
inside fm· details

, .

I

Learn
on the

AD~ 69J~
OOS,;Jfo5/MA

WITHDR
IX

Macintosh
INCLUDES

SPECIAL VERSION
OF SYMANTEC'S

THINKC

Reading, Massachusetts• Menlo Park, California • New York
Don Mills, Ontario• Wokingham, England •Amsterdam
Bonn• Sydney• Singapore• Tokyo• Madrid ~San Juan

Paris• Seoul •Milan • Mexico City• Ta ipei

J

\

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book and Addison­
Wesley was aware of a trademark claim, the designations have been printed in initial capital

11! n.~~ i~· ·~:l 1 d.' . t'" ' .. 11;; (: ;/. •·" ·~ enet .. , ~· · "" ~~ · · ~ ~ '. 'li ~· ". '?t ~ . . :; \.~ . 'V l • . • ., ... r ~· ; ; i .. : tr:;: ·· · : '~. ·. ':f ,:'.!- -:
~r ~ > ~.; ~-'~~~1'~fw~;~$cmpdbrl~.'in Appendix D copyright© 1989 Symantec Corporation and used

with permission.

Library of Congress Cataloging-in-Publication Data

Mark, Dave.
Learn C on the Macintosh : includes special version of Symantec's

Think C I Dave Mark.
p. cm.

Includes bibliographical references and index.
ISBN 0-201-56785-7
1. Macintosh (Computer)-Programming. 2. C (Computer program

language) I. Title.
QA76.8.M3M36773 1991
005 .265-dc20

Copyright© 1991 by Dave Mark

91-15354
CIP

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwi~~flwit~out the prior written permission of the publisher. Printed in

the United States o~~~'iP,~li~Ji~1d~te1f:lf ~w~~I~ i? Canada.
·T 1; 1 ~1,~' ·~.;.·1·/(. ·;J,1 ·:"

.~ : . 1: f, -'·" ; (:-: : .

Sponsoring Editor: Julie Stillman
Project Editor: Elizabeth G. Rogalin
Cover design: Jean Seal
Set in 11.5-point Sabon by ST Associates

1 2 3 4 5 6 7 8 9 -MW- 9594939291
First printing, August 1991

.'·-: .. , u

This book is dedicated to Deneen]. Melander -
LFUEMIV,OK? ...

Preface vii

Chapter 1 Welcome Aboard 1

What's in the Package? 3
Why Learn C? 4
What Should I Know to Get Started? 4
What Equipment Will I Need? 5
The Lay of the Land 6
The Chapters 6
Conventions Used in This Book 7
Strap Yourself In . . . 8

Chapter 2 Installing THIN C 11

The Programming Process: A Quick Tour 14
Features of THIN C 20
What's Next? 22

v

vi Contents

Chapter 3 Programming Basics

Programming 28
How Computers Work
THIN C and the Project File
A Word About Memory
The Importance of Binary
What's Next? 40
Exercises 41

Chapter 4 C Basics: Functions

C Functions 45
Function Calling Examples

28
33

35
39

49
The Most Important Function
ANSI C and the Standard Library
Same Program, Two Functions
Generating Some Errors 56
What's Next? 59
Exercises 61

50
51

52

Chapter 5 C Basics: Variables and Operators

An Introduction to Variables 66
Operators 71
Using Parentheses () 78
Sample Programs 79
Sprucing Up Your Code 94
What's Next? 98
Exercises 99

25

43

63

Contents vii

Chapter 6 Controlling Your Program's Flow 101

Flow Control 104
Expressions 106
Statements 114
Sample Programs 129
What's Next? 138
Exercises 139

Chapter 7 Pointers and Parameters 141

What is a Pointer? 144
Pointer Basics 148
Function Parameters 155
What Does All This Have to do with Pointers? 160
Global Variables and Function Returns 164
Sample Programs 172
What's Next? 181
Exercises 183

Chapter 8 Variable Data Types 185

Other Data Types 188
Working With Characters 192
Characters and C 193
The ASCII Character Set 194
Arrays 200
Why Use Arrays? 202
Danger, Will Robinson!!! 211
Text Strings 212
A Text String in Memory 213

viii Contents

The Input Buffer 216
On With the Program 219
The #define 2221
#define Macros 224
What's Next? 230
Exercises 231

Chapter 9 Designing Your Own Data Structures 233

Structures 236
Model A: Three Ways 236
Model B: The Data Structure Approach 240
Allocating Your Own Memory 248
Keep Track of That Address! 250
Working With Linked Lists 251
Order in the Code 268
What's Next? 269
Exercises 271

Chapter 10 Working With Files 273

What is a File? 276
Working with Files, Part One 276
Working with Files, Part Two 283
What's Next? 298
Exercises 299

Chapter 11 Filling in the Gaps

What is Typecasting? 306
Unions 310
Function Recursion
A Recursive Approach

314
316

Binary Trees 319
Function Pointers
More on Strings
What's Next?
Exercises 335

328
330

333

Contents ix

303

Chapter 12 Adding the Macintosh Interface 339

The Macintosh User lnterf ace 342
The Graphical User Interface 342
Getting Started With the Mac Toolbox 346
Inside Macintosh 347
The Macintosh C Programming Primer 348
Macintosh Programming Secrets 349

Appendices 351

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E

Appendix F
Appendix G

Glossary 351
Complete Program Listings
Syntax Reference Section
Standard Library Functions
The Complete THINK C
Development Environment
Answers to Selected Exercises
Bibliography 441

361
401

405

423
435

One of the best decisions I ever made was back in 1979 when I hooked
up with my buddy Tom and learned C. At first, C was just a meaningless
scribble of curly brackets, semicolons, and parentheses. Fortunately for
me, Tom was a C guru, and with him looking over my shoulder, I
learned C quickly.

Now it's your turn.
This time I'll be looking over your shoulder as you learn C. My goal

is to present every aspect of C the way I would have liked it explained to
me. I've saved up all the questions I had as I learned the language and
tried to answer them here.

Learning to program in C will open a wide range of opportunities
for you. C is one of the most popular programming languages in the
world today. Recessions may come and go, but there's always a demand
for good C programmers. Whether you want to start your own software
company or just write programs for your own enjoyment, you will dis­
cover that C programming is its own reward. Most of all, C program­
ming is fun.

I hope you enjoy the book. If you make it to MacWorld on either
coast, stop by the Addison-Wesley booth and say hello. I'd love to hear
from you. In the meantime, turn the page, and let's get started ...

x

D.M.
Arlington, VA

wledgments

I'd like to take a paragraph or two and thank some people whose
names didn't make the cover, but who made this book possible. First of
all, I'd like to thank Elizabeth Rogalin, Julie Stillman, and Mary
Cavaliere from Addison-Wesley for all of their hard work in getting this
book out the door.

Next, I'd like to thank Darrell LeBlanc from Symantec for the
excellent job he did in producing THIN C, the development environ­
ment used throughout the book.

Thanks to Darrell LeBlanc and Joe Zobkiw for their perceptive and
accurate technical comments. Thanks to Jackie Cowlishaw for a copy­
edit with flair (and absolutely no sarcasm. Not even a little. Really.).
A very special thanks to Carlos Derr, Chuck Shankland, and Jerry
Helldorfer, the DAFSA team. Thanks also to Philip Borenstein, Phil
Shapiro, Susan Smith, and Steve LeBlanc for their support.

Thanks to my family (especially you, Stu), who stood behind me all
the way.

Finally, I'd like to thank the man who was there at the beginning,
the man who introduced me to the wonders of C, my good friend Tom
Swartz. Thanks, Tom.

xi

Welcome
Aboard

apter
nee

What's in the Package?
Why Learn C?
What Should I Know to Get Started?
What Equipment Will I Need?
The Lay of the Land
The Chapters
Conventions Used in This Book
Strap Yourself In ...

WELCOME! BY PURCHASING THIS BOOK/DISK PACKAGE,
you have taken the first step toward learning the C programming
language. As you make your way through the book, you'll learn one of
the most popular and powerful programming languages of all time.

You will be glad you took this step.
Before we start programming, there are a few questions worth

addressing at this point.

What's in the Package?

Learn C on the Macintosh is a book/disk package. The book is filled
with all kinds of interesting facts, figures, and programming examples
all designed to teach you how to program in C.

In the back of the book is a Macintosh floppy disk, which contains
all the software you 'll need to run each of the book's programming
examples on your own computer. Included on this disk is THIN C,
a customized version of the leading Macintosh programming

3

4 Chapter 1

environment, THINK C, written especially for this book. The disk also
includes each of the programs presented in the book, so you don't have
to type the examples yourself. Such a deal!

Why Learn C?

There are many reasons for learning C. Perhaps the biggest reason is
C's popularity as a programming language. C is probably the hottest
programming language around. In fact, most of the best-selling
Macintosh applications were written in C. If you are just getting started
in programming, C is a great first programming language. If you
already know a programming language, such as BASIC or Pascal, you'll
find C a worthy addition to your language set.

C is everywhere. Almost every computer made today supports the C
language. Once you learn C, you'll be able to create your own
programs for fun and profit. With C, you can create utilities, games,
and tools that do exactly what you want them to do. You can even
write the next great spreadsheet, word processor, or utility. Who
knows? You might even make $80 gazillipn in the process!

Whatever your reasons, learning to program in C will pay you
dividends the rest of your programming life.

What Should I Know to Get Started?

For the most part, the only prerequisite to using this book is a basic
knowledge of the Macintosh. Do you know how to double-click on an
application to start it up? Does the scrolling list in Figure 1.1 look
familiar? Do you know how to use a word processor like Mac Write or
Microsoft Word? If you can use the Macintosh to run programs and
edit documents, you have everything you need to get started learning C.

Select a Document:

lac Book I

CJ C3 - Programming Ba ...
CJ C4 - C Basics, Func's
CJ CS - C Basics, Uar's
CJ C6 - Controlling Flow
CJ C7 - Pointers
[) C7 - User l/F

Welcome Aboard 5

G:::J Hard Driue
1699K auailable

Ill ~ c::::. ~I ~ :,:.:Jl:(: l
D Read Only

Figure 1.1 Scrolling through a list of documents.

If you know nothing about programming, don't worry. The first few
chapters of this book will bring you up to speed. If you have some
programming experience (or even a lot), you might want to skim the
first few chapters, then dig right into the C fundamentals that start in
Chapter 4.

What Equipment Will I Need?

While it is possible to learn C just by reading a book, you'll get the
most out of this book if you run each example program as you read
how it works. To do this, you'll need a Macintosh. If you don't have
one, borrow a friend's. You'll need at least a Mac Plus with 1 megabyte
of memory. The software accompanying this book will run with most
Macintosh system software. It's even been tested with System 7.0!

For best results, run this software on a Macintosh with a hard disk
drive. If you don't have access to a hard drive, you will at least want to
use an external floppy drive, which will save you a lot of disk swapping.

6 Chapter 1

The Lay of the Land

This book was designed with several different readers in mind. If you' re
new to programming, you'll want to read every chapter. If you get
stuck, find a C buddy who can answer your questions. Try not to skip
over material you don't understand. Ask. Most C programmers are
friendly and are usually more than glad to help someone just getting
started. Make a commitment to finish this book. You can do it!

If you have some programming experience, but know nothing about
C, read Chapter 2, then skim through Chapter 3. If Chapter 3 is cake to
you, jump right to Chapter 4. You'll probably find that the concepts
presented in the first few chapters are pretty straightforward. Read at
your own speed until you reach a comfortable depth. The farther into
the book you get, the more complex the concepts.

The Chapters

This book is made up of 12 chapters and seven appendices. This
chapter provides an overview of the book and gets you started down
the right path.

Chapter 2 introduces the disk portion of this book/disk package.
You'll learn about THIN C, the C programming environment designed
especially for use with this book. You'll install THIN C on your hard
drive or floppy-based Macintosh system and test the software to make
sure it's installed properly. In Chapter 2, you'll run your first C
program.

Regardless of any programming experience you already have, don't
skip Chapter 2 !

Chapter 3 is for those of you with little or no programming
experience. Chapter 3 answers some basic questions, such as "Why
write a computer program?" and "How do computer programs work?"
We'll look at all the elements that come together to create a computer
program, elements such as source code, a compiler, and the computer

Welcome Aboard 7

itself. Even if you're a seasoned Pascal programmer, you might want to
read through this chapter, just to review the basics.

Chapter 4 opens the door to C programming. It focuses on one of
the primary building blocks of C: the function. You'll run some sample
programs, plus discover one of the cruelest, least-liked parts of
programming: the syntax error.

Chapter 5 explores the foundation of C programming: variables and
operators. When you finish this chapter you will have a fundamental
understanding of programming. You'll know how to declare a variable
and how to use operators to store data in the variable.

Chapter 6 introduces the concept of flow control. You'll learn how
to use C programming constructs, such as if, whi 1 e, and for to control
the direction of your program. You'll learn how your program can be
used to make decisions based on data in your program.

Chapter 7 starts off with the concept of pointers, also known as
variable addresses. From this point on you'll use pointers in almost
every C program you write. Pointers allow you to implement complex
data structures, opening up a world of programming possibilities.

Chapter 8 introduces data types. You'll learn about arrays and
strings and the common bond they share. At this point, you are in real
danger of becoming a C guru. Careful!

Chapter 9 tackles data structures. You'll learn how to design and
build the right data structure for the job. Your knowledge of pointers is
sure to get a workout in this chapter.

Chapter 10 teaches you how to work with disk files. You'll learn
how to open a file and read its contents into your program. You'll also
learn how to write your program's data out to a file.

Chapter 11 is a potpourri of miscellaneous C programming issues.
This chapter tries to clear up any programming loose ends. You'll learn
about recursion, binary trees, and something not every C programmer
knows about: C function pointers.

Chapter 12 prepares you for your next step along the programming
path: the Macintosh C Programming Primer. You'll learn a little about
what makes Macintosh programs special, plus find out how you can
write your own programs that sport that special Macintosh look and feel.

8 Chapter 1

Appendix A is a glossary of the technical terms used in this book.
Appendix B contains a complete listing of all the examples used in

this book. This section will come in handy as a reference, as you write
your own C programs. Need an example of an i f - el s e statement in
action? Turn to the examples in Appendix B.

Appendix C is another useful reference. It describes the syntax of
each of the C statement types introduced in the book. Need an exact
specification of a switch statement? Check out Appendix C.

Appendix D provides a description of the Standard Library
functions introduced in this book. The Standard Library of functions is
available as part of every standard C development environment, no
matter what type of computer it's being used with. Need to know how
to call one of the Standard Library functions introduced in the book?
Use Appendix D.

Appendix E describes the differences between THIN C and THINK
C. THINK C is the software development environment of choice in the
Macintosh development community. THIN C provides a subset of
THINK C's power and functionalism.

Appendix F provides answers to selected exercises presented at the
end of each of the chapters. Some exercises were left unanswered to
keep you on your toes.

Appendix G is a bibliography of useful programming titles.

Conventions Used in This Book

As you read this book, you'll encounter a few standard conventions
intended to make the book easier to read. For example, technicat terms
appearing for the first time appear in boldface. You'll find most of these
terms in the glossary in Appendix A.

Welcome Aboard 9

Occasionally, you'll come across a block of text set off in its
own little box, like this. These blocks are called tech
blocks, and are intended to add technical detail to the
subject currently being discussed. For the most part, each
tech block will fit in one of three categories: "By the Way,"
"Important, 11 and "Warning. 11 As the names imply, 11 By the
Way" tech blocks are intended to be informative but not
crucial. 11 lmportant 11 tech blocks should be read beginning
to end, and the information within tucked into a
reasonably responsive part of your brain. 11 Warning n tech
blocks are usually trying to caution you about a potentially
disasterous programming problem you should be on the
lookout for. Read and heed these warningsl

All of the source code examples in this book are presented using a
special font, known as the code font. This includes source code
fragments that appear in the middle of running text. Menu items, or
items you'll click on, appear in Chicago font.

At the end of each chapter, you'll find a set of exercises designed to
reinforce the concepts presented in that chapter. Go through each of the
exercises. It will be time well spent. As mentioned earlier, Appendix F
contains answers to selected chapter exercises.

Strap Yourself In ...

That's about it. Let's get started

Installing
c

apter
nee

The Programming Process: A Quick
Tour

Installing THIN C
Testing THIN C
Opening the Project hel lo.n
Running hello.n

Features of THIN C
What's Next?

BEFORE WE GET INTO THE DETAILS OF THIN C, IT HELPS TO
have a basic understanding of the programming process. For you
veteran programmers, hang in there! This will only take a minute.

Tucked into the back of Learn Con the Macintosh is a floppy disk
containing THIN C, a sort of Swiss Army knife for programmers.
THIN C provides you with all the tools you'll need to work with the
programming examples presented in the book.

By the Way-----------------------

THIN C was created especially for t his book by a company
called Symantec. Among Macintosh programming circles,
Symantec is known best as the maker of THINK C, the
programmer's choice in Macintosh programming environ­
ments.

13

14 Chapter 2

The Programming Process: A Quick Tour

All programs start as something called source code. Source code is a set
of instructions that tells your program what to do and when to do it.
When you build a model airplane, you follow a set of instructions
written in English. When your program runs, it follows a set of
instructions written in a language it can understand. In our case, we'll
write instructions to the computer in a language called C. This chapter
won't get into the details of the C language. That's the purpose of the
rest of the book. For now, just think of source code as a set of
instructions that tells your program what to do.

Source code is created using a tool called a text editor. A text editor
operates like a typical Macintosh word processor. You can Open
existing files, make changes to the text, then Sou e the file back out to
your disk. You can even start from scratch by creating a New file. You
get the idea. You'll use THIN C's built-in text editor to open, edit, and
save the source code examples provided on the disk accompanying
this book.

Once your source code is written, you' re ready for the compiler.
The compiler translates your C source code from its textual form into a
series of ones and zeros called machine code. Think of machine code as
a streamlined version of your source code designed to maximize the
efficiency of your computer.

As you might have guessed, THIN C comes with a built-in compiler.
Once your source code is compiled (translated) into machine code,
THIN C will even run your program for you.

As you read through this book, you'll become very familiar with the
process of programming with THIN C. Before you can program with
THIN C, however, you have to install it.

Installing THIN C

THIN C will work best on a Macintosh system with a hard disk drive.
If your Mac doesn't have a hard drive, don't fret. You can run THIN C

Installing THIN C 15

straight off a floppy disk. As you are probably aware, however,
software tends to run slower on a floppy-based Mac.

Before you do anything else, make a backup copy of the THIN C
disk and place the original disk in a safe place. From now on, only
work with the backup of THIN C. That way, when your dog uses your
backup disk as a teething ring, you'll have the original stored safely
away and can make another backup.

If your Macintosh doesn't have a hard disk drive, you can run
THIN C directly off the backup disk you just made (you did make a
backup, didn't you?). Just make sure your backup disk is unlocked. All
the files you'll need are located inside the folder named Development on
the floppy disk.

If your Macintosh does have a hard drive, copy the folder named
Deve 1 opment from the floppy disk onto your hard drive. All the files
you'll need are inside this folder.

Testing THIN C

Now that you've installed THIN C, you're ready to take it for a test
drive. On your hard drive or floppy disk (depending on where you have
THIN C installed) open the folder Development. You'll see a folder
called Projects which contains all the source code presented in the
book. For the most part, you'll only be interested in the files in the
Projects folder.

Open the Projects folder. You'll see a scrolling list of folders. There
is one folder for every sample program in the book. Notice that the
folders are in alphabetical order, sorted by the name of the sample
program. Scroll down the list until you find a folder named he l l o.
Open the folder named he 11 o. (Make sure you don't accidentally open
the folder named he 11 o2. That's for later.) If you have problems
running THIN C under System 7, make sure your computer is set to
24-bit mode.

Figure 2.1 shows the files in the he 1 l o folder. One file is named
he 1 1 o . 1t and the other is he 11 o . c. Each of these files is necessary to run
the example program called he 11 o.

16 Chapter 2

2 items 76, 926K in disk 1 ,

[i] ~
hello .11 hello .c

Figure 2.1 The he 11 o folder.

The file he 11 o. c contains the source code for the program he 11 o.
The file he 11 o. 7t is an administrative file, collecting information
relevant to the he 11 o program. In THIN C lingo, he 11 o . 7t is known as
a project file. Together, these two files make up the he 11 o project.

Throughout the remainder of the book, sample programs
are referred to as projects. The term 11 project 11 is specific to
THIN C, so your C-coding friends may not be familiar with
it. Outside of the THIN C world, just use the term
"program. 11

Throughout the book, project file names will always
end with the character 11

.1t" and source code file names
with the character ra .c".

Installing THIN C 17

Opening the Project hello.1t

Just to make sure THIN C is installed properly, let's open he 11 o. n.
Double-click on the he 11 o. n icon. The THIN C application should
start running and a project window for the he 11 o. n project should
appear (see Figure 2.2). The project window is the focal point for the
project. The project window's title reflects the name of the project; in
this case, he 11 o. n.

Inside the project window is a list of the files that make up the
project. The project he 11 o. n makes use of the two files ANS I. 1 i b and
he 11 o. c. The file he 11 o. c contains the source code for the project.
The file ANS I . 1 i b is a special file you' 11 find in each of the book's
sample projects. We'll talk about ANS I . 1 i b later in the book.

:1

hello. n
Name obj size
ANSI.lib 0
hello.c 0

Figure 2.2 The project window for he 11 o. n.

18 Chapter 2

Wheel your mouse over to the project window and double-click on
the name he 1 1 o . c. The first click causes the name he 11 o . c to be
highlighted (see Figure 2.3). The second click opens an editing window
showing the source code contained in the file he 11 o . c. You can use the
standard Macintosh text-editing techniques (clicking, dragging, and
typing) to edit the source code in this window. You'll have plenty of
editing opportunities later in the book. For now, close the source code
window, leaving the source code as you found it.

hello.11

Figure 2.3 The project window with he 11 o. c highlighted.

As the more adventurous of you may have already
discovered, the file ANSI. 1 i b is not a source code file. If you
double-click on the name ANS I . 1 i b in the project window,
you'll see the dialog box shown in Figure 2.4.

Installing THIN C 19

The file "ANSI.lib" is not a teHt file, so it
cannot be opened with the teHt editor.
Sorry.

OK

Figure 2.4 Hey! ANSI.li b is not a text file!

Running hello.n

Now try running the program whose source code you just looked at.
Select Run from the Project window. THIN C will compile then run
your program. A new window should appear on the screen, similar to

the one shown in Figure 2.5. Hit the return key on your keyboard to
exit the program. If you encounter problems running he 11 o . 7t, try
recopying the files from the original floppy disk.

press «return» to eHit

Hello wor ld!

Figure 2.5 Running he 11o. 7t.

20 Chapter 2

Features of THIN C

There are a few features of THIN C worth mentioning at this point.
Most of these features are accessed through THIN C's pull-down
menus. Look at the File menu (as shown in Figure 2.6). Selecting
New, Open ... , or Close will create, open, or close a text file. For the
most part, the only text files you'll work with are the project source
code files. Since these files already exist, you probably won't have much
need for the New command. Since you can open a source code file by
double-clicking its name in the project window, and close the file by
clicking on the window's close box, you probably won't have much
need for either Open ... or Close. On the other hand, it's nice to know
these options are there.

The rest of the File menu is fairly straightforward. Saue and
Saue Rs ... are useful for saving your source code once you've made
changes to it. Re u e rt reverts the open file back to the last saved
version. Page Setup ... and Print ... are useful for printing a copy of
your source code. Quit exits THIN C and returns you to the desktop.

New ~N

Open... ~o

Close

S<w(~ ~jr~s

Saue As ...
~h~~H~r t

Page Setup ...
Print ...

Quit ~Q

Figure 2.6 THIN C's File menu.

Installing THIN C 21

The Edit menu (Figure 2.7) starts with the Macintosh standards
Undo, Cut, Copy, Paste, and Clear. The Set Tabs & Font ...
item brings up a dialog box (Figure 2.8) that allows you to set the font
and tabs for the source code files in the current project. The number in
the Tabs field determines how many characters wide a tab character is.
Use the font and font size pop-up menus to set the font for the project's
source code.

Undo 3€2

[ut ~)(~ ~{

[0~)~-~ ~)('[

Paste 3€U
[h~~~r

Set Tabs & Font ...
Find Te Ht... 3€F

Figure 2.7 The Edit menu.

Tabs: l•I
Font: I Monaco

(OK D (Cancel)

11 9

The quick brown fox jumps over the lazy dog.

Figure 2.8 The Set Tabs & Font ... dialog box.

22 Chapter 2

The Find TeHt ... item brings up a dialog box (Figure 2.9) that lets
you search through your source code for a specific text string.

The Project menu (Figure 2.10) is perhaps the most-used menu in
THIN C. If no project is open, the Open Project ... item prompts you
for a project to open. Close Project closes the currently open
project. Remoue Objects is useful for compacting project files (and
therefore saving disk space). When THIN C compiles your source code,
it saves the newly created machine code (also known as object code)
inside the project file. This makes the project file bigger, taking up
precious disk space. Remoue Objects deletes the object code from
the project file, saving you some disk space.

Search for:

II

(__ f'_~n_d _) (Cancel)

Figure 2.9 The Find TeHt ... dialog box.

Project
O~H~n Proj~~c1..H

Close Project
Remoue Objects

Run

Figure 2.10 The Project menu.

Installing THIN C 23

By the Way _____________________ _

Normally, once you've compiled a project, you can run the
project again and again without recompiling. Two things
will force THIN C to recompile your code: making a change
to your source code or performing a Remoue Objects.

Since Remoue Objects does save you disk space, it's a
good idea to Remoue Objects once you finish exploring a
project.

The final item on the Project menu is by far the most useful.
Selecting Run asks THIN C to run your program for you.

What's Next?

That's about it for our THIN C intro. Are you ready to get started with
C? Get comfortable and turn the page. Here we go

Programming
Basics

Programming
How Computers Work

The Parts of a Computer
Creating a Computer Program
The Life of a Program
Source Code

THIN C and the Project File
A Word About Memory

Binary, Bits, and Bytes
Can a Byte Be Negative

The Importance of Binary
What's Next?
Exercises

BEFORE WE DIG INTO THE SPECIFICS OF C PROGRAMMING,
we'll spend a few minutes reviewing the basics of computer program­
ming. We'll answer such basic questions as "Why write a computer
program?" and "How do computer programs work?" We'll look at all
of the elements that come together to create a computer program, such
as source code, a compiler, and the computer itse lf. Finally, we'll look
inside the computer, focusing on the computer's memory, the silicon
chips that hold your programs and data.

If you've already done some programming, skim through this
chapter. If you feel comfortable with the material, skip ahead to
Chapter 4. Most of the issues covered in this chapter will be C­
independent.

27

28 Chapter 3

Programming

Why write a computer program? There are many reasons. Some pro­
grams are written in direct response to a problem too complex to solve
by hand. For example, you might write a program to calculate the
constant 7t to 5000 decimal places, or to determine the precise moment
to fire the boosters that will bring the space shuttle home safely.

Other programs are written as performance aids, allowing you to
perform a regular task more efficiently. You might write a program to
help you balance your checkbook, keep track of your baseball card
collection, or lay out this month's issue of Dinosaur Today.

Whatever their purpose, each of these examples share a common
theme. They are all examples of the art of programming.

How Computers Work

Before you can program a computer, it helps to have a basic under­
standing of how computers operate. Computers range in size from the
huge mainframe computers that require their own air-conditioning
systems, down to personal computers (also called PCs) that fit on your
desk. All of these computers operate in basically the same way. They are
all constructed of tiny slivers of silicon, called integrated circuits or ICs.
Figure 3.1 shows a three-dimensional drawing of an integrated circuit.

The body of the integrated circuit is made up of extremely thin
(much thinner than the finest human hair) layers of silicon. A laser
beam is used to strategically place impurities into the silicon, a process
called doping. Doping produces a predetermined effect on voltages
applied to the legs of the IC. The point to remember about ICs is that
scientists create them to serve a specific purpose. One type of IC might
be designed to operate the fuel injector in your car. Another might
operate your microwave oven. Most important, there are several ICs
inside your computer making it work.

Programming Basics 29

Figure 3.1 An integrated circuit, or IC, drawn fairly close to actual size.
The brains of the IC are in the body. The body is connected to the rest of
the computer via the legs.

The most important IC in your computer is called the Central
Processing Unit, or CPU. The CPU functions as the brains inside your
computer. It sends out instructions to all the different parts of your
computer, telling each what to do and when to do it. The CPU inside
every Macintosh was designed by a company called Motorola. They are
all part of Motorola's 68000 series of CPU ICs. The Macintosh Plus,
Macintosh Classic, and Macintosh SE all use a 68000 CPU. The
Macintosh II uses a 68020 CPU. The Macintosh Ilci uses a 68030 CPU.
In general, the higher the CPU's model number, the faster and more
powerful the machine will be.

The Parts of a Computer

At the center of every computer is its motherboard. The motherboard is
a large rectangle, made of plastic and strips of metal, designed to house
the CPU and related ICs. Sockets are built into the surface of the
motherboard, designed to hold the legs of an integrated circuit. The legs
of an IC are made of a stiff metal and plug into IC sockets in much the
same way as an electrical plug slides into a wall socket.

Once the CPU is plugged into the motherboard it can communicate
with other devices attached to the motherboard. There are several types

30 Chapter 3

of such devices. Perhaps the most important is the console, which
enables you to communicate with your computer. On a Mac, the console
consists of a screen, a keyboard, and a mouse. (The screen is the bright
glowing object you spend an awful lot of time staring at.)

In computer terms, the screen is called an output device, because it's
the primary device used by the computer to get information out to you.
The keyboard and mouse are known as input devices. They are the pri­
mary devices you use to get information into the computer. You use the
mouse to point and click, telling the computer which document to open
or which application to run. You type on your keyboard, sending the
characters to the computer. The characters might be part of a memo to
your boss, or perhaps part of the name you'd like to save the memo as.

Most computers also have storage devices attached to the mother­
board. Storage devices allow you to store data for later retrieval. On the
Mac, your data will consist of the documents and applications you use
every day. Typical Mac storage devices are hard disk drives and floppy
disk drives. If you buy an application, such as Microsoft Word, chances
are you will open the box, take the floppy disks out of the package, pop
a floppy disk into the floppy disk drive, and copy the application onto
your hard disk drive. Most people use floppy disks to transport data
between larger storage devices, such as hard disk drives.

Most storage devices have a storage limit. The newer Macintosh
floppy disk drives allow a maximum of approximately 1.4 million
characters per floppy. A typical hard disk drive holds at least 40 million
characters. Some hard drives hold as much as a billion characters!

There is one more important part of your computer. Every computer
has it. Some computers have more than others. We're talking about your
computer's memory. Computer memory consists of a set of integrated
circuits, designed to hold data on a temporary basis. When you turn
your computer off, its memory is erased. The computer's memory is only
useful when it is turned on.

Typically, computer memory is used to hold a copy of the data you
are currently working on. For example, when you want to edit a letter to
your cousin Lou using your word processor, you tell the computer to
fetch a copy of your letter from your hard disk drive (or from a floppy).

Programming Basics 31

The computer will copy the letter into its memory. As you click and type,
editing the letter, you're actually changing the copy in the computer's
memory. When you're done editing, you tell the computer to save the
copy of Lou's letter it has in memory, back onto your hard drive (or
floppy). If you turn off the computer without saving the letter to some
longer-term storage device - poof! - the letter in memory {as well as
your changes) is gone.

Creating a Computer Program

The previous section took you on a brief tour of your computer. The
tour focused on the hardware {the physical elements) that makes a com­
puter a computer. Now we'll take a look at the programming process,
focusing on the elements involved in creating a computer program. We'll
start with a quick overview of the chain of events that lead up to a
finished program, then go back and review the process in more detail.

The Life of a Program

As mentioned in Chapter 2, most computer programs start as source
code. Your source code will consist of a sequence of statements that tells
the computer what to do. Source code is written in a specific program­
ming language, such as C or Pascal. Each programming language has a
specific set of rules that defines what is and isn't "legal" in that
language.

Your mission in reading this book is to learn how to create useful,
efficient, and, best of all, legal C source code.

You'll store your source code in a file, as though it were a letter
created in a word processor. Unfortunately, computers don't understand
such programming languages as C and Pascal. Computers only speak
one language, a language made up of ones and zeros, called machine
code. You'll write your programs in C, then translate the C source code
into machine code your computer will understand.

32 Chapter 3

The process of translating your source code into machine code is
called compilation. The tool that accomplishes this is a compiler. The
program you installed in Chapter 2, THIN C, is a compiler. You will use
THIN C to translate the sample programs in this book from C into
machine code.

Once you have machine code, you're ready to run your program. In
the Macintosh world you run a program by double-clicking on its icon.
When you ran THIN C, you double-clicked your mouse on the THIN C
icon. Running an application prompts the application to do its thing:
You run a compiler to compile source code; you run a word processor to
edit a memo.

THIN C has a built-in program runner. In one step you can ask
THIN C to compile and then run your C program. We'll do this a lot. As
you run your program, you might notice a feature or two that you want
to change. You do this by editing your source code. You guessed it -
THIN Chas a built-in source code editor, as well.

Once you edit your source code you'll want to compile it, then run it
again to make sure it does what you want. Sometimes you'll get a
program to behave exactly the way you planned the first time you run it.
More frequently, it will take a few (sometimes several) tries before you
get it just right.

Let's look at some of these steps in more detail, starting with source
code.

Source Code

If you were programming using everyday English, your source code
might look like this:

Hi, Computer!
Do me a favor. Ask me for five numbers, add them together,
then tell me the sum.

If you wanted to run this program, you'd need a compiler able to
translate English source code into machine code. Since THIN C only

Programming Basics 33

understands C source code, let's look at a C program that does the
same thing:

main()
{

int i. num. sum;

sum = O;

for i=l; i <=5; i++
(

printf("Enter number %d --->". >:
scanf("%d", &num);
sum = sum + num;

printf("The sum of these numbers is %d.", sum);

If this program doesn't mean anything to you, don't panic. Just keep
reading. By the time you finish reading this book, you'll be writing C
code like a pro.

As we said before, a compiler is used to translate the source code
from its textual form into machine code. Source code is for you,
machine code is for your computer.

Next, we'll look at how THIN C handles the translation from
source code to machine code.

THIN C and the Project File

Each program you build using THIN C will be based on something
called a project file. Each THIN C project file contains all the
information THIN C needs to edit, compile, and run your program.

In Chapter 2, you used THIN C to open a sample program called
he 11o.7t. When THIN C opened he 11o.7t, a project window appeared.

34 Chapter 3

I" .,
hello.n

Name obj size
ANSI.lib 0
hello.c 0

Figure 3.2 The project window for he 11o.7t

The project window is shown in Figure 3.2. Notice that the project
window is titled with the name of the project, he 11o.7t. The project
window lists all of the files needed to compile this particular project. The
file ANSI. 1 ibis a special file we'll talk about in Chapter 4. You'll see
ANSI. 1 i bin all of your THIN C projects.

The file he 11 o. c contains the source code for this project. If you
double-click on the name he 11 o . c in the project window, an editing
window will appear, allowing you to make changes to he 1 1 o . c. The
numbers to the right of each file name (both zeros in this case) keep
track of the amount of source code that has been translated into
machine code.

Machine code is also known by the name object code. When a file's
object size (the number to the right of the name in the project window)
is zero, the file hasn't been compiled yet.

Don't concern yourself too much with the specifics of THIN C
project files. We'll work through each example in the book, step by
step, so you won't get lost. Understanding how to write C source code
is far more important than the intricacies of the THIN C project file.

Programming Basics 35

Since THIN C stores the object or machine code inside the
project file on your hard drive, your project files will take
up more room with a compiled program than with an
uncompiled program. To save space, select Remoue
Objects from the Project menu when you are done with
a project. This item tells THIN C to delete any object code it
may have created for the project. Don't worry, Remoue
Objects won't affect your source code. It'll just slim down
your project file a bit.

A Word About Memory

Before we move on to the specifics of the C language, there's one more
topic we need to cover. Inside every computer, from Apple to Zenith,
you 1 ll find something called RAM, which stands for Random Access
Memory. This memory is extremely important to programmers (espe­
cially C programmers), so pay close attention.

The standard unit of measurement in the memory world is the byte.
A standard Macintosh Plus comes with one megabyte of memory, which
is equal to 220 bytes (a little more than one million bytes). One million
bytes sounds like a lot, but it can get used up in a hurry. That million
bytes is divvied up between the Mac's operating system, the Finder, and
any applications that are running. There are some applications that
require more than one megabyte just to run.

Figure 3.3 shows the Finder's Info box for Microsoft Word 4.0. (To
bring up this window, select an application's Finder icon, then select
Get Info from the Finder's File menu.) At the bottom of the window
you'll see the application's memory size. This is the minimum memory
required by the application to run successfully. In this case, Microsoft
Word requires at least 512K (lK = 210 = 1024 bytes, so 512K =
524,288 bytes). That's half the memory of a Mac Plus!

36 Chapter 3

Binary, Bits, and Bytes

What do you do with all of these bytes? Almost every line of source
code you write will use up some of your precious bytes. As you'll see in
Chapter 5, you'll use storage containers called variables to hold your
program's data.

For example, if you were writing a game program, you might create
a variable called currentScore to keep track of a player's current
score. As the player's score changes, the byte or bytes of memory
associated with the name currentScore will change in value. Part of
learning to program in C is learning to change (or read) the value of
your program's variables. This means changing or reading the value of
the bytes of memory associated with these variables. Let's take a closer
look at the byte.

D Info

Microsoft Word
Microsoft Word 4.0

Kind : application

Locked D

Size : 683 ,274 bytes used, 669K on disk

Yhere : Macintosh HD 1 SCSI 0

Created : Mon .. Apr 1 0 1 1989, 5 :00 PM
Modified : Fri, Oct 5 .. 1990 .. 1 0 :30 AM
Version : 4 .0, © 1 987-1989 Microsoft

Corporation

Suggested Memory Size (K): 512

Application Memory Size (K): EJ
Figure 3.3 Microsoft suggests you run Word with at least 512K bytes of
memory.

Programming Basics 37

Each byte of computer memory is made up of 8 bits. Each bit has a
value of either 1 or 0. Figure 3.4 shows a byte holding the value
00101011. The value 00101011 is said to be the binary representation of
the value of the byte. Look closer at Figure 3.4. Notice that each bit is
numbered (the bit numbers are above each bit in the figure), with bit 0
on the extreme right side to bit 7 on the extreme left. This is a standard
bit-numbering scheme used in most computers.

s;t 1 a;t 6 s;t s s;t 4 an 3 s;t 2 s;t 1 e;t o

[QJ[QJ[IJ[QJ[IJ[QJ[IJ[IJ
Add 128 Add 64 Add 32 Add 16 Add 8 Add 4 Add 2 Add 1

Figure 3.4 A byte holding the binary value 00101011.

Notice also the labels that appear beneath each bit in the figure
(Add 1, Add 2, etc.). These labels are the key to binary numbers.
Memorize them. (It's easy - each bit is worth twice the value of its
right neighbor.) These labels are used to calculate the value of the entire
byte. Here's how it works:

• Start with a value of 0.
• For each bit with a value of 1, add the label value below the bit.

That's all there is to it! In the byte pictured in Figure 3.4, you'd
calculate the byte's value by adding 1 + 2 + 8 + 32 = 43. Where did we
get the 1, 2, 8, and 32? They're the bottom labels of the only bits with a
value of 1. Try another one.

~7 ~6 ~s ~4 ~3 ~2 ~1 ~o

[QJ[IJ[QJ[IJ[IJ[QJ[IJ[QJ
Add 128 Add 64 Add 32 Add 16 Add 8 Add 4 Add 2 Add 1

Figure 3.5 Whafs the value of this byte?

38 Chapter 3

What's the value of the byte pictured in Figure 3.5? Easy, right? 2 +
8 + 16 + 64 = 90. Right! How about the byte in Figure 3.6?

s;t 1 s;t 6 s;t 5 s;t 4 s;t 3 s;t 2 s;t 1 s;t o

ITJITJUIIIIIIIIIIJ
Add 128 Add 64 Add 32 Add 16 Add 8 Add 4 Add 2 Add 1

Figure 3.6 Last one: What's the value of this byte?

This is an interesting one: 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255.
This example demonstrates the largest value that can fit in a single byte.
Why? Because every bit is turned on. We've added everything we can
add to the value of the byte.

The smallest value a byte can have is 0 (00000000). Since a byte can
range in value from 0 to 255, a byte can have 256 possible values.

Can a Byte Be Negative?

There will be times when you'll want a byte to represent negative, as
well as positive, numbers. Most computers solve this problem by using
two's complement notation.

Don't worry about the details of binary representation and arith­
metic. What's important to remember is that the computer uses one
notation for positive-only numbers and a different notation for num­
bers that can be positive or negative. Both notations allow a byte to
take on one of 256 different values. The positives-only scheme allows
values ranging from 0 to 255. The two's complement scheme allows
values ranging from -128 to 127. This concept will come up again when
we start talking about variables later in the book.

Programming Basics 39

Important ______________ ~------------------------~----~

To represent a negative number using two's complement
notation:

• Start-with the positive version of the number
• Complement all the bits (turn the 1 s into Os and the

Os into 1s)
• Add 1 to the resu It.

For example, the binary notation for the number 9 is
00001001. The two's complement for -9 would be 11110110
+ 1 = 11110111.

The binary notation for the number 2 is 00000010. The
two's complement for ~2 would be 11111101 + 1 =
11111110. Notice that in binary addition, when you add 01
+ 01 you get 10. Just as in regular addition, you carry the 1
to the next column.

The Importance of Binary

Inside your Macintosh, thousands of wires carry signals among the
computer's various components. Most of these signals spend their
existence toggling between two voltage levels. A shift to the lower of the
two voltage levels signals a 0, while a shift to the higher voltage signals a
1. For all its complexity, this primitive mechanism is just about the only
way two parts of a computer can communicate: ones and zeroes. Binary.

Your computer's memory works much the same way. Each bit of
memory corresponds to a tiny physical region on a memory chip. If that
region maintains an electrical charge, that bit has a value of 1. If the
region loses its charge, the bit falls to 0. Ones and zeroes. Binary.

40 Chapter 3

Your computer thinks in binary. To communicate with it, you need
to speak its language. In prehistoric times - oh, around 1960 - people
programmed computers by setting bits in memory using physical
switches, one switch per bit. Mighty inefficient!

As computers evolved, new techniques were developed for
communicating with them. Today we use compilers that translate our
English-like source code into machine code. The machine code contains
the ones and zeroes that allow our instructions to reach the computer,
allowing it to do our bidding.

What's Next?

This chapter covered some of the fundamental concepts behind
programming. We're now ready to explore the mysteries of the C
programming language. Get out your programming gloves - we're
about to go to code!

Convert the following numbers to binary:
1) 26 2) 30 3) 12 4) 99
5) 127 6) 19 7) 47 8) 100

Convert the following numbers to two's complement binary:
9) -1 10) -26 11) -30 12) -127
13) -99 14) -19 15) -13 16) 0

Convert these two's complement numbers to decimal :
17) 11111111 18) 10101010
19) 10001111 20) 10000000
21) 11000000 22) 10000001
23) 11100011 24) 10000100

Thoughts on upcoming topics:

25) Define a scheme for representing positive and negative numbers
using 2 bytes instead of just 1 byte.

26) What is the range of this 2-byte representation?

41

C Basics:
Functions

apter
nee

C Functions
Titles and Bodies
Syntax Errors and Algorithms

Function Calling Examples
The Most Important Function
ANSI C and the Standard Library
Same Program, 1\No Functions

Opening hello2.n
Running hello2.n

Generating Some Errors
C is Case Sensitive

What's Next?
Exercises

EVERY PROGRAMMING LANGUAGE IS DESIGNED TO
follow strict rules that define the language's source code structure. The
C programming language is no different. These next few chapters will
explore the syntax of C.

Chapter 3 discussed some fundamental programming topics,
including the process of translating source code into machine code
through a tool called the compiler. This chapter focuses on one of the
primary building blocks of C programming, the function.

C Functions

C programs are made up of functions. A function is a chunk of source
code that accomplishes a specific task. You might write a function that

45

46 Chapter 4

adds a list of numbers, or one that calculates the radius of a given
circle. Here's an example:

main()
{

pri ntf("Welcome to my program!") ;

This function, called ma i n () , prints a welcome message in a window.

Throughout this book, we'll refer to a function by placing a
pair of parentheses after its name. This will help distinguish
between variable names and function names. For example,
the name doTask refers to a variable (variables are covered
in Chapter 5), while doTask(>refers to a function.

Titles and Bodies

Functions start with a title, in this case:

main ()

The title consists of the name of the function, followed by a pair of
parentheses. As we'll see later, you can pass data to and from a function
by adding parameters between the parentheses. It is perfectly acceptable
to write functions without parameters, as we did with ma i n () .

Following the title comes the body of the function. The body is
always placed between a pair of curly brackets: 11

{
11 and 11

}
11

• These
brackets are known in programming circles as 11 left-curly 11 and 11 right­
curly 11. Here's the body of main ():

printf("Welcome to my program!");

....

C Basics: Functions 47

The body of a function consist of a series of one or more statements,
each followed by a semicolon(;). If you think of a computer program as
a detailed set of instructions for your computer, a statement is one
specific instruction. The pr i n t f () featured in the body of ma i n () is a
statement. It instructs the computer to display some text on the screen.

As you make your way through this book, you'll learn C's rules for
creating efficient, compilable statements.

Creating efficient statements will make your programs run faster
with less chance of error. The more you learn about programming (and
the more time you spend at your craft) the more efficient you'll be at
making code.

Syntax Errors and Algorithms

Creating compilable code is another story. While compiling your code,
if the compiler reaches a statement it doesn't understand, there it will
sit. The compiler will not let you run your program until every line of
source code compiles.

As you learn C, you'll find yourself making two types of mistakes.
The simplest type, called a syntax error, prevents the program from
compiling. The syntax of a language is the set of rules that determines
what will and will not be read by the compiler. Many syntax errors are
the result of a mistyped letter, or typo. Another common syntax error
occurs when you forget the semicolon at the end of a statement.

The second type of mistake is a flaw in your program's algorithm.
An algorithm is the approach used to solve a problem. You use
algorithms all the time. For example, here's an algorithm for sorting
your mail:

1) Start by taking the mail out of the mailbox.
2) If there's no mail, you're done! Go watch TV.
3) Take a piece of mail out of the pile.
4) If it's junk mail, throw it away, then go back to step 2.
5) If it's a bill, put it with the other bills, then go back to step 2.
6) If it's not a bill and not junk mail, read it, then go back to step 2.

48 Chapter 4

This algorithm completely describes the process of sorting through
your mail. Notice that the algorithm works, even if you didn't get any
mail. Notice also that the algorithm always ends up at step 2, with the
TV on.

Figure 4.1 shows a pictorial representation of the mail-sorting
algorithm, commonly known as a flow chart. Some programmers like
to use a flow chart to flesh out a program's algorithm before they
actually start writing the program. Here's how this works.

This flow chart uses two types of boxes. The rectangular box
portrays an action, such as taking mail out of the mailbox or throwing
junk mail in the trash. The diamond-shaped box always poses a yes/no
question. Action boxes have a single arrow leading out of them and on
to the next box to read, once you've finished taking the appropriate
action. Question boxes have two arrows leading out of them. One
shows the path to take if the answer to the question is yes, the other
shows the path to take if the answer is no. Follow the flow chart
through, comparing it to the algorithm described above.

In the C world, a well-designed algorithm results in a well-behaved
program. On the other hand, a poorly designed algorithm can lead to
unpredictable results. Suppose, for example, you wanted to write a
program that added three numbers together, printing the sum at the
end. If you accidentally printed one of the numbers instead of the sum

Take mail
out of mailbox

All done!
Go watch TY.

Look at a
piece of mail

Throw mail
into the trash

Figure 4.1 An algorithm for sorting the mail.

Place bill
on ha 11 tab le

Read mail

C Basics: Functions 49

of the numbers, your program would still compile and run. The result
of the program would be in error, however (you printed one of the
numbers instead of the sum), because of a flaw in your program's
algorithm.

The efficiency of your source code, referred to earlier, is a direct
result of good algorithm design. Keep the concept of algorithm in mind
as you work your way through the examples in the book.

Function-Calling Examples

In Chapter 2, you ran he 11 o, a program with a single function, main ().
As a refresher, here's the source code from he 11 o:

main()
{

printf("Hello. world!");

You ran he 11 o by selecting Run from the Project menu. Then
THIN C started by executing the first line in the function named
ma i n () • In this case, the first line in ma i n () was the call to the function
pr i n t f () . Whenever your source code calls a function, each of the
statements in the called function is executed before the next statement
of the calling function is executed.

Confused? Look at Figure 4.2. In this example, main () starts with
a call to the function My Function (). This call to My Function () will
cause each of the statements inside MyFunct ion () to be executed. Once
the last statement in My Fun ct i on () is executed, control is returned to
main ().Now, main () can call AnotherFunct ion ().

50 Chapter 4

main()
{

Hg Function()
{

}

} Anotherfunction()

Hg function();
AnotherfunctionO; y

{

}

Figure 4.2 When ma i n () calls My Fun ct i on () , all of the statements
inside MyFunct ion () get executed before main () calls
AnotherFunction().

The Most Important Function

The most important function in the C universe is one you write
yourself: the ma i n () function. Every C program you write will have a
main () function. Your program will start running with the first line in
ma; n () and, unless something unusual happens, end with the last line in
ma i n () . Along the way ma i n () may call other functions which may, in
turn, call other functions and so on.

THIN C comes with a set of built-in functions you can use in your
own programs. One of these functions is pr i n t f () . The pr i n t f ()
function opens THIN C's special text window on the screen (if it's not
already open) and draws text in the window. The text pri ntf () draws
is specified by the text you place between pr i n t f () 's parentheses. For
example, hell o's call to pri ntf () looks like this:

printf("Hello, world!");

C Basics: Functions 51

This call asks printf() to print the string 11 Hello, world!" in the
text window.

There are many other built-in functions that come with THIN C.
THIN C's set of built-in functions is known as the Standard Library.

By the Way _____________________ _

In C, a string is a series of text characters inside a pair of
double quotes ("}. You'll learn more about strings in
Chapter 8.

ANSI C and the Standard Library

The American National Standards Institute (ANSI) established a
standard for the C programming language. We call this standard ANSI
C. Part of this standard is a specific definition of the syntax of the C
language. As we stated earlier, the syntax of a language gives
programmers a set of rules that rigidly defines the format of their
source code. For example, ANSI C tells you when you can and can't use
a semicolon. ANSI C tells you to use a pair of parentheses after the
name of your function, regardless of whether your function has any
parameters. You get the idea. The greatest benefit to having a national
standard for C is portability. ANSI C on one computer is identical to
ANSI Con another computer. When you finish with this book, you'll
be able to program in C on any computer that has an ANSI C compiler.

Another part of the ANSI C standard is the Standard Library. The
Standard Library is a set of functions available to every ANSI C
programmer. As you may have guessed, the pr i n t f () function is part
of the Standard Library.

52 Chapter 4

There's a boatload of useful functions in the Standard
Library. We'll describe some of the more useful ones as we
go along. The documentation that comes with your
compiler should also provide a detailed description of each
of the functions in the Standard Library. For example, the
THINK C (not THIN C) compiler comes with a separate
manual called the Standard Libraries Reference that covers
THINK C's version of the Standard Library.

Same Program, Two Functions

As you start writing your own programs, you'll find yourself designing
many individual functions. You might need a function that puts a form
up on the screen for the user to fill out. You might need a function that
takes a list of numbers as input, providing the average of those numbers
in return. Whatever your needs, you will definitely be creating a lot of
functions. Let's see how it's done.

Our first program, he 1 1 o, consisted of a single function, ma i n () ,
that passed the text string " He 1 1 o • w o r 1 d ! " to pr i n t f () . Our second
program, he 11 o2, captures that functionalism in a new function, called
SayHel 1 o().

Opening hello2.1t

Start up THIN C by double-clicking on its icon in the Finder. THIN C
will prompt you for a project file to open (Figure 4.3). Go into the
folder called P roj ec ts (you'll have to go up one level to find it), then
into the subfolder named he 11 o2, and open the file named he 11o2.7t.

C Basics: Functions 53

laru1N c 1 I
D libs G· .h files :!l c::i Hard Driue

l: j<H t)

n Open D
(Cancel)

Figure 4.3 THIN C prompting you for a project file to open.

At this point, a he 11o2.7t project window will appear, as shown in
Figure 4.4. If you double-click on the name he 11 o2. c in the project
window, a source code editing window will appear, containing source
code remarkably similar to this:

SayHello()
{

printf("Hello, world!"):

main ()
{

SayHel 1 o():

54 Chapter 4

-• hello2. n
Name obj size
ANSI.lib 0
he11o2.c 0

Figure 4.4 Project window for he 11o2.7t.

In he l l o • ma i n () called p r i n t f () direct! y. In he l l o 2, ma i n ()
calls a function which calls pr i n t f () . This extra layer of functionalism
demonstrates a basic C programming technique, taking code from one
function and using it to create a new function. This example took this
line of code:

printf("Hello. world!");

and used it to create a new function called Say He 11 o ().This function is
now available for use by the rest of the program. Every time we call the
function SayHel lo(), it's as if we executed the line of code:

printf("Hello, world!");

Say He 11 o () may be a simple function, but it demonstrates an
important concept. Wrapping a chunk of code in a single function is a
powerful technique. Suppose you create an extremely complex function,
say, 100 lines of code in length. Now suppose you call this function in

C Basics: Functions 55

five different places in your program. With 100 lines of code, plus the
five function calls, you are essentially achieving 500 lines ' worth of
functionalism. That's a pretty good return on your investment!

Let's watch he 11 o2 in action.

Running hello2.7t

Select Run from the Project menu. You should see something similar
to Figure 4.5. Remember to type a carriage return to exit from the
program. Notice that, even though we embedded our print f () inside
the function SayHel lo(), hell o2 ran the same as hell ol.

press «return» to eHit

Hello, wor l d!

Figure 4.5 THIN C's text window, waiting for a carriage return.

56 Chapter 4

THIN C maintains a special text window for your con­
venience. When your program starts running, the text
window is hidden. If you don't call any of the Standard
Library routines that print in the special text window, such
as pri ntf <),you'll never see the text window. Before THIN
C allows your program to exit, it checks to see if the
text window is visible. If it is, THIN C asks you to type a
carriage return before allowing your program to exit (see
Figure 4.5).

Generating Some Errors

Before we move on to variables in the next chapter, let's see how the
compiler responds to errors in our source code. Place a semicolon at the
end of the first line of code. The semicolon should appear just after the
right parenthesis (in the source code below, the changed line is in boldface):

SayHell O():

I
printf("Hello, world!");

main ()
I

SayHel 1 oC);

Select Run from the Project menu. THIN C can tell if you've
made any changes to your source code file. Since you have, THIN C
will automatically attempt to recompile your program. In this case, the
compilation will fail. The dialog box shown in Figure 4.6 will appear
just below the menu bar at the top of your screen.

C Basics: Functions 57

syntaH error

Figure 4.6 The dreaded syntax error message.

Get used to this message - you will see it a lot. Basically, THIN C is
trying to tell you that it found an error in your source code. Dismiss the
window by clicking in it (or by typing a carriage return). Now take a
look at your source code window. THIN C tried to place the edit cursor
as close to the syntax error as it could (Figure 4.7). THIN C will always
place the cursor at the beginning of a line of text. In this case, THIN C
placed the cursor at the beginning of the line following the error.

Edlt
Cursor

hello2.c
SayHe I I o () ;
I<

pr i n tf ("He I I o, wor I d ! ") ;
}

main()
{

SayHe 11 oO;
}

Figure 4.7 THIN C places the cursor as close to the syntax error as it can.

58 Chapter 4

Use the mouse and the delete key to delete the offending semicolon
at the end of the first line of code. Select Run from the Project menu
again. This time, the code should compile without a hitch. Once the
code is compiled, THIN C will ask you if you'd like to save your source
code changes before running your program (Figure 4.8). Click the Yes
button to save your changes.

Lt Saue changes before running?

~ ~ Yes

(Cancel)
() No

Figure 4.8 THIN C asks if you'd like to save your source code changes.

C is Case Sensitive

There are many different types of errors possible in C programming.
One of the most common results from the fact that C is a case-sensitive
language. In a case-sensitive language, there is a big difference between
lower- and upper-case letters. This means you can't refer to pri ntf () as
Pr i n tf () or even PR I NT F () . If you do you'll see the error message
shown in Figure 4.9a when you try to run your program. The link
failed error message tells you that THIN C can't locate one of the
functions you've referenced. The offending function is listed in the Link
Errors window that appears just below the link failed dialog box.
As you can see in Figure 4.9b, THIN C couldn't find a function named
Pri ntf ().To fix this problem, just change Pri ntf () to pri ntf() and
recompile.

C Basics: Functions 59

link failed

Figure 4.9a The link failed error message.

D Link Errors
undefined : Printf

Figure 4.9b The Link Errors window.

What's Next?

Congratulations! You've made it through basic training. You know how
to open a project, how to compile your code, and even how to create an
error message or two. You've learned about the most important
function: main() . You've also learned about printf{) and the
Standard Library.

Now you're ready to dig into the stuff that gives a C program life:
variables and operators.

Open the project hello 2. rt, edit hello2.c as described in each
exercise, and describe the error that results:

1) Change the line:

SayHello()

to say:

SayHello

2) Change things back. Now change the line:

main ()

to say:

musthavemain()

3) Change things back. Now delete the { after the line:

ma i n ()

4) Change things back. Now change the line:

printf("Hel l o , world!");

to say:

printfC"Hello . world!")

61

C Basics:
Variables and

Operators

An lntrodudion to Variables
Working with Variables
The Size of a Type

Operators
The +, -, ++, and - - Operators
The +=, and -= Operators
The *,I, *=, and I= Operators

Using Parentheses ()
Sample Programs

Opening operator.n
Stepping Through the Source Code

Opening postfix.n
Stepping Through the Source Code

Opening slasher.1t
Stepping Through the Source Code

Sprucing Up Your Code
Source Code Spacing
Comment Your Code

What's Next7
Exercises

AT THIS POINT, YOU SHOULD FEEL PRETIY COMFORTABLE
with the THIN C environment. You should know how to open a
project and how to edit a project's source code. You should also feel
comfortable running a project and (heaven forbid) fixing any syntax
errors that may have occurred along the way.

On the programming side, you should recognize a function when
you see one. When you think of a function you should first think of
main () , the most important function. You should remember that
functions are made up of statements separated by semicolons.

65

66 Chapter 5

With these things in mind, we're ready to explore the foundation of
C programming: variables and operators. Variables and operators are
the building blocks you'll use to construct your program's statements.

An Introduction to Variables

A large part of the programming process involves working with data.
You might need to add together a column of numbers or sort a list of
names alphabetically. The tricky part of this process is representing
your data in a program. This is where variables come in.

Variables can be thought of as containers for your program's data.
Imagine a table with three containers sitting on it. Each container is
labeled. One container is labeled cupl, one labeled cup2, and the third
cup3. Now imagine you have three pieces of paper. Write a number on
each piece of paper and place one piece inside each of the three
containers. Figure 5 .1 shows a picture of what this might look like.

cupl cup2 cup3

Figure 5.1 Three cups, each with its own value.

Now imagine asking a friend to reach into the three cups, pull out
the number in each one, and add the three values together. You can ask
your friend to place the sum of the three values in a fourth container
created just for this purpose. The fourth container is labeled sum and
can be seen in Figure 5.2.

C Basics: Variables and Operators 67

sum

Figure 5.2 A fourth container, containing the sum of the other three
containers.

This is exactly how variables work. Variables are containers for
your program's data. You create a variable and place a value in it. You
then ask the computer to do something with the value in your variable.
You can ask the computer to add three variables together, placing the
result in a fourth variable. You can even ask the computer to take the
value in a variable, multiply it by 2, and place the result back into the
original variable.

Getting back to our example, now imagine that you changed the
values in cupl. cup2, and cup3. Once again, you could call on your
friend to add the three values, updating the value in the container sum.
You've reused the same variables, using the same formula, to achieve a
different result. Here's the C version of this formula:

sum = cupl + cup2 + cup3;

Every time you execute this line of source code, you place the sum
of the variables cupl, cup2, and cup3 into the variable named sum. At
this point, it's not important to understand exactly how this line of C
source code works. What is important is to understand the basic idea
behind variables. Each variable in your program is like a container with
a value in it. This chapter will teach you how to create your own
variables and how to place a value in a variable.

68 Chapter 5

Working With Variables

Variables come in a variety of flavors, called types. A variable's type
determines the type of data that can be stored in that variable. You
determine a variable's type when you create the variable. (We'll discuss
creating variables in just a second.) Some variable types are useful for
working with numbers. Other variable types are designed to work with
text. In this chapter, we'll work strictly with variables of one type, a
numerical type called int (in Chapter 8 we'll get into other variable
types). A variable of type int can hold a numerical value, such as 27
or -589.

Working with variables is a two-stage process. First you create a
variable, then you use the variable. In C, you create a variable by
declaring it. Declaring a variable tells the compiler, "Create a variable
for me. I need a container to place a piece of data in." When you
declare a variable, you have to specify the variable's type as well as its
name. In our earlier example, we created four containers. Each
container had a label. In the C world, this would be the same as
creating four variables with the names cupl, cup2, cup3, and sum. In C,
if we want to use the value stored in a variable, we use the variable's
name. We'll show you how to do this later in the chapter.

Here's an example of a variable declaration:

int myVariable;

This declaration tells the compiler to create a variable of type int
(remember, i nts are useful for working with numbers) with the name
myVari able. The type of the variable (in this case, int) is extremely
important. As you'll see, variable type determines the type and range of
values a variable can be assigned.

C Basics: Variables and Operators 69

You may have noticed the unusual spelling of the variable
name myVari able. Here are a few rules to follow when you
create your own variable names:

• Always start your variable names with a lower-case
letter. This yields variable names like n urn be r or digit.

• It's OK to create a variable name of more than one
word. Simply start each ·Successive word in the variable
name with an upper-case letter. This yields variable
names like myVa ri able or howMany.

The Size of a Type

When you declare a variable, the compiler reserves a section of memory
for the exclusive use of that variable. When you assign a value to a
variable, you are actually modifying the variable's dedicated memory to
reflect that value. The number of bytes assigned to a variable is
determined by the variable's type. For example, an int always gets 2
bytes of memory. The variable declaration:

int mylnt;

reserves 2 bytes of memory for the exclusive use of the variable my Int.
If you later assign a value to my Int, that value is stored in those 2 bytes.
If you ever refer to my Int 's value, you'll be referring to those 2 bytes.
As you'll see, you don't need to know too much about those 2 bytes.
The compiler handles all the memory manipulation for you.

The one thing you do need to understand is the importance of type
size. Every type has a specific size. As we said, the size of an i n t is
always 2 bytes. As you learn about different C data types (see Chapter
8), you'll also learn about the size of each type.

70 Chapter 5

Why is the size of a type important? The size of a type determines
the range of values that type can handle. As you might expect, a type
that's 4 bytes in size can hold a wider range of values than a type that's
only 1 byte in size.

Think back to Chapter 3. In the section on binary, we discovered
that 1 byte (8 bits) of memory can hold one of 2s = 256 possible values.
By extension, 2 bytes (16 bits) of memory can hold one of 216 = 65,536
possible values. If the 2 bytes are unsigned (never allowed to hold a
negative value) they can hold values ranging from 0 to 65,535. If the 2
bytes are signed (allowed to hold both positive and negative values)
they can hold values ranging from -32,768 to 32,767.

By default, all C data types are signed (allowed to hold both positive
and negative values). This means that a variable declared as follows:

int mylnt;

is signed and can hold values ranging from -32,768 to 32,767.
When you compile your program, the compiler makes a list of all

the memory needed for your program's variables. When you declared
my Int to be of type int, the compiler reserved 2 bytes of memory for
the exclusive use of my Int.

To declare a variable as unsigned, precede its declarati~n
with the unsigned qualifier. Here's an example: ·

unsigned int my Int;

This version of my Int can hold values ranging from 0 to
65,535.

C Basics: Variables and Operators 71

int is short for integer. As any math hound will tell you,
integers are whole numbers, like 1, -26, or 3,876,560. The
number 3.14159 is not an integer!

Now that you've defined the type of variable your program will use
(in this case, int), you can assign a value· to your variable.

Operators

One way to assign a value to a variable is with the = operator. An
operator is a special character (or set of characters) that represents a
specific computer operation. The = operator tells the computer to
compute the value of the right side of the = and assign that value to the
left side of the=. Take a look at this line of source code:

mylnt = 237;

This statement causes the value 237 to be placed in the 2 bytes
allocated for my Int.

By the Way _____________________ _

As we just illustrated, you can use numerical constants (such
as 237) directly in your code. In the C world, these constants
are called literals. Just as there are different types of
variables, there are also different types of literals. You'll see
more on this topic later in the book.

72 Chapter 5

Look at this example:

main()
{

int mylnt. anotherlnt;

mylnt = 503;
anotherlnt = mylnt;

Notice we've declared two variables in this program. One way to
declare multiple variables is the way we did here, separating the
variables by a comma (,). There's no limit to the number of variables
you can declare using this method.

We could have declared these variables using two separate
declaration lines:

int mylnt;
int anotherlnt;

Either way is fine. As you'll see, C is an extremely flexible language.
However, there is one rule you must remember. Within a function, you
must declare all variables before any other type of statement occurs.
Consider this example:

main()
{

int mylnt;

mylnt = 503;

int anotherlnt;

anotherlnt = mylnt;

C Basics: Variables and Operators 73

This program will not compile. Why? A variable (another Int) was
declared after a nondeclaration statement (my Int = 503). Here's the
corrected version:

main ()
{

int myint;
int anotherint;

myint = 503;
anotherint = myint;

This program starts by declaring two i nts (allocating a total of 4
bytes of memory, 2 bytes for each int}:

int mylnt;
int anotherint;

Next, the program assigns the value 503 to the 2 bytes of memory
allocated to my Int:

myint = 503;

Finally, the value in my Int 's 2 bytes is copied into the 2 bytes
allocated to another Int:

anotherint = myint;

At this point, the variable another Int contains the value 503.
Why go to all this effort just to assign a value to a variable? Think

of it as learning to walk before you can fly. As we cover more and more
of the C language, you '11 start to see some of the fantastic things you
can accomplish. At the beginning of this chapter, we looked at an
example that took the values from three containers, added them
together, and placed the result in a fourth container. That's what this is

74 Chapter 5

all about. C variables and operators allow you to manipulate and
manage data inside a program. The data might represent your baseball
card collection or the flight path of the Mars lander. Variables and
operators allow you to massage the data to get the results you want.
Have patience, and keep reading.

Let's look at some other operators.

The +, -, ++, and -- Operators

The + and - operators each take two values and reduce them to a single
value. For example, the statement:

mylnt = 5 + 3;

will first resolve the right side of the = by adding the numbers 5 and 3
together. Once that's done, the resulting value (8) is assigned to the
variable on the left side of the =. This statement assigns the value 8 to
the variable my Int. Assigning a value to a variable means copying the
value into the memory allocated to that variable.

Here's another example:

my Int = 10;
anotherlnt = 12 - mylnt;

The first statement assigns the value 10 to my I n t. The second
statement subtracts 10 from 12 to get 2, then assigns the value 2 to
another Int.

The ++ and - - operators operate on a single value only. ++
increments (raises) the value by 1 and - - decrements (lowers) the value
by 1. Take a look:

my Int = 10;
my Int++;

C Basics: Variables and Operators 75

The first statement assigns my Int a value of 10. The second
statement changes mylnt's value from 10 to 11. Here's a - - example:

my Int = 10;
--myint;

This time the second line of code left my I n t with a value of 9. You
may have noticed that the first example showed the++ following my Int,
while the second example showed the - - preceding my Int.

The position of the ++ and - - operators determines when their
operation is performed in relation to the rest of the statement. Placing
the operator on the right side of a variable or expression (postfix
notation) tells the compiler to resolve all values before performing the
increment (or decrement) operation. Placing the operator on the left
side of the variable (prefix notation) tells the compiler to increment (or
decrement) first, then continue evaluation. Confused? The following
examples should make this point clear:

mylnt = 10;
anotherlnt = mylnt--;

The first statement assigns my Int a value of 10. In the second
statement, the - - operator is on my Int 's right side. This use of postfix
notation tells the compiler to assign mylnt's value to anotherlnt
before decrementing mylnt. This example leaves mylnt with a value of
9 and another Int with a value of 10.

Here's the same example, written using prefix notation:

my Int = 10;
anotherlnt = --mylnt;

This time, the - - is on the left side of my I n t. In this case, the value
of my I n t is decremented before being assigned to another Int. The
result? my Int and another Int are both left with a value of 9.

76 Chapter 5

This use of prefix and postfix notation shows both a
strength and a weakness of the C language. On the plus
side, Callows you to accomplish a lot in a small amount of
code. In the previous examples, we changed the value of
two different variables in a single statement. C is powerful.

On the down side, C code written in this fashion can be
extremely cryptic, difficult to read for even the most
seasoned C programmer.

Write your code carefully.

The += and -= Operators

In C, you can place the same variable on both the left and right sides of
an assignment statement. For example, the statement:

myint = myint + 10;

increases the value of my Int by 10. The same results can be achieved
using the+= operator:

my Int += 10;

is the same as:

myint = myint + 10;

In the same way, the -= operator can be used to decrement the
value of a variable. The statement:

my Int -= 10;

decrements the value of my Int by 10.

C Basics: Variables and Operators 77

The*, I,*=, and/= Operators

The * and I operators each take two values and reduce them to a single
value, much the same as the+ and - operators do. The statement:

mylnt = 3 * 5;

multiplies 3 and 5, leaving my Int with a value of 15. The statement:

mylnt = 5 I 2;

divides 5 by 2 and, assuming my Int is declared as an integer type,
assigns the integral (truncated) result to my Int. The number 5 divided
by 2 is 2.5. Since my Int can only hold integer values, the value 2.5 is
truncated and the value 2 is assigned to my Int.

The *= and I= operators work much the same as their += and
counterparts. The statement:

mylnt *= 10;

is identical to the statement:

mylnt = mylnt * 10;

The statement:

mylnt /= 10;

is identical to the statement:

mylnt = mylnt I 10;

78 Chapter 5

BytheWaY~--------------------------------------~

The I operator doesn't perform its truncation automatically.
The accuracy of the result is limited by the data type of the
operands. If the division is performed using i nts, the result
will be an int, and is truncated to an integer value.

There are several data types (such as fl oat, introduced
in Chapter 8) which support floating point division using
the I operator.

Using Parentheses ()

Sometimes the expressions you create can be evaluated in several ways.
Here's an example:

mylnt = 5 + 3 * 2;

You can add 5 + 3, then multiply the result by 2 (giving you 16).
Alternatively, you can multiply 3 * 2 and add 5 to the result (giving you
11) . Which is correct?

C has a set of built-in rules for resolving the order of operators. As
it turns out, the * operator has a higher precedence than the+ operator,
so the multiplication will be performed first, yielding a result of 11.

Don't write code that depends on these rules. That's why the C gods
gave us parentheses! Use parentheses in pairs to define the order in
which you want your operators performed. The statement:

mylnt = C 5 + 3) * 2;

will leave my Int with a value of 16. The statement:

mylnt = 5 + (3 * 2);

C Basics: Variables and Operators 79

will leave myint with a value of 11. You can use more than one set of
parentheses in a statement, as long as they occur in pairs - one left
parenthesis associated with each right parenthesis. The statement:

my I n t = ((5 + 3) * 2) ;

will leave my Int with a value of 16.

Sample Programs

So far in this chapter, we've discussed variables (mostly of type int) and
operators (mostly mathematical). The program examples on the
following pages combine variables and operators into useful C state­
ments. We'll also learn about a powerful part of the Standard Library,
the print f () function.

Opening operator.1t

Our first program, operator . 1t, provides a testing ground for some of
the operators covered in the previous sections.

Start up THIN C by double-clicking on its icon in the Finder. THIN
C will prompt you for a project file to open. Go into the folder called
Projects, into the subfolder called operator, then open the project
called operator .1t. The project window for operator .1t should appear
(Figure 5 .3).

Run operator .7t by selecting Run from the Projects menu.
THIN C will first attempt to compile operator. c. Assuming you
haven't mucked around with the source code, things should proceed
smoothly, resulting in a clean compile. Once the code compiles, THIN
C will run operator .1t.

80 Chapter 5

:11

operator. n
Name obj size
ANSI.lib 0
operator .c 0

Figure 5.3 Project window for operator. 7t.

The first clue you'll have that operator. c is running will be the
appearance of a standard Macintosh window bearing the title press
«return» to e Hit. This window is called the console window
(Figure 5.4). The function pri ntf () allows you to display text and
numbers in the console window, making it easy to track your program's
progress.

operator. c declares a variable (my Int) and uses a series of state­
ments to change the value of the variable. By including a pr i n t f () after
each of these statements, operator. c makes it easy to follow the
variable, step by step, as its value changes.

Once the console window appears, a series of six lines of text will
scroll into view, starting at the bottom of the window and moving up,
one line at a time. Compare your console with the window in Figure 5 .5.

Press the return key on your keyboard to return to THIN C.

C Basics: Variables and Operators 81

press «return» to eHit

Figure 5.4 THIN C's console window.

mylnt ---> 6
myln t ---> 7
my ln t ---> 2
mylnt ---> 20
mylnt ---> 5
myln t ---> 2

press «return» to eHit

Figure 5.5 operator . c in action.

82 Chapter 5

In ancient times, programmers used character-based
displays to communicate with their machines. These
displays were called consoles. A typical console screen
supported 24 rows of text, each up to 80 columns wide.
When the computer wanted to communicate with you, it
displayed some characters on your console. To respond to
the computer, you'd type at your keyboard. The characters
you typed would also appear on your console. ·

Programmers love character-based displays because
they're simple. To display text on a window-based system
(like the Macintosh), you have to worry about things like
text font, size, and style. You have to worry about lining all
your text up just right.

With a character-based display, you didn't worry abo;ut
things like that. Typically, you just sent the text out to t~e
display, one line at a time. When you reached the bottc>m
of the· screen, the display would scroll the t~xt
automatically. So easyl ,

THIN C offers you the best of both worlds. THIN) C
supports all the elements specific to the Macintosh, such :as
pull-down menus, scroll bars, windows, and icons. (On(e
you feel comfortable with C, get a copy of the Macintosh C
Programming Primer. It will teach you all about Mac­
specific programming.)

THIN C also supports a specialized, character-based
window, called the console window. The console window is
essentially a 24-line, SO-column display console in a
Macintosh window. Since the ANSI C standard was created
with this simpler, character-based display in mind, we'll
make extensive use of the console window as we learn C.

C Basics: Variables and Operators 83

Stepping Through the Source Code

Before we walk through the source code in operator. c, you might
want to bring the source code up on your screen. You can do this by
double-clicking on the name operator. c in the project window. A new
window will appear, listing the project's source code.

operator. c consists of a single function, main(), and a single
variable, my Int.

main()
I

int my Int;

At this point in the program (after my I n t has been declared but
before any value has been assigned to it), my Int is said to be
uninitialized. Since my Int was declared to be of type i n t, 2 bytes of
memory were reserved exclusively for my Int 's use. Since we haven't
placed a value in those 2 bytes yet, they could contain any value at all.
Some compilers place a value of 0 in a newly allocated variable, some
do not. The key is, don't depend on a variable being preset to some
specific value. If you want a variable to contain a specific value, assign
the value to the variable yourself!

The next line of code uses the * operator to assign a value of 6 to
my Int. Following that, we use pri ntf() to display the value of my Int
in the console window.

myint = 3 * 2;
printf("myint ---> %d\n", myint);

In computerese, the term initialization refers to the
process of establishing a variable's value for the first time.
A variable that has been declared, but that has not had a
value assigned to it, is said to be uninitialized. You
initialize a variable the first time you assign a value to it.

84 Chapter 5

The code between print f C) 's left and right parentheses is its
parameters or arguments. The parameters that you place between the
parentheses when you call a function are automatically provided to the
called function. If you place a variable or text string between the
parentheses, the called function can use the variable or text string to
determine its next course of action. Placing a parameter between a
function's parentheses is known as passing the parameter. Passing
parameters to a function allows you to customize that function's
operation. For example, you could write a function called
MakeWi ndow() that creates a new window on the screen. You might
design Make W i n d ow () to take a parameter specifying the title of the
window. A call to MakeWi ndowC) might look like this:

MakeWindowC "My Window");

The window produced by this call might look something like the
one in Figure 5.6. Notice that the text string passed as a parameter to
Ma keWi ndow() was used as the title of the window. We'll dig into the
details of functions and function parameters later in the book. For the
moment, let's talk about pri ntf () and the parameters used by this
Standard Library function.

I. -• My Window

Figure 5.6 A window created by a call to MakeWi ndow("My Window").

C Basics: Variables and Operators 85

Some of the more eagle-eyed among you may have noticed
that the text passed as a parameter to Ma keWi ndow() had a
pair of double quotes (11

) around it, and that these quotes
never made it to the title of the window in Figure 5.6.
Good for youl Keep reading and you'll see the important
role that the double-quote character plays in the C
language.

The first parameter passed to pri ntf () defines what will be drawn
in the console window. The simplest call to pr i n t f () uses a quoted text
string as its only parameter. A quoted text string consists of a pair of
double-quote characters (11

) with zero or more characters between
them. For example, this call of pr i n t f () :

printf("Hello!");

will draw the characters He 11 o ! in the console window. Notice that the
double-quote characters are not part of the text string.

You can request that pri ntf () draw a variable's value in the midst
of the quoted string. Do this by embedding the two characters %d
within the first parameter. The % character tells pr i n t f () where in the
quoted string to place the variable's value (the value will replace the
%d). The d following the% tells printf() that the variable you'd like
included in the quoted string is of type i n t. This line of code:

printf(" ... %d ... ", mylnt);

tells pri ntf () to print the value of the variable my Int in the midst of a
series of dots. If my Int had the value 47, the printed line would look
like this:

... 47 ...

86 Chapter 5

pri ntf () uses a different letter for each C data type (there's a
complete description of these later in the book). pri ntf{) always
expects the variable whose value you'd like printed to be the second
parameter, immediately following the quoted string. For example, this
code:

int myVar:

myVar = 5:
printf{ "myVar %d", myVar):

will draw the text

myVar = 5

in the console window. You can place any number of% specifications in
the first parameter, as long as you follow the first parameter by the
appropriate number of variables. Here's another example:

int varl, var2;

varl = 5;
var2 = 10:
printf{ "varl %d, var2 %d", varl, var2);

will draw the text

varl = 5, var2 = 10

in the console window. As you learn about more C data types, you'll
want to use them with pr i n t f () as well.

Let's get back to our source code. These two lines:

mylnt = 3 * 2:
printf{ "mylnt ---> %d\n", mylnt);

C Basics: Variables and Operators 87

will assign my Int a value of 6, then print the line:

mylnt ---> 6

in the console window. Notice that the two characters \ n weren't
echoed in the console window. That's because the \ (known in
programming circles as the backslash) has a special meaning when used
inside a quoted string. The \ combines with the next character in the
quoted string (in this case, the n) to form a backslash sequence. Each
backslash sequence represents a special character, not easily represented
by a single letter.

For example, the \ n combination tells the compiler to generate a
newline character, which causes the next character printed to appear in
the left margin of the next line of the console window (similar to the
carriage return on a typewriter). To get a feel for the newline character,
try removing the \n characters from operator. c. You can edit the
source code by clicking and typing in the operator . c source code
window you opened earlier. To delete the \ n characters, use the mouse
to select them in the window, then hit the delete key on your keyboard.

Now select Run from the Project menu to run the project again.
THIN C will recompile your program (since you made changes to it).
Your output will appear to be one long line, instead of several short
lines. Try it! Our version is shown in Figure 5. 7.

We'll talk about some of the other \ character combinations later in
the chapter. The next line of operator.c increments mylnt from 6 to 7,
and prints the new value in the console window.

mylnt += 1:
printf("mylnt ---> %d\n", mylnt >:

The next line decrements my Int by 5, and prints its new value of 2
in the console window.

my Int -= 5:
printf("mylnt ---> %d\n", mylnt >:

88 Chapter 5

press «return» to eHit er

my lnt ---> 6myl nt ---> 7mylnt ---> 2mylnt ---> 20mylnt ---> Smylnt ---> 2

Figure 5.7 operator . c without the \n characters.

Next, my Int is multiplied by 10, and its new value of 20 is printed
in the console window.

my!nt *= 10 ;
printf("my!nt ---> %d\ n", my!nt) ;

Next, my Int is divided by 4, resulting in a new value of 5.

mylnt / = 4;
printf("mylnt ---> %d\n ", mylnt);

Finally, my Int is divided by 2. Since 5 divided by 2 is 2.5 (not a
whole number), a truncation is performed and my Int is left with a value
of 2.

mylnt /= 2:
printf("mylnt ---> %d ", mylnt) ;

C Basics: Variables and Operators 89

Opening postfix.7t

Our next program demonstrates the difference between postfix and
prefix notation {the ++ and - - operators defined earlier in the chapter).
Select Close Project from the Project menu to close aperatar .7t.
When prompted for a new project to open, go back to the Pr a j e ct s
folder, open the subfolder named past fix , and select past f ix . n from
the scrolling list.

Take a look at the source code for past fix . c and try to predict the
va lues in the two calls to pr i n t f () when you run the program.
Remember, you can open a source code listing for po s tf i x . c by
double-clicking on the name pastfix . c in the project window. Careful,
this one's tricky.

Once your guesses are locked in, select Run from the Project
menu. How'd you do? Compare your two guesses with the output in
Figure 5.8. Let's look at the source code.

mylnt ---> :;
mylnt ---> 7

press «return» to eHit

Figure 5.8 past fix . c in action. Was this what you expected?

90 Chapter 5

Stepping Through the Source Code

The first half of post f i x . c is pretty straightforward. Once again,
my Int is declared to be of type int. Then, my Int is initialized to a value
of 5. Next comes the tricky part.

main C)

I
int my Int;

myint 5;

The first call to pr i n t f () actually has a statement embedded in it.
This is another great feature of the C language. Where there's room for
a variable, there's room for an entire statement. Sometimes it's
convenient to perform two actions within the same line of code. For
example, this line of code:

printf("myint ---> %d\n". myint = myint * 3);

first triples the value of my Int, then passes the result (the tripled value
of my Int) on to pr i n t f C) . The same could have been accomplished
using two lines of code:

myint = myint * 3;
printf("mylnt ---> %d\n". myint);

In general, when the compiler encounters an assignment statement
where it expects a variable, it first completes the assignment, then
passes on the result of the assignment as if it were a variable. Let's see
this technique in action.

In postfix. c, our friend the postfix operator emerges again. Just
prior to the two calls of pr i n t f () , my Int has a value of 5. The first of
the two pri ntf()'s increments the value of my Int using postfix
notation:

printf("mylnt ---> %d\n". mylnt++);

C Basics: Variables and Operators 91

The use of postfix notation means that the value of my Int will be
passed on to pr i n t f () before my I n t is incremented. This means that
the first pr i n tf () will accord my Int a value of 5. However, when the
statement is finished, my Int will have a value of 6.

The second pr i n tf () acts in a more rational (and pref era hie)
manner. The prefix notation guarantees that my Int will be incremented
(from 6 to 7) before its value is passed on to pr i n t f () .

printf("mylnt ---> %d", ++myint);

The purpose of demonstrating the vagaries of postfix and prefix
operators is twofold. On one hand, it's extremely important that you
understand exactly how these operators work from all angles. This will
allow you to write code that works and will aid you in making sense of
other programmers' code.

On the other hand, embedding prefix and postfix operators within
function parameters may save you lines of code but, as you can see,
may prove a bit confusing.

Opening slasher.7t

The last program in Chapter 5, s 1 asher. 7t, demonstrates several
different backslash combinations. Select CI o s e Project from the
Project menu to close postfix .7t. When prompted for a new project
to open, go back to the Projects folder, open the subfolder named
s 1 asher, and select s 1 asher . 7t from the scrolling list.

Run slasher.7t by selecting Run from the Project menu. You
should see something like the console window shown in Figure 5 .9.
Here's how we did it ...

92 Chapter 5

press «return» to eHit

1111100000
0011
Here 's a backs las h ... \ ... for you .
Here's a double quote .. . " . .. for you .
Here's a few tabs .. .
Here's some beeps for you .

Figure 5.9 Slasher . c in action.

Stepping Through the Source Code

. . . for you .

s 1 asher . c consists of a series of pr i nt f () s, each of which demon­
strates a different backslash combination. The first print f () prints a
series of ten zeros, followed by the \ r combination. The \ r
combination generates a carriage return without a line feed, leaving the
cursor at the beginning of the current line (unlike \n , which leaves the
cursor at the beginning of the next line down).

ma in ()
I

printf(11 0000000000\r 11
) ;

The next print f () prints five ls over the first five Os, as if someone
had printed the text string 11 1111100000 11

• The \ n at the end of this
print f () moves the cursor to the beginning of the next line in the
console window.

C Basics: Variables and Operators 93

printf("11111\n");

The next print f () demonstrates \ b, the backspace backslash
combination. \ b tells pr i n t f () to back up one character so that the
next character printed replaces the last character printed. This
pr i n t f () sends out four Os, backspaces over the last two, then prints
two ls. The result is as if you had printed the string "0011 11

•

pri ntf(11 0000\b\bll \n") ;

The \ can also be used to cancel a character's special meaning
within a quoted string. For example, the backslash combination \ \
generates a single \ character. The difference is, this \ loses its special
backslash powers. It doesn't affect the character immediately following it.

The backslash combination \ 11 generates a 11 character, taking away
the special meaning of the 11

• Without the \ before it, the " character
would mark the end of the quoted string. The \ allows you to include a
" inside a quoted string.

The backslash combinations \ \ and \" are demonstrated in the next
two pr i n t f <) s:

printf("Here's a backslash ... \\ ... for you.\n");
printf("Here's a double quote ... \" ... for you.\n");

The \ t combination generates a single tab character. The console
window has a tab stop every eight spaces. Here's a pri ntf() example:

printf("Here's a few tabs ... \t\t\t\t ... for you.\n 11
);

While the Mac offers a host of sound options, most text-based
computer consoles offer one: the beep. While a beep isn't quite as
interesting as a Clank! or a Boing!, it can still serve a useful purpose.
The \a backslash combination provides a simple way to make your
Mac beep.

printf("Here are some beeps ... \a\a\a\a ... for you.");

94 Chapter 5

That's all the sample programs for this chapter. Before we move on,
however, I'd like to talk to you about something personal. It's about
your coding habits.

Sprucing Up Your Code

You are now in the middle of your C learning curve. You've learned
about variables, types, functions, and bytes. You've learned about an
important part of the ANSI Standard Library, the function pri ntf ().
It's at this point in the learning process that programmers start
developing their coding habits.

Coding habits are the little things programmers do that make their
code a little bit different (and hopefully better!) than anyone else's.
Before you get too set in your ways, here are a few coding habits you
can, and should, add to your arsenal.

Source Code Spacing

You may have noticed the tabs, spaces, and blank lines scattered
throughout the sample programs. These are known in C as white space.
White space is ignored by C compilers. Believe it or not, this program:

main()
{

int mylnt;mylnt

5

printf("mylnt=",mylnt);}

is equivalent to this program:

main()
{

int mylnt;

mylnt = 5;
printf("mylnt =" mylnt);

C Basics: Variables and Operators 95

as far as the C compiler goes. The C compiler doesn't care if you put
five statements per line, or if you put 20 carriage returns between your
statements and your semicolons. About the only thing the compiler
won't let you do is place white space in the middle of a word, such as a
variable or function name. For example, this line of code:

my Int = 5;

won't compile. Other than that, you're free to develop your own white­
space style. Here are a few hints ...

• Place a blank line between your variable declarations and the
rest of your function's code. Also, use blank lines to group
related lines of code.

• Sprinkle single spaces throughout a statement. Compare this
line:

printf("mylnt=",mylnt);

with this line:

pr i n t f ("my I n t mylnt);

The spaces make the second line easier to read.

96 Chapter 5

• When in doubt, use parentheses. Compare this line:

mylnt=varl+2*var2+4;

with this line:

mylnt = (varl + 2) * (var2 + 4);

What a difference parentheses and spaces make!

• Always start variable names with a lower-case letter, using an
upper-case letter at the start of each subsequent word in the
name. This yields variable names such as my Var, a reWeDone,
and empl oyeeName.

• Always start function names with an upper-case letter, using an
upper-case letter at the start of each subsequent word in the
name. This yields function names such as DoSomeWo r k () ,
Ho 1 dThese <), and Dea lTheCa rds () •

These hints are merely suggestions. Use a set of standards that make
sense for you and the people with whom you work. The object here is
to make your code as readable as possible.

Comment Your Code

One of the most critical elements in the creation of a computer program
is clear and comprehensive documentation. When you deliver your
award-winning graphics package to your customers, you '11 want to
have two sets of documentation. One set is for your customers, who'll
need a clear set of instructions that guide them through your wonderful
new creation.

The other set of documentation consists of the comments you '11
weave throughout your code. Source code comments act as a sort of
narrative, guiding a reader through your source code. You'll include

C Basics: Variables and Operators 97

comments that describe how your code works, what makes it special,
and what to look out for when changing it. Well-commented code
includes a comment at the beginning of each function that describes the
function, the function parameters, and the function's variables. It's also
a good idea to sprinkle individual comments among your source code
statements, explaining the role each line plays in your program's
algorithm. How do you add a comment to your source code? Take a
look ...

All C compilers recognize the sequence I* as the start of a comment
and will ignore all characters until they hit the sequence *I (the end of
comment characters). Here's some commented code:

main ()
I

int numPieces; /* Number of pieces of pie left */

numPieces = 8: /* We started with 8 pieces */

numPieces--; /* Marge had a piece *I
numPieces--: I* Lisa had a piece *I
numPieces 2: /* Bart had two pieces!! *I
numPieces -= 4· I* Homer had the rest!!! *I

'

printf("Slices left= %d", numPieces): /* How about
some cake
instead? */

Notice that, although most of the comments fit on the same line, the
last comment was split between three lines. The above code will
compile just fine.

Since each of the programs in this book are examined in detail, line
by line, the comments were left out. This was done to make the
examples as simple as possible. In this instance, do as we say, not as we
do. Comment your code. No excuses!

98 Chapter 5

What's Next?

This chapter introduced the concepts of variables and operators, tied
together in C statements, separated by semicolons. We looked at several
examples, each of which made heavy. use of the Standard Library
function print f () . We learned about the console window, quoted
strings, and backslash combinations.

Chapter 6 will increase our programming options significantly,
introducing C control structures such as the for loop and the i f ...
then . . . e 1 se statement. Get ready to expand your C-programming
horizons. See you in Chapter 6.

1) Find the error in each of the following code fragments:

a. printf(Hello, world);

b. i nt mylnt myOtherlnt;

c. mylnt =+ 3 ;

d. printf(11 mylnt %d ll) ;

e. printf(11 mylnt II my Int) ; .
f. printf(11 mylnt %d\ II '

g. mylnt + 3 = mylnt ;

h. ma in()
(

int mylnt;
mylnt = 3;
int anotherlnt;

anotherlnt = mylnt;

my Int) ;

99

100 Chapter 5

2) Compute the value of my Int after each code fragment is
executed:

a. my Int = 5;
my Int *= (3+4) * 2;

b. my Int = 2;
my Int *= ((3*4) I 2) - 9;

c. my Int = 2;
my Int /= 5;
my Int- - ;

d. my Int = 25;
my Int /= 3 * 2;

e. my Int = (3*4*5) I 9;
my Int -= (3+4) * 2;

f. my Int 5;
printf("my Int = %d", my Int 2) ;

g. mylnt = 5;
mylnt = (3+4) * 2;

h. my Int 1;
my Int /= (3+4) I 6;

Controlling
Your Program's

Flow

apter
nee

Flow Control
The if Statement

Expressions
TRUE and FALSE
Comparative Operators
Logical Operators
Compound Expressions

Statements
The Curly Braces {}
Where to Place the Semicolon
The Loneliest Statement
The while Statement
The for Statement
The do Statement
The switch
Breaks in Other Loops

Sample Programs
lsOdd.n

Stepping Through the Source Code
nextPrime. n

Stepping Through the Source Code
What's Next?
Exercises

SO FAR, YOU'VE LEARNED QUITE A BIT ABOUT THE C
language. You know about functions (especially one named mai n ()),
which are made up of statements, which are separated by semicolons.
You know about variables, which have a name and a type. Up to this
point, you've dealt with variables of type int.

103

104 Chapter 6

You also know about operators, such as =, +, and +=. You've
learned about postfix and prefix notation, and the importance of
writing clear, easy-to-understand code. You've learned about an
important programming tool, the console window. You've learned
about the ANSI Standard Library, a set of functions that comes as
standard equipment with every ANSI C programming environment.
You've also learned about pri ntf (), an invaluable component of the
Standard Library.

Finally, you've learned a few housekeeping techniques to keep your
code fresh, sparkling, and readable. Comment your code, because your
memory isn't perfect, and insert some white space to keep your code
from getting too cramped.

Flow Control

One thing you haven't learned about the C language is flow control.
The programs we've written so far have all consisted of a straight­
forward series of statements, one right after the other. Every statement
is executed in the order it occurred.

Flow control is the ability to control the order in which your
program's statements are executed. The C language provides several
keywords you can use in your program to control your program's flow.
One of these is the keyword 11 if. 11

The if Statement

The keyword i f allows you to choose between several options in your
program. In English, you might say something like this:

If it's raining outside I'll bring my umbrella: otherwise I won't.

In this sentence, you' re using if to choose between two options.
Depending on the weather, you'll do one of two things. You'll bring

Controlling Your Program's Flow 105

your umbrella or you won't bring your umbrella. C's if statement gives
you this same flexibility. Here's an example:

main ()
{

int mylnt;

mylnt = 5;

if (my Int
printf(

else
printf(

== 0)

"my Int

"my Int

is equal to zero. II) ;

is not equal to zero. ") ;

This program declares my I n t to be of type i n t and sets the value of
my Int to 5. Next, we use the if statement to test whether my Int is
equal to 0. If my Int is equal to 0 (which we know is not true), we'll
print one string. Otherwise, we'll print a different string. As expected,
this program prints the string "my Int is not equal to zero."

i f statements come two ways. The first, known as plain old i f, fits
this pattern:

if (expression
statement

An if statement will always consist of the word if, a left
parenthesis, an expression, a right parenthesis, and a statement. (We'll
define both expression and statement in a minute.) This first form of if
executes the statement if the expression in parentheses is true. An
English example of the plain if might be:

If it's raining outside, I'll bring my umbrella.

Notice that this statement only tells us what will happen if it's
raining outside. No particular action will be taken if it is not raining.

106 Chapter 6

The second form of if, known as i f -e 1 s e, fits this pattern:

if (expression
statement

else
statement

An if -e 1 s e statement will always consist of the word if, a left
parenthesis, an expression, a right parenthesis, a statement, the word
e 1 s e, and a second statement. This form of if executes the first
statement if the expression is true, and executes the second statement if
the expression is false. An English example of an i f - e 1 s e statement
might be:

If it's raining outside, I'll bring my umbrella, otherwise
I won't.

Notice that this example tells us what will happen if it is raining
outside (I'll bring my umbrella) and if it isn't raining outside (I won't
bring my umbrella). The example programs presented later in the
chapter demonstrate the proper use of both if and i f-e 1 se.

Our next step is to define the terms expression and statement.

Expressions

In C, an expression is anything that has a value. For example, a variable
is a type of expression, since variables always have a value. (Even
uninitialized variables have a value-we just don't know what the value
is!) The following are all examples of expressions:

mylnt + 3

(mylnt + anotherlnt) * 4

my Int++

Controlling Your Program's Flow 107

An assignment statement is also an expression. Can you guess the
value of an assignment statement? Think back to Chapter 5. Remember
when we passed an assignment statement as a parameter to pr i n t f () ?
The value of an assignment statement is the value of its left side. Check
out the following code fragment:

mylnt = 5;
mylnt += 3;

Both of these statements qualify as expressions. The value of the
first expression is 5. The value of the second expression is 8 (because
we added 3 to my I n t 's previous value).

Literals can also be used as expressions. The number 8 has a value.
Guess what? Its value is 8. All expressions, no matter what their type,
have a numerical value.

TRUE and FALSE

Earlier, we defined the if statement as follows:

if (expression
statement

We then said the statement gets executed if the expression is true. In
the previous section, we stated that all expressions, no matter their
type, have a numerical value. In C, even true and false have a numerical
value. Let's look at C's concept of truth.

Everyone has an intuitive understanding of the difference between
true and false. I think we'd all agree that the statement:

5 equals 3

is false. We'd also agree that the statement:

5 and 3 are both greater than 0

108 Chapter 6

is true. This intuitive grasp of true and false carries over into the C
language. In the case of C, however, both true and false have numerical
values. Here's how it works.

In C, any expression that has a value of 0 is said to be FALSE. Any
expression with a value other than 0 is said to be TRUE. As stated earlier,
an if statement's statement gets executed if its expression is TRUE. To
put this more accurately:

• An if statement's statement gets executed if (and only if) its
expression has a value other than 0.

Here's an example:

myint = l;

if C my Int
pr i n tf (11 my Int i s not e qua 1 to 0 11

) ;

The if statement in this piece of code first tests the value of my Int.
Since my Int is not equal to 0, the pri ntf () gets executed.

Comparative Operators

C expressions have a special set of operators, called comparative
operators. Comparative operators compare their left sides with their
right sides and produce a value of either TRUE (1) or FALSE (0),
depending on the relationship of the two sides.

As stated earlier, an expression with a value other than G is
said to be TRUE. By default, when THIN C wants to
represent the value TRUE, it uses a value of 1.

Controlling Your Program's Flow 109

For example, the operator == determines whether the expression on
the left is equal in value to the expression on the right. The expression:

mylnt == 5

is said to be TRUE (1) if my Int is equal to 5, and is said to be FALSE (0)
if my Int is not equal to 5. Here's an example of the == operator at
work:

if (mylnt == 5)
p r i n t f (11 my I n t i s e q u a l t o 5 ") ;

If my Int is equal to 5, the expression my Int == 5 is TRUE and
resolves to 1. Since its expression resolved to 1, the if statement
executes its statement, in this case a call to pr i n t f () .

If mylnt is not equal to 5, the expression my Int == 5 is FALSE
(resolves to 0) and the print f () is skipped. Remember, the key to
triggering an if statement is an expression that resolves to a value other
than 0.

Figure 6.1 shows some of the other comparative operators. You'll
see some of these operators in the example programs later in the
chapter.

Operator Resolves to 1 if ...

-- I eft side is equal to right
<= I eft side is less than or equal to right
>= I eft side is greater than or equal to right
< I eft side is less than right
> I eft side is greater than right
!= left side is not equal to right side

Figure 6.1 Comparative operators.

110 Chapter 6

Logical Operators

Thin C provides a set of literals, namely TRUE and FALSE, you can use
directly in your code. As you might have guessed, TRUE has a value of 1
and FALSE has a value of 0. These two literals come in handy when
dealing with our next set of operators, the logical operators.

The set of logical operators are modeled on the mathematical
concept of truth tables. If you don't know much about truth tables (or
are just frightened by mathematics in general), don't panic. Everything
you need to know is outlined in the next few paragraphs.

The first of the set of logical operators is the ! operator. The !
operator turns TRUE into FALSE and FALSE into TRUE. Figure 6.2 shows
the truth table for the ! operator. In this table, T stands for TRUE and F
stands for FALSE. The letter A in the table represents an expression. If
the expression A is TRUE, applying the ! operator to A yields the value
FALSE. If the expression A is FALSE, applying the ! operator to A yields
the value TRUE. The ! operator is commonly referred to as the NOT
operator. ! A is also known as 11 NOT A".

Here's a piece of code that demonstrates the ! operator:

int myFirstlnt, mySecondlnt;

myFirstlnt = FALSE;
mySecondlnt = ! myFirstlnt;

if (mySecondlnt)
p r i n tf (" my Second I n t mus t be TR U E ") ;

A IA

T F
F T

Figure 6.2 Truth table for the ! operator.

Controlling Your Program's Flow 111

First, we declare two i n ts. We assign the value FALSE to the first
int, then use the ! operator to turn the FALSE into a TRUE and assign it
to the second int. At this point, my Second Int has a value of TRUE,
which is the same thing as saying that my Second Int has a value of 1.
Either way, mySecondint will cause the if to fire, and the printf{)
will get executed.

The ! operator is a unary operator. Unary operators operate on a
single expression (the expression on the right side of the operator). The
other two logical operators, && and 11, are binary operators. Binary
operators, such as the == operator presented earlier, operate on two
expressions, one on the left side and one on the right side of the
operator.

The && operator is commonly referred to as the and operator. The
result of an && operation is TRUE if, and only if, both the left side and
the right side are TRUE. Here's an example:

int wealthy, generous;

wealthy =TRUE;
generous = TRUE;

if (generous && wealthy)
printf{ "Here, have some money - I've got lots");

else
printf("I'm either stingy or poor or both");

This example uses two variables. One indicates whether the
program is wealthy, the other whether the program is generous. All
philosophical issues aside (can programs be wealthy?), the question of
the moment is, which of the two pri ntf() 'swill fire? Since both sides
of the && were set to TRUE, the first print f () will be called. If either
one (or both) of the variables were set to FALSE, the second pri ntf ()
would be called. By the way, notice the use here of the second form of
if, the if-else statement.

112 Chapter 6

The I I operator is commonly referred to as the or operator. The
result of a I I operation is TRUE if either the left side or the right side, or
both sides, of the 11 are TRUE. Put another way, the result of a 11 is
FALSE if, and only if, both the left side and the right side of the 11 are
FALSE. Both the && and the 11 operators are summarized in the table in
Figure 6.3.

A B A&&B All B
T T T T
T F F T
F T F T
F F F F

Figure 6.3 Truth table for the && and 11 operators.

By the Way _____________________ _

You type an & character by holding down the shift key and
typing a 7. You type a I character by holding down the
shift key and typing a \ (backslash). Don't confuse the I
with the letter I, i, or with the I character.

Controlling Your Program's Flow 113

Compound Expressions

All of the examples presented so far have consisted of relatively simple
expressions. Here's an example that combines several different
operators:

int mylnt;

myint = 7;

if (Cmylnt >= 1) && Cmylnt <= 10))
printf("mylnt is between 1 and 10");

else
printf("mylnt is not between 1 and 10");

This example tests whether a variable is in the range between 1 and
10. The key here is the expression: -

Cmylnt >= 1) && Cmylnt <= 10)

that lies between the if statements parentheses. This expression uses
the && operator to combine two smaller expressions. Notice that the
two smaller expressions were surrounded by parentheses to avoid any
ambiguity. If we left out the parentheses, like so:

myint >= 1 && myint <= 10

the expression might not be interpreted as we intended. Once again, use
parentheses for safe computing.

114 Chapter 6

Statements

At the beginning of the chapter, we defined the if statement as:

if (expression
statement

We've covered expressions pretty thoroughly. Now, we'll turn our
attention to the statement.

At this point in the book, you probably have a pretty good intuitive
model of the statement. You'd probably agree that this:

mylnt = 7;

is a statement. But is this:

if (isCold
printf(0 Put on your sweater!");

one statement or two? Actually, the previous code fragment is a
statement within another statement. The pr i n t f () is one statement,
residing within a larger statement, the if statement.

The ability to break your code out into individual statements is not
a critical skill. Getting your code to compile, however, is critical. As
new types of statements are introduced, such as i f and i f - e 1 s e
introduced in this chapter, pay attention to the statement syntax. And
pay special attention to the examples. Where do the semicolons go?
What distinguishes this type of statement from all other types?

As you build up your repertoire of statement types, you'll find
yourself using one type of statement within another. That's perfectly

Controlling Your Program's Flow 115

acceptable in C. In fact, every time you create an if statement, you'll
use at least two statements, one within the other. Take a look at this
example:

if (myVar >= 1)
if C myVar <= 10)

printf("myVar is between 1 and 10");

This example used an i f statement as the statement for another i f
statement. This example calls the print f () if both if expressions are
TRUE; that is, if myV a r is greater than or equal to 1 and less than or
equal to 10. You could have accomplished the same result with this
piece of code:

if C C myVar >= 1) && (myVar <= 10))
printf("myVar is between 1 and 10");

The second piece of code is a little easier to read. There are times,
however, when the method demonstrated in the first piece of code is
preferred. Take a look at this example:

if (myVar != 0)
if ((1 I myVar < 1)

p r i n t f (11 my V a r i s i n r a n g e 11
) ;

One thing you don't want to do in C is divide a number by 0. Any
number divided by zero is infinity, and infinity is a foreign concept to
the C language. If your program ever tries to divide a number by 0,
your program is likely to crash. The first expression in this example
tests to make sure myV a r is not equal to zero. If myV a r is equal to zero,
the second expression won't even be evaluated! The sole purpose of the
first if is to make sure the second if never tries to divide by zero.
Make sure you understand this point. Imagine what would happen if
we wrote the code this way:

if ((myVar != 0) && ((1 I myVar) < 1)
pr i n t f C " my V a r i s i n r a n g e ") ;

116 Chapter 6

Some compilers (if not all) would evaluate the entire expression,
even if myV a r were equal to zero. This would result in a division by zero
and, possibly, a crash.

The Curly Braces { }

Earlier in the book, you learned about the curly braces that surround
the body of every function. These braces also play an important role in
statement construction. Just as parentheses can be used to group terms
of an expression together, curly braces can be used to group multiple
statements together. Here's an example:

onYourBack = TRUE;

if (onYourBack)
{

printf("Flipping over");
onYourBack = FALSE;

In the example, if onYourBack is TRUE, both of the statements in
curly braces will be executed. A pair of curly braces can be used to
combine any number of statements into a single super-statement. You
can use this technique anywhere a statement is called for.

Where to Place the Semicolon

So far, the statements we've seen fall into two categories. Function calls,
such as calls to pr i n t f () , and assignment statements are called simple
statements. Always place a semicolon at the end of a simple statement,
even if it is broken over several lines, like this:

printf("%d%d%d%d", varl,
var2,
var3,
var4);

Controlling Your Program's Flow 117

Statements made up of several parts, including, possibly, other
statements, are called complex statements. Complex statements obey
some pretty strict rules of syntax. The if statement, for example,
always looks like this:

if (expression
statement

Notice there are no semicolons in this definition. The statement part
of the i f can be a simple statement or a complex statement. If the
statement is simple, follow the semicolon rules for simple statements
and place a semicolon at the end of the statement. If the statement is
complex, follow the semicolon rules for that particular type of
statement.

Notice that using 11 cur lies 11 to build a super-statement out of smaller
statements does not require the addition of a semicolon.

The Loneliest Statement

Guess what? A single semicolon qualifies as a statement, albeit a
somewhat lonely one. For example, this code fragment:

if bored)

is a legitimate (and thoroughly useless) if statement. If bored is TRUE,
the semicolon statement gets executed. The semicolon by itself doesn't
do anything but fill the bill where a statement was needed. There are
times where the semicolon by itself is exactly what you need.

118 Chapter 6

The while Statement

The i f statement uses the value of an expression to decide whether to
execute or skip over a statement. If the statement is executed, it is
executed just once. Another type of statement, the wh i 1 e statement,
repeatedly executes a statement as long as a specified expression is
TRUE. The whi 1 e statement follows this pattern:

while (expression
statement

The wh i 1 e statement is also known as the wh i 1 e loop, because once
the statement is executed, the wh i 1 e loops back to reevaluate the
expression. Here's an example of the wh i 1 e loop in action:

int i ;

i=O;

w h il e C ++ i < 3)
pri ntfC "%d\n". i) :

printf("We are past the while loop.");

This example starts by declaring a variable, i, to be of type int. i is
then initialized to 0. Next comes the wh i 1 e loop. The first thing the wh i 1 e
loop does is evaluate its expression. The whi 1 e loop's expression is:

++i < 3

Before this expression is evaluated, i has a value of 0. The prefix
notation used in the expression (++i) increments the value of i to 1
before the remainder of the expression is evaluated. The evaluation of

Controlling Your Program's Flow 119

the expression results in TRUE since 1 is less than 3. Since the expres­
sion is TRUE, the while loop's statement is executed. The pri ntf ()
prints the value of i (in this case, 1) followed by a newline:

1

Next, the while loops back and reevaluates its expression. Once
again, the prefix notation increments i, this time to a value of 2. Since 2
is less than 3, the expression evaluates to TRUE, and the print f () is
executed. The pri ntf () prints the value of i (2) below its previous line:

1
2

Once the pri ntf () completes, it's back to the top of the loop to
reevaluate the expression. Will this never end? Once again, i is incre­
mented, this time to a value of 3. Aha! This time, the expression eval­
uates to FALSE, since 3 is not less than 3. Once the expression evaluates
to FALSE, the while loop ends and control passes to the next statement,
the second pr i n t f () in our example:

printf("We are past the while loop.");

The wh i 1 e loop was driven by three factors: initialization, modifi­
cation, and termination. Initialization is any code that affects the loop,
but occurs before the loop is entered. In our example, the critical initial­
ization occurred when the variable i was set to 0.

120 Chapter 6

By the Way _____________________ _

Frequently, you'll use a variable in a loop that changes
value each time through the loop. In our example, the
variable i was incremented by 1 each time through the
loop. The first time through the loop, i had a value of 1.
The second time, i had a value of 2. Variables that maintain
a value based on the number of times through a loop are
known as counters.

Traditionally, programmers have given counter variables
simple names like i, j, or k. Use these names for your
counter variables only. Name all other program variables
with names that clearly identify their purpose (i.e., names
like emp 1 oyeeNumbe r, 1 as tB i nChecked, or cu rrentBa 1 a nee).

Modification is any code occurring within the loop that affects the
value of the loop's expression. In our example, the modification occurred
within the expression itself when the counter, i , was incremented.

Termination is any condition that causes the loop to terminate. In
our example, termination occurs when the expression has a value of
FALSE. This occurs when the counter, i, has a value that is not less than
3. Take a look at this example:

int i ;

i=l;

while (i < 3)
I

printf("%d\n",);
i++;

printf("We are past the while loop.ti);

Controlling Your Program's Flow 121

This example produces the same results as the previous example.
This time, however, the initialization and modification conditions have
changed slightly. In this example, i starts with a value of 1 (instead of
0). In the previous example, the++ operator was used to increment i at
the very top of the loop. This example modifies i at the bottom of the
loop.

Both of these examples show different ways to accomplish the same
end. The phrase, "There's more than one way to eat an Oreo," sums up
the situation perfectly. There will always be more than one solution to
any programming problem. Don't be afraid to do things your own way.
Just make sure your code works properly and is easy to read.

The for Statement

Nestled inside the C toolbox, right next to the wh i 1 e statement, is the
for statement. The for statement is similar to the wh i 1 e statement,
following the basic model of initialization, modification, and
termination. Here's the pattern for a for statement:

for (expressionl ; expression2 ; expression3
statement

The first expression represents the for statement's initialization.
Typically, this expression consists of an assignment statement, setting
the initial value of a counter variable. This first expression is evaluated
once, at the beginning of the loop.

The second expression is identical in function to the expression in a
while statement, providing the termination condition for the loop. This
expression is evaluated each time through the loop, before the
statement is executed.

Finally, the third expression provides the modification portion of
the for statement. This expression is evaluated at the bottom of the
loop, immediately following execution of the statement.

122 Chapter 6

The for loop can also be described in terms of awhile loop:

expressionl;
while (expression2
(

statement
expression3;

Since you can always rewrite a for loop as a whi 1 e loop,
why introduce the for loop at all? Sometimes, a program­
ming idea fits more naturally into the pattern of a for
statement. If the for loop makes for more readable code,
why not use it? As you write more and more code, you'll
develop a sense for when to use the wh i 1 e and when to use
the for.

Here's an example of a for loop:

int i;

for C i = l; i < 3: i++)
printf("%d\n", i);

printf{ "We are past the for loop.");

This example is identical in functionalism to the wh i 1 e loops
presented earlier. Note the three expressions on the first line of the for
loop. Before the loop is entered, the first expression is evaluated
(remember, assignment statements make great expressions):

i = 1

Controlling Your Program's Flow 123

Once the expression is evaluated, i has a value of 1. We are now
ready to enter the loop. At the top of each pass through the loop, the
second expression is evaluated:

< 3

If the expression evaluates as TRUE, the loop continues. Since i 1s
less than 3, we can proceed. Next, the statement is executed:

printf{ "%d\n". i);

The pr i n t f () prints the value of i (in this case, 1) followed by a
newline:

1

Having reached the bottom of the loop, the for evaluates its third
expression:

i++

This changes the value of i to 2. Back to the top of the loop.
Evaluate the termination expression:

< 3

Since i is still less than 3, the loop continues. Once again, the
pri ntf() prints the value of i (2) followed by a newline. The console
window looks like this:

1
2

i++

Next, the for evaluates express i on3:

124 Chapter 6

incrementing the value of i to 3. Back to the top of the loop. Evaluate
the termination expression:

< 3

Lo and behold! Since i is no longer less than 3, the loop ends and
the second pr i n t f () in our example is executed:

printf("We are past the for loop.");

As was the case with w hi 1 e, for can take full advantage of a pair of
curly braces:

for (i = 0;
{

DoThis();
DoThat():

< 10; i ++)

DanceALittleJig():

In addition, both wh i l e and for can take advantage of the loneliest
statement, the lone semicolon. This example:

for i = 0: i < 1000: i++)

does nothing 1,000 times. Actually, the example does take some time to
execute. The initialization expression is evaluated once, and the
modification and termination expressions are each evaluated 1,000
times. Here's a while version of the loneliest loop:

; = 0;

while i++ < 1000)

By far, the whi 1 e and for statements are the most common types of
C loops. For completeness, however, we'll cover the remaining loop, a
little-used gem called the do statement.

Controlling Your Program's Flow 125

The do Statement

The do statement is a wh i 1 e statement that evaluates its expression at
the bottom of its loop, instead of at the top. Here's the pattern a do
statement must match:

do
statement

while (expression

do
{

Here's a sample:

1;

printf("%d\n",):
i++;

while (< 3) ;

printf("We are past the do loop.");

The first time through the loop, i has a value of 1. The pri ntf ()
prints a 1 in the console window, then the value of i is bumped to 2.
It's not until this point that the expression (i < 3) is evaluated.
Since 2 is less than 3, a second pass through the loop occurs.

During this second pass, the pr i n t f () prints a 2 in the console
window, then the value of i is bumped to 3. Once again, the expression
(i < 3) is evaluated. Since 3 is not less than 3, we drop out of the
loop to the second pr i n t f () .

The important thing to remember about do loops is this: Since the
expression is not evaluated until the bottom of the loop, the body of the
loop (the statement) is always executed at least once. Since for and whi 1 e
loops both check their expressions at the top of the loop, it's possible for
either to drop out of the loop before the body of the loop is executed.

126 Chapter 6

Let's move on to a completely different type of statement, known as
the switch.

The switch

The switch statement uses the value of an expression to determine
which of a series of statements to execute. Here's an example that
should make this concept a little clearer:

switch (theYear
{

case 1066:
printf("Battle of Hastings");
break;

case 1492:
printf("Columbus sailed the ocean blue");
break;

case 1776:
printf("Declaration of Independence\n");
printf("A very important document!!!");
break;

default:
printf("Don't know what happened during this year");

The switch is constructed of a series of cases, each based on a
specific value of theYear. If theYear has a value of 1066, execution
continues with the statement following that case's colon, in this case,
the line:

printf{ "Battle of Hastings");

Execution continues, line after line, until either the bottom of the
switch (the right curly-brace) or a break statement is reached. In this
case, the next line is a b re a k statement.

Controlling Your Program's Flow 127

The break statement comes in handy when you are working with
switches and loops. The break tells the computer to jump immediately
to the next statement after the end of the loop or switch.

Continuing with the example, if the Year has a value of 1492, the
switch jumps to the lines:

printf("Columbus sailed the ocean blue");
break;

A value of 1776 jumps to the lines:

printf("Declaration of Independence\n");
printf("A very important document!!!");
break:

Notice that this case has two statements before the break. There is
no limit to the number of statements a case can have. One is OK, 653
is OK. You can even have a case with no statements at all.

The original example also contains a default case. If the switch
can't find a case that matches the value of its expression, the switch
looks for a case labeled default. If the default is present, its
statements are executed. If no default is present, the switch completes
without executing any of its statements.

Here's the pattern the switch tries to match:

switch (expression
{

case constant:
statements

case constant:
statements

default:
statements

128 Chapter 6

Why would you want a case with no statements? Here's an
example:

switch C myVar
{

case 1:
case 2:

DoSomething();
break:

case 3:
DoSomethingElse();

In this example, if myV a r has a value of 1 or 2, the
function DoSometh i ng () is called. If myV a r has a value of 3,
the function DoSomethingElse() is called. If myVar has any
other value, nothing happens. Use a case with no
statements when you want two different cases to exec~te
the same statements.

At the heart of each switch is its expression. Most switches are
based on single variables but, as we mentioned earlier, assignment
statements make perfectly acceptable expressions.

Each case is based on a constant. Numbers (like 47 or -12,932) are
valid constants. Variables, such as my Var, are not. As you' 11 see later,
single-byte characters (like 'a ' or ' \ n ') are also valid constants.
Multiple-byte character strings (like "Gummy-bear 11

) are not.
The statements following a case's colon represent zero or more

statements. If your switch uses a default case, make sure you use it
as shown in the pattern above. Don't include the word case before the
word default.

Controlling Your Program's Flow 129

Breaks in Other Loops

The break statement has other use besides the switch statement. Here's
an example of a break used in awhile loop:

i =l;

while (i <= 9)
I

PlayAninning(i);
if (ItsRaining()

break;
i++;

This sample tries to play nine innings of baseball. As long as the
function Its Raining C) returns with a value of FALSE, the game
continues uninterrupted. If ItsRaining() returns a value of TRUE, the
break statement is executed and the program drops out of the loop,
interrupting the game.

The break statement allows you to construct loops that depend on
multiple factors. The termination of the loop depends on the regular
expression found at the top of the loop, as well as on any outside
factors that might trigger an unexpected break.

Sample Programs

Are you ready for some programming? This chapter's sample programs
focus on the i f and i f - el s e statements: the w h il e, for, and do loops,
and the switch statement. Get your Mac turned on, take care of any
pressing personal problems, and let's get to it.

130 Chapter 6

isOdd.c

Start up THIN C by double-clicking on its icon in the Finder. When
prompted for a project to open, go into the projects folder, then into
the i sOdd fo lder and open the project called i s0dd .7t. The i sOdd . 7t
project loops through the integers from 1 through 20. i sOdd tells you if
each number is odd or even, and if the number is a multiple of 3.

Run is0dd .7t by selecting Run from the Project menu. You
should see something like the console window shown in Figure 6.4. You
should see a line for each number from 1 through 20. Each of the
numbers will be described as either odd or even. Each of the multiples
of 3 will have additional text describing them as such. Here's how the
program works:

The number 1 is odd .
The number 2 is even .

press «return» to eHit

The number 3 Is odd and is o multip le of 3 .
The number 4 Is even .
The number 5 is odd.
The number 6 is even ond is a multip le of 3 .
The number 7 Is odd .
The number 8 Is even .
The number 9 Is odd and is a multiple of 3.
The number 10 is even .
The number 11 is odd .
The number 12 is even and is a mu l tip le o f 3 .
The number 13 is odd.
The number 14 Is even .
The number 15 is odd and is a multiple of 3.
The number 16 is even .
The number 17 Is odd .
The number 18 Is even and is o multiple of 3.
The number 19 is odd.
The number 20 is even .

Figure 6.4 Running i sOdd. 7t.

Controlling Your Program•s Flow 131

Stepping Through the Source Code

i s 0 d d • 7t consists of the single function ma i n C) , which declares a single
variable, an int (called i), used as a counter in a for loop.

ma i n ()
{

int i ;

Our goal here is to step through each of the numbers from 1 to 20.
For each number, we want to check to see if the number is odd or even.
We also want to check whether the number is evenly divisible by 3.
Once we've analyzed a number, we'll use pri ntf () to print a descrip­
tion of the number in the console window.

By the Way _____________________ _

The scheme that defines the way a program works is called
the program's algorithm. It's a good idea to try to work out
the details of your program's algorithm before writing one
line of source code.

As you might expect, the next step is to set up a for loop using i as
a counter. i is initialized to 1. The loop will keep running as long as the
value of i is less than or equal to 20. This is the same as saying the loop
will exit as soon as the value of i is found to be greater than 20. Every
time the loop reaches the bottom, the third expression, i ++, will be
evaluated, incrementing the value of i by 1. This is a classic for loop.

f o r (i = 1 : i < = 2 0 : i ++)
{

132 Chapter 6

Now we're inside the for loop. Our goal is to print a single line for
each number (i.e., one line each time through the for loop). If you check
back to Figure 6.4, you'll notice that each line starts with the phrase:

The number x is

where x is the number being described. That's the purpose of this first
pri ntf ():

printf{ "The number %d is ", i);

Notice that this pri ntf () wasn't part of an if statement. We want
this print f C) to print its message every time through the loop. The
next sequence of pr i n t f () s are a different story altogether.

The next chunk of code determines whether i is even or odd, then
uses pr i n t f C) to print the appropriate word in the console window.
Because the last pri ntf () didn't end with a newline character (' \n '),
the word "even" or "odd" will appear immediately following:

The number x is

on the same line in the console window.

if ((i I 2) * 2 == i
printf("even");

else
printf{ "odd");

Because i is an int, all division using i results in a whole number.
For example, in the real world, when you divide 9 by 2, you get 4.5.
Not so in the world of integer arithmetic. In expressions involving i n ts,
the result is always truncated: 4.5 becomes 4, 7.2 becomes 7.

What does this have to do with evens and odds? If you divide an
even number by 2, then multiply it by 2, you'll always end up with your
original number. If you do the same with an odd number, you'll always
end up with 1 less than your original number.

Controlling Your Program's Flow 133

Here are a few examples. Using integer arithmetic, 9 divided by 2 is
4, 4 times 2 is 8, which is 1 less than 9. On the even side, 10 divided by
2 is 5, and 5 times 2 is 10, our original number.

The expression:

< i I 2) * 2 == i

will have a value of TRUE if and only if i is even. If i is even, we print
the word 11 even 11 in the console window. If i is odd, we print the word
"odd".

Remember this technique. Programmers use it all the time
to determine whether one number is evenly divisible by
another.

if ((i I 3) * 3 == i)
printf(" and is a multiple of 3");

The next chunk of code uses the same technique to determine if i is
evenly divisible by 3. The expression:

(i I 3) * 3 == i

will have a value of TRUE if and only if i is evenly divisible by 3. In this
case, we add the phrase:

11 and is a multiple of 311

to the end of the current line. Finally, we add a period 11
•

11 and a
newline 11

\ n" to the end of the current line, placing us at the beginning
of the next line of the console window.

printf(".\n");

134 Chapter 6

The program ends with a pair of right curly-braces. The first one
ends the for loop. The second one marks the end of ma i n () .

nextPrime.1t

Our next program focuses on the mathematical concept of prime
numbers. A prime number is any number whose only factors are 1 and
itself. For example, 6 is not a prime number because its factors are 1, 2,
3, and 6. The number 5 is prime because its factors are limited to 1 and
5. The number 12 isn't prime - its factors are 1, 2, 3, 4, 6, and 12.

Our next program will find the next prime number greater than a
specified number. For example, if we set our starting point to 14, the
program would find the next prime, 1 7.

Close the project i sOdd. n by selecting Close Project from the
Project menu. When prompted for a new project to open, (o back up
to the projects folder, then into the nextprime folder and open the
project called nextPrime.n. We set up nextPrime.n to look for the
next prime number after 19. Lock in your guesses before we reveal the
answer.

Run nextPrime.n by selecting Run from the Project menu. You
should see something like the console window shown in Figure 6.5. As
you can see, the next prime number after 19 is (drum roll, please ...) 23.
Here's how the program works:

Controlling Your Program's Flow 135

press «return» to eKit

The next prime after 19 is 23 . Happy?

Figure 6.5 Running nextPrime. 7t .

Stepping Through the Source Code

next.Pr i me . c starts by setting a variable called can di date to the first
number under consideration as a prime number. Inside a while loop,
cand idat e is incremented by one, then checked for primeness. The
whi l e loop exits as soon as a prime is found and the prime is printed in
the console window.

Within the whi 1 e loop, a for loop is used to check if candidate is a
prime number. The for loop steps through every number from 2 to
candidate - 1, looking for a number that divides evenly into
candidate . If such a factor is found, the candidat e is not a prime
number and the wh i 1 e loop continues.

#include <stdio .h >

136 Chapter 6

nextPri me. c starts off with something called a /Fi ncl ude.
The #inc 1 ude includes a special file in the current file. The
file stdio. h contains the definitions of the constants TRUE
and FALSE. Chapter 9 covers the #include in detail. For the
moment, think of this line as a mechanism for defining the
constants TRUE and FALSE.

next Pr i me . c makes use of five different variables, all of them i n ts.

ma i n ()
{

int startingPoint. candidate, i;
int done, foundFactor;

startingPoint holds the number we want to start with, in this
case, 19. candidate is the number currently under consideration as a
prime.candidate starts off equal to start ingPoi nt and is incremented
each time through the whi 1 e loop. i is used as a counter in the for
loop, counting from 2 to candidate - 1.

done = FALSE;
startingPoint = 19;
candidate = startingPoint;

done is initialized to FALSE. done represents the terminating condi­
tion of the wh i 1 e loop. The while loop will continue until done is set to
TRUE, which will happen when a prime number is found.

startingPoint is initialized to 19. Remember, we want the next
prime number after startingPoint. Although startingPoint's value
is copied into candidate, candidate is incremented at the beginning of
the wh i 1 e loop. This means that the first candidate we look at is 20.

Controlling Your Program's Flow 137

while (! done)
{

candidate++;

The whi 1 e loop exits as soon as done is set to TRUE.

foundFactor = FALSE;
for (i = 2; i < candidate; i++
{

if ((candidate Ii)* i
foundFactor TRUE;

candidate

foundFactor is set to FALSE each time through the whi 1 e loop. The
for loop ranges from 2 to candidate - 1. Each possible factor of
can d i d a t e is tested using the technique demonstrated in i s 0 d d . c. If a
number is found that divides into candidate exactly, foundFactor is
set to TRUE. If we get all the way through the for loop without finding
a factor, foundFactor will still be FALSE, and we've found ourselves a
prime number.

done = (foundFactor FALSE);

done is set to TRUE if found Factor is FALSE. In English, this line
means we're done if the candidate we just looked at had no factors
between 1 and itself. The curly brace closes the wh i 1 e loop.

By the Way~~~~~~~~~~~~~~~~~~~~~-

The line:

done= (foundFactor ==FALSE);

could also have been written:

done = (! found Factor) ;

Use whichever version you find easier to read.

138 Chapter 6

printf("The next prime after %d is %d. Happy?",
startingPoint, candidate);

Once we drop out of the w hi l e loop, we use pr i n t f () to print both
the starting point and the first prime number greater than the starting point.

If you are interested in prime numbers, play around with this
program. See if you can modify the code to print all the prime numbers
from 1to100. How about the first 100 prime numbers?

What's Next?

Congratulations! You've made it through some tough concepts. You've
learned about the C statements that allow you to control your
program's flow. You've learned about C expressions and the concept of
TRUE and FALSE. You've also learned about the logical operators based
on the values TRUE and FALSE. You've learned about the if, if-else,
for, whi 1 e, do, switch, and break statements. In short, you've learned
a lot!

Our next chapter introduces the concept of pointers.
A pointer to a variable is really the address of the variable in

memory. If you pass the value of a variable to a function, the function
can make use of the variable's value, but can't change the variable's
value. If you pass the address of the variable to the function, the
function can also change the value of the variable. Chapter 7 will tell
you why.

Chapter 7 will also discuss function parameters in detail. As usual,
plenty of code fragments and sample applications will be presented to
keep you busy. See you there.

1) What's wrong with each of the following code fragments?

a. if
i++;

b. for (i=O; i <20; i++)

i - - .
'

c. while ()

i++;

d. do (i++
until 20) ;

e. switch (i)
I

case "hello":
case "goodbye ":

printf("Greetings. ") ;
break ;

case default:
printf("Boring. ") ;

139

140 Chapter 6

f. if (i < 20)

if (i == 20
printf("Lonely ... ") :

g. while (done = TRUE
done = ! done:

h. for (i=O: i<20: i*20
printf("Modification ... ") :

2) Modify nextPri me. c to compute the prime numbers from 1 to
100.

3) Modify nextPri me. c to compute the first 100 prime numbers.

Pointers and
Parameters

What is a Pointer?
Why Use Pointers?
Checking Out of the Library

Pointer Basics
Variable Addresses
The & Operator
Declaring a Pointer Variable

Fundion Parameters
What are Function Parameters?
Variable Scope
How Function Paramters Work
Parameters are Temporary

What Does All This Have to do with
Pointers?
Global Variables and Fundion
Returns

Global Variables
Adding Globals to Your Programs
When to Use Globals
Function Returns
Danger! Avoid Uninitialized Return
Values
To Return or Not to Return

Sample Programs
listPrimes.n

Stepping Through the Source Code
power.n
Running power.7t

Stepping Through the Source Code
What's Next7
Exercises

143

144 Chapter 7

YOU'VE COME A LONG WAY. YOU'VE MASTERED VARIABLE
basics, operators, and statements. You're about to add some powerful,
new concepts to your programming toolbox.

For starters, we'll introduce the concept of pointers, also known as
variable addresses. From now on, you'll use pointers in almost every C
program you write. Pointers allow you to implement complex data
structures, opening up a world of programming possibilities.

What is a Pointer?

In programming, pointers are references to other things. When someone
calls your name to get your attention, they're using your name as a
pointer. Your name is one way people refer to you.

Your name and address can combine to serve as a pointer, telling the
mail carrier where to deliver the new Sears catalog. Your address
distinguishes your house from all the other houses in your neighbor­
hood and your name distinguishes you from the rest of the people living
in your house.

When you declare a variable in C, memory is allocated to the
variable. This memory has an address. C pointers are special variables,
specifically designed to hold one of these addresses. Later in the chapter,
you 'll learn how to create a pointer, how to make it point to a specific
variable, and how to use the pointer to change the variable's value.

Why Use Pointers?

Pointers can be extremely useful, allowing you to access your data in
ways that ordinary variables just don't allow. Here's a real-world
example of "pointer flexibility."

Pointers and Parameters 145

When you go to the library in search of a specific title, chances are
you start your search in a card catalog. Card catalogs contain thousands
of index cards, one for every book in the library. Each index card
contains information about a specific book, including such information
as the author's name, the book's title, and the copyright date.

Most libraries have two card catalogs. One lists all the books,
sorted alphabetically by subject. The other lists all the books, sorted
alphabetically by author. In the subject card catalog, a book can be
listed more than once. For example, a book about Thomas Jefferson
might be listed under "Presidents, U.S.," "Architects," or even under
"Inventors" (Jefferson was quite an inventor).

Figure 7.1 shows a catalog card for Albert Einstein's famous book
on relativity, called The Meaning of Relativity. The card was listed in
the subject catalog under the subject "RELATIVITY (PHYSICS)." Take
a minute to look the card over. Pay special attention to the catalog
information located on the left side of the card. The catalog number for
this book is 530.1. This number tells you exactly where to find the
book among all the other books on the shelves. The books are ordered
numerically, so you'll find this book in the 500 shelves, between 530
and 531.

In this example, the library bookshelves are like your
computer's memory, with the books acting as data. The
catalog number is the address of your data (a book) in
memory (on the shelf).

146 Chapter 7

Catalog
Information

~
:530.1
E35mg
1950

RELATIVITY (PHYSICS)

Einstein, A 1 bert, 1879-1955
The Meaning of Re 1 at i vi t y; 3rd ed.

rev. i n c 1 u di n g the genera 1 i zed theory
of gravitation. Princeton Univ. Press,
c 1950.

162p.

I. Relativity (Physics) I. Title

0 0
Figure 7 .1 Catalog card for a rather famous book. Note the catalog
information on the left side of the card.

As you might have guessed, the catalog number acts as a pointer.
The card catalogs use these pointers to rearrange all the books in the
library, without moving a single book. Think about it. In the subject
card catalog, all the books are arranged by subject. Physically, the book
arrangements have nothing to do with subject. Physically, the books are
arranged numerically, by catalog number. By adding a layer of pointers
between you and the books, the librarians achieve an extra layer of
flexibility.

In the same way, the author card catalog uses a layer of pointers to
arrange all the books by author. By using pointers, all the books in the
library are arranged three different ways without ever leaving the
shelves. The books are arranged physically (sorted by catalog number)
and logically (sorted in one catalog by author, and in another by
subject). Without the support of a layer of pointers, these logical book
arrangements would be impossible.

Pointers and Parameters 147

Adding a layer of pointers is also known as 11 adding a level
of indirection. 11 The number of levels of indirection is the
number of pointers you have to use to get to your library
book (or to your data).

Checking Out of the Library

So far, we've talked about pointers in terms of library catalog numbers.
The use of pointers in your C programs is not much different from this
model. Each card catalog number points out the location of a book on
the library shelf. In the same way, each pointer in your program will
point out the location of a piece of data in computer memory.

If you wrote a program to keep track of your compact-disc
collection, you might maintain a list of pointers, each one of which
might point to a block of data that describes a single CD. Each block of
data might contain such info as the name of the artist, the name of the
album, the year of release, and a category (jazz, rock, blues). If you got
more ambitious, you could create several pointer lists. One list might
sort your CDs alphabetically by artist name. Another might sort them
chronologically by year of release. Yet another list might sort your CDs
by musical category. You get the picture.

There's a lot you can do with pointers. By mastering the techniques
presented in these next few chapters, you'll be able to create programs
that take full advantage of pointers.

Our goal for this chapter is to master pointer basics. We'll talk
about C pointers and C pointer operations. You'll learn how to create a
pointer and how to make the pointer point to a variable. You'll also
learn how to use a pointer to change the value of the variable the
pointer points to.

148 Chapter 7

Pointer Basics

Pointers are variable addresses. Instead of an address such as:

1313 Mockingbird Lane
Raven Heights. California 90263

a variable's address refers to a memory location within your computer.
As we discussed in Chapter 3, your computer's memory consists of a
sequence of bytes. A 1-megabyte computer (like the Mac Plus) has
exactly 220 (or 1,048,576) bytes. Every one of those bytes has its own
unique address. The first byte has an address of 0. The next byte has an
address of 1. Computer addresses always start with 0 and continue up,
one at a time, until they reach the highest address. Figure 7.2 shows the
addressing scheme for a 1-megabyte computer. Notice that the
addresses run from 0 (the lowest address) all the way up to 1,048,575
(the highest address).

1 , 048 I 575 111111111
1 , 048 I 574 111111111

• • •
2 111111111
1 111111111
0 111111111

Figure 7.2 1 megabyte worth of bytes.

Variable Addresses

When you run a program, one of the first things the computer does is
allocate memory for your program's variables. When you declare an
i n t in your code, like this:

int myVar:

Pointers and Parameters 149

the compiler reserves 2 bytes of memory for the exclusive use of my Var.
Each of my Va r's 2 bytes has a specific address.

Figure 7.3 shows a 1-megabyte computer with 2 bytes allocated to
the variable myV a r. In this picture, the 2 bytes allocated to myV a r have
the addresses 508 and 509.

By convention, a variable's address is said to be the address of its
first byte (the first byte is the byte with the lowest-numbered address).
If a variable uses memory locations 508 and 509 (as my Var does), its
address is 508 and its length is 2 bytes.

When more than 1 byte is allocated to a variable, the bytes
will always be consecutive (next to each other in memory).
The 2 bytes allocated to an int might have such addresses
as 508 and 509, or 64,000 and 64,001. You will never see an
int whose byte addresses are 508 and 695. A variable's
bytes are like family-they stick together!

1 , 048 I 575 111111111
1 , 048 I 574 111111111

• • •
509 111111111}- int myUar;
so0111111111

• • •
1 111111111
0 111111111

Figure 7.3 2 bytes allocated for the int named my Var.

150 Chapter 7

As we showed earlier, a variable's address is a lot like the catalog
number on a library catalog card. Both act as pointers, one to a book
on the library shelf, and the other to a variable. From now on, when we
use the term pointer with respect to a variable, we are referring to the
variable's address.

Now that you understand what a pointer is, your next goal is to
learn how to use pointers in your programs. The next few sections will
teach you some valuable pointer-programming skills. You'll learn how
to create a pointer to a variable. You'll also learn how to use that
pointer to access the variable it points to.

The C language provides you with a few key tools to help you.
These tools come in the form of two special operators: & and *.

The & Operator

The & operator (also called the "address of" operator) pairs with a
variable name to produce the variable's address. The expression:

&myVar

refers to myVar's address in memory. If myVar owned memory locations
508 and 509 (as in Figure 7.3), the expression:

&myVar

would have a value of 508. The expression &myV a r is a pointer to the
variable my Var.

As you start programming with pointers, you'll find yourself using
the & operator frequently. An expression like &myV a r is a common way
to represent a pointer. Another way to represent a pointer is with a
pointer variable. A pointer variable is a variable specifically designed to
hold the address of another variable.

Pointers and Parameters 151

Declaring a Pointer Variable

C supports a special notation for declaring pointer variables. This line:

int *myPointer;

declares a variable called my Pointer. Notice that the* is not part of the
variable's name. Instead, it tells the compiler that the associated
variable is a pointer, specifically designed to hold the address of an int.
If there were a data type called b 1 u to, you could declare a variable
designed to point to a b 1 u to like this:

bluto *blutoPointer;

For now, we'll limit ourselves to pointers that point to i nts. Look at
this code:

int *myPointer, myVar;

myPointer = &myVar;

The assignment statement puts my Va r's address in the variable
myPointer. If myVar's address is 508, this code will leave myPointer
with a value of 508. Note that this code has absolutely no effect on the
value of myV a r.

There will be times in your coding when you have a pointer to a
variable, but not the variable itself. This happens a lot. You can actually
use the pointer to manipulate the value of the variable it points to.
Observe:

int *myPointer, myVar;

myPointer = &myVar;
*myPointer = 27;

152 Chapter 7

As before, the first assignment statement places myV a r's address in
the variable my Pointer. The second assignment introduces the *
operator. The * operator (called the star operator) converts a pointer
variable to the item the pointer points to.

The *that appears in the declaration statement isn't really
an operator. It's only there to designate the variable
myPoi nter as a pointer.

If my Poi n t er points to my Var, as is the case in our example,
*my Poi n t e r refers to the variable my Va r. In this case, the line:

*myPointer = 27;

is the same as saying:

myVar = 27;

Confused? These memory pictures should help. Figure 7.4 joins our
program in progress, just after the variables myVar and myPointer were
declared:

int *myPointer, myVar;

Notice that 2 bytes were allocated for the variable my Var while 4
bytes were allocated for myPointer. Why? Because myVar is an int and
my Pointer is a pointer, designed to hold a 4-byte address.

Once memory is allocated for my Va r and my Poi n t er, we move on to
the statement:

myPointer = &myVar:

1 , 048 I 575 111111111
1 , 048 I 574 111111111

1 , 033 1111 1111}-
1 , 032 1111 1111 i n t
1 , 03 1 1111 1111
1 ' 030 1111 1111

• • •
509111111111}- int
508111111111

• • •
1 111111111
0 111111111

Pointers and Parameters 153

*myPointer;

myUar;

Figure 7.4 Memory allocated for myVa rand my Pointer.

You may have heard the phrase 11 32-bit addressing 11

associated with the Macintosh. When Apple designed the
Macintosh, they decided that addresses would be 32 bits
(4 bytes) in length. When you declare an int, the compiler
allocates 2 bytes of memory for it. When you declare a
pointer, such as:

int *my Pointer:

the compiler allocates 4 bytes of memory for it. Just
remember that addresses are always 4 bytes long.

154 Chapter 7

The 4-byte address of the variable my Var is written to the 4 bytes
allocated to my Pointer. In our example, myVar's address is 508. Figure
7.5 shows the value 508 stored in my Pointer's 4 bytes. Now
myPointer is said to "point-to" myVar.

OK, we're almost there. The next line of our example writes the value
27 to the location pointed to by my Pointer.

*myPointer = 27;

Without the * operator, the computer would place the value 2 7 in
the memory allocated to my Pointer. The * operator dereferences
my Poi n t er. Dereferencing a pointer turns the pointer into the variable
it points to. Figure 7.6 shows the end results.

If the concept of pointers seems alien to you, don't worry. You are
not alone. Programming with pointers is one of the most difficult C
concepts to master. Just keep reading, and make sure you follow each of
the examples line by line. By the end of the chapter, you'll be a pointer
expert!

1, 048, 575 111111111
1 , 048, 574 111111111

• • •
~:g~~ ~o }- int
1, 031 8
1,030

• • •
509 111111111}- int
508111111111

• • •
1 111111111
0 111111111

*myPointer;

myUar;

Figure 7.5 The address of myVa r is assigned to my Pointer.

1 J 048 I 575 111111111
1 , 048 I 574 111111111

• • •
1,033~}-1,032 0 int
1, 031 8
1,030

• • •
509 D2JLI}- int
508~

• • •
1 111111111
0 111111111

Pointers and Parameters 155

*myPointer;

mylJar;

Figure 7.6 Finally, the value 27 is assigned to *my Pointer.

Function Parameters

One of the most important uses of pointers (and perhaps the easiest to
understand) lies in the implementation of function parameters. In this
section, we'll focus on parameters and, at the same time, have a chance
to see pointers in action.

What Are Function Parameters?

A function parameter is your chance to share a variable between a
calling function and the called function.

Suppose you wanted to write a function called Add Two () that took
two numbers, added them together, and returned the sum of the two
numbers. How would you get the two original numbers into Add Two () ?
How would you get the sum of the two numbers back to the function
that called Add Two () ?

156 Chapter 7

As you might have guessed, the answer to both questions lies in the
use of parameters. Before we talk about parameters, however, it's
important you understand why parameters are necessary. To understand
why parameters are necessary, you have to understand variable scope.

Variable Scope

In C, every variable is said to have a scope, or range. A variable's scope
defines where in the program you have access to a variable. In other
words, if a variable is declared inside one function, can another
function refer to that same variable?

C defines variable scope as follows:

A variable declared inside a function is local to that function and may only
be referenced inside that function.

This statement is important. It means you can't declare a variable
inside one function, then refer to that same value inside another
function. Here's an example that will never compile:

DrawDots()
{

int i:

for (i = o ; i < n u moots ; i ++)

main()
{

printf(11 11
);

int numDots;

numDots = 500;

DrawDots ();

Pointers and Parameters 157

The error in this code occurs when the function DrawDots () tries to
reference the variable numDots. According to the rules of scope,
DrawDots () doesn't even know about the variable numDots. If you tried
to compile this program the compiler would complain that DrawDots ()
tried to use the variable numDots without declaring it. ·

The problem you are faced with is getting the value of numDots to
the function DrawDots() so DrawDots() knows how many "dots" to
draw. The answer to this problem is function parameters.

Why a function that draws dots? No special reason. We just
wanted to show a simple example.

How Function Parameters Work

Function parameters are just like variables. Instead of being declared at
the beginning of a function, function parameters are declared between
the parentheses on the function's title line, like this:

DrawDots(int numDots)
(

/* function's body goes here */

When you call a function, you just match up the parameters,
making sure you pass the function what it expects. To call the version
of DrawDots () we just defined, make sure you place an int between the
parentheses. The call to DrawDots () inside main () :

main ()
{

DrawDots(30):

158 Chapter 7

passes the value 30 into the function DrawDots (). When DrawDots ()
starts executing, it sets its parameter to the passed-in value. In this case,
DrawDots () has one parameter, an int named numDots. When the call:

DrawDots(30);

executes, the function DrawDots() sets its parameter, numDots, to a
value of 30. To make things a little clearer, here's a revised version of
our example:

DrawDots(int numDots)
{

int i:

for (i = O; i < numDots; i++)

main ()
{

printf(11
");

DrawDots(30);

This version of main () calls DrawDots (),passing as a parameter the
constant 30. DrawDots () receives the value 30 in its int parameter,
numDots. This means that the function DrawDots() starts execution
with a variable named numDots having a value of 30.

Inside DrawDots(), the for loop behaves as you might expect,
drawing 30 periods in the console window. Figure 7. 7 shows a picture
of this program in action. You can run this example yourself. The
project file, drawDots.7t, is located in the Projects folder in a
subfolder named drawDots.

Pointers and Parameters 159

press « return» to eHit

Figure 7.7 DrawDots in action.

Parameters are Temporary

When you pass a value from a calling function to a called function, you
are creating a temporary variable inside the called function. Once the
called function exits (returns to the calling function), that variable
ceases to exist.

In our example, we passed a value of 30 into Dr awD ots () as a
parameter. The value came to rest in the parameter variable named
numDots . Once DrawDots () exited, numDot s ceased to exist.

Remember, a variable declared inside a function can only be referenced by
that function.

It is perfectly acceptable for two functions to use the same variable
names for completely different purposes. It's fairly standard, for

160 Chapter 7

example, to use a variable name like i as a counter in a for loop. What
happens when, in the middle of just such a for loop, you call a function
that also uses a variable named i? Here's an example:

RowOfDots ()
{

int i :

for (i = 0: i < 50: i++)
printf(" ");

main ()
{

int i :

f o r (i = 0 ; i < 1 0 : i ++)
{

RowOfDots () ;
printf("\n");

ma i n () uses the variable i to keep track of the number of rows of
dots printed. Once for each row, main () calls the function
RowOfDots (),which also uses a variable named i. Won't RowOfDots ()
mess up main () 's copy of i? No! main () has its own copy of i that
exists while it is the current function.

When RowOfDots () starts executing, it gets its own copy of i. It
doesn't even know about main () 's variable named i. Once RowOfDots ()
exits, its copy of i is scrubbed from memory.

What Does All This Have to do with Pointers?

OK. Now we're getting to the crux of the whole matter. What do
parameters have to do with pointers? To answer this question, you have
to understand the two different methods of parameter passing.

Pointers and Parameters 161

Parameters are passed from function to function either by value or
by address. Passing a parameter by value passes only the value of a
variable or literal on to the called function. Take a look at this code:

main()
{

int numDots;

numDots = 30;

DrawDotsC numDots);

The call to Draw Dots () passes the value 3 0 on to the receiving
parameter in DrawDots(). No matter what DrawDots() does, it will
have no effect on the variable numDots. Passing parameters by value is a
one-way operation. The calling function passes a value to a called
function. In this case, main() passes the value of 30 on to DrawDots().

Since passing parameters by value is a one-way operation, there's no
way to get data back from the called function. Why would you ever
want to? Several reasons. You might write a function that takes an
employee number as a parameter. You might want that function to
return the employee's salary in another parameter. How about a
function that turns yards into meters? You could pass the number of
yards as a value parameter, but how would you get back the number of
meters?

Passing a parameter by address (instead of by value) solves this
problem. If you pass the address of a variable, the receiving function
can use the * operator to change the value of the original variable.
Think of it this way. Normally, one function can't see another
function's variables. By passing the address of a variable as a parameter,
you're telling the called function, "Hey, here's one of my variables. Use
its value. Change it if you like. Just make sure you don't mess it up."
Passing the address of a variable allows you to share a variable with
another function.

162 Chapter 7

Here's an example:

Squarelt(int number. int *squarePtr
{

*squarePtr = number * number:

main()
I

int square:

Squarelt(5, &square);

printf("5 squared is %d.", square);

In this example, main() calls the function Square It(). Squarelt()
takes two parameters. As in our last example, both parameters are
declared between the parentheses on the function's title line. Notice that
we used a comma to separate the parameter declarations.

The first of Sq u a re It () 's two parameters is an i n t. The second
parameter is a pointer to an i n t. Square It () squares the value passed
in the first parameter, using the pointer in the second parameter to
return the squared value.

By the Way _____________________ _

If it's been ten or more years since your last math class,
squaring a number is the same as multiplying the number
by itself. The square of 4 is 16 and the square of 5 is 25.

Pointers and Parameters 163

Squarelt(5, &square);

In the call to Squarelt(), main() passes a value of 5 in the first
parameter. Square It() receives the 5 in the first parameter, number.
main () passes the address of the variable square as the second
parameter. Remember, the & operator produces the address of a variable.

Squarelt(int number, int *squarePtr)

Square It () receives square's address in its second parameter, the
int pointer named squarePtr. At this point, squarePtr points to
(contains) the address of main () 's variable named square. Inside the
function Square It (),any reference to:

*squarePtr

is just like a reference to square. The assignment statement:

*squarePtr = number * number;

assigns the value 25 to the variable pointed to by square Pt r. This has
the effect of assigning the value 25 to square. When Square It ()
returns control to ma i n () , the value of square has been changed, as
evidenced by the screen shot in Figure 7. 8. If you'd like to run
Square It () yourself, you'll find it in the Projects folder.

164 Chapter 7

press «return» to eHit E!F

5 squared is 25 .

Figure 7.8 Square It in action.

Global Variables and Function Returns

The combination of pointers and parameters gives us one way to share
variables between different functions. This section demonstrates two
more techniques for doing the same.

Global variables are variables that are accessible from inside every
function in your program. By declaring a global varia ble, two separate
functi ons can access the same variable without pass ing parameters.
We'll show you how to declare a global variab le, a great naming
convention, and we' ll talk about when and when not to use global
variables in your programs.

Another topic we'll discuss later in the chapter is a property
common to all functions. All functions written in C return a value to
the function that calls them. You se t this return va lue inside the
function itself. You can use a function' s return va lue in place of a
parameter, use it to pass 11 a dditional informa tion 11 to the calling
function, or not use it at all. We'll show you how to add a return value
to your functions.

Pointers and Parameters 165

Global Variables

Earlier in the chapter, you learned how to use parameters to share
variables between two functions. Passing parameters between functions
is great. You can call a function, pass it some data to work on, and
when the function's done, it can pass you back the results.

Global variables provide an alternative to parameters. Global
variables are just like regular variables, with one exception. Global
variables are immune to C's scope rules. They can be referenced inside
each of your program's functions. One function might initialize the
global variable, another might change its value, and another function
might print the value of the global variable in the console window.

As you design your program, you'll have to make some basic
decisions about data sharing between functions. If you'll be sharing a
variable among a number of functions, you might want to consider
making the variable a global. Globals are especially useful when you
want to share a variable between two functions that are several calls
apart.

Several calls apart? At times, you'll find yourself passing a
parameter to a function, not because that function needs the parameter,
but because the function calls another function that needs the
parameter. Look at this code:

PrintMyVar(int myVar)
{

printf("myVar = %d 11
• myVar) ;

PassAlong(int myVar
{

PrintMyVar(myVar);

166 Chapter 7

main ()
(

int myVar;

my Var = 10;

PassAlong(myVar);

Notice that main() passes myVar to the function PassAlong().
Pa s s A 1 on g () doesn't actually make use of my Va r. Instead, it just passes
myVar along to the function Pri ntMyVar(). Pri ntMyVar() prints
my Va r, then returns.

If myV a r were a global, you could have avoided some parameter
passing. main () and Pr in tMy Var () could have shared my Var without
the use of parameters. When should you use parameters? When should
you use globals? There's no easy answer. As you write more code, you'll
develop your own coding style and, with it, your own sense of when to
use globals versus parameters. For the moment, let's take a look at the
proper way to add globals to your programs.

Adding Globals to Your Programs

Adding globals to your programs is easy. Just declare a variable at the
beginning of your source code before the start of any of your functions.
Here's the example we showed you earlier, using globals in place of
parameters:

int myVar;

PrintMyVar()
{

printf("myVar %d", myVar);

PassAlong()
(

PrintMyVar();

main ()
(

myVar = 10;

PassAlong();

Pointers and Parameters 167

This example starts with a variable declaration, right at the top of
the program. Because my Var was declared at the top of the program,
myV a r becomes a global variable, accessible to each of the program's
functions. Notice that none of the functions in this version use
parameters. Both ma i n () and Pr i n t My Var () access the same global
copy of the variable my Va r.

When to Use Globals

In general, you should try to minimize your use of globals. On one hand,
global variables make programming easier, because you can access a
global anywhere. With parameters, you have to pass the parameter from
function to function, until it gets to where it will be used.

On the other hand, globals are expensive, memorywise. Since the
memory available to your program is finite, you should try to be
memory conscious whenever possible. What makes global variables
expensive where memory is concerned? Whenever a function is called,
memory for the function's variables is allocated on a temporary basis.
When the function exits, the memory allocated to the function is freed
up (put back into the pool of available memory). Global variables, on
the other hand, are around for the life of your program. Memory for
each global is allocated when the program first starts running and isn't
freed up until the program exits.

Try to minimize your use of globals, but don't be a miser. If using a
global will make your life easier, go ahead and use it.

168 Chapter 7

Function Returns

Before we get to our source code examples, there's one more subject to
cover. In addition to passing a parameter and using a global variable,
there's one more way to share data between two functions. Every
function returns a value to the function that called it. You can use this
return value to pass data back from a called function.

So far, all of our examples have ignored function return values. The
return value only comes into play when you call a function in an
expression, like this:

AddTheseNumbers(int numl, int num2)
{

return(numl + num2);

main ()
{

int sum:

sum= AddTheseNumbers(5, 6):

printf("The sum is %d.", sum);

There are a few things worth noting in this example. The first point
of interest is the call of the function AddTheseNumbers () inside the
function main () :

sum= AddTheseNumbers(5, 6):

When you use a function inside an expression, the computer makes
the function call, then substitutes the function's return value for the
function when it evaluates the rest of the expression. To establish a
return value for a function, you use a special function called return () .

Pointers and Parameters 169

return () takes one of two forms. To immediately exit a function,
without establishing a return value, use the statement:

return;

Notice that this form of return does not use any parentheses. You
might use this immediate return in case of an error, like this:

if (OutOfMemory()
return:

What you '11 want to remember about this form of return is that it
does not establish the return value of the function. You might say that
this form of return leaves the function's return value in an uninitialized
state. In other words, the return value is garbage!

The second form of return is the one we're interested in right now:

return(expression);

This form of return immediately returns from the function but it
also sets the function's return value to the value of the expression. The
function AddTheseNumbers () uses this form of return:

return(numl + num2);

The two variables used in the expression, numl and num2, were
passed into AddTheseNumbers () as parameters. Were they passed by
value or by address? You got it-both parameters were passed by value.
In the expression:

numl + num2

n uml has a value of 5 and n um2 has a value of 6. The function
AddTheseNumbers() will return with a value of 11. The line:

sum= AddTheseNumbers(5, 6):

170 Chapter 7

will set the variable sum to a value of 11. Figure 7.9 shows the result
when we ran this program. If you'd like to run it yourself, the source
code is in the Projects folder, in the addThese subfolder.

press «return» to eHit t!L

The sum i s 11 .I

Figure 7 .9 A demonstration of function return values.

Danger! Avoid Uninitialized Return Values!

Before we leave the topic of function return values, there's one pitfall
worth mentioning. If you 're going to use a function in an expression,
make sure the function provides a return value. For example, this code
will produce unpredictable results:

Add Th ese Nu mber s(in t numl, int num2
(

return; /*Yikes ! We forgot to
set the return va l ue*/

ma i n ()
I

i nt sum ;

sum= AddTheseNumbers(5 . 6) ;

pr i ntf(" The sum is %d. " , sum) ;

Point ers and Parameters 171

W hen AddThese Numbers() returns, what will its value be? No one
knows! Figure 7.10 shows one possibility. As you can see, the computer
used -43 as the return value for AddTheseNumbers() . Don't fo rget to
set a return va lue if you intend to use a function in an expression.

press «return» to eHit

The sum is -43 .

Figure 7.10 Yikes! 5 + 6 is not equal to -43 . Someone forgot to set their
return value !

172 Chapter 7

To Return or Not to Return

Should you use a return value or a passed-by-address parameter? Which
is correct? This is basically a question of style. Either solution will get
the job done, so feel free to use whichever works best for you. Just
remember that a function can have only one return value but an
unlimited number of parameters. If you need to get more than one piece
of data back to the calling function, your best bet is to use parameters.

Sample Programs

Are you ready for some programming? This chapter's sample programs
make use of pointers, function parameters, global variables, and
function returns. Crank up the stereo, break out the pizza, and flip on
your Mac. Let's code!

listPrimes.7t

Our first sample program is an updated version of Chapter 6's prime
number program, nextPri me. 7t. which found the next prime number
following a specified number. The example we presented reported that
the next prime number after 19 was 23.

This program, called 1 i st Primes . 7t, will list all the prime numbers
between 1 and 50. Start up THIN C by double-clicking on its icon in
the Finder. When prompted for a project to open, go into the Projects
folder, then into the 1 is t Primes folder and open the project called
listPrimes.7t.

Run 1 i stPri mes. 7t by selecting Run from the Project menu.
1 i stPrimes will step through each number from 1 to SO. If the number
is a prime, it will print a line in the console window saying so. The end
result should look like the console window shown in Figure 7 .11.
Here's how the program works.

1 is a prime number .
2 is a prime number .
3 Is a prime number.
5 Is a prime number .
7 Is a prime number .
11 Is a prime number.
13 is a prime number.
17 is a prime number .
19 is a prime number.
23 Is a prime number .
29 Is a prime number.
31 is a prime number.
37 is a prime number .
41 is a pr ime number .
43 is a prime number .
47 Is a prime number.

press «return» to eHit

Figure 7.11 1 i stpri mes. 7t in action.

Stepping Through the Source Code

Pointers and Parameters 173

1 i s tp r i mes . 7t consists of two functions: main () and Is I t Prime () .
I s It Pr i me () takes a single parameter, an int named ca nd i date, which
is passed by value. IsitPri me() returns a value of TRUE if cand id ate is
a prime number and a value of FALSE otherwise.

#include <stdio . h>

li s tPrimes.c starts off with the same #in clud e as
nextPrime . c. The # i nc lude includes the file s tdio.h,
which contains the definitions of the constants TRUE and
FALSE. Chapter 9 covers the tfi ncl ude in detail.

174 Chapter 7

main ()
I

int i ;

for (i = 1 ; i < = 5 0 ; i ++
{

if (IsltPrime(i))
printf("%dis a prime number.\n",);

main () uses a for loop to step through each of the numbers from 1
to 50, passing each number to Is It Prime () . If Is It Prime () returns
TRUE, the number was, indeed, prime and an appropriate message is
printed in the console window.

IsltPrime(int candidate
{

int i, foundFactor;

foundFactor = FALSE:
for (i = 2; i < candidate; i++
{

if ((candidate I i) * i candidate
foundFactor = TRUE;

return(foundFactor FALSE);

Is It Prime () uses the same algorithm to search for primes as
Chapter 6's nextPri me. c used. Each candidate is checked to see if it
has a prime factor. (Confused? Check back to Chapter 6's nextPrime
program.) If a factor is found, the number is not a prime. If a factor is
not found, the number is a prime.

The key to this function is in the return statement:

return(foundFactor ==FALSE);

Pointers and Parameters 175

The name of the function is Is It Prime () . In C, when you name a
function in the form of a TRUE or FALSE question, it is good form to
return a value of TRUE or FALSE. The question this function answers is,
"ls the candidate prime?" It is critical that IsitPrime() return TRUE if
the candidate was prime and FALSE otherwise. When main () calls
Is It Prime () , ma i n () is asking the question, "Is the candidate prime?"
In the case of the i f statement:

if (IsitPrime(i)
printf(...);

ma i n () is saying, "If the candidate is prime, do the pr i n t f () . " Make
sure your function return values make sense!

power.7t

Our next program combines a global variable, a pointer parameter, and
some value parameters. At the heart of the program is a function, called
DoPower(), that takes three parameters. DoPower() takes a base and an
exponent, raises the base to the exponent power, and returns the result
in a parameter. Raising a base to an exponent power is the same as
multiplying the base by itself, an exponent number of times.

For example, raising 2 to the fifth power (written as 25) is the same
as saying 2*2*2*2*2, which is equal to 32. In the expression 2s, 2 is
the base and 5 is the exponent. The function Do Power () takes a base
and an exponent as parameters and raises the base to the exponent
power. Do Power () uses a third parameter to return the result to the
calling function.

The program also makes use of a global variable, an int named
gPrintExtrainfo, which demonstrates one of the most important uses
of a global variable. Every function in the program checks the value of
the global gPrintExtrainfo. If gPrintExtrainfo is TRUE, each
function prints a message when the function is entered, and another
message when the function exits. In this way, you can follow the
execution of the program. By reading the pr i n t f () s, you can see when
a function is entered and when it leaves.

176 Chapter 7

Since this program is fairly small (two functions), this may not seem
particularly useful. But when you start writing programs with hundreds
of functions, you'll be glad you have a way of tracking your program. If
gPrintExtralnfo is set to TRUE, the extra function-tracing information
will be printed in the console window. If g Print Extra Info is set to
FALSE, the extra information will not be printed.

As you'll see in a moment, by simply changing the value of a global,
you can dramatically change the way your program runs.

Did you notice that funny g at the beginning of the global's
name? Get used to it. In general, C programmers (especially
Macintosh C programmers) start each of their global
variables with the letter g (for global). Doing this will
distinguish your local variables from your global variables
and will make your code much easier to read.

Running power.1t

Close 1 i stPrimes .7t by selecting Close Project from the Project
menu. When prompted for a project to open, go into the Projects
folder, then into the power folder and open the project called power. 7t.

Run power .7t by selecting Run from the Project menu. power will
produce a console window similar to that found in Figure 7.12. This
result was produced by three consecutive calls to the function
Do Power (). The three calls calculated the result of the expressions 2s,
34, and 53. Here's how the program works.

2 to the 5th = 32.
3 to the 4th= 81.
5 to the 3rd = 125 .

press «return» to eHit

Pointers and Parameters 177

0:::

Figure 7.12 power. 7t running with gPri ntExt ra Info set to FALSE.

Stepping Through the Source Code

#incl ude <stdio.h>

power.c starts off with the same #include as nextPrime.c
and listPrimes.c. The 1/include includes the file stdio.h,
which contains the definitions of the constants TRUE and
FALSE . Chapter 9 covers the 1/i ncl ude in detail.

Next, the program declares the global variable g Pr i n t Extra Info:

int gPrin t Ext r alnfo ;

178 Chapter 7

The function ma i n () declares an i n t to hold the results of its calls
toDoPower():

main()
{

int power;

Next, main() initializes gPrintExtralnfo to FALSE. Later, we'll see
what happens when we start gPri ntExtra Info with a value of TRUE:

gPrintExtralnfo = FALSE;

If gPri ntExtra Info is TRUE, print a message telling us we're at the
beginning of ma i n () :

if (gPrintExtralnfo
printf("--->Starting main() ... \n".);

Next come three consecutive calls to DoPower(), paired with a
pri ntf () showing the value returned in the variable power. Notice that
the & operator was used to pass power's address to DoPower().

DoPower(&power, 2, 5);
printf("2 to the 5th= %d.\n", power);

DoPower(&power, 3, 4);
printf("3 to the 4th= %d.\n", power);

DoPower(&power, 5, 3);
printf("5 to the 3rd= %d.\n", power);

Once again, check the value of gPrintExtrainfo. If it's TRUE, print
a message telling us we're at the end of main ().

if (gPrintExtralnfo)
printf("--->Leaving main() ... \n");

Pointers and Parameters 179

The function DoPower() takes three parameters. resul tPtr is a
pointer to an int. We'll use that pointer to pass back the function
results. base and exponent are value parameters that represent the­
guess what?-base and exponent. When we're done, we'll pass the base
raised to the exponent back to ma i n () .

DoPower(int *resultPtr. int base, int exponent)
{

int i. temp;

Once again, check the value of gPrintExtrainfo. If it's TRUE, print
a message telling us we're at the beginning of Do Power () . Notice the
tab character (represented by the characters \ t) at the beginning of the
pri ntf () quoted string. You'll see what this was for when we set
g P r i n t Ext r a I n f o to TR U E.

if (gPrintExtrainfo
printf("\t---> Starting DoPower() ... \n");

The following three lines calculate base raised to the exponent
power, leaving the result in the int called temp.

temp= base;
for (i = l; i <exponent; i++)

temp *= base;

Once temp is calculated, it's copied into the variable pointed to by
resul tPtr.

*resultPtr = temp:

Finally, if gPri ntExt ra Info is TRUE, print a message telling us we're
leaving DoPower().

if (gPrintExtralnfo
printf("\t---> Leaving DoPower() ... \n");

180 Chapter 7

Figure 7.12 shows the console window when the program was run
with gPrintExtral nfo set to TRU E. The results of three calls to
Do Power () are displayed. No extra information is displayed. What do
we mean by extra information? Take a look at the console window
shown in Figure 7.13.

Notice that this run of the program gives you the same result as
before, with a little information on the program's flow thrown in. As
you can see, the program starts out in ma i n () . Next, Do Power () is
entered and exited. The tabs (remember those?) help show that we are
in a subfunction. All the text starting on the left edge of the window
was printed inside ma i n () . All the text indented one tab was printed
inside the function DoPower() . ·

press «return» to eHit

---> Starting main () . ..
---> Starting OaPower() .. .
---> Leav ing OoPower() .. .

2 to the 5th = 32 .
---> Starting OoPower() .. .
---> Leaving OoPower<> . . .

3 to the 4th= 81 .
---> Start ing OoPower<> .. .
---> Leaving OoPower<> .. .

5 to the 3rd = 125 .
---> Leav ing ma in<> ...

Figure 7.13 Running the program with gP ri ntExtra In fo set to TRUE.

Pointers and Parameters 181

This extra info was produced by changing the line:

gPrintExtralnfo = FALSE:

to read:

gPrintExtralnfo = TRUE:

inside the function main () . Try it yourself. As you start writing your
own programs, you'll want to develop your own set of global variable
tricks. For example, programmers who write programs that can run in
color or black and white usually create a global called glsCol or. They
set glsCol or to TRUE or FALSE, once they establish whether they are
running in a color or black and white environment. In this way, a
function buried deep inside the program doesn't have to figure out
whether it's running in color or black and white. All it has to do is
check the value of glsCol or.

What's Next?

Wow! You really are becoming a C programmer. In this chapter alone,
you covered pointers, function parameters (both by-value and
by-address), global variables, and function return values.

You 're starting to develop a sense of just how powerful and
sophisticated the C language really is. You've built an excellent
foundation. Now you're ready to take off.

Our next chapter introduces the concept of data types. Throughout
the book, you've been working with a single data type, the int.
Chapter 8 will introduce the concept of arrays, strings, pointer
arithmetic and typed function return values. Let's go.

1) Predict the result of each of the following code fragments:

a. AddOne(int *myVar

l
(*myVar) ++ ;

ma i n ()
(

intnum , i ;

num 5 ;

f o r i = 0 : i < 2 O ; i ++)

AddOne(&num) ;

printf(" Final value is %d .", num);

b. int gNumber:

Multiplyit(int *myVar)
(

(*myVar) *= gNumber :

183

184 Chapter 7

ma i n.C)
I

int i ;
gNumber l;

for (i O; i < 3; i++)
Multiplylt(&gNumber):

printf("Final value is %d. 11
, gNumber):

c. int gNumber;

MultiplyitC int myVar)
{

return(myVar * gNumber):

main ()
{

int i :
gNumber 1:

for (i O; i < 3: i++)
gNumber *= Multiplylt(gNumber);

printf(11 Final value is %d.", gNumber);

2) Modify power. c. Delete the first parameter of the function
Do Power C) , modifying the routine to return its result as a function
return value instead.

3) Modify listPrimes.c. First of all, only print numbers that aren't
prime. Next, print a special message next to those numbers that
are multiples of 3.

Variable Data
Types

Other Data Types
Working With Characters
Characters and C
The ASCII Character Set

Opening ASCll .n
Running ASCll.n

Stepping Through the Source Code
Arrays
Why Use Arrays?

Opening dice.n
Running dice.n

Stepping Through the Source Code
Danger, Will Robinson!!!
Text Strings
A Text String in Memory

Opening name.n
Running name.n

Stepping Through the Source Code
The Input Buffer
On With the Program
The #define
#define Macros

Opening wordCount.n
Running wordCount.n

Stepping Through the Source Code
What's Next?
Exercises

187

188 Chapter 8

OK, NOW WE'RE COOKING! YOU MAY NOW CONSIDER
yourself a C Programmer, First Class. At this point, you've mastered all
the basic elements of C programming. You know that C programs are
made up of functions, one-and only one!-of which is named main () .
Each of these functions uses keywords (such as if, for, and while),
operators (such as =, ++, and *=), and variables to manipulate the
program's data.

Sometimes you'll use a global variable to share data between several
functions. At other times, you' ll use a parameter to share a variable
between a calling and a called function. Sometimes these parameters are
passed by value, and sometimes pointers are used to pass a parameter
by address.

In this chapter, we'll focus on variable types . Each of the variables in
the previous example programs has been declared as an int. As you'll
soon see, there are many other data types out there.

Other Data Types

So far, the focus has been on i nts, which are extremely useful when it
comes to working with numbers. You can add two i nts together. You
can check if an int is even, odd, or prime. There are a lot of things you
can do with i nts, as long as you limit yourself to whole numbers.

Just as a reminder, 527, 33, and -2 are all whole numbers,
while 35.7, 92.1, and -1.2345 are not whole numbers.

Variable Data Types 189

What do you do if you want to work with nonwhole numbers, such
as 3.14159 and -98.6? Check out this slice of code:

int myNum:

myNum = 3.5:
printf("myNum = %d". myNum):

Since myNum is an int, the number 3.5 will be truncated before it is
assigned to myNum. When this code ends, myNum will be left with a value
of 3 and not 3.5 as intended. Do not despair. There is a special C data
type, called float, which was created especially for working with
nonwhole numbers.

By the Way ______________________ _

In C, nonwhole numbers are also known as floating-point
numbers, which is where the name fl oat comes from. The
name floating-point was coined by the ancient
Peloponnesians, and refers to the decimal point found in all
floating-point numbers.

If you want to work with floating-point numbers, use a variable of
type fl oat:

fl oat myNum:

myNum 3.5:
pri ntf ("myNum = %f". myNum) :

The first assignment statement leaves myNum with a value of 3.5
(pronounced three-point-five). This is important. When myNum was
declared as an int (in the previous slice of code) the same assignment
statement truncated the 3.5 to 3. In this case, myNum is declared as a
fl oat, and the value of 3.5 is not truncated.

190 Chapter 8

Notice the use of the format specifier % f in the previous pr i n t f () .
Use the %d when you are printing an int and the %f when printing a
fl oat. Here's an interesting example:

main ()
{

float myNum;

myNum = 123.456;
printf("myNum %f\n", myNum);
printf("myNum = %.2f\n", myNum);
printf("myNum = %.4f\n", myNum);
printf("myNum = %10.4f\n", myNum);

This example can be found on your samples disk in the folder
named fl oat. fl oat .1t demonstrates four different examples of the %f
format specification. First, the variable myN um is declared as a float.
Next, myNum is initialized to a value of 123.456. Finally, the value of
myNum is printed using four different pri ntf ()s. The result is shown in
Figure 8.1.

The first pri ntf () uses the format specifier %fin its default form.
Used in this way, % f prints the specified variable using an accuracy of
six decimal places. This means that six digits past the decimal point will
be printed, even if they are all zeros.

The second print f () uses the format specifier % • 2 f. The 2
following the decimal tells pr i n t f () that you are only interested in two
digits following the decimal point. This print f () yields the output
123.46. Notice that pri ntf() rounded off the output to two digits past
the decimal.

The third pr i n t f () uses the format specifier % • 4 f. The output, as
you might expect, is 123.4560, showing four digits past the decimal
point.

myNum = 123 .456001
myNum = 123.46
myNum = 123. 4560
myNum = 123 .4560
I

press «return» to eKit

Figure 8.1 float . n in action.

Variable Data Types 191

The final pr i n tf () uses the format specifier % 10 . 4 f . Once again,
the 4 following the decimal point tells pri ntf () that you are interested
in four digits of accuracy past the decimal point. The 10 to the left of
the decimal tells pr i n t f () to use a total of ten character spaces to print
the result. Since the number 123.4560 would normally take up eight
character spaces (don't forget a space for the decimal point), pri ntf ()
will place an extra two spaces on the left side of the number to bring
the total number of characters used to ten.

192 Chapter 8

As you can see in the first line of Figure 8.1, the result of
the %f format specifier was 123.456001. As promised, six
digits past the decimal point- were printed. But where did
the 001 come from at the end of the number? The answer
has to do with the way your computer stores floating-paint
numbers.

The fractional part of a number (the number to the
right of the decimal) is represented in binary just like any
other integer. Instead of the sum of powers of 2, the
fractional part is represented as the sum of powers of 112.
For example, the number .75 is equal to 1/2 + 1/4. In binary,
that's 11.

The problem with th is representation is that it's
impossible to represent some numbers (like 123.456) with
complete accuracy. If you need a higher degree of accuracy,
try using the type double instead of fl oat. Be warned,
however.doubles are slower than fl oats and take up twice
as much room in memory. A fl oat uses 4 bytes while a
daub 1 e uses 8 bytes.

The lesson here is, use floats if you want to work with floating­
point numbers. Use daub 1 es for extra accuracy, but beware the extra
cost in memory usage and performance. Use i n ts for maximum speed,
if you want to work exclusively with whole numbers, or if you want to
truncate a result.

Working With Characters

The next data type on our list is called ch a r. A ch a r is 1 byte in length
and, therefore, can hold 25 6 possible values.

Variable Data Types 193

Did you remember that a byte can hold one of 256 possible
values? If not, now's the time to refer back to Chapter 3.

This declaration:

char c;

creates a signed ch a r. As discussed in Chapter 3, signed variables can
take on both positive and negative values. Since the variable c is signed,
it can take on a value ranging from -128 to 127. This declaration:

unsigned char c;

creates an unsigned char, which can take on a value ranging from 0 to
255.

Why use a char instead of an int? Since cha rs take up only 1 byte,
and i nts take up 2 bytes, chars are naturally more memory efficient
than i nts. If you can live with the limited range of values available with
a ch a r, and you want to be as memory efficient as possible, use a ch a r
instead of an i n t.

Characters and C

There's an even better reason for using a char instead of an int. A
char is the perfect size to hold a single alphabetic character. In C, an
alphabetic character is a single character placed between a pair of singl~
quotes ('). An alphabetic character can be used in the same way as a
number, as in this example:

char c:

c = ta I;

194 Chapter 8

if (c == 'a')
printf{ "The variable c holds the character 'a'.");

As you can see, the character ' a ' is used in both an assignment
statement and an if statement, just as if it were a number or a variable.

The ASCII Character Set

In C, a char takes up a single byte and can hold a value from -128 to
127. Now, how can a char hold a numerical value, as well as a
character value, such as ' a ' or '+' ? The answer lies with the ASCII
character set.

ASCII stands for the American Standard Code for
Information Interchange.

The ASCII character set is a set of 128 standard characters,
featuring the 26 lower-case letters, the 26 upper-case letters, the ten
numerical digits, and an assortment of other exciting characters, such as
' I ' and '='. Each of these characters corresponds exactly to a value
between 0 and 127. The ASCII character set ignores the values between
-128 and -1.

For example, the character 'a ' has an ASCII value of 97. When a C
compiler sees the character 'a' in a piece of source code, it substitutes
the value 97. Each of the values from 0 to 127 is interchangeable with a
character from the ASCII character set.

Variable Data Types 195

Opening ASCII.n

Here's a program that will make the ASCII character set easier to
understand. First, start up THIN C. When prompted for a project to
open, go into the Projects folder, then into the ASC I I subfolder, and
open the project ASC II. 7t. The ASCI I. 7t project window should appear
on your screen.

Running ASCII.n

Before we step through the project source code, let's take it for a spin.
Select Run from the Project menu. A console window similar to the
one in Figure 8.2 should appear. The first line of output shows the
characters corresponding to the ASCII values from 32 to 47. Why start
with 32? As it turns out, the ASCII characters between 0 and 31 are
non printable characters like the backspace (ASCII 8) or the carriage
return (ASCII 13). A table of the nonprintable ASCII characters is
presented later on.

press «return» to eHit

32 to 47 --- > ! "•$11&' O*+, - . /
48 to 57 ---> 0123456789
58 to 64 ---> :; <=>?P
65 to 90 ---> ABCOEFGHIJKLMNOPQRSTUU~XYZ
91 to 96 ---> C\J "_ "
97 to 122 ---> abcdefghij k lmnopqrstuvwxyz
123 to 126 - --> {I >-

Figure 8.2 ASC I I . 7t in action.

EF

196 Chapter 8

Notice that ASCII character 32 is a space, also known as ' '.ASCII
character 33 is ' ! '. ASCII character 4 7 is ' I '. This presents some inter­
esting coding possibilities. For example, this code is perfectly legitimate:

int sumOfChars;

sumOfChars = '!' + '/';

What a strange piece of code! Though you will probably never do
anything like this, try to predict the value of the variable sumOfCha rs
after the assignment statement. And the answer is ...

The character ' ! ' has a value of 33 and the character 'I' has a
value of 47. Therefore, sumOfChars will be left with a value of 80
following the assignment statement. C allows you to represent any
number between 0 and 127 in two different ways: as an ASCII
character or as a number. Let's get back to the program ASCII. x.

The second line in Figure 8.2 shows the ASCII characters from 48
through 57. As you can see, these ten characters represent the digits 0
through 9. Here's a little piece of code that converts an ASCII digit to
its numerical counterpart:

char digit;
int convertedDigit;

digit = '3';

convertedDigit = digit - 'O';

This code starts with a ch a r named di git, initialized to hold the
ASCII character '3'. The character '3' has a numerical value of 51.
The next line of code subtracts the ASCII character ' 0 ' from di g i t.
Since the character ' 0 ' has a numerical value of 48, and di g i t started
with a numerical value of 51, convertedDi git ends up with a value of
51 - 48, also known as 3. Isn't that interesting?

Variable Data Types 197

Subtracting 'O' from any ASCII digit yields that digit's
numerical counterpart. Remember this rule! It will come in
handy if you ever want to convert a text string repre­
sentation of a number to that number's numerical value.

Let's get back to ASCII. 7t. The next line of the console window
shown in Figure 8.2 shows the ASCII characters with values ranging
from 5 8 to 64. The following line is pretty interesting. It shows the
range of ASCII characters from 65 to 90. Notice anything familiar
about these characters? They represent the complete, upper-case
alphabet. Reserve a spot in the back of your brain and remember this:
The ASCII character 'A ' has a numerical value of 65.

The next line in Figure 8.2 lists ASCII characters with values from
91 through 96. The following line lists the ASCII characters with values
ranging from 97 through 122. These 26 characters represent the
complete lower-case alphabet.

Another fact worth remembering: to convert an upper-case
ASCII character to its lower-case equivalent, add 32 to the
upper-case value. For example, add 32 to 'E' and you get
101, which is equivalent to the ASCII character 'e '.

To convert a lower-case character to its upper-case
equivalent, subtract 32 from the lower-case character.

The final line in Figure 8.2 lists the ASCII characters from 123 to
126. As you'll see in the following tech block, the ASCII character with
a value of 127 is another nonprintable character.

198 Chapter 8

ASCII

Figure 8.3 shows a table of 11 unprintables." The first column
shows the ASCII code. The comment column shows the
keyboard equivalent for that code along with any
appropriate comments. The characters with comments by
them are probably the only unprintables you'll ever make
use of.

Code Comment

0 Used to term;nate text str;ngs (Expla;ned later in chapter)
1 Control-A
2 Control-B
3 Control-C
4 Control-D (End of file mark, Chapter 10)
5 Control-E
6 Control-F
7 Control-G (Beep character - Try ;u)
8 Contro 1-H (Backspace)
9 Control-I (Tab)

1 0 Contro 1-J (line feed)
11 Control-K (Vertfoal tab)
12 Contro 1-L (Form-feed)
13 Control-M (Carriage return, no line feed)
14 Contro 1-N
15 Contro 1-0
16 Contro 1-P
17 Contro 1-Q
18 Contro 1-R
19 Contro 1-S
20 Contro 1-T
21 Contro 1-U
22 Control-V
23 Control-\>/
24 Control-X
25 Contro 1-V
26 Contro 1-Z
27 Contro 1-[(Escape character)
28 Contro 1-1
29 Control-]
30 Control-"
31 Contro 1-_

127 del

Figure 8.3 The ASCII unprintables.

Variable Data Types 199

Stepping Through the Source Code

Before we move on to our next topic, let's take a look at the source
code that generated the ASCII character listing in Figure 8.2. If you
haven't already done so, exit the program and return to THIN C by
hitting a carriage return. Once back in THIN C, the project window,
labeled ASCII . 7t, should reappear. Double-click on the name ASCII . c
to open the source code window.

The function Pr i n t Ch a rs () takes two ch a r parameters, l ow and
high. Print Ch a rs () prints a single line in the console window,
containing the ASCII characters from 1 ow to hi g h.

PrintChars(char low, char high)
{

char c;

printf("%d to %d ---> ", low, high);

First, Pr in tC ha rs () uses pr in tf () to print a label for the current
line, showing the range of ASCII characters to follow.

for (c = low; c <= high; c++)
printf("%c", c);

Next, a for loop is used to step through each of the ASCII
characters, from 1 ow to hi g h, using pr i n t f () to print each of the
characters next to each other on the same line. The pr i n t f () bears
closer inspection. Notice the use of %c (instead of our usual %d) to tell
pr i n t f () to print a single ASCII character.

printf("\n");

Once the line is printed, a single new line is printed, moving the
cursor to the beginning of the next line in the console window. Thus
ends Pri ntCha rs ().

200 Chapter 8

main ()
{

PrintChars(32, 47) ;

PrintChars(48, 57) ;

PrintChars(58, 64) ;

PrintChars(65, 90) ;

PrintChars(91, 96);
PrintChars(97, 122);
PrintChars(123, 126);

ma i n () is pretty straightforward. It consists of seven consecutive calls
to Pri ntCha rs (),printing all of the ASCII characters from 32 to 126.

The ch a r data type is extremely useful to C programmers (such as
yourself). The next two topics, arrays and text strings, will show you
why. As you read through these two topics, keep the concept of ASCII
characters in the back of your mind. As you reach the end of the section
on text strings, you'll see an important relationship develop between all
three topics.

Arrays

The next topic for discussion is arrays. An array turns a single variable
into a list of variables. For example, this declaration:

int myNumber[3 J;

creates three separate int variables, referred to in your program as
myNumber[0 J, myNumber[1 J, and myNumber[2 J. Each of these
variables is known as an array element. The number between the
brackets ([and J are known as brackets) is called an index. In this
declaration:

char myChar[20 J;

Variable Data Types 201

the name of the array is myChar. This declaration will create an array of
type char with a dimension of 20. The dimension of an array is the
array's number of elements. The array elements will have indices
(indices is the plural of index) that run from 0 to 19.

In C, array indices always run from O to one less than the
array's dimension.

This slice of code first declares an array of 100 i nts, then assigns
each i n t a value of 0:

int myNumber[100 J, i;

for < i =O ; i <1 0 0 ; i ++)
myNumber[i J = O;

You could have accomplished the same thing by declaring 100
individual i nts, then initializing each individual int. Here's what that
code might look like:

int myNumberO, myNumberl, , myNumber99;

myNumberO O;
myNumberl O;

myNumber99 O;

202 Chapter 8

It would take 100 lines of code just to initialize these variables! By
using an array, we've accomplished the same thing in just a few lines of
code. Look at this code fragment:

sum = O;
for (i =O; i < 10 0; i ++)

sum+= myNumber[i J;

printf("The sum of the 100 numbers is %d.", sum);

This code adds together the value of all 100 elements of the array
myNumber.

In this example, the for loop is used to step through ~n
array, performing some operation on each of the array's
elements. You'll use this technique frequently in your own
C programs.

Why Use Arrays?

Programmers would be lost without arrays. Arrays allow you to keep
lists of things. For example, if you need to maintain a list of 50
employee numbers, declare an array of 50 i nts. You can declare an
array using any C type. For example, this code:

float salaries[50 J;

declares an array of 50 floating-point numbers. This might be useful for
maintaining a list of employee salaries.

Use an array when you want to maintain a list of related data.
Here's an example.

Variable Data Types 203

Opening dice.1t

Select Close Project from the Project menu to close ASCII .1t.

When prompted for a new project to open, go back up to the Projects
folder, into the dice subfolder, and open the project named dice .1t.

dice .1t simulates the rolling of a pair of dice. After each roll, the
program adds the two dice together, keeping track of the total. It rolls
the dice 1,000 times, then reports on the results. Give it a try!

Running dice.1t

Run dice .1t by selecting Run from the Project menu. A console
window should appear, similar to the one in Figure 8.4. Take a look at
the output-it's pretty interesting. The first column lists all the possible
totals of two dice. Since the lowest possible roll of a pair of six-sided dice
is 1 and 1, the first entry in the column is 2. The column counts all the
way up to 12, the highest possible roll (achieved by a roll of 6 and 6).

The number in parentheses is the total number of rolls (out of 1,000
rolls) that matched that row's number. For example, the first row
describes the dice rolls that total 2. In this run, the program rolled 24
2s. Finally, the program prints an x for every ten of these rolls. Since 24
2s were rolled, two x's were printed at the end of the 2s' row. Since 180
7s were rolled, 18 x's were printed at the end of the 7s' row.

Recognize the curve depicted by the x's in Figure 8.4? The
curve represents a "normal 11 probability distribution, also
known as a bell curve. According to the curve, you are
about 7.5 times more likely to roll a 7 as you are to roll a 2.
Want to know why? Check out a book on probability and
statistics.

204 Chapter 8

I

2(24) xx
3 (51) xxxxx
4 (96) xxxxxxxxx
5 (90) xxxxxxxxx
6 (156) xxxxxxxxxxxxxxx

press «return» to eHit

7 (180) xxxxxxxxxxxxxxxxxx
8 (130) xxxxxxxxxxxxx
g (105) xxxxxxxxxx

10 (83) xxxxxxxx
11 (63) xxxxxx
12 (22) xx

Figure 8.4 dice .1t in action.

Let's take a look at the source code that makes this possible.

Stepping Through the Source Code

If you haven't done so already, type a carriage return to return to THIN
C. Double-click on the name di c e. c in the project window to bring up
the dice. c source code window. This code walk-through will start with
ma i n () . found at the bottom of the source code file.

main() declares an array of ints named r ol ls . roll s will keep
track of the 11 possible types of dice rolls. Why 11? Count the rows in
the console window in Figure 8.4. There's a row for 2, 3, 4, all the way
up to 12. That's a total of 11 rows. ro 11 s [0 J will keep the total
number of 2s rolled. ro 11 s [1 J will keep the total number of 3s rolled.
r o 11 s [10 J will keep the total number of 12s rolled. You get the idea.
The index will always be off by two from the number being tracked.

main()
{

int rolls[11 J. twoDice. i;

srand(clock()) :

Variable Data Types 205

The function s rand () is part of the ANSI Standard Library. It
initializes a random number generator, using a seed provided by
another ANSI function, clock () . Once the random number is initial­
ized, another function, rand C) , will return an i n t with a random value.

Why random numbers? Sometimes you want to add an element of
unpredictability to your program. For example, in our program, we
want to roll a pair of dice again and again. The program would be
pretty boring if it rolled the same numbers again and again. By using a
random number generator, we can generate a random number between
1 and 6, thus simulating the roll of a single die! Let's get back to
main().

for C i =O; i < 11 : i ++
rolls[i J = 0:

ma i n () ' s next step is to initialize each of the elements of the array
ro 11 s to 0. This is appropriate since no rolls of any kind have taken
place yet.

for i=l: i <= 1000: i++
{

twoDice = RollOne() + RollOne():
++rolls[twoDice - 2 J:

Now comes Miller time! This for loop rolls the dice 1,000 times. As
you'll see, the function Roll One() returns a random number between 1
and 6, simulating the roll of a single die. By calling it twice, then storing
the sum of the two rolls in the variable twoDi ce, we've simulated the
roll of two dice.

206 Chapter 8

The next line is pretty tricky, so hang on. At this point, the variable
two Dice holds a value between 2 and 12, the total of two individual
dice rolls. By subtracting 2 from twoDi ce, we get a number between 0
and 10. The numbers 0 and 10 are important, because they correspond
to the range of indices of the array ro 11 s. Take a look at the tricky line
of code again:

++rolls[twoDice - 2 J;

This line of code increments the array element corresponding to the
rolled dice. For example, if the total of the two dice was 7, we'd
increment ro 11 s [5 J. If the total was 2 (the lowest possible), we'd
increment ro 11 s [0 J. Get it? If not, go back and read through this
again. If you still feel stymied (and it's OK if you do) find a C buddy to
help you through this. It is important that you get this concept. Be
patient. OK, let's get back to main () .

PrintRolls(rolls);

The last thing ma i n () does before it exits is call the function
Print Ro 11 s () , passing it the array ro 11 s as a parameter.
Print Ro 11 s () is responsible for creating the output that appears in the
console window.

Notice that only the array name was passed to
Print Ro 11 s <) , without the use of brackets. That's the
proper way to pass an array as a parameter.

Roll One()
{

Variable Data Types 207

long rawResult;
int roll:

rawResult =rand():

The function Ro 11 One () uses the ANSI random number generator
to return a number between 1 and 6 to the calling function. Rand ()
returns a random value between 0 and 32,767. This result is placed in
the long variable rawResult. longs are 4-bytes long, and can hold
much larger values than i n ts.

roll = CrawResult * 6) I 32768:

This line of code reduces rawResul t to a value between 0 and 5,
assigning that value to the variable ro 11.

return(roll + 1):

Finally, 1 is added to r o 11, and a value between 1 and 6 is returned.

If you had trouble following the mathematics involved in
the function Roll One(), you are not alone. This function is
tricky. Unless you plan on writing some random number­
generating code right off the bat, I'd ignore this function
and move on to the next orie. The important thing to
remember is that Ro 11 One () returns a random number
between 1and6.

208 Chapter 8

PrintRolls(int rolls[])
{

int i ;

The function Pri ntRol ls () takes the name of an array of i nts as a
parameter. The pair of brackets following the array name (ro 11 s [J)
distinguishes ro 11 s as the name of an array of i nts, as opposed to a
plain old int.

The notation:

int myArray[J

is identical to the notation:

int *myArray

Both of these notations describe a pointer to an int. C
treats array names as if they were pointers. Here's how this
works:

When the compiler allocates the memory for an array, it
allocates a single, continuous block of memory. For
example, this declaration:

int myArray[20 J:

creates a block of 40 bytes (enough memory for 20 2-byte
i nts). At the same time, the compiler also creates a
separate 4-byte block, called the parent pointer. The
compiler places the address of the first byte of the 40-byte
block in this parent pointer. This arrangement is shown' in
Figure 8.5.

111111111
___ 111111111

111111111
111111111

• • •

• • •
111111111
111111111

Variable Data Types 209

Parent Pointer:
Po;nts to 1 st Byte

of my Array

Block of 40 Bytes for:

int myArray[20 l;

Figure 8.5 Memory diagram showing the allocation for a 20 int
array, with its parent pointer.

Whenever the compiler wants to access the elements of
an array, it starts with the address in the parent pointer,
then uses the index being accessed to calculate the appro­
priate offset from the beginning of the array's data block.

For example, the following array declaration:

int myArray[20];

causes the compiler to allocate a 40-byte block for
my Array's i nts. Now suppose your program referenced
myArray[5 J. The compiler would look in its master
variable table to find the address associated with the
variable myArray. This address is the parent pointer. Next,
the compiler would use the index being referenced to
calculate an offset. In this case, the compiler calculates that
myArray[5 J occupies the eleventh and twelfth bytes in the
40-byte block allocated to myArray. Do you see how this
works?

210 Chapter 8

In main(), the line:

PrintRolls(rolls);

passes the array name ro 11 s as a parameter to the function
Pri ntRo 11 s (). In this instance, ro 11 s is just like a pointer
variable. It contains the 4-byte parent pointer to the block
of data allocated to the ro 11 s array. On the receiving end,
Pri ntRo 11 s c) declares ro 11 s to be a pointer (which it is).

You may find some of the concepts in this tech block to
be a little fuzzy at first. That's OK. This is one of the
subtleties of C that you have to learn via experimentation.
As you start writing your own progrnms, these subtleties
will become clearer.

At this point, you might want to take a short break.
You've earned it! Just jam a bookmark in here and go
outside and play catch or something. I'll still be here when
you get back.

Let's get back to our program. Before the previous tech block, we
had just started looking at Print Ro 11 s () .

for (i=O: i<ll; i++)
(

printf("%2d (%3d): i+2, rolls[J);
PrintX(rolls[i J I 10);
printf("\n") ;

Variable Data Types 211

The for loop steps through each of ro 11 s' 11 elements. For each
element, Pr i n t Ro 11 s () first prints the roll number and, in parentheses,
the number of times (out of 1,000) that roll occurred. Next, Pri ntX () is
called to print a single x for every ten rolls that occurred. Finally, a
carriage return is printed, preparing the console window for the next roll.

PrintX(int howMany)
(

inti;

for (i=O; i<howMany; i++)
printf("x") ;

Print X is pretty straightforward. It uses a for loop to print the
number of x's specified by the parameter howMany.

Danger, Will Robinson!!!

Before we move on to our next topic, there is one danger worth
discussing at this point. See if you can spot the potential hazard in this
piece of code:

int mylnts[3 J;

for (i =O ; i < 2 0 ; i ++
my I n t s [i J = 0 ;

Yikes! The array my I n ts consists of exactly three array elements, yet
the for loop tries to initialize 20 elements. This is called exceeding the
bounds of your array. Because C is such an informal language, it will let
you "get away" with this kind of source code. To you, that means
THIN C will compile this code without complaint. Your problems will
start as soon as the program tries to initialize the fourth array element,
which was never allocated.

212 Chapter 8

What will happen? The safest thing to say is that the results will be
unpredictable. The problem is, the program is trying to assign a value
of 0 to a block of memory that it doesn't necessarily own. Anything
could happen. The program would most likely crash, which means it
stops behaving in a rational manner. I've seen some cases where the
computer actually leaps off the desk, hops across the floor, and jumps
face first into the trash can.

Well, OK, not really. But odd things will happen if you don't keep
your array references in bounds.

Text Strings

As you code, be aware of the limitations of your variables.
For example, a char is limited to values from -128 to 127.
Don't try to assign a value such as 536 to a char. Don't
reference myArray[27 J if you declared myArray with only
ten elements. Be careful!

The first C program in this book made use of a text string:

printf("Hello. world!");

This section will teach you how to use text strings like "He l l o ,
world!" in your own programs. It will teach you how these strings are
stored in memory and how to create your own strings from scratch.

Variable Data Types 213

A Text String in Memory

The text string "He 11 o , wo r 1 d ! " exists in memory as a sequence of
14 bytes (Figure 8.6). The first 13 bytes consist of the 13 ASCII
characters in "He 11 o, Wo r 1 d ! ". The final byte has value of 0, not to be
confused with the ASCII character ' 0 ' . The 0 is what makes this string
a C string. Every C string ends with a byte having a value of 0. The 0
identifies the end of the string.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

B~00~GJD~~rEJ~0~
Figure 8.6 The "He 11 o, world!" text string.

When you use a quoted string like "Hel 1 o, world!" in your code,
the compiler creates the string for you. This type of string is called a
string constant. When you use a string constant in your code, the detail
work is done for you automatically. In this example:

printf("Hello, world!");

the 14 bytes needed to represent the string in memory are allocated
automatically. The 0 is placed in the fourteenth byte, automatically. You
don't have to worry about these details when you use a string constant.

String constants are great, but they are not always appropriate. For
example, suppose you want to read in somebody's name, then pass the
name on to print f () to display in the console window. Since you
won't be able to predict the name that will be typed in, you can't
predefine the name as a string constant. Here's an example.

214 Chapter 8

Opening name.1t

If you haven't already, exit dice. 7t by typing a carriage return. Next,
close dice. 7t by selecting Close Project from THIN C's Project
menu. When prompted for a new project to open, go up to the
Projects folder, then into the name folder and open the project named
name.7t.

name . 7t will ask you to type your first name on the keyboard. Once
you've typed your first name, the program will use your name to create
a custom welcome message. Then, name. 7t will tell you how many
characters long your name is. How useful!

Running name.1t

To run name. 7t. select Run from the Project menu. A console
window will appear, prompting you for your first name, like this:

Type your first name, please:

Type your first name, then hit a carriage return. When I did, I saw
the output shown in Figure 8. 7. Let's take a look at the source code
that generated this output.

Stepping Through the Source Code

At the heart of name. 7t is a new Standard Library function called
scanf (). scanf () uses the same format specifiers as pri ntf () to read
text in from the keyboard. This code will read in an int:

int mylnt;

scanf("%d", &mylnt);

press «return» to eHit

Type your first nome, pleose : Dove
We lcome, Dove .
Your nome is 4 chorocters long .

Figure 8.7 na me . n in action.

Variable Data Types 215

The %d tells scanf () to read in an int. Notice the use of the & before
the variable my Int. This passes my ! nt 's address to scanf(), a llowing
scanf () to change my l nt 's value. To read in a float, use code like:

fl oat my Float ;

scanf(" %f " , &my Fl oa t) ;

To read in a text string, you have to first declare a variable to place
the text characters in . na me . n uses an array of characters for this
purpose:

ma i n()
I

char name[50 J ;

216 Chapter 8

The array name is big enough to hold a 49-byte text string. When
you allocate space for a text string, remember to save 1 byte for the 0
that terminates the string.

printf("Type your first name, please: ");

The program starts by printing a prompt. A prompt is a text string
that lets the user know the program is waiting for input.

The Input Buffer

Before we get to the scan f C) call, it helps to understand how the
computer handles input from the keyboard. When the computer starts
running your program, it automatically creates a big array of cha rs for
the sole purpose of storing keyboard input to your program. This array
is known as your program's input buffer. The input buffer is carriage­
return based. Every time you hit a carriage return, all the characters
typed since the last carriage return are appended to the current input
buffer.

When your program starts, the input buffer is empty. If you type
this line from your keyboard:

123 abed

followed by a carriage return, the input buffer will look like Figure 8.8.
The computer keeps track of the current end of the input buffer. The
space character between the ' 12 3 ' and the ' ab c d ' has an ASCII value
of 32. Notice that the carriage return was actually placed in the input
buffer. The carriage return character has an ASCII value of 10 and is
equivalent to the character ' \ n ' .

End of
Input Buffer

Figure 8.8 A snapshot of the input buffer.

Variable Data Types 217

Given the input buffer shown in Figure 8.8, suppose your program
called scan f () , like this:

scanf("%d", &mylnt);

scan f () starts at the beginning of the input buffer and reads a
character at a time until it hits one of the nonprintables; that is, a
carriage return, tab, space, or a 0, or until it hits the end of the buffer.
After the scanf(), the input buffer looks like Figure 8.9. Notice that
the characters passed on to scan f () were removed from the input
buffer and that the rest of the characters slid over to the beginning of
the buffer. scan f () took the characters ' 1 ' , ' 2 ' , and ' 3 ' and
converted them to the integer 123, placing 123 in the variable my Int.

End of
Input Buffer

~~rg@J~DDDDDDD· • •
Figure 8.9 A second snapshot of the input buffer.

218 Chapter 8

If you then typed the line:

3.5 Dave

followed by a carriage return, the input buffer would look like Figure
8.10. At this point the input buffer contains two carriage returns. To
the input buffer, a carriage return is just like any other char-acter. To a
function like scan f () , the carriage return is white space.

If you forgot what white space is, now would be a good
time to turn back to Chapter 5, where white space was first
described.

Figure 8.10 A third snapshot of the input buffer.

End of
Input Buffer

Variable Data Types 219

On With the Program

Before we started our discussion on the input buffer, main () had just
called pr i n t f () to prompt the user for his or her first name:

pri ntf(11 Type your first name, pl ease: 11
) ;

Next, we called scan f () to read the first name from the input
buffer:

scanf("%s", name);

Since the program just started, the input buffer is empty. scan f ()
will wait until characters appear in the input buffer, which will happen
as soon as you type some characters and hit a carriage return. Type
your first name and hit a carriage return.

scanf () will ignore white space characters in the input
buffer. For example, if you type a few spaces and tabs, then
hit a carriage return, scanf() will still sit there, waiting for
some real input. Try itl

Once you type in your name, scan f () will copy the characters, a
byte at a time, into the array of cha rs pointed to by name. Remember,
because name was declared as an array, name itself refers to the array's
parent pointer (Figure 8.5). name points to the first of the 50 bytes
allocated for the array.

220 Chapter 8

If you type in the name Dave, scan f () will place the four characters
'D ', 'a', 'v ', and 'e' in the first four of the 50 bytes allocated for the
array. Next, scanf () will set the fifth byte to a value of 0 to terminate
the string properly (Figure 8.11). Since the string is properly terminated
by the 0 in name[4 J, we don't really care about the value of the bytes
name[5 J through name[49].

name
Points Here

0 2 3 4 5 48 49

~o~~~~l···ll
Figure 8.11 The array name [50 J after the string "Dave" is copied to it.
Notice that name [4 J has a value of 0.

printf("Welcome, %s.\n", name);

This line passes name on to pri ntf () for use in a special welcome
message. The %s tells pri ntf () to print a 0 terminated string inside the
quoted string. Since name is a 0 terminated string, pr i n t f () knows to
stop printing after the fourth byte in the string.

If name [4 J didn't contain a 0, the string wouldn't pe
properly terminated. Passing a nonterminated string 1to
pri ntf <) is a sure way to confuse pri ntf (). pri ntf() will
step through memory one byte at a time, printing a byte
and looking for a 0. It will keep printing bytes until it
happens to encounter a byte set to 0. Remember to
terminate your strings!

Variable Data Types 221

printf("Your name is %d characters long.",
strlen(name));

The next line of the program calls another Standard Library
function, called st r 1 en () . st r l en () takes a pointer as a parameter and
returns the length, in bytes, of the string pointed to by the parameter.
st r 1 en () depends on the string being 0 terminated. Notice that C
allows you to call a function right in the middle of a parameter list.
pr i n t f () will call st r l en () and use the length returned as its
parameter.

Our last program for this chapter demonstrates a few more
character-handling techniques, a new Standard Library function, and an
invaluable programmer's tool, the #define.

The #define

The #define (pronounced pound-define) tells the compiler to substitute
one piece of text for another throughout your source code. For
example, this statement:

#define MAX_PLAYERS 6

tells the compiler to substitute the character "6" every time it finds the
text 11 MAX_P LAYERS" in the source code. C compilers perform two
passes on your code. During the first pass, the compiler builds a list of
#defines and performs all of its #define substitutions. During the
second pass, the compiler compiles the #def i n ed source code.

222 Chapter 8

It's important to note that the /!define mechanism doesr:i't
change your original source code. The C compiler first
makes a copy of your source code, performs the 1/defi nes
on this copy, then compiles the #defined copy.

Here's an example of a #define in action:

#define MAX_ARRAY_SIZE 100

main ()
{

char myArray[MAX_ARRAY_SIZE];
int i ;

for i=O; i<MAX_ARRAY_SIZE; i++)
myArray[i J = O;

The #define at the beginning of this example substitutes "100" for
"MAX_ARRAY_SIZE" for the duration of the code. In this example, the
substitution will be done twice. The result of the compiler's first pass
looks like this:

main ()
{

char myArray[100 J;
int i ;

for i=O; i <100; i++
myArray[i J = O;

Variable Data Types 223

If you use #defines effectively, you'll build more flexible code. In
the previous example, you can change the size of the array by modify­
ing one line of code, the #define. If your program is designed correctly,
you should be able to change the line to:

#define MAX_ARRAY_SIZE 200

then recompile your code, and your program should work properly. A
good sign that you are using /fdefi nes properly is an absence of
constants in your code. In the above example, the constant 100 was
replaced by MAX_ARRAY_SIZE.

As you'll see in our next program, you can put practically anything,
even source code, into a #define. Take a look:

#define PRINT_RETURN printf("\n");

While not particularly recommended, this #define will work just
fine, substituting the statement:

printf("\n");

for every occurrence of the text PRINT_RETURN in your source code. You
can base one #define on a previous #define:

#define SIDE_LENGTH 5
#define AREA SIDE_LENGTH * SIDE_LENGTH

The substitution for a particular #define is only made from
the point of the #define through the end of the file. This
means that a /!define won't have any effect on the source
code that occurs before it in the file.

224 Chapter 8

#define Macros

You can create a //define that takes one or more arguments. These
#defines are known as macros. Here's an example:

#define SQUARE(a) ((a) * (a))

This macro takes a single argument. The argument can be any C
expression. If you called the macro like this:

myint =SQUARE(mylnt + 1);

the compiler would use its first pass to turn the line into this:

myint = ((mylnt + 1) * (mylnt + 1));

Notice the usefulness of the parentheses in the macro. If the macro
were defined like this:

#define SQUARE(a) a * a

the compiler would have produced:

mylnt = mylnt + 1 * mylnt + 1:

which is not what we wanted. The only multiplication that gets
performed by this statement is 1 * my Int, because the* operator has a
higher precedence than the+ operator.

Let's move on to our final example.

Opening wordCount.1t

If you haven't already, exit name .x by typing a carriage return. Close
name. x by selecting Close Project from the Project menu. When
prompted for a new project to open, move up to the Projects folder,

Variable Data Types 225

down into the wordCount folder, and open the project named
word Count . 7t. Open the source code file wordCount . c by double­
clicking on its name in the project window. Take a few minutes to look
through the source code. Try to figure out what this program does.

Running wordCount.7t

wordCount . 7t prompts you to type in a line of text, saving the line in an
array of cha rs. The program then steps through the saved line of text,
counting the number of words in the text. Run wordCount .7t by
selecting Run from the Project menu. When prompted, type in a line
of text, followed by a carriage return. wordCount. 7t will then tell you
how many words you typed. A sample is shown in Figure 8 .12.
wordCount. 7t will ignore any tabs and spaces in your text. Feel free to
experiment.

press « return» to eHit

Type a line of text , please :
There are nine words In this line of text.
You just typed 9 words .

Figure 8.12 wordCount. 7t in action.

226 Chapter 8

Stepping Through the Source Code

#include <stdio.h>

wo rdCount. c starts off with the same 1li nc l ude ·as
next P r i me . c, l i s t Pr i mes . c, and pow e r . c. The # i n c l u de
includes the file stdio. h, which contains the definitions !of
the constants TRUE and FALSE. Chapter 9 covers the
Iii nc l ude in detail.

Next, wordCount .7t features a series of #defines.

#define MAX_LINE_LENGTH 200

MAX_ LI NE_LENGTH defines the size of the array of cha rs that are
used to buffer the line of text typed in response to the prompt.

#define C_RETURN '\n'
#define C_TAB '\t'
#define C_SPACE

C_RETU RN, C_ TAB, and C_S PACE represent their corresponding
ASCII characters. Their main purpose is to make the code a little more
Englishlike and, therefore, a little easier to read. The C_ at the
beginning of each of these #def i n es stands for character, and is used to
group these three #defines together. The C_ will have no effect on the
code, but it makes it clear to anyone reviewing the code that these three
#defines belong together.

main ()
{

char line[MAX_LINE_LENGTH], *charPtr, inWord;
int numWords;

Variable Data Types 227

The array 1 i n e is used to store the typed in text. ch a r Pt r is a
pointer to a ch a r that plays an important role in stepping through the
text. You'll see how it works in a minute. i nWord takes on a value of
either TRUE or FALSE. We'll use it as we step through the line of char­
acters to indicate whether we are currently in the middle of a word or
in the middle of some white space. Finally, numWords keeps track of the
number of words in the line of text.

printf("Type a line of text, please:\n");

For starters, use pr i n t f () to prompt for a line of text.

charPtr =line;

Next, copy the address in 1 i n e to the pointer ch a r Pt r. Since 1 i n e
was declared as an array, it contains a pointer to the first of the 200
bytes allocated for the array. By copying this address into cha rPtr,
charPtr also points to the first byte of the array.

numWords = 0;
inWord = FALSE;

numWords is initialized to 0 and i nWord is set to FALSE.

while ((*charPtr = getchar()) != C_RETURN
{

The whi 1 e loop is used to read in characters, one at a time, until a
carriage return is typed. The function get ch a r () returns the next
character from the input buffer. The character is placed into the byte
pointed to by ch a r Pt r, which happens to be the first byte in the 1 i n e
array, also known as 1 in e [0] .

228 Chapter 8

As was the case with scan f () , when a character is read
from the input buffer, the character is removed and the rest
of the characters in the buffer move over to take the place
of the removed character.

if (C*charPtr != C_TAB) && (*charPtr != C_SPACE))
{

if (! inWord
{

inWord = TRUE:
numWords++:

If the character read in is not a tab and is not a space, then it must
be part of a word. If we aren't already in a word, set i nWord to TRUE,
indicating that we are now in the middle of a word. Also, increment
numWords, the count of words in the line so far.

else
inWord = FALSE:

If the character was not part of a word, set i n Word to FALSE.

charPtr++;

Next, increment charPtr, making it point to the next byte in
memory. If ch a r Pt r points to l in e [0 J, incrementing it will make it
point to line[1 J.

printf("You just typed %d word", numWords);

Variable Data Types 229

The loop exits when a carriage return is encountered. Once this
happens, the program uses print f () to tell you how many words it
found in the text.

if ((numWords > 1) 11 (numWords 0))

else
printf{ "s.");

printf(" ");

This technique is known as pointer arithmetic. To
understand why pointer arithmetic works, it's important to
understand that a pointer is just a 4-byte number that
represents a memory address. When you add one to a
pointer, you are making the pointer point to the next byte
in memory. While the compiler won't allow you to divide a
pointer by 2, or multiply a pointer by itself, it will allow you
to use the ++, - - , +, and - operators to move a pointer
forward and backward in memory.

Incrementing cha rPtr works because 1 i ne is an array of
cha rs, and a char takes up a single byte. Incrementing the
pointer by 1 moves it from one byte to the next. If the array
consisted of i nts, you'd have to bump the pointer by 2 to
get it to the next array element.

This last bit of code shows attention to detail, something very
important in a good program. Notice that the previous print f () ended
with the characters "word". If the program found either no words or
more than one word, the printed sentence should read:

You just typed 0 words.

230 Chapter 8

or

You just typed 2 words.

If the program found exactly one word, the sentence should read:

You just typed 1 word.

The last if statement makes sure the correct sentence ending is
printed.

What's Next?

Congratulations! You've made it through one of the longest chapters in
the book. You've mastered several new data types, including fl oats
and cha rs. You've learned how to use arrays, especially in conjunction
with cha rs. You've also learned about C's text-substitution mechanism,
the #define.

Chapter 9 will teach you how to combine C's data types to create
your own customized data types called structs. So go grab some lunch,
lean back, prop up your legs, and turn the page.

1) What's wrong with each of the following code fragments:

a. char c ;
int i . .
i=O;
for (c=O : c<=255: c++)

+= c ;

b. char c ;

for s~o: c<=l27 : c++)
printf("ASCII char %dis %c . \n " , c, c) ;

c. char c ;

c = "a II;

print f("c holds t he character %c .", c) :

d. char c[5 J :

c = "Hello , world! ";

231

232 Chapter 8

e. char c[MAX_ARRAY_SIZE]

#define MAX_ARRAY_SIZE 20

int i ;

for (i=O; i<MAX_ARRAY_SIZE; i++)
c[i J = O;

f. //define MAX_ARRA Y SIZE 200

char c[MAX_ARRAY_SIZE];

c[MAX_ARRAY_SIZE J = O;

g. #define MAX_ARRAY_SIZE 200

char c[MAX_ARRAY_SIZE]. *cPtr;
int i ;

cPtr = c;
for (i=O; i<MAX_ARRAY_SIZE: i++)

cPtr++ = O;

h. #define MAX_ARRAY_SIZE 200

char c[MAX_ARRAY_SIZE];
int i ;

for i=O: i<MAX_ARRAY_SIZE; i++)
{

*c = O;
c++:

2) Rewrite dice. c, showing the possible rolls using three dice
instead of two.

3) Rewrite wordCount. x, printing each of the words, one per line.

Designing Your
Own Data
Structures

apter
nee

Structures
Model A: Three Ways

Multi-Dimensional Arrays
Back to Model A

Model B: The Data Structure
Approach

Opening structSize.7t
Running structSize.7t

Stepping Through the Source Code
struct Arrays
Using Pointers With structs

Allocating Your Own Memory
malloc()
free()

Keep Track of That Address!
Working With Linked Lists

Why Linked Lists?
Creating a Linked List
Opening cdTracker.7t
Running cdTracker.7t

Stepping Through the Source Code
Order in the Code
What's Next?
Exercises

IN CHAPTER 8, WE INTRODUCED SEVERAL NEW DATA
types, namely float and ch a r. We discussed the range of each type and
introduced the format specification characters necessary to print each
type using print f () . Next, we introduced the concept of arrays,

235

236 Chapter 9

focusing on the relationship between ch a r arrays and text strings.
Along the way, we discovered the #define, C's text substitution
mechanism.

This chapter will show you how to use existing C types as building
blocks to design your own customized data structures.

Structures

There will be times when your programs will want to bundle certain
data together. For example, suppose you were writing a program to
organize your compact disc collection. Imagine the type of information
you'd like to access for each CD. At the least, you'd want to keep track
of the artist's name and the name of the CD. You might also want to
rate each CD's listenability on a scale of 1 to 10.

In the next few sections, we'll look at two separate approaches to a
basic CD-tracking program. Each approach will revolve around a
different set of data structures. One will make use of arrays and the
other a set of custom designed data structures.

Model A: Three Arrays

One way to model your CD collection is with a separate array for each
CD's attributes:

#define MAX_CDS 300
#define MAX_ARTIST_CHARS 50
#define MAX_TITLE_CHARS 50

char rating[MAX_CDS],
artist[MAX_CDS][MAX_ARTIST_CHARS],
title[MAX_CDS][MAX_TITLE_CHARS];

Designing Your Own Data Structures 237

This code fragment uses three #defines. MAX_CDS defines the
maximum number of CDs this program will track. MAX_ARTI ST _CHARS
defines the maximum length of a CD artist's name. MAX_ TITLE_CHARS
defines the maximum length of a CD's title.

rating will hold a rating, from 1 to 10, for each CD in the
collection. a rt i st and ti t 1 e will each store a text string representing
the artist and title of each CD in the collection. Notice the extra pair of
brackets in the declaration of the arrays a rt is t and tit 1 e. Both are
examples of multi-dimensional arrays.

Multi-Dimensional Arrays

When an array is declared, the dimensions of the array are used to
calculate the number of bytes of memory to allocate for that array's
use. In this declaration:

char name[40];

the dimension of the array name is 40. A block of 40 consecutive bytes
of memory will be allocated for name. name is known as a one­
dimensional array.

Callows you to declare multi-dimensional arrays as well. Here's the
declaration of a two-dimensional array:

char severalNames[5 J[40 J;

severa 1 Names is a two-dimensional array because of the two sets of
brackets following the array name. severa 1 Name's dimension is 5 times
40, or 200. A block of 200 consecutive bytes will be allocated for
several Names. The main difference between name and several Names is
that several Names is an array of arrays.

238 Chapter 9

severalNames[0 J

is an array of 40 cha rs. Your program can access those 40 cha rs by
referring to several Names[0][0 Jon up to several Names[0 J[39].
severa 1 Names [1 J is also an array of 40 cha rs. So are
several Names[2 J, several Names[3 J, and several Names[4 J.

An array reference that includes both dimensions, such as
several Names[0][0], refers to a single char. Try to predict the
results of this code fragment:

char severalNames[5][40 J :

several Names[3][0 J IHI;

several Names[3][1 J I ; I :

several Names[3][2 J I! I;

several Names[3][3 J 0:

printf("Here's the message: %s", severalNames[3 J) :

This example treats several Names[3 J as an individual array of
ch a rs. It copies the string 11 Hi ! " one byte at a time into the array, then
passes several Names[3 Jon to printf(). Notice that printf() uses
the %s format specification to print the 0-terminated string
severa 1 Names [3].

C allows you to create arrays of any dimension. Some
computers limit you to a maximum of six dimensions. As
you'll see later in the chapter, you'll rarely have a need for
more than one dimension.

Designing Your Own Data Structures 239

Back to Model A

When programmers assess the efficiency of a program design, they look
at many factors. One of the most important factors is memory usage.
As a general rule, the less memory a program uses, the more efficiently
it runs. Let's take a look at Model A's memory usage. As a reminder,
here's another look at Model A's array declarations:

#define MAX_CDS 300
#define MAX_ARTIST_CHARS 50
#define MAX_TITLE_CHARS 50

char rating[MAX_CDS J,
artist[MAX_CDS][MAX_ARTIST_CHARS],
title[MAX_CDS][MAX_TITLE_CHARS];

• The array ratings requires a total of MAX_CDS (#defined as
300) bytes.

• a rt i st requires MAX_CDS * MAX_ARTI ST _CHARS (300 * 50 =
15,000) bytes.

• title requires MAX_CDS * MAX_TITLE_CHARS (300 * 50 =
15,000) bytes.

As long as the total number of CDs stays under 300, Model A will
use 300 + 15,000 + 15,000 = 30,300 bytes for its CD information.

Model A uses 30,300 bytes to represent O CDs or 300 CDs.
As soon as the program starts up, 30,300 bytes of memory
are used up, even if you haven't entered the data for a
single CD!

240 Chapter 9

Let's look at this data another way:

• The array rating uses 1 byte per CD (enough for a 1-byte
rating from 1 to 10).

• The array a rt is t uses 50 bytes per CD (enough for a text string
holding the artist's name, up to 50 bytes in length).

• The array ti t 1 e also uses 5 0 bytes per CD (enough for a text
string holding the CD's title, up to 50 bytes in length).

Add those three together and you find that Model A allocates 101
bytes per CD. Since Model A allocates space for 300 CDs when it
declares its three key arrays, it uses 300 * 101 = 30,300 bytes, as we
discovered earlier.

Since the program really only needs 101 bytes per CD, wouldn't it
be nice if you could allocate the memory for a CD when you need it?
With this type of approach, if your collection only consisted of 50 CDs,
you'd only have to use SO * 101 = 5,050 bytes of memory instead of
30,300.

As you'll see by the end of the chapter, C provides a mechanism for
allocating memory as you need it. Model B takes a first step toward
memory efficiency by creating a single data structure that contains all
the information relevant to a single CD. Later in the chapter you'll
learn how to allocate enough memory for a single structure.

Model B: The Data Structure Approach

As stated earlier, our CD program must keep track of a rating (from 1
to 10), the CD artist's name, and the CD's title. For each CD, we need
three variables:

#define MAX_ARTIST_CHARS 50
#define MAX_TITLE_CHARS 50

Designing Your Own Data Structures 241

char rating,
artist[MAX_ARTIST_CHARS],
title[MAX_TITLE_CHARS];

C provides the perfect mechanism for wrapping all three of these
variables in one tidy bundle. A struct allows you to associate any
number of variables together under another name. Here's an example
of a struct declaration:

#define MAX_ARTIST_CHARS 50
#define MAX_TITLE_CHARS 50

struct CDinfo
{

char rating;
char artist[MAX_ARTIST_CHARS];
char title[MAX_TITLE_CHARS];

This code declares a struct type named CDinfo. A struct type is
similar to a type like i n t or ch a r, but not quite the same. A st r u ct
type is used to create individual structs. Here's an example:

struct CDinfo mylnfo;

This declaration creates a struct, of type CD Info, named my Info.
my Info contains three fields, named rating, artist, and title. Here's
how you refer to my I n f o's rat i n g field:

mylnfo.rating = 7;

Notice the . between the st r u ct name (my Info) and the field name
(rat i n g). The . following a st r u ct name tells the compiler that a field
name is to follow.

242 Chapter 9

It's important to understand the difference between a
struct type and a struct. You declare a struct type for
convenience. You can use a st ruct type later in your
program to declare an individual struct.

A struct is declared to be of a specific struct type.
Once you declare a st ruct, you can use the fields of the
struct to hold your program's data.

Opening structSize.7t

Here's a program that demonstrates the declaration of a struct type,
as well as an individual struct. First, start up THIN C. When
prompted for a project to open, go into the Projects folder, then into
the structSi ze subfolder, and open the project structSi ze.7t. The
st r u ct Si z e . 7t project window should appear on your screen.

Running structSize.7t

st r u ct Si z e . 7t declares the CO I n fo st r u ct type. Then, st r u ct Si z e . 7t
declares an individual CD Info struct. Finally, structSi ze .7t prints out
the amount of memory allocated to each of the struct's fields and to
the struct as a whole. Ready? Let's run it!

Select Run from the Project menu. Compare your output with
the console window shown in Figure 9 .1. They should be the same. The
first three lines of output show the rating, a rt is t, and tit 1 e fields.
To the right of each field name, you'll find printed the number of bytes
of memory allocated to that field. The last line of output shows the
memory allocated to the entire struct. Notice that the sum of the three
individual fields is not equal to the memory allocated to the entire
struct. What gives? You'll find out in the next section, when we walk
through the source code

rating fie ld :
artist f I e Id :
ti tie fie ld :

1 bytes
50 by tes
50 bytes

mylnfo struct: 102 byte~

Designing Your Own Data Structures 243

press «return» to eHit

Figure 9.1 st ructS i ze .1t in action.

Stepping Through the Source Code

If you haven't done so already, type a carriage return to exit
structSize. 1t. Open the source code file struct Size.c by double­
clicking on its name in the project window. Take a minute to look over
the source code in st ructS i ze. c. Once you feel comfortable with it,
read on.

#define MAX_ART IST_CHARS 50
#define MAX_TITLE_CHARS 50

structSi ze. c starts with the familiar #defines for
MAX_ART I ST _CHARS and MAX_ TI TLE_CHARS.

244 Chapter 9

struct CDinfo
I

char rating;
char artist[MAX_ARTIST_CHARS];
char title[MAX_TITLE_CHARS];

Next comes the declaration of the struct type CD Info. Notice that
the st r u ct type declaration came before ma i n () , in the spot where you
would declare your program's global variables, if any. This declaration
doesn't declare a variable. It only declares a type. Since we want this
type to be available throughout the program, we declared it before any
of the program's functions.

main ()
I

The struct type CDinfo could have been declared inside of
main () . Declaring it inside main () would have limited its
scope to inside of main () . That means that no other
function would know about the struct type CD Info.

In this example, either method would have worked. In
general, you'll want to declare your st ruct types just
before your global variables. That will allow you to declare
a global struct using your global struct type.

struct CDinfo mylnfo;

main() starts by declaring a struct named my Info. my Info is
declared to be of type CD Info. The compiler allocates enough memory
to hold a struct the size of CD Info. How does the compiler know how
much memory to allocate? First, it calculates the size of each of the
fields declared within CD Info. It then adds those values together to
determine the size of the struct.

Designing Your Own Data Structures 245

By the Way _____________________ _

Most computers refuse to allocate memory in odd-size
chunks. If you ask for 53 bytes, most computers will give
you 54. Since the computer always gives you enough
memory, you usually don't care if you get a little extra. As
you'll see, however, knowing about your computer's little
idiosynchrasies can sometimes explain somewhat odd
(oops!) behavior.

printf("rating field: %d bytes\n",
sizeof(mylnfo.rating)):

This print f () calls a function named s i zeof () . s i zeof () is not
part of the Standard Library. Instead, like wh i 1 e and switch, s i zeof ()
is built into the C language. s i zeof C) takes any variable as a parameter
and returns the number of bytes allocated for that variable. As you can
see in Figure 9.1, 1 byte was allocated for my Info. rating.

printf("artist field: %d bytes\n",
sizeof(mylnfo.artist)):

This print f C) uses size of C) to print the fact that 50 bytes were
allocated for my Info . a rt i st.

printf("title field: %d bytes\n",
sizeof(myinfo.title));

This print f C) tells us that 50 bytes were also allocated for the field
my I n fo . t i t 1 e.

printf(" ---------\n"):

This pri ntf () was purely for aesthetics. Notice the way everything
lines up in Figure 9 .1?

246 Chapter 9

printf("mylnfo struct: %d bytes",
sizeof(mylnfo));

Now for the piece de resistance. printf() uses sizeof() to print
the size of the variable my Info.

Notice that my Info weighs in at 102 bytes, while its three
fields sum up to only 101 bytes. When the computer
allocated space for mylnfo, it recognized 101 as an odd
number and threw in the extra byte to keep things even.

The previous few sections demonstrated the basics of working with
structs. Next, we'll explore the creation of an array of structs.

struct Arrays

Just as you can declare an array of cha rs or i nts, you can also declare
an array of structs:

struct CDinfo myCDs[50];

This declaration creates an array of 50 structs of type CD Info. The
array is named my CDs. Each of the 5 0 st r u ct s will have the three fields
rating, artist, and title. You access the fields of the structs as you
would expect. Here's an example:

myCDs[10].rating= 9;

Note the use of the all-important . in the example.

Designing Your Own Data Structures 247

Using Pointers With structs

Just as you can declare a pointer to a ch a r or an int, you can also
declare a pointer to a st r u ct. Here's an example:

struct CDinfo mylnfo, *mylnfoPtr;

mylnfoPtr = &mylnfo;

The first line declares two variables. my Info is a st r u ct of type
CD Info. mylnfoPtr is a pointer to a struct of type CD Info. The second
line makes the pointer myinfoPtr point to the struct mylnfo. Now
my Info Pt r can be used to access the fields of my Info:

(*myinfoPtr).rating = 7;

This line sets the rat i n g field of my I n f o to 7. This only works
because my Info Pt r currently points to my Info. Notice the use of
parentheses in the example. The parentheses tell the compiler to first
dereference mylnfoPtr, turning it from a pointer to a CDinfo struct
into a CDinfo struct. Next, the . is applied, telling the compiler you
want to access one of the struct's fields.

C provides a shorthand notation for turning a pointer to a struct
into one of the st r u ct' s fields:

mylnfoPtr->rating = 7:

This line is exactly equivalent to the previous example. The operator
between mylnfoPtr and rating consists of a - immediately followed by
a >. Feel free to use either notation, though you'll probably find the
second notation a bit easier to read.

248 Chapter 9

Allocating Your Own Memory

One of the most important skills you'll use as a programmer is the
ability to allocate memory for your program's variables. One of the
limitations of Model A, our first CD-tracking model, was its use of
arrays. The problem with arrays is that the memory for the array is
allocated as soon as the array is declared. If you know in advance
exactly how many elements your array requires, arrays are just fine.

In many situations, however, you can't predict how many array
elements you'll need. In Model A of our CD example, we solved the
problem by #defining a maximum number of CDs the program can
handle:

#define MAX_CDS 300

As discussed previously, this approach will work as long as we limit
ourselves to a maximum of 300 CDs. If we track less than 300 CDs,
we'll waste memory.

Wasting memory isn't the same as wasting paper or
gasoline. It's more like wasting closet space. If your closet is
arranged inefficiently, you can't fit as much into it as you
could with a little careful planning and rearrangement.

Memory is the same way. You have a limited amount of
space to store all of your program's data. If you waste
memory, you might run out before you accomplish your
task. Techniques that conserve memory are especially
valuable. You'll learn a few in this book. You'll learn many
more from experience.

Designing Your Own Data Structures 249

malloc()

C provides a mechanism for allocating a block of memory of a specified
size. The Standard Library function ma 11 oc () takes a single parameter,
the size of the requested block in bytes. ma 11 oc () attempts to allocate a
block of that size and, if successful, returns a pointer to the first byte of
the newly allocated block. If ma 11 oc () fails, it returns a pointer with a
value of 0.

For example, here's a code fragment that allocates a single CDinfo
struct:

struct CDinfo *myinfoPtr;

myinfoPtr = malloc(sizeof{ struct CDinfo));

First, my Info Pt r is declared as a pointer to a st r u ct of type
CD Info. Next, si zeof{) is called to calculate the size of the CD Info
st ruct type.

Once si zeof{) calculates the size of a CDinfo struct, it passes the
size on to ma 11 oc () . ma 11 oc () attempts to allocate a chunk of memory
that size. If it succeeds, it returns a pointer to the first byte of that
block. This address is then assigned to my I n f o Pt r.

If mal 1 oc() succeeded, myinfoPtr points to a struct of type
CD Info. For the duration of the program, we can use my Info Pt r to
access the fields of this newly allocated struct:

myinfoPtr->ratings = 7;

In an earlier example, we passed a variable to s i zeof () . In
this example, we passed a type. s i zeof <) is not particular.
It will tell you the size of both variables and types.

250 Chapter 9

free()

The memory we just allocated will stick around for the duration of the
program unless we de-allocate it ourselves. The Standard Library
provides a function, called free () , which returns a previously allocated
block of memory back to the pool of available memory. free() takes a
single argument, a pointer to the first byte of a previously allocated
block. This line:

free(mylnfoPtr):

returns the block allocated earlier to the free memory pool. Use
ma 11 oc () to allocate a block of memory. Use free () to free up a block
of memory allocated via ma 11 oc () . When a program exits, the
operating system automatically frees up all allocated memory.

Caution: Never put a fork in an electrical outlet. Never pass
an address to free C) that didn't come from ma 11 oc C). Both
will make you extremely unhappy!

Keep Track of That Address!

The address returned by ma 11 oc () is critical. If you lose it, you've lost
access to the block of memory you just allocated. Even worse, you can
never free () the block, and it will just sit there, wasting valuable
memory, for the duration of your program.

Designing Your Own Data Structures 251

One great way to lose a block's address is to call ma 11 oc ()
inside a function, saving the address returned by ma 11 oc ()
in a local variable. When the function exits, your local
variable goes away, taking the address of your new block
with it!

One way to keep track of a newly allocated block of memory is to
place the address in a global variable. Another way is to place a pointer
to a st ruct inside another st ruct. This last technique creates some­
thing called a linked list.

Working With Linked Lists

The linked list is one of the most widely used data structures in C. A
linked list is a series of st ructs, each of which contains, as a field, a
pointer. Each st r u ct in the series uses its pointer to point to the next
struct in the series. Figure 9.2 shows a linked list containing three
elements.

Global
Pointer

Figure 9.2 A linked list containing three elements.

252 Chapter 9

A linked list starts with a master pointer. The master pointer is a
pointer variable, typically a global, that points to the first struct. This
first struct contains a field, also a pointer, which points to the second
st r u ct in the linked list. The second st r u ct contains a pointer field
that points to the third element. The linked list in Figure 9.2 ends with
the third element. The pointer field in the last element of a linked list is
typically set to 0.

Why Linked Lists?

Linked lists are extremely memory efficient. A linked list starts out as a
single master pointer. When you want to add an element to the list, call
ma 11 oc () to allocate a block of memory for the new element. Next,
make the master pointer point to the new block. Finally, set the new
block's next element pointer to 0.

If your program needs exactly 50 elements, you can allocate and
add 50 elements to your linked list. Linked lists are memory efficient.
They provide exactly the right solution for Model B of our CD-tracking
program.

Creating a Linked List

The first step in creating a linked list is the design of the main link, the
linked list st r uc t. Here's a sample:

#define MAX_ARTIST_CHARS 50
#define MAX_TITLE_CHARS 50

struct CDinfo
{

char
char
char
struct CDinfo

rating;
artist[MAX_ARTIST_CHARS];
title[MAX_TITLE_CHARS];
*next;

Designing Your Own Data Structures 253

The change here is the addition of a fourth field, a pointer to a
st r u ct of type CD I n f o. The next field is the key to connecting two
different CDinfo structs together. If my Fi rstPtr is a pointer to one
CDinfo struct and mySecondPtr is a pointer to a second struct,
this line:

myFirstPtr->next = mySecondPtr;

connects the two st r u c ts together. Once they are connected, you can
use a pointer to the first st ruct to access the second st ruct 's fields!
For example:

myFirstPtr->next->ratings = 7:

This line sets the rat i n gs field of the second st r u ct to 7. Using the
next field to get from one st r u ct to the next is also known as
traversing a linked list.

Our next (and final) program for this chapter will incorporate the
new version of the CDinfo struct to demonstrate a memory-efficient
CD-tracking program. This program is pretty long, so you may want to
take a few moments to let the dog out and answer your mail.

By the Way~--~--------------------------~-----------~

There are many variants of the linked list. If you connect
the last element of a linked list to the first element, you
create a never ending circular list. You can add a prev field
to the struct and use it to point to the previous element in
the list (as opposed to the next one). This technique allows
you to traverse the linked list in two directions and creates
a doubly-linked list.

254 Chapter 9

Opening cdTracker.1t

cdTracker .1t implements Model B of our CD-tracking system. It uses a
text-based menu, allowing you to quit, add a new CD to the collection,
or list all of the currently tracked CDs.

Close structSi ze .1t by selecting Close Project from the
Project menu. When prompted for a project to open, go into the
Projects folder, then into the cdTracker subfolder, and open the
project cdTracker.1t. The cdTracker.1t project window should appear
on your screen.

Running cdTracker.1t

Select Run from the Project menu. The console window will appear,
showing the prompt:

Enter command Cq=quit, n=new. l=list):

At this point you have three choices. You can type a q, followed by
a carriage return, to quit the program. You can type an n, followed by a
carriage return, to enter a new CD to your collection. Finally, you can
type an 1 • followed by a carriage return, to list all the CDs in your
collection.

Start by typing an l , followed by a carriage return. You should see
the message:

No CDs have been entered yet ...

Next, the original command prompt should reappear:

Enter command Cq=quit, n=new, l=list):

Designing Your Own Data Structures 255

This time type an n, followed by a carriage return. You will be
prompted for the artist's name and the title of a CD you'd like added to
your collection:

Enter Artist's Name: Shawn Colvin
Enter CD Title: Steady On

Next, you'll be prompted for a rating for the new CD. The program
expects a number between 1 and 10. Try typing something unexpected,
such as the letter x, followed by a carriage return:

Enter CD Rating Cl-10): x
Enter CD Rating Cl-10): 10

The program checks your input, discovers it isn't in the proper
range, and repeats the prompt. This time, type a number between 1 and
10, followed by a carriage return. The program returns you to the main
command prompt:

Enter command Cq=quit, n=new, l=list):

Type the letter 1, followed by a carriage return. The single CD you
just entered will be listed and the command prompt will again be
displayed:

Artist:
Title:
Rating:

Shawn Colvin
Steady On
10

Enter command Cq=quit, n=new, l=list):

256 Chapter 9

Type an n, followed by a carriage return and enter another CD.
Repeat the process one more time, adding a third CD to the collection.
Now enter the letter l, followed by a carriage return to list all three
CDs. Here's my list:

Enter command (q=quit, n=new, l=list):

Artist:
Title:
Rating:

Artist:
Title:
Rating:

Artist:
Title:
Rating:

Shawn Colvin
Steady On
10

XTC
The Big Express
8

Jane Siberry
Bound by the Beauty
9

Enter command (q=quit, n=new, l=list):

Finally, enter a q, followed by a carriage return to quit the program.
Let's hit the source code.

Stepping Through the Source Code

If you haven't already, hit a carriage return to return to THIN C. Next,
open the file c d Tracker . c by double-clicking its name in the project
window. We'll start at the top of the file.

#include <stdlib.h>
#include <stdio.h>

Designing Your Own Data Structures 257

These lines introduce an important part of C. The #include is
similar to the #define, in that it gets performed during the first pass of
the compiler. The compiler will replace the #include line with the
entire contents of the file whose name appears between either angle
brackets (< and >) or double quotes (").Just as source code files always
end with . c, #include files always end with . h.

The included files fall into two categories. If the file name is placed
between angle brackets, the file belongs to the Standard Library. THIN
C keeps all of the Standard Library #include files inside the THIN C
folder. The file referenced above, <std 1 i b. h >, contains predefined
constants, variable declarations, and other information needed by the
Standard Library function ma 11 oc ().

By the Way----------------------

In Chapter. 6, the constants TRUE and FALSE were intro­
duced. Some C development environments #define values
for TRUE and FALSE in one of their #include files. Some
development environments don't. THIN C provides built-in
values for TRUE and FALSE in the #include file <stdio. h>.

If you find yourself in a development environment that
doesn't predefine TRUE and FALSE, just create the /ldefi nes
yourself.

Appendix D lists each of the Standard Library functions used in the
book, as well as the #include file that goes with that function. If you
call a Standard Library function, make sure you #include the file that
goes with that function. If you call the function twice, or if you call two
different functions that make use of the same #include file, you should
only #include the file once.

As an example, malloc() makes use of the file <stdlib.h>.
printf() makes use of the file <stdio.h>. So far, we've scraped by
without the proper #inc 1 udes. From now on, each example will get
it right.

258 Chapter 9

The second category of #include places its file name in
double quotes. This tells the compiler to look in the same
folder as the project file for the Iii ncl uded file. The double
quote #include is provided for your own benefit. You
might want to create a separate file for your globa1I
variables and call it "global .h". How about a separate file
for all your #defines? As you start writing your own
programs, you'll develop your own 1fi ncl ude style.

#define MAX_ARTIST_CHARS 50
#define MAX_TITLE_CHARS 50

struct CDinfo
{

char
char
char

rating;
artist[MAX_ARTIST_CHARS]:
title[MAX_TITLE_CHARS];

struct CDinfo *next;
*gFirstPtr, *glastPtr;

The #def i n es and the declaration of CD Info should look familiar.
Notice the addition of the next field. We'll use next as a pointer to the
next element in the linked list of CDs.

You should also notice the two variables hanging off the end of
the struct declaration. Placing a variable (or list of variables) at the
end of a struct type declaration declares those variables to be of the
specified type.

gFi rstPtr and glastPtr have been declared as pointers to a
st r u ct of type CD I n f o. Since they were declared outside of any
function, both variables were also declared as globals. gFi rstPtr will
always point to the first struct in the linked list. gLastPtr will always

Designing Your Own Data Structures 259

point to the last struct in the linked list. We'll use gFi rstPtr when we
want to step through the linked list, starting at the beginning. We'll use
g Las tPt r when we want to add an element to the end of the list.

/******************************** main ***/

main ()
{

char command;

We'll start our function tour at the bottom of the file, with the
function ma i n () . The variable co mm and holds the command character
typed in by the user.

gFirstPtr =NULL;
gLastPtr = NULL;

Next, the variables gFi rstPtr and gLastPtr are set to a value of
NULL. NULL is #defined in the file <stdio. h> to be a pointer with a
value of 0. If gFi rstPtr is NULL, the linked list is empty.

whi 1 e ((command = Get Command()) != 'q')
{

Next, main () enters a wh i 1 e loop, calling the function
GetCommand(). GetCommand() prompts you for a one-character
command, either a 'q', 'n', or 'l '.Once GetCommand() returns a 'q', we
drop out of the while loop and exit the program.

switch (command
{

case 'n':
AddToList(ReadStruct());
break;

260 Chapter 9

If GetCommand C) returns an 'n', the user wants to enter information
on a new CD. First we call ReadStructC), which allocates space for a
CDinfo struct, then prompts the user for the information to place in
the new struct's fields. Once the struct is filled out, ReadStruct()
returns a pointer to the newly allocated struct.

The pointer returned by ReadStruct() is passed on to AddToL i st(),
which adds the new st r u ct to the linked list.

case 'l':
Lis tCDs C) ;
break;

If Get Command () returns an '1 ',the user wants to list all the CDs in
his or her collection. That's what the function Lis tCDs () does.

printf("Goodbye ... ");

Before the program exits, it says "Goodbye ... ".

/******************************** GetCommand ***/

char GetCommand()
{

char command = O;

Next up on the panel is GetCommand (). GetCommand () declares a
char named command, used to hold the user's command. Notice
that command was initialized to 0 on the same line as it was declared.
This is known as explicit initialization. Although you can place any
expression on the right side of the assignment statement, most pro­
grams limit explicit initialization to simple assignment statements, such
as the one above.

while (command != 'q') && (command != 'n')
&& (command ! = '1 '))

Designing Your Own .Data Structures 261

By the Way----------------------

You can explicitly initialize global variables. You can also
explicitly initialize arrays. Here's an example:

char s[20 J ="Hello":

What a convenient way to initialize an array of cha rs!
Here's another way to accomplish the same thing:

char s[20 J = { 'H', 'e', 'l', 'l', 'o', O }:

To explicitly initialize an array, one element at a time, place
the list of elements inside a pair of curlies. In this example,
notice that the last element was a zero, used to terminate
the string.

The whi 1 e loop won't exit until command is equal to a 'q ', 'n ', or
'l '. Since command was initialized to 0, this whi 1 e loop will run at least
one time.

printf("Enter cdmmand (q=quit, n=new, l=list):
) :

scanf("%c", &command >:
Flush();

First, prompt the user for a command. Next, use scanf () to retrieve
the next character typed by the user. Finally, call F 1 us h C) to get rid of
any extra characters typed after the command. At the very least,
Flush() will remove the carriage return from the input buffer.

printf("\n----------\n");
return(command);

262 Chapter 9

Once we get a ' q ' , ' n ' , or ' 1 ' , print a line (for aesthetics) and
return the command.

/******************************** ReadStruct ***/

struct CDinfo *ReadStruct()
{

Next up is ReadStruct(). Notice the unusual declaration of the
function name. The line:

struct CDinfo *ReadStruct()

says that ReadStruct() returns a pointer to a CD Info struct.

By default, a function is assumed to return a value of type
int. By placing a type specification in front of the function
name, you can create functions that return any type you
want. If you check back, you'll see that the function
GetCommand C) returns a char. As you read on, you'll notice
that some of the functions return a type called void.
Declaring a function to be of type void is a nice way to let
the compiler (and anyone who's trying to read your source
code) know that the function doesn't return a value at all.

Remember, if you don't declare the function to be of a
specific type, the compiler assumes it's of type int. Since
functions don't have to return a value, this will rarely cause
you problems. However, it's good practice to always declare
your functions to be of one type or another. The one
exception to this rule is the most important function,
main (). Declare main () just the way you see it in this
program, with no return type.

Designing Your Own Data Structures 263

struct CDinfo *infoPtr:
int num:

ReadStruct() uses mal loc() to allocate a block of memory the size
of a CDI nf o st ruct. The variable i nfoPt r will act as a pointer to the
new block. The variable num serves as a temporary int.

infoPtr = malloc(sizeof(struct CDinfo)):

ReadStruct() calls mal 1 oc() to allocate a CD Info struct,
assigning the address of the block returned to i nfoPtr.

if (infoPtr == NULL)
{

printf("Out of memory!!! Goodbye! \n") :
exit(0);

If ma 11 o c () cannot allocate a block of the requested size, it will
return a value of NULL. If this happens, we'll print an appropriate
message and call the Standard Library function ex i t () . As its name
implies, exit () causes the program to immediately exit.

BytheWaY----------------------------------~--~---

On a Macintosh, the parameter passed to exit() is ignored.
On some computers, however, the parameter is passed back
to the operating system. For now, we'll pass a value of 0 to
exit().

printf{ "Enter Artist's Name: " >:
ReadLine(infoPtr->artist):

printf{ "Enter CD Title: "):
ReadLineC infoPtr->title);

264 Chapter 9

If we're still here, ma 11 oc () must have succeeded. Next, we'll print
a prompt for the CD artist's name, then call Read Line () to read a line
from the input buffer. Re ad Li n e () will place the line in the art i st field
of the newly allocated struct.

We then repeat the process to prompt for and read in the CD title.

num = O;
while ((num < 1) I I (num > 10))
{

Next, we'll enter a wh i 1 e loop that continues until the value of n um
is between 1 and 10.

printf("Enter CD Rating Cl-10): ");
scanf("%d", &num) ;
Flush();

First, the loop prompts for a number. Next, scan f () is called to
read in the number. F 1 us h () gets rid of any characters remaining in the
input buffer, once scan f () has its number.

infoPtr->rating = num;

Once a number is read in that's between 1 and 10, the number is
assigned to the rating field of the newly allocated struct.

printf("\n----------\n");

return(infoPtr);

Finally, a separating line is printed and the pointer to the new
st r u ct is returned.

Designing Your Own Data Structures 265

/******************************** Readline ***/

void Readline(char *line)
{

Re ad Li n e () takes a pointer to a ch a r as a parameter. Remember, a
pointer to a char is the same as the name of an array of cha rs.

char c;

while
{

(C getchar()) != '\n')

The while loop uses getchar() to read a char at a time from the
input buffer. It keeps reading characters until it hits a carriage return.

*line = c;
1 ine++;

Each char is read into c using getchar(), then assigned to the char
pointed to by 1 i n e. At the beginning, l i n e points to 1 i n e [0 J. The
statement 1 i n e++ makes 1 i n e point to the next ch a r. If 1 i n e pointed to
1 i n e [0 J, 1 i n e++ makes 1 i n e point to 1 i n e [1 J.

*line= 0;

Finally, the value 0 is placed at the end of the last character read to
0-terminate the string. We need a 0-terminated string if we are going to
pass the string to pr i n t f () , which we do in the function Li st CDs () .

/******************************** Flush ***/

void Flush()
{

while (getchar() != '\n')

266 Chapter 9

Fl us h () uses get ch a r () to read characters from the input buffer
until it reads in a carriage return. Flush() is a good utility routine to
have around.

/******************************** AddTolist ***/

void AddToList(struct CDinfo *curPtr)
{

AddToL i st() takes a pointer to a CD Info struct as a parameter. It
uses the pointer to add the st r u ct to the linked list.

if (gFirstPtr == NULL)
gFirstPtr = curPtr;

If gFi rstPtr is NULL, the list must be empty. If so, make gFi rstPtr
point to the new struct.

else
gLastPtr->next = curPtr;

If gFi rstPtr is not NULL, there's at least one element in the linked
list. In that case, make the next field of the very last element on the list
point to the new struct.

gLastPtr = curPtr;
curPtr->next = NULL;

In either case, set g Last Pt r to point to the new "last element in the
list." Finally, make sure the next field of the last element in the list is
NULL. You'll see why we did this in the next function, Li stCDs().

/******************************** ListCDs ***/

void ListCDs()
{

struct CDinfo *curPtr;

Designing Your Own Data Structures 267

Li st CDs () lists all the CDs in the linked list. The variable cu r Pt r is
used to point to the link element currently being looked at.

if (gFirstPtr == NULL)
{

printf("No CDs have been entered yet ... \n");
printf("\n----------\n");

If no CDs have been entered yet, we'll print an appropriate message.

else
{

curPtr = gFirstPtr;

Now that we know there's at least one CD in the linked list, we'll
start with the first one.

while (curPtr != NULL)
{

The whi 1 e loop continues until curPtr has a value of NULL. curPtr
starts off pointing to the first struct in the list. Once that element has
been printed out, curPtr gets whatever value is in the next field of the
current struct. That value will make curPtr point to the next element
in the list. This continues until we eventually hit the last element on the
list, the only element whose next field is set to NULL. Once curPtr gets
assigned a value of NULL, we drop out of the w hi l e loop.

printf("Artist:
printf("Title:

%s\n", curPtr->artist);
%s\n", curPtr->title);

The first two pri ntf ()S use the "%s n format specifier to print the
strings in the fields a rt is t and tit 1 e.

printf("Rating: %d\n", curPtr->rating);

printf{ "\n----------\n");

268 Chapter 9

Next, the rating field and a separating line are printed.

curPtr = curPtr->next;

Finally, the next field is used to point curPtr to the next struct.

Order in the Code

One final note: Have you ever wondered why main () is at the bottom
of the file? This is interesting. The compiler compiles your source code
from top to bottom. As it reads your code, it periodically encounters
function calls. If the compiler hasn't seen the function yet (because the
function itself is lower down in the file) the compiler assumes the
function returns an int. If the line of code being compiled assumes that
the function returns a different type, the compiler will report an error.
For example, in this piece of code:

main ()
{

char *line;

line ReadALine();

the function Re a dA Line () returns a pointer to a ch a r. If main () is at
the top of the file, the compiler will hit the call of ReadAL i ne() before
it actually sees the declaration of Read AL i ne ().When the compiler tries
to compile this line, it assumes that ReadALine() returns an int. It
then sees this supposed int-returning function trying to assign an int
to a pointer variable. The compiler scratches its head, and finally
returns an error.

Designing Your Own Data Structures 269

There are two solutions to this problem. The solution used in this
book is to place main () at the bottom of the file, then place the
functions called by main () above it in the file, placing the functions
called by these functions next, and so on, building up toward the top of
the file. In this way, the compiler will never hit a call of a function
before it hits the function itself.

Another solution is to include a one-line declaration for each of
your functions at the top of the file, in the same area you would declare
your global variables. For example, a function that returns a pointer to
a ch a r might have a declaration line like:

char *ReadALine();

The function itself is written in its normal form somewhere down
below. The declaration line at the top of the file alerts the compiler that
the function returns a type other than i n t. If you do decide to go this
route, consider gathering all of your function declarations in a separate
#include file. You might call it" routines. h", or something similar.

What's Next?

This chapter covered a wide range of topics, from #includes to linked
lists. The intent of the chapter, however, was to attack a real-world
programming problem; in this case, a program to catalog CDs. The
chapter showed several design approaches, discussing the pros and cons
of each. Finally, the chapter presented a prototype for a CD-tracking
program. The program allows you to enter information about a series
of CDs and, on request, will present a list of all the CDs tracked.

One problem with this program is that once you exit, all of the data
you entered is lost. The next time you run the program, you have to
start all over again.

270 Chapter 9

Chapter 10 offers a solution to this problem. The chapter introduces
the concept of files and file management, showing you how to save
your data from memory out to your hard-disk drive and how to read
your data back in again. The chapter updates cdTracker .n, storing the
CD information collected in a file on your disk drive.

1) What's wrong with each of the following code fragments:

a. char line[5] "He l lo " ;

b. char line[5] { I HI, I e I I

c. struct Employee
{

char name[20] ;

int employeeNumber
I ;

d. w h i l e (g e t c h a r () == ' \ n ')

e. #include "stdio .h "

f. struct Link
I

name [50 J;
Link *next ;

I ;

g. struct Link
I

struct Link next ;
struct Link prev ;

I 1 I I I 1 I
1

I 0 I I 0 I ;

271

272 Chapter 9

h. char line[10] 11 Hello";
int i ;

while *line != 0)

line++;

printf("%s II t 1 i ne) ;

2) Update cdTracker. c so it maintains its linked list in alphabetical
order.

3) Update cdTracker.c, adding a prev field to the CDinfo struct
so it maintains a doubly-linked list. As before, the next field will
point to the next link in the list. Now, however, the prev field
should point to the previous link in the list. Add an option to the
menu that prints the list backward, from the last st ruct in the
list to the first.

Working With
Files

10

What is a File?
Working with Files, Part One

Opening a File
Reading a File
Opening printFile.7t
Running printFile.n

Stepping Through the Source Code
stdin and stdout

Working with Files, Part Two
Writing to a File
The Output Buffer
Opening cdFiler.7t
Exploring cdData
Running cdFiler.n

Stepping Through the Source Code
What's Next?
Exercises

CHAPTER 9 INTRODUCED cdT rac ker, A PROGRAM DESIGNED
to keep track of your compact disc collection. cd Tracker allowed you
to enter a new CD, as well as list all of the existing CDs. cdTracker 's
biggest shortcoming was that it didn't save the CD in formation when it
exited. If you ran cdTracker, entered information on ten CDs, and then
quit, yo ur information would be gone. The next time you ran
cdTracker, you'd have to start from scratch.

The solution ro this problem is to somehow save a ll of the CD
information before you quit the program. This chapter will show you
how. Chapter 10 introduces the concept of files , the long-term storage
for your program's data.

275

276 Chapter 10

What is a File?

A file is a series of bytes residing on a magnetic storage media. In the
Macintosh world, most files are stored on floppy disks and hard-disk
drives. The copy of MacPaint you keep on your hard drive resides in a
file. The floppy disk that came with this book contains many different
files. Some of the files make up the THIN C development environment.
Others contain projects and source code that THIN C will open.

All of the files on your computer share a common set of traits. For
example, each file has a size. The file LaserWri ter in my System
Folder has a size of 64,595 bytes. The file Microsoft Word in my
App 1 i cations folder has a size of 683,274 bytes. Each of these files
resides on a hard-disk drive attached to my computer.

Working With Files, Part One

In the C world, each file consists of a stream of consecutive bytes.
When you want to access the data in a file, you open the file using a
Standard Library function called f open () , pronounced eff-open. Later
in the chapter, we'll explore a program called cdFi 1 er. cdFil er adds
two important features to cdTracker. cdFi 1 er knows how to save your
CD information in a file and can also read the information back in
again. cdFi 1 er makes extensive use of fopen().

Opening a File

fopen () takes two parameters, a file name and a mode. The file name
defines the file you want to open. Examples of file names are
LaserWriter and Microsoft Word. cdFiler will use fopen() to open
a file named cdData.

Working With Files 277

The mode parameter defines the way you'll be accessing the file and
is one of 11 r 11

, "w 11
, or 11 a". "r 11 stands for read and is used when you

want to open the file for reading. "w 11 stands for write and is used when
you want to open the file for writing. Finally, 11 a" stands for append
and is used when you want to add data to the end of a file.

Warning

Beware! If you open a file for writing, all of the existing
data from the file is replaced with whatever new data you
write into itl Use append mode if you just want to add
more data to the file. If you want to change the data in the
file, read in the data, change it in memory, then write it
back out. cdFi 1 er will show you how.

Here's what happens when you call fopen () :

• If you call fop en () to open a file for reading, and the file
doesn't exist, fopen () returns the value NULL.

• If you call f open () to open a file for writing or appending, and
the file doesn't exist, fopen () will attempt to create a new file
with the given name. If this fails, fopen () returns NULL.

• If fopen() was able to open the file, it returns a pointer to a
data structure of type FI LE.

fopen () is declared as follows:

FILE *fopen(char *filename, char *mode);

You'll want to declare a variable of the same type to handle the
value returned by fopen ():

FILE *fp;

278 Chapter 10

Here's a sample call of f open () :

fp = fopen("cdData". "r") :

This line looks into the same folder as the project file for a file
named "c d Data ", and opens the file for reading. If the file c d Data
doesn't exist, f p will have a value of NU LL. If the file does exist, f p will
point to a st ruct of type FI LE. As you'll see, you won't be accessing
the fields of the FI LE struct. Instead, you'll pass fp to various
Standard Library functions that allow you to read, write, and close
your file.

Reading a File

If you open a file for reading, the next step is to read data from the file.
When you read from the keyboard, you used such functions as
getchar() and scanfC) to fetch data from the input buffer associated
with the keyboard. When you read from a file, you use a similar set of
file functions to fetch data from the file's input buffer.

The function fgetc() reads a single character from a file's input
buffer and returns either the character or the value EO F. EO F stands for
end-of-file and is ffdefi ned in the file <stdio. h>. fgetc() returns a
value of EO F when the last character in the file has already been read­
in other words, when the end of the file is reached. f get c C) takes a
single parameter, a pointer to a FI LE . f get c () is declared as follows:

int fgetc(FILE *fp);

The function f scan f () is similar to scan f () . Instead of scanning
the keyboard's input buffer for input, fscanf () scans the input buffer
associated with the specified file. fscanf C) is declared as follows:

int fscanf(FILE *fp, char*format, ...) :

Working With Files 279

The first parameter specifies the file whose input buffer is to be
scanned. The second is the format specification text string. Any further
parameters depend on the contents of the format specification string.

Chapter 10 's first program, pr i n t Fi 1 e . n, demonstra res the use of
the functions fop en () and f getc () in opening and reading a file.

Opening printf ile.7t

print File. n opens a file named 11 My Data File 11
, reads in all the data

from the file one character at a time and prints each character in the
console window. First, start up THIN C. When prompted for a project
to open, go into the Projects folder, then into the pri ntFi 1 e
subfolder, and open the project print File. n. The pr i n t Fi 1 e. n project
window should appear on your screen.

Running printfile.7t

Select Run from the Project menu. Compare your output with the
console window shown in Figure 10.1. They should be the same. Type a
carriage return to return to THIN C. Let's take a look at the data file
read in by print Fi 1 e. n. Select Open ... from the File menu. THIN C
will prompt you for a text file to open. Select the file named My Data
Fi 1 e. A window will open allowing you to edit the contents of the file
named My Data Fi 1 e. Feel free to make some changes to the file and run
the program again. Make sure you don't change the name of the file.

Let's take a look at the source code.

Stepping Through the Source Code

Open the source code file pr i n t Fi 1 e . c by double-clicking on its name
in the project window. Take a minute to look over the source code.
Once you feel comfortable with it, read on.

280 Chapter 10

press «return» to eHit

Thi s Is the first line of the f ile named "M~ Data F ile".
Thi s Is the second I ine of the f i l e .
This Is the third and final I ine!I

Figure 10.1 print Fi le. n in action.

#include <stdi o. h>

Each of the Standard Library functions in this program requires the
inclusion of <stdio . h>.

main ()
I

FILE *fp ;
int c ;

The file pointer fp will be used whenever we want to reference the
file we are working with. The variable c is used to receive the characters
returned by f getc C) .

fp = fo pe nC "My Data File", " r ");

Working With Files 281

Notice that c is declared as an int instead of a char. This is
because fgetc C) is declared to return an int and not a
char. fgetc() will return values ranging from 0 to 255 (the
range of an unsigned char) when it reads a byte from the
file's input buffer. fgetcC) needs one more value, however,
to return when it hits the end of the file. The constant EDF
is /Jdefi ned to a value of -1. This puts it outside the range
of an unsigned char, and that's why fgetc () is declared as
an int function.

If you forget which function returns which data type,
look up the function in Appendix C.

This call of the function fop en () opens the file named My Data

Fi 1 e for reading, returning the file pointer to the variable fp.

if (fp != NULL)
{

If f p is not NULL, the file was opened successfully.

while < Cc= fgetc(fp)) !=EDF)
putchar(c);

The wh i 1 e loop continuously calls f get c () , passing it the file
pointer f p. f get c () returns the next character in f p's input buffer. The
returned character is assigned to c. If c is not equal to EO F, put ch a r ()
is called, taking c as a parameter. putcha r () prints the specified
character to the console window. We could have accomplished the same
thing by using pr i n t f () :

printf("%c", c);

282 Chapter 10

As you program, you'll often find two different solutions to
the same problem. Should you use putchar() or printfO?
If performance is critical, pick the option that is more
specific to your particular need. In this case, pri ntf C) is
designed to handle many different data types. putcha r C) is
designed to handle one data type, an int. Chances are the
source code for putcha r C) is simpler and more efficient
than the source code for pri ntf{) when it comes to
printing an int. If performance is critical, you might want
to use putchar() instead of pri ntf(). If performance isn't
critical, go with your own preference.

fclose(fp);

Once all the characters in My Data Fi 1 e have been displayed in the
console window, use f cl o s e () to close the file.

stdin and stdout

C provides you with two file pointers that are always available and
always open. stdi n represents the keyboard and std out represents the
console window. In pr i n t Fi l e . 7t, we used the function f get c () to
read a character from a previously opened file. This line:

c = fgetc(stdin);

will read the next character from the keyboard's input buffer.

Working With Files 283

fgetc(stdin)

is equivalent to calling

getchar()

As you'll see in the next few sections, whenever C provides a mech­
anism for reading or writing to a file, C will also provide a similar
mechanism for reading from std in or writing to s tdout. Though you
probably won't use std in and s tdout in your code, it's good to know
what they are and what they do.

Working With Files, Part Two

So far, you've learned how to open a file using fopen () and how to
read from a file using fgetc(). You've seen that you can often use two
different functions to solve the same problem. Now let's look at the
functions that allow you to write data out to a file.

Writing to a File

The Standard Library offers several functions that write data out to a
previously opened file. This section will introduce three of them:
f put c () , f puts () , and f pr i n t f ().

fputc () takes an int holding a character value, and writes the
character out to the specified file. f put c () is declared as follows:

int fputc(int c, FILE *fp) :

If fputc () successfully writes the character out to the file, it returns
the value passed to it in the parameter c. If the write fails for some
reason, fputc () returns the value EOF.

284 Chapter 10

fputs() is similar to fputc(), but writes out a 0-terminated string
instead of a single character. f puts () is declared as follows:

int fputs(char *s, FILE *fp);

f puts () writes out all the characters in the string, but does not
write out the terminating 0. If the write succeeds, fputs () returns a 0.
If the write fails, f puts () returns EO F.

f pr i n t f () works just like pr i n t f () . Instead of sending its output
to the console window, f pr i n tf () writes its output to the specified file.
f pr i n t f () is declared as follows:

int fprintf(FILE *fp, char *format, ...);

The first parameter specifies the file to be written to. The second is
the format specification text string. Any further parameters depend on
the contents of the format specification string.

The Output Buffer

Just as data read from a file or the keyboard first passes through an
input buffer, data written to a file must first pass through an output
buffer. When you use functions such as fpri ntf () and fputc() to
write data to a file, the data is first written to the output buffer. When
the buffer fills up, its contents are written out to the file.

For the most part, you will never work directly with a file's output
buffer. There may be times, however, when you need direct access to the
output buffer. Unfortunately, the details of the output buffer are beyond
the scope of this book. When you feel ready to tackle file input and
output at a more detailed level, find the documentation for the
operating system of the computer you are working on. Are you
programming a Macintosh? Is your computer running an operating
system called Unix?

Find out as much as you can about the environment in which you'll
be programming. Since you're programming in C, most things won't

Working With Files 285

change as you move from computer to computer. Get a copy of the
Standard Libraries reference guide for the computer you'll be working
with. The Standard Libraries guide will tell you everything you need to
know to make use of the Standard Library functions. In addition to
listing each of the functions, the reference guide tells you which file
you'll need to #include to use the function, which parameters the
function expects, and what values the function can return.

Your best bet is to hook up with someone with programming
experience on the computer you want to work with. They'll help you
through the technical tough spots. In the meantime, let's get back to the
subject at hand.

Opening cdFiler.7t

In Chapter 9, we ran cdTracker .1t, a program designed to help you track
your compact disc collection. The big shortcoming of cdTracker .1t is its
inability to save your carefully entered CD data. As you quit the
program, the CD information you entered gets discarded, forcing you
to start over the next time you run c d Tr a c k er . 1t.

Our next program, cd Filer .1t, solves this problem by adding two
special functions to cdTracker .1t. Read File() opens a file named
"cdData ",reads in the CD data in the file, and uses the data to build a
linked list of cdlnfo structs. Wri teFi le() writes the linked list back
out to the file.

In THIN C, select Close Project from the Project menu to
close pr i n t Fil e . 1t. When prompted for a project to open, go into the
Projects folder, then into the cdTracker subfolder, and open the
project cdTracker. 7t. The cdTracker .1t project window should appear
on your screen (Figure 10.2).

Look at the project window. Notice anything unusual? In addition
to the file ANS I.lib, there are two source code files in this project. The
file cdMain.c is almost identical to the file cdTracker.c from Chapter
9. The file cd Fil es. c contains the functions that allow cd Fil er .1t to
read and write the file cdData.

286 Chapter10

r -· cdfiler.n
Name obj size
ANSI.lib 0
cdFiles.c 0
cdHain.c 0

Figure 10.2 The cdFi 1 er .1t project window.

Exploring cdData

Before you run the program, take a quick look at the file cdData. Select
Open ••• from the File menu. When prompted for a text file to open,
select the file cdData. A text-editing window for cdData will appear on
the screen. At first glance, the contents of the file may not make much
sense, but the text does follow a well-defined pattern:

3
Shawn Colvin
Steady On
10
XTC
The Big Express
8
Jane Siberry
Bound by the Beauty
9

Working With Files 287

The first line of the file tells you how many CD descriptions follow.
In this case, the file describes three CDs. From this point on, the file is
organized in clusters of three lines each. Each cluster contains a one-line
CD artist, a one-line CD title, and a one-line numerical CD rating.

The layout of your data files is as important a part of the
software design process as the layout of your program's
functions. The file described above follows a well-defined
pattern. As you lay out a file for your next program, think
about the future. Can you live with one-line CD titles? Do
you want the ability to add a new CD field, perhaps the
date of the CD's release?

The time to think about these types of questions is at
the beginning of your program's .life, during the design
phase.

Running cdFiler.1t

Before you run the program, you must close c d Data's text-editing
window.

To create this window, THIN Chad to open the file cdData.
If you don't close· the window before you run the program,
the file will remain open. When you run cdFi 1 er .n, it will
also open the file. You'll have the same file open in two
places. This is not a good idea. Although Callows you to do
this, your results can be somewhat unpredictable.

288 Cha pt er 10

Once the window is closed, run cdFil er. 7t by selecting Run from
the Project menu. The console window will appear, prompting you
for a ' q ' , ' n ' , or ' 1 ' :

Enter command (q=quit, n=new, l=list): 1

Type an 1, followed by a carriage return. This will list the CDs
currently in the program's linked list. If you need a refresher on linked
lists, now would be a perfect time to turn back to Chapter 9:

Enter command (q=quit, n=new, l=list): 1

Artist: Shawn Colvin
Title: Steady On
Rating: 10

Artist: XTC
Title: The Big Express
Rating: 8

Artist: Jane Siberry
Title: Bound by the Beauty
Rating: 9

Enter command (q=quit, n=new, l=list):

Chapter 9's cdTracker .7t started with an empty linked list.
cd Fi 1er.7t, on the other hand, first reads in the CDs described in
cdData, placing these descriptions into the linked list. Now, type an
' n ' , followed by a carriage return and add a new CD to your list:

Enter command (q=quit. n=new. l=list): n

Enter Artist's Name: Adrian Belew
Enter CD Title: Mr. Music Head
Enter CD Rating (1-10): 8

Enter command (q=quit. n=new. l=list):

Working With Files 289

Next, type an '1' to make sure your new CD made it into the list:

Enter command (q=quit, n=new. l=list): 1

Artist: Shawn Colvin
Title: Steady On
Rating: 10

Artist: XTC
Title: The Big Express
Rating: 8

Artist: Jane Siberry
Title: Bound by the Beauty
Rating: 9

Artist: Adrian Belew
Title: Mr. Music Head
Rating: 8

Enter command (q=quit. n=new. l=list):

290 Chapter 10

Finally, type a 'q' followed by a carriage return. This causes the
program to write the current linked list back out to the file cdData. To
prove this worked, run c d Fi 1 er . 7t one more time. When prompted for
a command, type an ' 1 ' to list your current CDs. You should find your
new CD nestled at the bottom of the list. Let's see how this works.

Stepping Through the Source Code

The file cdMa in. c is almost exactly the same as the file cdTracker. c
from Chapter 9. There are two differences:

/******************************** main ***/

main ()
{

char command:

gFirstPtr NULL;
gLastPtr = NULL;

ReadFile():

As the program starts, it calls the function Read Fi 1 e(). Read File()
reads in the contents of cdData, and is contained in the file cdFi 1 es. c.

while ((command= GetCommand()) != 'q')
{

switch(command
{

case 'n':
AddToList(ReadStruct()):
break:

case 'l':
ListCDs():
break:

Working With Files 291

WriteFile();

printf("Goodbye ... ");

The second change occurs just before main () exits when the
function W r i t e Fil e () is called. W r i t e Fi 1 e () writes the current linked
list back out to the file c d Data.

As your programs get larger and larger, you'll want to
divide your source code into two or more files. In general, I
name the file containing the function main<) something
like xxxMa in. c. where xxx ties in with the name of the
project. I give the other files names that indicate the nature
of the functions contained within. A name like xxxFi 1 es. c
is appropriate for file handling functions. Again, the xxx
matches the xxx in the file xxxMa in. c.

Once your projects reach the five-file level, you'll start
to reap the benefits of carefully thought-out file names.

#include <stdio.h>
#include <stdlib.h>

The file cdFiles.c starts with a pair of #includes. Between
<stdio. h> and <stdl i b. h>, all of the Standard Library functions
called in this file are covered.

#define CD_FILE_NAME "cdData"

The #define CD_F I LE_NAME refers to the file containing all of the
CD information.

292 Chapter 10

#define MAX_ARTIST_CHARS 50
#define MAX_TITLE_CHARS 50

struct CDinfo
I

char rating;
char artist[MAX_ARTIST_CHARS];
char title[MAX_TITLE_CHARS];
struct CDinfo *next;

l;

The #defines MAX_ARTI ST_CHARS and MAX_TITLE_CHARS and the
declaration of the CD Info st r u ct type should be familiar from
cdTracker. c. Notice that the globals gFi rstPtr and glastPtr have
been left out of this declaration. You'll see why next.

extern struct CDinfo *gFirstPtr;

The extern type modifier tells the compiler that this variable has
been declared in another file. This declaration gives us access to the
g Fi rs t Pt r declared in the file c d Ma i n . c.

In general, your globals should be declared in the same file
as main () . Any other file that needs access to a particular
global should declare that global using extern.

Another strategy you might want to consider calls for
the creation of a file called xxx Vars. h, which contains an
extern declaration of all of your global variables. You
#include xxxVars. h in each of your source code files
except xxxMa in. c. In xxxMa in. c, declare the globals
normally (without extern) toward the top of the file. This
strategy gives each of your source code files access to all of
your globals.

Working With Files 293

!******************************** ReadFile ***/

char ReadFile()
{

FILE *fp;
struct CDinfo *infoPtr;
int numCDs. num, i;

if (fp = fopen(CD_FILE_NAME, "r")) NULL)
return(FALSE) ;

The function Re ad Fi 1 e () tries to open the file c d Data for reading.
If the file could not be opened, the function returns FALSE. If you flip
back up to the function main (),you'll notice that the return value from
Read Fi 1 e() is ignored. That's OK.

For the moment, main () doesn't care whether the file was
opened. If you wanted to, you could put the call of
ReadFile() inside an if statement. If ReadFile() returns
FALSE, print a message that says the file could not be
opened. If Read File() returns TRUE, print a message that
says the file was opened successfurty.

Whether you take advantage of Read Fi 1 e()'s return
value or not, the feature is there waiting.

fscanfC fp, "%d", &numCDs);
FlushFile(fp);

Once the file is opened, fscanf () is called to read in the number of
CDs described in the file. Since fscanf () doesn't read in the carriage
return that follows the number, the function Fl ushFi le() was created.
Fl us h Fi 1 e () will read in characters until it gets a carriage return or an
EO F. F 1 us h Fi 1 e C) discards any characters it reads in.

294 Chapter 1 O

for (i=l; i <=numCDs; i++)
{

infoPtr = malloc(sizeof(struct CDinfo));

This for loop runs from 1 to the number of CDs described in the
file. For each CD, ma 11 oc () is called to allocate a block of memory the
size of a CD I n f o st r u ct. For the moment, i n fo Pt r is set to point to
this newly allocated block of memory.

if (infoPtr == NULL)
(

printf("Out of memory!!! Goodbye!\n");
exit(O);

If infoPtr is NULL, the call to mal loc() failed to allocate the neces­
sary amount of memory. In this case, an appropriate message is printed
and the program exits.

ReadFileline(fp, infoPtr->artist);
ReadFileline(fp, infoPtr->title);

If mal 1 oc() succeeded, Read Fi 1 el i ne() is called to read in a line of
text for the artist's name and a line of text for the CD's title.
Re ad Fi 1 e Li n e () does read in the carriage return at the end of the line,
so a call of F 1 us h Fi 1 e () is not necessary.

fscanf(fp, "%d". &num) ;
infoPtr->rating = num;
FlushFile(fp);

Next, fscanf C) is called to read in an int, representing the CD's
rating. Since the rating field was declared as a char, and the "%d"
format specifier reads in an int, we'll use a temporary variable to
receive the i n t from f scan f () , then use an assignment statement to
copy the int into the char represented by inf oPt r- >rating.

Working With Files 295

If we passed the address of the rating field directly to
fscanf(), fscanf () would try to write a 2-byte value in a
block of memory the size of a char (1 byte). The results of
this operation would be unpredictable at best.

AddTolist(infoPtr);

Once the fields of the st r u ct are filled, Add To Li st () is called to
add the struct to the linked list. AddToL i st () is found in the file
cdMain.c.

fclose(fp) :

return(TRUE):

Finally, the file 1s closed and a value of TRUE 1s returned by
ReadFile().

/******************************** FlushFile ***/

void FlushFile(FILE *fp)
{

int c;

while (Cc fgetc(fp)) != '\n') && (c != EOF))

The function F 1 us h Fil e () uses f get c () inside a w h il e loop to read
a character at a time. The wh i 1 e loop exits as soon as either a carriage
return or an EOF is read.

296 Chapter 10

/******************************** ReadFileline ***/

void ReadFileLine(FILE *fp, char *line)
{

char c;

Read Fi 1 el i ne() takes a file pointer and a pointer to an array of
cha rs as parameters.

while (Cc= fgetc(fp)) != '\n')
{

*line= c;
line++;

f get c () is called inside a w hi 1 e loop to read characters one at a
time. The loop places the characters inside the 1 i ne array, incrementing
the pointer 1 i n e each time through the loop. The loop exits when a
carriage return is read.

*line= O;

Once the entire line is read in, a 0 is copied to the end of the line,
creating a 0-terminated string.

/******************************** WriteFile ***/

void WriteFile()
I

FILE
struct CDinfo
int

*fp;
*infoPtr;
numCDs. i . num;

W r i t e Fi 1 e () writes the contents of the linked list out to the file
cdData.

Working With Files 297

if ((fp = fopen (CD_FI LE_NAME, "w")) == NULL
I

printf("***ERROR: Could not write CD file!");

First, f open () is used to open the file for writing. If the file couldn't
be opened, an error message is printed.

else
{

numCDs = CountCDs();

If the file was opened successfully, CountCDs () is called to find out
how many CDs will be written out to the file.

fprintf(fp, "%d\n", numCDs);

fpri ntf{) is used to write the number of CDs, followed by a
carriage return, out to the file.

infoPtr = gFirstPtr;

for C i=l: i <=numCDs; i++)
I

fprintf(fp, "%s\n", infoPtr->artist);
fprintf(fp, "%s\n", infoPtr->title);

num = infoPtr->rating;
fprintf{ fp, "%d\n", num);
infoPtr = infoPtr->next;

Next, a for loop is used to step through the linked list, one element
at a time. The artist, title, and rating fields are written to the file,
each followed by a carriage return. Once again, a temporary i n t is used
to hold the value of the ch a r i n f o Pt r ->rat i n g. The i n t is used
because f pr i n tf () expects a 2-byte value to go along with the "%d"
format specifier.

298 Chapter 10

fclose(fp):

Once the contents of the file are written out, the file is closed.

/******************************** CountCDs ***/

int CountCDs()
(

struct CDinfo
int

*infoPtr:
numCDs:

infoPtr gFirstPtr:
numCDs = 0:

while (infoPtr !=NULL)
(

infoPtr = infoPtr->next:
numCDs++:

return(numCDs):

Count CDs () steps through the linked list an element at a time. It
uses the variable numCDs to count the number of elements in the list,
returning numCDs at the end.

What's Next?

Chapter 11 tackles a wide assortment of programming topics. We'll
look at typecasting, the technique used to translate from one type to
another. We'll cover recursion, the ability of a function to call itself.
We'll also examine function pointers, variables that can be used to pass
a function as a parameter.

1) What's wrong with each of the following code fragments:

a. FILE *fp;

fp fopen("w", "My Data File");
if (fp != NULL)

printf("The file is open.");

b. char myData 7 ;
FILE *fp ;

fp = fopen("r". "My Data File");
fscanf("Here ' s a number: %d ", &myData);

c. FILE
char

*fp ;
*line ;

fp = fopen ("My Data File " . "w") :
fscanf(fp, "%s " . &line);

d. FI LE
char

*fp ;
*line;

fp = fopen("My Data File ". "r");
fscanf(fp, "%s " , &line);

299

300 Chapter 10

e. FI LE
char

*fp;
*line;

fp=fopen("My Data File", "r");
fscanf(fp, "%s", line);

2) Write a function that reads in a file with the following format:
a) The first line is the number of lines to be read in.
b) Each of the lines that follow this first line consists of a series

of three numbers separated by tabs.

3) Write a function that reads in a file with the following format:
a) The first line contains two numbers separated by tabs.
b) The first number specifies the number of lines to be read in.
c) The second number specifies the number of numbers on

each line. In this example:

2 3
4 5 6
5 6 7

the first line specifies that two lines are to follow, each line
containing three numbers.

4) Modify cdFi 1 er .7t so memory for the artist and title lines is
allocated as the lines are read in. First, you'll need to change the
CD Info st ruct declaration as follows:

struct CDinfo
(

char rating;
char *artist;
char *title;
struct CDinfo *next;

} ;

Working With Files 301

Not only will you call ma 11 oc () to allocate a CD Info st ruct,
you'll also call ma 11 oc <) to allocate space for the a rt is t and
tit 1 e strings. Don't forget to leave enough space for the
terminating 0 at the end of each string.

Filling in the
Gaps

11

apter
nee

What is Typecasting?
Cast With Care
Casting With Pointers

Unions
Why Use Unions?

Function Recursion
A Recursive Approach
Binary Trees

Searching Binary Trees
Recursion and Binary Trees

Function Pointers
More on Strings

strcpy
strcat
strcmp
strlen

What's Next?
Exercises

CONGRATULATIONS! BY NOW YOU'VE MASTERED MOST
of the fundamental C programming concepts. This chapter will fill you
in on some useful C programming tips, tricks, and techniques that will
enhance your programming skills. We'll start with a look at typecasting,
C's mechanism for translating one data type to another.

305

306 Chapter 11

What is Typecasting?

There often will be times when you find yourself trying to convert a
variable of one type to a variable of another type. For example, this
code fragment:

float f;
int i;

f 3.5;
f;

printf("i is equal to %d",);

causes this line:

i is equal to 3

to appear in the console window. Notice that the original value assigned
to f was truncated from 3.5 to 3 when the value in f was assigned to i.
This truncation was caused when the compiler saw an int on the left
side and a float on the right side of this assignment statement:

= f;

The compiler automatically translated the float to an int. In
general, the left side of an assignment statement is always translated to
the type on the right side when the assignment occurs. In this case, the
compiler handled the type conversion for you.

Typecasting is a mechanism you can use to translate the value of an
expression from one type to another. A typecast, or just plain cast,
always takes this form:

(type) expression

Filling in the Gaps 307

where type is any legal C type. In this code fragment:

float f:

f = 1.5:

the variable f gets assigned a value of 1.5. In this code fragment:

float f:

f = (int)l.5:

the value of 1.5 is cast as an int before being assigned to f. just as you
might imagine, casting a fl oat as an int truncates the fl oat, turning the
value 1.5 into 1. In this example, two casts were performed. First, the
fl oat value 1.5 was cast to the int value 1. When this int value was
assigned to the float f, the value was cast to the fl oat value 1.0.

Cast With Care

Use caution when you cast from one type to another. Problems can arise
when casting between types of a different size. Consider this example:

int i :
char c:

i 500:
c i :

Here, the value 500 is assigned to the int i. So far, so good. Next,
the value in i is cast to a char as it is assigned to the char c. See the
problem? Since a char can only hold values between -128 and 127,
assigning a value of 500 to c doesn't make sense.

308 Chapter 11

Casting With Pointers

Typecasting can also be used when working with pointers. This
notation:

(i n t *) my Pt r

casts the variable myPtr as a pointer to an int. Casting with pointers
allows you to link together st rue ts of different types. For example,
suppose you declared two st r u ct types, as follows:

struct Dog
{

struct Dog *next;

struct Cat
{

struct Cat *next;

By using typecasting, you could create a linked list that contains
both Cats and Dogs. You can make a Dog point to a Cat (Figure 11.1):

I myCat I

~-I __ ! ___ I!
Figure 11.1 my Dog. next points to myCat. next, which points to NULL.

struct Dog myDog;
struct Cat myCat;

myDog.next
myCat.next

&myCat;
NULL;

/* <-- Compiler complains */

Filling in the Gaps 309

In the first assignment statement, a pointer of one type is assigned to
a pointer of another type. &myCat is a pointer to a struct of type Cat.
my Dog. next is declared to be a pointer to a struct of type Dog. Unfortu­
nately, while the compiler is good about automatically typecasting C's
built-in types, it doesn't automatically perform the typecast for types you
design yourself. If you tried to compile the code above, THIN C would
report an error, complaining that the pointer types don't match. Here's
the corrected version:

struct Dog
struct Cat

myDog;
myCat;

myDog.next
myCat. next

(struct Dog *)(&myCat);
NULL;

Notice the extensive use of parentheses in the first assignment
statement. Whenever you perform a typecast, make sure you are casting
what you want to cast. For example:

struct Dog *dogPtr;

dogPtr = &myDog;

(struct Cat *)dogPtr->next &myCat; /* <-- Not what you
think */

This code attempts to cast a Dog's next field to a Cat pointer. That's
not what happens, however. Instead of next being cast, dogPtr is cast.
This is a common error. Here's the corrected version:

struct Dog *dogPtr;

dogPtr = &myDog;

(struct Cat *)(dogPtr->next) = &myCat;

As you can see, the parentheses make a big difference.

310 Chapter 11

Unions

Before we leave the topic of structs and typecasting, there's one more
area worth discussing. C offers a special data type, known as a union,
which allows a single variable to disguise itself as several different data
types. unions are declared just like structs. Here's an example:

union Number
I

int ·i ;
float f;
char *s;
myUnion;

This declaration creates a u n i on type named Numb e r. It also creates
an individual Number named myUni on. If this were a struct declara­
tion, you'd be able to store three different values in the three fields of
the struct. unions don't work this way.

When a uni on is declared, the compiler allocates the space required
by the largest of the uni on' s fields, sharing that space with all of
the uni on 's fields. Since an int requires 2 bytes, a float 4 bytes,
and a pointer 4 bytes, my Uni on is allocated exactly 4 bytes. You can
store an int, a fl oat, or a char pointer in my Uni on. The compiler
allows you to treat myUni on as any of these types. To refer to myUni on
as an int, refer to:

myUnion.i

To refer to myUni on as a fl oat, refer to:

myUnion.f

To refer to my Un i on as a ch a r pointer, refer to:

myUnion.s

Filling in the Gaps 311

You are responsible for remembering which form the uni on is
currently occupying.

If you store an int in my Uni on by assigning a value to
my Uni on. i, you'd best remember that fact. If you proceed
to store a fl oat in myUni on. f, you've just trashed your int.
Remember, there are only 4 bytes allocated to the entire
uni on.

One way to keep track of the current state of the uni on is to declare
an int to go along with the uni on, as well as a #define for each of the
unions fields:

#define INT 1
#define FLOAT 2
#define POINTER 3

union Number
(

int i :
float f;
char *s;

myUnion;

int myUnionTag;

If you are currently using myUnion as a float, assign the value
FLOAT to myUni on Tag. Later in your code you can use myUni on Tag
when deciding which form of the uni on you are dealing with:

if (myUnionTag == INT)
Do I n t Stu ff (my Un i on . i) ;

312 Chapter 11

else if (myUnionTag == FLOAT)
DoFloatStuff(myUnion.f);

else
DoPointerStuff(myUnion.s);

Why Use Unions?

In general, unions are most useful when dealing with two data struc­
tures that share a set of common fields, but differ in some small way.
For example, consider these two st ruct declarations:

struct Pitcher
(

char name[40 J:
int team:
int strikeouts;
int runsAllowed;

} ;

struct Batter
(

char name[40 J:
int team:
int runsScored:
int homeRuns:

These structs might be useful if you were tracking the pitchers and
batters on your favorite baseball team. Both structs share a set of
common fields, the array of ch a rs named name and the int named
team. Both structs have their own unique fields as well. The Pitcher
struct contains a pair of fields appropriate for a pitcher, strikeouts
and runsA 11 owed. The Batter struct contains a pair of fields appro­
priate for a batter, runsScored and homeRuns.

One solution to your baseball-tracking program would be to
maintain two types of structs, a Pitcher and a Batter. There is

Filling in the Gaps 313

nothing wrong with this approach. There is an alternative, however.
You can declare a single st ruct that contains the fields common to
Pitcher and Batter, with a uni on for the unique fields:

#define METS 1
#define REDS 2

#define PITCHER 1
#define BATTER 2

struct Pitcher
I

int strikeouts;
int runsAllowed;

} ;

struct Batter
{

int runsScored:
int homeRuns:

} :

struct Player
{

int type:
char name[40 J:
int team:
union
{

u;

struct Pitcher pStats:
struct Batter bStats:

Here's an example of a Pl ayer declaration:

struct Player myPlayer:

314 Chapter 11

Once you created the Player struct, you would initialize the type
field with one of either PITCHER or BATTER:

myPlayer.type = BATTER;

You would access the name and team fields like this:

myPlayer.team =METS;
printf("Stepping up to the plate: %s", myPlayer.name);

Finally, you'd access the uni on fields like this:

if (myPlayer.type == PITCHER)
myPlayer.u.pStats.strikeouts = 20;

The u was the name given to the union in the declaration of the
Pl ayer type. Every Pl ayer you declare will automatically have a uni on
named u built into it. The uni on gives you access to either a Pitcher
struct named pStats or a Batter struct named bStats. The example
above references the strikeouts field of the pStats field.

unions provide an interesting alternative to maintaining multiple
data structures. Try them. Write your next program using a uni on or
two. If you don't like them, you can return them for a full refund.

Function Recursion

Some programming problems are best solved by repeating a mathe­
matical process. For example, to learn whether a number is prime (see
Chapter 6) you might step through each of the integers between 1 and
the number itself, one at a time, searching for a factor. If no factor is
found, you have a prime. The process of stepping through the numbers
between 1 and the possible prime is called iteration.

In programming, iterative solutions are fairly common. Almost
every time you use a for loop, you are applying an iterative approach

Filling in the Gaps 315

to a problem. An alternative to the iterative approach is known as
recursion. In a recursive approach, instead of repeating a process in a
loop, you embed the process in a function and have the function call
itself until the process is complete. The key to recursion is a function
calling itself.

Suppose you wanted to calculate 5 factorial (also known as 5 !). The
factorial of a number is the product of each integer from 1 up to the
number. For example, 5 factorial is:

5! = 5 * 4 * 3 ::· 2 * 1 = 120

Using an iterative approach, you might write some code like this:

main ()
{

inti. num. fac;

num = 5;
fac 1;

for i = 1 ; i < =n um; i ++)
f ac *= i ;

printf("%d factorial is %d.". num. fac);

By the Way _____________________ _

If you are interested in trying this code, it is provided on
disk in the Projects folder, under the subfolder named
iterate.

316 Chapter 11

If you ran this program, you'd see this line printed in the console
window:

5 factorial is 120.

As you can see from the source code, the algorithm steps through
(iterates) the numbers 1 through 5, building the factorial with each
successive multi plication.

A Recursive Approach

You can use a recursive approach to solve the same problem. For
starters, you'll need a function to act as a base for the recursion, a func­
tion that will call itself. There are two things you'll need to build into
your recursive function. First, you'll need a mechanism to keep track of
the depth of the recursion. In other words, you'll need a variable or
parameter that changes, depending on the number of times the recursive
function calls itself.

Second, you'll need a terminating condition, something that tells the
recursive function when it's gone deep enough. Here's one version of a
recursive function that calculates a factorial:

int factorial(int num)
{

if (num > 1)
num *=factorial(num - 1);

return (num) ;

fa ct o r i a l () takes a single parameter, the number whose factorial
you are trying to calculate. f actori a 1 () first checks to see whether the
number passed to it is greater than 1. If not, factor i al () calls itself,
passing 1 less than the number passed into it. This strategy guarantees
that, eventually, factorial () will get called with a value of 1.

Filling in the Gaps 317

Figure 11.2 shows this process in action. The process starts with a
call to f actori a 1 ():

result= factorial(3);

Take a look at the leftmost factorial ()source code in Figure 11.2.
factorial () is called with a parameter of 3. The if statement checks
to see if the parameter is greater than 1. Since 3 is greater than 1, the
statement:

num *=factorial(num - 1);

is executed. This statement calls factori a 1 C) again, passing a value of
n -1, or 2, as the parameter. This second call of factor i al () is pictured
in the center of Figure 11.2.

Int factorial(int~um l
{
if < num > 1 >
num *= factorial(num -

I
1) ;

~
int factorial(int num >
{
if (num > 1)
num *= factorial< num - 1 >;

I 111
return(num >; T

} int factorial(int num)

return(num >;
1

1uj*1I

{ 4 !Fails~ since num == 1 I
if (num > 1 >
num *= factorial(num - 1 >;

return(num >;
}

Figure 11.2 The recursion process caused by the call factorial (3) .

318 Chapter 11

It's important to understand that this second call to
f actori a 1 () is treated just like any other function call that
occurs in the middle of a function. The calling function's
variables are preserved while the called function runs. In
this case, the called function is just another copy of
f actori a 1 ().

This second call of f actori a 1 () takes a value of 2 as a parameter.
The if statement compares this value to 1 and, since 2 is greater than
1, executes the statement:

num *=factorial(num - 1);

This statement calls factor i a 1 () yet again, passing nu m -1, or 1, as a
parameter. The third call of factorial () is portrayed on the rightmost
side of Figure 11.2.

The third call off actori al () starts with an if statement. Since the
input parameter was 1, the if statement fails. Thus, the recursion
termination condition is reached. Now, this third call of factor i a 1 ()
returns a value of 1.

At this point, the second call of factor i a l () resumes, completing
the statement:

num *=factorial(num - 1);

Since the call of factor i a 1 () returned a value of 1, this statement
is equivalent to:

num *= l;

Filling in the Gaps 319

leaving num with the same value it came in with, namely 2. This second
call off actori al () returns a value of 2.

At this point, the first call of factorial () resumes, completing the
statement:

num *=factorial(num - 1);

Since the second call of factorial () returned a value of 2, this
statement is equivalent to:

num *= 2:

Since the first call of factor i a l () started with the parameter nu m
taking a value of 3, this statement sets n um to a value of 6. Finally, the
original call off actori al () returns a value of 6. This is as it should be,
since 3 factorial= 3 * 2 * 1 = 6.

Binary Trees

The recursive version of the factorial program is also
provided on disk. You'll find it in the Projects folder,
under the subfolder named recurse. Open the project and
follow the program through, line by line.

As you learn more about data structures, you'll discover new applica­
tions for recursion. For example, one of the most-used data structures
in computer programming is the bi nary tree (Figure 11.3). As you'll
see later, binary trees were just made for recursion. The binary tree is
similar to the linked list. Both consist of st r u c ts connected by pointers
embedded in each st r u ct.

320 Chapter 11

Root of
Binary Tree

~

~

__. ..
--~ -
_l ...

... *
I J

I 1
~

I _I_ _f_

* ~ ~

I
-

I
-:I:-

Figure 11.3 A binary tree.

Linked lists are linear. Each st ruct in the list is linked by pointers
to the struct behind it and in front of it in the list. Binary trees always
start with a single st r u ct, known as the root st r u ct or root node.
Where the linked-list structs we've been working with contain a single
pointer, called next, binary-tree structs each have two pointers,
usually known as left and right.

Check out the binary tree in Figure 11.3. Notice that the root node
has a left child and a right child. The left child has its own left child but
its r i g ht pointer is set to NULL. The left child's left child has two NU LL
pointers. A node with two NULL pointers is known as a leaf node or
terminal node.

Binary trees are extremely useful. They work especially well when
the data you are trying to sort has a comparative relationship. This·
means that if you compare one piece of data to another, you '11 be able

Filling in the Gaps 321

to judge the first piece as greater than, equal to, or less than the second
piece. For example, numbers are comparative. Words in a dictionary
can be comparative, if you consider their alphabetical order. The word
iguana is greater than aardvark, but less than xenophobe.

Here's how you might store a sequence of words, one at a time, in a
binary tree. We'll start with this list of words:

opulent
entropy
salubrious
ratchet
coulomb
yokel
tortuous

Figure 11.4 shows the word op u 1 en t added to the root node of the
binary tree. Since it is the only word in the tree so far, both the left and
right pointers are set to NULL. Figure 11.5 shows the word entropy
added to the binary tree. Since entropy is less than opu 1 ent (i.e., comes
before it alphabetically), entropy is stored as opu 1 ent 's left child.

I opulent

Figure 11.4 The word opu 1 ent is entered into the binary tree.

opulent

entropg

Figure 11.5 The word entropy is less than the word opulent and is
added to its left in the tree.

322 Chapter 11

Next, Figure 11.6 shows the word salubrious added to the tree.
Since salubrious is greater than opulent, it becomes opul ent's right
child. Figure 11.7 shows the word ratchet added to the tree. First,
ratchet is compared to opulent. Since ratchet is greater than
op u l en t we follow the right pointer. Since there's a word there already,
we'll have to compare ratchet to this word. Since ratchet is less than
s al u b r i ou s, we'll store it as s al u brio us 's left child.

Figure 11. 8 shows the binary tree after the remainder of the word list
has been added. Do you understand how this scheme works? What
would the binary tree look like if coulomb was the first word on the list?
The tree would have no left children and would lean heavily to the right.

opulent
~

~

~

l ~

entropy salubrious
-~

_l _,
-IL.. ~ -1 ... ~

Figure 11.6 The word salubrious is greater than the word opulent
and is added to its right in the tree.

opulent
-

~ l
entropy salubrious

~ ~

I _I_

~ -:!:- •Ir -!-
ratchet

-

1 _I_
-!-

Figure 11.7 The word ratchet is greater than opulent but less than
s a 1 u b r i o us and is placed in the tree accordingly.

Filling in the Gaps 323

What if yokel was the first word entered? As you can see, this particular
use of binary trees depends on the order of the data. Randomized data
that starts with a value close to the average produces a balanced tree. If
the words had been entered in alphabetical order, you would have ended
up with a binary tree that looked like a linked list.

~

Data structure theory is one of my favorite topics in all of
computer science. Though I'd like to rattle on and on about
variant tree structures and binary tree balancing algorithms,
my editors would like me to get this book out sometime this
year. This shouldn't stop you, though. Go to your library and
check out a book on data structures and another on sorting
and searching algorithms (which we'll get to in a minute).
Or, if you can wait, get Volume II of this series, which I guar­
antee will have more on my favorite subject.

opulent
--

. '" l
entropy salubrious --

I
~

~

l ~'" * ~,

coulomb ratchet yokel

-'- _I_ _I_

-!- --:?- * 0 -!-
tortuous

f

....... -!-

Figure 11.8 The words coulomb, yokel, and tortuous are added to the
tree.

324 Chapter 11

Searching Binary Trees

Now that your word list is stored in the binary tree, the next step is to
look up a word in the tree. This is known as searching the tree. Suppose
you wanted to look up the word tortuous in your tree. You'd start
with the root node, comparing tortuous with opulent. Since tortuous
is greater than opulent, you'd follow the right pointer to salubrious.

You'd follow this algorithm down to yoke 1 and finally tortuous. A
binary tree that contained just words may not be that interesting, but
imagine that these words were names of great political leaders. Each
struct might contain a leader's name, biographical information, per­
haps a pointer to another data structure containing great speeches. The
value, name, or word that determines the order of the tree is said to be
the key.

You don't always search a tree based on the key. Sometimes, you'll
want to step through every node in the tree. For example, suppose your
tree contained the name and birth date of each of the presidents of the
United States. Suppose also that the tree was built using each president's
last name as a key. Now suppose you wanted to compose a list of all
presidents born in July. In this case, searching the tree alphabetically
won't do you any good. You'll have to search every node in the tree.
This is where recursion comes in.

Recursion and Binary Trees

Binary trees and recursion were made for each other. As mentioned
earlier, recursion requires a changing condition and a terminating con­
dition. For binary trees, the changing condition is the traversal of the left
and right pointers. The terminating condition occurs when you reach a
terminal node. Here's an example of a tree traversing, recursive function:

struct Tree
{

int value:
struct Tree *left:

struct Tree *right;
myTree;

Searcher(struct Tree *treePtr
{

if (treePtr != NULL)
{

VisitNode(treePtr);
Searcher(treePtr->left);
Searcher(treePtr->right);

Filling in the Gaps 325

The function Se archer () takes a pointer to a tree node as its
parameter. If the pointer is NULL, we must be at a terminal node and
there's no need to recurse any deeper. If the pointer points to a Tree
node, the function VisitNode() is called. VisitNode() performs
whatever function you want performed for each node in the binary tree.
In our current example, Vis i tNode () could check to see if the president
associated with this node was born in July. If so, Vis i tNode () might
print the president's name in the console window.

Once the node is visited, Searcher () calls itself twice, once passing
a pointer to its left child and once passing a pointer to its right child. If
this version of Searcher () were used to search the tree in Figure 11.8,
the tree would be searched in the order described in Figure 11.9. This
type of search is known as a preorder search, because the node is visited
before the two recursive calls take place.

Here's a slightly revised version of Searcher(). Without looking at
Figure 11.10, can you predict the order that the tree will be searched?
This version of Searcher() performs an in-order search of the tree:

Searcher(struct Tree *treePtr
{

if (treePtr != NULL)
{

Searcher(treePtr->left);

326 Chapter 11

VisitNode(treePtr);
Searcher(treePtr->right);

opulent

salubrious

coulomb ratchet

tortuous

Figure 11.9 The search order produced by the first version of
Searcher().

Here's a final look at Searcher(). This version performs a
postorder search of the tree:

Searcher(struct Tree *treePtr
{

if (treePtr != NULL)
{

Searcher(treePtr->left);
Searcher(treePtr->right);
VisitNode(treePtr);

3

opulent

2

entropg salubrious

coulomb ratchet

tortuous

Figure 11.10 An in-order search of a binary tree.

7

opulent

salubrious

1

coulomb ratchet

tortuous

Figure 11.11 A postorder search of a binary tree.

Filling in the Gaps 327

328 Chapter 11

Recursion and binary trees are two extremely powerful program­
ming tools. Learn how to use them-they'll pay big dividends.

Function Pointers

Next on the list is the subject of function pointers. Function pointers
are exactly what they sound like: pointers that point to functions. Up to
now, the only way to call a function was to place its name in the source
code:

MyFunction();

Function pointers give you a new way to call a function. Function
pointers allow you to say, "Execute the function pointed to by this
variable." Here's an example:

int (*myFuncPtr)(float);

This line of code declares a function pointer named myFuncPtr.

my Fune Pt r is a pointer to a function that takes a single parameter, a
float, and that returns an int. The parentheses in the declaration are
all necessary. The first pair tie the * to myFuncPtr, ensuring that
my Fun c Pt r is declared as a pointer. The second pair surround the
parameter list and distinguish my Fun c Pt r as a function pointer.

Suppose we had a function called Dea 1 TheCa rds () that took a
f 1 oat as a parameter and returned an i n t. This line of code assigns the
address of DealTheCards() to the function pointer myFuncPtr:

myFuncPtr = DealTheCards;

Notice that the parentheses were left off the end of Deal TheCards().

This is critical. If the parentheses were there, the code would have called
DealTheCards(), returning a value to myFuncPtr. You may also have
noticed that the & operator wasn't used. When you refer to a function

Filling in the Gaps 329

without using the parentheses at the end, the compiler knows you are
referring to the address of the function.

Now that you have the function's address in the function pointer,
there's only one thing left to do-call the function. Here's how it's done:

int result;

result= (*myFuncPtr)(3.5);

This line calls the function DealTheCards(), passing it the
parameter 3.5, and returning the function value to the int result.
Once again, both sets of parentheses are necessary.

There's a lot you can do with function pointers. You can
create an array of function pointers. How about a binary
tree of function pointers? You can pass a function pointer as
a parameter to another function. Taking this one step
further, you can create a function that does nothing but call
other functions. Cool!

For your enjoyment, there's a function-calling example on
the source code disk. You'll find the project in the Projects
folder, inside the funcPtr subfolder. The program is pretty
simple, but it should serve as a useful reference when you
start using function pointers in your own programs.

330 Chapter 11

More on Strings

The last topic we'll tackle in this chapter is string manipulation.
Although we've done some work with strings in previous chapters,
there are a number of Standard Library functions that haven't been
covered. Each of these functions requires that you include the file
<string. h>. Here are a few examples ...

strcpy

st rcpy () is declared as follows:

char *strcpy(char *dest, char *source):

st r c p y () copies the string pointed to by source into the string
pointed to by de st. strcpy() copies each of the characters in source.
including the terminating 0 byte. That leaves des t as a properly
terminated string. strcpy() returns the pointer dest.

An important thing to remember about strcpy() is that you are
responsible for ensuring that source is properly terminated, and that
enough memory is allocated for the string returned in dest. Here's an
example of st rcpy () in action:

char name[20 J:

st r c p y C name , " Dave Ma r k") :

This example uses a string literal as the source string. The string is
copied into the array name. The return value was ignored.

Filling in the Gaps 331

strcat

st rca t () is declared as follows:

char *strcat(char *dest, *source);

strcat() appends a copy of the string pointed to by source onto the
end of the string pointed to by dest. As was the case with strcpy(),
strcat() returns the pointer dest. Here's an example of strcat() in
action:

char name[20 J;

strcpy(name, "Dave 11
);

strcat(name, "Mark");

The call of strcpy() copies the string "Dave " into the array name.
The call of strcat() copies the string "Mark" onto the end of dest,
leaving dest with the properly terminated string "Dave Mark". Again,
the return value was ignored.

strcmp

st r cmp () is declared as follows:

int strcmp(char *sl, char *s2);

strcmp() compares the strings sl and s2. strcmp() returns 0 if the
strings are identical, a positive number if s 1 is greater than s 2, and a
negative number if s 2 is greater than s 1. The strings are compared one
byte at a time. If the strings are not equal, the first byte that is not
identical determines the return value.

Here's a sample:

if (strcmp("Hello", "Goodbye"))
printf("The strings are not equal!") ;

Notice that the if succeeds when the strings are not equal.

332 Chapter 11

strlen

strl en() is declared as follows:

typedef size_t unsigned long;

size_t strlen(char *s);

The typedef statement is used to create a custom type.
typedef follows this pattern:

typedef newTypeName existingType;

This statement:

typedef size_t unsigned long;

creates a new type called s i ze_t which is equivalent to the
type unsigned 1 ong. Once you've created a type using
typedef, you can use the new type name in your variable
declarations.

st r 1 en () returns the length of the string pointed to by s. As an
example, this call:

1 ength = strl en("Aardvark") ;

returns a value of 8, the number of characters in the string, not
counting the terminating zero.

Filling in the Gaps 333

What's Next?

Chapter 12 answers the question, "Where do you go from here?" Do
you want to learn to create programs with that special Macintosh look
and feel? Would you like more information on data structures and C
programming techniques? Chapter 12 offers some suggestions to help
you find your programming direction.

1) What's wrong with each of the following code fragments:

a. struct Dog
l

struct Dog *next ;

struct Cat
(

struct Cat *next ;

struct Dog myDog;
struct Cat myCat:

myDog.next &myCat:
myCat.next NULL:

b. struct Dog
{

struct Dog *next ;
myDog , *dogPtr ;

struct Cat
{

struct Cat *next;
myCat ;

335

336 Chapter 11

dogPtr = &myOog;

(struct Cat *)dogPtr->next &myCat;

c. uni on Number

int i ;
fl oat f;
char *s;

} ;

Number myUnion;

myUnion.f = 3.5;

d. struct Player
{

int type;
char name[40 J:
int team;
union
I

LI;

int
fl oat

my Int;
myFloat;

my Pl ayer;

myPlayer.team = 27;
myPlayer.myint = -42;
myPlayer.myFloat = 5.7;

e. int *myFuncPtr(int);

myFuncPtr = main;
*myFuncPtr();

Filling in the Gaps 337

f. char s[20 J;

strcpy(s, "Hello 11
);

if (strcmp(s, 0 Hello 0
))

printf(0 The strings are the same! 0
);

g. char *s:

s = malloc(20);
strcpy("Heeeers Johnny! 0

, s);

h. char *s:

strcpy(s, "Aardvark");

2) Write a program similar to cdFil er that uses a binary tree
instead of a linked list. The tree should order the information
using the alphabetizing approach demonstrated in this chapter,
using the a rt is t field as the key. The list function should use a
recursive algorithm to search the entire tree.

3) Add a function to the program in Exercise 9 that randomizes the
tree when the user types ' r' in response to the command
prompt. One way to randomize the tree is to:

a. Pull all the nodes out, creating a single linked list com­
prising all the nodes in the tree.

b. Use rand () to generate a random number from 1 to the
number of elements remaining in the linked list. Use the
random number to select the appropriate element from the
linked list.

c. Add the element to the tree, deleting it from the linked list.

d. Go back to step b, repeating the process until all the ele­
ments in the linked list have been placed back in the tree.

Adding the
Macintosh
Interface

12

The Macintosh User Interface
The Graphical User Interface
The Macintosh Toolbox

Opening windowMaker.n
Running windowMaker.n

Getting Started With the Mac
Toolbox

Inside Macintosh
The Macintosh C Programming

Primer
Macintosh Programming Secrets
Go Get 'Em

NOW THAT YOU'VE MASTERED THE FUNDAMENTALS OF
C, you're ready to dig into the specifics of Macintosh programming. As
you 've run the example programs in the previous chapters, you've
probably noticed that none of the programs sport the look and feel that
make a Mac program a Mac program.

For one thing, all of the interaction between you and your program
focuses on the keyboard and the console window. None of the programs
take advantage of the mouse. None offer color, pull-down menus, or a
selection of different fonts. These are all part of the Macintosh user
interface.

341

342 Chapter12

The Macintosh User Interface

User interface is the part of your program that interacts with the user.
So far, your user interface skills have focused on writing to and reading
from the console window, using functions such as pr i n t f () , scan f () ,
and getcha r ().The advantage of this type of user interface is that each
of the aforementioned functions is available on every machine that
supports the C language. Programs written with a console-based user
interface are extremely portable.

On the down side, console-based user interfaces tend to be limited.
With a console-based interface, you can't use an elegant graphic to make
a point. Text-based interfaces can't provide animation or digital sound.
In a nutshell, the console-based interface is simple and, at the same time,
simple to program. The Macintosh's graphical user interface (GUI) offers
an elegant, more sophisticated method of working with a computer.

The Graphical User Interface

A Macintosh just wouldn't be the same without windows, pull-down
and pop-up menus, icons, push buttons, and scroll bars. You can and
should add these user interface elements to your C programs. The hard
part is deciding which features to use where.

Once you've identified the pieces of the Mac interface you want in
your program, you're ready to take advantage of the Mac's version of
the Standard Library: the Macintosh Toolbox.

The Macintosh Toolbox

Every Mac that rolls off the assembly line comes with a slew of user
interface functions built in. Each Mac comes with a read-only memory
(ROM) chip that contains the more than 700 functions that make up the
Macintosh Toolbox. The Mac Toolbox contains functions that create
windows on the screen and others that draw text in these windows.

Adding the Macintosh Interface 343

There are functions for drawing shapes, lines, and dots in color and in
black and white. There's a set of functions that allows you to implement
your own pull-down menus. The Mac Toolbox is huge.

Every program that supports the standard Macintosh interface relies
on the Mac Toolbox. That's why Macintosh programs have such a con­
sistent look and feel. Take a look at the pull-down menu in Figure 12.1.
Notice the close resemblance to every other Mac pull-down menu.
That's because the Toolbox provides a set of functions that implements a
standard Macintosh pull-down menu bar. When a Mac programmer
wants to implement a pull-down menu, he or she always turns to this set
of functions, collectively known as the Menu Manager. The Menu
Manager has a set of rules it follows when pulling down a menu. For
example, a standard Macintosh menu is always drawn using the
Chicago font. The Chicago font is built into the Mac's ROM.

Undo 3€2

Cut 8€H
Copy 8€C
Paste 8€U
Clear
Select Rll 3€R

Show Clipboard

Figure 12.1 An Edit menu. Do you know where it came from?

By the Way----------------------

This particular menu comes from the Finder, the application
that runs when your Macintosh first starts up. The Finder is
the application containing all of the windows and icons you
use to launch other applications.

344 Chapter 12

The Toolbox is divided into a series of managers. As you learn to
implement a standard Mac interface, you' 11 learn a bout the functions
that make up each manager. For example, you'll learn how to use the
functions that make up the Window Manager to create and maintain
your program's windows. You'll use the Control Manager to manage
scroll bars, push buttons, and other standard Macintosh controls, like
the ones shown in Figure 12.2.

® Radio Button # 1

0 Radio Button #2

0 Radio Button #3

£ Pushbutton)

111111

Figure 12.2 A set of radio buttons, a push button, and.a scroll bar. Each of
these is created and maintained via the Control Manager.

Opening window Maker.1t

Our final project, wi ndowMa ke r. x, presents a complete Mac Toolbox
application. Although wi ndowMaker .x doesn't do much, it does demon­
strate some of the user interface concepts you've been reading about.

If you 're not already in it, launch THIN C by double-clicking on its
icon in the Finder. When prompted for a project to open, go into the
Projects folder, then into the w i n d owM a k er su bfolder, and open the
project named wi ndowMa ke r. x.

Running windowMaker.1t

Run the project by selecting Run from the Project menu. Once THIN
C recompiles your source code, the menu bar in Figure 12.3 will appear
on the top of your screen. If you have a color system with the color
turned on, the S should appear in color.

Adding the Macintosh Interface 345

,.. ~

s File Edit

Figure 12.3 wi ndowMa ker 's menu bar.

For starters, select the first item from the S menu,
Rbout WindowMaker. ... You shou ld hear a short beep, then the
window shown in Figure 12.4 should appear on the screen. I'll tell you
about the Macintosh C Programming Primer a little later. For the
moment, click your mouse in the OK button to dismiss the window.

lE . .
Rnother fine program from the
Macintosh C Programming Primer!
©1989, D. Mark & C. Reed!!!

Figure 12.4 This w indow appears when you select Rbout
WindowMaker. .. from the s menu.

Next, click your mouse on the File menu. The menu shown in
Figure 12.5 should appear. Note the Command-key equivalents located
to the right of each menu item. A Command-key equivalent equates a
keyboard sequence to a menu item. For example, if you hold down the
Command key (the key with the~ on it) and type an N, the New item
will be selected.

Select the first item, New. A window will appear, bearing the title
Window (Figure 12.6). A celebratory picture will appear, centered in
the window. Select New several more times. Several more windows

346 Chapter 12

will appear. Try clicking your mouse in a window's close box. The
window should close. Open a few more windows. Select Close to close
a window. Click on a back window to bring it to the front. Notice that
as a window is uncovered, its picture is automatically redrawn. When
you are done, select Quit from the File menu to exit the program.

New 8€N
Close 38W
Quit 880

Figure 12.5 wi ndowMaker's File menu.

§0 Window

Figure 12.6 A wi ndowMaker window.

Getting Started With the Mac Toolbox

The next step in your programming education is to learn how to use the
Mac Toolbox in your own programs. The first thing you should do is
buy a copy of the THINK C development environment from Symantec.

Adding the Macintosh Interface 347

THINK C comes with everything you'll need to interface with the
Toolbox, and then some. If you'd like to learn more about THINK C,
turn to Appendix E.

When you order THINK C, make sure you take advantage of
the money-saving coupon in the back of the book.

Once you've purchased your copy of THINK C, you 're ready to
start using the Toolbox. Fortunately, there's a lot of literature available
to help ease you through the Toolbox learning curve.

Inside Macintosh

If there is one item found on every Macintosh programmer's bookshelf,
it's a well-worn copy of Inside Macintosh, Apple's official Macintosh
programmer's reference guide. It covers the Toolbox in depth, listing
every Toolbox function, along with the function's parameters, and that
function's place in the Mac universe.

Inside Macintosh is broken out as a series, Volumes I through VI,
and a cross reference that covers the first five volumes is also available.
Get a copy of Volume I, which introduces the Macintosh graphical user
interface and describes most of the Toolbox functions you'll need to get
started.

Once you get comfortable with the Toolbox, you'll probably want to
pick up the rest of the Inside Macintosh series. If you only get one more
book after Volume I, make sure it's Volume V, which covers, in detail,
the parts of the Toolbox that deal with color. If you 're going to program
using color, Volume V is essential. Next on the priority list is Volume VI,

348 Chapter 12

which covers the changes Apple made to the Toolbox when they
introduced System 7.0. Once you have Volume VI, pick up Volume IV,
which covers changes made to the Toolbox when the Mac Plus was
introduced. Volume IV contains a complete revision of the File Manager
information presented in Volume I. If you want to work with files, you'll
want to check out Volume rv. Last on the list are Volumes II and III.

By the Way _____________________ _

There is also a hardcover edition of Inside Macintosh, which
contains Volumes I, II, and Ill. For my money, however, the
softcover editions are a better buy. The hardcover
combination of l.;111 is both heavy and unwieldy.

The Macintosh C Programming Primer

When Inside Macintosh was written, Pascal was the primary Macintosh
programming language. Because of this, all of the function descriptions
and examples presented in Inside Macintosh were written in Pascal. In
addition, the books were written as a reference and not a tutorial.
Basically, Inside Macintosh is critical once you understand the basics of
programming with the Toolbox.

There is a book that helps bridge the gap for first-time Macintosh
programmers. The Macintosh C Programming Primer, by Dave Mark
and Cartwright Reed, offers a step-by-step tour through the mysteries
of the Toolbox. The Mac Primer walks you through each of the
Toolbox Managers, punctuating each chapter with a variety of sample
programs. The Mac Primer takes the sting out of learning to program
using the Mac Toolbox.

The Mac Primer also offers a lot of advice for programmers looking
to get involved with the Macintosh development community. Whether

Adding the Macintosh Interface 349

you are interested in developing your own best-selling Macintosh
application, or just want to hook up with other Mac developers, the
Mac Primer can help. Inside, you'll find descriptions of Apple's devel­
oper relations programs, designed to help you get your products out the
door. You can read about AppleLink, Apple's internal electronic mail
system that you can be a part of. There are descriptions of technical
reference material available from Apple, as well as from third parties.

In general, Cartwright and I tried to put everything into the Primer
that we were looking for when we were first learning to program the
Macintosh. We hope you enjoy it.

Macintosh Programming Secrets

A book that I frequently turn to is Scott Knaster's excellent Macintosh
Programming Secrets. This book is full of Macintosh programming tips,
tricks, and techniques. Scott takes his years of experience as an Apple
employee and puts them to good use, revealing some of the deep, dark
secrets that only a Mac aficionado could know. Once you've mastered
the basics of Macintosh Toolbox programming, give this book a try.

Go Get 'Em

Well, that's about it. I hope you enjoyed reading this book as much as I
enjoyed writing it. Above all, I hope you are excited about C. Now that
you have C under your belt, go out there and write some source code.

Enjoy!

A A

Glossary

algorithm: The technical approach used to solve a problem.

ANSI C: The standard version of the C programming language estab­
lished by the American National Standards Institute.

append: A mode used when opening a file for writing. Append mode
specifies that any data written to the fi le is written after any existing
data.

argument: Another word for parameter.

array: A variable containing a sequence of data of a particular type. For
example, you can declare an array of 50 i nts.

array element: The smallest addressable unit of an array. In an array of
50 i nts, each int represents an element of the array.

ASCII character set: A set of 128 standard characters defined by the
American Standard Code for Information Interchange.

backslash sequence: A single character represented by the combination
of the backs lash (\) and another char acter. For example, the
sequence ' \ n ' represents a new line character.

351

352 Appendix A

balanced tree: A binary tree that maintains a uniform depth. The more
unbalanced a tree becomes, the less efficient some tree-searching
algorithms become.

bell curve: A bell-shaped statistical curve that represents a normal
probability distribution. Plotting the possible rolls of a pair of six­
sided dice yields a bell curve.

binary: A system of mathematics based on the two digits 0 and 1.
Computers use binary to represent the value stored in memory.

bit: The smallest unit of computer memory, a bit has a value of either 0
or 1.

case-sensitive: Sensitive to the difference between upper- and lower-case
letters. C is a case-sensitive language and therefore distinguishes
between names such as MyFuncti on() and MY FUNCTION().

cast: See typecast.

Central Processing Unit (CPU): The integrated circuit that controls the
processing of a computer. The Macintosh family of computers is
driven by a 68000 series CPU.

child: A node in a tree pointed to by another node. The node that
points to a child node is known as the child's parent.

Command-key equivalent: A key sequence tied to a specific pull-down
menu item. Command-key equivalents always consist of a keyboard
key combined with the Command (3€) key.

comparative operator: An operator that compares its left side with its
right side, producing a value of either TRUE or FALSE.

comparative relationship: The relationship between the two sides of a
comparative operator that determines whether the operator returns
a value of TRUE or FALSE.

compiler: A program that translates source code into the machine code
understood by a computer.

complex statements: Statements made up of several parts, and possibly
including other statements.

console: A terminal or window that receives the output from Standard
Library functions, such as print f () and echoes the input from the
keyboard.

Glossary 353

Control Manager: The functions in the Macintosh Toolbox that deal
with controls, such as radio buttons, push buttons, and scroll bars.

counter: A variable whose sole purpose is to keep a running count of an
event. The variable that changes each time through a for loop is a
counter.

declaration: A statement used to define a new variable, function, or
type. A variable declaration establishes both the name and type of
the variable.

decrement: Decrease in value. Typically, decrementing a variable
decreases its value by 1.

dereference: Use a pointer to retrieve the contents of the memory
location that the pointer points to.

dimension: The number of array elements associated with an array.

doping: The process of using a laser beam to create impurities in the
silicon of an integrated circuit.

exceeding the bounds: Exceeding the bounds of an array means trying
to access an inappropriate element of the array, such as the 51st int
in an array of SO i nts.

explicit initialization: Initialization that occurs in a variable's
declaration statement.

file: A series of bytes residing on a magnetic storage media. Files are
used as long-term storage for program data.

file mode: The type of access used when opening a file. Examples of file
modes are read, write, and append.

file name: The name associated with a disk file.

Finder: The application that runs when your Macintosh first starts up.
The Finder is the application with all of the windows and icons you
use to launch other applications.

floating-point numbers: Numbers that contain a decimal point. For
example, 3.5, -27.6874, and 3.14159 are all floating-point numbers.

flow control: The ability to control the order in which your program's
statements are executed.

354 Appendix A

fractional part: The part of a floating point to the right of the decimal
point.

function: A sequence of source code that accomplishes a specific task. C
functions have a title and a body. The title contains the function's
name and parameters. The body contains the function's code.

function body: The portion of the function that contains the function's
code. The body of a function starts with a left curly bracket and
ends with a right curly bracket.

function parameter: A class of variable that allows data sharing
between a calling function and a called function.

function pointer: A variable containing a pointer to a function.
Function pointers can be used to call the function they point to.

function return value: The value returned by a function. Functions of
type v o i d are the only types of functions that do not return a value.

function title: The portion of a function that contains the function's
name and parameters.

global variable: A variable that is accessible from inside every function
m your program.

graphical user interface (GUI): A user interface that features graphical
elements, such as pictures, icons, and windows. The Mac is a great
example of a graphical user interface.

increment: Increase in value. Typically, incrementing a variable
increases its value by 1.

index: The number used to refer to an individual array element. An
array index usually appears between the brackets following the
array name.

initialization: The process of assigning a value to a variable for the first
time. Initializing a variable in its declaration statement is known as
explicit initialization.

initialized: Containing a known value.

in-order search: A binary tree search that recursively searches a node's
left child, visits the node itself, then recursively searches the node's
right child.

Glossary 355

input buffer: A block of memory designed to accumulate input from the
keyboard for later retrieval by your program.

input device: A device that allows a user to provide input to your
program. The mouse and the keyboard are both input devices.

integer: A whole number, such as 1, -26, or 3,876,560.

integer part: The part of a floating-point number to the left of the
decimal point.

Integrated Circuit (IC): An electronic device with a body, constructed of
many fine layers of silicon, and legs, made of a conductive material.
Integrated circuits produce a predetermined effect on voltages
applied to their legs. They can be used to control a wide variety of
electronic devices, from the fuel injector in a car to the Macintosh
on your desk.

iteration: The process of stepping through a list or array. for loops that
step from 1 to an upper limit are typical signs of iteration.

key: The field in a tree st ruct that determines the search order of the
tree.

leaf node: A terminal node of a tree. In a binary tree, a leaf node has
two NULL pointers.

linked list: A data structure consisting of two or more st r u c ts, linked
together by pointers.

literal: A constant of any type. The number 123 is an example of an int
literal. "He 11 o" is an example of a literal text string.

loop: Any repeating source code sequence. do, w hi l e, and for are
examples of C loop statements.

machine code: A machine readable translation of your source code.
Machine code is made up of the binary digits 1 and 0.

macro: A #def i n e that takes a parameter.

master pointer: The pointer to the first element in a linked list.

memory: A portion of a computer, composed of specially designed
integrated circuits, used for the temporary storage of programs and
data.

356 Appendix A

Menu Manager: The functions in the Macintosh Toolbox that deal with
the menu bar and pull-down and pop-up menus.

motherboard: Part of a computer that acts as a docking station for all
of the other elements of the computer. The hard drive, floppy disk
drive, and computer memory all connect to the motherboard.

multi-dimensional array: An array declared with more than one index.

object code: Another name for machine code. THIN C stores its object
code in a project file.

one-dimensional array: An array declared with a single index.
open a file: Perform the necessary work prior to accessing a file's data.

Files can be opened using several different modes, among them read,
write, and append.

operator: A special character (or set of characters) that represents a
specific computer operation. =, ++, and I are examples of operators.

output device: A device that your program uses to provide output to the
user. Most of the programs in this book use the console window as
an output device.

parameter: See function parameter.

parent pointer: A special 4-byte block of memory, associated with the
name of an array, that points to the first element of the array.

passing: The technique of including a parameter in a function call.

pointer: A special variable, designed specifically to hold the address of
another variable.

pointer arithmetic: The process of incrementing or decrementing a
pointer to point to the next or previous memory location.

pointer variable: See pointer.
postfix notation: The use of the ++ or - - operator following a variable.

In postfix notation, the value of the variable is returned before the
variable is incremented or decremented.

postorder search: A binary tree search that recursively searches a node's
left child, recursively searches the node's right child, then visits the
node itself.

Glossary 357

prefix notation: The use of the ++ or - - operator preceding a variable.
In prefix notation, the variable is incremented or decremented
before the value of the variable is returned.

preorder search: A binary tree search that visits a node, then recursively
searches the node's left and right children.

project file: A special file THIN C uses to gather information about
your project. The project object code is stored in the project file.

project window: A window listing each of the source code files
associated with the project. The project window also lists the
current size of the object code associated with each source code file.

prompt: A text string that tells the user what your program expects him
or her to do. For example, a prompt might ask the user to type in a
number between 1and10.

random access memory (RAM): See memory.

read a file: The process of transferring the data stored in a file into your
program.

read-only memory (ROM): A memory chip that can be read but not
written to. The Macintosh Toolbox is found on a set of ROM chips
mounted on the Mac's motherboard.

recursion: The process that occurs when a function calls itself.
Recursive functions normally feature a parameter that keeps track
of the depth of the recursion (the number of times the function has
called itself). The recursive function will exit once a terminating
condition has been met.

root node: The first node in a tree. A root node has no parents.

root struct: Another name for a root node.
run: The process of stepping through the compiled version of your

program. THIN C will run your program when you select RU n
from the Project menu.

searching: The process of traversing a tree or list, looking for a
particular feature or value.

signed: A variable capable of storing both positive and negative values.

358 Appendix A

simple statement: An assignment statement or function call. Simple
statements never have substatements.

source code: A sequence of statements that tells the computer what to
do. Source code is written in a specific programming language, such
as C or Pascal.

source code editor: A program that allows you to review and modify
your source code. THIN C has a source code editor built in.

Standard Library: A set of built-in functions that comes with every
ANSI standard compiler.

statement: A combination of function calls, operators, and variables
that performs a set of computer operations. Statements are usually
followed by a semicolon.

stepping through: Usually associated with an array or a linked list.
Stepping through an array or linked list means performing an
operation on each element of the array or linked list.

string constant: A string literal, such as "He 11 o ".

string manipulation: The process of copying or altering a string
variable. String manipulation is normally performed on a 0-
terminated string embedded in an array of cha rs.

syntax error: An error in your source code that prevents the compiler
from compiling your code. THIN C reports syntax errors by
printing an error message in a separate window.

tech block: A block of text set off in its own little box, intended to add
a bit of technical detail to the subject currently being discussed.
Tech blocks fit in one of three categories: "By the Way,"
"Important," and "Warning."

terminal node: Another name for a leaf node.

text editor: A program that allows you to review and modify text files.
Text editors are usually able to edit source code and source code
editors are usually able to edit text files.

text string: A sequence of consecutive bytes containing ASCII charac­
ters, usually terminated by a byte with a value of 0. Text strings are
frequently implemented via an array of ch a rs.

Glossary 359

Toolbox: The Macintosh Toolbox contains the Mac's version of the
Standard Library. The Toolbox contains over 700 functions that
make the Mac a Mac. These functions include the Menu Manager,
the Control Manager, the Window Manager, and more.

traversal: The process of stepping through a linked list, binary tree, or
similar data structure. Traversals usually follow a specific pattern,
such as preorder, in-order, or postorder.

type: The class a variable belongs to. A variable's type determines the
type of data that can be stored in the variable. ch a r, i n t, and fl oat
are examples of variable types.

typecast: A C mechanism for converting a variable from one type to
another.

typecasting: The process of applying a typecast to a variable.

typo: Slang for a typographical error.

unsigned: A variable capable of storing only positive values.

user interface: The part of your program that interacts with the user.

variable: A container for your program's data. Variables have a name
and a type.

variable scope: Within a program, a variable's scope determines where
in the program the variable can be accessed. Local variables are only
accessible within the function they are declared in. Global variables
are accessible throughout the file they are declared in.

variable type: See type.

white space: An invisible character, such as a space, tab, or carriage
return. White space is ignored by the compiler.

Window Manager: The functions in the Macintosh Toolbox that deal
with the display and management of windows on the Mac's screen.

write a file: The process of transferring data stored in your program's
variables out to a disk file.

A

Complete Program
Listings

addThese.c

AddTheseNumbers(int numl. int num2)
l

return(numl + num2) ;

ma i n ()
l

int sum :

sum= AddThe seNumbers(5, 6) ;

pri ntf("The sum is %d . " , sum);

B

361

362 Appendix B

ASCII.c

PrintChars(char low, char high)
{

unsigned char c:

printf("%d to %d ---> " low, high):
for (c = low: c <= high; c++)

printf{ "%c", c):

printf("\n 11
):

main()•
{

PrintChars(32,
PrintChars(48,
PrintChars(58,
PrintChars(65,
PrintChars(91.
PrintChars(97,
PrintChars(123,

cdFiles.c

#include <stdio.h>
#include <stdlib.h>

47) :
57) :
64) ;

90) :
96) :
122);

126);

#define CD_FILE_NAME 11 cdData"

#define MAX_ARTIST_CHARS 50
#define MAX_TITLE_CHARS 50

struct CDinfo
{

char rating;

Complete Program Listings 363

char artist[MAX_ARTIST_CHARS];
char title[MAX_TITLE_CHARS];
struct CDinfo *next;

} ;

extern struct CDinfo *gFirstPtr;

/******************************** CountCDs ***/

int CountCOs()
{

struct CDinfo *infoPtr;
int numCDs;

infoPtr gFirstPtr;
numCDs = O;

while (infoPtr !=NULL)
{

infoPtr = infoPtr->next;
numCDs++;

return(numCDs);

/******************************** FlushFile ***/

void FlushFile(FILE *fp)
{

int c;

364 Appendix B

while (((c fgetc(fp)) != '\n') && (c != EOF))

/******************************** ReadFileLine ***/

void ReadFileLine(FILE *fp, char *line)
{

char c;

while ((c = fgetc(fp)) != '\n')
{

*line= c;
line++;

*line O;

/******************************** ReadFile ***/

char ReadFile()
{

FILE *fp;
struct CDinfo *infoPtr;
int numCDs, num, i;

if (fp = fopen(CD_FILE_NAME, "r"))
return(FALSE) ;

fscanf(fp, "%d", &numCDs);
FlushFile(fp);

for (i=l; i<=numCDs; i++)
{

NULL)

infoPtr = malloc(sizeof(struct CDinfo));

if (infoPtr == NULL)
{

Complete Program Listings 365

printf("Out of memory!!! Goodbye!\n 11
);

ex it (0) ;

ReadFileLine(fp, infoPtr->artist):
ReadFileLineC fp, infoPtr->title):
fscanf(fp, "%d". &num) ;
infoPtr->rating = num;
FlushFile(fp);

AddToList(infoPtr):

fclose(fp);

return(TRUE);

/******************************** WriteFile ***/

void WriteFile()
{

FILE *fp;
struct CDinfo *infoPtr;
int numCDs, i. num:

if (fp = fopen(CD_FILE_NAME, "w")) == NULL
{

else
{

printf("***ERROR: Could not write CD file!");

numCDs CountCDs();

fprintf(fp, "%d\n", numCDs) ;

366 Appendix B

infoPtr = gFirstPtr;

for (i = 1 ; i <=nu me D s ; i ++ >
{

fprintf(fp, "%s\n", infoPtr->artist);
fprintf(fp, "%s\n", infoPtr->title);

num = infoPtr->rating;
fprintf(fp, "%d\n", num);
infoPtr = infoPtr->next;

fclose(fp);

cdMain.c

#include <stdlib.h>
#include <stdio.h>

#define MAX_ARTIST_CHARS 50
#define MAX_TITLE_CHARS 50

struct CDinfo
{

char rating:
char artist[MAX_ARTIST_CHARS];
char title[MAX_TITLE_CHARS];
struct CDinfo *next;

*gFirstPtr, *glastPtr;

/******************************** Flush ***/

void Flush()
{

while (getchar() != '\n')

Complete Program Listings 367

/******************************** ReadLine ***/

void ReadLine(char *line)
{

char c;

while ((c = getchar()) != '\n')
{

*line= c;
line++;

*line O;

/******************************** ListCDs ***/

void ListCDs()
{

struct CDinfo *curPtr;

if (gFirstPtr ==NULL)
{

printf("No CDs have been entered yet ... \n");
printf("\n----------\n"):

else
I

curPtr = gFirstPtr;

while (curPtr !=NULL
{

printf(11 Artist:
printf(11 Title:
printf("Rating:

%s\n 11
, curPtr->artist):

%s\n", curPtr->title);
%d\n", curPtr->rating);

printf(11 \n----------\n 11
);

368 Appendix B

curPtr curPtr->next;

!******************************** AddTolist ***/

void AddTolist(struct CDinfo *curPtr)
{

if (gFirstPtr ==NULL)
gFirstPtr = curPtr;

else
gLastPtr->next = curPtr;

gLastPtr = curPtr;
curPtr->next = NULL;

/******************************** ReadStruct ***/

struct CDinfo *ReadStruct()
(

struct CDinfo
int

*infoPtr;
num;

infoPtr malloc(sizeof(struct CDinfo));

if (infoPtr == NULL)
{

pri ntf("Out of memory!!! Goodbye! \n") ;
exit(0);

printf("Enter Artist's Name: ");
ReadLine(infoPtr->artist);

printf("Enter CD Title: ");
Readline(infoPtr->title);

num = O;

Complete Program Listings 369

while ((num < 1) I I (num > 10))
I

printf("Enter CD Rating Cl-10): ");
scanf("%d", &num);
Flush();

infoPtr->rating = num;

printf("\n----------\n");

return(infoPtr);

/******************************** GetCommand ***/

char GetCommand()
I

char command = O;

while (command != 'q') && (command != 'n')
&& (command ! = '1 '))

printf("Enter command (q=quit, n=new, l=list): ");
scanf("%c", &command);
Flush();

printf("\n----------\n");
return(command);

370 Appendix B

/******************************** main ***/

main ()
{

char command:

gFirstPtr NULL;
gLastPtr = NULL;

ReadFile();

while ((command= GetCommand()
{

switch(command
I

case 'n':

!= I q I)

AddToList(ReadStruct());
break;

case 'l':

Wri teFil e();

Li stCDs();
break;

printf("Goodbye ... ");

cdTracker.c

#include <stdlib.h>
#include <stdio.h>

#define MAX_ARTIST_CHARS 50
#define MAX_TITLE_CHARS 50

struct CDinfo
{

char rating;

Complete Program Listings 371

char artist[MAX_ARTIST_CHARS];
char title[MAX_TITLE_CHARS];
struct CDinfo *next;

*gFirstPtr, *glastPtr;

/******************************** Flush ***/

void Flush()
I

while (getchar() != '\n')

/******************************** Readline ***/

void Readline(char *line)
{

char c;

while ((c = getchar()) != '\n')
I

*line= c;
line++;

*line O;

/******************************** ListCDs ***/

void ListCDs()
{

struct CDinfo *curPtr;

372 Appendix B

if (gFirstPtr ==NULL)
{

else
{

printf("No CDs have been entered yet ... \n");
printf("\n----------\n");

curPtr = gFirstPtr;

while (curPtr != NULL
{

printf("Artist:
printf("Title:
pri ntf ("Rating:

%s\n", curPtr->artist);
%s\n", curPtr->title);
%d\n", curPtr->rating);

printf("\n----------\n");

curPtr = curPtr->next;

/******************************** AddToList ***/

void AddToList(struct CDinfo *curPtr)
{

if (gFirstPtr ==NULL)
gFirstPtr = curPtr;

else
gLastPtr->next = curPtr:

gLastPtr = curPtr;
curPtr->next = NULL;

Complete Program Listings 373

/******************************** ReadStruct ***/

struct CDinfo *ReadStruct()
{

struct CDinfo *infoPtr;
int num:

infoPtr = malloc(sizeof(struct CDinfo));

if (infoPtr == NULL)
{

printf("Out of memory!!! Goodbye!\n");
exit(0);

printf("Enter Artist's Name: "):
ReadLine(infoPtr->artist):

printf("Enter CD Title: ");
ReadLine(infoPtr->title);

num = 0;
while ((num < 1) I I (num > 10))
{

printf("Enter CD Rating (1-10): ");
scanf("%d", &num);
Flush();

infoPtr->rating = num;

printf("\n----------\n");

return(infoPtr);

374 Appendix B

/******************************** GetCommand ***/

char GetCommand()
{

char command = 0:

while (command != 'q') && (command != 'n')
&& (command != 'l '))

printf("Enter command (q=quit, n=new, l=list): "):
scanf("%c", &command >:
Flush():

printf("\n----------\n"):
return(command):

/******************************** main ***/

main()
{

char command:

gFirstPtr NULL:
gLastPtr = NULL:

while ((command= GetCommand()
{

switch(command
{

case 'n':

!= I q I)

AddToList(ReadStruct()):
break:

case 'l':
ListCDs():
break:

pri ntf("Goodbye ... ") :

dice.c

Roll One()
{

long rawResult:
int ro 11 :

rawResult =rand():

roll = CrawResult * 6) I 32768;

return(roll + 1):

PrintXC int howMany)
{

int i :

for (i=O: i<howMany: i++)
printf("x");

PrintRollsC int rolls[])
{

int i:

for i=O; i<ll; i++)
{

Complete Program Listings 375

printf("%2d C%3d): " i+2, rolls[J);
PrintXC rolls[i] I 10);
printf("\n 11

);

376 Appendix B

main()
{

int rolls[11 J, twoDice, i;

srand(clock());

for (i =0 ; i< 11 ; i ++
rolls[J = 0;

for (i = 1 ; < = 10 0 0 : i ++
(

twoDice = RollOne() + RollOne();
++ rolls[twoDice - 2 J:

PrintRolls(rolls >:

drawDots.c

DrawDots(int numDots)
{

int i ;

for (i = 0: i < numDots; i++)
printf{ "");

main()
{

DrawDots(30);

float.c

main()
{

fl oat myNum:

myNum = 123.456:

Complete Program Listings 377

printf("myNum = %f\n", myNum):
printf("myNum = %.2f\n", myNum):
printf("myNum = %.4f\n". myNum >:
printf("myNum = %10.4f\n", myNum):

funcPtr.c

#include <stdio.h>

/******************************** Squareit ***/

int Squarelt(int num
{

return(num * num):

/******************************** main ***/

main()
{

int (*myFuncPtr)(int);
int num = 5;

myFuncPtr = Squareit:
printf("%d squared is %d.", num, (*myFuncPtr)(num)):

378 Appendix B

hello.c

main()
(

printf("Hello. world!" >:

hello2.c

SayHello()
(

printf("Hello. world!");

main ()
(

SayHello();

isOdd.c

main()
{

int i ;

for (i = 1: i <= 20: i ++)
(

pri ntf ("The number %d is ". i) ;

if (Ci I 2) * 2 == i
printf("even" >:

else
printf("odd"):

if (Ci I 3) * 3 == i
printf(n and is a multiple of 3"):

Complete Program Listings 379

printf(".\n");

iterate.c

#include <stdio.h>

/******************************** main ***/

main()
{

int i. num. fac:

num = 5:
fac 1:

for i = 1 : i <=nu m ; i ++)
f ac *= i :

printf("%d factorial is %d.". num. fac >:

listPrimes.c

IsltPrime(int candidate
{

int i. foundFactor:

foundFactor = FALSE:
for (i = 2: i < candidate: i++
{

if ((candidate Ii)* i
foundFactor =TRUE:

candidate

380 Appendix B

return(foundFactor

main ()
{

int i :

FALSE):

for (i = 1: i <= 50; i ++
{

if (IsitPrime(i))
printf("%d is a prime number.\n",):

name.c

main()
{

char name[50 J:

printf("Type your first name, please: "):

scanf(11 %s 11
, name);

printf("Welcome, %s.\n", name);
printf("Your name is %d characters long.",

nextPrime.c

main()
{

strlen(name));

int startingPoint, candidate, i:
int done. foundFactor:

done = FALSE:
startingPoint = 19;
candidate = startingPoint:

while (!done)
(

candidate++;

foundFactor = FALSE:

Complete Program Listings 381

for (i = 2: i < candidate; i++)
(

if ((candidate Ii)* i ==candidate
foundFactor = TRUE;

done= (foundFactor ==FALSE>:

printf("The next prime after %d is %d. Happy?".
startingPoint. candidate);

operator.c

main()
{

int my Int:

mylnt 3 * 2:
printf{ "mylnt ---> %d\n". mylnt);

mylnt += 1:
pr i n t f (11 my Int - - -> %d \ n" . my Int) :

my Int -= 5:
printf{ "mylnt ---> %d\n". myint >:

382 Appendix B

mylnt *= 10;
printf("mylnt ---> %d\n", mylnt):

mylnt /= 4:
pr i n t f ("my I n t - - -> % d \ n " • my I n t) :

mylnt /= 2:
p r i n t f (ti my I n t - - -> % d ti • my I n t) :

postfix.c

main()
{

int my Int:

mylnt = 5:
pr i n t f ("my I n t - - -> % d \ n " • my I n t ++) :
printf("myint ---> %d", ++myint):

power.c

int printExtrainfo:

DoPower(int *resultPtr, int base. int exponent)
{

inti. temp:

if (printExtrainfo
printf(tl\t---> Starting DoPower() ... \ntl);

temp = base;
for (i = 1: i < exponent: i++)

temp *= base:

Complete Program Listings 383

*resultPtr = temp;

if (printExtrainfo
printf("\t---> Leaving DoPower() ... \n");

main()
{

int power;

printExtrainfo = FALSE;

if C printExtrainfo)
printf("--->Starting main() ... \n"):

DoPower(&power, 2, 5);
printf("2 to the 5th= %d.\n", power):

DoPower(&power, 3, 4):
printf("3 to the 4th= %d.\n", power);

DoPowerC &power, 5, 3);
printf("5 to the 3rd= %d.\n", power):

if (printExtrainfo)
printf("--->Leaving main() ... \n"):

printFile.c

#include <stdio.h>

main()
{

FILE *fp;
int c:

384 Appendix B

fp fopen("My Data File", "r");

if fp != NULL
(

recurse.c

while ((c = fgetc(fp)) != EOF)
putchar(c) :

fclose(fp);

#include <stdio.h>

/******************************** main ***/

main()
{

int result, num:

num = 5:
result= factorial(num >:

printf("%d factorial is %d.", num, result>:

int factorial(int num)
{

if (n um > 1)
num *=factorial(num - 1 >:

return(num >:

slasher.c

main()
(

printf("0000000000\r");
printf("11111\n");

printf{ "0000\b\bll\n");

Complete Program Listings 385

printf("Here's a backslash ... \\ ... for you.\n");
printf{ "Here's a double quote ... \" ... for you.\n"):

printf("Here's a few tabs ... \t\t\t\t ... for you.\n");

printf("Here's some beeps ... \a\a\a\a ... for you.");

squarelt.c

Squarelt(int number, int *squarePtr
(

*squarePtr = number * number;

main()
(

int square:

Squarelt(5, &square):

printf("5 squared is %d.", square);

386 Appendix B

structSize.c

#define MAX_ARTIST_CHARS 50
#define MAX_TITLE_CHARS 50
struct CDinfo
{

char rating:
char artist[MAX_ARTIST_CHARS]:
char title[MAX_TITLE_CHARS J:

} :

main()
{

struct CDinfo mylnfo:

printf("rating field: %d bytes\n",
sizeof(mylnfo.rating)):

printf("artist field: %d bytes\n",
sizeof(mylnfo.artist)):

printf("title field: %d bytes\n",
sizeof(mylnfo.title));

printf(n ---------\n" >:

pr i n tf ("my I n f o st r u ct : % d bytes 11
,

sizeof(mylnfo)):

sumFive.c

main()
{

inti, num, sum:

Complete Program Listings 387

sum = O;

for i = 1 : i < = 5 : i ++)
{

printf{ "Enter number %d --->".);
scanf{ "%d". &num);
sum = sum + num;

printf("The sum of these numbers is %d.". sum);

windowMaker.c

/**/
I* *I
/* WindowMaker Code from Chapter Seven of */
I*
I*
/*

*** The Macintosh Programming Primer ***
*I
*/
*I

I* Copyright 1989. Dave Mark and Cartwright Reed */
I* */
I* WindowMaker handles desk accessories. as well */
/* as error checking and a few other things. Since */
/* we went to press. we've made a few minor changes */
/* to WindowMaker. The changes are commented and are */
I* found in the HandleEvent routine. */
I* */
/* The WindowMaker project is a good place to start */
I* with your own standalone application code. */
/* *I
/**/

#define BASE_RES_ID 400
#define NIL_POINTER OL
#define MOVE_TO_FRONT -ll
#define REMOVE_ALL_EVENTS 0

388 Appendix B

#define APPLE_MENU_ID
#define FILE_MENU_ID
#define EDIT_MENU_ID

#define ABOUT_ITEM
#define ABOUT_ALERT
#define ERROR_ALERT_ID

400
401
402

1
400
401

#define NO_MBAR
//define NO_MENU
#define NO_PICTURE
#define NO_WIND

BASE_RES_ID
BASE_RES_ID+l
BASE_RES_ID+2
BASE_RES_ID+3

#define NEW_ITEM
#define CLOSE_ITEM
#define QUIT_ITEM

#define UNDO_ITEM
#define CUT_ITEM
#define COPY_ITEM
#define PASTE_ITEM
#define CLEAR_ITEM

#define DRAG_THRESHOLD

1
2
3

1
3
4
5
6

30

#define WINDOW_HOME_LEFT 5
#define WINDOW_HOME_TOP 45
#define NEW_WINDOW_OFFSET 20

#define MIN_SLEEP OL
#define NIL_MOUSE_REGION OL

#define LEAVE_WHERE_IT_IS FALSE

#define WNE_TRAP_NUM Ox60
#define UNIMPL_TRAP_NUM Ox9F

#define NIL_STRING II \p"
#define HOPELESSLY_FATAL_ERROR "\pGame over. man!"

Boolean
Event Record
MenuHandle
PicHandle
Re ct

gDone. gWNEimplemented:
gTheEvent:
gAppleMenu. gEditMenu:
gMyPicture:
gDragRect:

Complete Program Listings 389

int gNewWindowleft = WINDOW_HOME_LEFT,
gNewWindowTop = WINDOW_HOME_TOP:

/******************************** main *********/

main()
{

Tool Boxlni t():
MenuBarlnit():
Load Picture():
SetUpDragRect():

Mainloop():

/*********************************** ToolBoxlnit */

ToolBoxlnit()
{

InitGraf{ &thePort):
InitFonts();
FlushEvents(everyEvent, REMOVE_ALL_EVENTS):
InitWindows();
InitMenus():
TEinit():
InitDialogs(NIL_POINTER):
InitCursor():

390 Appendix B

/***********************************

MenuBarinit()
{

Handle myMenuBar:

MenuBarinit

if ((myMenuBar = GetNewMBar(BASE_RES_ID))
NIL_POINTER) ErrorHandler(NO_MBAR);

SetMenuBar(myMenuBar);
if ((gAppleMenu = GetMHandle(APPLE_MENU_ID)) ==

NIL_POINTER) ErrorHandler(NO_MENU);
if ((gEditMenu = GetMHandle(EDIT_MENU_ID)) ==

NIL_POINTER) ErrorHandler(NO_MENU);

AddResMenu(gAppl eMenu, 'DRVR') :
DrawMenuBar();

/******************************** LoadPicture *********/

LoadPicture()
{

if ((gMyPicture = GetPicture(BASE_RES_ID)
NIL_POINTER) ErrorHandler(NO_PICTURE);

*I

/******************************** SetUpDragRect *********/

SetUpDragRect()
{

gDragRect = screenBits.bounds:
gDragRect.left += DRAG_THRESHOLD;
gDragRect.right -= DRAG_THRESHOLD;
gDragRect.bottom -= DRAG_THRESHOLD;

Complete Program Listings 391

/******************************** Mainloop *********/

Mainloop()
{

gDone = FALSE;
gWNEimplemented = (NGetTrapAddress(WNE_TRAP_NUM,

ToolTrap) != NGetTrapAddress
(UNIMPL_TRAP_NUM, ToolTrap));

while (gDone == FALSE)
{

HandleEvent();

/************************************* HandleEvent */

HandleEvent()
{

char theChar;
GrafPtr oldPort; /* This variable is used in

updateEvt handling -
It is not in the book ...

if (gWNEimplemented)

*/

WaitNextEvent(everyEvent, &gTheEvent, MIN_SLEEP,
NIL_MOUSE_REGION):

else
{

SystemTask();
GetNextEvent(everyEvent, &gTheEvent);

switch gTheEvent.what
{

case mouseDown:
HandleMouseDown();
break:

392 Appendix B

case keyDown:
case autoKey:

theChar = gTheEvent.message & charCodeMask;
if ((gTheEvent.modifiers & cmdKey) != 0)
{

AdjustMenus();
HandleMenuChoice(MenuKey(theChar));

break;
case updateEvt:

I* This code is different than that found in
the book -
Use this version ... *I

if (!IsDAWindow(gTheEvent.message))
{

GetPort(&oldPort);
SetPort(gTheEvent.message);
BeginUpdate(gTheEvent.message);
DrawMyPicture(gMyPicture,

gTheEvent.message);
EndUpdate(gTheEvent.message);
SetPort(oldPort);

break;

/************************************* HandleMouseDown */

HandleMouseDown()
{

WindowPtr
short int
long int

whichWindow;
thePart;
menuChoice, windSize;

thePart = FindWindow(gTheEvent.where, &whichWindow);
switch (thePart)

Complete Program Listings 393

case inMenuBar:
AdjustMenus();
menuChoice = MenuSelect(gTheEvent.where);
HandleMenuChoice(menuChoice);
break;

case inSysWindow:
SystemClick(&gTheEvent. whichWindow);
break;

case inDrag:
DragWindow(whichWindow. gTheEvent.where.

&gDragRect);
break;

case inGoAway:
if (TrackGoAway(whichWindow. gTheEvent.where))

DisposeWindow(whichWindow);
break;

case inContent:
SelectWindow(whichWindow);
break;

/************************************* AdjustMenus */

AdjustMenus()
{

if ClsDAWindow(FrontWindow()))
(

else
{

EnableltemCgEditMenu. UNDO_ITEM);
Enableltem(gEditMenu, CUT_ITEM);
Enableltem(gEditMenu, COPY_ITEM);
Enableltem(gEditMenu, PASTE_ITEM);
Enableltem(gEditMenu, CLEAR_ITEM);

394 Appendix B

Disableltem(gEditMenu, UNDO_ITEM):
Disableltem(gEditMenu, CUT_ITEM):
Disableltem(gEditMenu, COPY_ITEM):
DisableltemCgEditMenu, PASTE_ITEM):
Disableltem(gEditMenu, CLEAR_ITEM);

/************************************* IsDAWindow */

IsDAWindow(whichWindow)
WindowPtr whichWindow:
{

if (whichWindow == NIL_POINTER)
return(FALSE) :

else /* DA windows have negative windowKinds */
return(((WindowPeek)whichWindow)->windowKind < 0):

/************************************* HandleMenuChoice */

HandleMenuChoice(menuChoice
long int menuChoice;
{

int theMenu;
int theltem:

if (menuChoice != 0)
{

theMenu = HiWord(menuChoice);
theltem = LoWord(menuChoice);
switch (theMenu)
{

case APPLE_MENU ID :
HandleAppleChoice(theltem);
break;

Complete Program Listings 395

case FILE_MENU_ID :
HandleFileChoiceC theitem);
break:

case EDIT_MENU_ID :
HandleEditChoice(theitem);
break;

HiliteMenu(O);

/***************************** HandleAppleChoice *******/

HandleAppleChoice(theitem)
int the Item:
{

Str255
int

switch
{

accName;
accNumber:

theltem)

case ABOUT_ITEM
NoteAlert(ABOUT_ALERT, NIL_POINTER);
break;

default :
Getitem(gAppleMenu, theltem, accName);
accNumber = OpenDeskAcc(accName);
break;

/****************************** HandleFileChoice *******/

HandleFileChoice(theitem)
int theltem;
l

396 Appendix 8

Wi ndowPtr whichWindow;
switch (theitem)
I

ca se NEW_ITEM :
CreateWindow() ;
break;

case CLOSE_I TEM :
if ((whichWindow FrontWind

NIL_POINTER)
DisposeWindow (whichWind ow

break;
case OUIT_ITEM :

gDone =TRUE;
break;

/ ****************************** HandleEdit(

Hand l eEditC hoi ce(theltem)
int the Item ;
{

SystemEdit (the Item - 1) ;

96 2403.01.01.10 01/26/93 13.li 98
SOFTWARE, ETC. SAM DIEG~. C

SUBTOTAL
SALES TAX
TOTAL
CASH

34.9
34 .9
2.7

37 .6
40.7

ALL RETURNS MUST BE ACCOMPANIED B'~
RECEIPT 1.HTHrH 30 DAYS -- THAN~ VOl

/************************************ CreateWindow */

CreateWindow ()
I

WindowPtr theNewe stWindow;

if ((theNewestWindow = GetNewW i nd ow(BASE_RES_ID.
NIL_POI NTER , MOVE_TO_FRONT))
== NIL_POINT ER)

ErrorHandler(NO_WIND) ;

Complete Program Listings 397

if ((screenBits.bounds.right - gNewWindowleft)
< DRAG_THRESHOLD) I I

(screenBits.bounds.bottom - gNewWindowTop)
< DRAG_THRESHOLD))

gNewWindowleft = WINDOW_HOME_LEFT:
gNewWindowTop = WINDOW_HOME_TOP;

MoveWindow(theNewestWindow. gNewWindowleft.
gNewWindowTop. LEAVE_WHERE_IT_IS):

gNewWindowleft += NEW_WINDOW_OFFSET:
gNewWindowTop += NEW_WINDOW_OFFSET:
ShowWindow(theNewestWindow);

/******************************** DrawMyPicture *********/

DrawMyPicture(thePicture, pictureWindow)
PicHandle thePicture:
WindowPtr pictureWindow:
{

Rect myRect;

myRect = pictureWindow->portRect:
CenterPict(thePicture, &myRect);
SetPort(pictureWindow):
DrawPicture(thePicture, &myRect);

/******************************** CenterPict *********/

CenterPict(thePicture, myRectPtr
PicHandle thePicture:
Rect *myRectPtr;
{

398 Appendix B

Rect windRect. pictureRect;

windRect = *myRectPtr;
pictureRect = (**(thePicture)).picFrame;
myRectPtr->top = CwindRect.bottom - windRect.top -

(pictureRect.bottom - pictureRect.top))
I 2 + windRect.top:

myRectPtr- >bottom = myRectptr->top + (pi ctureRect. bottom
- pictureRect.top);

myRectPtr->left = (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left))

I 2 + windRect.left;
myRectPtr->right = myRectPtr->left + (pictureRect.right

- pictureRect.left);

!******************************** ErrorHandler *********/

ErrorHandler(stringNum
int stringNum;
I

StringHandle errorStringH;

if ((errorStringH = GetString(stringNum)) ==
NIL_POINTER)

else
{

}

ParamText(HOPELESSLY_FATAL_ERROR. NIL_STRING,
NIL_STRING, NIL_STRING);

Hlock(errorStringH);
ParamText(*errorStringH, NIL_STRING, NIL_STRING,

NIL_STRING);
HUnlock(errorStringH);

StopAlert(ERROR_ALERT_ID, NIL_POINTER);
ExitToShell();

wordCount.c

#define MAX_LINE_LENGTH 200

#define C_RETURN '\n'
#define C_TAB '\t'
#define C_SPACE

main()
{

Complete Program Listings 399

char line[MAX_LINE_LENGTH], *charPtr, inWord;
int numWords;

printf("Type a line of text, please:\n");

charPtr = line;
numWords = O;
inWord = FALSE;

whi 1 e ((*charPtr = getchar()) != C_RETURN)
{

if C C*charPtr != C_TAB) && (*charPtr != C_SPACE)
(

else

if (! inWord)
{

inWord = TRUE;
numWords++;

inWord FALSE;

charPtr++:

printf("You just typed %d word", numWords);

400 Appendix B

if C (numWords > 1) I I (numWords == 0))
printf(Its.");

else
printf(" 11

);

A

C Syntax Summary

The if Statement

syntax:

if (expression
statement

example:

if (numEmployees > 20
Buy NewBui l ding() ;

alternate syntax:

if (expression
statement

else
statement

example:

i f (temperature < 60)
WearAJacket () ;

c

401

402 Appendix C

else
BringASweater();

The while Statement

syntax:

while (expression
statement

example:

while< FireTooLow{)
AddAnotherLog();

The for Statement

syntax:

for (expressionl expression2 expression3)
statement

example:

int i. myArray[100];

for (i=O; i<lOO; i++
myArray[i J = 0;

The do Statement

syntax:

do
statement

while < expression

example:

do
SpendABuck():

while (StillGotAFew<>

The switch Statement

syntax:

switch expression
(

case constant:
statements

case constant:
statements

default:
statements

example:

switch (theYear
(

case 1066:
printf("Battle of Hastings");
break;

case 1492:

C Syntax Summary 403

printf("Columbus sailed the ocean blue");
break:

case 1776:
printf("Declaration of Independence\n");
printf("A very important document!!!");
break:

default:
printf("Don't know what happened during this year");

404 Appendix C

The break Statement

syntax:

break:

example:

i=l:

wh i 1 e (i <= 9)
{

PlayAnlnning(i):
if (ItsRaining()

break;
i++;

The return Statement

syntax:

return:

example:

if (Fatal Error()
return:

alternate syntax:

return(expression);

example:

int AddThese(int numl, int num2)
{

return(numl + num2);

A

Standard
Library Functions
Used in This Book

D

THE STANDARD LIBRARY FUNCTION DESCRIPTIONS IN THIS
appendix were taken from the pages of the Standard Libraries
Reference that comes with THINK C. They represent only a small part
of the Standard Library, limited to those functions that appear in this
book. When you get your copy of THINK C, spend some time with the
real Standard Libraries Reference, getting to know each and every one
of the Standard Library functions. You never know when you'll need
one of them. For example, you'll notice that each entry in this appendix
includes See Also, a reference to related Standard Library functions .
Some of the See Also functions may not appear in this appendix. You
will find them in the THINK C Standard Libraries Reference, though.
Remember, if you can't find it in this appendix, don't give up!

405

406 Appendix D

clock

Library

Syntax

ANSI
#include <time.h>
clock_t clock(void)

Description c 1 oc k () determines the elapsed time since power-up, in
clock ticks.

The time in seconds is clock() I CLOCKS_PER_SEC.
c 1 oc k () is useful for calculating durations.

Returns The elapsed time since power-up, in clock ticks, if
successful.

exit

(cl ock_t) -1, if that time is not available or its value
cannot be represented.

Library ANSI

Syntax #include<stdlib.h>
void exit (int status):

Description exit() terminates the program normally.

See Also

exit () executes all functions registered with _a tex it ()
or atexi t(), flushes all open output streams, closes all
open files, and removes all temporary files.

The status argument is ignored.
_exit(), abort().

£close

Library

Syntax

Standard Library Functions Used in This Book 407

ANSI
#include <stdio.h>
int fclose(FILE *stream);

Description fcl ose() flushes the stream that stream points to and
closes the file that is associated with that stream.

Returns

fcl ose() delivers any unwritten buffered data to the
host environment and discards any unread buffered data.

fcl ose() won't close or deallocate buffers that the
program allocated itself (e.g., by handing a buffer to
setbuf ()), but it will close buffers that were allocated
automatically (e.g., by set bu f () , if the program called
setbuf () but did not hand it a buffer, or by f open ()).

The difference between f c 1 o s e () and the Unix Library
function c 1 o s e () is that f c 1 o s e () takes a file pointer as
its argument, while c 1 ose () takes a file descriptor
number.

0 (zero), if successful.

E 0 F, if failure.

408 Appendix D

fgetc

Library ANSI

Syntax #include <stdio.n>
int fgetc(FILE *stream);

Description f get c () reads in the next character from the given
stream.

Returns

See Also

f get c () returns an unsigned integer in the range 0 - 25 5
(decimal), or EOF.

Since f get c () returns the integer value of the character,
it is useful for getting bytes from binary files.

To read in multiple characters more efficiently, you can
also use fread() or fgets(). To read text and data
directly into variables, use scanf().

The next character from the input stream, if successful.

EO F, if failure. Also, it sets the file's error indicator if
there was a read error, and sets the file's EOF indicator if
it reaches the end of the file.

fread(), fgets(), fscanf(), getc(), gets(), read(),
scanf().

Standard Library Functions Used in This Book 409

£open

Library A.1'JSI

Syntax #include <stdio.h>
FILE *fopen(char *filename. char *mode);

Description fopen () opens the given file. fopen () automatically
allocates a buffer for the file's stream, creates a new
stream, and sets the stream to be fully buffered. f open ()
clears the error and EOF indicators for the stream.

These are the arguments to fop en () :
filename pointer to the name of the file.

mode pointer to a string describing how to open
the file.

The three main modes are read, write, and append. Each
mode has a similar set of variations: read binary, write
binary, append binary, and so on.

These are all the possible modes:

String Mode

r Open this text file for reading.

w Truncate this text file to zero length, or
create a new text file for writing.

a A.ppend to this file. That is, open or create
this text file for writing at end-of-file.

r b Open this binary file for reading.

wb Truncate this binary file to zero length, or
create a new binary file for writing.

ab A.ppend to this binary file. That is, open or
create this binary file for writing at end-of­
file.

r+ Open this text file for updating (reading and
writing).

410 Appendix D

Returns

See Also

w+ Truncate this text file to zero length or create
a new text file for updating (reading and
writing).

a+ Open this text file for updating (reading and
writing), but append all writing at the end of
the file.

r+b or rb+ Open this binary file for updating (reading
and writing).

w+b or wb+ Truncate this binary file to zero length or
create a new binary file for updating.

a+b or ab+ Open this binary file for updating (reading
and writing), but append all writing at the
end of the file.

When opening a file for reading (i.e., mode is r, rb, r+, or
r+b/rb+) and there is no file named fi 1 en a me, f open ()
fails and returns NULL.

When opening a file for appending (i.e., mode is a, ab, a+,
a+b, or ab+), all writing is appended to the end of the
file, regardless of intervening calls to f seek () .

When opening a file for updating (i.e.,+ is the second or
third character in mode), the program can both read from
and write to the associated stream. However, between a
read and a write (or vice versa), the program must make
an intervening call to ff 1 us h () or one of the file
positioning functions (f seek () , f set pos () , or
rewind()).

A pointer to the stream, if successful.

NU LL, if failure.

open(), fi 1 eno(), fcl ose(), ffl ush(), fread(),
fwrite().

fr e open () opens a file on a specific stream.

Standard Library Functions Used in This Book 411

fprintf

Library A.l'JSI

Syntax #include <stdio.h>
int fprintf{FILE *stream, char *format, ...)

Description f pr i n t f () writes to the given stream. It takes the output
from the data arguments, converts them according to the
format specifiers in the format argument, and writes the
result to the stream that st ream points to.

Returns

See Also

These are the arguments to f pr i n t f () :

stream The stream fprintf() writes to.

format Pointer to a string of format specifiers.

Represents the list of data that fpri ntf()
writes.

For more information on the format specifier, refer to
Figure D.1 in the entry for printf.

The data f print f () prints must consist of valid
expressions.

The number of characters printed, if successful.

A. negative value, if failure.

fscanf{), printf(), scanf(), sprintf(), sscanf{),
vfprintf(), vprintf(), vsprintf().

412 Appendix D

fputc

Library .A.~SI

Syntax #include <stdio.h>
int fputc(int c, FILE *stream):

Description fputc () adds a single character c to the output stream
stream.

Returns

See Also

fputs

Library
Syntax

fputc () writes the character at the position indicated by
the file position indicator that is associated with the
stream. It then advances the indicator appropriately.

If the file cannot support positioning requests, or if the
stream was opened with append mode (see fopen ()),
fputc () appends the character to the end of the output
stream.

The integer value of the character c, if successful.

EO F, if failure (e.g., file is read only).

putc(), fputs(), fwrite(), fprintf().

.A.NSI

#include <stdio>
int fputs(char *s, FILE *stream);

Description fputs () writes the string to which s points to the stream
to which st ream points.

The string must end in a NU LL (' \0 '),but fputs () does
not write the NULL to the stream.

Returns 0 (zero), if successful.

EO F, if failure.

See Also puts(), fpri ntf(), fwrite(), fputc().

Standard Library Functions Used in This Book 413

free

Library A.NSI
Syntax #include <stdlib.h>

void free(void *ptr):

Description free() releases the block of memory that ptr points to,
making the memory available for further allocation.

See Also

Note: Make sure the argument free () receives is a
pointer returned earlier by ca 11 oc () , ma 11 oc (), or
rea 11 oc (). Otherwise, the results are unpredictable.

free() keeps its own internal accounting of how much
memory to free.
If pt r is a NULL pointer, free () performs no action.

cal 1 oc(), mal 1 oc(), cfree().

414 Appendix D

fscanf

Libra1)' A.l\f SI
Syntax #include <stdio.h>

int fscanf(FILE *stream, char *format, ...);

Description f scan f () reads from the given stream. It separates the
input according to the format specifiers in the format
argument and stores the results in the objects pointed to
by the data arguments.

Returns

See Also

fscanf() is the input analog of fpri ntf ().If the format
is exhausted while arguments remain, f sea nf () will
evaluate the excess arguments but will otherwise ignore
them.

These are the arguments to f s ca n f () :

stream The stream from which fscanf ()should read.

format Pointer to a string of format specifiers.

Represents the items into which f scan f () will
store the data it reads. These items must all be
pointers.

For more information on the format specifier refer to
Figure D.1 in the entry for printf.

The number of items successfully assigned, if successful.
This can be fewer than the number of items in its
argument list or even zero in the event of an early
matching failure (i.e., when an input argument does not
match what fscanf ()is looking for).

EO F, if an input failure occurs before it performs any data
conversion.

fprintf(), printf(), scanf(), sprintf(), sscanf(),
vfpri ntf(), vpri ntf(), vspri ntf().

getchar

Library

Syntax

Standard Library Functions Used in This Book 415

ANSI

#include <stdio>
int getchar(void)

Description getcha r () is a macro that calls f getc (),supplying
std in as the argument. This gets the next character from
the standard input.

Returns The integer value of the character, if successful.

EO F, if error or end-of-file.

malloc

Library ANSI
Syntax #include <stdlib.h>

void *malloc(size_t size);

Description ma 11 oc () allocates a block of memory for an object.
size specifies the size of the object.

Returns

See Also

Unlike ca 11 oc () , ma 11 oc () does not clear the block of
memory.
To free the memory that ma 11 oc () allocates, use free () .

A pointer to the block of space, if successful.

NULL, if failure.
free(), calloc(), realloc().

416 Appendix D

printf

Library ANSI

Syntax #include <stdio.h>
int printf(char *format, ...) ;

Description pri ntf ()performs the same operations as fpri ntf()
except that pri ntf() writes its output to stdout.

Returns

See Also

Format
Character

c
d
f
i

p
s
u
~

For more information on the format specifier refer to
Figure D.1.

The number of characters it wrote to stdout, if
successful

A negative value, if failure.

fpri ntf(), fscanf(), scanf().

Type of
Corl"'esponding Output

Al"'gument

int a single character
int a signed integer

float a signed f I oat
int a signed integer

- Default precision of 1
- Pads the result with zeros

void * a pointer, displayed in hexadecimal
char * a zero terminated string

unsigned int an unsigned integer
no argument a single ~ character

Figure D.1 Table of Format specification characters.

Standard Library Functions Used in This Book 417

putchar

Library A.NSI

Syntax #include <stdio.h>
int putchar(int c);

Description putcha r () calls the fput () function, supplying s tdout
as the output stream.

put ch a r () is implemented as a macro rather than a true
function.

Returns The character written, if successful.

See Also

rand

Library

Syntax

Description

Returns

See Also

EO F, if failure. It also sets the error indicator for the
stream.

putc(), puts(), printf().

ANSI

#include <stdlib.h>
int rand(void);

rand () returns a pseudo-random integer in the range 0
to RAND_MAX.

Successive calls to rand () result in a pseudo-random
sequence of numbers.

If you set the seed (using s rand ())to the same number
each time you run your program, you'll always get the
same sequence of pseudo-random numbers.

A. pseudo-random integer in the range 0 to RAND_MAX.

srand().

418 Appendix D

scanf

Library J\NSI

Syntax #include <stdio.h>
int scanf (char *format, ...) :

Description scanf ()performs the same operations as fscanf()
except that scanf () uses stdi n as the input stream.

Returns

srand

Library
Syntax

For more information on the format specifier, refer to
Figure D .1 in the entry for printf.

The number of items successfully read, if successful. This
can be fewer than the number of items in the argument
list or even zero in the event of an early matching failure
(i.e., when an input argument does not match what
scanf() is looking for).

EOF, if. an input failure occurs before any data
conversion.

J\NSI

#include <stdlib.h>
void ~rand(unsigned int seed):

Description s rand () initializes the pseudo-random number generator,
using its argument as a seed for a new sequence.

Use rand() to produce a pseudo-random number.

Using the same number as the seed for s rand () will
always produce the same sequence of numbers.

Standard Library Functions Used in This Book 419

strcat

Library A.l'J'SI

Syntax #include <string.h>
char *strcat(char *sl. char *s2)

Description st r cat () appends a copy of the string that s 2 points to
to the end of the string that s 1 points to.

Returns

strchr

The initial character of s 2 overwrites the NU LL character
at the end of s 1.

Make sure there is enough space for string s 2 in the
character array after the end of the string s 1.

The value of s 1, after s 2 has been appended.

Library A.l'J'SI

Syntax #include <string.h>
char *strchr(char *s. int c):

Description strchr() locates the first occurrence of c (which it
converts to a char) in the string that s points to.

Returns

See Also

strchr() considers the terminating NULL character to be
part of the string s.

A. pointer to the first occurrence of c in the string s, if c
is found.

The NULL pointer, if c is not found.

strrchr()

420 Appendix D

strcmp

Library A.l\TSI

Syntax #include <string.h>
int strcmp(char *sl, char *s2);

Description st rcmp () compares the string that s 1 points to to the
string that s 2 points to.

l\lote that ifs 1 is a substring of s 2, st rcmp () will return
a number greater than zero because the last characters it
compares will be the terminating NU LL (' \ O ') character
of s 1 against some character in s 2.

Returns Positive integer ifs 1 is greater than s2.

strcpy

Library

Syntax

Description

Returns

See Also

0 if s 1 equals s 2.

l\legative integer if s 1 is less than s 2.

A.l\TSI

#include <string.h>
char *strcpy(char *sl, char *s2);

strcpy() copies the string that s2 points to (including
the terminating NULL character (' \ 0 ')) into the array that
s 1 points to.

The value of s 1.

strncpy().

Standard Library Functions Used in This Book 421

strlen

Library A.l'JSI
Syntax #include <strings.h>

size_t strlen(char *s);

Description st r l en () computes the length of the string that s points
to.

Returns st r l en () returns the number of characters that precede
the terminating NULL character.

strncat

Library A.1'JSI
Syntax #include <string.h>

char *strncat(char *sl, char *s2, size_t n)

Description strncat() appends a copy of the string that s2 points to
to the end of the string that s 1 points to, until it has
appended n characters or it has reached the end of string
s2.

Returns

See Also

The initial character of s 2 overwrites the NULL character
at the end of s 1.

If st r n cat () appends n characters without reaching the
end of s2, strncat() will add a terminating NULL
character (' \ 0').

Make sure there is enough space for s 2 in the character
array after the end of the string s 1.

The value of s 1, after appending the string s 2. If n is
negative or zero, it returns s 1 unchanged.

strcat().

422 Appendix D

stmcmp

Library A.NSI

Syntax #include <string.h>
int strncmp(char *sl, char *s2, size_t n);

Description st rncmp () compares the string thats 1 points to to the
string that s2 points to, up to a limit of n characters.

Returns

See Also

strncpy

Library

Syntax

st rncmp () does not compare characters that follow the
NU LL character.

Positive integer if the first n characters of s 1 are
greater than the first n characters of
s2.

0 if the first n characters of s 1 are equal
to the first n characters of s 2.

Negative integer if the first n characters of s 1 are less
than the first n characters of s 2.

strcmp().

A.NSI

#include <string.h>
char *strncpy(char *sl, char *s2, size_t n);

Description st r n c p y () copies characters from s 2 to s 1 until either it
has copied n characters or it reaches a NU LL character in
s2.

If s 2 is shorter than n characters, st r n c p y () will append
NULL characters to s 1 until it has written n characters
there.

Returns The value of s 1.

A E

The Complete THINK C'
Development
Environment

NOW THAT YOU'VE WORKED WITH A SCALED-DOWN
version of THINK C, you'll want to upgrade to the full version. The
complete THINK C development environment lets you take advantage
of the powerful features and capabilities that have made the THINK
Languages the leading development tools for the Macintosh. This
chapter will describe some of those features, including:

• The Project
• The Editor
• Libraries
• Fast turnaround
• Source-level debugging

423

424 Appendix E

• Inline assembler
• Object-oriented programming
• The THINK Class Library

You're familiar with some features of the THINK C environment
from working with the special version of the product included with this
book. In the full version of the product, however, you can take
advantage of many additional features, such as an enhanced project
window, full source-level debugging capabilities, an inline assembler,
and object-oriented programming. Other powerful new features include
an optional optimizer for even tighter code, a class browser for object­
oriented programming, and full ANSI compatibility. In addition, with
the complete version of THINK C, you can build your own double­
clickable applications.

Special~~~~~~~~~~~~~~~~~~~~~~~~
Upgrade

Offer Symantec will upgrade owners of "learn C on the
Macintosh" to the complete THINK C development
environment for a special price. You can upgrade to the full
version for just $129, almost 50 percent off the price of the
retail product. See the back page for further details and an
upgrade coupon.

Overview of the THINK C Environment

THINK C is a unique development environment for the Macintosh. It
features a very fast compiler, a faster linker, an integrated text editor, an
auto-make facility, and a project organizer that holds all the pieces
together. Because the editor, the compiler, and the linker are all com­
ponents of the same application, THINK C knows when edited source
files need to be recompiled.

The Complete THINK C Development Environment 425

THINK C is a complete, integrated environment, not just a C com­
piler for the Macintosh. Traditional development environments consist
of three separate applications: the editor, the compiler, and the linker. It
is up to you to create your source files with a text editor, run each file
through the compiler, and finally link all your object files. In THINK C,
the three components work in concert as parts of the same application.
This way, THINK C knows when you've edited a file. The compiler pro­
duces object code that the linker can put together in an instant. Then
THINK C can launch your program. And because THINK C is still run­
ning, it can launch the source level debugger, so you can debug your
program.

You can run your program from THINK C as you work on it. Your
program runs exactly as if you had launched it from the Finder, not
under a simulated environment. If you use MultiFinder, your program
runs in its own partition while THINK C remains active, so you can
examine and edit your source files as you watch your program run.

With THINK C you can build Macintosh applications, desk acces­
sories, device drivers, and any kind of code resource. The standard C
libraries include all the functions specified in the ANSI C standard, as
well as some additional UNIX operating system functions.

Writing a program in THINK C is like writing a program in any
other development environment. You create your source files, compile
them, then link the object code to create an executable file. The differ­
ence is that in THINK C, you use the same application to do all of this.

The Project

The project is at the heart of the THINK C development environment.
It takes over the functions of several other files in traditional develop­
ment environments. The project holds the object code of all your
compiled source files and maintains the dependencies and connections
among them. It keeps track of files that need to be recompiled or that
depend on an edited #inc 1 ude file. If you're using the source level
debugger, the project keeps the tables that the debugger needs.

426 Appendix E

Figure E. l shows a sample project window. It contains a list of all
the files that comprise your program. To the right of each file name is
the size of that file's object code. To the left of each file name is the
"bug" column that THINK C adds to the project window when you
choose the Use Debugger command. THINK C generates debugging
information for files that have gray diamonds next to them.

Rather than producing a separate binary object code file, THINK C
keeps all object code in the project document in ready-to-link form.
Because the project document knows all the files that make up your
program (including header files), it can keep track of changes. When
you edit a source file, the project manager marks it for recompilation.
When you edit an #include file, the project manager marks all the files
that use it.

bullseye 11

........ ~.~.~.!~~~~

Figure E.1

The Complete THINK C Development Environment 427

The Editor

Once you've created a project document, the next step is to add your
source files. THINK C source files are standard text files, so you'll be
able to use existing source files. The THINK C editor uses standard
Macintosh editing techniques, so you're familiar with its basic opera­
tion. It also provides some features that help you edit C source code. Its
search facilities include a pattern-matching option based on Grep, and a
multi-file search that looks for strings in any file in your project.

Figure E.2 shows a sample search dialog from THINK C.

Search for: Replace with:

I _m_y_w_in_d_o~ __________ __.I ! ________________ __.
D Match Words

D Wrap Around

1:8:11 gnore Case

Figure E.2

D Grep D Multi-File Search

((Find J)(Don't Find J (Cancel J

You can open as many files as the memory in your Macintosh will
allow, and each file appears in its own edit window. Although you
usually create and open source or header files, you can also use the
THINK C editor to open any text file.

Holding down the Option key as you click in the title bar of the
project window brings up a pop-up menu containing the names of all
the Iii ncl ude files used in the project. (See Figure E.3.)

428 Appendix E

Buggy MiniEdit .c

*** There is o bug in this fi le!***

•i ncl ude <QuickDrow .h>
•include <MocTypes .h>
•include <FontMgr . h>
• inc lude <~indowMgr . h>

Figure E.3

Libraries

ToolboHUtil.h
WindowMgr.h

**

re .

*I

Along with your source files, you must add your libraries to the project
document. Virtually every program you write will need to access the
Macintosh Toolbox. You can call any Macintosh Toolbox routine
exactly as it 's described in Inside Macintosh. The code for Toolbox
routines marked:

[Not In ROM]

as well as the glue code needed to ca ll some of the other Toolbox
routines is in the MacTraps library.

Your THINK C package also includes several other libraries you
can use in your programs. The ANSI library contains the standard
ANSI functions defined in the ANSI standard. The UNIX library

The Complete THINK C Development Environment 429

contains UNIX system functions, including memory calls. You can use
these libraries when you port code from other systems. You can also
create your own libraries in THINK C.

Fast Turnaround

THINK C lets you run your program directly from THINK C. With the
single command Run, the project manager automatically recompiles the
source files that are new or have changed, and loads any unloaded
libraries. Then the THINK C linker links all your code together
instantly. In this one step you accomplish in seconds what used to take
several minutes or longer.

THINK C launches your program as if you had double-clicked on it
from the Finder. This way, you know exactly how your program will
behave in actual conditions. If you're running under MultiFinder,
THINK C launches your program in its own partition. Since THINK C
is still running, you can look at your source files while your program is
running.

Source-level Debugging

To help get your program working correctly, you can use THINK C's
source level debugger. The THINK C debugger lets you debug your
code the way you wrote it: in C. You can set breakpoints, step through
your code, debug objects, examine variables, and change their values
while your program is running. You can set conditional breakpoints
that stop execution only when certain conditions are true. And because
the debugger runs under MultiFinder, you can edit your source files
while you're debugging.

The debugger windows show you the source of your program and
the values of your variables. The Source window (see Figure E.4) con-

430 Appendix E

I~§§§§§§§ bullseye.c

J main()

l {
<>•
<>!
¢1

•

In i tMac i ntosh<);
Se tupMenus () ;
SetupWi ndow<);

for <;;)

main

Figure E.4

tains the source text of your program, the debugger's status panel, state­
ment markers, the current statement arrow, and the current function
indicator. The title of the Source window is the name of the source file.

The Source window shows the source text of your program. When
you start the debugger, this window shows the file that contains the
main () routine of your application. The top of the Source window has a
six-button status panel. These buttons control the execution of your
program. The column of diamonds running along the left side of the
source text are statement markers. Every line of your program that
generates code gets a statement marker. You can set breakpoints at these
statement markers. When your program is running, the debugger stops
execution just before a breakpoint. You can set three kinds of break­
points: simple breakpoints, conditional breakpoints, and temporary
breakpoints.

The black arrow to the right of the statement markers is the current
statement arrow. This indicator shows you the current statement, the
one the debugger is about to execute. When you start your program, the
current statement arrow is at the first executable line of your program.

The source debugger uses the space at the lower left of the Source
window for the name of the current function. When you click here and

The Complete THINK C Development Environment 431

hold the mouse button down, the debugger displays a pop-up menu
that shows the call chain - the names of the functions that were called
to get to the current function.

The other debugger window is the Data window. (See Figure E.5.)
In this window you can examine and set the values of your variables.
The Data window is modeled after a spreadsheet. You can type variable
names into the entry field (left column), then press the Return or Enter
key. When your program is running, the variable value will appear in
the right column.

r:

0 Data

I l0[g]
ok 1 lQ
theEvent struct Ox08C5FC

~
~

Figure E.5

Inline Assembler

THINK C lets you use assembly language in your THINK C programs.
You can use THINK C's built-in inline assembler for assembly language
in your source files, or you can use object files generated by other
assemblers. THINK C works within the compiler to produce object
code. You can use instructions for the Motorola MC68000 and
MC68020 processors and for the MC68881 floating-point coprocessor.

432 Appendix E

You can refer to C variables and functions within assembly language
routines. Your C routines can go to labels in the assembly routines and
vice versa.

Object-Oriented Programming (OOP)

The basic distinction between procedural and object-oriented program­
ming is in the way the two disciplines treat data and action. In pro­
cedural programming, data and action are two separate things. You
define your data structures, then you define some routines to operate on
them. For each data structure you define, you need a new set of routines.

In object-oriented programming, action and data are closely
coupled. When you define your data- your objects- you also define
their actions. Instead of a set of routines that do something to data, you
have a set of objects interacting with each other.

Object-oriented programming is a compelling choice for many pro­
grammers today and THINK C's built-in OOP capabilities make it
accessible to you whether you're a novice or more advanced professional.

The THINK Class Library

Object-oriented programming is not hard to learn, but it requires
mastering a few key concepts and a few new words. To make learning
object-oriented programming easier, THINK C comes with the THINK
Class Library.

The THINK Class Library (TCL) is a collection of classes that
implement a standard Macintosh application. The TCL takes care of
things like handling menu commands, updating windows, dispatching
events, dealing with MultiFinder, maintaining the Clipboard, and so on.
The TCL takes care of the common Macintosh interface, so you can
concentrate instead on your program's functionalism.

The Complete THINK C Development Environment 433

Why Upgrade?

As you can see, the full version of THINK C offers a host of features
not included in this special book-version of the product: the project
document, libraries, full source-level debugging, inline assembler,
object-oriented programming, the THINK Class Library, and more. As
you develop your skills as a Macintosh programmer, you '11 want the
power and flexibility the THINK C development environment offers.
Plus, you can upgrade to the complete version for a special price. See
the coupon at the back of the book for details.

Answers to
Selected Exercises

Chapter 3

1) 00011010
3) 00001100
5) 01111111
7) 00101111
9) 11111111
11) 11100011
13) 10011101
15) 11110011

Convert these two's complement numbers to decimal:
17) -1
19) -113
21) -64
23) -29

435

436 Appendix F

Chapter 4

1) The error message "invalid declaration" appears.
3) The error message "syntax error" appears.

Chapter 5

1) a. The text string "Hello, world" is missing its double-quote
characters.

c. The += operator is reversed.
e. The format specifier, %d, is missing.
g. The left and right sides of the assignment are reversed.

2) a. 70
c. -1
e. -8
g. 14

Chapter 6

1) a. The if statement's expression should be surrounded by
parentheses.

c. The while loop has parentheses, but is missing an expression.
e. A switch statement cannot switch on a text string. If the

variable i is declared as an int, each case should contain a
number or an int variable.

g. The while loop's expression contains an assignment statement
instead of a comparative operator. This code is legal, but it
doesn't make much sense. The expression:

done = TRUE

returns the value of done, which is TRUE. Therefore, the while
expression will always evaluate to TRUE, and the while loop
will continue ad infinitum.

Chapter 7

1) a. Final value is 25.
c. Final value is 1.

Chapter 8

Answers to Selected Exercises 437

1) a. The for loop will never exit. c is declared as a char and has a
range from -128 to 127. If c has a value of 127 and you add 1
to it, c will have a value of -128. Try it yourself ...

c. The text string 11 a 11 represents two characters, both 'a' and a
character with a value of 0. You can't assign a text string to a
char variable.

e. The #define of MAX_ARRAY _SIZE must come before the first
reference to it.

g. This code is legal, but it doesn't make much sense. The
problem occurs in the line:

cPtr++ = O;

This line assigns the pointer variable cPtr a value of 0, then
increments it to 1. These two lines make more sense:

*cPtr = O;
cPtr++;

With this change in place, the for loop will initialize each
element of the array c to 0.

Chapter 9

a. There's one tiny problem with this declaration and explicit
initialization. The array 1 i ne is allocated only 5 bytes, but the
text string "he 11 o" needs 6 bytes, 5 for the letters in the word
hello, and 1 byte for the 0 that terminates the text string.

438 Appendix F

c. The declaration of the field employeeNumber should be ter­
minated by a semicolon.

e. The file name "stdio.h" should appear as <stdio.h>.
g. The fields next and prev should be declared as pointers. Also,

a semi-colon should follow the struct declaration.

Chapter 10

1) a. The arguments to fopen() appear in reverse order.
c. line is declared as a char pointer, yet no memory was allocated

for line to point to. Also, since line is already a pointer, the &
in the call of fscanfO should not be used. Finally, since the file
was opened for writing, an fscanfO is inappropriate.

e. This code has one problem. Once again, line is declared as a
char pointer, yet no memory has been allocated for it to point
to.

Chapter 11

1) a. The problem with this code is in this line:

myDog.next = &myCat:

Since myDog.next is declared as a Dog pointer, some
typecasting should be added to this line. Here's the corrected
version:

myOog.next = (struct myDog *)(myCat.next):

c. The declaration of myUnion is missing the keyword union.
Here's the corrected declaration:

union Number myUnion:

Answers to Selected Exercises 439

e. A pair of parentheses has been left out of the function
pointer declaration and the call of the function pointer. Here's
the corrected code:

int (*myFuncPtr)(int);

myFuncPtr =main;
(*myFuncPtr)();

g. The parameters in strcpy() appear in reverse order.

Next on your reading list from Addison-Wesley ...

Macintosh® C Programming Primer, Volume I: Inside the Toolbox
Using THINK CTM, by Dave Mark and Cartwright Reed, 544 pages,
$24.95, ©1989.

Macintosh® C Programming Primer, Volume II: Mastering the Toolbox
Using THINK CTM, by Dave Mark, 496 pages, $24.95, ©1990.

Macintosh® Pascal Programming Primer, Volume I: Inside the Toolbox
Using THINK Pascal, Dave Mark and Cartwright Reed, 544 pages,
$24.95, ©1991.

These and other Addison-Wesley computer titles are available wherever
computer books are sold, or by calling Addison-Wesley's order depart­
ment at (617)-944-3700, 9 a.m. to 5 p.m., EST.

A G

Bibliography

EACH BOOK ON THIS LIST OFFERS INSIGHT INTO SOME
part of the C development process. At one end of the spectrum, The C
Programming Language is an extremely popular reference guide to C
programming. It offers a complete specification of the C programming
standard.

The first two volumes of the Macintosh Primer series take you
beyond C programming into the world of Macintosh programming.
The Inside Macintosh series contains Apple's detailed technical
specifications for the Macintosh. If you plan on programming on the
Macintosh, you'll want to pick up each of these.

The THINK C™ User's Guide comes with your purchase of the
THINK C compiler. THINK C is the compiler for the Macintosh
computer. Get yourself a copy.

The final two books provide a high-level technical view of the
Macintosh. If you don't have the cash to buy these, try to find a copy
you can borrow for a weekend. They're worth checking out.

441

442 Appendix G

1. Macintosh C Programming Primer, Volume I, Dave Mark and
Cartwright Reed, 1989, Addison-Wesley Publishing Company,
Reading, MA.

2. Macintosh C Programming Primer, Volume II, Dave Mark, 1990,
Addison-Wesley Publishing Company, Reading, MA.

3. Inside Macintosh, Volumes I-V, Apple Computer Inc., 1985-88,
Addison-Wesley Publishing Company, Reading, MA.

4. Inside Macintosh, Volume VI, Apple Computer Inc., 1991,
Addison-Wesley Publishing Company, Reading, MA.

5. Inside Macintosh, X-Ref, Revised Edition, Apple Computer Inc.,
1991, Addison-Wesley Publishing Company, Reading, MA.

6. The C Programming Language, Brian W. Kernighan and Dennis
M. Ritchie, ©1988, Prentice Hall, Englewood Cliffs, NJ.

7. THINK C™ User's Manual, Symantec Corporation, 1989,
Cupertino, CA.

8. THINK C™ Standard Libraries Reference, Symantec Corpora­
tion, 1989, Cupertino, CA.

9. Technical Introduction to the Macintosh Family, Apple Computer,
Inc., 1987, Addison-Wesley Publishing Company, Reading, MA.

10. Programmer's Introduction to the Macintosh Family, Apple
Computer, Inc., 1988, Addison-Wesley Publishing Company,
Reading, MA.

& (address of) operator, 150, 163
• (multiplication) operator, 77
·=(multiplication) operator, 77
+ (addition) operator, 74
++(increment by 1) operator, 74-

75, 89-91
+= (increment by value) oper:itor,

76
- (subtraction) operator, 74
-- (decrement by 1) operator, 74-

75, 89
-= (decrement by value) operator,

76
() (cu rly braces), 46, 116
I (d ivision) operator, 77-78
I= (division) operator, 77
32-bit addressing, 153
= (equals) operaror, 71-72
\(cancel character), 93
\" (quotation mark character), 93
\a (beep character), 93
\b (backspace character), 93
\n (newline character), 87, 92, 133
\r (carriage return no line feed

character), 92
\t (single cab character), 93
/ld ef i ne, 221-224, 226, 236, 248,

258, 311
Iii nc l ude fi le, 257-258, 269

A
About WindowMaker menu item,

345-346
ad dThese . c file, 361
Add These Numbers () function,

168-169, 171

Add To Lis t () function, 260, 266,
295

AddT wo () function, 155
Algorithms, 47-49, 131, 351
Alphabetic characters, 193-194
and (& &) logical operator, 111
AnotherFun c t i on () function,

49
ANSI C (American National Stan-

dards Institute C), 51, 351
ANS I . 1 i b file, 17-19, 34, 285
Append, 351
Applications, checking memory

size, 35
Arguments, 351
Arithmetic pointers, 356
Arrays, 200-212, 235-247, 351

dimensions, 201 -202, 236-238
elements, 200, 351
exceeding bounds, 211 -212
explicit initialization, 261
index, 200
multi-dimensional, 236-238,

356
names as pointers, 208
one-dimensional, 236, 356
stepping through, 202
str uc t, 246

ASCH (American Standard Code
fo r Information
Interchange), 194

ASCH character set, 194, 199, 351
unprintable characters, 198
uppercase and lowercase leners,

197
ASC II . it file, 195-197

ASC 11 . c file, 199-200, 362
ASC 11 program, 195-197, 199-200
Assignment statements as

expressions, 107

B
Back-up copy of THJN C, 15
Backslash (\) key, 87
Backslash sequence, 87, 351
Backspace character (\b), 93
Balanced tree, 323, 352
Base, raising ro exponent power,

175-1 76
Beep character (\a), 93
Bell curves, 203, 352
Binary

numbers, 37, 39-40, 352
operarors, 111

Binary trees, 319-328
balanced tree, 323
comparative relationship, 320
in-order search, 325-327
leaf node, 320
postorder search, 326-32 7
recursion, 324-328
root node, 320
searching, 324
st ru c t , 320

Bits, 37, 352
b r eak statement, 126-127, 129

syntax, 404
Buffers

input, 216-219, 355
ourpur, 284-285

Byres, 35, 37-38
as negative number, 38

443

444 Index

c

two's complement notation, 38-
39

C programming language, 4
functions, 45-52

Calling functions, 49, 50
Cancel character(\), 93
Carriage return no line feed

character (\r), 92
case, 127-128
Case sensitivity, 58, 352
Cast, 306, 352
c d Data file, 285-287
cd Filer. Jt file, 285, 287-290
c d Fi l er program, 285-298
cd Fil es. c file, 285, 291-298,

362-366
cdMa in. c file, 285, 366-370
cdMa in file, 290-291
cdTracker .Jt file, 254-256
cdTracker. c file, 256-269, 370-

375
c d Tracker program, 254-269
Central Processing Unit (CPU), 29,

352
ch a r variable type, 192-200
Characters, 193-200
Chicago font, 343
Child,352
Clear menu item, 21
clock () function, 205, 406
Close menu item, 20, 22, 89, 91,

346
Command-key equivalent, 352
Comments, 96-97
Comparative operators, 108-109,

352
!= (not equal to), 109
< (less than), 109
<=(less than or equal to), 109
== (equal to), 109
> (more than), 109
>=(more than or equal to), 109

Comparative relationship, 320, 352
Compilers, 14, 32, 352
Complex statements, 117, 352
Compound expressions, 113
Computers, parts of, 29-31

console, 30
input devices, 30

memory, 30-31
motherboard, 29
operation, 28-29
output devices, 30
storage devices, 30

Console, 30, 352
Console window, 80, 82
Constants, 128
Control Manager, 344, 353
Copy menu item, 21
CountCDs ()function, 297-298
Counters, 353
Curly braces, 46, 116
Current function, 430
Current statement, 430
Current statement arrow, 430
Cut menu item, 21

D
Data structures in linked list, 251-

269
Data types (see Type)
Dea lTheCa rds () function, 328-

329
Declaration, 353
Declaring variables, 68
Decrement, 35 3
default case, 127-128
Dereferencing, 154, 353
Development folder, 15
Devices

input, 355
output, 356

dice. Jt file, 203
dice. c file, 204-208, 210-211,

375-376
dice program, 203-208, 210-211
Dimension, 353
do statement, 125

syntax, 402-403
Doping, 353
Do Power() function, 175-176,

178-180
do u bl e variable type, 192
DrawDots ()function, 157-161
d r a w D o t s . 1t file, 15 8
drawOots. c file, 376

E
Edit cursor, 57
Edit menu, 21-22

Editing windows, 18
Elements of arrays, 351
Equal to (==)comparative

operator, 109
Error messages

link failed, 5 8
syntax error, 57

Exceeding the bounds, 353
ex i t () function, 263, 406
Explicit initialization, 260-261,

353
arrays and global variables, 261

Expressions, 106-113

F

assignment statement as, 107
comparative operators, 108-109
compound, 113
literals as, 107
translating values to another

type, 306-307
TRUE and FALSE, 107-109
variables as, 106

f a c to r i a l () function, 316-319
FALSE expressions, 107-109
FALSE literal, 110
f c l o s e () function, 282, 407
fgetc () function, 278-283, 295-

296, 408
File menu, 20, 35, 345-346
File mode, 353
File name, 353
File pointers, std in and s tdout,

282-283
Files, 275-298, 353

See also programs, program
listings, projects, and
individual

program names
/Ii nc l ude, 269
addThese.c,361
ANS I.lib, 17-19, 34, 285
A S C I I . 1t, 19 5-197
ASCII.c,362
appending, 277
cdData, 285-287
cdFi 1 er .Jt, 285-290
cdFi l es. c, 285, 291-298,

362-366
cdMa in. c, 285, 366-370
cdMa in, 290-291

cdTracker .n, 254-256
cdTracker. c, 256-269, 370-

375
d i c e . n, 203
dice. c, 204-208, 210-211,

375-376
d r a w Do t s . n, 15 8
drawDots. c, 376
fl oat .n, 190-191
float.c,377
funcPtr. c, 377
hello .n, 15-17, 19
hello.c, 15-1~34,378
hell o2 .n, 55
he l l o 2 . n, 52-53
hello2.c,53,378
i sOdd .n, 130-134
i sOdd. c, 130, 378-379
i t e r a t e . c, 3 79
l i stPrimes .n, 172-175
l i st Primes. c, 379-380
mode, 276-277
My Data File,279
name, 276
name .re, 214-216, 219-221
names.c,380
next Prime . n, 134
nextPri me. c, 135-138, 380-

381
opening, 276-284, 356
o p e r a t o r . n, 79
operator. c, 79-81, 83-84,

86-88, 381-382
postfix.n,89
postfix. c, 89-91, 382
power .n, 175-177
power. c, 382-383
pr i n t Fi l e . n, 279
pr i n t Fi l e. c, 279-284, 383-

384
project, 16, 357
reading, 277-283, 357
recurse. c, 384
slasher.n,91
slasher. c, 92-93, 385
source code, 16
squarelt.c,385
std i 0. h, 257-259
stdlib.h,257
structSi ze .n, 242-243
structSi ze. c, 243-246, 386

sum Five. c, 386-387
windowMaker.n, 344-346
windowMaker.c,387-398
wordCount .n, 224-230
wordCount.c,22~399-400

writing to, 277, 283-284, 359
Find Text ... menu item, 22
Finder, 35, 343, 353
float. rc file, 190-191
f 1 oat . c file, 3 77
fl oat program, 190-191
fl oat variable type, 189-190, 192
Floating-point numbers, 189-192,

353
Floppy disk system, running THIN

c, 15
Flow charts, 48
Flow control, 104-106, 353
Fl us h () function, 261, 264, 266
FlushFile() function,293,295
Fonts

Chicago, 343
setting for source code files, 21

f open ()function, 276-279, 281,
297, 409-410

for loop, 122-124, 131-132, 135-
136, 160

for statement, 121-124
syntax, 402

Format specifications table, 416
Format specifiers

%c (character), 199
%d (integer), 190, 215
%f (float), 190, 192
%s (0 terminated string), 220,

238,267
f print f () function, 283-284,

297, 411
fputc () function, 283-284, 412
fputs ()function, 283-284, 412
Fractional part, 354
free ()function, 250-251, 413
fscanf ()function, 278, 293-295,

414
fun c Pt r . c file, 3 77
Functions, 45-47, 49-52, 354

AddTheseNumbers(), 168-
169, 171

AddTolist(),260,266,295
AddTwo (), 155
AnotherFunction(),49

Index 445

arguments, 84-86
body, 46-47, 354
built-in, 50
calling, 49-50
case sensitivity, 58
clock (), 205, 406
CountCDs (), 297-298
DealTheCards(),328-329
declaring variables within, 72
DoPower(), 175-180
DrawDot s (), 157-161
ex i t () , 263, 406
factorial (), 316-319
fclose(),282,407
f getc (), 278-283, 295-296,

408
Flush(),261,264,266
FlushFile(),293,295
f open (), 276-279, 281, 297,

409-410
fprintf(),283-284,297,

411
fputc (), 283-284, 412
fputs C), 283-284, 412
free(),250-251,413
fscanf (), 278, 293-295, 414
getchar(),227,265-266,

278,283,415
GetCommand(), 259-260, 262
IsltPrime(), 173-175
Its Rain i n g () , 129
left-curly bracket ({), 46
naming, 96
Lis tCDs (), 260, 266-267
main C), 46-47, 49-50, 54, 65,

131, 160, 167, 173-175,
178, 200, 204-206, 210, 244,

259,262,268-269,280,
292

MakeWindow(),84
ma 11 oc C), 249-252, 257, 263-

264, 294, 415
MyFunctionC),49
parameters, 46, 84-86, 155-

163, 354
passing, 84, 161-163

P a s s A l on g C) , 166
pointers, 328-329, 354
p r i n t . f () , 257
PrintCharsC),199-200
pri ntf (), 47, 50-51, 54, 80,

446 Index

83-86, 90-93, 114, 131-132,
138, 175, 190-191, 199,
220,227,229,245-246,
265,267,281-282,416

printf,213
PrintMyVar(), 167
Pr i n t Ro 1 1 s () , 206, 208,

210-211
PrintX,211
putcha r <), 281-282, 417
Rand () , 207, 417
ReadAL i ne (), 268-269
Read Fi 1 e(), 285, 290, 293,

295
ReadFileLine(),294,296
Read Line<>, 264-265
ReadStructC }, 260, 262-263
recursion, 314-319
return(), 168-169
return values, 168, 354
returns, 164, 168-171
right-curly bracket ()), 46
RollOne(),205,207
RowOfDots (), 160
SayHe l 1 O(}, 52-54
scanf (), 214-215, 217-220,

261,264,278,418
Sea re her (}, 325-326
sharing variables, 164
sizeof(),245-246,249
source code in, 54-55
Sq u a re It () , 162-163
s r a n d () , 205, 418
Standard Library, 51-52
statements, 47
strcat(),331,419
strchr(),419
strcmp(},331,420
strcpy(),330,420
strlen(),221,332,421
strncat(},421
strncmp(),422
strncpy(},422
text string, 84
titles, 46, 354
types, 262
uninitialized return values, 170-

171
variables, 84, 156, 159
Vi sitNode(),325
WriteFile(),285,291,296

G
Get Info menu item, 35
getchar(} function, 227, 265-

266, 278, 283, 415
GetCommand() function, 259-

260, 262
g Is Co 1 or global variable, 181
Global variables, 164-167, 354

adding to programs, 166-167
explicit initialization, 261
glsColor, 181
gPrintExtralnfo, 175-180
memory and, 167

Globals t ruct, 244
g Pr i n t Extra Info global

variable, 17 5-180
Graphical user interface (GUI),

342-344, 354

H
Hard disk system running THIN C,

14-15
Hardware requirements, 5
hel lo.rrfile, 15-17, 19
he 11o.cfile,15-18, 34, 378
he l 1 o2. n file, 52-53, 55
he 11 o2. c file, 53, 378
he 11 o2 program, 54-55

saving after correcting errors,
58

source code errors, 56-57
[c]hello[c] folder, 15
hel 1oprogram,15-16, 49, 54

I
i f - el s e statement, 106
i f keyword, 104
i f statement, 104-105, 108, 114-

115, 117
syntax, 401, 402

In-order search, 325-327, 354
Increment, 354
Index, 354
Initialization, 354

explicit, 260-261, 353
variables, 83

Initialized, 354
Input buffer, 216-219, 355
Input devices, 30, 355
Inside Macintosh, 347-348
Installing THIN C, 13-15

i n t variable type, 188
int variables, 68-79

size of memory, 69
Integer part, 355
Integers, 71, 355
Integrated Circuits (ICs), 28-29,

355
lsltPrime() function, 173-175
i s Odd. Jt file, 130-134
i sOdd. c file, 130, 378-379
i sOdd program, 130
i t e r a t e . c file, 3 79
Iteration, 314-315, 355
I t s Ra i n i n g (} function, 129

K
Key, 355

L
Leafnode,320,355
Less than (<) comparative operator,

109
Less than or equal to(<=)

comparative operator, 109
Link Errors window, 58
link failed dialog box, 58
link failed error message, 58
Linked list, 251-269, 288-290, 355

master pointer, 252
L i s t C 0 s () function, 260, 266-

267
listPrimes.Jtfile,172-175
l is t Primes. c file, 379-380
l is tP rimes program, 172-175
Literals, 71, 355

as expressions, 107
FALSE, 110
TRUE, 110

Logical operators, 110-112
! (switch TRUE/FALSE), 110-

111
& & (and), 111
11 (or), 112

Loops, 121-129, 355
counters, 120
for, 131, 132
initialization, 119
modification, 119-120
termination, 119-120

M
Machine code, 14, 22, 32, 34, 355
Macintosh C Programming Primer,

348-349
Macintosh Programming Secrets,

349
Macintosh Toolbox, 342-344

Control Manager, 344
Menu Manager, 343
using in your programs, 346-

347
Window Manager, 344

Macintosh user interface, 341-342
Macros, 224, 355
main () function, 46-47, 49-50,

54,65,131, 160, 167, 173-
175, 178, 200, 204-206,
210,244,259,262,268-
269,280,292

Ma keWi ndow() function, 84
ma 11 oc () function, 249-252, 257,

263-264, 294, 415
address, 250-251

Master pointer, 252, 355
Memory, 30-31, 355

allocating, 248-249
checking for applications, 35
deallocating, 250-251
global variables and, 167
Model A program usage, 239-

240
RAM (Random Access

Memory), 35-39
size for variables, 69-70
text strings, 213-216, 219-221

Menu Manager, 343, 356
Menus, 20-23

Edit, 21, 22
File, 20, 35, 345-346
Project, 22-23, 35, 49, 55, 79,

89, 91
Model A program, 236-238

memory usage, 239-240
Model B program, 240-242
More than(>) comparative

operator, 109
More than or equal to(>=)

comparative operator, 109
Motherboard, 29, 356
Multi-dimensional arrays, 236-238,

356

My Data File file, 279
MyFunction() function,49

N
name program, 214-216, 219-221
name .1t file, 214-216, 219-221
names. c file, 380
Naming

functions, 96
variables, 69, 96

New menu item, 14, 20, 345
Newline character (\n), 87, 92, 133
next Pr i me . 1t file, 134
nextPrime. c file, 135-138, 380-

381
Not equal to(!=) comparative

operator, 109
Notation

postfix, 356
prefix, 357

Numbers
checking odd and even, 130-133
dividing by zero, 115-116
floating-point, 189-192, 353
prime, 134-138, 172-17 5, 314
raising base to exponent power,

175-176
squaring, 162
whole, 188

Numerical constants, 71

0
Object code, 22, 34, 356

deleting, 35
One-dimensional arrays, 236, 356
Open ... menu item, 14, 20, 22
Opening files, 356
Operating system requirements, 5
opera to r . 1t file, 79
operator. c file, 79-88, 381-382

source code, 83-88
Operators, 71-81, 83-84, 356

See also comparative operators
and logical operators

& (address of), 150, 163
• (multiplication), 77
•(star), 151-152, 154, 161
·=(multiplication), 77
+ (addition), 74
++(increment by 1), 74-75, 89-

91

Index 447

+=(increment by value), 76
- (subtraction), 74
-- (decrement by 1), 74-75, 89
-=(decrement by value), 76
I (division), 77-78
I= (division), 77
=(equal), 71-72
binary, 111
comparative, 108-109, 352
defining precedence with (),

78-79
logical, 110-112
postfix notation, 75-76, 89-91
precedence, 78
prefix notation, 75-76, 89
unary, 111

Or (I I) logical operator, 112
Output

p

buffers, 284-285
devices, 30, 356

Page Setup ... menu item, 20
Parameters, 356

functions, 354
passing, 84

Parent pointer, 208-211, 356
Pa s s Al on g () function, 166
Passing, 356
Paste menu item, 21
Pointer variable, 150-154

declaring, 151-154
Pointers, 138, 144-163, 356

adding level of indirection, 14 7
arithmetic, 229, 356
array names as, 208
dereferencing, 154
functions, 328-329, 354
master, 355
parent, 208-211, 356
struct and,247
typecasting, 308-309
variables, 356

Postfix notation, 75-76, 89-91, 356
po s t f i x . 1t file, 89
postfix. c file, 89-91, 382

source code, 90-91
Postorder search, 326-327, 356
power .1t file, 175-177
power. c file, 382, 383
power program, 175-181

448 Index

source code, 177-181
Prefix notation, 75-76, 89, 357
Preorder search, 357
press <<return>> to exit window,

80
Prime numbers, 134-138, 172-175,

314
Print ... menu item, 20
p r i n t . f () function, 257
PrintChars<) function, 199,

200
print f () function, 47, 50-51, 54,

80, 83-86, 90-93, 114, 131-
132, 138, 175, 190-191,
199,220,227,229,245-
246,265,267,281-282,416

parameters, 84-86
quoted text string, 85
variable value in text string, 85

p r i n t F i 1 e . n file, 2 79
pr i n t Fi 1 e . c file, 279-284, 383-

384
print Fi 1 e program, 279-284
print f function, 213
PrintMyVar() function, 167
P r i n t Ro 11 s () function, 206,

208, 210-211
P r i n t X function, 211
Program listings. See also files,

programs, and individual
program names

addThese. c, 361
AS C I I . c, 362
cd Fi 1 es. c, 362-366
cdMa in. c, 366-370
cdT racker. c, 370-375
dice. c, 375-376
drawDots.c,376
float.c,377
funcPtr.c,377
he 11 o. c, 378
hello2.c,378
i sOdd. c, 378-379
iterate.c,379
1 i stPrimes .c, 379-380
location, 15
names. c, 380
nextPrime.c,380-381
operator. c, 381-382
p 0 st fix. c, 382
power. c, 382-383

pr i n t Fi l e . c, 383-384
recurse. c, 384
slasher.c,385
squarelt.c,385
structSize.c,386
s urn Five. c, 386-387
windowMaker.c,387-398
wordCount. c, 399-400

Programming basics, 27-28
Programs, 16, 28, 31-33

See also files, program listings,
and individual program
names

adding global variables, 166-167
algorithm, 131
allocating memory for variables,

148
ASCII, 195-197, 199-200
cdFiler,285-298
cdTracker, 254-269
compiling then running, 19
controlling order of statement

execution, 104
dice, 203-211
f 1oat,190-191
he 11 o2, 54-58
he 11 o, 15-16, 49, 54
i sOdd, 130
l i stPrimes, 172-175
Model A, 236-240
Model B, 240-242
name, 214-216, 219-221
po\-1er, 175-181
pri ntFi 1e,279-284
running, 23, 32

THINK C, 429-431
source code, 31-33
st ructS i ze, 242-246
using Macintosh Toolbox, 346-

347
windowMaker,344-346
wordCount, 224-230

Project menu, 22-23, 35, 49, 55,
89, 91

Project window, 19, 79
Project files, 16, 33-35, 357

compacting, 22
Project windows, 17-18, 33-34, 357

title, 17
Projects, 16

See also files

opening and closing, 22
Projects folder, 15, 52
Prompts, 216, 357
Pull-down menus. See menus
putchar() function, 281-282,

417

Q
Quit menu item, 20, 346
Quotation mark character(\"), 93
Quoted text string, 85

R
r a n d () function, 417
Random Access Memory (RAM),

35-39, 357
Read-only memory (ROM), 342,

357
ReadAL i ne() function, 268-269
Read Fi le () function, 285, 290,

293,295
Re ad Fi l e Li n e () function, 294,

296
Re ad Li n e () function, 264-265
Re ad St r u c t () function, 260,

262-263
recurse . c file, 384
Recursion, 357

binary trees, 324-328
functions, 314-319

Remove Objects menu item, 22-23,
35

return() function, 168-169
return statement, 174

syntax, 404
Return value in functions, 354
Revert menu item, 20
Ro 11 0 n e () function, 205, 207
Rootnode,320,357
Root struct, 357
RowOfDot s () function, 160
Run menu item, 19, 23, 49, 55, 79,

91
Running, 357

s
Save menu item, 14, 20
Save As ... menu item, 20
Say He 11 o () function, 52-54
scan f () function, 214-215, 217-

220, 261, 264, 278, 418

Se archer () function, 325-326
Searching, 357

in-order, 325-327, 354
postorder, 326-327, 356
preorder, 357

Set Tabs & Font ... menu item, 21
Signed, 357

variables, 70, 193
Simple statements, 116, 358

semicolon(;) and, 116
Single tab character (\t), 93
s i z e of () function, 245-246, 249
s 1 a s h e r . n file, 91
s 1 a sher . c file, 92-9 3, 385
Source code, 14, 31-34, 358

//define, 221-224, 226
algorithms, 47-49
ASCII program, 199-200
cdFi 1 er program, 290-298
cdTracker program, 256-269
comments, 96-97
dice program, 204-208, 210-

211
documenting, 96-97
editor, 32, 358
errors in he 11 o 2 program, 5 6-

57
functions, 54-55
nextPrime program, 135
operator program, 83-84, 86-

88
parentheses, 96
postfix program, 90-91
pm-1e r program, 177-181
pri ntFi 1eprogram,279-284
recompiling, 23
saving after correcting errors,

58
spacing, 94-96
substituting text for text, 221-

224, 226
syntax errors, 4 7
viewing, 18

Source code files, 16
opening and closing, 20
printing, 20
saving, 20
searching for text string, 22
setting tabs and fonts, 21

Square It() function, 162-163
squarelt.c file,385

srand() function,205,418
Standard Library, 51-52, 358

functions, 405-422
Star{"') operator, 151-152, 154,

161
Statement markers, 430
Statements, 47, 114-129, 358

break, 126-127, 129
complex, 117, 352
curly braces({}) and, 116
do, 125
for, 121-124
grouping, 116
if, 108
return, 174
semicolon (;) and, 117
simple, 116, 358
switch, 126-128
typedef, 332
whi 1e,118-121, 124

std in file pointer, 282-283
stdio. h file, 257, 259
s t d 1 i b . h file, 257
stdout file pointer, 282-283
Stepping through, 358
Storage devices, 30
st r ca t () function, 331, 419
strchr() function,419
st rcmp () function, 331, 420
st r c p y () function, 330, 420
String constant, 358
Strings

appending, 331
comparing, 331
copying, 330
length, 332
manipulation, 330-332, 358
printing text on-screen, 50-51

st r 1 en () function, 221, 332, 421
st r n c a t () function, 4 21
st rncmp (.) function, 422
strncpy() function,422
st r u ct Si z e .1t file, 242-243
st ructS i ze. c file, 243-246, 386
st r u ct Si z e program, 242-246
st ruct, 242, 251-254, 312-314,

319-320
arrays, 246
global, 244
linking different types, 308-309
pointers and, 24 7

Index 449

st r u ct types, 241-242, 244, 258
Structures, 235-24 7
sum Five. c file, 386, 387
switch statement, 126-128

syntax, 403
case, 127-128
default case, 127-128

Switch TRUE/FALSE (!) logical
operator, 110-111

syntax error message, 57
Syntax errors, 47, 358
System 7 running THIN C, 15

T
Tabs, setting for source code files,

21
Tech block, 358
Terminal node, 35 8
Text, printing strings, 50-51
Text editor, 14, 358
Text strings, 212-223, 224, 358

functions, 84
memory, 213-216, 219-221
quoted, 85
searching source code files, 22

Text window, 50-51, 56
THIN C, 3

as compiler, 32
back-up copy, 15
case sensitivity, 58
compiler, 14
compiling then running

programs, 19
edit cursor, 57
exiting, 20
features, 20-23
floppy disk system, 15
hard disk system, 14-15
installing, 13-15
project files, 33-35
running under System 7, 15
Standard Library, 51
testing, 15-19
text editor, 14

THINK C, 4, 346-347, 423-433
Iii ncl ude files, 426-427
ANSI library, 428
current function, 430
current statement, 430
current statement arrow, 430
Data window, 431

450 Index

editor, 427
inline assembler, 431-432
libraries, 428-429
Macintosh Toolbox routines,

428
object code, 426
object-oriented programming

(OOP),432
overview, 424-425
projects, 425-426
running programs, 429
source files, 4 2 7
Source window, 429-430
source-level debugging, 429-

431
statement markers, 430
THINK Class Library (TCL),

432
UNIX library, 428-429
upgrade policy, 424

Toolbox, 342-344, 359
Traversal, 359
TRUE expressions, 107-109
TR U E literal, 110
Truncating values, 77-78
Two's complement notation, 38-39
Type, 359
Typecast, 306, 359
Typecasting, 306-309, 359

pointers, 308-309
typedef statement, 332
Typos, 47, 359

u
Undo menu item, 21
Unary operators, 111
Uninitialized variables, 83
Unions, 310-314
Unsigned, 359
Unsigned variables, 70, 193
User interface, 341-342, 359

v
Values, truncating, 77-78
Variables, 36, 66-84, 144, 156,

359
addresses, 148-150
allocating memory, 148, 248
as different data types, 310-314
as expressions, 106

assigning values, 71, 73-75, 89
declaring, 68

within functions, 72
functions and, 84, 156, 159
global, 164-167, 354
initialization, 83
naming, 69, 96
pointer, 150-154
scope, 156-157, 359
sharing between functions, 164
signed, 70, 193
types, 68-71, 359

char, 192-200
double,192
float,189-190,192
int, 68, 70-79, 188
memory size, 69-70

uninitialized, 83
unsigned, 70, 193

V i s i t Node () function, 325

w
while loop, 118, 122, 135-137
while statement, 118-121, 124

syntax, 402
White space, 94, 97, 359
Whole numbers, 188
Window Manager, 344, 359
wi ndowMa ker .n file, 344-346
wind ow Maker. c file, 387-398
w i n d owM a k er program, 344-346
Windows

press <<return>> to exit, 80
console, 80, 82
project, 357

wo rdCount. n file, 224-230
wordCount. c file, 225, 399-400
word Count program, 224-230
Wri teFi le ()function, 285, 291,

296

•(
i
I
I

!

You can hav_e it all!
Special reader offer:

Upgrade to the full version of THINK C for just $129.

The complete TIIlNK C environment
gives you the powerful features that
have made TIIlNK C the #1 tool for
Macintosh development.

You're now familiar with THINK C,
and the full version offers even
more. Plus, you can build your own
double-clickable applications!

As you develop your skills as a
Macintosh programmer, you'll want
the power and flexibility of TIIlNK C.
So act now to take advantage of this
special upgrade offer.

Call 1-800-228-4122 Ext. 807 to order
your upgrade. Because you can have
it all!

Limit one upgrade per coupon.

Powerful projects ••• Enhanced editor ••• Source-level debugging ••• lnline Assembler
Ubraries ••• Object-oriented programming ••• THINK Class Library ••• Class browser

N~ 004061

9 780201 567854

ISBN 0-201-56785-7

