do
begin
writeln(PrintNumber);
PrintNumber := 2 ¥ PrintNumber
end
end.

Answer: 1-2-4-8 in a column ==



122 Assignment Statements and More on Looping

Three Assignment Statement Restrictions

There are three important restrictions on assignment statements that you
should know about.

1. The left side of an assignment statement must always be a single
variable. So a statement such as

Numberl + Number2 := 3

is not valid. Remember that an assignment statement copies a value
into a variable’s assigned location in memory. But in this statement
there is no place to make the copy, because there are two variables
on the left.

2. An assignment statement must be consistent with respect to the
types of the variables in it. If Number is of type integer, then

Number := 3.14

will cause an error, because you are trying to copy a real number
into a space reserved for an integer. Note: You can assign an integer
to a real variable. Pascal will convert the integer value to type real
for you before the assignment is done.

3. Assignment statements cannot be used to change the value of the
control variable in a for loop. The following loop, for example, is
invalid, and a program that uses it won’t work.

for Number := 1 to 5 do

begin
writeln(Number) ;
Number := Number + 2
end

— 4.3 Back to Money—Compound Interest

Now that we know how to use assignment statements, we can write some inter-
esting programs about money. Let’s start with a program that calculates com-
pound interest.

Suppose you have $100.00 in a bank account that pays 9% interest,
compounded yearly. At the end of 1 year you will have your $100.00 principal
plus $9.00 in interest, for a total of $109.00:

109.00 = 100.00 + (100.00 x 0.09)




4.3 Back to Money—Compound Interest 123

Using the variables Amount and Rate we can convert this equation into a Pascal
assignment statement. This statement is the key instruction in the compound in-
terest problem that’s coming up:

Amount := Amount + (Amount * Rate)

T

amount after one year starting amount

If Rate is 0.09 and Amount has the value 100.00 before the statement is executed,
then the value of Amount after execution is 109.00—the sum in your bank
account after 1 year.

If the value of Amount is equal to 109.00 and the statement is executed
again, the new value of Amount will be 118.81—the sum in your bank account
after 2 years.

Now let’s look at program Interest, which is interactive and will calculate
how much money will accumulate in your account, given any principal, any in-
terest rate, and any number of years.

program Interest;
{YOU TYPE IN PRINCIPAL, INTEREST RATE, AND YEARS IN BANK.}
{PROGRAM CALCULATES TOTAL MONEY ACCUMULATED.}
var
Years,TotalYears : integer;
Principal,Amount,Rate : real;
begin
writeln('Type in principal,interest rate and years in bank.');
readln(Principal,Rate,TotalYears);
Amount := Principal;
for Years := 1 to TotalYears do
Amount := Amount + (Amount % Rate);
writeln('Total amount accumulated: $',Amount : 6 : 2)
end.

First the readln statement reads in values for Principal, Rate, and
TotalYears. Then the statement

Amount := Principal;

is executed. It initializes the variable Amount to the value of Principal, the
starting sum in your account. The loop

for Years := 1 to TotalYears do
, Amount := Amount + (Amount * Rate);

does the real work in the program. Each year, the value of Amount is increased
by (Amount * Rate), and this accumulation goes on for a number of years equal
to TotalYears.



124 Assignment Statements and More on Looping

Let’s suppose that you type in a principal of 100.00, a rate of 0.09, and a
total of 5 years. The for statement will loop 5 times, and the value of Amount will
go successively from 100.00 to 109.00, from 109.00 to 118.81, and so on, up to
153.86.

If you want to find out how to calculate interest compounded monthly and
quarterly see Problem 8 at the end of the chapter.

The Double-Your-Money Problem

If you put a sum of money in a bank account at 9 % interest, compounded yearly,
how many years will it take to double your money?

It is possible to solve this problem using program Interest, if you're willing to
run the program repeatedly. Each time you run it, you'll have to read a larger
number into TotalYears, until you reach a year when TotalAmount exceeds 2 *
Principal. But this is awkward and time-consuming. And there’s a better way,
which involves using a more powerful looping command called the while state-
ment.

—14.4 The While Statement

Let’s start with some simple examples that use the while statement. We’ll come
back to the double-your-money problem a little later. First, here’s a program
that prints a column of numbers.

program FirstWhile;
var
Number : integer;
begin
Number := 1;
while (Number (= 4) do
begin
writeln(Number);
Number := Number + 1
end
end.

This program contains a while statement and the symbol (= . This symbol
means “less than or equal to,” and it is Pascal’s way of writing the mathematics
symbol <.

The while statement in program FirstWhile includes a test part:

(Number (= 4)
and a body:

begin

writeln(Number);

Number := Number + 1
end



4.4 The While Statement 125

The test part is either true or false. The control line
while (Number (= 4) do

tells the computer, “Keep looping while the test is true.” The test becomes false
when the value of Number is greater than 4.

When you run the program, first the assignment statement initializes the
variable Number to 1.

Number := 1

Then comes the while statement. Its test, (Number (= 4), is evaluated first. The
test is true because the value of Number is 1, so the body of the loop is executed.
The value of Number, 1, is printed out, and then the statement

Number := Number + 1

increases, or increments, the value of Number by 1, from 1 to 2.

Next the loop starts over again, beginning with the test. Again it’s true, be-
cause the value of Number is 2. So the computer executes the body, printing a 2
and then incrementing Number by 1. In the same way 3 and 4 are printed out.
After 4 is printed, the value of Number becomes 5, and (Number (= 4) is tested
again. Because the test is false this time, execution of the while statement ends.

In program FirstWhile we initialized Number to 1. We can get the same
output if we initialize Number to 0, change the test expression to

(Number (= 3)
and then increment Number by 1 before the writeln statement.

program SecondWhile;
var

Number : integer;
begin

Number := 0;

while (Number {(= 3) do

begin
Number := Number + 1;
writeln(Number)
end
end.

Program FirstWhile is a little clearer, though, because the statement that
initializes Number,

Number := 1
and the test expression,
Number {= 4

make it easier to see that the loop prints out the numbers from 1 to 4.



126 Assignment Statements and More on Looping

EXERCISE 3  a. What does the following program print?

program WhileOne;
var
Number : integer;
begin
Number := 2;
while (Number ¢ 12) do
begin
writeln(Number);
Number := Number + 2
end
end.

Answer: These numbers in a column: 2-4-6-8-10

b. What does the following program print?

program WhileTwo;
var
Number : integer;
begin
Number := 10;
while (Number ) 0) do

begin
writeln(Number);
Number := Number - 3
end

end.

Answer: These numbers in a column: 10-7-4-1

c. What expression must go in the box if program WhileThree is to printin a
column 2-6-18?

program WhileThree;
var
Number : integer
begin
Number := 2;
while (Number (= 20) do
begin
writeln(Number) ;
Number := |
end
end.

For the answer, see Problem 2 at the end of the chapter. =m



4.4 The While Statement 127

The While Loop vs. the For Loop

You may have noticed that you have to do more work with a while statement
than with a for statement. This two-line for loop

for Number := 1 to 4 do
writeln(Number);

prints the same column of numbers as the five-line while loop in program
FirstWhile on page 124. The for statement initializes and increments the con-
trol variable Number automatically. In program FirstWhile, however, you
need assignment statements to initialize and increment the control variable
Number.

Nevertheless, the while statement is much more flexible than the for state-
ment because it uses assignment statements for initializing and incrementing the
control variable.

For example, suppose we want to roll a ball across the screen as we did in
program Cartoon, only this time we want it to roll 3 times as fast. To write the
for loop that does this, you need to calculate the number of flickers required to
get the ball across the screen. A total of (180 — 20)div 3 = 53 are necessary.

for FlickerNumber := 0 to 53 do
begin
painteirele(20 + 3 * FlickerNumber,80,20);
invertecircle(20 + 3 ¥ FlickerNumber,80,20)
end;

If you use a while loop to do the fast roll, however, you don’t need to calcu-
late the number of flickers, and the loop is more straightforward.

Position := 20;

while (Position (= 180) do
begin
paintcirele(Position,80,20);
invertcircle(Position,80,20);
Position := Position + 3
end;

Even though the for-loop version is shorter, you’ll probably agree that the
while-loop version is much clearer. The while statement is more flexible because
its control variable can be incremented by any amount. With the for loop, you're
stuck: The control variable can be increased or decreased only by 1. Moral: Use a
while loop when you want to increase or decrease the control variable by more
than 1 each time through the loop.



128 Assignment Statements and More on Looping

———4.5 While-Loop Pitfalls

In spite of its power, the while loop has some pitfalls. Suppose you forget to
initialize the control variable, as in program BadOne:

program BadOne;

var
Number : integer;

begin

while (Number (= 4) do
begin
writeln(Number);
Number := Number + 1
end

end.

Your program may behave strangely as soon as the computer gets to the writeln
statement, because Number has an arbitrary value when the Macintosh reaches
this instruction.

If you forget to increment the control variable, however, you create a
completely different problem.

program Forever;

var
Number : integer;

begin

Number := 1;

while (Number (= 4) do
begin
writeln(Number)
end

end.

Program Forever will go on printing a column of 1’s unendingly. This is called an
infinite loop, because there is no way out. With no assignment statement to in-
crement the variable Number, Number will have the value 1 every time the loop
body is executed. So the value of Number will always be less than or equal to 4,
and the test will always be true.

If you find your program is locked in an infinite loop, you can take one of
the following steps.

1. Wait for a power failure.
2. Wait for the Macintosh to burn out.

3. Open the Pause menu and choose Halt. Then open the Run menu and
choose Reset, which will terminate the program.

Otherwise you’ll just see an unending column of 1’s. To avoid strange program
behavior and infinite loops, always check to make sure you’ve initialized and
incremented your while-loop control variable.



4.6 Relationships and Relational Operators 129

e
L

———4.6 Relationships and Relational Operators

Suppose Meg and Jon are sister and brother. Then the statement

Meg is the sister of Jon
is true, but the statement
Jon is the sister of Meg

is false. “Sister of” is a relationship between people. When we state that one per-
son is the sister of another person, the statement can be true or false. In this way,
we can think of the “sister of” relationship as a kind of test.

In mathematics and alsa in Pascal, we often use the terms relation and rela-
tionship when we compare numbers. For example, 3 ( 5 is a true relationship,
whereas 3 ) 5 is a false one.

The symbol ( is called a relational operator because it tests whether the rela-
tionship “less than” holds between two numbers. In Pascal there are six
relational operators. These are symbols such as ) and ) = that give true-or-false
answers about relationships between numbers. The six relational operators are
listed in the following table with examples of how they work.

Operator Name True False
) greater than 5)3 55

Y= greater than or equal to 5)=3 4)=5
{ less than 2¢(3 3¢(2

(= less than or equal to 2(=3 3¢(=2

= equal to 5=5 5=3

O not equal to 3¢5 5¢(5

When we use the term test, we mean any expression that is either true or
false. So far, the only tests we have seen involve relational operators. For exam-
ple, the expression

(3 ¢4)

is a test. And so is
(Number )= 4)

where Number is some variable of type integer.

True and false, the answers to tests, are standard constants that make up an-
other type, called boolean. True and false are actually considered values, so we
can say that the value of a test is true or false. We will talk about type boolean in
Chapter 8.



130 Assignment Statements and More on Looping

———4.7 Longint—a Second Integer Type

Does the following program include an infinite loop?

program LongLoop;
var
Number : integer;
begin
Number := 1;
while (Number ¢) 0) do

begin
writeln(Number);
Number := Number + 1
end

end.

It looks as if it does. Number is initialized to 1, and the assignment statement in
the loop increases the value of Number during each iteration, so Number will
never equal 0.

However, the program stops running and you get an error message when
the value of Number exceeds 32,767. This number is the largest value in the type
integer, and it is called maxint, which is a standard constant. Unlike integers in
mathematics, which are infinite in number, the integers that make up the
MacPascal type integer are finite: They run from -32,767, or —maxint, up to
maxint.

If you run program LongLoop just as you see it, you're in for a long wait be-
fore the program crashes. But there’s a way to shorten the wait by choosing Halt
while the program is running and then bringing up the Instant window.

When you choose Halt and stop program LongLoop in mid-execution, the
variable Number still has an assigned location in memory, and that location
holds the value it had when execution stopped. While program execution is on
hold, you can actually use the Instant window to change the value of this vari-
able.

When you type

Number := 32760

in the Instant window and then click on Do It, the assignment changes the value
of Number to 32,760. Now, when you click on Go, the program will run for just
a few more loops, until the value of Number reaches 32,767. Because (Number
() 0) is still true, the loop is executed one more time. The writeln statement
prints the value of Number—32767—and then the assignment statement is
reached. The right side is evaluated first. When you add 32,767 and 1, maxint is
exceeded by 1.

This doesn’t make the program crash, though. The program crashes when it
tries to copy 32,768 into the variable Number. Number’s location in memory is
too small to hold that value. See Figure 4.1.



4.7 Longint—a Second Integer Type 131

bl

" & File Edit Search XY windows

: ’ The value of a variable or sub-expression is out of range for its
gg intended use.

LongLoop

program LonglLoop;
var
Number : integer;
begin

Number = 1; ST R e sy
while (Number & 0)do | | Instant

begin ;
writeln(Number); ;

X Number = Number + 1 | | Number:= 32764

end :

end.

&

Figure 4.1 When program LongLoop crashes, this is what you see on the screen.

Fortunately, MacPascal has an additional integer type called longint,
which runs from —2,147,483,647 to +2,147,483,647. The second number is
called maxlongint, and it is also a standard constant. If you expect computations
in your program to use values larger than 32,767, use longint instead of integer
variables.

Of course the type longint is finite, too, and the following program will
eventually crash as well.

program LongLongLoop;
var
Number : longint;
begin
Number := 1;
while (Number <) 0) do
begin
writeln(Number);
Number := Number + 1
end
end.



132 Assignment Statements and More on Looping

EXERCISE 4  Watch program LongLongLoop crash. (Hint: Unless you have a lot of time

—_—A4.8

to kill, use the Instant window to change the value of Number after you
have brought the program to a halt.) ==

Because every member of type integer also belongs to type longint, the two
types are closely related. If Number has type integer and LongNumber has type
longint, then the assignment statement

LongNumber := Number
will always work, and
Number := LongNumber

is acceptable if the value of LongNumber is small enough to be an integer.

While-Loop Syntax

For any Pascal expression that can have a true or false value, we will use this
notation

(test)
so the general form of a Pascal while statement is

while (test) do
(statement);

The while statement is itself one kind of statement. Hence it is possible to put
while loops inside while loops or for statements.

The notation (statement) now stands for simple statements, compound
statements, for statements, while statements, or the empty statement.

EXERCISE 5  a. What happens in the following program?

program SimpleThree;
var
Number : integer;
begin
Number := 2;
while (Number (= 8) do
begin
writeln(Number);
Number := Number + 2
end
end.



S}

—4.10

4.10 Back to Double-Your-Money 133

b. What happens in the following program?

program SimpleFour;
var
Number : integer;
begin
Number := 2;
while (Number () 16) do
begin
writeln(Number);
Number := 2 % Number
end
end. ==

The Natural Superiority of the While Statement

We have already seen one way in which the while statement outshines the for
statement: If you want to advance the control variable of a loop by increments
larger than 1, the while statement is much more convenient and versatile.

But there is a second, more important reason to prefer the while loop to the
for loop. The for loop is actually rather limited. Once the lower and upper limits
are fixed, the number of iterations is completely determined, and the Macintosh
must execute the loop exactly that many times.

This is not true with while statements. A while statement loops until the test
condition of the loop is false, and this can be an indefinite number of iterations.
So the while statement can help us solve problems when we don’t know how
many loops we need. To see how useful indefinite looping can be, let’s return to
the double-your-money problem.

Back to Double-Your-Money

The double-your-money problem asks this question: If you put $100.00 in the
bank at 9% interest, compounded yearly, how many years must you wait until
your money doubles?

Here’s one way to solve the problem using a while loop:

program DoubleMoney;
{CALCULATES NUMBER OF YEARS IT TAKES FOR A $100}
{DEPOSIT TO DOUBLE IF THE INTEREST RATE IS 9%}

const

Principal = 100.00;
Rate = 0.09;

var

MoneyInBank,NewMoney : real;
Years : integer;
(continued)



134 Assignment Statements and More on Looping

begin
Years := 0;
MoneyInBank := Principal;
while (MoneyInBank ¢ 2 % Principal) do
begin
NewMoney := MoneyInBank % Rate;
MoneyInBank := MoneyInBank + NewMoney;

Years := Years + 1

end;
writeln('Money doubles in ',Years : 1,' years.')
end.

This is an important program, so let’s study it carefully. The body begins
with two initialization statements:

Years := 0;
MoneyInBank := Principal;

These two statements make sense. They say that, at 0 years, the money in your
account is your starting principal, $100.00.
The test part of the while statement,

(MoneyInBank ¢ 2 ¥ Principal)

says, “Keep looping as long as the money in your account is less than twice your
starting principal.”

Every time you loop, the NewMoney earned (MoneyInBank * Rate) is
added to the balance in the account:

MoneyInBank := MoneyInBank + NewMoney
And the number of years in the bank is incremented by 1:
Years := Years + 1

Finally, after 9 years, the money accumulated exceeds twice the principal, so the
looping ends and the value 9 is reported.

Program DoubleMoney is unlike any we’ve seen so far, because it doesn’t re-
port the most obvious value that it calculates—the final value of MoneyInBank.
Instead, it reports the number of loops required to increase MoneyInBank to the
value 2 * Principal. Because we've used the variable Years to count the number
of iterations in the loop, Years is called a counter.

EXERCISE 6  What does the following program print?

program FirstPuzzle;
var
Stepper,Counter : integer;



4.11 Tests and Counters 135

begin
Stepper := 2;
Counter := 0;
while (Stepper ¢ 20) do
begin
Stepper := Stepper * Stepper;
Counter := Counter + 1
end;
writeln(Counter)
end.

Answer: 3 =m

—4.11 Tests and Counters

Let’s get back to Uncle Harold’s staircase. Suppose Harold has 8 blocks, and he
decides to build a new staircase (1 block wide) as high as he possibly can. How
many steps high can he make it?

Here, we’ve turned Harold’s problem around: Earlier we wanted to know
how many blocks he would need to build 6 steps. Now we want to know how
many steps (that is, how many loop iterations) he can fit in before his 8 blocks are
used up.

This situation is similar to the circumstances in the double-your-money
problem. We want to count the number of loops until a certain value is reached.
This kind of problem can’t be solved easily with a for loop, because we don’t
know ahead of time how many loops we will need. So, using program
DoubleMoney as a model, let’s attempt a while-loop solution with the variable
StepNumber as a counter:

program HowManySteps;
{CALCULATES HOW MANY STEPS CAN BE BUILT WITH 8 BLOCKS,}
{BUT GETS THE WRONG ANSWER}

var

StepNumber,BlockCount : integer;
begin

StepNumber := 0;

BlockCount := 0;
while (BlockCount (= 8) do
begin
StepNumber := StepNumber + 1;
BlockCount := BlockCount + StepNumber
end;
writeln('With 8 blocks, Harold can build ',StepNumber : 1,' steps.')
end.



136 Assignment Statements and More on Looping

Because this program is trickier than it looks, let’s build a chart that shows
the values of BlockCount and StepNumber at the beginning and end of each

loop.
StepNumber BlockCount Test: BlockCount (=8
Loop 1
at begin 0 0 test is true
at end 1 1 test is true
Loop 2
1 1 test is true
2 3 test is true
Loop 3
2 3 test is true
3 6 test is true
Loop 4
3 6 test is true
4 10 test is false

Loop 4 is the final loop, so the program reports that Harold can build a stair-
case with 4 steps, which will require 10 blocks. But wait a minute—Harold has
only 8 blocks! What went wrong?

The Countess and the Machine

Ada, Countess Lovelace, was the daughter of the British poet Lord Byron.
She was also the first computer programmer—almost a century and a half
before anyone had heard of the personal computer. The story of the Count-
ess and the computer began around 1834 when teenager Ada met Charles
Babbage, an inventor, mathematician, and great party-giver. Babbage had
devised a calculating machine, and at one of his parties he spent an evening
explaining to the countess how this, the world’s first computer, was going
to work. Immediately Lovelace was hooked on computing. She studied the
math and mechanics of Babbage’s machine and gave Babbage advice on
how to get rid of bugs. Along the way she invented a kind of repetitive calcu-
lating—what today is called looping.

Unfortunately neither Lovelace nor Babbage ever got to see the ma-
chine perform. Its elaborate parts were extremely difficult to make, and be-
fore one version of the machine was working, Babbage had thought of some
improvements. When he changed one part, other parts had to be changed.
The process went on and on. Finally Babbage ran out of money, and both he
and Lovelace died before their calculating machine was perfected.




4.11 Testsand Counters 137

At the beginning of the fourth and last loop, the value of StepNumber is 3
and the value of BlockCount is 6. So the test is still true, and the last loop is
executed. The last loop pushes the value of StepNumber to 4 and the value of
BlockNumber to 10, which is 2 more blocks than Harold actually has.

The program has overshot Harold’s supply of blocks. Instead of reporting
the number of complete steps possible, the program reports the number of com-
plete steps plus the one extra step where Harold runs out of blocks.

This means that program DoubleMoney is not a completely accurate model
for Harold’s problem. In program DoubleMoney, we are interested in the num-
ber of years it takes to go over the doubled principal. But in the staircase prob-
lem, we want to know how many steps we can build without going over the
number of blocks on hand.

Here’s a correct solution to Harold’s problem:

program HowManyStepsTwo;
{CALCULATES HOW MANY STEPS CAN BE BUILT WITH 8 BLOCKS.}

var
StepNumber,BlockCount : integer;
begin
StepNumber := 0;

BlockCount := 0;
while (BlockCount + (StepNumber + 1) (= 8) do

begin

StepNumber := StepNumber + 1;
BlockCount := BlockCount + StepNumber
end;

writeln('With 8 blocks, Harold can build ',StepNumber : 1,' steps.')
end.

Now the test
BlockCount + (StepNumber + 1) {(= 8

checks before the loop is executed to determine whether adding in the next
step—that is, StepNumber + 1—will put BlockCount over the limit.

When the value of BlockCount gets to 6 and the value of StepNumber
reaches 3, BlockCount and (StepNumber + 1) are added together in the test and
compared with 8. Because they add up to 10, the test is false, and the Macintosh
advances to the writeln statement without changing the value of StepNumber
again. So the writeln statement prints the correct answer, 3.

When a counter holds the answer you are looking for in a program with a
while loop, be sure to check whether you've coordinated it properly with the
loop test. If you're interested in the number of loops needed to put some value
“over the top,” as in program DoubleMoney, the test will probably be simple
and straightforward. But if looping is supposed to put some number just under a
certain value—say, the number of blocks on hand—then you must create a test
that anticipates what will happen one loop ahead.



138

——4.12 Yet Another Way to Loop: Repeat-Until

Assignment Statements and More on Looping

We've talked about two looping commands so far: the for statement and the
while statement. Pascal has one more looping command, the repeat-until in-
struction. Like the while statement, the repeat-until statement has a test part
and a body. But in the repeat-until statement, the test comes after the body and
looping continues until the test becomes true.

Here is a simple program using a repeat loop. What does it do?

program NumberColumn;

var
Number : integer;
begin
Number := 1;
repeat
writeln(Number);
Number := Number + 1
until(Number ) 4)
end.

It prints out the 1-2-3-4 column.

Program NumberColumn begins by initializing Number to 1. Then comes
the loop. The statements between repeat and until make up its body, and the
loop ends with a test:

(Number ) 4)

In a repeat loop, the test always comes at the end, after the reserved word until.
This means that the body of the repeat-until loop is always executed at least once.
This can create some problems that we will discuss in a minute.

The general form of the repeat-until statement is

repeat
(statement)
until (test)

Because repeat-until is a kind of statement, we will add it to our growing list of
(statement)s.

Repeat-until has one peculiarity. Because the reserved words repeat and
until frame the body of the loop, Pascal allows you to leave out the begin and the
end even if the body includes more than one instruction, as we did in program
NumberColumn.

Note that there is no semicolon in program NumberColumn after the state-
ment Number := Number + 1. This is so because the writeln statement is
followed by the reserved word until, not by another statement. Like the reserved
word end, until works as a separator, so a semicolon isn’t needed.



4.12 Yet Another Way to Loop: Repeat-Until 139

It’s easy tu get a repeat-until loop to work backward. Program Backward
prints 4-3-2-1 in a column.

program Backward;

var

Number : integer;
begin

Number := 4;
repeat

writeln(Number) ;

Number := Number -1
until (Number = 0)
end.

EXERCISE 7 a. What does this program do?

program PuzzleOne;

var
Number : integer;
begin
Number := 3;
repeat
writeln(Number);
Number := Number + 3
until(Number ) 15)
end.

b. And what will this program do? (There’s a trick here.)

program PuzzleTwo;

var
Number : integer;
begin
Number := 3;
repeat
writeln(Number);
Number := Number + 3
until (Number = 14)
end.

Answer: It will bomb when Number gets large enough. Can you see
why? What will the value of Number be at the time of the crash? How
would you fix the program so that it prints just five numbers?



140 Assignment Statements and More on Looping

c. What does this program draw?

program PuzzleThree;

var

Vertical : integer;
begin

Vertical := 0;
repeat

drawline(0,Vertical,200,Vertical);
Vertical := Vertical + 10

until (Vertical ) 200)

end. mm

Program AngleRoll

Here’s another program that uses a repeat-until loop. Program AngleRoll allows
you to roll a ball across the screen at an angle, like this:

Hchange = 2

(0,100)

Vchange = 1

T

The input variables Hchange (for horizontal change) and Vchange (for ver-
tical change) determine the slope of the path of the ball as it moves across the
screen. When Hchange = 2 and Vchange = 1, for example, the ball drops
down 1 unit for every 2 units it moves across.



4.13 The Pitfalls of the Repeat Loop 141

program AngleRoll;

const
Hstart = 0;
Vstart = 100;
Radius = 20;
var
H,V,Hchange,Vchange : integer;
begin
H := Hstart;
V := Vstart;

writeln('Type in horizontal change and vertical change.');
writeln('Horizontal change must be a positive integer.');
writeln('Vertical change can be a positive or negative integer.');
readln(Hchange,Vchange) ;
repeat
paintcircle(H,V,Radius)
invertcircle(H,V,Radius
H := H + Hchange;
V := V + Vchange
until (H ) 180)
end.

)s

Program AngleRoll does something we haven’t seen before. It increments
two different variables inside the loop, H and V. But only one of these vari-
ables— H—serves as a control variable.

EXERCISE 8 a. What happens if Hchange is 0?
b. Where does the ball leave the window if Hchange ¢ Vchange?

c. What values must Hchange and Vchange have for the ball to leave the
Drawing window at the upper-right corner? mm

—4.13 The Pitfalls of the Repeat Loop

The test in a repeat-until statement comes at the end of the loop, and this can
cause trouble if you aren’t careful. To see why this is so, let’s look at an
interactive program that solves Uncle Harold’s cinder block problem using a re-
peat loop.

In program InteractiveHowManySteps, you read in the number of blocks
Harold has, and the program calculates the number of steps he can build.




142 Assignment Statements and More on Looping

—_—4.14

program InteractiveHowManySteps;
{YOU READ IN NUMBER OF BLOCKS. PROGRAM}
{CALCULATES HOW MANY STEPS CAN BE BUILT.}

var
StepNumber,BlockCount,BlocksUsed : integer;
begin
writeln('How many blocks does Harold have?');
readln(BlockCount);
StepNumber := 0; P
BlocksUsed := 0;
repeat

StepNumber := StepNumber + 1;
BlocksUsed := BlocksUsed + StepNumber
until ((BlocksUsed + (StepNumber + 1)) ) BlockCount);
writeln('With ',BlockCount : 1,' blocks, Harold can build ',
StepNumber : 1,' steps.')
end.

The value you type in for the number of blocks Harold has becomes the
value of BlockCount. After StepNumber is initialized to 0, the repeat statement
is executed. First StepNumber is increased by 1. Then StepNumber is added to
BlocksUsed.

Next the test is made. If BlocksUsed plus the number that will be needed for
the next step (StepNumber + 1) is greater than 0, there aren’t enough blocks for
another step, so the loop ends.

The program works fine unless you specify that Harold has 0 blocks. In that
case, one loop of the repeat statement is executed anyway (although there aren’t
any blocks), because the test follows the until at the end of the statement. So
StepNumber is incremented to 1 in the body before the test is done, and the pro-
gram prints

With O blocks, Harold can build 1 steps.

which is the wrong answer!

When you use the repeat-until statement, make sure that at least one loop
will always be needed to solve the problem. If you are not sure, use a while state-
ment.

Math Formulas and Functions

In mathematics a function is some operation that gives, or returns, a single an-
swer. For example, when you square a number, you are applying the squaring
function to that number. The answer you get back is the value of that number
times itself.



4.14 Math Formulas and Functions 143

Pascal has some built-in functions, such as squaring, that allow you to do
important math calculations easily. The squaring function is written sqr. If you

type
writeln(sqr(3))

in the Instant window, you will get 9 for an answer in the Text window. The sqr
function works equally well with real or integer inputs. Writeln(sqr(3.0)) will
print 9.0e + 0 instead of 9 for its output.

There is also a square root function, sqrt, which always returns a real num-
ber for an answer. You can apply sqrt to either a real number or an integer,
but the input cannot be a negative number. The expression sqr¢(2) returns the
value 1.414, and sqrt(sqrt(2)) returns the square root of the square root of 2,
or 1.189. You can get standard decimal notation instead of scientific notation
with more than one place to the right of the decimal point, if that’s what you
want:

writeln(sqrt(2) : 5 : 3)
prints 1.414, and
writeln(sqrt(sqrt(2)) : 8 : 6)

prints 1.189207.
Let’s look at a third Pascal function, round, which rounds off a real number
to the nearest integer. Here are some examples of how round works:

round(3.14) = 3

round(3.5) = 4
round(3.6) = 4
round(-1.2) = -1
round(-1.5) = -2

There are two other functions related to round, which we’ll need later on.
The function ¢trunc, which is short for “truncate,” returns the integer part of any
real number: trunc(3.95) = 3, trunc(-3.9) = =3, and trunc(4.111) = 4.

The function abs, which is short for “absolute value,” makes any number
positive: abs(—4) = 4, abs(—-4.1) = 4.1, and abs(3.14) = 3.14.

Now look at this expression:

sqr(round(sqrt(2)))

What is its value? When functions are applied to other functions in this way,
Pascal evaluates the expression from the inside out. First sqrt(2) is calculated,
yielding the value 1.414. Then this number is rounded, and the resulting value is
the integer 1. Finally 1 is squared, giving the integer 1 as a result, which is the
value of the entire expression.



144 Assignment Statements and More on Looping

EXERCISE 9  What are the values of the following expressions? They are easier than they
look. Just remember that sqrt (2) is about 1.4 and that sqrt(3) is about 1.7.

a.

trunc(sqrt(2))
(Answer: 1)

. sqr(round(sqrt(3)))

(Answer: 4)
abs(trunc(sqrt(2)))

. trunc(sqrt(abs(-3.14)))
. trunc(sqrt(round(sqrt(3)))) mm

Program CalcDistance

Let’s use what we’ve learned about functions in two short examples. Our first ex-
ample, program CalcDistance, draws a line between two points in the Drawing
window—the points (H,,V,) and (H,,V,)—and then calculates the distance be-
tween them.

(H1!V1)

(V= Vi)

(Hz,V2)

To solve this problem we will use the Pythagorean theorem: In a right trian-
gle, the square of the hypotenuse is equal to the sum of the squares of the other
two sides. This equation will be useful because, unless the points determine a
horizontal or a vertical line, the distance between our two points will be the hy-
potenuse of a right triangle. Using the Pythagorean relationship, we can write
this formula for the distance between the two points:

Distance apart = \/(H, — H))* + (V, - V)




4.14 Math Formulas and Functions 145

And when we use this formula in a Pascal program, this is what we get:

program CalcDistance;

var

H1,V1 : integer; {THE FIRST POINT!}
H2,V2 : integer; {THE SECOND POINT!}
DistanceApart : real;

begin
writeln('Type in values for the first point.');
readln(H1,V1);
writeln('Type in values for the second point.');
readln(H2,V2);

drawline(H1,V1,H2,V2);

DistanceApart := sqrt(sqr(H2 - H1) + sqr(V2 - V1));
writeln('Distance between the 2 points is:',DistanceApart : 5 : 2)
end.

EXERCISE 10 What happens when the two points in program CalcDistance lie on a
horizontal or a vertical line? =m

Program CircleOrbit

Now let’s try a more ambitious example. Suppose we want a planet or ball to
move in a circle, cartoon style, around the standard Drawing window, as in Fig-
ure 4.2. We'll make the program interactive: When you run it, you supply values
for OrbitRadius and PlanetRadius.

-
()

Figure 4.2 Program CircleOrbit will move a ball in a circular orbit around the Drawing
window.




146 Assignment Statements and More on Looping

The ball } v

A typical point
in orbit: (H,V)

b= %100 100)
H (100 - H)

B
Orbut\\-/

Figure 4.3 The ball at a typical point in program CircleOrbit.

Figure 4.3 shows the ball at typical point (H,V) as it moves around the
screen in a circle with radius equal to OrbitRadius. From the right triangle in the
diagram in Figure 4.3, we have the equation

OrbitRadius® = (100 — H)? + (100 — V)?
Solving for V, we get
V =100 — /OrbitRadius’ — (100 — H)?

Given a value for H, we can use this equation to calculate a value for V so
that the point (H, V) lies on the circumference of the orbit circle. The loop below
will move the ball along the upper half of the orbit when we finish coding it.

H := 100 — OrbitRadius;

repeat

V := 100 - \/OrbitRadius® - (100 - H)?;
paintcircle(H,V,PlanetRadius);
invertcircle(H,V,PlanetRadius);

Hee=CH ol
until (H = 100 + OrbitRadius)

To make the repeat loop work correctly, we must translate into proper Pascal the
assignment statement that calculates a value for V. Rather than write the state-
ment on a single line, we’ll use three assignment statements. Using several state-
ments will make the code less cumbersome.

OrbitRadiusSqr := sqr(OrbitRadius);

HDistanceSqr := sqr(100 — H);
V := 100 - round(sqrt(OrbitRadiusSqr - HDistanceSqr));



4.14 Math Formulas and Functions 147

Note that it is necessary to use the function round. This is because sqrt gives an
answer of type real, but the variable V is of type integer. Also, OrbitRadiusSqr
and HDistanceSqr may exceed maxint, so we’ve declared them to be of type
longint instead of type integer.

Here is the complete program. It has two loops, one for the upper semicircle
and one for the lower semicircle.

program CircleOrbit;
{YOU READ IN RADIUS OF ORBIT AND RADIUS OF PLANET. PROGRAM MOVES}
{PLANET IN AN ORBIT AROUND THE CENTER OF THE DRAWING WINDOW.}
var
H,V : integer; {THE CENTER OF THE PLANET}
OrbitRadius,PlanetRadius : integer;
OrbitRadiusSqr : longint; {SQUARE OF THE RADIUS OF THE ORBIT}
HDistanceSqr : longint; {SQUARE OF THE HORIZONTAL DISTANCE}
{BETWEEN THE CENTER OF THE ORBIT AND THE CENTER OF THE PLANET}
begin
writeln('Type in radius of orbit and radius of planet.');
readln(OrbitRadius,PlanetRadius);
H := 100 - OrbitRadius;
OrbitRadiusSqr := sqr(OrbitRadius);
{DRAWS THE UPPER HALF OF THE ORBIT.!}
repeat
HDistanceSqr := sqr(100 — H);
V := 100 - round(sqrt(OrbitRadiusSqr - HDistanceSqr));
paintcirele(H,V,PlanetRadius);
invertcircle(H,V,PlanetRadius);
H:=H+1
until(H = 100 + OrbitRadius);
{DRAWS THE LOWER HALF OF THE ORBIT.!}
repeat
HDistanceSqr := sqr(100 — H);
V := 100 + round(sqrt(OrbitRadiusSqr - HDistanceSqr));
paintecircle(H,V,PlanetRadius);
invertcircle(H,V,PlanetRadius);

H 2= 3 = 1
until (H (= 100 - OrbitRadius)
end.

EXERCISE 11 What does program CircleOrbit do if the plus sign in the assignment

statement
V := 100 + round(sqrt(OrbitRadiusSqr - HDistanceSqr));

is changed to a minus sign? =m



148

Assignment Statements and More on Looping

S o

(=]

10.

TEST YOURSELF

PROBLEMS
1.

What does it mean to initialize a variable?

When can you assign a longint value to a variable of type integer?
What is the difference between round and ¢runc?

How can you get out of an infinite loop?

When is it not permitted to change the value of the control variable of a loop
using an assignment statement?

What are the six relational operators?

Name two ways in which the while statement is superior to the for state-
ment.

Why won’t this assignment statement work?
Number + 3 := Number

Explain carefully what happens when Pascal does this assignment:
Number := trunc(sqrt(2))

How can you get into trouble with a repeat-until loop?

What does each of the following programs print?

a. program AssignmentCheck;
var
M,N : integer;
begin
M = 2;
N :=2 %M+ 3;
writeln(M — N)
end.

b. program WhatNumber;
var
BigNumber,StepNumber : integer;
begin
StepNumber := 0;
BigNumber := 10;
while (BigNumber (= 20) do
begin
StepNumber := StepNumber + 2;
BigNumber := BigNumber ¥ StepNumber — StepNumber
end;
writeln(StepNumber)
end.



Problems 149

2. What number must be inserted in the box to make the following program
print the column 1-3-9? (The loop body in this program gives the answer to
part c of Exercise 3 on page 126.)

program TakeAGuess;

var
Number : integer;

begin

Number := [ I;

while(Number (= 20) do
begin
writeln(Number);
Number := 3 * Number
end

end.

3. Suppose Uncle Harold wants to build his 6-step staircase 3 blocks wide in-
stead of just 1 block wide. Modify program BlocksNeeded so that it will do
this calculation.

4. Rewrite program Explode (Problem 5 in Chapter 1) using a while loop.

5. Write programs that print the following columns of numbers, using (a) a
while loop and (b) a repeat-until loop.

10 511 0 30
20 414 1 24
30 319 0 18
40 21161 12
50 11250 6

6. Suppose Numberl = 5and Number2 = 8. What are the values of the fol-
lowing expressions?

a. Numberl { Number2

b. Numberl )= Number2

c. (2 % Numberl) {=(Number2 - 2)
d. Numberl + 3 = Number2

Crosshairs: You type in a point, say (50,50), and a
radius, say 35, and the program draws a circle of ""-—
the given radius with its center at the given point.

It also draws “crosshairs”—one vertical and one

horizontal line through the center of the circle. So
the program output should look like this:

7. Write an interactive program called program ‘h




150

Assignment Statements and More on Looping

8.

10.

11.

12.

13.

If a bank pays you interest at the rate of 9%, compounded quarterly, then
each quarter of the year you get interest equal to 1/4 of 9%, or 2.25% . If
monthly interest is paid, each month you receive 1/120f9% = .75% inter-
est, and the assignment statement

Amount := Amount + (Amount * Rate/12)

calculates the new amount in your bank account each month. Write an
interactive program that reads in a principal, a number of years, an interest
rate, and an integer representing the number of times during a year that the
interest will be compounded. For example, if the interest is compounded
monthly, you type in 12. For output, the program prints the amount of
money in your account when the number of years is up.

. First National Bank pays 9.5% on its savings accounts, compounded yearly.

Second National Bank pays 9% , compounded monthly. Which bank offers
a better deal?

How many integers in the sequence 1,2,3,4,5, . . . must you add together be-
fore the sum exceeds 2007 Write a program that makes this calculation.
Hint: You will need a counter.

Successive square roots of 2 keep getting smaller:

sqrt(2) = 1.414
sqrt(1.414) = 1.183

How many successive square roots do you have to take before you get to a
value smaller than 1.0000001?

Using while loops only, write a program that rolls ) . .
a ball around the inside perimeter of the standard

drawing window.

Lo

Hero’s formula,
Area = \/s(s—a)(s— b)(s - c)

calculates the area of a triangle, where s equals one-half of the perimeter
and a, b, ¢ are the lengths of the sides. Planning carefully, write a program
that reads in the locations of three points in the Drawing window and then
calculates the area of the triangle they form.




14.

15.

Problems 151

Change program AngleRoll so that you can start the ball rolling anywhere
on the left wall of the Drawing window.

Can a program that includes for loops only (no while loops or repeat-until
loops allowed) ever go into an infinite loop?



iz el

Conditional Statements,
Rectangles,
and Bar Graphs

“You may borrow my car on condition that you bring it back by noon.” This is a
conditional statement. It says that something will happen provided that some
condition is met. Conditional statements show up in computing, too: “If the first
number equals the second number, then print this message: The two numbers
are equal. Otherwise, print: The two numbers are not equal.”

In this chapter you will learn about Pascal’s two conditional statements: the
if-then and if-then-else commands. We'll also show you how to use Pascal’s
rectangle-drawing instructions to draw bar graphs and to create unusual graph-
ics. Let’s look at conditional statements first.

Conditional Statements—A Two-Number Sort

When you arrange a list of numbers in numerical order, or when you alphabetize
a list of names, you are sorting the list. Program TwoSort sorts two numbers by
putting the larger one first. It is our first illustration of an if-then statement.

program TwoSort;
var
FirstNumber,SecondNumber,Larger,Smaller : integer;
begin
writeln('Type in two integers.');
readln(FirstNumber,SecondNumber) ;

Larger := FirstNumber;
Smaller := SecondNumber;
if (Larger ( Smaller) then
begin
Larger := SecondNumber;
Smaller := FirstNumber
end;

writeln('The larger number is ',Larger : 1);
writeln('The smaller number is ',Smaller : 1)
end.

153



154

Conditional Statements, Rectangles, and Bar Graphs

When you run program TwoSort, you type in two integers, which are read
into the variables FirstNumber and SecondNumber. Then the program assigns
the value of FirstNumber to a variable called Larger, and it assigns the value of
SecondNumber to another variable called Smaller.

These assignments might be mixed up: Suppose the second number is the
larger of the two. For example, the first number might be 3 and the second num-
ber 5.

FirstNumber SecondNumber
[3]— B s
Larger Smaller

This is where the if-then statement comes in:

if (Larger ( Smaller) then

begin

Larger := SecondNumber;
Smaller := FirstNumber
end;

This statement says, “If Larger is less than Smaller, then do the two actions that
will reassign the numbers, putting the larger one in Larger and the smaller one in
Smaller.”

The if part is a test: (Larger < Smaller). If the result of the test is true, the
program goes on to execute the body of the then part. If the result of the test is
false, the program skips over the rest of the if-then statement and goes on to the
next instruction.

What happens when FirstNumber = SecondNumber? For example, what if
they are both 57 In that case, the test (Larger < Smaller) is false. So the then part
is not executed, and the program prints

The larger number is 5
The smaller number is 5

If this bothers you, add the following if-then statement at the end of the
program:

if (Larger = Smaller) then
writeln('The numbers are equal.')



5.2 A Better Two-Number Sort—The Scratchpad Principle 155

If-Then Statement Syntax
The general form of the if-then statement is

if (test) then
(statement)

The statement in the then part can be a simple statement, a compound state-
ment, or any other kind of Pascal statement. We get these match-ups for the if-
then statement in program TwoSort:

if [(Larger ( Smaller)| then (test)
begin L |
Larger := Second;|<——{statement)
Smaller := First

end;

The body of the then part in program TwoSort is a compound statement.

The if-then statement is called a conditional statement, because the then
part is executed on condition that the test in the if part is true. When the test is
false, the then part is skipped over.

—5.2 A Better Two-Number Sort—The Scratchpad Principle

Program TwoSort works fine, but there is a more efficient way of sorting
two numbers. In program BetterTwoSort, we’ll use FirstNumber and
SecondNumber as our input variables once again. But instead of using the output
variables Larger and Smaller, we will reuse FirstNumber and SecondNumber
for output. To help with the sort, well include a program variable called
Scratchpad, which will hold a value temporarily during program execution.

program BetterTwoSort;

var

FirstNumber,SecondNumber,Scratchpad : integer;
begin

writeln('Type in two integers.');
readln(FirstNumber,SecondNumber) ;

if (FirstNumber { SecondNumber) then

begin
Scratchpad := FirstNumber;
FirstNumber := SecondNumber;
SecondNumber := Scratchpad
end;

writeln('The larger number is ',FirstNumber : 1);
writeln('The smaller number is ',SecondNumber : 1)
end.



156

Conditional Statements, Rectangles, and Bar Graphs

When you run this program, you type in a value for FirstNumber and
a value for SecondNumber. If FirstNumber is greater than or equal to
SecondNumber, the if part of the loop is false and execution skips to the writeln
statement.

But suppose FirstNumber is smaller; let’s say FirstNumber is 3 and
SecondNumber is 5.

L

FirstNumber SecondNumber Scratchpad

In this case, the then part of the if-then statement switches the two values. First it
copies the value of FirstNumber into Scratchpad.

Y

FirstNumber SecondNumber Scratchpad

Then it copies the value of SecondNumber into FirstNumber.

\

FirstNumber SecondNumber Scratchpad

And finally it copies the value of Scratchpad into SecondNumber, completing
the swap.

Y

FirstNumber SecondNumber Scratchpad

Now FirstNumber holds the larger number and SecondNumber holds the small-
er number.

The variable Scratchpad plays a special role in program BetterTwoSort: It
holds a number temporarily so that the values in the two other variables can be
swapped. This technique will show up again and again in programming, so it is
important that you thoroughly understand how it works.

Program BetterTwoSort is a more efficient way to sort two numbers than
program TwoSort. It uses three variables and three assignment statements in-
stead of four variables and four assignment statements. This may not seem like a



5.3 If-Then-Else: Pascal’s Other Conditional Statement 157

big advantage, but in a large program that sorts thousands of names or numbers,
executing up to 25% fewer assignment statements means the program will run
much faster.

In Chapter 10 we’ll see how to use the Scratchpad principle in sorting long
lists of names and numbers.

EXERCISE 1  a. What would program BetterTwoSort do if you used the condition
(FirstNumber > SecondNumber) in the if-then test?

b. Suppose the then part of program BetterTwoSort didn’t use Scratchpad,
but simply looked like this:

begin

FirstNumber := SecondNumber;
SecondNumber := FirstNumber
end;

What would the program print if FirstNumber = 3 and
SecondNumber = 5?

c. What would happen if the then part of program BetterTwoSort looked
like this?

begin
Scratchpad := FirstNumber;
SecondNumber := FirstNumber;
SecondNumber := Scratchpad
end;

Hint: Draw a diagram with three cells named Scratchpad, FirstNumber,
and SecondNumber. Put sample values in the cells and then “execute” the
statements with pencil and paper. ==

— 5.3 If-Then-Else: Pascal’s Other Conditional Statement

An if-then-else statement works a lot like an if-then statement. An if-then-else
tells the computer, “If something is true, do this, or else if it’s not true, do that.”
Let’s illustrate how the if-then-else works with a few examples.

Program Tuna

A supermarket ad includes a coupon that entitles you to a can of tuna for 29 cents
if the cost of your other purchases is $7.50 or more. Otherwise the can costs 89
cents. Program Tuna adds the cost of the can of tuna to the cost of the other items
you buy to give a total cost.



Conditional Statements, Rectangles, and Bar Graphs

program Tuna;
const
RegTunaPrice = 0.89;
CheapTunaPrice = 0.29;
var '
OtherItems : real;
Cost : real;
begin
writeln('Type in cost of other items.');
readln(OtherItems);
if (OtherItems )= 7.50) then
Cost := OtherItems + CheapTunaPrice
else
Cost := OtherItems + RegTunaPrice;
writeln('Total cost is $',Cost : 4 : 2)
end.

An if-then-else statement is appropriate here, because there is one action to
be taken if the test is true and another action to be taken if the test is false.

If-Then-Else Statement Syntax
The if-then-else statement has this general form:

if (test) then
(statementl)

else
{statement2)

Statementl and Statement2 represent the actions taken on each of the two
branches of the if-then-else.

There is one absolutely firm syntax rule for if-then and if-then-else state-
ments: Never put a semicolon immediately before a then or an else.

Now let’s look at a more complicated if-then-else program.

Program Average

Program Average reads in a list of positive integers and prints out their average.
When you run the program, you type positive integers until you are ready to
quit, and then you type a zero. The program adds up the integers and stores their
sum in a variable called Sum. Meanwhile, a variable called NumberCount
tallies the number of positive integers you have entered. Then the program cal-
culates the average,

Average := Sum/NumberCount

and prints it out.



5.3 If-Then-Else: Pascal’s Other Conditional Statement 159

Program Average is not quite so straightforward as it seems. We want the
program to treat different kinds of input in different ways. So we’ve handled the
special-case inputs with if-then and if-then-else statements.

program Average;
{YOU READ IN POSITIVE INTEGERS, PROGRAM CALCULATES THE AVERAGE.}
var
Sum,Number,NumberCount : integer;
AverageValue : real;
begin
Number := 1;
Sum := 0;
NumberCount := 0;
{READ IN NUMBERS.!}
while (Number () Q) do
begin
writeln('Type in a positive integer.');
writeln('Type zero to quit.');
readln(Number) ;
if (Number ¢ 0) then

writeln('Bad input -- type another value.')
else
begin
Sum := Sum + Number;
if (Number ) 0) then
NumberCount := NumberCount + 1
end
end;

: {CALCULATE AVERAGE.}
if (NumberCount ) 0) then
begin

AverageValue := Sum/NumberCount;

writeln('The average of the ',NumberCount : 1,

' numbers you entered is ',AverageValue : 3 : 1)
end
else
writeln('No values submitted -- no average reported.')
end.

First of all, the program tells you to type in a positive number or a zero. But
you might absentmindedly type a negative number. The first if-then-else state-
ment checks for this error: If the number you have entered is less than zero, the
then part of the statement informs you of your mistake.

If the number isn’t negative, the else part is executed. But here, too, there is
something to check for. In this program, the number zero doesn’t really figure in



160

Conditional Statements, Rectangles, and Bar Graphs

the average. It is a signal that you don’t want to enter any more numbers. So
NumberCount is incremented only when Number is greater than zero.

What happens if the first number you type is zero? This input terminates the
while loop, and so NumberCount, which has been initialized to zero, won’t be
incremented and will remain at zero for the rest of the program. But, because
you can’t divide by zero, the average value

Average := Sum/NumberCount;

cannot be computed. Hence we have included a final if-then-else statement to
avoid the possibility of dividing by zero. Had we left it out, the program would
crash if the first value entered were a zero. This is called a run-time error, be-
cause the bug shows up while the program is running.

The if-then-else statement that complains when you type a negative number
has a special function. It protects you against bad input values. This is called
idiot-proofing. If you make a mistake when you are entering data, the if-then-
else statement keeps your bad input from producing invalid output.

MacPascal does some idiot-proofing of its own. Suppose you type a letter in-
stead of an integer. The program won’t accept it, and the Macintosh will beep
when you press the key. And if you type a real number, MacPascal will read into
the variable Number only the integer part of what you type. It ignores the deci-

‘mal point and the digits that followit.

Program ElectricBill

Here is a more practical if-then-else example. Your electric company, Podunk
Power and Light, has a life-line rate of 2.30 cents per kilowatt hour (KWH) for
customers who use less than 250 KWH’s of electricity per month. A customer
who uses more than 250 KWH’s, however, is charged 4.20 cents per KWH on all
electricity used.

Program ElectricBill will compute your electric bill using an if-then-else
statement that splits the program into two parts. If you use less than 250 KWH’s
of electricity per month, the then part of the program calculates your bill at the
life-line rate. If you use more electricity, the else part does the calculation at the
regular rate.

program ElectricBill;
{READS IN KILOWATT HOURS USED AND CALCULATES ELECTRIC BILL}
{BASED ON TWO-TIERED RATE SYSTEM.}

const

LifeLineRate = 0.023;

RegRate = 0.042;

var

Cost : real;

KWH : integer;



5.3 If-Then-Else: Pascal’s Other Conditional Statement 161

begin
writeln('Type in the number of kilowatt hours used -- an integer.');
readln(KWH);
if (KWH ¢ 250) then
Cost := LifelLineRate ¥ KWH
else
Cost := RegRate ¥ KWH;
writeln('Your electric bill is $',Cost : 4 : 2)
end.

Now suppose Podunk Power and Light changes its rates to a three-tiered sys-
tem. Customers who use less than 250 KWH’s of electricity still pay 2.30 cents
per kilowatt hour. But a customer who uses 250 KWH’s or more pays 4.20 cents
per KWH on the first 0 to 499 Kilowatt hours and 5.35 cents per kilowatt hour
for any additional power. Here is the revised program.

program ElectricBillTwo;
{READS IN KILOWATT HOURS USED AND CALCULATES ELECTRIC BILL}
{BASED ON THREE-TIERED RATE SYSTEM}
const
LifeLineRate = 0.023;
LowRegRate = 0.042;
HighRegRate = 0.053;
var
Cost,PartialCost : real;
KWH,KWHsLeft : integer;
begin
writeln('Type in the number of kilowatt hours used -- an integer.');
readln(KWH);
1f (KWH ¢ 250) then

wr,lte“ln('Your electric bill is $'“,'Coyst e 2)
end.

To handle the three-way split in the cost of electricity, program
ElectricBillTwo has an if-then-else statement as the else part of another if-then-
else. This is called a nested if-then-else statement. Make sure you understand this
program completely by tracing how it will run on inputs of 249, 250, and 500
kilowatt hours.



162 Conditional Statements, Rectangles, and Bar Graphs

—54

e 10

The Case of the Dangling Else
Now look at program Dangle, keeping an eye on the final else.

program Dangle;
var
Number : integer;
begin
writeln('Type in an integer.');
readln(Number) ;
if (Number ) 0) then
if (Number ) 10) then
Number 100
els ‘

The dangling else

writeln(Number)

end.

What does program Dangle print out when you type in 1? (Make a guess!)
To figure out the answer, you must know which if-then the final else is a part
of—the outer if-then or the inner if-then. If the final else belongs to the inner or
nearest if-then, the program prints 50. If it belongs to the outer if-then, the pro-
gram prints 1.

In Pascal, an else statement always goes with the nearest if-then that isn’t
followed by another else. And so program Dangle prints 50. The else part of an
inner if-then-else statement is called a dangling else.

Once you type a program in, pretty-printing will clarify where the dangling
else goes; it will line up with the if it belongs to. But when you first create a pro-
gram with pencil and paper, you may be tempted to hook the else up with the
outer or farthest if-then. Pascal won'’t see it this way. It uses the “nearest if-then
rule,” and you must, too.

The Mod Operator

When we talked about arithmetic with integers, we introduced div, the operator
that does integer division.

5+3=12/3

5div3=1

Pascal has another operator that is a companion to the div operator. It’s
called mod. The mod operator does division, too—but the answer it gives is the

remainder that’s left after the division is done. For example, 5 divided by 3
equals 1 with a remainder of 2, so

5mod 3 =2




5.6 AMathPuzzle 163

Whereas the expression 31 div 7 gives you the number of full weeks in
March, the expression 31 mod 7 gives the number of days left in March after 4
full weeks have passed.

4 3l1div7=4
7)31
28
3 31 mod 7 =3
Here are some examples of division using +, div, and mod.
3+3=1 3div3=1 3mod3=0

4+3=11/3 4div3=1 4mod3 =1
10+7=13/7 10div7 =1 10 mod 7 =3
5+6=5/6 5dive=0 Smod6=>5

Note that with mod, if the second number divides the first evenly, the an-
swer is zero. And if the second number is bigger than the first, the answer is the
same as the first number.

EXERCISE 2  a. Figure out the answers to these problems. Then check your answers in
the Instant window.

11 mod 6 =7
2mod 5="
111 mod 10 =7
5mod 5="
8 mod 5="

b. What does this program print?

program ModQuestion;
var
Number : integer;
begin
for Number := 11 to 20 do
writeln(Number mod 5)
end. mm

5.6 A Math Puzzle

Now let’s use the mod function to write a program that solves an intriguing math
puzzle. First, recall that, to cube a number, you multiply it by itself three times:

F=3x3x3=3*3*3=27

The following table gives the cubes of the numbers from 0 to 9.




164 Conditional Statements, Rectangles, and Bar Graphs

Number Cube
0® 0
13 1
27 8
3° 27
4* 64
5° 125
6° 216
72 343
8 512
9 729

EXERCISE 3  Figure out the sums of the cubes of the digits of these numbers.

a. 121
Answer: 10

b. 567
Answer: 684 mm

Now here’s a strange fact: The number 153 equals the sum of the cubes of its
digits.
153=13+5+3 =1+ 125 + 27 = 153

Question: Are there other three-digit numbers that equal the sums of the
cubes of their digits? To find out, let’s write a program called program CubeSum
that will test each number from 100 to 999 for this peculiar property. Let’s tackle
this problem with our think-plan-code-test-and-debug method.

Thinking

The problem asks us to examine all three-digit numbers—that is, all numbers
from 100 to 999—and report back if we find any that satisfy the cube-sum prop-
erty. So a piece of our program will have to generate all these numbers. We can
do this with a loop.

There aren’t any input or output variables. The program merely steps
through the integers from 100 to 999 and reports any with the cube-sum proper-
ty.

How about program variables? We'll need a control variable for the loop
that generates each number from 100 to 999. Let’s call it TestNumber. And we’ll
need a variable called SumOfCubes to hold the value of the sum of the cubes of
the digits.



5.6 A MathPuzzle 165

We will also have to keep track of the separate digits for each value of
TestNumber. Three-digit numbers have a hundreds place, a tens place, and a
ones place. So let’s use Hundreds, Tens, and Ones as the names for these vari-
ables.

Given a number, we need a way to calculate its digits. The operators div
and mod will do the job. To see how, let’s look first at a two-digit number—say,
47. In the two-digit case, div and mod give us the answers we want directly:

47div10=4
47 mod 10 =7

The first digit is 4 and the second digit is 7. Using div 10 and then mod 10, we can
produce the two digits that make up any two-digit number.
A similar strategy works for three-digit numbers. Let’s look at 567.

567 div 100 = 5 (This gives us the first digit.)
567 mod 100 = 67

67div10=6 (This gives us the second digit.)
67 mod 10 =7 (This gives us the third digit.)

We can shorten these calculations by writing them this way:

567 div 100 = 5
(567 mod 100) div 10 = 6
(567 mod 100) mod 10 =7

These div and mod calculations give us the digits if TestNumber is any three-
digit number:

digit in hundreds place = TestNumber div 100
digit in tens place = (TestNumber mod 100) div 10
digit in ones place (TestNumber mod 100) mod 10

Here is our data table for program CubeSum:

DATATABLE
Input Variables Output Variables Constants
none none none
Program Variables Formulas
TestNumber Hundreds = TestNumber div 100
Hundreds Tens = (TestNumber mod 100) div 10
Tens Ones = (TestNumber mod 100) mod 10
Ones
SumOfCubes
Loops

one loop generates all three-digit numbers




166 Conditional Statements, Rectangles, and Bar Graphs

The problem asks us to test each number after it has been generated to deter-
mine whether the cube-sum property holds. So we can solve this problem by
using a method that can be applied to a great many programming problems: the
generate-and-test method.

Planning
Our starting plan looks like this:

generate numbers from 100 to 999
test to see if a number satisfies cube-sum
property, and report the number if it passes the test

We can refine our plan, using the variables from the data table:

step TestNumber in a loop from 100 to 999
calculate SumOfCubes for TestNumber
if SumOfCubes = TestNumber then print TestNumber

Now we can turn our plan into a more concrete algorithm by working out
the looping structure. There are three possibilities—a for loop, a while loop, or a
repeat-until loop. Using a for loop:

for TestNumber : = 100 to 999 do
begin
calculate sum of cubes of digits in TestNumber
if sum = TestNumber, then print TestNumber
end

Using a while loop:

TestNumber : = 100;
while TestNumber < =999 do
begin
calculate sum of cubes of digits in TestNumber
if sum = TestNumber, then print TestNumber
TestNumber : = TestNumber + 1
end

Using a repeat-until loop:

TestNumber : = 100;

repeat
calculate sum of cubes of digits in TestNumber
if sum = TestNumber, then print TestNumber
TestNumber : = TestNumber + 1

until TestNumber = 1000



5.7 Drawing Rectangles 167

All three looping plans will solve the problem. The for-loop solution will
work out just fine, because we already know the lower and upper limits of the
loop. The repeat plan is OK too, because the loop will execute at least once, so
having the looping test at the end of the loop will cause no problems. And the
while loop will also work. It’s the most versatile looping command.

Coding

Now we have the machinery to code program CubeSum. We'll use a while state-
ment for the loop that generates each TestNumber, and we’ll use an if-then state-
ment to do the test part of the generate-and-test scheme. Here’s the program:

program CubeSum;
{REPORTS EVERY INTEGER FROM 100 TO 999}
{THAT EQUALS THE SUM OF THE CUBES OF ITS DIGITS.}
var
Hundreds, Tens,Ones,SumOfCubes, TestNumber : integer;
begin
TestNumber := 100;
while (TestNumber (= 999) do
begin
Hundreds := TestNumber div 100;
Tens := (TestNumber mod 100) div 10;
Ones := (TestNumber mod 100) mod 10;
SumOfCubes := Hundreds * Hundreds * Hundreds +
Tens ¥ Tens * Tens + Ones ¥ Ones * Ones;
if (SumOfCubes = TestNumber) then
writeln(TestNumber : 1,
' equals the sum of the cubes of its digits.');
TestNumber := TestNumber + 1
end
end.

Are there any other of these strange numbers besides 1537 We're not telling!

—— 5.7 Drawing Rectangles

Next we're going to show you four MacPascal instructions for drawing rectan-
gles. The Macintosh Pascal instruction framerect draws the outline of a rectangle
in the Drawing window. For example, the instruction

framerect(30,40,150,100)

creates the picture shown in Figure 5.1. The values 30, 40, 150, and 100 deter-
mine the top, left, bottom, and right sides of the rectangle. So framerect works
this way:

framerect(top,left,bottom,right)



168 Conditional Statements, Rectangles, and Bar Graphs

(1)Top30
Left ’
@

@ Bottom 150

(4) Right 100

Figure 5.1 The rectangle drawn by framerect(30,40,150,100).

To keep straight which number determines which side of the rectangle, re-
member to start at the top and go counterclockwise around the rectangle: top,
left, bottom, right.

/— top

left right
\ bottom -/

The width of a rectangle is equal to the fourth number minus the second
number, or right minus left. Its height is equal to the third number minus the
first number, or bottom minus top. So the dimensions of the rectangle shown in
Figure 5.1 are 100 — 40 = 60 by 150 — 30 = 120. When you use a rectangle com-
mand, top must be smaller than bottom, and left must be smaller than right. If
you frame a rectangle with left larger than right or top larger than bottom, the
figure will have negative width or height and nothing will be printed out.

EXERCISE 4  a. What framerect command draws a square that is 50 units on a side with
its upper-left corner at the point (100,100)?

Answer: framerect(100,100,150,150)

b. What framerect command draws a rectangle that is exactly 10 units in-
side the border of the standard Drawing window?
Answer: framerect(10,10,190,190) ==



5.7 Drawing Rectangles 169

MacPascal has three other rectangle commands: paintrect, invertrect, and
eraserect. Paintrect works like framerect, only instead of drawing just an out-
line, it paints the whole rectangle black. Invertrect works the way invertcircle
does. It reverses the color of everything inside the rectangle’s boundary.
Eraserect completely “whites out” the area inside the rectangle’s borders.

EXERCISE 5  a. Paint the entire Drawing window black.

b. Which two invertrect commands will create Drawing
this picture?

Using rectangle commands and loops, we can create dramatic graphics in
the Drawing window. For example, program ExplodeRect works like program
Explode from Chapter 2—only it explodes a rectangle instead of a circle, and
then it erases the rectangle from the inside out with an “exploding” eraserect
command. See Figure 5.2.

E[J=—= Drawing ——~|

100 — Grow

oy

D0 — Grow

i

100 + Grpw

100 + Grow

o

Figure 5.2 ExplodeRect when Grow = 50 in the first loop.




170 Conditional Statements, Rectangles, and Bar Graphs

program ExplodeRect;
{EXPLODES AND THEN ERASES A RECTANGLE}

var

Grow : integer;
begin
Grow := 0;

{EXPLODES A RECTANGLE}
while (Grow {= 100) do

begin

Grow := Grow + 1;

paintrect(100 - Grow,100 - Grow,100 + Grow,100 + Grow)
end;
Grow := 0;

{ERASES THE RECTANGLE}
while (Grow {= 100) do

begin
Grow := Grow + 1;
eraserect(100 - Grow,100 — Grow,100 + Grow,100 + Grow)
end
end.

Here is another spectacular program that uses a rectangle command (see
Figure 5.3).

E[l==—== Drawing

l&-u-

T

5

Figure 5.3 Output for program StackOfRectangles.




5.8 Bar Graphs 171

program StackOfRectangles;
const

Spacing = 4;

var

Grow : integer;
begin

Grow := 0;

repeat

framerect(Grow,Grow,2 * Grow,2 ¥ Grow);

Grow := Grow + Spacing
until (Grow ) 100)
end.

If you substitute an invertrect command for the framerect command in pro-
gram StackOfRectangles, you will get the picture at the beginning of this chap-
ter, on page 153. Try it and see.

—5.8 Bar Graphs

Bar graphs help you compare the sizes of things. You can draw bar graphs that
give you all sorts of information in picture form, from the consumer price index
during the last twelve months to the amount of money you will accumulate in
your savings account over the next ten years. Figure 5.4 and Figure 5.5 are exam-
ples of typical bar graphs.

A bar is just a black rectangle. To print out a sequence of bars, we will put a
paintrect command inside a loop.

1059 Population in millions

USSR} Indonesia }  Japan } Pakistan
India USA Brazil Bangladesh Nigeria

China

Figure 5.4 A bar graph of the populations of the world’s ten most populous countries.



172 Conditional Statements, Rectangles, and Bar Graphs

AVG KWH
PER DAY THIS IS YOUR ENERGY USE PROFILE
40

36—
32—
28—
2418
201
16—
121-8

83 MONTHS 84

Figure 5.5 A bar graph that comes with an electric bill.

Program BarGraphOne

Our first bar graph program will print a picture that is barely a bar graph at all
(see Figure 5.6).

== rawing |

Figure 5.6 Output for program BarGraphOne.



5.8 Bar Graphs 173

The bars are identical except that each one has a different vertical position.
All have the same left boundary, the same right boundary, and the same thick-
ness. And the gaps between the bars are all the same size.

program BarGraphOne;
{PRINTS 10 HORIZONTAL BARS ON LEFT SIDE OF DRAWING WINDOW}

const
Left = 03
Right = 100;

Separation = 7;
Thickness = 12;
BarCount = 10;

var

BarNumber,Top,Bottom : integer;
begin
{BOTTOM IS INITIALIZED TO O, WHICH IS THE TOP OF THE WINDOW}
Bottom := 0;

BarNumber := 1;

while (BarNumber (= BarCount) do
begin
Top := Bottom + Separation;
Bottom := Top + Thickness;
paintrect(Top,Left,Bottom,Right);
BarNumber := BarNumber + 1

end

end.

After Bottom and BarNumber are initialized, the while loop is executed,
and the bars are drawn.

In order to paint a rectangle, we must determine the values of Top, Left,
Bottom, and Right. In this program Left and Right are fixed, so we need to de-
termine values only for Top and Bottom.

Top has for its value the previous or initial value of Bottom plus the separa-
tion between the bars.

Top := Bottom + Separation ¥ Bottom

}Sepmaﬁon
Top

R

In the first iteration of the loop, Top is assigned the initial value of Bottom, 0,
plus the separation between the bars, which is a constant.



174 Conditional Statements, Rectangles, and Bar Graphs

Once we know the value for the top of a rectangle, we can calculate the
value for its bottom by adding the thickness of a rectangle:

Bottom := Top + Thickness

Top
}Thickness

<— Bottom

Gl

Each loop iteration draws one bar, and, because the number of loops equals
BarCount, we will get BarCount (in this case 10) bars.

EXERCISE 6  a. How would you change program BarGraphOne so that there are twelve
bars separated by eight units?
b. Change the program so that the bars start at the right instead of at the
left. mm

BarGraphTwo

Next let’s rotate the graph so that the bars are vertical, which is the traditional
way of displaying bar graphs (see Figure 5.7). Program BarGraphTwo on page
175 does the trick.

E[ === Drowing

0

Figure 5.7 Output for program BarGraphTwo.




i 5.9

5.9 Writing in the Drawing Window I¥f5

program BarGraphTwo;
{PRINTS 10 VERTICAL BARS NEAR BOTTOM OF DRAWING WINDOW}

const
Bottom = 180;
Top = 100;

Separation = 7;
Thickness = 12;
BarCount = 10;

var
BarNumber,Left,Right : integer;
begin
{BOTTOM IS INITIALIZED TO 0, WHICH IS THE TOP OF THE WINDOW}
Right := 0;
BarNumber := 1;
while (BarNumber (= BarCount) do
begin

Left := Right + Separation;
Right := Left + Thickness;
paintrect(Top,Left,Bottom,Right);
BarNumber := BarNumber + 1
end

end.

This time Left and Right are variables, and Top and Bottom are constants.
We have made Bottom 180 instead of 200 so that there will be room underneath
the bars for labels. We will show you how to add the labels in a moment. Inside
the loop we calculate Left first, adding the previous (or initial) value of Right to
the constant value for Separation.

Writing in the Drawing Window

In order to create a real bar graph, we need to be able to label the bars. We can’t
use write or writeln, because they print text in the Text window. To print text
or numbers in the Drawing window, we’ll use the MacPascal instructions
writedraw and moveto. Moveto tells MacPascal where in the Drawing window
you want your words and numbers to appear.

Imagine that the Drawing window comes with a pen. The moveto instruc-
tion places the tip of the pen at the point where you want something printed
in the Drawing window. The writedraw command prints text at the pen posi-
tion. Figure 5.8 illustrates how moveto and writedraw work.



176 Conditional Statements, Rectangles, and Bar Graphs

File Edit Search Run Windows

Drawing

Instant

(drawline(100, 0, 100, 200); lesting
moveto{ 100, 30); :

writedraw('Testing’); !
moveto( 100, 60);
writedraw(1);
moveta( 100, 90); :

writedraw(2 : 1); . 5.14159
moveto(100, 120); ]
writedraw(3.14159 : 7 : 5); i 444444
moveto{ 100, 150); .
writedraw(4444444 : 7); ; grsitbiy
moveto(100, 180); |

writedraw('<<<<<<<<<’); : )
moveto( 100, 180); = :
writedraw('>>>>555>5")

2

4

Figure 5.8 The writedraw command, along with the moveto command, prints words and
numbers in the Drawing window. The word Testing starts at point (100,30). Note that a dec-
imal point takes up less space than a full character.

We're almost ready to draw a real bar graph with labels. But first we need
to make the typeface of the print on the screen smaller so that the labels will fit
under the bars. This is done by opening the Windows menu and choosing Type-
Size.

Program GraphOfSquares

Program GraphOfSquares draws a series of bars that represent the squares of the
integers 1 through 10 (see Figure 5.9). It also labels the bars with their heights.

program GraphOfSquares;
{GRAPHS THE SQUARES OF THE INTEGERS FROM 1 TO 10.}
const
Bottom = 180;
Separation = 7;
Thickness = 12;
BarCount = 10;
var
BarNumber,Left,Right,Top,Height : integer;



5.9 Writing in the Drawing Window 177

begin
{BOTTOM IS INITIALIZED TO 0, WHICH IS THE TOP OF THE WINDOW)}
Right := 0;
BarNumber := 1;
while (BarNumber (= BarCount) do
begin

Left := Right + Separation;
Right := Left + Thickness;
{CALCULATE HEIGHT}
Height := BarNumber ¥ BarNumber;
{CALCULATE TOP}
Top := Bottom — Height;
{DRAW BAR}
paintrect(Top,Left,Bottom,Right);
{LABEL BAR}
moveto(Left,Bottom + 10);
writedraw(Height : 1);
{ INCREMENT BAR NUMBER}

BarNumber := BarNumber + 1
end
end.
E[1=—= Drawing |
i i 1 25 35 49 64 81 100
=)

Figure 5.9 The output for program GraphOfSquares.



178 Conditional Statements, Rectangles, and Bar Graphs

In program GraphOfSquares the height of the bar is the value of the vari-
able Height. Once we know the value of Height, we can calculate Top:

Top := Bottom — Height;

This calculation looks backward, but it isn’t. As the bars get bigger, the values of
Top get smaller, because a small value for Top means that the top of the bar is
closer to the top of the window.

Each time the loop is executed, the program draws a bar and then inserts
a label. The moveto instruction starts the label 10 units below the left corner
of each bar. Then writedraw prints out the height of the bar. Like writeln,
writedraw allots an 8-space field width for integers, which you can override
using colon notation.

———5.10 A Compound-interest Bar Graph Program

Now we are ready to draw a much fancier bar graph. Program InterestGraph
will show how compound interest makes a sum of money grow in your bank
account year by year. You enter any principal, any interest rate, and any num-
ber of years in the account, and the program prints a bar graph that shows how
the balance in your account will increase. Each bar represents the amount of
money in the account at the beginning of a year.

Program InterestGraphOne includes some code from program Interest in
Chapter 4. It’s always a good idea to see whether you can borrow pieces of old
programs when you’re writing new ones. Doing so can save you a lot of time and
energy. This is not cheating; it’s being economical.

After program InterestGraphOne reads in values for Principal, Rate, and
TotalYears, a figure is calculated for the variable Scale:

Scale := FirstBar/Principal

FirstBar is a constant that gives the height of the first bar, which we have set at
80. If Principal = $1000.00, Scale = .08. This means that one dollar = .08 units
in the Drawing window. When we print a bar, we multiply Scale times
MoneyInBank and round off the product to get the Height of a bar:

Height := round(MoneyInBank ¥ Scale);
After MoneyInBank is initialized to Principal, the main loop in the program

draws labels and bars. Then it calculates MoneyInBank for the next year. Here is
the program.



5.10 A Compound-Interest Bar Graph Program 179

program InterestGraphOne;
{READS IN PRINCIPAL, INTEREST RATE, AND YEARS IN BANK.}
{PRINTS OUT GRAPH OF MONEY ACCUMULATED IN BANK.}
const
Separation = 30;
Thickness = 30;
Bottom = 190;
FirstBar = 80; {FIRSTBAR REPRESENTS PRINCIPAL}
var
MoneyInBank,NewMoney,Principal,Rate : Real;
Scale : real; {ADJUSTS HEIGHT OF BARS}
Left,Right,Top,Height,Year,TotalYears : integer;
begin
writeln('Type in principal, interest rate, and years in bank.');
readln(Principal,Rate,TotalYears);
if (Principal <) 0.0) then
Scale := FirstBar / Principal
else
Scale := 0.0;
Year := 0;
Left := 0;
{INITIALIZE MONEY IN BANK}
MoneyInBank := Principal;
while (Year (= TotalYears) do
begin
{CALCULATE AND PAINT RECTANGLE}
Right := Left + Thickness;
Left := Right + Separation;
Height := round(MoneyInBank ¥ Scale);
Top := Bottom — Height;
paintrect(Top,Left,Bottom,Right);
{DRAW TOP LABEL, 3 UNITS ABOVE BAR}
moveto(Left,Top — 3);
writedraw(MoneyInBank : 5 : 2);
{DRAW BOTTOM LABEL}
moveto(Left,Bottom + 13);
writedraw(Year : 1);
{CALCULATE NEXT YEAR'S MONEY}
Year := Year + 1;
NewMoney := MoneyInBank ¥ Rate;
MoneyInBank := MoneyInBank + NewMoney
end
end.



180

Conditional Statements, Rectangles, and Bar Graphs

[[E&=————————— Drawing =

167.71
141.16 15
129, :
118.81 e

100.00 109.00

Figure 5.10 The output for program InterestGraphOne.

Now let’s look at Figure 5.10 for the output.
As you can see, something is drastically wrong with this bar graph—no
bars! Let’s try to figure out where the bug is.

Debugging Program InterestGraphOne with the Observe Window

The Observe window is a terrific debugging tool, but it is no substitute for care-
ful thinking on your part. When you run into a bug, study your code carefully
and learn as much as you can just from reading before you turn to the Observe
window. You may be completely stumped when you start out, but simple rea-
soning will often enable you to make progress isolating the problem. If you still
can’t locate the bug, go to the Observe window.

If we think about the bug in program InterestGraphOne, we’ll come up
with this: The error has to do with the paintrect command. Either it is not being
executed at all, or there is something wrong with the values of Top, Left, Bot-
tom, and Right. But we are not sure which, so it’s time to turn to the Observe
window.

After we open the Observe window, let’s identify Top, Left, Bottom, and
Right as the variables we want to watch and then place a stop next to paintrect.

Now we’ll run the program using Go. Go-Go wouldn’t help much here, be-
cause we can find out what we need to know by watching the very first iteration
of the ioop. Here’s what we need to know: Why wasn’t the first bar drawn? Was
paintrect ever executed? And if it was, what were the values of its variables?



5.10 A Compound-Interest Bar Graph Program 181

When we run the program, here’s what we get:

[[==———=—= iobserve
100 |Top >
49 |Left
180 |Bottom

24 |Right

The Observe window gives us a big clue. We can tell that paintrect was executed
in the original program run, because the stop next to the paintrect command
brings the program to a halt. But the values of the variables were faulty. Top is
smaller than Bottom, which is correct. But Right is smaller than Left—that is,
Right is to the left of Left. The rectangle has negative width, which is why it
didn’t appear on the screen.

To finish debugging, we need to reason backward: How were the values of
Left and Right determined? Left is initialized to 0—the left wall. Then, inside
the loop, Right is assigned Left + Thickness = 0 + 24 = 24. Now Left is assigned
another value: Right + Separation = 49. So Left > Right, and this is our bug.

The statement

Left := Right + Separation;
must come before the statement
Right := Left + Thickness;

This will guarantee that Right is larger than Left by an amount equal to the
thickness of a bar. If the two assignment statements come in this order, Right
must be defined initially, because the other calculations depend on the initial
value of Right. So, instead of using the initialization Left : = 0 just before the
loop, we'll use

Right := 0;

Here is the corrected program, and Figure 5.11 gives a sample of output for
this program.

program InterestGraphTwo;
{READS IN PRINCIPAL, INTEREST RATE, AND YEARS IN BANK.}
{PRINTS OUT GRAPH OF MONEY ACCUMULATED IN BANK. !}

const

Separation = 30;

Thickness = 30;

Bottom = 190;

FirstBar = 80; {FIRSTBAR REPRESENTS PRINCIPAL}

(continued)



182 Conditional Statements, Rectangles, and Bar Graphs

= g e—"r————

167.71

e 153.86
129.50 ;
109.00 118.81
I | ' I I
0 1 2 % 4 3 6

Figure 5.11 Typical output for program InterestGraphTwo.

var
MoneyInBank,NewMoney,Principal,Rate : Real;
Scale : real; {ADJUSTS HEIGHT OF BARS}
Left,Right,Top,Height,Year,TotalYears : integer;
begin
writeln('Type in prineipal, interest rate, and years in bank.');
readln(Principal,Rate,TotalYears);
if (Principal () 0.0) then

Scale := FirstBar / Principal
else

Scale := 0.0;

Year := 0;

Right 2= 0;

{INITIALIZE MONEY IN BANK}
MoneyInBank := Principal;
while (Year (= TotalYears) do
begin
{CALCULATE AND PAINT RECTANGLE}
Left := Right + Separation;
Right := Left + Thickness;
Height := round(MoneyInBank ¥ Scale);
Top := Bottom — Height;
paintrect(Top,Left,Bottom,Right);
{DRAW TOP LABEL, 3 UNITS ABOVE BAR}
moveto(Left,Top — 3);
writedraw(MoneyInBank : 5 : 2);
{DRAW BOTTOM LABEL}



—_—b5.11

5.11 Oval Graphics 183

moveto(Left,Bottom + 13);

writedraw(Year : 1);
{CALCULATE NEXT YEAR'S MONEY}

Year := Year + 1;

NewMoney := MoneyInBank * Rate;

MoneyInBank := MoneyInBank + NewMoney

end

end.

With InterestGraphTwo, the usefulness of our programs has taken a quan-
tum leap. Give it a try, using a few different values and see how it does.

Oval Graphics

MacPascal has four more standard procedures for drawing pictures. The com-
mands frameoval, paintoval, invertoval, and eraseoval draw ovals in the Draw-
ing window. When you create an oval on the screen, it is inscribed inside an
imaginary rectangle. The top, left, bottom, and right values for this rectangle
determine the shape and position of the inscribed oval. These two instructions

framerect(10,15,180,70);
frameoval(10,15,180,70)

draw a rectangle with an oval inside it (see Figure 5.12).

e

)

Figure 5.12 An oval inside a rectangle.



184 *Conditional Statements, Rectangles, and Bar Graphs

EXERCISE 7  Draw these pictures.

e
e}

a.
E

E

Drawing [J==== Drawing

Drawing

=]

Program Cone

Program Cone draws 100 ovals, each a little lower on the screen and a little
narrower than the one before. You have to see the program running to appreci-
ate it. Figure 5.13 shows the final picture that is produced.

=

Figure 5.13 Output for program Cone.



5.11 Oval Graphics 185

program Cone;

const
Rate = 2;
var
Top,Left,Bottom,Right,ConeNumber : integer;
begin
Top' :=.0;
Left s= 03
Bottom := 60;
Right := 200;
ConeNumber := 1;
repeat

frameoval(Top,Left,Bottom,Right);
Top := Top + Rate;

Bottom := Bottom + Rate;

Left := Left + Rate;

Right := Right - Rate;

ConeNumber := ConeNumber + 1
until (ConeNumber ) 100)
end.

Program OvalsAndRecs

Program OvalsAndRecs uses an if-then-else statement to draw alternating ovals
and rectangles. Whenever the variable Grow is odd, the program paints an oval;
otherwise it paints a rectangle (see Figure 5.14).

program OvalsAndRecs;

var
Grow : integer;
begin
Grow := 10;
repeat

if odd(Grow) then
invertoval(Grow,2 % Grow,2 ¥ Grow,4 % Grow)
else
invertrect(Grow,2 % Grow,2 % Grow,4 % Grow);
Grow := Grow + 11
until (Grow ) 100)
end.

In program OvalsAndRecs we use the function odd. Odd is an unusual func-
tion. Unlike sqrt, sqr, and round, which return numerical answers, odd returns



186 Conditional Statements, Rectangles, and Bar Graphs

e e e e T STl ARSI S )

Drawing

=

Figure 5.14 Output for program OvalsAndRecs.

an answer that is either true or false. Because odd gives a true or false answer, it
can appear in the (test) position of a conditional statement, and that’s how it is
used in this program.

EXERCISE 8 What does program OvalsAndRecs do if the assignment statement Grow
:= Grow + 11 is changed to Grow := Grow + 10?7 mm

Program Globe

Using two repeat-until loops, program Globe draws a globe in the standard
Drawing window with the vertical, longitude lines drawn in first (See Figure
5.15). If you change the value of the constant GrowthRate, you can build other
dramatic versions of the output.

program Globe;
const
GrowthRate = 6;
var
Top,Left,Bottom,Right : iInteger;



5.11 Oval Graphics

begin

Top &= 0;

Left := 0;

Bottom := 200;

Right := 200;

{DRAWS LONGITUDE LINES.}

repeat
frameoval (Top,Left,Bottom,Right);
Left := Left + GrowthRate;
Right := Right - GrowthRate

until (Left )= 100);

Top := 0;

liefit = 0s

Bottom := 200;

Right := 200;

{DRAWS LATITUDE LINES}

repeat
frameoval(Top,Left,Bottom,Right);
Top := Top + GrowthRate;
Bottom := Bottom - GrowthRate
until (Top )= 100)

end.

== Drawing —c—

Figure 5.15 Output for program Globe.

187



188 Conditional Statements, Rectangles, and Bar Graphs

—— TEST YOURSELF

[-—

©PNDAR WD

p—
(TR

PROBLEMS
1.

What are Pascal’s conditional statements?

What is a dangling else?

What is the “nearest if-then” rule?

What is idiot-proofing?

Describe the Scratchpad principle.

What MacPascal instruction writes text in the Drawing window?
Explain the generate-and-test method.

What does the instruction moveto do?

What Pascal arithmetic operation gives remainders?

What MacPascal instruction whites out the standard Drawing window?

. What is a run-time error?
. What instruction inverts everything in the standard Drawing window?

Would program BetterTwoSort work differently if the if-then statement
used the test (FirstNumber < = SecondNumber)?

. a. Type in program ExplodeRect to see how it works. Now speed it up so

that the explosion happens faster.
b. Rewrite program ExplodeRect using a repeat-until loop.
Write a program that will draw a cube like this in

the Drawing window. Hint: Use two framerect
instructions and four drawline instructions.

Homer has 1038 eggs. Write a Pascal expression that tells how many eggs he
will have left after he sells as many complete dozens as he can.

. Using the equation 8 mod 7 =1, you can figure out that, if today is

Tuesday, 8 days from now will be 1 day later in the week, or Wednesday.
Suppose that this year isn’t a leap year and that January 22 falls on a
Tuesday. On what day of the week does January 22 fall next year? What if
this year is a leap year?



10.

Problems 189

Modify program GraphOfSquares so that it graphs the cubes of the numbers
from 1 to 10. Be sure to scale the heights of the bars so that the graph fits in
the Drawing window.

Write an interactive program in which you supply the coordinates of a point
in the Drawing window: horizontal then vertical. The program draws and
labels the point. For example, if you type in 50,50, it will respond with

*(50,50)

(Hint: To draw the point, use paintcircle with a small value for the radius.)

. Write an interactive program that reads in the horizontal and vertical coor-

dinates of a point in the Drawing window and also the top, left, bottom,
and right values representing the borders of a rectangle. The program deter-
mines whether the point lies inside the rectangle and prints its answer in the
Text window.

. Write an interactive program, similar to the one in Problem 8, that deter-

mines whether a point lies inside a circle. The circle should be represented
by three integers: the horizontal and vertical coordinates of the center and
the radius.

Write an interactive program that reads in the top, left, bottom, and right
values of a rectangle and yields as output the rectangle flipped over on its
right side. For example,

A

(90,90) (90,90)

Input Output



190

Conditional Statements, Rectangles, and Bar Graphs

11.

12.

13.

14.

15.

16.

Write an interactive program that reads in the top, left, bottom, and right
values of a rectangle. Instead of drawing that rectangle, the program should
draw a square with the same area as the rectangle. The square should ap-
pear in the lower-left corner of the standard Drawing window. Make the
area of the square as close as possible to the area of the rectangle.

Are there any two-digit numbers that equal the sum of the squares of their
digits?

In what percentage of two-digit numbers does the sum of the squares of the
digits exceed the number?

Write an interactive program that reads in the coordinates of the center of a
circle and a radius. If the radius is less than or equal to zero, the program
tells you it has received a bad input. Otherwise it draws the outline of a cir-
cle, using the frameoval command.

Using the generate-and-test method, write a program that reads in a
positive integer and prints out all positive integers that evenly divide the one
you typed. (Hint: b divides a evenly if and only if (¢ mod b) = 0.)

Podunk Power and Light has a new rate schedule. Customers now pay the
life-line rate for the first 249 kilowatt hours, the low regular rate for the next
250 kilowatt hours, and the high rate on all additional power used. Modify
program ElectricBillTwo to handle this rate change. Idiot-proof your pro-
gram so that if a negative number is typed, the program responds with “Bad
input—start over.”



~ Problem Solving

1

We have come to the most important chapter in the book. Here you’ll learn
about a method for attacking any complicated problem without getting lost in
the details.

This method is called top-down programming. When you use it to solve a
big problem, you divide the problem into small, easy-to-code pieces. Then you
deal with each piece separately. This “divide and conquer” strategy relies on
Pascal’s all important procedure command.

We've seen procedure commands before—the standard procedures such as
writeln, paintcircle, and drawline. These instructions are built into MacPascal,
and each does some special job. Now we are going to show you how to write your
own procedures. From here on, when we say procedure we mean the kind you
make up yourself. We'll refer to the built-in procedures as standard procedures.

Creating Your Own Procedures

Like a standard procedure, any procedure you make up yourself does some spe-
cial job. Let’s consider a simple example of how procedures work. Suppose we
want to write a program that prints out the first verse of “Old MacDonald.” We
can create a procedure called Refrain that will print out the refrain. Wherever
the word Refrain appears in the body of the program, the program will print
“Hi el 0.

program OldMac;
{PRINTS THE FIRST VERSE OF OLDMACDONALD}

{THE PROCEDURE DECLARATION}

procedure Refrain;

begin

writeln('Ei, ei, o.')

end; (continued)

191



192 Problem Solving with Procedures

—— 6.2

{THE BODY OF THE PROGRAM}

begin

writeln('01d MacDonald had a farm,');

Refrain; {THE PROCEDURE STATEMENT}
writeln('And on that farm he had some pigs,');
Refrain {THE PROCEDURE STATEMENT}

end.

Like all procedures, procedure Refrain has two parts: a procedure declara-
tion and a procedure statement. The procedure declaration comes in the declara-
tion part of the program between the variable declarations and the body. The
declaration looks almost like a program: It has a heading line followed by a
body. The body of a procedure declaration consists of a statement or a series of
statements sandwiched between a begin and an end.

The procedure statement is simply the name of the procedure, Refrain.
When the statement Refrain is executed in the body of the program, it com-
mands the computer to follow the instruction in the procedure declaration.

Executing Procedure Refrain

When you run program OldMac, Pascal first takes note of the declaration for
procedure Refrain. Then it goes to the body of the program and executes the first
writeln statement, printing

01d MacDonald had a farm,

Next comes the procedure statement Refrain. This statement tells the computer
to follow the instructions listed in the procedure declaration. So it prints out

Ei, ei, o.

Now the computer returns to the body of the program and executes the next
statement, printing

And on that farm he had some pigs,

Another Refrain statement is next. Once again the Macintosh jumps to the
declaration for Refrain, printing out

Ei, ei, o.

Finally the Macintosh returns to the main program. There are no more in-
structions, so execution ends.

If you type in program OldMac and step it, you can see how the Macintosh
executes the procedure statement. The stepper hand jumps to the declaration
portion of the program when the computer is carrying out the instructions for the
procedure.



6.3 Program SquashedGlobe 193

When the computer executes the instructions in a procedure declaration, we
say it is doing a procedure call. The main program calls the procedure to do the
job that the procedure is dedicated to. When the procedure call is finished, the
computer goes on to the next instruction in the main program. This is called a re-
turn from the procedure call.

You can think of the main program as a general contractor who is building a
house and calls up a carpenter to do the carpentry work. The procedure is like
the carpentry work. And the instructions in the procedure are like the specific
steps the carpenter follows. When the carpentry work is finished, the contractor
calls another worker to do some other special job.

——6.3 Program SquashedGlobe

Next let’s look at a more ambitious program called program SquashedGlobe that
uses three procedures to draw the flattened globe shown in Figure 6.1. Here’s a
tip on how to read programs with procedures: Always read the body of the main
program first. It will tell you about the program as a whole. Once you under-
stand what the big pieces of the program do, you can go back and look at the de-
tails of the procedures.

Drawing

Equator

Figure 6.1 The output of program SquashedGlobe.



194 Problem Solving with Procedures

Learning to read programs is an important skill. Don’t sell it short! The best
programmers learn a lot from reading other people’s programs.

program SquashedGlobe;

procedure DrawLatitudeLines;
{DRAWS THE HORIZONTAL LINES}
const ~
LatitudeSpread = 15;
Left = 100;
Right = 400;
var
Top,Bottom : integer;
{BODY OF PROCEDURE}
begin
Top := 50;
Bottom := 250;
repeat
frameoval(Top,Left,Bottom,Right);
Top' := Top + LatitudeSpread;
Bottom := Bottom - LatitudeSpread
until (Top )= Bottom) ‘
end;

procedure DrawlongitudelLines;
{DRAWS THE VERTICAL LINES}
const
LongitudeSpread = 15;
Top = 50;
Bottom = 250;
var
Left,Right : integer;
{BODY OF PROCEDURE}

begin
Left := 100;
Right := 400;
repeat

frameoval(Top,Left,Bottom,Right);
~Left := Left + LongitudeSpread;
Right := Right - LongitudeSpread
until (Left )= Right)
end;



6.3 Program SquashedGlobe 195

procedure DrawEquator; |
{DRAWS STRAIGHT HORIZONTAL LINE}
begin

drawline(100,150,400, 150),
moveto(30,150);
writedraw('Equator')

end;

{MAIN PROGRAM}

begin
DrawLatitudeLines;
DrawLongitudeLines;

DrawEquator
end.

The main program tells a great deal about what program SquashedGlobe
does. It draws the horizontal latitude lines, then the vertical longitude lines, then
the equator line with its label. These three actions form the flattened globe in the
Drawing window.

When you run program SquashedGlobe, execution begins in the main pro-
gram. First comes a call to procedure DrawLatitudeLines. The computer jumps
to the declaration for this procedure and carries out the instructions listed there.
When it comes to a constant such as Left or to a variable such as Top, it uses the
value it finds inside the procedure. Because they are declared inside the proce-
dure, Left is called a local constant and Top is called a local variable.

When execution of DrawLatitudeLines is complete, the computer returns
to the main program and executes the next instruction, which is the procedure
statement DrawLongitudeLines. Again the computer jumps to the declaration
part of the program—this time to the declaration for DrawLongitudeLines. It
follows these instructions, drawing the vertical lines on the globe, and then re-
turns to the main program.

Finally, procedure DrawEquator is executed. The computer jumps one
more time to the declaration part, executes the instructions that add the equator
line and its label, and then returns to the main part, where program execution
ends.

Procedure Syntax

Procedure syntax and program syntax are practically the same. Procedure
DrawLatitudeLines, for example, starts with a heading line, includes a declara-
tion part, and has a body that’s surrounded by a begin-end pair. The declaration
has its own constants and variables, and the body includes a loop.

So far we have seen just two differences between procedure syntax and pro-
gram syntax. A procedure heading line starts with the word procedure instead of
the word program, and procedures end with a semicolon instead of a period.



196 Problem Solving with Procedures

— 6.4

This brings us to an important point. A procedure is a self-contained unit.
Constants and variables that are declared locally can be used only in the in-
structions within that procedure. In program SquashedGlobe, procedure
DrawLatitudeLines and procedure DrawLongitudeLines seem to have con-
flicting declarations: Top is a variable in DrawLatitudeLines and a constant in
DrawLongitudeLines. But there is no conflict. The constants and variables
declared in DrawLatitudeLines are inaccessible to instructions in DrawLongi-
tudeLines, and vice versa. No instruction in the main program can include them,
either.

Flexible Procedures—Procedures with Parameters

The procedure DrawLatitudeLines has one job: drawing the latitude lines in a
picture of a squashed globe. But a procedure does not have to be limited to a sin-
gle job. We can invent a procedure that is flexible—a procedure with a parame-
ter. A parameter is like an input variable in an interactive program. For each
value of the parameter, the procedure does a somewhat different job.

Program HorizontalLines

To show how parameters work, let’s invent a procedure called DrawHLine that
can draw any horizontal line across the Drawing window. When procedure
DrawHLine appears in the body of a program, it must be followed by a number
or expression that stands for the vertical position of the line. This number is the
parameter for DrawHLine. The procedure statement

DrawHLine(100)

draws a line at height 100.
Program HorizontalLines includes the declaration for DrawHLine and two

DrawHLine procedure calls. When you run it, you get the output shown in Fig-
ure 6.2.

program HorizontalLines;

{THE PROCEDURE DECLARATION}

procedure DrawHLine(Height : integer);
begin

drawline(0,Height,200,Height)

end;

{THE BODY OF THE PROGRAM}
begin
DrawHLine(100) ;
DrawHLine(130)
end.



6.4 Flexible Procedures—Procedures with Parameters 197

gmz Drﬂwiﬂg

0

Figure 6.2 Output for program HorizontalLines.

The heading line for the procedure
procedure DrawHLine(Height : integer);

names the procedure and then lists the procedure’s formal parameter, Height,
along with its type. A formal parameter is sometimes called a dummy parame-
ter, because it is simply a place-holder inside the declaration. It does nothing
until a procedure call gives, or passes, a value to take its place. Height holds two
places in the body of the procedure. Both places are in the drawline statement:

drawline(0,Height,200,Height)
The procedure statement in the body of the program,

DrawHLine(100)

passes the value 100 to the procedure declaration. This value is called the actual

parameter.
When the statement

DrawHLine (100)

is executed, the procedure call first assigns the value 100 to Height. So the
drawline statement in the procedure,

drawline(0,Height,200,Height)
is executed as though it looked like
drawline(0,100,200,100)



198 Problem Solving with Procedures

The type of the actual parameter must match the type declaration of the for-
mal parameter given in the heading line. The heading line for DrawHLine,

procedure DrawHLine(Height : integer);

dictates that the quantity passed to Height must be an integer. The procedure
statement

DrawHLine(98.6)

won’t work. You’'ll get an error message if you try it.

Program HorizontalLinesTwo

Once you’ve included a procedure declaration in a program, the procedure state-
ment can be used in the main program like any other statement. Program
HorizontalLinesTwo uses DrawHLine in a while loop to fill the standard Draw-
ing window with horizontal lines 10 units apart (see Figure 6.3).

program HorizontalLinesTwo;
{FILLS DRAWING WINDOW WITH HORIZONTAL LINES 10 UNITS APART.}
const
Separation = 10;
var
LineHeight : integer;

(THE PROCEDURE DECLARATION)

{THE BODY OF THE PROGRAM}

begin
LineHeight := O;
while (LineHeight ( 200) do
begin
DrawHLine(LineHeight); (THE PROCEDURE STATEMENT}
LineHeight := LineHeight + Separation
end
end.

Program HorizontalLinesTwo contains a new idea: The actual parameter
in the procedure call is a variable, not simply a fixed integer value.
When the computer executes the procedure call

DrawHLine(LineHeight);

it assigns the value of the actual parameter LineHeight to the formal parameter
Height. Then it does the instruction in the body of the procedure. Each time the



6.4 Flexible Procedures—Procedures with Parameters 199

§D=—_ DI'IIIIJiﬂg

]

Figure 6.3 Output for program HorizontalLinesTwo.

procedure is called, the value of LineHeight is greater by 10, and a line is drawn
10 units farther down in the Drawing window.

Don’t confuse the formal parameter Height with the variable LineHeight.
LineHeight is the actual parameter for DrawHLine in this program. When the
procedure is called, the value of the actual parameter LineHeight gets assigned

to the formal parameter Height.

The program uses separate locations or cells in memory for the values of
Height and LineHeight. When DrawHLine is called, the value of the actual pa-
rameter LineHeight is copied into the cell assigned to the formal parameter

Height (see Figure 6.4).

DrawHLine

LineHeight Height

LineHeight

DrawHLine

Height

@

(0)

Figure 6.4 The actual and formal parameters for procedure DrawHLine (a) just after the
procedure call is made and (b) just before the return from the procedure call.




200 Problem Solving with Procedures

Suppose you make this procedure call:
DrawHLine (LineHeight + 1)

This will work fine. Now the actual parameter is a complex expression,
LineHeight + 1, not simply a variable. If the value of LineHeight is 0, the value
of LineHeight + 11is 1, and this is the value the computer copies into Height’s cell
in memory.

When you write a program, you can give the formal parameter the same
name that you give the variable used as the actual parameter. You can also give
them similar names, as we did here, or you can give them names that are
completely different from each other. In this book we will generally use names
that are similar, in order to remind you that one is a formal parameter and that
the other is a variable used as the actual parameter.

EXERCISE 1  a. What does program Lines do?

program Lines;
const
Separation = 10;
var
LineHeight : integer;

{THE PROCEDURE DECLARATION}

procedure DrawSLine(Height : integer);
begin

drawline(0,Height,200,Height — 20)
end;

{THE BODY OF THE PROGRAM}
begin
LineHeight := 0;
while (LineHeight (= 200) do
begin
DrawSLine(LineHeight);
LineHeight := LineHeight + Separation
end
end.

b. What would program Lines do if the drawline instruction in procedure
DrawSLine looked like this?

drawline(0,Height,100,Height — 200) mm



6.4 Flexible Procedures—Procedures with Parameters 201

Procedure DrawVLine

Now let’s invent a companion procedure for DrawHLine called DrawVLine,
which draws vertical lines. Here is the declaration for procedure DrawVLine:

procedure DrawVLine(HDistance : integer);
begin
drawline(HDistance,0,HDistance,200)

end;

The formal parameter, HDistance, determines the distance from the line to the
left wall of the Drawing window. Using this declaration, the procedure
statement

DrawVLine(100)

will draw a vertical line 100 units from the left wall of the window.

Program Grid—a Program with Two Procedures

We can put DrawHLine and DrawVLine together in a program that draws
grids in the standard Drawing window. Program Grid draws a grid of horizontal
and vertical lines. It allows you to determine the spacing between the lines in the

grid.
program Grid;
{YOU SPECIFY THE SPACING BETWEEN THE HORIZONTAL LINES}
{AND BETWEEN THE VERTICAL LINES. PROGRAM DRAWS A GRID.}

var
Position,HSpacing,VSpacing : integer;

_procedure DrawHLine S ht‘f : integer);
begin '

drawline(0, Helght 200 Helght)

end;

procedure DrawVLine(HDistance : integer);
begin

drawline(HDistance, 0 HDistance ,200)

end;

{MAIN PROGRAM}

begin

writeln('Type in horizontal and vertical spacing between lines.');
readln(HSpacing,VSpacing);

(continued)



202 Problem Solving with Procedures

{DRAWS HORIZONTAL LINES}

Position: = 03
while (Position (= 200) do
begin
DrawHLine(Position);
Position := Position + HSpacing
end;

{DRAWS VERTICAL LINES}

Pogition := 0;
while (Position (= 200) do
begin
DrawVLine(Position);
Position := Position + VSpacing
end
end.

Program Grid has two loops. One uses procedure DrawHLine to draw the
horizontal lines. The other uses procedure DrawVLine to draw the vertical lines.
The variables HSpacing and VSpacing determine the spacing between the lines.
Position is the control variable used to increment each loop, and it is also the
actual parameter in both procedure calls.

When you type in a value of 10 for HSpacing and a value of 40 for
VSpacing, this is what happens: The first time DrawHLine is executed, the value
of the actual parameter, Position, is 0, and a line is drawn along the top of the

DE

Drawing

=

Figure 6.5 Output for program Grid.



LR

6.5 Procedures with Several Parameters 203

window. Then Position is incremented by 10, and a line is drawn 10 units down.
Each successive line is drawn 10 units lower than the line before.

After the first loop is over, Position is re-initialized to zero and the same pro-
cess happens for DrawVLine. The first vertical line is drawn at the left wall, and
each successive line is drawn 40 units over (see Figure 6.5).

Procedures with Several Parameters

Just as an interactive program can have any number of input variables, a Pascal
procedure can have any number of parameters. These parameters can be of dif-
ferent types. To see how this works, let’s look at some procedures with several
parameters.

Program ElectricBill

We've modified program ElectricBill from Chapter 5 so that you can now enter
the electric rates interactively. The program uses a procedure called CalcCost to
calculate the cost of electricity. It has three parameters, one of type integer and
two of type real.

program NewElectricBill;
{YOU READ IN THE RATES AND THE KILOWATT HOURS USED. }
{PROGRAM CALCULATES THE BILL.}
var
LifeLineRate,RegRate : real;
KWHUsed : integer;

procedure CalcCost(LifelLine,Reg : real;
KWH : integer);

const

LifeLineCutOff = 250; {LOCAL CONSTANT}
var

Cost : real; {LOCAL VARIABLE}
begin

if (KWH ¢ LifeLineCutOff) then

Cost := LifeLine * KWH

else

Cost := Reg * KWH;

writeln('Your electric bill is $',Cost : 5 : 2)
end;

{BODY OF THE PROGRAM}

begin

writeln('Type in lifeline rate, regular rate, and KWH used.');
readln(LifelineRate,RegRate,KWHUsed) ;
CalcCost(LifeLineRate,RegRate,KWHUsed)

end.



204

Problem Solving with Procedures

Procedure CalcCost has a parameter list—that is, a list of the formal param-
eters, along with their types. The syntax for declaring parameters of different
types is the same as the syntax for declaring variables of different types in a pro-
gram: Parameters of the same type may be grouped together, separated by com-
mas. A semicolon separates declarations for parameters of different types.

Note that once again we have called the formal parameters and the actual
parameters by similar but different names. Remember: Only the values of the
actual parameters matter to the procedure. The names we choose make no dif-
ference.

The actual parameters in a procedure call are matched with the formal pa-
rameters in the formal parameter list by position:

procedure CalcCost(LifeLine,Reg : real;KWH : integer);

CalcCost(LifeLineRate,RegRate,KWHUsed) ;
If the call to CalcCost had listed the actual parameters this way:
CalcCost{RegRate,LifelLineRate,KWHUsed} ;

the program would have run to completion, but it would have given the wrong
answer. The formal parameter LifeLine would have been assigned the value of
RegRate, and Reg would have been assigned the value of LifeLineRate. With
this mix-up in the actual parameters, Podunk Power and Light would charge a
lower rate for people who waste electricity!

On the other hand, if the call had been made this way:

CalcCost(LifeLineRate, KWHUsed,RegRate)

the program wouldn’t have run at all, because the formal and actual parameters
don’t match up by type.

Procedure Flicker

Here is another example of a procedure with several parameters: procedure
Flicker. Procedure Flicker is quite versatile. You can use it in any program in
which you want a ball to flicker and roll across the screen. Procedure Flicker
paints and then inverts a circle of fixed radius at any point on the Drawing
window.

program RollBall;
{ROLLS A BALL ACROSS THE DRAWING WINDOW}
var

Position : integer;



6.5 Procedures with Several Parameters 205

procedure Flicker(Horizontal,Vertical : integer);
const
Radius = 20;

begin

paintcircle(Horizontal,Vertical,Radius);
invertcircle(Horizontal,Vertical,Radius)

end;

{BODY OF THE PROGRAM}

begin

for Position := 20 to 180 do
Flicker(Position,80)

end.

Here we have used procedure Flicker in a program called RollBall, which
rolls a ball horizontally across the Drawing window. To show how useful proce-
dure Flicker is, we'll make several changes in the body of program RollBall to
produce a number of different cartoons.

First, suppose we substitute this for statement for the body of program
RollBall:

for Position := 20 to 180 do
Flicker(Position,Position);

If we run the program, we will get the ball to roll like this:

g




206 Problem Solving with Procedures

Now suppose we add two new variables, HPosition and VPosition, and re-
place the body of program RollBall with this code:

begin

HPosition. := Q;

VPosition := 100;

while (HPosition (= 200) do

begin
Flicker(HPosition,VPosition);
HPosition := HPosition + 1;
VPosition := 100 + (HPosition div 2)
end

end.

We will get a ball rolling downbhill. It starts at the point (0,100) and ends at
the point (200,200). For every 2 units the ball rolls horizontally, it drops 1 unit
vertically.

EXERCISE 2 a. Change the body of program RollBall so that it makes the ball roll down
the left wall.

b. Change the body of program RollBall so that it makes the ball roll along
the top wall, left to right. =

In procedure Flicker, Radius is a constant. We can create a procedure that’s
more flexible than Flicker, however, by making Radius a third formal parame-
ter. This procedure, which we’ll call BigFlicker, will make a circle of any radius
flicker anywhere in the Drawing window. Here is the declaration for our new
procedure.

procedure BigFlicker(Horizontal,Vertical,Radius : integer);
begin

paintcircle(Horizontal,Vertical,Radius);
invertcircle(Horizontal,Vertical,Radius)

end;

If we use BigFlicker to rewrite program PlanetIn3D from Chapter 2, the
body of the program becomes

for Position := 0 to 200 do
BigFlicker(Position,Position,Position div 5);
for Position := 200 downto O do
BigFlicker(Position,Position,Position div 5)



6.6 Procedures and Program Planning 207

EXERCISE 3 Use procedure BigFlicker to write a
program that will make a planet move
like this:

———6.6 Procedures and Program Planning

We have now arrived at a key section of the book. Here we are going to show you
a method for tackling even the most complex problems by reducing them to a se-
ries of procedures. When you have mastered the next few pages, you will no
longer be a beginner!

This problem-solving technique is called top-down programming. When
you use it, along with Pascal’s procedure instruction, you will be able to orga-
nize, and then solve, even the most mind-boggling programming problems.

Top-Down Programming

In top-down programming, you apply the “divide and conquer” method. That
is, you break a complicated problem into a number of smaller sub-problems. If a
sub-problem is especially complex, you solve it using a procedure.

When you do top-down programming, you concentrate first on the main
program, which is also called the top level of the program. You postpone work-
ing out the details of the procedures, which are considered lower-level parts of
the program. Coding the procedures is the last thing you do.

This approach helps you think clearly about the problem without getting
bogged down in the details. The top level of a well-written program should be
very simple. It might not be much more than a list of procedure statements like
the top level of program SquashedGlobe:

DrawLatitudeLines;
DrawLongitudeLines;
DrawEquator

Now let’s use top-down design and the procedure command to solve a sam-
ple problem.



208 Problem Solving with Procedures

e 6.7 The Thermometer Problem

We want to write a program that converts a temperature given in degrees
Fahrenbheit to its equivalent in degrees Celsius. The program will also print out a
picture of a thermometer. The height of the mercury will indicate the tempera-
ture, which is labeled in both scales. If you specify 32.0 degrees, for example, the
program should print the picture shown in Figure 6.6.

= lhwing =

—

320 F 00C

g

Figure 6.6 Typical output for program Thermometer.

Thinking
Let’s brainstorm about how to solve this problem. The Fahrenheit-to-Celsius
conversion is easy. We will use the formula

C =5/9 x (F — 32.0)

Here F is the Fahrenheit temperature and C is the Celsius equivalent. The
following table gives some representative temperatures on both scales.

Degrees Degrees
Fahrenheit Celsius
32.0 0.0
212.0 100.0
—40.0 —40.0

98.6 37.0




6.7 The Thermometer Problem 209

How do we lay out the picture? We can use framerect for the thermometer
tube, paintrect for the mercury, and paintcircle for the bulb.

We have to make some arbitrary decisions about the design of the thermom-
eter. Let’s give the bulb a radius of 15 and put its center at the point (100,160).
The tube will be 10 units wide and will end 10 units from the top of the window
(see Figure 6.7).

715

i
Width = 10| |=—

—40F
Center = (100,160)

Radius = 15

Figure 6.7 The thermometer.

We must also decide how to handle the scale on the thermometer. Let’s have
1 degree Fahrenheit equal 1 vertical unit on the screen. And let’s make the scale
start at the bottom of the tube where the temperature will read —40 degrees
Fahrenheit.

DATA TABLE
Input Variables Output Variables Program Variables
FTemp FTemp, CTemp none
Constants Formulas Loops
none C=35/9 x (F — 32.0) none

Top-Down Planning

Now we will begin planning the program, keeping our plan simple at first.



210

Problem Solving with Procedures

Plan I
1. Read in the Fahrenheit temperature.
2. Calculate the Celsius equivalent.
3. Draw and label the thermometer.

We have divided our problem into three simpler su
two are easy. We can quickly convert them to Pascal cc
drawing and labeling the thermometer, is more complicat
ble if we try to code it directly. So our strategy will be to
handle this step.

When you name a procedure, it’s a good idea to use
the action the procedure performs, such as DrawLatitud
the name DrawThermometer.

Now we come to the most important idea in the to
method: We should not code DrawThermometer right aw
clarify what DrawThermometer is supposed to do and thengo on w-code v
body of the main program. When the top level has been completed, then we go
back and finish DrawThermometer.

To clarify a procedure, we do two things. We write the procedure heading
line, and we do a paper check to determine whether the heading we’ve come up
with is what we want.

How to Clarify Procedure DrawThermometer

Our first job is writing procedure DrawThermometer’s heading line. This means
deciding on its parameter list. So we must ask ourselves the question “What
quantities does DrawThermometer depend on?” DrawThermometer is sup-
posed to draw and label a thermometer with a Fahrenheit temperature and its
Celsius equivalent, so these two quantities should be named in the parameter
list. Here is our proposed heading line:

procedure DrawThermometer(F,C : real);

A reminder: F and C are dummy parameters. Their names don’t matter.
We could have named them FT and CT or FTemp and CTemp.

Next let’s do a paper check to determine whether we are satisfied with this
choice of parameters. When we do a paper check, we draw a diagram or make a
table that shows what the procedure is supposed to do when the main program
passes it some typical parameters. On page 211 are diagrams for DrawTher-
mometer(72.0,22.2) and DrawThermometer(—40.0, —40.0).

The paper check is useful because it helps us find out whether we have
passed enough information to a procedure to get the answers we are looking for.
In the case of DrawThermometer, we seem to have succeeded. Now let’s go back
to the top-level plan and finish the program at that level.



6.7 The Thermometer Problem 211

720 F jgg 222 C

—40.0 Fl —40.0 C

DrawThermometer (72.0,22.2) DrawThermometer(—40.4,—40.0)

Now that DrawThermometer has been clarified, the plan looks like this:

Plan II
1. Read the Fahrenheit temperature.
2. Calculate the Celsius equivalent.
3. DrawThermometer(FTemp,CTemp).

We can now go on and code the top level.

Coding the Top Level
Here is our code for the main program:

begin

writeln('Type in a Fahrenheit temperature -- a real number.');
readln(FTemp);

CTemp := 5/9 * (F - 32.0);

DrawThermometer (FTemp, CTemp)

end.

This completes the top level. Now we go back and complete DrawThermometer.

Planning and Coding DrawThermometer

Plan for DrawThermometer

Draw the tube.

Draw the bulb.

Calculate the height of the mercury and paint it.
Label the Fahrenheit temperature.

TU B WD

Label the Celsius temperature.



212 Problem Solving with Procedures

Calculating the height of the mercury is the only complicated part. One de-
gree Fahrenheit equals 1 unit of height. But, because we started the scale at
—40.0 degrees, the height doesn’t equal the Fahrenheit temperature. We need to
add 40 to the Fahrenheit temperature to get the correct value for height.

The program reads in real numbers for Fahrenheit temperatures and prints
out real numbers for both scales on the thermometer. But the height of the mer-
cury must be an integer. So we must use the round function to calculate Height
from the Fahrenheit temperature.

Now we can code procedure DrawThermometer and put the program to-
gether. Here is the complete program:

program Thermometer;
{YOU TYPE IN THE TEMPERATURE IN DEGREES FAHRENHEIT. THE PROGRAM DRAWS A}
{ THERMOMETER AND LABELS TEMPERATURE IN FAHRENHEIT AND IN CELSIUS.!}
var
FTemp,CTemp : real;

procedure DrawThermometer (F,C : real);
var
Height,Top : integer; {LOCAL VARIABLES}
begin
{DRAW TUBE}
framerect(10,95,160,105);
{DRAW BULB}
painteirele(100,170,15);
{ROUND OFF F TEMP AND CALCULATE HEIGHT OF MERCURY!}
Height := round(F) + 40;
{DRAW MERCURY}
Top := 160 - Height; {160 IS BOTTOM OF TUBE.}
if (Top ) 160) then
Top := 160; {KEEP LABELS FROM GOING TOO LOW}
paintrect(Top,95,160,105) ;
{LABEL TEMPERATURE IN FAHRENHEIT}
moveto(30,Top);
writedraw(F : 4 : 1, 'F');
{LABEL TEMPERATURE IN CELSIUS}
moveto(130,Top) ;
writedraw(C : 4 : 1, 'C')
end;

{BODY OF PROGRAM}

begin

writeln('Type in a Fahrenheit temperature -- a real number.');
readln(FTemp);

CTemp := 5 / 9 * (FTemp - 32.0);

DrawThermometer(FTemp,CTemp)

end.



6.7 The Thermometer Problem 213

When you run program Thermometer, you type in FTemp and the program
calculates CTemp. Then the main program passes to procedure DrawThermom-
eter the values of the actual parameters FTemp and CTemp. Finally the proce-
dure draws and labels the thermometer. The if-then statement in the procedure
guarantees that, when the temperature falls below —40F, the labels will be even
with the bottom of the tube.

Testing and Debugging Program Thermometer

To test program Thermometer, try running it on a variety of temperatures.
What happens when you type in a high temperature? You’ve got a problem. The
mercury zips up too far, goes right out of the thermometer, and hits the top of the
window. How would you fix this bug? Hint: Use a conditional statement like the
one that keeps the labels from going too low.

EXERCISE 4 Fix program Thermometer so that the mercury remains in the thermometer
tube even at very high temperatures. ==

The Structure of Program Thermometer

Let’s look at the structure of program Thermometer from a different angle. Here
is a diagram that shows how we handled the problem.

TOP LEVEL
Read F l ‘ Calculate C ‘ IDrawThermometer
LOWER LEVEL
LDrawTube‘ LDrawBuIb' lgawMercury‘ L Labele | Label C

At the very top we divided the program into three pieces. The first two
pieces were easy to convert to code, and we did this directly. The last part was
harder. We specified what procedure DrawThermometer was supposed to do,
but we did not code it until we had finished coding the top level. Then we
descended to the next level, where we planned and then coded the five separate
pieces of procedure DrawThermometer. This is top-down programming.



214

Problem Solving with Procedures

6 8

Procedure DrawThermometer, like procedure CalcCost in program New-
ElectricBill, has its own private or local variables, Height and Top. Because
Height and Top are declared inside the procedure, they make sense only for in-
structions inside the procedure. You would get an error if you referred to Top or
Height in the body of the program.

Creating a Checkerboard

Let’s work through another top-down programming example. This time let’s
write a program that creates in the Drawing window a checkerboard like the one
shown in Figure 6.8. First we'll paint a series of black horizontal stripes, using
paintrect commands alternating with framerect commands. Then we’ll paint a
series of vertical stripes, using invertrect and framerect.

EDJ== Drawing

Figure 6.8 Typical output for program Checkerboard.

Superimposing the inverted stripes over the painted stripes creates the
checkerboard effect. Invertrect turns to black the white horizontal stripes it
crosses, while turning the black stripes it crosses to white. We'll make the pro-
gram interactive so we can read in any number of stripes. This problem is harder
than it looks, so we must plan carefully.



6.8 Creating a Checkerboard 215

Thinking

What really happens in this program? First we read in the total number of black
and white stripes. There will be an equal number of horizontal and vertical ones,
because the standard Drawing window is square. The program calculates how
wide to make each stripe. Then the first loop alternately paints and outlines a se-
ries of rectangles to create the horizontal stripes. For example, if we read in five
stripes, the first loop will draw this picture:

Next the second loop uses invertrect and framerect to create the vertical
stripes. When invertrect is used, it reverses the colors of the stripes it crosses, and
we get our checkerboard.

Because the'number of horizontal stripes and the number of vertical stripes
are the same, we need only one variable for the number of stripes. Let’s call it
NumOfStripes. We won’t need any output variables, because our output is a
drawing.

But we will need a program variable for the width of the stripes, which we’ll
call StripeWidth. We can determine StripeWidth by dividing the size of the win-
dow by the number of stripes. So we'll need this formula:

StripeWidth = window size div NumOfStripes

While we're at it, let’s make WindowSize a constant.
From this information we can create our data table:

DATA TABLE
Input Variables Output Variables Constants
NumOfStripes picture WindowSize = 200
Program Variables Loops
StripeWidth one to draw the horizontal stripes

one to draw the vertical stripes

Formulas
StripeWidth = WindowSize div NumOf£Stripes




216 Problem Solving with Procedures

Planning
Now we know enough to do a rough first plan.

Plan I

Type in the number of stripes.
Calculate the width of the stripes.
Draw the horizontal stripes.

W DN

Draw the vertical stripes.

Step 1 is easy. In step 2, we can calculate the width of the stripes, using the
formula

StripeWidth = WindowSize div NumOfStripes

So both of these steps can be coded without difficulty—a task we’ll put off for the
time being.

Steps 3 and 4 (drawing the stripes) are the hard parts. So let’s make each of
these steps into a procedure and call them DrawHStripes and DrawVStripes.
This will make the top level of our program very simple. It will look a lot like
Plan I.

Our next step is to clarify what procedure DrawHStripes and procedure
DrawVStripes are supposed to do. We must propose heading line<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>