For Classic Mac® OS and Mac® OS X

granming
()

=

KEevIN SPENCER AND JEFF THOMPSON CD Included

Beginning

For Cla551c Mac OS and Mac OS X

ey

Beginning

] - 1 | |
£ 1l ¥ /

For Classic Mac OS and Mac OS X

KEVIN SPENCER AND JEFF THOMPSON

Premier

Press

© 2001 by Premier Press, Inc. All rights reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system without written permission from Premier Press, Inc., except for the inclusion of brief quotations ina -
i e ‘ , , , R

Premier

P

Press Premier Pressis a registered trademark of Premier Press, Inc.

Publisher: Stacy L. Hiquet

Associate Marketing Manager: Heather Buzzingham
Managing Editor: Sandy Doell ;
Acquisitions Editors: Jawahara K. Saidullah, Kevin Harreld
Project Editor: Brian Thomasson

Technical Editors: Geoff Perlman, Dan P Sydow

Copy Editor: Kate Welsh

Interior Layout: Marian Hartsough

Cover Design: Mike Tanamachi

Indexer: Katherine Stimson

Apple, Apple logo, AppleWorks, Balloon Help, Charcoal, Chicago, ClarisWorks, ColorSync, Extensions Manager,
Finder, iMac, ImageWriter, iMovie, “keyboard” Apple logo, LaserWriter, LocalTalk; Mac, Macintosh, Mac logo,
“Moof” and Dogcow logo, QuickTime, Sherlock, Think different, TrueType, VideoSync, ViewEdit, are trademarks
or registered trademarks of Apple Computer, Inc, “AOL” and the AOL triangle logo are registered trademarks of
America Online, Inc. All rights reserved. EarthLink and EarthLink logo are trademarks of EarthLink Network, Inc.
Internet Explorer logo, Microsoft, Outlook, are trademarks or registered trademarks of Microsoft Corporation.
Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corpora-
tion. Quicken is a registered trademark of Intuit, Inc. Acrobat, the Acrobat logo, Adobe, and the Adobe logo are
trademarks or registered trademarks of Adobe Systems, Inc. Stuffit and Stuffit Expander are trademarks or registered.
trademarks of Aladdin Systems, Inc. REALbasic is a copyright of REAL Software, Inc. All rights reserved.

Important: If yoﬁ have problems running REALDbasic, go to REAL Software’s Web site at
http://www.realsoftware.com. Premier Press, Inc. cannot provide software support..

Premier Press, Inc. and the author have attempted throughout this book to distinguish proprietary trademarks from
descriptive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press, Inc. from sources believed to be reliable.
However, because of the possibility of human or mechanical error by our sources, Premier Press, Inc., or others, the
Publisher does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for.
any errors or omissions or the results obtained from use of such information. Readers should be particularly aware of
the fact that the Internet s an ever-changing entity. Some facts may have changed since this book went to press:

" ISBN: 1-931841-00-4
Library of Congress Catalog Card Number: 00-110736
Printed in the United States of America

00010203041110987654321

Acknowledgments

1I my thanks go to my co-author, Jeff, who spearheaded the code writ-

ing for this book. Your dedication is a rare find. Many thanks also to
Brian, Kate, Kevin H, and the crew at Premier Press, Inc., who provided a
solid base in times of trouble. Many thanks to Geoff Perlman and the folks at
REAL Software for their excellent help with technical corrections and sug-
gestions. A special thanks to Marta Justak, for her guidance. And a very spe-
cial thank you to my wife, Rebecca, who suffered for agonizing hours as she
watched over 150 satellite television channels while I worked.

—KS

My thanks go out to those that Kevin has already thanked, along with thanks
to Kevin as well. Your experiences and talents as a writer, not to mention your
assistance along the way, are much appreciated. Special thanks go to my High
School computer-programming instructor, G. Ross Buckman, for convincing
me that a career in computer programming is right where I belong. Very spe-
cial thanks go to my wife, Kathie, and my children, Neil and Samantha, for
their encouragement and patience. Lastly I'm sure Kevin would like to join me
in thanking all of our friends, whose support was very important to us.

About the Authors

KEVIN SPENCER is a certified Apple Service Technician, computer hobbyist,
and writer. Kevin has worked with some of the earliest personal computers of
the late 1970’ and still thinks the BASIC computer language was a pretty
nifty idea. When not bicycling or wading in weeds while working in the yard,
he spends his time with his wife, two sons, and two computer-illiterate cats in
Indianapolis.

Working as a software developer since 1985, JEFF THOMPSON has written
applications in various languages such as BASIC, Z-80 Assembler, 6502
Assembler, DBL, 8088 Assembler, C and C++. Jeff worked with and devel-
oped applications on various platforms from the good old days of the TRS-
80, Apple II, DEC minicomputers, IBM PC’s, and the Macintosh Plus all
the way up to today’s latest Pentium PC’s and Macintosh PowerPC systems.
Jeff’s computer career also includes a couple of years work as a computer
technician, salesman and a short stint where he taught classes on the BASIC
programming language. Jeff also had a passing acquaintance with HTML,
Java, and Perl. Jeff has developed a wide variety of applications including,
payroll, accounting, shareware entertainment, billing systems, and billing
analysis tools. He’s currently employed by CTI Billing Solutions as Senior
Software Engineer and Technical Lead on one of the highest rated billing
analysis software applications in the country. Jeff is currently listed as an
inventor on a software patent used in CTI Billing Solutions’ billing analysis
software, Smart Bill™. The patent is also licensed for use by more than half
of the long distance and local telephone carriers in the United States. Jeff cur-
rently resides in Indianapolis, Indiana with his wife, two children, two dogs,
four cats and an indeterminate number of ducks which have taken up perma-
nent residence in his pond. He also has an ever-increasing collection of Mac-
intosh computers, which require a lot less care and feeding than the other
members of his family.

Contents at a Glance

Part |
Getting Your Feet Wet 1

Chapter 1 Getting Acquainted with REALbasic 3
Chapter 2 Programming’s Big Picture 19

Chapter 3 The Parts of 2 Mac Program 31

Chapter 4 Under Your Command 39

Chapter 5 Variables, Operations, and Constants 49
Chapter 6 Making Your Program Flow 61

Chapter 7 And Still More on Program Flow 79
Chapter 8 Subroutines, Functions, and Recursion 89
Chapter 9 Object-Oriented Programming 101

Part Il
Developing Your First Mac Program 117

Chapter 10 Making My Paint 119

Chapter 11 Adding Simple Drawing Commands 127
Chapter 12 Adding More Drawing Commands 141
Chapter 13 File Operations 169

Chapter 14 Editing Operations 191

Chapter 15 Tool Palettes and Cursors 219
Chapter 16 Finishing Touches 227

Part Il
The Age of Mac 0S X 245

Chapter 17 Enter the World of Aqua 247

Chapter 18 The Classic Environment 265

Chapter 19 The Carbon Environment 279

Chapter 20 The Cocoa Environment 289

Chapter 21 UNIX: A Shell Surrounding a Tasty Kernel 299

Part IV
Advanced Things to Do 315

Chapter 22 Porting Applications to Microsoft Windows 317
Chapter 23 A Word about Advanced Programming 333

Part V
Appendixes 349

Appendix A REALbasic Resources 350
Appendix B How to Use the CD-ROM 357

Index 361

Contents

Part |
Getting Your Feet Wet 1

Chapter 1 Getting Acquainted with REALbasic

What’s on the CD-ROM 4
Installing REALbasic 7

What REALbasic Looks Like 8
Making Your First Application 9

Chapter 2 Programming’s Big Picture 19

The Phases of Programming 20
Defining Requirements 22
Design 22
Programming 23
Testing and Debugging 24
Implementation 24
Releasing a Retail Product 25
Releasing a Shareware Product 25
Releasing Freeware 26
Releasing an Open-Source Program 26
Support 27
Sprecken sie REALbasic? 27
Review 29

Chapter 3

Chapter 4

Chapter 5

The Parts of a Mac Program 31

From the Source: Programming Code 32
In the Beginning 32
From Interpreting Systems to Operating Systems 34
Early Personal Computers Get Smarter 34
Do It with Pictures 34
The GUI: Why Mac Programming Can Seem a Little Tougher

Resources: How Pictures and Icons Are Connected 36
Review 38
Under Your Command 39

What Commands Do 40

Trying out Some REALbasic Commands 42

Good Documentation Makes Happy Programmers 43
The Myth of Self-Documenting Code 43
Documentation Repositories 44
The Promise of Inline Documentation 45

Inline Documentation and REALDbasic 45

The One and Only Documentation Solution 47

Documentation Standards 47
Review 48
Variables, Operations, and Constants 49

Keeping Track with Variables 50
Common Types of Variables 51

35

Chapter 6

Chapter 7

Chapter 8

Chapter 9

CONTENTS

Declaring Variables 51

Assigning Values to Variables 53
Operations and Variables 55

Constants Are Constant 56

Where to Use Variables and Constants 58

Review 58

Making Your Program Flow 61

What Is Flow Control and Why Is It Important? 62
The If/Then/Else If/Else/End If Keywords 66

The Select/Case Keywords 72

The For/Next Keywords 74

Review 77

And Still More on Program Flow 79

The While/Wend Keywords 80
The Do/Until Keywords 81
The Goto and Exit Keywords 84
The Exit Statement 84
The Goto Statement 85

Review 88

Subroutines, Functions, and Recursion 89
What Are Subroutines and Functions? 90

Subroutine and Function Declarations 93

Check out the Bodies on These Subroutines 94
Parameters and Return Values 95

Recursion, Recursion, Recursion . . . 96
Review 99

Object-Oriented Programming 101
Understanding Classes and Objects 102

The Terminology 103
Properties and Methods: The Two Halves of an Object 105

CONTENTS

Encapsulation 106
Inheritance 107

Inheritance in REALDbasic 109
Polymorphism 110
REALbasic Events and Handlers 112
Review 114

Part 1l
Developing Your First Mac Program 117

Chapter 10 Making My Paint 119

Introduction to the Tutorial 120
Creating the New Project 120
Adding the Main Window 121
Adding the Paint Canvas 122
Testing Your Work 125
Saving Your Work in Progress 125
Testing Your Application 126
Review 126

Chapter 11 Adding Simple Drawing Commands 127

Adding a Freehand Drawing Tool =~ 128
Using the Code Editor Window 128
Adding the Drawing Code 129
Adding the Property Declarations 130
Adding the Event Handlers 131
Testing the Freehand Tool 135
Handling Window Drawing 136
Adding the Picture Buffer Property 137
Creating the Picture Buffer Property 137
Drawing in the picBuffer Object ~ 138
Refreshing PaintCanvas Using the picBuffer Object 139
Testing Your Changes 139
Review 140

Xiv

Chapter 12

Chapter 13

CONTENTS

Adding More Drawing Commands 141

Adding Menu Items for the Selection of Drawing Tools 142
Understanding the Application Menu Window 142
Enabling the Menu Items 144
Adding Properties for the New Tools 145
Updating the Menu Selections 146
Initializing the New Properties 148
Selecting Tools with the Menus 149

Adding a Line Draw Tool and Updating the Free Hand Drawing Tool
Adding the DragRefresh Method 151
Adding New End Point Properties 152
Adding the DragLineDraw Method 153
Adding the EndLineDraw Method 154
Changing the MouseDrag PaintCanvas Event 155
Changing the MouseUp PaintCanvas Event 156

Adding Rectangle and Oval Drawing Tools 157
Adding the DragRectangle and DragOval Methods 158
Adding the EndRectangle and EndOval Methods 159
Changing the MouseDrag PaintCanvas Event 161
Changing the MouseUp PaintCanvas Event 161

Adding a Draw Shape Tool 162
Adding Properties for the New Tools 163
Changing the MouseUp PaintCanvas Event 163
Changing the MouseMove PaintCanvas Event 164
Changing the MouseDown PaintCanvas Event 165

Review 168

File Operations 169

The New Menu Items 170
Application-Wide Menu Items 172
Today’s Menu Item Are . . . 173
Enabling the New Menu Items 175

150

Chapter 14

CONTENTS

Closing and Creating Windows 178
Saving to a File 181
Adding Supported File Types 181
The Filename Property 182
The FileSave Menu Handler 183
The FileSaveAs Menu Handler 185
Opening an Existing File 186
Printing Your Pictures 187
Adding the PageSetup Property 187
Adding the PageSetup Menu Handler ~ 188
Adding the Print Menu Handler 189
Review 190

Editing Operations 191

Working with the Clipboard 193
The Edit Menu Items 194

The New Source Code 195
The New Properties 195

The Paste Feature 196
Adding the PasteCanvas Control 197
The PasteCanvas Event Handlers 198
The Edit/Paste Menu Handler 199
The PasteFromClipboard Method 201
The PaintCanvas Paste Events 202

Keeping Track of the Last-Known Mouse Position

Copying the Pasted Data to the Picture =~ 202
Enabling the Menu Items 204
Testing the Paste Function 205
The Copy Feature 205
The Selection Tool 205
Creating the Selection Tool Menu Item 206
Enabling the New Menu Item 206

Xv

Chapter 15

Chapter 16

CONTENTS

Updating the New Menu Item 207
The Selection Tool Menu Handler 208
Adding the DragSelection Method 209
The MouseDrag Event Handler Changes 210
The CopyToClipboard Method 211
The New EditCopy Menu Handler 213
The Clear and Cut Features 214
The New ClearSelection Method 214
The EditClear Menu Handler 215
The EditCut Menu Handler 216
Review 217

Tool Palettes and Cursors 219

Creating Tool Palette Icons 220

Creating a Tool Palette Window 221
Mapping the Tools to the Menu Items 223
Creating the Tool Cursors 224

Using the Appropriate Cursors 224
Review 226

Finishing Touches 227

Adding Color-Selection Tools 228
Adding and Enabling the New Menu Items 229
Adding Color-Selection Tools to the Tool Palette 234
Keeping Track of the Active PaintWindow 234
The Actual Tool-Palette Work 235
Adding Line-Width Selection Tools 237
Adding and Enabling the New Menu Items 237
Adding an Other . .. Menu 239
Adding a Line-Width Selection to the Tool Palette 239
The About Box: Patting Yourself on the Back 241
Review 243

CONTENTS

Part lll The Age of Mac OS X 245

Chapter 17

Chapter 18

Enter the World of Aqua 247

In the Beginning ... 248

Aqua Is More than a Pretty Face =~ 249
View (and Print) Different 250

A Quickie Tour of Mac OS X Interface Features 252
Windows, the Finder, and the Dock 252
Menu Changes 253
Same Stuff, Different Places 254

Apple Interface Guidelines 256
Rule 1: Stick to Metaphors in Your Application 257
Rule 2: Keep a Logical Design with Aesthetic Consistency 259
Rule 3: Forgive Mistakes and Allow Reversal 260
Rule 4: Use Dialogs Wisely 261

Review 264

The Classic Environment 265

Windows 95 and the Great Compatibility Problem 266
You Can'’t Play Vinyl Records in Your Compact-Disc Player 267
The 16-Bit Egg and the 32-Bit Chicken =~ 267

Apple’s Turn -~ 268
It’s Virtually Simple 269
The Blue Box Goes Classic 269
Installing Mac OS X for Classic 269

What Classic Means to Developers 273
Bug-for-Bug Compatible with Mac OS 9 274
Classic Applications Use Mac OS 9 Only 275
No Direct Hardware Access 275

What Classic Can and Cant Do~ 277

Review 278

Chapter 19

Chapter 20

Chapter 21

CONTENTS

The Carbon Environment 279

It’s Tool Time 280

A Few Small Repairs 280

Carbon: Good for Your Programming Diet 281

Carbonized Applications Can Use Aqua 282
Improved System Stability ~ 284
Improved Speed and Responsiveness 284
Better Resource Management 286

How REALbasic Uses Carbon 287

Review 288

The Cocoa Environment 289

Have Some Hot Cocoa 290
Java: It’s Not Just for Web Pages Anymore 291
About Objective-C 293

What You Need to Begin Cocoa Development 294
Project Builder and Interface Builder 295

For More Information 297

Review 298

UNIX: A Shell Surrounding a Tasty Kernel

Forward to the Past: The Command Line 300
She Sells C Shells by the C Shore 301
The Terminal Application 304

Prompts, Lists, and Permissions 305

A Few Basics in Terminal 310
A Summary of Useful Terminal Commands 312
Review 313

299

Part IV

CONTENTS Xix

Advanced Things to Do 315

Chapter 22

Chapter 23

Porting Applications to Microsoft Windows 317

Start with a Macintosh Application 318
Handling Path Names 318
Watch out for Conventions 320
Window, Window, Who’s Got the Window? 321
Take Note of OS-Specific Folder Items 321
Adding Hot Keys for Windows 322
Compile Only the Code Required for the Ported Application 325
Porting Visual Basic Code 327
Review 332

A Word about Advanced Programming 333

Let’s C What Develops 334
In the Beginning . . . 334
Writing the Programs to Write UNIX 335
UNIX, C and Beyond 336
An Object-Oriented Revolution 337
The Once and Future King 337
Macintosh C++ Development 338
Metrowerks CodeWarrior 338
Macintosh Programmers’ Workshop (MPW) 339
Project Builder and Mac OSX 341
The Apple Developer Connection Web Site 342
Grab Your Partner: The Partners Program 343
The Online Program 344
The Student Program 344
The Select Program 344
The Premier Program 346

XX CONTENTS
Development Resources 346
Grow Your Business: The Business and Marketing Section =~ 347
Review 348
Part V

Appendixes 349
Appendix A REALbasic Resources 350

Appendix B How to Use the CD-ROM 357

Index 361

Getting Your
Feet Wet

g

Getting Acquainted
with REALbasic

In This Chapter
e What's on the CD-ROM
® Installing REALbasic
e The REALbasic design interface
e Making your first application

PART 1+ GETTING YOUR FEET WET

aking a very simple Macintosh application takes only a modest
effort using REALbasic. You'll be surprised what you can do in about
15 minutes.

REALbasic is, simply put, a program designed to make other programs, such
as a spreadsheet, a game, or a word processor. As you progress through each
chapter, you'll learn more about REALbasic’s programming tools and lan-
guage, and programming concepts in general. But first, you'll need to obtain

and install a copy of REALDbasic.

What's on the CD-ROM

To teach you the ins and outs of Macintosh programming, we decided to go
against the grain in the programming world. Many programmers prefer to use
a programming language known as C++ (that’s pronounced cee-plus-plus);
many programming tools use C++ for development as well. Although C++ is
very powerful and versatile, it’s difficult to learn for a novice programmer, and
a bit arduous for even seasoned programmers.

A few of you may have taken a computer-programming course before, or
remember way back in the late 1970s when the first microcomputers for home
and business use arrived. Back then, you couldnt buy many computer pro-
grams—you were stuck having to type computer programming instructions
into your computer. Later, you could buy some canned programs from the local
store, instead of typing in instructions like these:

10 LET A=5+10
20 LET B=5*10
30 LET C=A+B
40 PRINT C
50 END

The computer language used on many of the first personal computers of
the 1970s was BASIC. No, not basic as in simple, but BASIC (Beginner’s
All-Purpose Symbolic Instruction Code). Although BASIC wasn't a very strong
programming language, it wasn’t very hard to understand. Like many pro-
gramming languages in history, BASIC is based on FORTRAN, another
programming language used on early large computers.

CHAPTER 1 *GETTING ACQUAINTED WITH REALbasic

The btiyérs of the earliest-personal computers had-to-ty

- programs from books or-other-printed sources. The TR¢

Radio Shack and other early computers added an audlo cassette

deck for loading in software created by others, and later added

floppy disk drives. So, basically, the idea of manually writing appli-
cations for a personal computer isn’t a new. one—it just became ~

less efficient to do it. , - ; J

In the following years, some companies improved and strengthened their own
versions of BASIC to make it more like C++ and other high-level program-
ming languages. One of these evolved versions is REALbasic, a programming
tool with many easy-to-use features.

REALbasic is available in a Standard and Professional version. REAL Soft-
ware has provided a trial Standard version on the CD included with this book.
The makers of REALbasic, REAL Software, continue to improve and update
this program, so your copy on the CD might be off a few version points by the
time you get our book. The latest version of REALbasic is available online at

REAL Software’s Web site, http://www.realbasic.com/realbasic.

The Professional version of REALbasic allows you to create Windows
95/98/NT4/ 2000/ ME versions of your applications at the same time as your
Macintosh applications, and has extensive database support. The Standard
version has demo support of the Professional version’s features so you can get
an idea how cool it is to make a Windows and Macintosh app all at once.

If you find REALbasic to your liking, you can purchase a serial number from
REAL Software that will turn the trial Standard version to a live Standard
version with full functionality. The trial Standard version of REALbasic has
one major limitation you should remember. After 30 days, the program ceases
to operate until you purchase a serial number from REAL Software to acti-
vate the program. Any applications you build with a trial version of REAL-

PART 1 GETTING YOUR FEET WET

basic will also cease operating within 30 days. Any Windows applications you
create with the trial version will only work for 5 minutes. You'll also be
greeted by a little dialog box that, when you start up REALDbasic (or any
applications you create using REALbasic), reminds you that REALbasic and
anything you create using it will stop working soon. Needless to say, to get the
most out of REALbasic and to get rid of the reminders, you should purchase

a copy.

Depending on the version you purchase, once you register REALDbasic, it
transforms into a fully functional Standard or Professional version right before
your eyes!

The great thing about REALDbasic is that it runs on older Macs as well as the
new PowerPC G4 systems. Before you rip the CD out of the book, make sure
your Macintosh computer meets these minimum requirements for our projects:

¢ Mac OS system software 8.1 or later

¢ A PowerPC processor

¢ A CD-ROM or DVD-ROM drive (for using the CD-ROM)
32MB of total computer memory (with virtual memory on)

¢ 6.5MB of free hard disk space.

As you go through REALbasic’s system requirements (as found in its Read
Me and documentation), you might notice that our system requirements are
steeper, and for good reason. Yes, I, too, love the fact that a Macintosh is the
Maytag of computers—they keep running forever. But so do certain poten-
tially explosive cars and politicians. After a point, it’s not cost effective, prac-
tical, or (if you so happen to start a career from this book) profitable to support
older Macintosh hardware.

Don't get us wrong—REALbasic is quite able to create applications for older
Macintosh systems as well as Power Macintosh systems. Nonetheless,
although the programs you create in REALbasic could likely run on older Mac
hardware (that is, computers that aren’t Power Macintosh class) or on Mac OS
7.6.1 or earlier, we're not able to show you how to support applications created
for these systems.

There’s a line that must be drawn because, basically, Apple drew it first, and
we're toeing the line so that we keep this book lean with information you

CHAPTER 1 « GETTING ACQUAINTED WITH REALbasic

require for modern application development. Eventually (read: soon), Apple
will likely offer hardware and software support for only Power Macintosh G3
systems and newer, as these are the only systems that can officially run Mac
OS X, the successor to Mac OS 9. Many companies that create Mac pro-
gramming software (including REAL Software) are designing their new ver-
sions of applications to work only on PowerPC systems. If you're considering
dusting off that old Quadra so you can make a Mac OS 9 or Mac OS X appli-
cation with REALbasic or another programming tool, it’s likely you may be
out of luck. While you can use REALbasic on your Quadra to create new
applications meant for other Quadras and older Macintosh systems, doing so
is much like designing a new, high-efficiency engine manifold for a Ford
Pinto. There’s just not a lot of point to it unless you have a real need for an
application you can’t find anywhere else.

Needless to say, the more modern your Mac, the easier it will be to create new
programs.

Installing REALbasic

Installation’s a breeze for REALDbasic if you use a Power Mac running Mac OS
9 or Mac OS X. Follow these steps:

1. Insert the book’s CD-ROM in your CD-ROM or DVD-ROM drive.
The Beginning Mac Programming CD-ROM icon appears as an icon
on the Mac OS Desktop.

2. Double-click the CD-ROM icon on the Desktop and locate the “Open
Me for REALbasic 3” folder.

3. Drag the REALbasic folder from the CD-ROM to your applications
folder on your hard disk.

If you use an older Macintosh (that is, a non-Power Mac, such as a Quadra or
Centris), see Appendix B for more detailed instructions

That’s all there is to it! Inside the REALDbasic folder is the REALbasic
application. Additionally, the CD includes documentation, sample code, and
other items that you'll find useful as you gain experience with REALbasic
programming.

PART 1+ GETTING YOUR FEET WET

What REALbasic Looks Like

The REALbasic application has five windows that serve as your workplace for
creating (or developing) the parts of your program. The folks at REALbasic
officially call it the design interface; it’s shown in Figure 1.1.

The design interface consists of the Project window, which is, in a sense, a con-
tainer. It holds all the pieces that form a REALbasic application, including the
following:
¢ Tools window. The Tools window is a toolbar of a sort that contains
Mac OS interface elements, called controls, which you can drag into the
Project window.
¢ Colors window. The Colors window is a palette where you can place

colors that you use often in your projects. You can use the Colors
window to give colors to properties that accept color assignments.

Tools window Project window

Window Editor

Sun 10:40:05 PM

Figure 1.1 [°F

Welcome to the
REALDbasic
design interface.

Nams: Windowl
Super: Aoplet

v

Placement. G- Dofalt ¥
Wigh: 300

Height. 300
MinWidth: 64

s s~ 1] Properties
window

HasBackCofor: £
BackColor.
Backdrop. None v
Title: Untitled
Visible. §F
FullSereen: 7
MenuBacvisibie R
.C0|°rs Closelon:
window Growiem 2
Zoomicon: {7}
BalioonHep o

MacProcD: 0

CHAPTER 1 «GETTING ACQUAINTED WITH REALbasic

¢ Properties window. The Properties window shows information about
an item selected in the Project window or Window Editor.

Project window. The Project window shows all the components that
make up your project as you build it.

¢ Window Editor. The Window Editor represents a window in the
program you are building. You add interface controls to it by dragging
them from the Tools window into the Window Editor. When you first
launch REALbasic, a new project is created with a single, blank
window to get you started. You can add more windows to your project
later as you need them.

Making Your First Application

REALbasic provides you access to the key graphical elements available within
most Macintosh applications. These graphical elements can form a program
quickly. The program I'll have you write here won't do a great deal and hasn’t
a lot of substance. You might even call it a “simple” application. But, as my
friends at REAL Software point out, a “simple” application can be quite use-
ful and packed with a feature or two that’s invaluable. For instance, docklings
are applications that are placed in the Mac OS X dock. A dockling is a simple
application, yet it can provide users a quick way to change a system preference
without having to open the System Preferences application from the Apple
menu. In short, programming is literally what you make of it.

Essentially, you'll take advantage of built-in programming within the Mac OS
that forms windows, scroll bars, and other pictures on the screen. Apple refers
to these programming parts collectively as the Zvo/box. The Toolbox makes
your programming life much easier by simplifying and minimizing the pro-
gramming skills you need to know to create a program. You'll learn more about
the Toolbox in Chapter 19, “The Carbon Environment.”

You'll be using all of REALbasic’s interface items except the Colors window
for this exercise. Don’t worry if you don’t know anything about programming
at this point. The object of this exercise is to show you how relatively easy it
can be to write a Macintosh program.

The application we'’re going to write simply displays a message window with a
button that quits the application. Most experienced programmers would

10

NOTE

PART 1+ GETTING YOUR FEET WET

recognize this little gem as a version of the revered “Hello World” application
that demonstrates the most basic of programming instructions—a message on
the screen. A Hello World application like this one is always a good way to get
your feet wet, so let’s get started.

wrmmg AR Mac OS 9 and X . eu»wm follow the sameateps -RO- matter
hich operating: §y§t‘"e"“m:‘|s FURNIRNG Yol copy of REALbasic.”

1. Start by launching REALbasic on your computer. Locate the
REALbasic program and double-click its icon to start the program. The
REALbasic application will launch and a new Window Editor appears
as shown in Figure 1.2. You just started a brand-new REALbasic
programming project and, even as an untitled project with nothing done
yet, REALbasic still views it as an application that can run!

2. Right now, you should be looking at a blank project window, simply
named “Untitled.” The Properties window currently displays the
properties, or programming characteristics, of the Project window as
shown in Figure 1.3. The properties of the Project window start with
the Name field at the top of the window, under the ID header. The
default (or preset) name of the Name property is Windowl.

[—clicked" mmwmﬁﬁémmmﬁﬁrwgm. wi

w:muy showing-you-the-properties-of-whatever you aeeodentauy«ehekedw

--Just’ cl’ck on-the Project window near the center. of’t ne.screen to. vzew)
the Pro;ect window propertles The Propertles window changes its con-

‘;tents to dlsplay the properties of the item you just selected. When you
click on controls or other elements later, the contents of the Properties
window will change again to reﬂect the properties of that item.

CHAPTER 1 ° GETTING ACQUAINTED WITH REALbasic 11

806 Untitled

Figure 1.2

The Window Editor
looks like this when
you create a new
project: a totally
empty and
featureless window.

N

3. Next, you'll change the window’s appearance by adjusting the Project
window’s properties in the Properties window. To begin, look for the
properties listed under the Appearance header at the bottom third of
the Properties window.

4. Click to the right of the first property field in this area, Frame, and
select Movable Modal.

O O O Properties

Figure 1.3

The Properties
window here shows
what you should

~Window1
Super: Applet

Placement:

see once you select e
the Window Editor Height: 300
to work on. MinWidth: 64
MinHeight: 64

MaxWidth: 32000
MaxHeight: 32000

rame:
HasBackColor: 7]
BackColor:

Backdrop: None v
Title: Untitled

visible:
FullScreen: Q
MenuBarVisible [
CloseBox: g
Growlcon: {7}
Zoomicon: {7}

BalloonHelp: (2]}

MacProciD: ¢

NOTE

PART |« GETTING YOUR FEET WET

way of v1ewmg things, prowded that you stlck to Apple mterface conven- |
tions as much as posSIbIe to avold a cumbersome, confuslng application

interface.

5. Change the numbers that appear under the Width and Height,
properties as follows:
e Width: 318
* Height: 166

The minimum width and height properties should remain at their
preset, or default values, so you won’t need to adjust them.

- The Window: Editor-doesn’t always show the changes you make-You'll:]
ethe results-when you-actually'run-your:program-for-the-first-time: " |

6. To change the background color of your window, click on the
HasBackColor check box in the Appearance section of the Properties
window to activate that option.

7. Double-click on the white-colored area to the right of the BackColor
label. A Mac OS color window appears. The Color Picker options
should be selected.

8. Pick any color you like from the Color Picker (how it appears to you
depends on which option you select), and click OK. In my case, I used
the crayon color picker and chose a bright blue-green. The Window
Editor will change to the background color you selected.

CHAPTER 1 *GETTING ACQUAINTED WITH REALbasic

NOTE

m—— —— —— E——— 1

- make the-text youlater-add-in the window a bit hard to read.

9. See the large A item in the Tools window? That’s the Static Text
control. It enables you to create text or labels within your program to
show information. Drag and drop that control anywhere inside the
window editor.

10. Change the properties that appear under the Position header to the
following:
* Left: 35
* Top: 30
* Width: 250
* Height: 50

11. You just specified that the label’s relative size fit some text you'll add in
a moment. Now you need to adjust the alignment of the text within the
field. With the label still selected, click on the TextAlign property and

select 1-Middle from the pop-up menu. Now, any text will be centered
in the label.

12. Next, you need to change the text to something meaningful. Find the
Text field just below the Appearance property header. Right now, it
should simply say Ladel:. Click on the button to the right of this to
open an Edit Value window.

13. The Edit Value window is just a place to change the information in
specific controls. In your case, you're just typing in some new text. To
do so, delete the Label: text and type the following:

This is MyLittleWindow.
It's not much of a program, but it's mine!

frﬁesu:m:bmss eSS Returncto-break thetextinto two lines; a8 shown-above.]

s

S S TR A i

Sun 11:33:33 PM

Figure 1.4

Your new window
editor shows the
label, but it looks a
little bare. Time to
add a button using
the PushButton
control

Name: StaticTextl
Index:
Super: Staticlaxt v

Left: 35
Top: 30
e PushButton
eight: SO
Locitett: (1 control
LockTop: @
LodkRight: [

e
Textalign: 1 - Made

TextColor:
Muitiing:

Visible. R

14.

15.

16

B

17.

Click on OK to close the Edit Value window when youre done. Figure
1.4 shows the completed window thus far.

Because your program will be a floating modal window with no

menus, you need to be able to turn the silly thing off once you've
marveled at it. You can do that easily enough by adding a button to the
window. To begin, find the PushButton control on the Tools window
(it looks like an OK button) and drag it just below the text inside the
Window Editor.

Change the Position values in the Properties window for your button to
the following:

e Teft: 130

e Top: 100

e Width: 60

e Height: 20

The button should now be centered under the text. Click on the button
to the right of the Caption field under Appearance in the Properties

window. Another Edit Value window appears for you to change the text
of the button.

CHAPTER 1 «GETTING ACQUAINTED WITH REALbasic 15

18. Type in this really complex bit of text and click OK to close the Edit
Value window:

Great!

19. Now it’s time for you to write your first REALbasic code to activate
the button and make it operate. Get your thinking caps on. Begin by
double-clicking the PushButton control in the Window Editor to open
the Code Editor window.

20. The Code Editor window assumes that you want to program the
Button control to perform a specific set of commands; as a result,
REALbasic has placed the text cursor exactly where you need to type,
between the Sub Action() and Sub lines. Type in the following text (be
sure not to enter any other characters, and don't press the Return key).
quit
The results are shown in Figure 1.5.

21. Click on the Close box at the top-left of the Code Editor window to
close the window.

22. To follow Apple graphical interface conventions, you should make your
little button the default button so it has that familiar doubled outline
around it, or in the case of Mac OS X, the button pulsates. To begin,
select the Great! Button control, then click the Default check box
under the Appearance heading in the Properties window.

Fiaure 1.5 208 Code Editor (Window1)
9) v @ Controls Sub Action()
Between the two v PushButtonl qu“l
pre-entered B Action : End Sub
commands, you'll B MouseMove
enter one magic B MouseEnter
command. B MouseExit
a Open
Q Close
B DropObject
» B StaticTexti
> $D Evems i
» B Menu Handters
P m Methods
> (@ Properties

PART 1 GETTING YOUR FEET WET

It Knows What You re- Thmkmg

- You might have not:ced that your qu1t command appeared automat-
ically in the Code Editor after you typed a couple of letters. That fea-
ture is what REAL Software appropriately calls auto-complete. The
Code Editor window knows all legal commands and will try to com-
plete any command as you type then. If the command that the Code
Editor shows is the right one, just press the Tab key to let REALbasic
complete the suggestion. If the command REALbasic suggests isn‘t
the right one, just keep typing out the command you intended.

23. Let’s complete matters by saving your work. Open the File menu, and
choose the Save command. Save your work under the name
MyLittleWindow in your REALbasic folder. Wonderful! Your program
is ready to be tested.

REALbasic allows you to test programs you've made in a debugging environ-
ment. This debug mode lets your application operate as if you were running it
as a standalone program in the Mac OS. The main advantage of the debug
environment is that you won't lose control of the application there. Should a
program you test in debug mode ever get out of hand, press Command+Shift+
Period, or click on any design environment window to return to REALDbasic.

24. To run your new program, click on the Debug menu and choose Run.

25. You should see your new program as it appears on the screen in a
floating window. When you click the Great! button, the program quits
and returns you to the REALbasic environment.

26. Finally, let’s make this program a true standalone Macintosh
application that you can run from the desktop. To begin, open the File
menu and choose Build Application.

27. The Build Application window appears, as shown in Figure 1.6. Leave
the Macintosh option checked. (In case the Windows option catches
your eye, don’t worry—we’ll touch on making Windows versions of

your programs in Chapter 22, “Porting Your Applications to Microsoft
Windows.”)

CHAPTER 1 « GETTING ACQUAINTED WITH REALbasic

Figure 1.6

The Build
Application
window is your
final step to turning
your REALbasic
project into a
working standalone

Build Application

@ Macintosh & Mac OS X / Carbon Windows
. Mac OS Application

Name: IMyLmIeWindow 1.0 K
Version:

Incluge: .
&8k Coda

Release:

Non-~refease: @

Short Version:

A
| e

e Memory:

| Suggested Size: k + 512k

program. % Mitaimse Tooa 1k 512k Long Version: |
Package Info:
lon: United States ix
Region: “United States 11
o Windows Appiioa STt

i Name: IApg}:’\;smc—.exe

driple Document lsrfage

Caption iv)

con: {@ Language: |

28. In the Name field in the Mac OS Application Settings area, type
MyLittleWindow 1.0.

29. In the Get info area, select Final from the Release pop-up menu.
30. Click the Build button to build your new application.

The new application will have a generic icon appropriate to your version of the
Mac OS. Your new application is stored where you saved the project file.

Try using your program. When you do, you'll see exactly what you created—
a modal window, as shown in Figure 1.7. When you click on the Great! but-
ton, the program will quit.

Figure 1.7

Ta-da! Your
finished program

18

NOTE

PART | GETTING YOUR FEET WET

nfunregnstered vﬁrs:bﬁs df REALb’arsw, ‘each time you open an applica:
- f tion:ycu’ve;bqiitﬂyou~ | see a message warning that your apgircatwn('was
- built with the tnal version and that it works only for a hm»ted tl

- ;)

Congratulations! Consider yourself a Mac programmer—but don’t go adding
your new credentials to your resume just yet. There’s more to learn about pro-
gramming, and it’ll be a sad waste of a good book if you don’t peruse the rest
of the chapters.

Programming’s
Big Picture

In This Chapter

® The phases of programming

® Sprecken sie REALbasic?

20

PART 1+ GETTING YOUR FEET WET

fter installing REALbasic and having a chance to play around with it,

you're probably itching to get started writing your own programs. Well,
hold on a minute there, partner! You can’t run before you learn to walk, and
you can’t code until you learn a little more about programming.

The next few chapters are for the benefit of those readers who are unfamiliar
with the concept of programming. If you already have a good grasp of the sim-
ple concepts associated with programming, you may just want to skim these
chapters. On the other hand, if you have no idea what programming is all
about, then this is the place to start.

The Phases of Programming

Depending on whom you ask, computer programming is either a science or an
art. I like to think of programming as a mixture of the two. Even though the

- process of writing a computer program is methodological, the design, look and

feel, and even the programming source code can express the programmer’s
artistic talents. For instance, a sculptor can make a beautiful fountain. It’s art,
naturally, for its aesthetics. The fountain also holds practicality on a hot day as
its cool spray drifts on nearby people. The function of the fountain goes
beyond its original purpose by serving as a wishing well as it gathers coins
dropped inside it.

The objects in Figure 2.1 have both an aesthetic quality and at least one func-
tion. As a developer, remember that both concepts are needed to form a good
application. Of course, a comb with no teeth is not a comb. You'll still need to
provide a clear primary function for your application, although it can have
more than a single function.

Be it science or art, the goal of computer programming is to allow a computer
to perform a predefined set of tasks accurately, predictably, reliably, and repeat-
edly. The tasks being performed vary from program to program. In one pro-
gram you might keep track of your checkbook register, and in another you
might simulate the experience of protecting the world from an alien invasion.

Even a sculptor must follow a plan or a set of rules to create art. Programming
is no different. Many developers find it useful to use drawings to illuminate.
With that in mind, Figure 2.2 shows a path to programming enlightenment.

Figure 2.1
Programming is
much like a
collection of
everyday objects—
having both
aesthetic and
functional qualities.

Figure 2.2

The better your
application’s
design, the less
likely you are to
have to backtrack.

CHAPTER 2 * PROGRAMMING'S BIG PICTURE

Define Requirements

v

Design

Programming

21

22

PART |+ GETTING YOUR FEET WET

Even though this book deals primarily with the process of writing computer
programs, there is more to programming than that. The complete process of
computer programming includes many phases:

¢ Defining requirements
¢ Design

Programming

¢ Testing and Debugging
¢ Implementation

¢ Support

Defining Requirements

All computer programs exist to fulfill one or more needs. Defining a program’s
requirements is the process of documenting everything the computer program
should be capable of doing. When you decide to write a program, you should
always begin by defining the requirements of the program.

The process of defining the program requirements can be as formal or as infor-
mal as you like. In large software companies, the requirements-definition phase
can be very extensive. In addition to simply documenting the tasks that the pro-
gram must perform, many companies make use of market analysis, focus
groups, and research projects to assist in determining a program’s requirements.
For smaller companies, and some shareware authors, requirements documenta-
tion might consist of a few notes scribbled on a cocktail napkin.

Regardless of the level of complexity you choose, you should at the very least
have a list of goals in mind when you decide to write a computer program.
Some programmers may balk at the idea of strict requirements, preferring to
shoot from the hip and develop their programs with no clear goals in mind.
There is a special word that describes those types of computer programmers:
unemployed.

Design
After you've laid down the requirements of an application, the design

work begins. Although design is probably the most important part of devel-
opment, we're not covering it in this book. Plenty of books on the market deal

CHAPTER 2 ¢ PROGRAMMING'S BIG PICTURE 23

with design methodologies; we don't need to reinvent that wheel. For the pur-
pose of Macintosh programming, I recommend Apple’s Human Interface
Guidelines, available through the Apple Developer Connection Web site at
http://www.apple.com/developer.

An application design includes many aspects, not just the visual ones.
Although the user interface—that is, your program’s windows, dialog boxes,
and menu items—is quite often the thing that beginning programmers think
of when they think of design, it is far from the only thing. Other aspects of an
application’s design include

¢ Source code design. Your source code should be thought through—
that is, designed—before you start writing your program. You should
document the ways your source code addresses the various require-
ments. Additionally, you should consider how the various parts of the
application’s source code will interact.

¢ Data design. If your program reads and writes any data, you should
design the layout of these data files before writing any code. Heavily
data dependant applications require very extensive data design.

¢ Testing-process design. Think about how to best test your program.
How your user interacts with your application via the user interface will
help you determine how to test your application.

These aren’t the only aspects of application design, just a few to give you an
idea of the things that you should count on doing.

As with the development of the application requirements, the application
design can be as formal or informal as is needed. Just make sure that you spend
some time thinking about your design before writing the program source code.

Programming

Finally, you get to the fun stuff. The programming phase is where you actually
write the source code that controls what the program does and how it does it.

The process of programming, however, often called coding, involves more than
simply typing source code. Programmers, or developers, as they are often
referred to, are responsible for testing their work as they go along. This testing
is not meant to provide a complete overview of the system and all its func-
tionality—just the parts of the program on which the developer is working at

24

PART 1 GETTING YOUR FEET WET

any given time. As the developer finishes any given unit of code, he or she
needs to test it to ensure that it works properly. This type of testing is referred
to as unit testing.

There is no hard and fast definition of a unit. It can be as small as one line of
source code, or it can be made of multiple sections of source code, all of which
are responsible for a single application feature. That said, unit testing is some-
thing that should be done often. The more often you unit test, the fewer
changes you are testing. This means that your individual unit tests will go
faster and you'll be less likely to miss something.

Testing and Debugging

After programming comes testing and debugging; this is when you get a
chance to be really hard on your application. You need to test every aspect of
your program. Make sure it does everything it’s supposed to do, and does it
correctly. Try to crash your application before you set it loose in the world and
someone else figures out how to crash it for you.

In relatively small projects, you may decide to complete all your programming
before testing and debugging. In larger projects, however, you should break
your work down into multiple milestones and perform complete testing and
debugging of all features included in each milestone. Just as with unit testing,
the more often you test and debug, the less likely you are to miss something.

Debugging, in case you've never heard of it before, is where you correct the mis-
takes you've found. If you didn’t find any mistakes, then you didn’t look hard
enough. If there’s one rule about programming; it’s that there’s always one more
bug. In large applications, such as operating systems and office-productivity
tools, the number of bugs is often in the thousands—and these applications are
released to the public with these bugs still in them! Fortunately, most have been
identified and can be easily fixed.

Implementation

After you've identified all the bugs, determined those that can and will be
repaired, repaired the bugs, and re-tested the application, you're ready to go on
to the next stage of the development process: implementation.

CHAPTER 2 < PROGRAMMING'S BIG PICTURE

You might be writing an application for friends or co-workers. Alternatively,
you might plan to sell your application as a retail product, or to distribute it
directly to the public on the Internet. Regardless of your intentions, the
process of making your application available for use is referred to as a release.

Various methods of release include

¢ Retail
¢ Shareware
¢ Freeware

¢ Open source

Releasing a Retail Product

A retail product is the standard store-shelf, packaged-delivery option that is
usually associated with larger commercial software packages. A lot goes into
the commercial release of a retail product—more than we can go into here.
Suffice it to say that the bygone days of a single developer writing and releas-
ing a retail software package are long gone.

Releasing a Shareware Product

Sometime back in the 1980s, the majority of computer development was
moved to large software manufacturers. Because this made it harder for smaller
software companies to get noticed, they did something radical: They gave their
software away—well, almost. The idea was that you could get the software
free of charge, and pay for it after youd had a chance to try it out and decide
whether you liked it. You could also share the software with your friends and
co-workers, hence the name shareware.

The concept is still around, and is stronger than ever. Most new software com-
panies offer shareware versions of their applications. Some shareware either
limits the features, or the amount of times it can be used, until the user decides
to pay for a full-feature version. This type of product is sometimes jokingly
referred to as Heroinware, because, like a drug dealer, the software company
gives you a little free of charge just to get you hooked, and charges you from
then on.

26

Figure 2.3

TechTool, from
Micromat Systems,
is an example of a
free application.

PART 1+ GETTING YOUR FEET WET

Releasing Freeware

You also have the option of not charging for the use of your software at all.
Simply give it away. Sounds like a great idea if you're a computer user, but a
stupid idea if you're a software developer, right? Maybe not. A lot of software,
such as TechTool (shown in Figure 2.3), is released as freeware. Some is
released simply to give the product some exposure, or to gain fame for the
developer. Even commercial software manufacturers have begun releasing
their software as freeware; Internet browsers, word processors, and various
other applications are simply given away, in hopes that users will want to buy
other commercial products offered by the company.

Releasing an Open-Source Program

In a variation of the freeware concept, some developers have decided to forgo
all potential economic gain by giving away not only their applications, but also
their source code. The idea is to allow other developers to look at the code and
propose ideas for making your product better.

Why would people want to help other developers make their products better?
Because those people are probably also users of those developers’ products. So
think of open source as a big programming commune, where everyone works
together for the good of the application, making a stronger product for the
future.

; HAN)WME IA,EVXTENS‘IO!{S[mﬁ_"? ol Gmﬂw.l
L _NeTvoRK | PRINTINFO | _ SAVEINFO |
L e e | ReGSTER | PeRSONAUZE| SPECIAL |

=

CHAPTER 2+ PROGRAMMING'S BIG PICTURE 27

Shades of communism aside, open-source products are making tremendous
inroads. Operating systems (think Linux), Internet browsers, and word
processors are only some of the products that are being released as open-source
products.

Support

After you've released your software, it is inevitable that the people who use it
will have questions about it. Use of your software, no matter how well it’s doc-
umented, and no matter how well it’s been debugged, will always prove to be
problematic to some user somewhere. For this reason, regardless of your
release and marketing plan, you should plan for product support.

Assuming that you plan to develop shareware or freeware applications, putting
your e-mail or Web address in your software’s documentation will go a long
way toward handling support issues, enabling people who use your software to
contact you.

If you plan to release your product in retail channels, then e-mail and Web
support might be enough. Even so, you should plan to offer telephone support
of some kind, whether it’s a long-distance or toll-free phone number. You
might even want to consider on-site support of your product if it is a particu-
larly complex application.

Finally, plan on keeping a record of all of your support calls and e-mails. They
will help you target those areas of your business that have caused problems in
the past. Keeping a database of everyone who has contacted you is a good idea.
You can send e-mails to all these users when a new version of your software is
released, or when you need help testing a beta version of your software in the
future.

Sprecken sie REALbasic?
Or, “Do you speak REALDbasic?” for those not familiar with German.

Programming, coding, developing, or whatever else you want to call it is the
process by which you instruct the computer to do what you want it to
do. Unfortunately, the computers of Star Trek, which can be programmed via

28

"PART 1 GETTING YOUR FEET WET

S R B S S RS e s » s 2 = oo ‘ A

0

"~ Various releases of software’ are often referred to: usmgf the: Greek
- letters alpha and beta. Meaning first and sec
~ letter designations are used to |nd|oa ;

~ release is being done. ‘

o An alpha release usually refers to a release that ls meant for

~ in-house testing purposes only. An alpha release usually is not a
L complete release. Portlons of the appllcatr “ e mrssmg, or ,
f ithere mrght be spellmg errors, debuggmg code, and other testmg
: specrflcs in the apphcatlon, wh|ch you would nev w vant the actual

_end-users unless you know they are trustworthy or they are wrlllng
to sign a non-dlsclosure agreement :

s complete and only ‘debugging of the application needs to be
done. Software authors will often select a set of users to beta—test

_ their applications. These beta testers get an early look at the appll-
cation in exchange for free software-testing work: A public betais a
release in which anyone in the world can obtain and test the soft- '

release in which potentlal beta testers must apply, usually with a
resume of testmg expenence before belng approved asa beta
tester. ~

spectively, these

users of your product to see. Alpha versions should never be sent to

Beta releases are versrons in whlch all the codmg for the applrcanon .

ware, usually by downloadmg it from a Web srte A private beta is a

simple spoken commands, are light years in the future. You must be able to
speak to computers in languages that they understand, and sadly, English is

not one of them.

Throughout the history of computers, countless languages have been used to
write computer programs. So many languages have been used that no one

Review

CHAPTER 2 ¢« PROGRAMMING’S BIG PICTURE 29

programmer could claim to be proficient in them all. With names like RPG,
ALGOL, PASCAL, BASIC, FORTRAN, LISP, C, C++, ASSEMBLE,
COBOL, DIBOL, DBL, and ACTOR, computer languages vary almost as

much as spoken languages.

Like spoken languages, each programming language can have different
dialects. Since its creation, BASIC has spawned perhaps the most dialects of
any computer-programming language, including GWBASIC, BASIC-A,
QUICK BASIC, BUSINESS BASIC, Visual Basic, and REALbasic, to name
a few. So although you may “speak” a particular computer language, keep in
mind that there may be other versions of that language that vary slightly from
the one you know.

At the very least, computer-programming languages do have the equivalents
of verbs and nouns. They have to know what to do, and what to do it to. Addi-
tionally, all computer languages can handle conditional statements—that is,
they can instruct the computer to do a certain thing only if a specific condi-
tion is met. The one thing that computer languages lack is a conversational
aspect. You wouldn’t want to communicate person-to-person using computer-
programming languages. They are very command oriented. Computer lan-
guages are best used when issuing commands that must be obeyed without
question.

This chapter covers the “the meaning of programming,” or how computer pro-
grams are simply lists of instructions that tell a computer what tasks to per-
form. We discussed the various stages of computer development, including
requirements (these determine what your application will do and how it will
do it), design (this determines what your application and its source code will
look like), programming (where you actually write the source code for your
application), testing and debugging (where you find and correct any mistakes
that you made in programming), implementation (this refers to the delivery of
your completed program), and support (this involves keeping your customers
happy by addressing any problems they might have with your program).
Finally, we discussed how programming languages are both similar to and dif-
ferent from spoken languages.

e

The Parts of
a Mac Program

In This Chapter

e From the source: programming code

® The GUL: why Mac programming can seem a little
tougher

® Resources: how pictures and icons are connected

32 PART 1+ GETTING YOUR FEET WET

l n the previous chapters you got a taste for programming in general. Now it’s
time to explore a bit of the early days of programming and operating sys-
tems, and to show what makes programming on a Macintosh different from
programming on other operating systems.

From the Source: Programming Code

Computers aren’t very smart or very conversational. Human languages are way
beyond a computer’s comprehension, and will be for many years to come
despite recent advances. And, no, shouting at your computer when it gets
screwy never really helps.

Yes, I know, you're saying, “But I can buy software that lets me talk to my com-
puter!” That’s true, but the voice-recognition software had to be created by a
programmer using programming code, or simply code.

In the Beginning

A computer’s native language really consists of binary numbers—ones and
zeros. These binary numbers act like a light switch. Flip it up, the light goes
on; flip it down, the light goes off. Likewise, binary numbers act as a series of
on and off electronic pulses that the computer’s hardware understands as “yes”
and “no,” respectively. Send the correct binary instructions to a computer com-
ponent (usually the processor, which is the eyes, ears, heart, and brain of a
computer) and the computer starts work on a particular task.

In the earliest days of computing, scientists sent instructions to computers
using programming languages that weren’t much different from strings of
numbers like 1010111010. Each computer was built by hand—you couldn’t run
down to a store to buy one. Additionally, each computer required you to com-
municate with it in a specific manner—usually not involving a keyboard.
Switches, buttons, and punch cards were common in early computers, used to
start programs and enter data needed by the program to complete its work.

Disks, such as floppy disks, hard disks, and CD-ROMs, didn't exist.

Early computers used wvacuum tubes, large switch devices that could start or
stop the flow of electrons through it so that binary signals could be sent. But
vacuum tubes generated a lot of heat, used a lot of power, and were slow.
Because of the size of these tubes, early computers occupied entire rooms—
sometimes even entire floors.

CHAPTER 3 * THE PARTS OF A MAC PROGRAM

Not surprisingly, programming with one of those early computers was slow,
and, because of the limitations of vacuum tube-based computers, it took hours
for the computer to spit out the results gleaned by the program. If scientists
entered the program or data incorrectly, the computer’s data would be wrong,
or the program might abort before it completed, resulting in hours of repro-
gramming the computer and awaiting the results.

Oh, and did I mention that displays like your VGA monitor didn’t exist,
either? Scientists had to view their works in progress by using a few lights on
a panel. The results of a program were usually just a series of numbers or a few
words on a printed page. As computer technology advanced in the 1960s and
1970s, early video displays appeared, making it easier to enter and display
computer information. Even so, computer data still appeared as dull numbers
and letters on a video display or piece of paper.

,tam nonmetalhc suw ,fces could be;], né“ to- : tch
with no moving parts—a solid-state device. These scnentlsts took a
chunk of one substance, then mashed a smaller chunk of a second
substance in the mlddle of the first. Next, they placed a wire in the
center of the second substance, and placed one wire on each side of
the first substance. When the scientists applied an electrical charge

to the wire connected to the second substance, electricity could flow
from one end of the other two wires, through the first compound, to
the other. Thus, the scientists created the first transistor.

Transistors were very small because they required the use of only a
small amount of the substances, called semiconductors.
Semiconductor materials were also in plentiful supply because the
primary ingredient, silicon, can be refined from ordinary sand. With
the development of the semiconductor, electrical circuits could be
miniaturized, enabling computers to shrink in size.

34

PART | GETTING YOUR FEET WET

From Interpreting Systems
to Operating Systems

The first personal computers of the late 1970s could be programmed to dis-
play text, and to draw simple lines and shapes on a screen, and perhaps to
spin around a little. Still, telling the computer what to do required you to
type in many lines of computer-programming code. Early personal comput-
ers didn’t come with an operating system like the Mac OS or Windows, but
only with hardware designed to translate, or inferpret, programming code a
user would enter into the keyboard. Although the first personal computers
were much, much smaller than their 1940s counterparts, they didn’t work
very differently.

Early Personal Computers Get Smarter
Radio Shack’s TRS-80, the first mass-produced, commercially sold personal

computer, included built-in software that understood the computer-program-
ming language known as BASIC. Based on a more-complex programming
language used on the larger university and scientific computers, BASIC was
designed for novice computer users to create computer programs. Combined
with a cassette tape player, a slow but efficient way to store a completed pro-
gram, TRS-80 users could load or save their work.

BASIC was a start, but it didn’t lend itself to being very versatile. Most impor-
tantly, BASIC couldn't talk very well to the computer hardware or to things
attached to the computer, making it difficult to make the computer more
autonomous—that is, more able to perform tasks without continuous
supervision.

IBM, an office-products company, took its turn at making a personal com-
puter, but aimed it at both the home and office. Instead of installing a BASIC
interpreter and requiring users to type in computer code, IBM took some
lessons from the large university computers running a promising operating
system known as UNIX, and developed an operating system for their PC.

IBM’s PC-DOS and other new operating systems helped establish the
computer-software industry, where programmers become producers of software
for others to buy and use. Still, the simple flashing prompt was quite daunting
to people who didn’t really know what to type in to make their programs work.

CHAPTER 3 ¢ THE PARTS OF A MAC PROGRAM

Do It with Pictures

At a research division of Xerox, the company that makes office photocopiers,
some computer whizzes were toying with the idea of creating a new operating
system that presented itself much differently from PC-DOS. Each element of
the operating system with which people would interact was represented with
a picture. Floppy disks (a recent invention) and directories appeared as a rep-
resentation called an icon. The contents of the disk could be viewed in a list-
ing in a frame called, appropriately enough, a window. Moving or selecting
icons and windows on the screen called for the use of a mouse, an unusual
device at the time, which moved a cursor anywhere on the screen. To instruct
the computer to perform a command on a selected item, an object called a
menu could be opened with the cursor to display a list of options.

It was a very intriguing experiment for the few that saw this prototype oper-
ating system. Of these few people were two with whom you’re probably famil-
iar: Steve Jobs and Bill Gates. After the visit, Jobs took the idea back to Apple
Computer to consider. Gates thought the idea was novel, but not significant,
probably owing to his programming experience. As history would later prove,
Jobs had a greater vision of what computers could do, and so licensed Xerox’s
concepts to build his first attempt at a personal computer with a graphical user
interface, or GUL

Jobs’ vision, manifested in a personal computer called Lisa, was promising but
cost a ridiculous $10,000. Worse, like Bill Gates, others did not view machines
with a graphic interface as serious computer systems. Apple stopped produc-
tion and later buried hundreds of unsold Lisas in an unknown landfill. Back at
the drawing board, Apple simplified and refined the GUI concept and built a
new, much smaller box. In January, 1984, the Macintosh was born.

The GUI: Why Mac Programming

Can Seem a Little Tougher

Apple encountered many of the pitfalls and challenges of a complex operating
system like the original Mac OS (then, it was known simply as system software
or the System). The first challenge was to allow software developers to gener-
ate applications without having to create code for the graphics as well as the
program itself.

36

PART 1+ GETTING YOUR FEET WET

Creating all the graphic code as well as the program’s code would be so time-
consuming that developers would be very uneasy about developing Macintosh
applications, or perhaps discouraged altogether. Even if a programmer cared to
write the necessary code that displayed the windows, buttons, and icons on the
screen, it was impossible for the graphic interface to look or work the same
from one application to the next

Apple solved this programming challenge by creating the programming needed
for all the graphic elements and installing it permanently in each Macintosh as
read-only programming. These program parts could be called up by a developer’s
application to create a window, menu, dialog boxes, alert, and so on with the rel-
ative simplicity of the old BASIC command for subroutines. Apple named this
collection of graphic interface tools the Too/box. (We'll discuss the Toolbox and
how it is transformed in Mac OS X in Chapter 19, “The Carbon Environment.”)

Despite the Toolbox and other aids, programming on the Macintosh was more
complex than creating a simple DOS application, and still a bit more complex
than creating a Microsoft Windows application because of Apple’s require-
ments in any Macintosh design.

For instance, on a Macintosh, a programmer must design an interface for any
application with which the user must interact. That sounds obvious, but con-
sider the many applications made in DOS that didn’t show you much more
than a blinking cursor until you pressed a button on the keyboard. Because the
Mac OS stresses ease of use and simplicity, developers must adhere to Apple’s
requirements so that users aren’t confused by the appearance and functioning
of, say, the Open dialog box in one application versus another.

Because graphic elements such as menus and windows are added to practically
every facet of a Macintosh program, it takes a bit more time to check not only
the program code, but the interface elements themselves, for errors.

Resources: How Pictures
and Icons Are Connected

In DOS, every data file or application is formatted more or less the same. The
only difference in DOS programming may be in whether the file contains exe-
cutable code—that is, programming that comprises an application on the
computer that would start up when called.

CHAPTER 3 THE PARTS OF A MAC PROGRAM 37

- Manv Vlruses?!?

A - % computer virus is a program desrgne*d to ‘cause welrd or harmful thmgs to

~ occur in another computer’s applications or operating system. Many of you may
remember the “Melissa” and “l Love You” computer viruses of 2000. These
viruses were designed to infect users of Microsoft Office applications. That is,
Microsoft Office for Windows.

Macintosh users have a version of Office that's compatible with Office 97 for
Windows documents, but these viruses didn‘t affect the users of the Mac 0S. One
reason Mac users kept typing along without much concern involves how Office
98 Macintosh Edition was designed, or not designed as the case may be. The
Windows version of Office contains software that runs Visual Basic applications
that, in the right hands, give Office for Windows applications and documents
extra features. Microsoft, however, left a few loopholes in their use of Visual
Basic as well as their Word and Excel macro languages. When infected docu-
ments (or, in the case of the “l Love You” virus, file attachments) were opened,
very nasty things happened that clogged e-mail servers around the world.

Macintosh versions of Microsoft applications have very limited support for Visual
Basic applications, so most VB applications simply don’t operate—especially not
in the Mac version of Microsoft Outlook for Exchange Servers, where the “| Love
You” virus presented its payload to millions of users. Likewise, most Word macro
viruses are written with Windows file directory structures in mind because the
virus makers aren’t familiar with or don'’t care about creating a Mac version of
their virus. '

There are about 20,000 viruses that infect Intel PC hardware. Because there are
fewer Macintosh developers, there are, per capita, even fewer Mac virus makers.
Because of the complexity and rules involved in a Macintosh application, there
are only about 60 viruses that can affect Mac OS 9.

That doesn’t mean, however, that Macintosh users can‘t be carriers of viruses. Be
sure not to send documents that are infected to PC users. Remember that Mac
OS X is a completely new operating system based in BSD, which has its share of
viruses as well that could be mutated into something nasty.

And please, use your blossoming programming powers for good, not for evil.

38

Review

PART 1 GETTING YOUR FEET WET

A Macintosh file is actually composed of two parts known as forks. The data
Jfork contains either document data or executable code. The resource fork con-
tains information about the document as it relates to the Mac OS—essen-
tially, the icons, menus, windows, and other graphic pieces found in a Mac
application.

The great thing about resources for non-programmers is how easy they make
it to change, or hack, parts of a document or even an application. For instance,
suppose you love your favorite word-processing application so much that
you want to add a new menu signifying your love. Using Apple’s free resource-
editing tool, ResEdit, you could add a new menu that did nothing more than
show itself on your word processor’s menu bar. Or you could change the
colors of various menu commands to make things livelier.

While ResEdit is still a great development tool, there are additional tools you'll
discover in Macintosh development that change the old rules about resources.
Mac OS 9 applications rewritten for Mac OS X begin to separate the resources
from the data of a file to conform more to the UNIX and Windows methods
of data distribution. By the time you develop an application designed for use
only in Mac OS X, resources and data are completely separate.

You'll want to use resources with care and determination so that your applica-
tion works as you expect. Resources work much like REALbasic and other
programming environments in the sense that they are called on as objects in
an application. To simplify, resources are “plugged in” to your application as
modules; that’s not much different in effect from true object-oriented pro-
gramming such as in REALbasic.

As you'll learn in Chapter 19, “The Carbon Environment,” Apple revised the
list of resources available in the original Mac OS so that developers like your-
self can modify their applications to take advantage of Mac OS X, the next-
generation operating system.

This chapter introduces the parts that make up a Macintosh application. In
the next chapter, we'll introduce you to REALbasic commands, the instruc-
tions that make up an application that interacts with itself, the computer,
and you.

Under Your
Command

In This Chapter

e What commands do
® Trying out some REALbasic commands

® Good documentation makes happy programmers

40

PART 1+ GETTING YOUR FEET WET

he previous chapters introduced you to the REALDbasic application, and

even showed you how to create a simple application. Even though the
program didn’t do very much, it did introduce you to the some of the features
of REALbasic. We also talked about some of the abstract concepts of pro-
gramming and application development. In this chapter, we’ll get into some
of the more specific features of programming and how the source code is
organized.

What Commands Do

As was mentioned in previous chapters, the source code of a program is the
text portion of a project that includes all the instructions that tell your program
how to behave. The source code is arranged in lines, just like any other text
document. A program’s source code is executed from the top down. If you've
ever cooked anything by following a recipe, then you should already be famil-
iar with this concept. The recipe is a list of instructions, which must be per-
formed in a certain order, just like a computer program.

The instructions in a computer program are referred to as commands. Most
commands are single, simple instructions. Commands usually do one thing

and one thing only.

Suppose for the purposes of example that you have children, and that your
children are programmable just like computers (oh, how I've wished). Say they
have their own programming language, which we’ll call KidTulk, that looks
pretty much like English. If you wanted to write a KidTalk program called
BedTime, the source code for the program might look something like this:

Wash Hands
Brush Teeth
Put on Pajamas
Go to Bed

Go to Sleep

From here, your Kid-o—Matic should compile your KidTalk instructions into
usable steps that it can understand and implement. Realizing that my kid was
late for bed, I hastily executed the BedTime application. Figure 4.1 shows that
it appears to be a successful test, but perhaps we should add a clean the room
instruction next time.

Figure 4.1

Computers don't
respond to yelling,
and neither do
kids. But, the right
commands

in the proper
sequence can make
for a quiet night.

CHAPTER 4 « UNDER YOUR COMMAND

42

PART [+ GETTING YOUR FEET WET

Realistically, children can’t be programmed, and the commands above are
pretty complex. But you get the idea. The point is, this example is a list of sim-~
ple instructions, which are performed from the top down. After the last task is
completed, the program stops. Computer programs perform in pretty much
the same way.

Trying out Some REALbasic Commands

In REALbasic, the commands aren’t quite as similar to English as the KidTalk
example, but the same concepts apply. One line of source code contains at
most one command, as in the following:

MsgBox "This is a pretty useless message."
MsgBox "This is too, but it gets the idea across."
Beep

To understand the source code above, you need to know that MsgBox is a
REALbasic command that instructs your program to display a “message box”
dialog box containing the text you specify. The MsgBox command waits for the
user to click the OK button and then removes the dialog box. The code above
displays one message box and waits for you to click on OK. It then displays
another message box, waits for you to click OK, and then plays the default sys-
tem alert sound. As before, you can see that the commands are performed from
the top down, one after the other, until the last command has completed.

You probably noticed that the MsgBox command is a two-part command. The
first part is the MsgBox command, and the second part is the text that you want
to appear in the message box. The second part is referred to as a parameter.
Almost all commands have at least one parameter. Some commands have mul-
tiple parameters and some have optional parameters.

Parameters allow commands to perform almost the exact same task every time
while altering one aspect of their behavior. Computer programs would be infi-
nitely complex if every task had to have its own unique source code to perform
each operation. Commands and parameters reduce the level of complexity by
doing one task, in many different ways, simply by altering the parameters. By
altering the parameters, as we did with the two different uses of MsgBox above,
you can alter the behavior without having to create all new code.

Some computer languages are very liberal with the format of commands and
their parameters, allowing commands and their parameters to be on separate

CHAPTER 4 < UNDER YOUR COMMAND 43

lines. Some computer languages also allow multiple commands in one line of
code. However, in REALbasic, a command and its parameters must reside in
the same line of code. For example, the following source code will generate an
error if you attempt to run it in REALbasic:

MsgBox
"This is a program that won't run"

Likewise, the following source code, with more than one command on a line,
will generate an error, because REALDbasic only allows one command per line:

MsgBox "One" MsgBox "TWO" MsgBox "THREE!"

Although commands and parameters offer a lot to computer language, they
can’t do everything. Using just commands and parameters, your programs can’t
alter their behavior in reaction to changes in conditions. Programs wouldn’t
have the capability to efficiently perform the same task multiple times if all you
had to work with were commands and their parameters. We’ll discuss the ways
in which programs can become more flexible in the next few chapters.

Good Documentation
Makes Happy Programmers

Before we get much deeper into more programming concepts, we should
touch on documentation. One important thing to remember when writing any
program is that the source code can be confusing, as you can tell from the sim-
ple examples above. Source code can be hard to understand for developers who
haven’t worked during all stages of the project, and even to developers who are
returning to a project they haven’t worked on for a long time. To reduce con-
fusion, it is essential that you maintain good source-code documentation.

In this section we’ll discuss some of the various methods of source-code doc-
umentation and the benefits of some methods over others.

The Myth of
Self-Documenting Code

If you talk to developers long enough, one of them is bound to mention some-
thing called self-documenting code. Usually they refer to it jokingly, but some
actually believe in the practice and use it religiously.

44

PART | GETTING YOUR FEET WET

The concept of self-documenting code is simple enough: If you write your
source code properly, then anyone can simply read the code and tell what it
does. It’s a noble concept, but in practice source code, no matter how “self-
documenting” it is, is never easy to read.

Self documenting—code advocates will argue that all source-code modules
should be as simple and compact as is feasible to reduce complexity and con-
fusion. Of course, every piece of paper in a filing cabinet is simple and
compact, but you wouldn’t want to read every single word on every single page
just to find the part you want. Documents are organized in a filing cabinet in
folders, and the documents themselves often contain headings and explanatory
text to help the reader find what he is looking for. So why shouldn’t source
code be treated the same way?

When you start talking about projects with hundreds, thousands, or even hun-
dreds of thousands of lines of source code, the idea of self-documenting code
becomes absurd. Forcing a developer to search through the multitudes of
source-code files and modules squanders their talents. They should be pro-
gramming, not trying to figure out your code.

As bad as it sounds, the concept of self-documenting code does have one ben-
efit: It requires that the developer write code that is easy to understand. A lofty
goal, but not impossible.

Documentation Repositories

Because we've all but given up on the idea of self-documenting code, we need
to come up with an alternative. One way to document your source code is to
create a separate document, in the word processor of your choice, detailing
each source-code file and module, and what all of the various parts do.

After all your source code has been documented, you then place all your
source-code documentation in one simple-to-find location so that you can ref-
erence it in the future.

This documentation repository becomes one of the most important assets of
your business, and must be maintained and protected at all cost. Several tools
on the market provide centralized document repositories, which maintain ver-
sion histories of the documents and provide simple methods of backing up
your documents so that their safety is ensured.

,‘
g A third-party toolis |

an application, or
tool, that a
developer
purchases to
perform functions

not included within §

the application-
development tool.
These tools could
include code
beautifiers, which
clean up your
source code;
documentation
tools; design tools;

paint programs,

and so on.

CHAPTER 4 * UNDER YOUR COMMAND 45

This “Fort Knox” approach has problems of its own. First, it forces you, and
any future developers, to switch between the word processor or paper docu-
ments and the application-development tools to reference source code to its
documentation. This approach either requires the manual maintenance of your
documentation repository or the purchase of third-party tools to maintain
your repository. These third-party tools can be expensive and unwieldy.
Remember, too, that the less-expensive documentation-repository tools have
fewer features and may not be a robust when it comes to maintaining the
integrity of your documentation.

The Promise of Inline
Documentation

Fortunately, almost every programming language allows for inline source-code
comments—documentation embedded within the source code itself. This
allows the developer to place notes, annotations, explanations, or full-length
novels right in the source code itself. Future developers, or the original devel-
oper years later, will appreciate the convenience of seeing the explanations of
what the source code does right there along with the source code itself.

This practice makes the maintenance of source code a lot easier, but lengthens
the initial development time. The “there wasn’t enough time to document the
code” argument is the most often quoted reason for not using inline docu-
mentation. It’s a poor excuse for making someone else’s job harder, though.

The easiest way to force yourself to do inline documentation is to do it before
you write the code. As soon as you create a new source code module, docu-
ment what this module will do, what its purpose is, and the steps it takes to
achieve this. Then go back and add the source code around and between the
documentation.

Inline Documentation and REALbasic

In REALbasic, inline documentation is referred to as comments. The REAL-
basic development tool ignores any comments in your source code. These lines
are skipped during compilation and execution. When you compile your source
code, the comments aren’t included in the executable application. As far as
REALbasic is concerned, it’s as though these comments don’t even exist. But,
they’re of great use to the developer.

46

PART 1+ GETTING YOUR FEET WET

Back in the “good old days” of BASIC programming, the only way to intro-
duce a comment in the source code was to use to the REM (short for “remark”)
keyword. Here’s an example:

10 REM This is a stupid, useless, and annoying program!
20 PRINT "Hello World! ";
30 GOTO 20

REALbasic allows for multiple methods of commenting source code. For the
most part, these different methods are used to make life easier on developers
who have worked in other programming languages. REALbasic comments are
marked using any of the following methods:

REM The classic BASIC language REM keyword
¢ ' The classic BASIC language REM shortcut single-apostrophe

comment delimiter

¢ // The C language-style double-slash single-line comment delimiter

Because I started my development career as a BASIC programmer, I tend to
use the apostrophe comment delimiter. One good reason to use this comment
delimiter is that the REALbasic Comment Lines menu item uses this format
as well. That said, a lot of people prefer the double-slash single-line comment
delimiter. Use whatever is easiest for you.

r,.;«»

S o use the REALbasic Comment Lines command; open”theiﬁdlmﬁxﬁft
nd-select the-Comment Lines iterm:f-yot ‘withn
~selected a smgle-apostrophe comment dehmiter is placed at the begm
ning of the current line of code. If multiple lines of code are selected, a.
single-apostrophe comment delimiter is placed at the beginning of each
selected line of text. This is often referred to as commenting out lines of
code, because the source code has been turned into a comment. This is
a quick way to remove source code without actually deleting it (in case
you change your mind later).

e v,

Whatever commenting method you choose, remember that everything to the
right of the comment delimiter is ignored, as in the following lines:

'This entire line is a comment
MsgBox "Test" 'This portion of this 1ine is a comment

CHAPTER 4 * UNDER YOUR COMMAND 47

The One and Only
Documentation Solution

The one and only solution to the source code-documentation issue is to do
whatever works best for you. For almost everyone, this is going to be a combi-
nation of any or all of the methods mentioned above. Each method has its
problems and benefits:

¢ Self-documenting code requires that developers be somewhat psychic,
knowing where to go to find the documentation they need. It’s talked
about more often than it’s actually used. However, it does enforce clean,
easy-to-understand source code.

¢ Source code repositories cause maintenance hassles and disassociate the
documentation from the code. On the other hand they do provide a
single source of information that can be effectively browsed without
previous knowledge of the source code.

¢ Inline documentation, like self-documenting code, requires pre-
knowledge of the source code, but allows for concise annotations that
can be quickly referenced. Pre-commenting your code can be an
effective method of improving development efficiency.

By using a combination of these methods you can reap the benefits of each
while reducing the problems inherent in them. Remember, use what works best
for you with the tools and resources you have available. You might choose to
simply create a project overview document and include source-code comments.
As long as this satisfies your documentation needs, it’s sufficient. Never do more
work than is needed to maintain your project. Wasted effort is wasted time.

Documentation Standards

Whatever documentation method or combination of methods you choose, it’s
a good idea to set some standards for what the documentation will look like.
I'm not going to preach any one standard here; there are plenty of books on
the market already for that. Find a standard you like, or make one up, and stick
to it. Having all your documentation in one format means that every docu-
ment is instantly recognizable and easy to use.

I know, this may sound obvious, but youd be surprised how many developers
balk at the idea of documentation standards. Developers are a unique breed, very
bohemian and free thinking. The idea of being told how to do their job often

48

Review

PART 1+ GETTING YOUR FEET WET

drives them to distraction. But, when handled properly, documentation stan-
dards actually can save precious time due to reduction of misunderstandings.

Coding standards fall into this category as well. Many different coding stan-
dards exist and are documented in numerous books, journals, and papers.
REALbasic does a pretty good job organizing the source code for you, so I
won't go into coding standards here. About the only thing you have control of
are things like variable, method, and class names (more on these later). Just like
with your documentation, you should strive to make your source code have a
similar look and feel.

Trust me, documentation and coding standards make the maintenance of an
application much easier down the road. The extra effort put forth at the begin-
ning of a project is an investment in time saved later on.

This chapter covers commands and parameters. Commands are simply the
instructions that the computer program follows when it’s running. Commands
can have parameters, which can alter their behavior and allow for variations of
their use. Commands and their parameters must reside on the same line; only
one command is allowed per line.

This chapter also discusses the importance of source code documentation,
which I can't stress enough. Good documentation equates to reduced effort in
the future. Maintaining and modifying existing programs is a difficult task
under the best of circumstances; poorly written or nonexistent documentation
can make it even more painful. Do yourself a favor and learn to document your
code. You'll be glad you did. You can self-document your code, add inline code
comments, and use documentation repositories. REALbasic allows for inline
source code documentation.

Documentation and coding standards can help reduce confusion and simplify
your documentation practices. Coding and documentation standards can be
almost as important as the documentation itself. But don’t get so bogged down
in standards that your work doesn’t progress. It’s important to remember that
it’s a balancing act between productivity now and productivity later. If you get
buried in the standards and never actually get any work done, you'll never real-
ize the future productivity benefit, because your project will have no future.

Variables, Operations,
and Constants

In This Chapter

® Keeping track with variables
e Common types of variables
® Declaring variables

e Operations and variables

e (onstants are constant

e Where to use variables and constants

50

PART 1+ GETTING YOUR FEET WET

he last chapter introduced the concept of commands and parameters. A
command is a single instruction for your program to perform, and parame-
ters are used by the commands to alter the behavior of the command. Like we
said, commands and their parameters provide some flexibility, but not enough.

In this chapter, we’ll be discussing one way to add flexibility to your programs.
When an application is running it needs to vary it’s behavior based on changes
in its environment. In order to do this a program needs to be able to keep track
of values that can change. This is done using variables.

Keeping Track with Variables

Figure 5.1
Variables are like
delivery boxes for
mail and the like.
Only one type of
item is allowed in
each container,
and their contents
can change.

If you've taken a high-school algebra class, then you're probably familiar with
variables. In algebra, variables are the letters X, Y, Z, and so on, for which you
seem to spend all year solving. If you've never had the pleasure of dragging
yourself through algebra, then this will be your first introduction to variables.

In computer languages, variables are used to store values, numbers, or text,
which can change, or vary (hence the name variables), in response to different
situations. The variable itself is merely a label that is used to reference the value.
When you declare a variable you're telling your application to set aside a por-
tion of the computer’s memory, which will be used to store some sort of value.
The variable name is a label, which you use to reference that memory. Think
of the variable’s name like the address on a mailbox as shown in Figure 5.1.

CHAPTER 5 * VARIABLES, OPERATIONS, AND CONSTANTS 51

The fact that the values can vary allows your program’s behavior to vary in
response to those situations and conditions.

The contents of variables can be compared to each other, and they can be oper-
ated on with math operations. You can add, subtract, multiply and divide using
the contents of the variables. A variable’s contents can be written to disk for
later retrieval. The contents of variables can be displayed onscreen or used to
control the display of other items onscreen. Variables allow your programs to
do just about everything they need to do.

Common Types of Variables

Variables can contain, or reference, many types of information—just about any
type of information youd want to keep track of. Some of the variable types
that are supported in REALbasic are

¢ Integer. Used for whole numbers (0, 1, 2, and so on). Either positive or
negative values can be stored in integer variables. The valid range of
integer variables is —2,147,483,648 to 2147483647.

Single. Used for single-precision floating-point real numbers (for
example, 3. 141592653). Single-precision variables can contain
numbers accurate up to nine decimal places.

¢ Double. Used for double-precision floating-point real numbers (for
example, 3. 141592653589793). Double-precision variables are
accurate up to 15 decimal places.

¢ Boolean. Used for true/false (Boolean logic) values.
¢ String. Used to store text values.

¢ Variant. A variable that can contain numbers, text, or other types of
values.

Declaring Variables

To use a variable in your program, you must first define the variable so
that REALbasic knows what type of variable it is. You declare variables in

- 52

PART |+ GETTING YOUR FEET WET

REALbasic by using the Dim statement (short for dimension). Some examples
of variable declarations are

Dim nAge, nWeight AS Integer 'Declare two integer variables w
named nAge and nWeight

Dim dSalary AS Double ' Declare a double variable w
named dSalary

Dim strName AS String ' Declare a string variable =

named strName

Another method of declaring variables allows you to declare arrays of variables
so that your variables can store lists of values. When declaring variable arrays,
you define the name, dimension, and the type of the array. Some examples of
array declarations are

Dim nDaysPerMonth (11) AS Integer 'Declare an array of 12 integers w
named nDaysPerMonth

Dim strWeekDayNames (6) AS String 'Declare an array of 7 string w
variables named strWeekDayNames

Dim nAnInteger(0) AS Integer '‘Declare an array of 1 integer w
variable named nAnInteger

Dim intEggs (1, 5) AS Integer 'A two-dimensional integer array w

(2 rows 6 columns—-like an egg carton)

Something you probably noticed about the examples above is that the array
size is always one smaller than the number of values it can store. This is
because the first element of the array is always numbered 0. So, in the exam-
ple above, the elements in the nDaysPerMonth per month array are numbered 0
through 11 for a total of twelve. So, if you want to declare an array of one value,
you define an array size of 0 (like in the nAnInteger example above). Coinci-
dentally, you can choose to forgo the use of the array size when you are defin-
ing an array that has a dimension of one. REALbasic defaults variable
declarations with no array size to a dimension of one. So, all the first examples
could be written to define the dimension of the array as 0, but you don’t need
to; REALbasic assumes that the dimension is 0.

You can also Dim an empty array in REALbasic by using a size of -1. Doing
so lets REALbasic know that you want to create an array of unknown size.
You'd do this in those cases in which you don’t know what size you want an
array to be, until the application is running. You can then re-dimension the

CHAPTER 5 « VARIABLES, OPERATIONS, AND CONSTANTS

array, using the Redim keyword, once you know what size the array should be.
For example

Dim nMonthDays(-1) AS Integer 'Declare an array of an unspecified w
number of integers named nMonthDays

If (nMonthNumber = 2) Then

Elself (nMonthNumber)

End If

Dim strName AS String ' Declare a string variable named strName

i taems aprogfammmg techmque referred to -as- Reverse Hungaman
--Notation. Hunganan Notation is a practice used by some programmers
that helps remind them of a variable’s type without requmng them to
- track down the variable declaration. You'll see variables using this type
.. of notation all throughout this book. Use of this type of notation is not
~ necessary; it’s simply a method to make your life easier.

TIP

All this variable declaration is well and good, but variables are of little use if
you don't know how to store and retrieve values in variables. That’s what we’re
going to look at next.

Assigning Values to Variables

Variables contain values, and the values in variables can be assigned, modified,
or operated on using many different operators. The assignment operator, =, is
used to store a value in a variable.

One thing to keep in mind is that the assignment operator, along with other
operators, works only with similar data types—so, for example, text data can’t
be stored in an integer variable. The one exception to this rule is a variant

variable, which is the multiple personality-disorder variable of REALbasic.

54

PART 1 GETTING YOUR FEET WET

Variant variables can act like any other variable type.
Some examples of valid, and invalid, variable assignments are

Dim nAge AS Integer
Dim dSalary AS Double
Dim strName AS String

nAge = 34 ' OK-—-an integer value

dSalary = 25350.50 ' OK—-a real number (a.k.a. floating-point) value
strName = "Jeff" ' OK-a string value

nAge = "forty" ' Wrong—-not an integer value

strName = nAge ' Wrong—-these variables are different types

All variables are assigned initial default values when they are declared with the
Dim statement. Numbers (integers, singles, and doubles) are assigned a default
value of 0. The initial default value for Strings is an empty string (that is, "").
Boolean variables are assigned a default value of false.

Back to variant variables: They are variables that can contain just about any
data type and can, in some cases, convert their data from one type to another.
One example of this is in the code below; where a variant is assigned values of
many data types. These data types are displayed using the MsgBox command,
which only accepts a string as its argument.

Dim varJdustAboutAnything As Variant
Dim bTrueFalse As Boolean

vardustAboutAnything = 42 ' Assign a numeric value to your w
variable
MsgBox vardustAboutAnything ' It will be displayed as a string

vardustAboutAnything = "Text"”
MsgBox vardustAboutAnything

vardustAboutAnything = 1.23
MsgBox vardustAboutAnything

vardustAboutAnything = bBoolean
MsgBox vardustAboutAnything

CHAPTER 5 ¢ VARIABLES, OPERATIONS, AND CONSTANTS 55

Operations and Variables

We mentioned that there are many operators that can be used along with vari-
ables. Some of the more common operators are

¢ The addition operator (+). Used to add two numbers together.

¢ The subtraction operator (—). Used to subtract one number from
another.

¢ The multiplication operator (*). Used to multiply two numbers.

¢ The floating-point division operator (/). Used to divide one number by
another.

¢ The integer division operator (\). Used to divide one number by
another while truncating the result to only the integer portion of the
number.

¢ The equivalence operator (=). Used to determine whether the values of
two expressions are equal to each other. Not to be confused with the
assignment operator (=), which assigns a value to a variable.

¢ The less-than operator (<). Used to determine whether the value of
one expression is smaller than the value of another.

¢ The less-than-or-equal-to operator (<=). Used to determine whether
the value of one expression is smaller than or equal to the value of
another.

¢ The greater-than operator (>). Used to determine whether the value of
one expression is larger than the value of another.

¢ The greater-than-or-equal-to operator (>=). Used to determine

whether the value of one expression is larger than or equal to the value
of another.

The following source code demonstrates the use of these operators:

Dim dNumberl, dNumber2, dNumber3 As Double
Dim bResult As Boolean

dNumberl = 9
dNumber?2 =
dNumber3 = dNumberl + dNumber? 'dNumber3 contains a value of 13 =

(9 + 4)

56

PART 1+ GETTING YOUR FEET WET

dNumber3 = dNumberl - dNumber?2 'dNumber3 contains a value of 5 =
(9 - 4)

dNumber3 = dNumberl * dNumber2 'dNumber3 contains a value of 36 =
(9 * 4)

dNumber3 = dNumberl / dNumber?2 "dNumber3 contains a value of w
2.25 (9 / 4)

dNumber3 = dNumberl \ dNumber2 "dNumber3 contains a value of 2 w
9\ 4)

bResult = dNumberl < dNumber2 'bResult contains "false" w

(9 is not less than 4)
bResult = dNumberl <= dNumber?2 'bResult contains "false" w
(9 is not less than or equal to 4)

bResult = dNumberl > dNumber2 'bResult contains "true" =
(9 is greater than 4)
bResult = dNumberl >= dNumber2 'bResult contains "true" =

(9 is greater than or equal to 4)

There are other operators, but we'll discuss them in later chapters as needed.

Constants Are Constant

In writing programs, you may occasionally want to store something in a vari-
able, but never change the value while your program is running. Your applica-
tion’s name, or something similar, is a value that will never change during the
time your program is running. (That said, you might want to change this value
before you compile your application.)

You're probably thinking that a variable whose values don’t vary seems like a
contradiction—and you're right, it is. To store values that dont, and can't,
change you don’t want to use a variable. You’ll want to use a constant.

To declare a constant, you give the constant a name and assign it a value. For
example:

Const nTheCurrentYear = 2001
Const strTheProgramName = "Hello World"

CHAPTER 5 ¢« VARIABLES, OPERATIONS, AND CONSTANTS

You can think of a constant as a nickname, or synonym, for the value you have
assigned to it. Remember, constants aren’t variables, so you can’t change their
values. If you try to change the value of a constant, the REALbasic compiler
will generate an error. For example, the following source code will generate an
error at runtime:

Const nTheCurrentYear = 2001
nTheCurrentYear = 2002

REALbasic defines a few constants for use in your programs, as described in

Table 5.1.

TABLE 5.1 REALBASIC CONSTANTS

Constant Type Description

DebugBuild Boolean Returns true if your application was launched with the
Debug item on the Run menu, versus running as a compiled
application. Handy if you want to display debugging messages
while testing your application.

TargetMacO0S Boolean Returns true if your application has been compiled to run on
a Macintosh.

Target68K Boolean Returns true if your application is compiled to run as
Motorola 68000 machine code.

TargetPPC Boolean Returns true if your application is compiled to run as
PowerPC machine code.

TargetCarbon Boolean Returns true if your application is compiled to run as a
Carbon application.

TargetWin32 Boolean Returns true if your application was compiled to run on a
Windows computer.

RBVersion Double Returns the major and minor version numbers, as a double-
precision floating-point value, of the REALbasic compiler with
which you created your application.

RBVersionString String Returns the major and minor version numbers, as a string

value, of the REALbasic compiler with which you created your
application.

58

PART 1+ GETTING YOUR FEET WET

As you can see, the REALbasic-provided constants can tell you a lot about the
operating environment in which your application is running. Chapter 22,
“Porting Applications to Microsoft Windows,” talks a bit about how you can
use these Boolean constants in creating an application for Microsoft Windows
as well as for the Mac OS.

Where to Use Variables and Constants

Review

Variables and constants can be used anywhere in a program where a command
parameter is needed or as the parameters of any operation. For example:

const strTheApplicationName = "Hello World"
msgBox "The " + strTheApplicationName + " now does useless math!"

A good general rule is to use variables if you know a value is going to change
while your program is running. Use constants if you use the same value, in
many places, but you don't expect the value to ever change while your applica-
tion is running. Constants are also well used in situations in which values
change for different versions of your applications, like the program name or
the program version number.

Another use of constants is to give a meaningful name to an otherwise mean-
ingless value. For example, you might realize that the value 3.14159 is the
mathematical value of PI, but other developers may not. Creating a constant
with the name PI and a value of 3.14159 allows you to use this constant

throughout your source code, and you don't have to remember what the value
of PI actually is.

As time goes on and you get more experience writing your own programs it
will become quite obvious to you when and where you should use variables and
constants.

In this chapter, we went over variables and how they can be used to keep track
of various values. We talked about some of the various variable types common
to REALbasic and other software development tools, went over the integer,
single, double, Boolean, and string variable types, and touched on the variant
data type, which can act as any of these types of data.

CHAPTER 5 * VARIABLES, OPERATIONS, AND CONSTANTS 59

We talked about declaring variables with the Dim statement, and went over
how both variables and arrays of variables are declared. All arrays are zero
based, so arrays are numbered from 0 to n-1, where n is the number of elements
you want to set the array size to. It’s no big deal if you declare your arrays too
large; you're just using up memory that you don’t need to.

We then went into some detail about the more common operators that can be
used to modify and inspect the contents of variables. We talked about the most
often—used math operators (+, —, *,/, and \) and the comparison operators (=,
<, <=, >, and >=).

We then talked about constants, which are like variables whose values don’t
vary. In a sense, they can be thought of as non-variable variables. Constants are
best used for values that never change, are used in multiple places in your
application, or might change from one version of your application to the next.
You should never attempt to use a constant if its value is going to change while
your application is running. Doing so will cause an error in REALbasic and
your application won't run.

Last but not least, we talked about how variables can be used as the parame-
ters of commands and operations. Variables have to be used in order to be
appreciated, so, if you haven't already, go back to the “Hello World” applica-
tion from Chapter 1, “Getting Acquainted with REALbasic,” and start play-
ing around a bit with some of the sample code. We think you'll get an
understanding of how essential variables are in no time.

Making Your
Program Flow

In This Chapter

e What is flow control and why is it important?
e The If/Then/Else If/Else/End If keywords

® The Select/Case keywords

® The For/Next keywords

62

PART 1+ GETTING YOUR FEET WET

I n the previous two chapters, we talked about commands and variables, not-
ing that commands are the instructions that the program follows when it’s
doing its thing, and variables are used to store values, which vary, during the
runtime of the program. The program can use these values as parameters to
commands and can respond to the values of the variables to behave in differ-
ent ways. What we didn’t get into was Aow a program responds to the variables
in order to behave differently. We cover that here and in Chapter 7, “And Still
More on Program Flow.”

What Is Flow Control
and Why Is It Important?

Although a program is running, it needs to respond to various conditions that
change during its runtime. If a program consisted merely of a set of instruc-
tions, one after the other, but had no ability to respond to changes in the envi-
ronment, it would be a very poor program.

Flow control is the capability of a program to respond to different values in
variables and take different routes depending on those values. Think of it like
a series of branching irrigation channels carrying water. The flow of water into
each branch is controlled by blocks that are moved to stop the water flowing
into one branch and allow it to flow into another. Coincidentally, the various
sections of code, which are executed during flow control, are referred to as
branches. At every branch, the program decides on which path it will take.

Alternatively, you could think of these branches as being like branches in a
stream. Just as you can travel by raft down only one branch of a stream at the
same time, your programs can only execute one branch of code at a time.

To better show you visually how flow control works, we'll use a classic pro-
gramming tool: the flowchart (see Figure 6.1). Basically, computer instructions
(shown as parallelograms) travel from top to bottom. To stop the flow so that
a decision can be made, add a diamond shape to allow the program to respond
to Boolean (yes/no) questions, the answers to which will redirect the flow
path. Simple, right? Good.

There are many methods for achieving flow control. A program can choose to
execute one of many branches of code based on the contents of a variable. It
can execute the same code over and over again until a variable has changed to

Figure 6.1

A flowchart is a
diagram of a
program’s . ..

um ... flow! This
is a good tool to
use to avoid simple
program-design
mistakes.

CHAPTER 6 * MAKING YOUR PROGRAM FLOW 63

a specific value or while it remains as a previous value. Programs can even skip
entire sections of code using flow control.

To put it simply, flow control is not only the most important part of program-
ming, it is the essence of programming. Every program you’ve used has within
it some amount of flow control.

It should come as no surprise to learn that some programs have very poor flow
control. We won’t point to any single software manufacturer, even though
there are plenty of them with problems. Instead, we’ll quote an example from
nature (nature can’t get a lawyer to sue us).

There is a species of spider that, like the trap-door spider, makes its burrow
underground; rather than springing on its prey, however, it hunts in the open,
and then brings its spoils back to its lair to feed. This type of spider has been
“programmed” by evolution to follow a certain set of steps when it’s hunting.

Figure 6.2
“Come to my
Parlour...,"”

computer style.

PART |+ GETTING YOUR FEET WET

If its instructions were drawn in a flowchart, the spider’s “program” would look
like the one in Figure 6.2.

This program is simple enough, but it has its problems. Although there is
some implied flow control, the “Ensure lair is safe” step implies that if it’s not
safe, it needs to be made safe—a major flaw in the spider’s program. It can’t
adapt to changes in its variables, the environment, which alter the way the pro-

gram should behave.

CHAPTER 6 * MAKING YOUR PROGRAM FLOW

Let’s introduce a variable to the spider’s program with which it is unprepared
to cope. The variable you’ll be introducing is a particularly inquisitive and, per-
haps, somewhat cruel individual. Make him a young boy or a research scien-
tist—they’re both about as nasty when it comes to experimentation with bugs.
This individual waits for the spider to enter its lair the second time, after drag-
ging its prey to the entrance of the lair. If the individual moves the prey back
to its first location, a few inches from the lair, the spider will repeat the previ-
ous steps. It will continuously move the prey to the entrance, check the lair,
and return to do this again, again, and again. This can, if the experimenting
individual is fiendish enough and so chooses, continue until the spider literally
falls over dead from exhaustion and starvation. As you can see in Figure 6.3,

Figure 6.3

Because the spider
can't adapt to the
change, it will go
back through the

flow over and over

until it starves.

66 PART 1+ GETTING YOUR FEET WET

the spider simply can’t adapt its programming to handle this new situation.
There is no variable, condition, or flow control to handle this possibility.

Is that cool or what? Nature and evolution have conspired to create in this
unfortunate creature a program that provides endless hours of enjoyment for
demented little boys and scientists everywhere. It’s like the very first video
game, nature’s own version of Doom. Nature is a bad programmer. It takes
thousands of generations to effect changes in its programs and remove bugs
from its code (Bugs! Get it?). Even Microsoft works faster than this.

A good developer can't afford to wait for his programs to drop dead to correct
flow-control problems. A good developer needs to be prepared for all possible
conditions (except for devious research scientists and cruel little boys) and
their programs should handle them appropriately. Flow control is a necessity;
complete and comprehensive flow control is what differentiates the good pro-
grams from the bad ones.

The If/Then/Else If/Else/End If Keywords

The If, Then, Else If, Else, and End If keywords are used to inspect a variable’s
value and respond by executing specific source code depending on that value.
The simplest form of the use of these keywords is the If/Then/End If usage.
Using this form, the program can check for some specific condition—for
example, a variable’s value—and perform a specific task. The If portion is the
condition being checked; the Then portion marks the beginning of the task to
perform; and the End If marks its end. The flowchart shown in Figure 6.4
shows an example.

This is no different from what you do in a normal day-to-day decision-
making process using, for example, the English-language conditional state-
ment, “If you are out of milk, then go to the store and buy more milk.” This
process could be written in pseudo code as

Dim bWeAreQutOfMilk // Some variable which contains "true" if w
you are out of milk
If (bWeAreOutOfMilk) Then
GoBuyMilk // Go to the store and buy more milk
End if

Figure 6.4

And you thought
you just had to
drive to the store.

CHAPTER 6 * MAKING YOUR PROGRAM FLOW

Create
Variable
Out of Milk

Check
content of
*Out of Milk®

store, buy
milk

The second form of If statements contains an Else statement. The Else state-
ment is used in conjunction with the If/Then statement. It allows your pro-
gram to perform a specific task when the condition in the If/Then statement

is not true. The flowchart in Figure 6.5 contains an example of this statement
in action.

68

Figure 6.5

With an Else
decision, you can
make the flow
more effective.

PART |+ GETTING YOUR FEET WET

katax"t‘

J Create
~ Variable
- "Out of Milk"

Again, no different from what you do in a normal day-to-day, albeit not life-

altering, decision-making process. This process could be written in pseudo
code as

If (bWeAreOutOfMilk) Then // Check to see if you are out of milk

GoBuyMiTk // Go to the store and buy more milk
Else
PourAndEnjoy // Pour a glass of milk and enjoy

End If

CHAPTER 6 * MAKING YOUR PROGRAM FLOW 69

One important thing to remember is that If/Then/End If blocks of code are
self-contained and don't relate to other blocks. For example, the following
code checks two separate conditions. The code for each condition will be exe-
cuted regardless of the other condition.

If (SomeConditionIsTrue) Then
// Perform some specific task

End If

If (SomeOtherConditionIsTrue) Then
// Perform some OTHER specific task (regardless of the first =
condition)

End If

If/Then/End If blocks of code can be nested, or inserted within each other. In
the following example, the second block of code is nested, or embedded,
within the first block of code, meaning that the second condition won't even
be evaluated unless the first is true.

If (SomeConditionIsTrue) Then
// Perform some specific task
If (SomeOtherConditionIsTrue) Then
// Perform some OTHER specific task (only if BOTH conditions w=
are true)
End If
End If

In the preceding pseudo code, the first task will be performed only if the first
condition is true. The second task will be performed only if both the first and
second conditions are true.

Code blocks can be nested in the Else statements, as in the following pseudo
code:

If (SomeConditionIsTrue) Then
// Perform some specific task
Else
// Perform some OTHER task
If (SomeOtherConditionIsTrue) Then
// Perform yet ANOTHER specific task (only if the first =
condition is false and the second is true)
End If
End If

70

PART 1+ GETTING YOUR FEET WET

In this example, the second task will be executed only if the first condition is
false. The third task will be executed only if the first condition is false and the
second is true. If the second task wasn’t needed and excluded, the code would
look something like this:

If (SomeConditionIsTrue) Then

// Perform some specific task
Else

If (SomeOtherConditionIsTrue) Then

// Perform some OTHER task (only if the first condition is w

false and the second is true)

End If
End If

The result of this is that the second task will only be performed if the first con-
dition is false and the second is true.

The use of this form of nested code is so common that most programming
languages have a special statement to handle them. Rather than nesting the
second If/Then/End If block of code, you can use the Else If statement. Else
If allows the developer to check multiple conditions within a single group. It’s
best if the conditions are related in some sense, but they need not be. Each
condition is checked from top to bottom; if any particular condition is true, its
code is executed and execution continues after the End If statement. For
example:

If (SomeConditionIsTrue) Then
// Perform some specific task (but none of the others)
Elseif (SomeOtherConditionIsTrue) Then
// The first condition wasn't true, but the second is
// Perform some other specific task (but none of the others)
Elseif (YetAnotherConditionIsTrue) Then
// The first two conditions weren't true, but the third one is
/! Perform yet another specific task (but none of the others)
Else
// None of the conditions above were true
// Perform a fourth specific task (but none of the others)
End If
// Execution continues from this point after one of the tasks w
above has completed

CHAPTER 6 * MAKING YOUR PROGRAM FLOW 71

The If/Else If/Else usage may seem pretty complicated, but it really isn't.
Again, there are mundane examples of this type of decision making in your
every day lives, as shown in the flowchart in Figure 6.6.

Figure 6.6

Planning your day
as a villain might be
more effective with
proper checks to
end the world or
the jobs of your
useless minions.

ys
/s

PﬂfPlague'

72 PART 1+ GETTING YOUR FEET WET

Okay, so maybe the flowchart in Figure 6.6 is not a mundane example, but you
get the idea. The addition of Else If allows you to check multiple conditions
and have your program behave accordingly in response to one of these condi-
tions being true. Used in a REALDbasic program the If, Then, Else If, Else and
End If statements would look something like the following

Dim nValue As Integer // nValue contains 0 for now
nValue = 12 // nValue now contains a value of twelve

If (nValue < 12) Then /! check to see if nValue is LESS THAN w»
twelve

msgBox ("The nValue variable contains a value less than twelve.")
Elseif (nValue > 12) Then // check to see if nValue is GREATER w
THAN twelve

msgBox ("The nValue variable contains a value greater than =
twelve.")
Else // nValue is neither GREATER THAN or LESS THAN twelve

msgBox ("The nValue variable must contain a value of twelve.")
End If

e mm“éﬁcﬁmﬁs’”a‘ﬁﬁﬂé ijfn“ﬁm&mﬁﬁdiﬁﬁfﬁmmam he==”

hqmte 1 use of pérentheéns around condmons Ify you re planmng on...
picking up other programming. Ianguages, you mlght want to get in the
habit of domg this. Besides, it does make your code a lot easier to read.

The Select/Case Keywords

We just talked about using the Else If keyword instead of nesting a second
block of conditional code in another Else block of code. Using Else If reduces
your code complexity and provides a shortcut when you are writing the source
code. The Select/Case keywords can also be used as a shortcut of sorts. If you
are writing multiple If, Else If, and Else blocks of code, which are all checking

CHAPTER 6 - MAKING YOUR PROGRAM FLOW 73

the contents of a single variable, you can use the Select/Case keywords instead.
For example, in the following code, multiple Else If statements are used to
check for multiple values for the nValue variable:

Dim nValue As Integer // nValue contains 0 for now
nValue = 2 // nValue now contains a value of two
If (nValue = 1) Then

msgBox ("The nValue variable contains a value of one.")
Elseif (nValue = 2) Then

msgBox ("The nValue variable contains a value of two.")
Elseif (nValue = 3) Then

msgBox ("The nValue variable contains a value of three.")
Else

msgBox ("The nValue variable contains something other than 1, 2 =

or 3.")
End If

This code can be simplified using Select/Case syntax, which enables you to
compare the nValue variable, multiple times, to various values without all the
redundant Else If code. The preceding code could be re-written as

Dim nValue As Integer // nValue contains 0 for now
nValue = 2 // nValue now contains a value of two
Select Case (nValue)

Case 1

msgBox ("The nValue variable contains a value of one.")
Case 2
msgBox ("The nValue variable contains a value of two.")
Case 3
msgBox ("The nValue variable contains a value of three.")
Else
msgBox ("The nValue variable contains something other than 1, 2 =
ori3.")
End Select

Not only does the code above look nicer, it will actually perform better than
the multiple Else If version with the same functionality. The difference in per-
formance is pretty small, but in a program with lots of these kinds of opera-
tions, it begins to add up.

PART |+ GETTING YOUR FEET WET

One important thing to remember when using the Select/Case keywords is
that they are limited to checking for integer and string equality. For example,
there is no method for using a Select/Case statement to check whether the
value of a variable is less than or greater than a specific value.

The For/Next Keywords

In the previous two sections, we discussed program flow control that is based
on conditional branching. A choice is made between two or more branches of
code based on the condition of the variable being evaluated. Although these
conditional branching types of flow control are all well and good, they don't
provide the other major type of flow control, which is looping.

Looping is when a computer program performs the same operations over and
over again. Now uncontrolled looping—when a program gets stuck in a loop
and can't stop—is bad . . . very bad. Infinite loops can either crash an applica-
tion or make it appear that the application has locked up. Flow control using
looping, however, enables the developer to perform code in loops, without the
risk of infinite loops.

The first type of looping is achieved with a For/Next statement. Using a
For/Next statement, the developer can repeatedly perform a specific set of
tasks, while the program increments or decrements the value of a counter vari-
able. There are two forms of the For/Next statement, the first of which looks
like this:

For Counter = StartValue To EndValue Step StepValue
// Perform some specific task (maybe using the Counter variable w
in the task)

Next

At the beginning of the first form of the For/Next loop, the Counter variable,
which must be an integer, is assigned the initial value of the StartValue para-
meter. The task within the For/Next loop is executed at least once and the
Counter variable is incremented by the value of the StepValue parameter. If the
new value of the Counter variable is less than or equal to the value of the End-
Value parameter, then the task within the For/Next loop is repeated. The task
within the For/Next loop will continue to be executed until the value of the
Counter variable is greater than the EndValue parameter.

Figure 6.7

You can't eat just
one, but you will
for now.

CHAPTER 6 * MAKING YOUR PROGRAM FLOW 75

The second form of the For/Next loop looks like this:

For Counter = StartValue Downto EndValue Step StepValue
// Perform some specific task (maybe using the Counter variable w
in the task)

Next

The second form of the For/Next loop works just as the first, except that the
Counter variable decrements by the value of the StepValue parameter at the
end of each loop rather than being incremented. The loop terminates when the
value of the Counter variable is less than the value of the EndValue parameter.

It’s not as difficult as it looks. Everyone performs tasks like this every day of
their lives. Whenever you repeatedly perform the same task a certain number
of times, you are in one sense executing a For/Next loop in your head. For
example, say you have a dozen chocolate-chip cookies to go with that milk
from the previous examples, and you've decided to sit down and eat them one
at a time. Your flowchart would look like the one in Figure 6.7.

Does
\ . CookieCount -
N =077

NO

//CookieCount =
i CookieCount -
ey

Flow continues

76

PART 1+ GETTING YOUR FEET WET

See? Nothing to it. Like we said above, you don’t need the Step parameter if
you're incrementing by one, which is the default Step value. For example, this
REALbasic code is just like the pseudo code above, but it leaves out the Step
parameter:

Dim nValue As Integer
For nValue = 1 To 12 // note, no step specified (a step of one is w
assumed)

msgBox ("Eat cookie number " + str(nValue) + "!")
Next
msgBox ("There is no cookie number " + str(nValue) + "I") // note w
that nValue is now 13

A good example of the second form of the For/Next loop would be

DIM nValue As Integer

For nValue = 5 Downto 1 // Note the use of down to
msgBox (str(nValue))

Next

msgBox ("BLASTOFF!™)

Like we said before, infinite loops are very, very bad, and you have to watch
out for them. Doing something like what is done in the sample code that fol-
lows could be very bad for the users of your software:

Dim nCounter, nStepValue As Integer
nStepValue = 0 // Warning, something stupid is about to happen
For nCounter = 1 To 2 Step nStepValue

msgBox ("This (" + str(nCounter) + ") will get very boring and w
very annoying very quickly!")
Next
msgBox ("You'll never see this message!")

Because you've told the program to add O to the initial value of 1 until it is
greater than or equal to 2, you've created an infinite loop. No matter how many
times you add 0 to 1, you’re never going to get an answer of 2, so this loop will
continue running forever.

Something else you need to watch out for is the ending value of a For/Next
loop changing during the processing of the loop. This could create an infinite
loop as well. For example, the following REALbasic code would appear to be

Review

CHAPTER 6 * MAKING YOUR PROGRAM FLOW

valid at first, but closer inspection of the code within the For/Next loop will
show that it also is an infinite loop:

Dim nValuel As integer
Dim nValue2 As integer
nValue2 = 2
For nValuel = 1 To nValue2 // would appear to be counting from w
1 to2

msgBox ("Performing task " + str(nValuel) + " of " + =
str(nValue2))

nValue2 = nValue2 + 1 // WHOA! Now you're counting to 3 not w
2, etc.
Next // will be task "1 of 2", "2 of 3", "3 of 4", etc. , =
etc. , etc.

As you can see, For/Next loops give a developer many ways to handle loops in
their application. However, they don't provide all the answers. Sometimes you
want to loop based on something other than an incremented or decremented
counter. There are types of looping to handle these situations as well, which
you will learn about in the next chapter.

Flow control is so important in computer programming and software devel-
opment. Without flow control, no conditional branching or repetitive task can
be performed in computer software—at least not easily.

The If/Then/Else If/Else/End If keywords are used to create conditional
branches in your source code, which will be executed if the condition you are
checking for evaluates as true. A simple If/End If block allows you to include
or exclude the execution of certain code when the specified conditions are met.
If/Else blocks let you choose one of two paths through your code, based on the
conditions being checked. Last, but definitely not least, the use of multiple
Else If statements allows you to check multiple conditions and take the appro-
priate primrose path through the garden of your source code.

The Select/Case form of flow control can be used in place of If /Then/
Else If/Else/End If blocks of code if an integer variable is being compared to

78

PART 1+ GETTING YOUR FEET WET

specific values in all the conditions being tested. Using Select/Case blocks not
only makes your code look nicer, it may actually improve the performance of
your application. Plus, you will impress all your programmer friends with your
knowledge of REALbasic programming.

The For/Next loop is best used when the developer needs his program to per-
form a specific task a fixed number of times, based on a counter that is either
being incremented or decremented. Tasks that process a known quantity of
items are a perfect fit for For/Next loops.

And Still More
on Program Flow

In This Chapter

® The While/Wend keywords
® The Do/Until keywords
e The Goto and Exit keywords

80 PART I+ GETTING YOUR FEET WET

here are even more ways to control the path of your code so your appli-
cation responds properly to input. So, without further ado, let’s pick up
where we left off with flow control keywords.

The While/Wend Keywords

The While/Wend loop is the first variant of non—counter based loops. Unlike
For/Next loops, While/Wend loops don't initialize a variable to a specific
value. Also, While/Wend loops don't automatically increment or decrement a
counter variable the way For/Next loops do. The condition being checked in
the While/Wend loop is completely under the control of the developer, unlike
with the For/Next loop, which can only compare ending values to the counter
values.

The form that While/Wend loops take is

While (SomeConditionlIsTrue)
// Perform Some Task
Wend

As you can see, the condition is checked first, before the task within the loop
is performed. This too is different from the For/Next loop, which checks the
condition after the task within the loop has been performed at least one time.
The code in the While/Wend loop may not be performed even a single time
if the condition is initially false.

You can also see that the While/Wend loop is a simpler form of looping than
the For/Next loop. Though the While/Wend statement is less complex, you'll
actually be doing more work coding because the While/Wend loop is a more
basic form of loop. But don’t despair; the While/Wend loop is not difficult to
understand and use. It’s similar to looping that you perform in everyday tasks.
The following pseudo code shows how simple it is to understand these types
of loops, with a particularly gluttonous example:

While (There Are Still Chips in the Bag) // You can't eat just w
one!

// Eat Another Potato Chip
Wend

Quite often, While/Wend loops are used to perform complex tasks similar to
those performed by For/Next loops, but without relying on the automatic

CHAPTER 7 ¢ AND STILL MORE ON PROGRAM FLOW 81

incrementing of the For/Next loop. In the following code, you can see an
example of a value that doesnt change on a regular basis like those in a
For/Next loop:

Dim nValuel, nValue2 As Integer
nValuel =1
nValue2 = 3
While (nValue2 > 0) // do the following as long as nValue 2 is w
greater than 0
nValuel = nValuel + 1
If (nValuel > 4) Then
nValue2 = nValue2 - 1
MsgBox ("nValuel is " + str(nValuel) + " nValue2 is " + w
str(nValue2))
Else
MsgBox ("Wait for it... nValuel is just™ + str(nValuel))
End If
Wend
MsgBox ("A11 done. nValuel is " + str(nValuel) + " nValue2 is " + =
str(nValue2))

As you can see, the logic in a While/Wend loop can be a lot more complex
than the logic in a For/Next loop. In addition to the relative complexity,
While/Wend loops give the developer much more control over the conditions
being checked. The only thing the developer doesn’t control is when the con-
dition is checked; it’s always checked at the beginning of the While/Wend
loop. For more control of when the condition is checked, you’ll have to use the

Do/Until loop.

The Do/Until Keywords

Unlike While/Wend loops, which run as long as the conditions being tested
remain true, Do/Until loops are used to execute a specific set of tasks while the
condition being tested remains false.

There are two major forms of Do loops. In the first major form, the condition
is checked at the beginning of the Do loop. If the condition is true, then the
entire block is skipped and execution of the program resumes after the Do
loop’s block of code:

82

PART 1+ GETTING YOUR FEET WET

Do Until (SomeConditionIsTrue)
// Perform some task as long as SomeConditionIsFalse
Loop

A good psuedo-code example of the first form of Do loop would be

Do Until (There Are No More Chips in the Bag) // You can't w
eat just one!

// Eat Another Potato Chip
Loop

This is pretty much the same as the psuedo-code used in the While/Wend
example, except for the condition being checked. In the While/Wend loop,
you are eating chips “while there are still chips in the bag.” You continue per-
forming the action while the condition is true. In the Do/Until loop, you are
eating chips “until there are no more chips in the bag.” You continue to per-
form the action until the condition is true. To make it simple, just remember
that Until is the opposite of While. In order to get the two loops to perform
identically, you need to reverse your logic.

So the first major form of a Do/Until loop is just like a While/Wend loop with
reversed logic. In the second major form of a Do/Until loop, the condition is
checked at the end of the loop. If the condition being tested evaluates to false,
the loop will run again. The result of this is that the tasks within the loop will
be performed at least once regardless of the condition being tested—sort of like
a For/Next loop. The second major form of the Do loop looks like this:

Do

// Perform some task, at least once
Loop Until (SomeConditionIsTrue) // Repeat if w»
SomeConditionIsFalse

The only real difference between this form and the one preceding it is that in
this form, the condition is checked at the end of the loop. This form of the
Do/Until loop should be used only if you want to perform the task in the loop
at least one time, regardless of the condition being checked. Use the first form
of the Do/Until loop if you want to check the condition before performing the
task within the loop.

There is a less-used form of Do/Until that uses an Until at both the beginning
and end of the loop, allowing for both an initial conditional test and another
conditional test at the end of the loop.

CHAPTER 7 ¢ AND STILL MORE ON PROGRAM FLOW

Here’s an example:

Do Until (SomeConditionIsTrue)

/! Task to perform if SomeConditionIsfalse
Loop Until (SomeOtherConditionIsTrue) // Repeat if w
SomeOtherConditionIsFalse

Although this might seem confusing, it’s a powerful variant of the loop,
enabling you to test for one condition at the beginning of the loop and a com-
pletely different condition at the end of the loop. A great day-to-day example
of this would be

// A typical Sunday afternoon program
Do Until (The Entire Lawn Has Been Mowed)
// Mow An Unmowed Strip Of The Lawn
Loop Until (The Football Game Has Started) // Mow the lawn until
the game starts
// Now would be a good time for those potato chip Toops!

In this example, the “program” will first check whether the entire lawn has
been mowed. If not, it will mow a strip of the lawn. After mowing one strip,
the program will check whether the football game has started; if not, the loop
will be processed again. The program alternates between checking the condi-
tion of “the entire lawn being mowed” at the beginning of the loop and check-
ing the state of “the game starting” at the end of the loop. This ensures that at
least one strip of the lawn gets mowed, while only missing at most a couple of
minutes of the pre-game show.

Here’s a REALbasic example of this type of Do/Until loop:

Dim nVall, nVal2 As Integer

nVall =1

nVal2 =1

Do Until (nVall = 10)
nVall = nVall + 1
nVal2 = nVal2 + 2

MsgBox ("nVall is " + str(nVall) + " and nVal2 is " + str(nVal2))
Loop Until (nVal2 > 10)

Step through the preceding sample code in your mind, and try to figure out
which condition will cause the loop to terminate. Then go ahead and add the

84

PART |+ GETTING YOUR FEET WET

code to the Hello World application from Chapter 1, “Getting Acquainted
with REALbasic,” and see whether you were right.

Last, and least used, is another form of the Do loop, which doesn’t use an Until
condition at the beginning or at the end of the loop. The result of this is an
intentional infinite loop:

Do
// perform some task for ever and ever
Loop

Don’t bother creating sample code for a loop like this; you’ll see enough mis-
takes that look like this without doing it on purpose. As we said before, infi-
nite loops such as this one can be very bad, but there are ways to terminate
them—even though they’re frowned upon. We'll discuss methods for break-
ing out of infinite loops in the next section.

The Goto and Exit Keywords

As expressed in previous sections, infinite loops can create a huge problem. In
most cases, good programming practices will help you avoid infinite loops.
That said, it may sometimes seem impossible to terminate infinite loops.
Developers often “code themselves into a corner,” writing code in which get-
ting out of a loop at the correct time is almost impossible. In these cases,
REALbasic provides two statements to break out of loops (or, in the case of
the second statement, to create an all-too-easy-to-abuse kind of loop).

The Exit Statement

The Exit statement is used to terminate a loop prematurely by jumping to the
code immediately following the loop. Upon execution of the Exit statement,
the program will exit the loop and continue to the point after the Next in a

For/Next loop, the Wend in a While/Wend loop, or the Loop in a Do/Until
loop as if the loop had completed naturally.

In the following example, the Exit statement is used to terminate this poorly
coded loop:

Dim nVall, nVal2, nVal3 As Integer
nVal2z =1

CHAPTER 7 ¢ AND STILL MORE ON PROGRAM FLOW

nVal3 = 2
For nVall = 1 To nVal3 // stupid loop

nVal2z = nVal2 + 1

If (nVal2 > 10000) Then // sanity check..

Exit // break out of this loop after waiting too long

End If

nVal3 = nVal3 + 1 // the Toop above is stupid because of this
Next

Of course, the use of Exit wouldn’t be necessary if you wrote the code prop-
erly in the first place. For the most part, you should do your best to use the
standard forms of looping and avoid the use of Exit completely.

‘”’can a!‘sa be used to cause”a loop to perform fewer |teratnons than norma [
so that it can be tested with less dlfﬁculty

The Goto Statement

Three words best describe the Goto statement: Evil, Evil, EVIL! But seriously,
like the Exit statement, the Goto statement allows for control to be passed to
another location in the program. Unlike the Exit statement, however, which
simply jumps to the end of the current loop, the programmer can determine
what location to jump to with the Goto statement. The problem is that
because the developer chooses where the program is going, it makes future
maintenance very difficult. If you use a lot of Goto statements in your code,
things can get very confusing very fast.

You specify the location in the program that the Goto statement should jump
to with a label. In REALbasic, a Jabel is simply a line of code that

¢ Ends with a colon

¢ Does not contain any spaces

¢ Contains only letters and numbers

86

PART |+ GETTING YOUR FEET WET

o Starts with a letter, not a number

¢ Starts at the beginning of the line
Listed below are some examples of valid, and invalid, REALDbasic labels:

// The following lines contain valid labels
ThisIsAValidLabel:

Labell:

YetAnotherlLabel:

// The following lines contain invalid labels
1LabelWhichIsBad: // Can't begin a Tabel with a number
Another Bad Label: // Labels can't contain spaces
WhatAmI!Thinking?: // Labels can't contain punctuation

Quite simply, a REALbasic Goto statement takes the following form:
Goto SomelValidLabelName

They are so insidiously easy to use, Goto statements tempt even the best pro-
grammer. But don’t be tempted by the Dark Side. Even though the path
offered by Goto is quicker and easier, forever will you be tricked into using
them. It’s a slippery slope down which you do not want to tread.

As we said before, the Goto statement allows you, using a label as a parame-
ter, to jump to any location in the code—backward or forward. When jump-
ing backward in the code, you are usually instructing the program to repeat
some part of the code. This is similar to the control that you get using any of
the more proper forms of flow control via looping. That there are already other
looping statements that can perform this type of loop, is one reason that the
use of the Goto statement is considered a bad programming practice. Using a
Goto is the lazy way out of thinking about proper loop structure. One very bad
example of this usage of the Goto statement would be

Dim nVal As Integer
Stupidldea:
For nVal =1 To 20
If (nVal > 10) Then

Goto StupidIdea
End If
Next
MsgBox ("You'll never get here")

CHAPTER 7 « AND STILL MORE ON PROGRAM FLOW

As you can see, the developer chose to jump out of a For/Next loop using a
Goto statement even though the location to which he is jumping is right
before the loop in question. The developer has intentionally created an infinite
loop. If the reason for doing this is valid, then the developer should have used
one of the more accepted looping statements—a Do/Until loop, perhaps—as
in this example:

Dim nVal As Integer
Dim bHellFrozenOver As Boolean
bHel1FrozenOver = False
Do
For nVal =1 To 20
If (nVal > 10) Then
Exit
End If
Next
Loop Until (bHellFrozenQOver)
MsgBox ("You'll never get here")

The point of this code is that the same effect is achieved: The loop never stops
executing, but without the use of a Goto statement. In this code, you can see
that we used an Exit statement to drop out of the For/Next loop. The use of
the Exit statement is slightly more acceptable than the use of a Goto state-
ment. Try to remember it this way: It is less rude to show someone the exit
than it is to tell him where to go.

The following code is another, perhaps slightly better, example of the use of
Goto statement:

Dim nVal As Integer
For nVal = 1 To 20
If (nVal > 10) Then
Goto PrematureExit
End If
Next
PrematureExit:
MsgBox (“"Decided you didn't like the rest of the FOR loop?")

At least this code doesn't create an infinite loop, but again, the same effect
could be achieved by using the Exit statement rather than the Goto, which
would eliminate the need for the PrematureExit label.

88

Review

PART |+ GETTING YOUR FEET WET

Some programmers consider the use of Exit and Goto statements inappropri-
ate and just plain lazy. Some consider the use of a Goto statement even worse,
bordering on banal and downright evil. It is best to use other methods of flow
control before resorting to Exit and Goto. Try to figure out a way to restructure
your code, like we did in the “Frozen Over” example, before giving in to the
temptation to use one of these less-structured methods. You should use Exit
and Goto only as a last resort or, as we said before, during development and
debugging to make these tasks easier. It’s okay to use shortcuts like these in a
work in progress; just remove them before anyone else has to look at your code.

While/Wend loops are quite different from For/Next loops. They don't
directly rely on counter variables, and the loop’s condition is checked at the
beginning of the loop. A While/Wend loop might not even execute at all if the
condition being checked is initially false, unlike a For/Next loop, which always
executes at least once. While/Wend loops give you much more control over
looping in your source code.

Do/Until loops terminate when the condition being tested evaluates as false.
The conditions of a Do/Until loop can be tested at the start of the loop, the
end of the loop, both the start and end of the loop, or not at all. The use of
Do/Until loops gives you even more control over the flow of your source code.

The use of Exit and Goto should be avoided at all costs . .. unless there’s no
way around it. The Exit keyword, which is slightly more acceptable than Goto,
allows you to prematurely exit any of the looping forms of flow control. Exit
is usually used to handle unexpected situations, or during development and
debugging to make life easier for the beleaguered developer.

The use of the Goto statement is enough to get you killed in some places and
is best avoided, if at all possible. Using Goto, you force your program to jump
to a specific location in the source code, which is specified by a label. It’s a very
powerful way to get things done, but it can make reading your code trouble-
some at best. This increases the difficulty of maintenance and debugging for
other developers, causing them to make statements that would imply that your
parents weren’t married and that you should go do physically impossible things
to yourself. Take my word for it: Don’t use Goto statements if you can at all
avoid it. You'll live a lot longer and keep more of your friends as well.

Subroutines, Functions,
and Recursion

In This Chapter

e What are subroutines and functions?
e Subroutine and function declarations
® Parameters and return values

® Recursion, recursion, recursion . . .

90

PART 1+ GETTING YOUR FEET WET

I n the previous chapters, you learned about commands, variables, constants,
and flow control. Although it would be possible to write a program using
only these concepts, there are better ways. If you were to write a program of
even moderate complexity from the top down, including all the steps that the
program needs to perform, the looping would get very complex—so complex
that you would eventually need to resort to Goto statements just to make
things work (never a good idea). You might even have to duplicate code.

What you need is a way to reduce code complexity and remove the need for
redundant code. Fortunately, just about every language, including REALbasic,
has ways to do this: subroutines and functions.

What Are Subroutines and Functions?

Subroutines and functions serve multiple purposes. They help simplify source
code by grouping all the code for a specific task in one module. This makes the
source code easier to read, because the code can be viewed in small, manage-
able chunks. For example, assume that you're a parent, and that you've given
your children a set of instructions to perform each night before they go to bed.
These bedtime instructions are only a small part of all the instructions that
your children perform all day, but it makes sense to group them together,
because they are related tasks. So, in pseudo code, you would create a subrou-
tine for these tasks along these lines:

Sub GetReadyForBed (ChildName)
Wash face
Brush teeth
Brush hair
If (ChildName is Neil) then
Clean braces
Insert retainer
End if
Wash hands
Change into pajamas
Get into bed
Go to sleep
End Sub

CHAPTER 8 « SUBROUTINES, FUNCTIONS, AND RECURSION 91

As you can see, all the bedtime tasks have been organized into a single
GetReadyForBed subroutine. If the programmer wants to know which tasks
apply to getting ready for bed, all he needs to do is look at the code in this sub-
routine. There’s no need to go digging through hundreds of lines of code just
to find the ones that apply to bedtime tasks. Remember, subroutines provide a
nice organizational tool by allowing you to create smaller modules of source
code with related tasks grouped together. These subroutines are simply por-
tions of routines that are related in some way.

Subroutines and functions provide one other benefit: They allow for code
reusability. In the GetReadyForBed example, you'll notice that ChildName fol-
lows the GetReadyForBed subroutine declaration. This is a parameter of the
GetReadyForBed subroutine. We'll talk more about parameters later; for now,
you just need to know that the program using this subroutine can specify for
which child the subroutine is currently running. So, in our bedtime subroutine,
we've allowed the code to be used by any number of children with a special
exception for Neil, because he has braces and needs to perform tasks that other
children wouldn’t need to perform. We could have created a completely dif-
ferent bedtime subroutine for Neil, which includes all the tasks performed by
the other children plus the tasks associated with dealing with his braces, but
that would have created redundant code in our program. This way, we can
share the code and use it for multiple purposes.

It can be assumed that the GetReadyForBed subroutine above is part of a larger
program, which uses this subroutine to perform a specific set of tasks. When
a program uses a subroutine or a function, it is said to be “executing a subrou-
tine” or “making a function call.” After the subroutine or function has finished
performing its task, control is returned to the point in the program where the
subroutine or function was called. So, our pseudo program would probably call
the GetReadyForBed subroutine somewhere between a DinnerTime subroutine
and a HaveANightmareAndWakeUpYourParents subroutine.

You may be wondering, what’s the difference between subroutines and func-
tions? They both seem to provide the same capabilities. Well, for the most
part, you're correct. There is no difference—with one exception. Subroutines
perform their tasks and return to the calling code without any communication
back to the calling code. They provide no feedback as to what they did,
whether they were successful, or whether any further actions should be taken.

92

PART |+ GETTING YOUR FEET WET

This is like issuing a command to your program along the lines of “go do
something and return back here when you're finished.” Subroutines are used
when the calling program either doesn’t care what happens in the subroutine,
or can determine this on its own.

Functions, on the other hand, perform their tasks and return a value to the
calling code. Functions in computer programming are kind of like those x =
yX2 functions in math. The y in the formula is a parameter; the yX2 is the task
performed by the function; and the x is the return value of the function. Using
a function in programming is like asking your program to perform some task
that will determine the answer to some question, and return here, with the
answer, when it’s done.

So subroutines do their thing with no response to the calling program, while
functions communicate the result of the tasks they’ve performed to the calling
program. If the GetReadyForBed example was a function instead of a subrou-
tine, it might look something like this:

Function GetReadyForBed (ChildName) as SomeVariableType

Dim Result as SomeVariableType

Wash face

Brush teeth

Brush hair

If (ChildName is Neil) then
Clean braces
Insert retainer

End if

Wash hands

Change into pajamas

Get into bed

If (Child is thirsty or wants some attention) then
Result = Child asked for a glass of water

Else

Go to sleep

Result = Child went to bed quietly
End If

Return Result
End Sub

CHAPTER 8 « SUBROUTINES, FUNCTIONS, AND RECURSION

In this example, the function can tell the calling program whether the child
went quietly to bed, or is pulling the old “I want a glass of water” trick to stay
awake a few more minutes. The calling program can then take the appropri-
ate action based on the return value of the function—something like

Select Case (GetReadyForBed (ChildName))
Case Child asked for a glass of water

// Grumble under your breath and be a good parent
Case Child went to bed quietly

// Breathe a sigh of relief and enjoy a quiet night
Else

// Something must be wrong, go find out what it is
End Select

So you see, functions and subroutines provide code reusability and make your
code easier to read—and therefore easier to maintain. Both perform a specific
set of tasks and return to the calling program when those tasks are complete.
When control is returned to the calling program from a function call, the
result of the function is returned to the calling program, allowing the calling
program to behave accordingly.

Subroutine and Function
Declarations

In REALbasic, you create subroutines and functions by opening the File menu
and selecting the New Method option. Regardless of what type of develop-
ment is being done, and for that matter the language being used, subroutine
and function declarations look about the same.

In REALbasic, subroutine and function declarations take the form of

Sub SubroutineName (OptionalParameter As VariableType, ...)
Function FunctionName (OptionalParameter As VariableType ...) As
ReturnVariableType

As you can see, subroutine and function declarations are nearly identical, other
than the fact that functions are declared to be a certain variable type. This
is required to allow the function to return a value like we talked about in the

94

PART 1+ GETTING YOUR FEET WET

previous examples. Here’s an example of the declaration of a typical subrou-
tine, the MsgBox subroutine:

Sub MsgBox (message As String)

“What's this?” you ask, “I thought MsgBox was a command!” Well, MsgBox is a
command, but interestingly enough, most of the REALbasic commands are
just predefined functions and subroutines written by the REALDbasic develop-
ers for your use. Like a library of books, written by other authors for you to
read and use for your own purposes, these prewritten functions and subrou-
tines are grouped into libraries for your use. Not only can you use the standard
library of built-in REALDbasic subroutines and functions; you can download
other libraries, written by other REALbasic developers, for your use.

Check out the Bodies
on These Subroutines

The code that comprises a subroutine or function is referred to as its 4ody.
A subroutine and function body contains variable declarations, which must
precede any other code, code comments, and the statements, commands,
flow control, subroutine, and function calls that perform all the tasks for
which the function or subroutine is responsible. About the only thing you
can’t include in the body of a function or subroutine is another subroutine or
function declaration. The end of a function body is marked with an End
Function statement. The end of a subroutine body is marked with an End Sub
statement. The following two examples represent valid subroutine and func-
tion bodies:

Sub AddTwoNumbers (nValuel As Integer, nValue2 As Integer)
Dim nTheResult As Integer // Variable declaration(s) must
Dim strResult As String // come before other source code

// Specific tasks to perform
nTheResult = nValuel + nValue2

strResult = Str(nTheResult)

// Display the result

CHAPTER 8 « SUBROUTINES, FUNCTIONS, AND RECURSION 95

msgBox "And the answer is - " + strResult
End Sub

Function AddStringValues (strTextl as String, strText2 As String) w

As String

Dim nCalculatedValue As Integer // Variable declaration(s) w
must

Dim strReturnValue As String // come before other w

source code

// Get the value of each string and add the values together
nCalculatedValue = Val(strTextl) + Val(strText2)

// Convert the value back to a string
strReturnValue = Str(nCalculatedValue)

// Value returned must be the same variable type as the =
function
Return strReturnValue

End Function

Parameters and Return Values

With subroutine and function declarations, you specify zero or more parame-
ters. A parameter is simply a variable declaration representing a value that is
passed to the subroutine or function. A comma separates each parameter dec-
laration. When you call your subroutines or functions, you specify either con-
stants or variables to be passed as their parameters. For example, to call the
AddTwoNumbers subroutine, above you might use code like the following:

Dim nValue As Integer
nValue =1
AddTwoNumbers(nValue, 2)

This code declares a variable of type integer called nValue, stores a value of 1
in this variable, and calls the AddTwoNumbers subroutine, which should display
a message box containing the result.

PART |+ GETTING YOUR FEET WET

- rrm——

= When declaring a function, you must Specify a.return=value variable type_=~|
*:‘fifgmne:iuncmon RﬁA!:basm doesn’t*suppgrt'voudﬂfunctmg stbgtis, fune=

CAUTION

‘ ues, subroutmes don't

When you call a function, not only do you specify the parameters that are
passed to the function, you also need to be able to accept the return value by
either storing it in another variable or by passing it to another subroutine,
function, or REALDbasic command. For example, to call the AddStringValues
function above, you might do something like this:

Dim strValue As String
strValue = "1234"
MsgBox AddStringValues("4321", strValue)

This code starts by declaring a string type variable, strValue, and then assigns
"1234" to this variable. The code then calls the AddTwoNumbers function, which
converts the string parameters to numbers, adds them together, and returns
the sum as a string. The return value from the AddStringValues function, like
we said, a string, is passed to the MsgBox subroutine, which displays it on the
screen.

Recursion, Recursion, Recursion...

One thing you have to watch out for when using functions or subroutines is
recursion. The Smart-Alecky Programmer’s Dictionary definition of recursion is
“recursion noun. See recursion’. Okay, seriously, recursion is a very bad thing
that occurs when a subroutine or function calls itself or calls another subrou-
tine or function that in turn calls the first subroutine or function. Doing this
can cause your program to enter an infinite loop.

In most cases, you want to avoid recursion like the plague. Uncontrolled recur-
sion can cause your programs to go off to Never-Never Land while they per-
form the same operations over and over again. Various unpredictable things
can happen when recursion occurs: your program might appear to be locked

CHAPTER 8 « SUBROUTINES, FUNCTIONS, AND RECURSION

up, your program could crash, or in extreme cases, your computer could crash
(not very likely, but it happens). If you're the daring sort, try using the follow-
ing function in a REALbasic program sometime:

Function VeryBadldea (nValue As Integer) As Integer
Dim nReturnValue As Integer
nReturnValue = VeryBadIdea(nValue + 1)
return nReturnValue

End Function

Better yet, don’t use this code. We'll just explain what will happen:

1. When the function is called, it declares an integer variable named
nReturnValue.

2. The function then attempts to calculate a new value for nReturnValue
by calling itself with a parameter of nValue + 1.

3. The function again declares an integer variable named nReturnValue
and attempts to calculate a new value for nReturnValue by calling itself
with a parameter of nValue + 1.

4. The function again declares an integer variable named nReturnValue
and attempts to calculate a new value for nReturnValue by calling itself
with a parameter of nValue + 1.

5. The function again declares an integer—you get the idea. This
happens again and again until something bad happens. If you're lucky
REALbasic will generate an Unhandled Stack Overflow Exception
error and terminate your application, but as we said before, less-
pleasant things could happen as well.

Still not convinced that recursion is all that bad? Think back to the GetReady-
ForBed function example. Imagine what would happen if you put a call to
GetReadyForBed right in the middle of the GetReadyForBed function. You
would end up causing your poor children to be forever washing their hands
and brushing their teeth without ever actually getting to sleep. Not something
a good parent or programmer would ever want to do.

On the other hand, you should be aware that recursion isn’t always nasty and
evil. In the hands of an advanced programmer, recursion is a very powerful
tool. Some really cool things, beyond the scope of this book, can be achieved
with recursive programming. But like any powerful tool, its use is best left to
those that completely understand it.

PART 1+ GETTING YOUR FEET WET

| you that you have written code that has caused the stack to over-
- flow. But just what is a stack, and why is it so bad when it over-
flows?

-~ Just about every programming language that supports the idea of
functions and subroutines uses stacks to pass the parameters to the

functions and subroutines."Simply put, the stack is an area of mem-
ory that has been set aside to pass variables to and from functions

~ and subroutines.

4 Suppdse you have three subroutines in a program, with the follow-
_ ing declarations:

Sub SomeSubl (nValuel As Integer)
SomeSub2(nValuel * 2)
- End Sub ,
Sub SomeSub2 (nValue2 As Integer)
SomeSub3(nValueZ + 4)
. End Sub ‘ . ;
Sub SomeSub3 (nValue3 As Integer)
~ msgBox("The value is: " + Str(nValue3)
End Sub :

Here’s how the stack works. Suppose you call SomeSubl with a para-
meter of 8. Although the program is in the body of SomeSubl, the
. stack contains a value of 8. As soon as the program calls SomeSub2,
~ the stack will contain values of 16-and 8. As soon as SomeSub3 is

ccalled, the stack will contain values of 20, 16 and 8. It's called a stack
- because as each function is called, the parameters for the currently
execufing function are “stacked” on top of the previous parameters.
As parameters are added to the stack, they are said to be “pushed”
onto the stack. ‘ ‘

CHAPTER 8 ¢ SUBROUTINES, FUNCTIONS, AND RECURSION

Review

To complete the example above when SomeSub3 has finished its
tasks and returns control to SomeSub?2, the stack will once again con-
tain values of 16 and 8. After control returns to SomeSubl, the stack
will contain 8. After control returns from SomeSubl to where you
called the function, the stack will again be empty. When parameters
are removed from the stack, they are said to be “popped” from the
stack. ‘ :

Because the stack is located in memory, it is by definition of limited

~ size. If you call enough functions or subroutines from within other
functions or subroutines, you can cause the stack to fill up and over-
flow. At that point, your program can no longer operate properly
because it has run out of stack space.

Recursively calling a function or subroutine can have the same
effect, because values will keep being pushed onto the stack without
ever being popped off of it.

Functions and subroutines provide two valuable features for programmers.
They allow you to organize related tasks into small chunks of manageable
code, simplifying development and debugging. More importantly, functions
and subroutines also allow for code reusability. Code that is used repeatedly
throughout an application can be moved to functions and subroutines, reduc-
ing the redundant source code, which makes for a smaller overall application.

Functions and subroutines share similar definitions. Both allow for declara-
tions of parameters, which are variables, which contain the values that are
passed to the function or subroutine. Functions, unlike subroutines, can return
a value to the calling code. A function’s return type can be any of the valid
REALbasic variable types.

PART 1+ GETTING YOUR FEET WET

The bodies of functions and subroutines are where all the work is performed.
You can do just about anything in a subroutine or function body that you can
do in any other source code, except declare another function or subroutine. You
should also avoid functions and subroutines that call themselves. Doing so is
known as recursion.

For the most part, you want to avoid recursion like six-week-old leftovers in
the back of your refrigerator. Unless you have a very good reason to use recur-
sion, be on the lookout for it and try to avoid it in everything you write. Some
pretty advanced programming algorithms (just a fancy word for formulas),
however, actually rely on recursion to work. Data encryption and sorting algo-
rithms are all examples of advanced programming techniques that use recur-
sion to achieve their goals. Although these advanced methods are beyond the
scope of this book, you should keep them in mind as potential valid uses of
recursion. Just remember that uncontrolled recursion is bad, but recursion,
when used wisely, can help you perform some pretty nifty tricks.

Object-Oriented
Programming

In This Chapter

e Understanding classes and objects
e Two halves of an object: properties and methods
e_Encapsulation, inheritance, and Polymorphism

e Events and handlers in REALbasic

102

PART 1 GETTING YOUR FEET WET

he last chapter talked about how subroutines and functions can be used

to simplify code and reduce redundant code. Subroutines and functions,
however, are just the tip of the structured-programming iceberg. To improve
upon the concepts of functions and subroutines, developers rely on object-
oriented programming.

A complete tutorial of object-oriented programming is beyond the scope of
this book, but by the end of this chapter, you should at least be familiar enough
with its concepts to effectively use them within your REALbasic applications.
This is, after all, meant to be a beginner’s guide to programming, and some
object-oriented programming concepts can get pretty advanced.

Understanding Classes and Objects

In object-oriented programming variables, subroutines and functions are
grouped into related sections of code referred to as objects. It’s a simple con-
cept; but with it, many powerful things can be done.

For example, think of a Swiss Army knife, which is actually the equivalent of
many tools—a corkscrew, a knife (or knives), a screwdriver, tweezers, a tooth-
pick, and so on—combined in one simple, easy-to-use package. Not only does
grouping these tools make them more compact, it also makes them easier to
keep track of. The objects of object-oriented programming are sort of like the
Swiss Army knives of the programming world: they group tools into a single
package.

In other languages, you actually define the class definition in source code. For
example, the following is an example of a simple class definition in C++:

class Employee {

public:
CString strName; // Employee name property stored in a string
CString strAddress; // Employee's home address property
double dSalary; // Annual salary property
CDate dateHired; // Hire date property
int nVacationDays; // Total vacation property

int nAvailableVacation; // Vacation days available for use w
property

CHAPTER 9 ¢ OBJECT-ORIENTED PROGRAMMING

Figure 9.1

Creating a new
class definition in
REALDbasic.

103

RaisePay (int nPercentlncrease); // Method to raise pay by =
whole percentages
b3

In REALbasic, you don’t have to go through the process of defining classes
like this. You simply open the File menu and select New Class to create a new
class. When you do so, the new class is added to the Project window and the
properties of the class are displayed in the Properties window, as shown in Fig-
ure 9.1. The Name property is obviously the name of the class. (We’ll talk later
about the Super property and how you add properties and methods to your
new classes later in this chapter.)

The Terminology

Before we get too far into a discussion of object-oriented programming, let’s
talk a bit about terminology. In discussions of object-oriented programming,
you will hear objects referred to in two different ways: as classes and as
instances. The source code and properties that define an object’s behavior is
referred to as a c/ass. It’s just the definition of an object. A class by itself is use-
less unless you do something with it.

An instance is the object as it exists for use in your application. When you want
to use a class in your application, you create an instance of that object. Creat-
ing an instance of an object is a two-part process. First, you define a variable
of the class type. This creates a pointer to an instance of the specified object.
So far you've encountered variable types that are each used to hold a value of
a particular type, such as an Integer that holds an integral (whole) number and
a String that holds a number of characters. Now you meet a very different

B =—=untitled=——=
Window 1
& Men

104

Figure 9.2

The REALbasic
object-instantiation
process

PART |« GETTING YOUR FEET WET

variable type—the pointer. A pointer is a type of variable that doesn’t hold a
value per se, such as an integer or a string, but rather holds the address of a
memory location. That is, rather than actually holding a value, a variable that’s
a pointer is used to tell the program where to look in memory for a value.
Granted, that sounds like tricky stuff, and it is, but rest assured it’s an impor-
tant way of handling some programming tasks. By default, this pointer con-
tains a value of NIL, which means that the pointer doesn’t point to anything
at all:

DIM oSomeObject AS SomeKindOfClass // oSomeObject contains a nil =
pointer to a SomeKindOfClass object

To create the actual instance of the object, you have to do the second part,
which usually involves allocating the memory for the instance of the object.
This is done using the new statement:

oSomeObject = new SomeKindOfClass // allocate the memory for this w
object

What actually happens in this code example is that an amount of memory
large enough to contain a SomeKind0fClass instance is allocated and the
oSomeObject variable is assigned a pointer to the allocated memory. From this
point on in your code, the oSome0bject variable is an instance of a SomeKind-
0fClass object. This process is illustrated in Figure 9.2.

CHAPTER 9 * 0BJECT-ORIENTED PROGRAMMING

105

Properties and Methods:
The Two Halves of an Object

Figure 9.3
Creating a Salary

property in
REALbasic.

Figure 9.4
Creating a Hire
Date property in
REALDbasic.

Figure 9.5
Creating an Earned
Vacation property

in REALbasic.

When designing a class, the developer must keep two things in mind: state
and functionality.

First and foremost, classes maintain their own state. That is, a class contains
all the information about itself. The state of a class is maintained in variables,
referred to as properties. For example, an object of the class Employee might
contain properties such as Salary, Hire Date, Vacation Earned, and so on.
These class properties are defined just like any other variables. Because these
variables are members of a class, they are sometimes referred to as member
variables.

In REALbasic, you add properties to a class by opening the File menu and
selecting the New Property item. Figures 9.3, 9.4, and 9.5 show a few exam-
ples of properties being added to a class in REALbasic.

Declaration;
[J Private
 [visible

dSalary As Double

- Declaration:
~ OiPrivate
- [Jvisible

dateHired As Date l

Declaration: InAvaiIabIeVacatiun As Integer

[Private
[Jvisible

106

PART 1 GETTING YOUR FEET WET

After you've added properties to a REALbasic class, you can view them in the
class edit window. To view the class edit window, you can either double-click
the class name, in the REALDbasic project window or select the class name and
press Option+Tab. To view the properties in a class, you can either double-
click the Properties item in the class edit window or click the disclosure trian-
gle of the Properties item, as shown in Figure 9.6.

The benefit of class properties is that all the code that has to deal with these
properties is contained within the class as well. A class can contain functions
and subroutines, referred to as methods, which are used to perform specific
tasks related to the class in question. The nice thing about this is that only the
class needs to know anything about its properties. For example, suppose the
Employee class discussed previously has a RaisePay method, which allows the
calling code to raise an employee’s pay by a specified percent. The Salary
property could be defined as an integer, a double, or a string, and the Raise-
Pay method could handle changing the employee’s salary. The calling code
doesn’t have to know, or even care, about the type of variable that Salary is,
and yet it’s instructions are carried out as intended.

Encapsulation

Classes, by definition, group properties and methods so that they can work
together to perform the class’s tasks as efficiently as possible. As a matter of
fact, the actual inner workings of the class are completely unknown to all other
parts of the application of which the class is a part.

Figure 9.6

The properties of
the Employee class

B window!
B Menu
Employee

=

) Events
{l D T Menu Handlers

1| D [Methods

D B New Events

~a

B dateHired As Date
[dSalary As Double
[3£3 nAvailableYacation As Integer

CHAPTER 9 * 0BJECT-ORIENTED PROGRAMMING 107

Think of it this way: When you put a key in your car’s ignition and turn it to
start the car, lots of complicated things happen, but you don’t really care about
the details. You just want to see the expected result of your action: The car
starts. This is the same type of thing that can occur within a class in object-
oriented programming. Some portion of the application asks a class to perform
a task. It does so without boring the other parts of the application with the
tedious details. It also will perform these tasks without any additional inter-
vention. It won’t even ask the other parts of the application to keep track of
the properties associated with its actions.

The grouping of properties and methods into a package that hides its inner
workings from other parts of an application is referred to as encapsulation. As
we said before, the definition of the classes, groups, properties, and methods
so that they can function in concert. Encapsulation is a very important con-
cept in object-oriented programming.

Inheritance

Another powerful feature of object-oriented programming is that a class defi-
nition can be based on other class definitions. As classes are derived from other
classes, they are said to inkerit the properties of the parent class. Think of inher-
itance in a family tree: You inherited traits from you father, your father from
your grandfather, and so on. The same is true in object-oriented inheritance.

For example, assume you created the following class (we’ll use an English-
language variation of the C++ class definition here, just to make things easier
to understand):

class Grandfather {
public:
GoFishing ();
PlayPiano ();
private:
MakeWoodCarvings ();
}

In this class definition, two of the tasks that the class can perform, GoFishing
and PlayPiano, are assumed to be skills that will be passed on to descen-
dents of this class. As such, they are marked as public. The other task,

108

PART |« GETTING YOUR FEET WET

MakeWoodCarvings, will not be passed on to descendent classes, so they are
marked as private. This means that if you create a new class based on this class,
it will inherit the capability to GoFishing and to PlayPiano, but not the capa-
bility to MakeWoodCarvings.

In the following example, the new class has the capability to perform the first
two tasks, GoFishing and PlayPiano, by default. It inherits these tasks simply
because the parent class has these capabilities. It can’t, however, MakeWood-
Carvings because the parent class labeled this task as private—it never shared
this capability with its descendent class (after all, we all need to keep some
things to ourselves). The new class also has the capability to perform a new
task, CookChili.

class Father : Grandfather{
pubTlic:

CookChili ();
}

As we said, this class can GoFishing, PlayPiano and CookChili, but not Make-
WoodCarvings. You could then define another class, based on the first two,
using the following definition:

class Son : Father{
public:
BuildTreehouse ();
PlayDrums ();
private:
PickOnSiblings ();
}

So, this class would inherit the capability to CookChili, GoFishing, and
PlayPiano but not the capability to MakeWoodCarvings (ah, the lost talents of
days gone by). This class also adds new capabilities, specifically the capability
to BuildTreehouse, P1ayDrums, and PickOnSib1ings. The capability to perform
the first two tasks would, by default, be passed on to any descendents of this
class, but the last (very bad behavior indeed) would not be passed on. Figure 9.7

demonstrates the process of inheritance.

When it comes to inheritance, object-oriented classes mimic the passing down
of information from one generation of a family to another. Each class inherits

'CHAPTER 9 ¢ 0BJECT-ORIENTED PROGRAMMING 109

- Figure 9.7
Inheritance of tasks

the public methods and properties of the class from which it is derived.
Because of the resemblance to family trees, the classes from which these
descendent classes are derived are often referred to as parent classes, and the
descendent classes are referred to as child classes.

Keep in mind that just as with family trees, some things aren’t passed from one
generation to the next. Classes that don’t wish to share their functionality with
their children mark these items as private.

Inheritance in REALbasic

When you create a new class definition in REALbasic and want to derive your
class from another class, all you need to do is specify a class to be the super
class of the current class, as shown in Figure 9.8. As classes are derived from
previous classes, they tend to get smaller and smaller and do more specific
things. Keeping that in mind may help you to remember that the parent of
your class is its super class—it’s superior to your derived class.

110 PART I GETTING YOUR FEET WET

B window1
& Menu
GrandFather

Figure 9.8

Creating a derived
class in REALbasic.

Name Father
Interfaces
Super GrandFather W

SEDT

Polymorphism

Probably the most powerful capability of object-oriented programming is
known as polymorphism. Literally meaning many forms, polymorphism is the
capability to have multiple classes, all derived from the same super class, which
can all be used in place of the super class. For example, suppose you had a super
class called Rugrat from which you derived a son and daughter class. Any-
where in your application where a Rugrat class pointer is required, you can use
a son or daughter class pointer instead.

Additionally, the derived classes can replace the default behavior of the super
class’s method by overriding the method in each derived class. For example, in
the Rugrat class mentioned previously, you define the default behavior of the
CleanYourRoom method. In all the classes derived from the Rugrat class, you
would define behavior specific to that class. Your program could use any of the
Rugrat-derived classes (thinking that they were actually Rugrat classes) and
the proper actions of that derived class will occur, instead of the base class.
This process is shown in Figure 9.9.

So the Rugrat class contains one set of instructions for the CleanYourRoom
behavior, while the son and daughter classes contain their own unique instruc-
tions for cleaning their rooms. One of the benefits of polymorphism is that
your application can call members of these classes without really knowing
what the type of class is. Say you have some code, somewhere in your program,
that defines a son or daughter object and calls a subroutine, passing either of
those objects as a parameter:

CHAPTER 9 ¢ 0BJECT-ORIENTED PROGRAMMING

Figure 9.9

Two derived classes
in which the
behavior of one of
the super class’s
methods has

been overridden.

111

- Thedafaultbehaviorofme

‘ CleanYourRoom

the C!eanYourRoom meihod e

ihe Daughfer class. Classes of type
- Daughter will perform the'default -

= behavlor specified CleanYourRoom

A1 methadoftheR atclass.

Dim chWhichKid As Rugrat
If (bTodayIsMonday) Then
chWhichKid = new Son
Else
chWhichKid = new Daughter
End If
MakeChildCleanTheirRoom (chWhichKid)

The subroutine being called, MakeChildCleanTheirRoom, would have the fol-
lowing definition:

Sub MakeChildCleanTheirRoom (Rugrat chOneOfTheKids)
ChOne0fTheKids.CleanYourRoom
End Sub

The subroutine accepts a pointer to a Rugrat class as a parameter. Even though
you passed a son or daughter class to the subroutine, the code still works
because the son and daughter classes are derived from the Rugrat class. As you
saw in the preceding class definitions, the daughter class didn’t override the
CleanYourRoom method. So, if a daughter class is passed to the MakeChild-
CleanTheirRoom subroutine, the Rugrat class’s CleanYourRoom method
will be called. If a son class is passed to the subroutine, then the son class’s
CleanYourRoom method will be called.

112 ’ PART 1+ GETTING YOUR FEET WET

Polymorphism can be difficult to grasp, so don’t sweat it too much if you don’t
get the concept right away. Just remember that classes can be derived from
other classes, known as super classes, and that the derived classes can override
the methods of the super classes. Anything past that starts to get into advanced
programming techniques, which are beyond the scope of this book.

REALbasic Events and Handlers

When you are running just about any application, on almost any computer
operating system, events occur of which the application needs to be made
aware. These events could include such things as the user moving or clicking
the mouse, the computer clock ticking off another second, or any other count-
less numbers of other things that are happening. In the good old days before
object-oriented programming, developers had to write huge chunks of code
just to see when specific events occurred and act accordingly:

If (bTheUserClickedTheMouseButton) Then
// Do whatever we need to do when the user clicks the mouse w
button
Else If (bTheUserMovedTheMouse) Then
// Do whatever we need to do when the user moves the mouse
Else If (bTheUserMovedTheMouseWhileTheButtonWasDown) Then
// Do whatever we need to do when the user click drags the =
mouse
Else If (bTheTimerClickedOffAnotherSecond) Then
// Do whatever we need to do when the timer clicked off another w

second
Else If (..)
// .etc, etc, etc
End If

Handling events in this way is sort of like picking up the phone every five sec-
onds, just to see if someone has called you. It would be much better to have
the equivalent of the bell on the phone so that you know when to pick it up,
rather than constantly checking. Well, you do. The phone is your application
and the bell is the event handler.

Event handlers are pre-existing methods of a class, which, by default, don’t
contain any code. Depending on the type of class, there are event handlers for

CHAPTER 9 * 0BJECT-ORIENTED PROGRAMMING 113

mouse clicks, timer ticks, and all kinds of other things to which your applica-
tions must be able to respond to.

Let’s go back to the classes we were talking about before, the Rugrat classes,
and add an Adult class that works with the Rugrat class. One of the tasks that
the Adult class must perform is ComfortInjuredRugrat. In a traditional appli-
cation, the Adult class would probably have to keep checking the Rugrat class
to see if it had been injured:

Sub CheckRugratForInjury (chSomeChild As Rugrat)
If (chSomeChild.bIsInjured) Then
// Do whatever we need to do to comfort the injured Rugrat
End If
End Sub

This would be an inefficient and tedious procedure. The Adult class would
regularly be asking the Rugrat class if it had been injured: “Are you hurt? Are
you hurt yet? How ‘bout now? Still not hurt?” With events, the Adult can
respond to the Rugrat class only when it needs attention. The operating sys-
tem could send a RugratInjured event to the Adult class. All that would need
to be done would be to add the code to handle this event. Not so coinciden-
tally, the subroutine that handles an event is referred to as an event handler:

Sub RugratInjured (chSomeChild As Rugrat)
// Do whatever we need to do to comfort the injured Rugrat
End Sub

So, as you can see, not only does using event handlers remove a lot of useless
wasteful checking to determine whether an event has occurred, it also simpli-
fies the code because all the code that checks for the events is not needed.

To add an event handler in REALbasic, as shown in Figure 9.10, all you need
to do is
1. Select a class in the Project window.
2. Open the class editor for the class in question by pressing Option+Tab.
3. Double-click on the Events item, or click the Events disclosure icon.
4. Click the event to which youd like the class to respond.
5. Add the appropriate code for the event in the Code Editor window.

Adding event handlers is something you'll be doing a heck of a lot of. Most of
your time programming in REALbasic, as well as other object-oriented

114

Figure 9.10

The event handler
for a window's
MouseDown event,
which is sent to a
window class when
the user clicks the
mouse button
within the borders
of the window

Review

PART 1 GETTING YOUR FEET WET

Untitied
B window1

Menu

Function MouseDown(X As Integer, Y As Integer) As Boolean

End Function

B cancelCiose
ﬁ KeyDown
@ MouseMove
B MouseEnter
@ MouseExit
B paint

(38 10 use Do)

E{ MouseDra

languages, is spent writing event handlers. Even all the new classes you create
could be considered to serve the needs of the event handlers, so we guess you
could say it’s @// about event handlers.

Because you'll be using them all the time, you might want to explore some of
the events that are sent to various REALDbasic classes. Refer to some of the
various class definitions, the Window class for example, in the REALbasic
Language Reference (included on the CD-ROM) for some examples of

events.

A class is a collection of related functions, subroutines, and variables. The
functions and subroutines are referred to as merhods because they are the meth-
ods by which the class completes its tasks. The variables are referred to as prop-
erties because they contain the values that define the state of the class.

A class is just source code. An object is just a variable that has been defined as
a specific type of class. An instance of the object exists only after the memory
for that object has been allocated and assigned to the variable.

The three main concepts of object-oriented programming are encapsulation,
inheritance, and polymorphism. Encapsulation means that all the properties
and methods of a class are contained within the class definition and that no

CHAPTER 9 « 0BJECT-ORIENTED PROGRAMMING 115

other source code needs to be aware of the contents of the class. Inheritance is
the capability to derive one class from another in which the derived class
inherits the methods of the super class. Polymorphism is the capability to use
derived classes in place of the super class without the application having
knowledge of whether the derived class overrides the functionality of the
super class.

REALbasic, along with other object-oriented programming languages, sets
aside certain predefined class methods that are called in response to system
events. These methods are referred to as event handlers. Most of the coding
work that is done in developing a REALDbasic application is coding the event
handlers or code to support the event handlers.

The concepts of object-oriented programming are simple enough by them-
selves, but from these simple acorn-like concepts a mighty oak of stable,
simple-to-use applications can grow. Understanding classes, objects, methods,
properties, and events is one of the essential keys to becoming a great REAL-
basic developer.

Developing Your
First Mac Program

sy

Making
My Paint

In This Chapter

e Introduction to the tutorial
® (reating the new project

® Adding the main window

120 PART Il DEVELOPING YOUR FIRST MAC PROGRAM

In the previous chapters you familiarized yourself with REALbasic, created a
very simple application, and learned some of the concepts of programming.
You've probably been itching to get down and dirty and actually work on a
functional application.

Everything you've done up to now has laid the groundwork for what you’ll be
working on from now on. By now you should have a fairly decent under-
standing of the main parts of the REALbasic application and should under-
stand the simpler concepts of programming.

Now you're ready to move on to bigger and better things.

Introduction to the Tutorial

In the next few chapters you’ll be guided step by step in the process of creat-
ing a complete application using REALbasic. The subject that has been cho-
sen for this tutorial is a type of application with which almost everyone is
familiar: a paint program. After all, one of the first things most Mac users do
after setting up their new computer is play with a paint program—or at least
that was the case in the old days. So it makes some sense that the first full-
blown application you’re going to create is a paint program.

In each chapter of this tutorial, you'll progress deeper into the process of devel-
oping an application. In this chapter you'll begin by creating a new REALbasic
project and creating the main application window. In the ensuing chapters, you'll
add drawing controls; file open and save controls; and cut, copy, and paste fea-
tures. You'll then move on to more advanced topics such as tool and color palettes.

Creating the New Project

The first thing you’ll need to do to start on this tutorial is to launch REAL-
basic. Locate the REALbasic program icon and double click it. After launch-
ing REALbasic, you should be presented with the REALbasic design

environment, shown in Figure 10.1.

Just to refresh your memory, the parts of the REALbasic design environment
are the

¢ Project window

¢ Tools window

CHAPTER 10 « MAKING MY PAINT 121

Figure 10.1

The REALbasic
design environment

MenuBarYisible
CloseBox M
Growleon o
{| Zoomlcon &
BalloonHelp
0

B

MecProciD

¢ Colors window

¢ Properties window

¢ Window Editor

Adding the Main Window

You should notice right away that REALbasic has created an untitled project
for you, containing just a window and a menu object in the Project window.
The window object is named WindowI by default. The first thing we are going
to do is to customize this default window object to meet our needs. To change
the default settings for Window1 do the following:

1. In the Project window, click on the Window1 object so that its
properties are displayed in REALbasic’s Properties window as shown
in Figure 10.2.

2. In the Properties window, change the name of Window1 to
PaintWindow, and press Return. The name of the window should
change from Window1 to PaintWindow in REALbasic’s Project

window as well.

122

Figure 10.2

The PaintWindow
properties

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

Helght 300
MinWidth 64
MinHeight 64
MaxWidth 32000

]
HesBackColor [A
BackColor
Backdrop None v
Title Untitled
Yisible
FullScresn]
MenuBarYisible
CloseBox [~
Growlcon
Zoomlcon]
BallconHslp =]
MecProclD 0

7]

3. Click on the HasBackColor property to enable it. This changes the
background color of PaintWindow to the default color, which is white.

4. Click on the Growlcon property to enable it. This will allow the user to
resize the PaintWindow object.

Adding the Paint Canvas

PaintWindow by itself is incapable of acting as a paint canvas. PaintWindow is
just a container for other controls. Fortunately there is already a REALbasic con-
trol capable of acting as a paint canvas. Coincidentally, it’s called the Canvas con-
trol. Like other controls, you can add the Canvas control, shown in Figure 10.3,
by dragging it from the Tools window to the window in the Window Editor.

To add a Canvas control to PaintWindow, do the following:

1. If PaintWindow is not open in the Window Editor, double click on
PaintWindow in the Project window to open it in the Window Editor.

Figure 10.3

The Canvas control
in the Tools window

CHAPTER 10 ¢ MAKING MY PAINT

2. Click on the Canvas tool in the Tools window and then drag it onto

PaintWindow and drop it anywhere. REALbasic names the Canvas
control that you just added Canwas1 by default. You'll need to change
the name and some other default properties of the Canvas control.

If the Canvas control, Canvas1, is not currently selected, click on it so
that its properties are displayed in the Properties window.

4. In the Properties window, change the name of the Canvas control from

Canvasl to PaintCanvas and press the Tab key.

You're now going to be changing the position and size of the canvas control so
that it fills the entire PaintWindow window:

1. Under the Position section of the Properties window, change the Left

value to —1 and press the Tab key. Notice that the PaintCanvas control
has moved all the way to the left-hand side of PaintWindow.

: éince ydu 'usecbiﬁtih‘e Tabkeym step 1, thé 'Toyp’ valhe shpydrld be selected m \
~the PaintCanvas Properties window. It is easier to use the tab keyto
- change multiple properties than to use the Return key and the mouse to

select each property.

2. Change the Top value in the PaintCanvas Properties window to —1,

and press the Tab button. Again, notice how the PaintCanvas control
has moved to the top of PaintWindow. The PaintCanvas should now
look something like the one shown in Figure 10.4.

3. Drag the lower-right resizing handle (the black square in the lower-

right corner of the PaintCanvas control) so that it lines up with the

Canvas control

Figure 10.4

The PaintCanvas
control moved to
its new location

Figure 10.5

The resized
PaintCanvas control

PaintWindow’s Grow Window control (the rectangular control with
the three diagonal lines in the bottom right hand corner of the
window). After you've dragged the resizing handle to the proper
location, the PaintWindow Window Editor should appear as seen in
Figure 10.5.

CHAPTER 10 « MAKING MY PAINT 125

= ”ﬁmmwmdgqugm@mmmummgg mpmgv’mmmx
s »that Pathanvas snaps»tor%hese«gwdehnes when«the»resszmga hanéie 1S

your control placement a Iot snrr;pler and the results wnll be much neater.

; t" e ;)

Testing Your Work

By now you're probably curious to see what your application does. Truthfully,
right now it doesn't do a lot. But because you’re probably going to want to see
for yourself, here’s what you’ll need to do.

Saving Your Work in Progress

You should always save your changes before you decide to test your REALba-
sic application. Even though it’s not likely, sometimes errors in your applica-
tion can cause REALbasic to crash. If this happens, any of your changes will
be lost. This can be very frustrating when you've done a lot of work since you
last saved your project.

Even though your paint application is very simple at this point, you should get
into the habit of at least saving your work every time you test it. The general
rule is save twice as often as you think you should.

One nice feature of version 3, and greater, of REALDbasic is its built in crash
protection. Each time you run your program, REALbasic saves a copy of your
project so that, in the case of a crash, you can restore your work the next time
you launch REALbasic. Even though this feature works flawlessly, you should
still get into the habit of saving your work in progress. If you move to another
development tool that doesn’t have nice auto-save features like this, youll be
glad you got into the habit ahead of time.

To save your REALbasic project, open the File menu and select the Save com-
mand, or press Command+S. Save your project with the filename My Paint -
Step 1. The title of the Project window will be updated to My Paint - Step 1.

Review

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

- Now would be a good time to talk about organizational skills. Many

- application developers prefer to organize their projects. You may find -

~that creating a REALbasic Projects folder, containing folders for each
project you’re working on, may help you keep things organized. For
example, create a REALbasic Projects folder somewhere where you’ll be
able to find it again (in the REALbasic folder, or your Documents folder).
Then create a My Paint folder and save all of the My Paint projects with-
in this folder. It may seem like a lot of extra work right now, but later,
when you've got a dozen irons in the programming fire, you'll really
appreciate the extra organization.

Testing Your Application

To run your new application, do the following:

When you choose the Run item

1. Open the Debug menu and choose

from the Debug menu or press
Run, or press Command+R.

Command+R to test your

2. Play around with your application. | application, REALbasic switches
. | to the runtime environment. The |
Admittedly, there’s not much here to do | . :
K . runtime environment,
yet. Trust me, thmgs will get more sometimes referred to as
interesting in the next chapter. | debugging mode, is where you
’ 5 can test and debug your
3. After you've exhausted yourself playing arbiliai W ol
around with your very limited | the Quit item from the File menu |
application, open the File menu and | or press Command+Q to quit

your application, REALbasic
returns to the design
environment.

select Quit, or press Command+Q.

In this chapter you've learned how to launch REALbasic and create a simple
project. You've also learned how to rename and change the properties of your
application’s main document window. You learned how to rename and change a
control’s properties and how to position controls on your application’s main doc-
ument window. In addition, you were shown how to save and test your project.

Adding Simple
Drawing Commands

In This Chapter

e Adding a freehand drawing tool
e Understanding the Code Editor window
® Adding the drawing code

e Handling window drawing

128 PART 11« DEVELOPING YOUR FIRST MAC PROGRAM

n the previous chapter, you created a simple shell for your paint application.

In this chapter, you'll begin to add some simple drawing tools to your pro-
gram. You'll be adding, enabling, and selecting menu items. And, joy of joys,
you'll actually be writing some source code for the simple drawing tools.

Adding a Freehand Drawing Tool

OK, first things first, you want to see your application do something, so here
we go. The first thing you're going to add to your application is a freehand
drawing tool. This will be a tool that will draw on the PaintCanvas when the
user clicks and drags the mouse.

To begin, launch REALbasic and open the My Paint - Step 1 project by click-
ing on the My Paint - Step 1 project icon in the Finder. If REALbasic is
already running, you can open the File menu and choose Open to locate and
open the project.

Using the Code Editor Window

You'll need to open the Code Editor window by selecting the PaintWindow
object in the Project window and pressing the Option+Tab key combination.
The Code Editor window should appear, as shown in Figure 11.1.

-Figure 11.1 ﬁi = u
The REALbasic [fl 3 & rvons
Code Editor window [l p & Menu Handiers

1l b [Methods
b (@ Properties

]

@ﬂ)l

EEEs : [Tl

P R

CHAPTER 11 + ADDING SIMPLE DRAWING COMMANDS 129

The Code Editor window contains two panes. The left pane, called the
Browser pane, contains a list of all of the objects that are contained within the
window being edited. These objects fall into one of the following categories:

¢ Controls. These include any controls that you created by dragging
them from the Tools window to your document window.

¢ Events. These include any application events to which the window is
capable of responding. Events are messages generated by the system
whenever the user does something to which your application window
needs to respond. For example, a MouseDown event will be sent to
your application window whenever the user clicks the mouse while the
cursor is within the boundaries of the window.

¢ Menu handlers. These are specific events that are sent to your applica-
tion window whenever a certain menu item is selected. Your application
window can respond to any menu item by adding a menu handler for
said menu item. For example, you would add a menu handler for Open,
Save, or Save As menu items to respond to the users file requests.

¢ Methods. These are source-code routines that you add to an
application window to perform a custom task. For the most part you'll
be adding methods to increase source code re-usability and readability.
Methods are also referred to as member functions because they are
functions that are members of a specific window class.

¢ Properties. Like the properties in the REALbasic Properties window,
properties in the Code Editor are used to keep track of specific values
that relate to the window’s state. As is the case with methods,
properties are custom values that the developer has decided are needed.
Properties are often referred to as member variables because they are
variables that are members of a specific window class.

The right pane of the Code Editor window, called the Editor pane, is where
source code for menu handlers and methods is edited. The gray area between
the Browser pane and the Editor pane is a resizing column divider. Click and
drag this left or right to resize the Browser pane.

Adding the Drawing Code

~ The freehand drawing tool is supposed to function as follows: When the user
clicks and drags the mouse, the application should draw a line that follows
the path of the mouse as it’s being dragged. To do this, you'll need your

130

Figure 11.2

The New Property
dialog box

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

application to respond to the MouseDown and MouseDrag events. But before
you can properly handle these events, you'll need to add a couple of properties
to the PaintWindow class.

Adding the Property Declarations

The properties you'll be adding to the PaintWindow class will be used to track
the last-known mouse location. When your application receives the Mouse-
Drag event, it will be able to draw a line from the current mouse location to
the last known location of the mouse. It will then update the values of the last-
known mouse location so that the next MouseDrag event can draw the next
connecting line, and so on.

To add the last mouse location properties to the PaintWindow class, do the
following:
1. Open the Edit menu and select the New Property command, or press

Option+Command+P to open the New Property dialog box, shown in
Figure 11.2.

2. Type the following in the Declaration field of the New Property dialog
box:
nLastX As Integer

3. Press Return or click on the OK button to close the New Property
dialog box.

4. Repeat steps 1 through 3, but this time add the following property
declaration:

nLastY As Integer

To view the properties that were just added, expand the Properties item in the
Code Editor Browser pane by either clicking on the triangle next to the Prop-
erties icon, or double clicking on the Properties item. The new properties
should appear under the Properties item, as shown in Figure 11.3.

Figure 11.3

The new mouse-
tracking properties

Code Editor (PaintWindow)

b §) Events
b T Menu Handlers

1l > [Methods

|| = () Properties

i [¥03 nLastX As Integer
ﬁﬁ nLasty As Integer

The convention used for variable naming throughout this tutorial is referred to as
Hungarian Notation. Hungarian Notation is a method of naming variables so that
the variable type (integer, single, double, string, Boolean, and so on) is immediately
obvious to the programmer. For example a variable with the name bReady is a
Boolean, while nCount is an integer, and strUserName is a string. Using Hungarian

Notation is sometimes difficult for both new and established programmers to get
used to, but it is well worth the effort. The amount of time you’ll save looking up a
variable’s type when debugging a lengthy program is well worth the effort. You’ll
see many examples of Hungarian Notation throughout this tutorial.

Adding the Event Handlers

Now that the properties you need have been added, you can work on the event
handlers. Remember, events are sent to each window when something hap-
pens about which the particular window needs to be informed. In this case,
you're interested in the MouseDown and MouseDrag events, because those
events are what will be used to make your freehand drawing tool.

THE MOUSEDOWN EVENT HANDLER

The MouseDown event handler will be used for two purposes. The event han-
dler will set the nLastX and nLastY properties to their initial value, and will also
enable all other mouse events—something you need to do in order to handle

‘ ’ 1‘ 32

Figure 11.4

The Code Editor
window for the
PaintWindow
PaintCanvas
MouseDown event

- PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

the MouseDrag event later. To add an event handler for the MouseDown
event, do the following:

1.

Expand the Controls item in the Code Editor Browser pane by either
clicking on the triangle next to the Controls icon, or double clicking on
the Controls item.

. Expand the PaintCanvas item, as you did above, and select the

MouseDown event in the Browser.

In the Code Editor window, for the MouseDown event, type the
following:

nLastX = X

nLastY =Y

return true

Returning true for the MouseDown event allows your program to
respond to the MouseDrag and MouseUp events. The Code Editor
window will now appear as shown in Figure 11.4.

THE DRAGFREEHAND METHOD

The MouseDrag event handler will handle the actual drawing for your free-
hand drawing tool, along with almost all of the other drawing tools. You could
add all of the code for the drawing tools in the MouseDrag event handler, but

e e
e e s R th - &
< & Controls Function MouseDown(X As Integer, Y As Integer) As Boolean

|+ [& Paintcanves nLastX = X

il > 1 Events
{| » B Menu Hendlers
il > B Methots

:' b @ Properties

tdow) :

LastY=Y
B Paint n

return tru
8 | e onction?

R MouseDrag
Q MouseUp
B MouseMove
B MoussEnter
B MouseExit
B open

B Close : .
B Dropobject

=
<
sKml

CHAPTER 11« ADDING SIMPLE DRAWING COMMANDS

Figure 11.5

The New Method
dialog box

133

this would get rather messy once all the drawing tools had been added. So,
rather than write ugly, hard-to-read code, you're going to create a method, or
member function, for each drawing tool.

The freehand drawing tool method will contain the code needed for perform-
ing freehand drawing. It will do this by comparing the last known—mouse
location properties to the current mouse location. If the values are different, it
will draw a line between the two points. It will then copy the current mouse
location values to the last known—mouse location properties, so that the next
call to this method can repeat the process.

To add the freehand drawing tool method, do the following:

1.

Open the Edit menu and select the New Method command, or press
Option+Command+M to open the New Method dialog box as shown
in Figure 11.5.

Type the following in the Method Name field of the New Method
dialog box:

DragFreeHand

Type the following in the Parameters field of the New Method dialog
box:

X As Integer, Y As Integer

Leave the new method’s return type blank, because this subroutine will
not need to return any value.

Press Return or click on the OK button to close the New Method
dialog box. The Code Editor window will appear as shown in

Figure 11.6.

Method name: [| l

Parameters: l ‘
Return Type: | A]
[Private

[cancet | f[ok |

134 PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

_lm

Flgure £ b ‘ Cnn(l;ols Sub DragFréeHand(i As Integer, Y As Integer)
The new |ii 9 Events
DragFreeHand D T Menu Handlers End Sub

method in the Code < [Methods
Editor window 8]
D (3 Properties

i

6. In the Code Editor window, for the DragFreeHand method, type the
following:
If ((nLastX <> X) or (nLastY <> Y)) then
PaintCanvas.Graphics.ForeColor = RGB(0,0,0)
PaintCanvas.Graphics.DrawLine(nLastX, nLastY, X, Y)

nLastX = X
nLastY =Y
End if

The Code Editor window will now appear as shown in Figure 11.7.

P e Editor (PaintWindow)
Figure 11.7 -
. P & controls Sub DragFreeHand(X As Integer, Y As Integer)
The Code Editor b 50 Events If ({nLastX <> X) or (nLastY <> Y)) then
window for the D B Menu Handisks PaintCanvas.Graphics.FareColor = RGB(0,0,0)
PaintCanvas.Graphics.DrawLine(nLastX, nLastY, X, Y)

DragFreeHand < [Methods nLastX = X

method 8 nLasty =Y
il D (3 Properties End if
End Sub

|[BEEEE KDy

4]

CHAPTER 11 * ADDING SIMPLE DRAWING COMMANDS

Figure 11.8

The Code Editor
window for the
PaintWindow,
PaintCanvas,
MouseDrag event

135

THE MOUSEDRAG EVENT HANDLER

Finally, you’re ready to enable the MouseDrag event handler so that it can
draw a freehand line. All you need to do is add a call to the DragFreeHand
method, passing the necessary parameters to the method. To add an event
handler for the MouseDrag event, do the following:

1. Select the Controls, PaintCanvas, MouseDrag event in the Code
Editor Browser pane.

2. In the Code Editor, for the MouseDrag event, type the following:
DragFreeHand(X, Y)

The Code Editor window will now appear as shown in Figure 11.8.

Testing the Freehand Tool

Now would be a good time to test the freehand drawing tool that you've just
added. Don't forget to save your work.

To run the application, open the Debug menu and select the Run command
or press Command+R to start the REALbasic runtime environment. If there
is anything wrong with your code, REALDbasic will display an error message
indicating what is wrong. The Code Editor window, containing the offend-
ing source code, will be opened, and the cursor will be positioned near your
mistakes.

DragFreeHand(X, Y)

4 PaintCanvas End Sub

B Paint
R MouseDown
8
B Mouseup
B MouseMove
ﬁ MouseEnter
B MouseExit
ﬁ Open
B close
Bl propobject

D £2 Events

D T Menu Hendlers

b @ Methods

D @ Properties

]

136

TIP

Figure 11.9

The application with
a crude drawing

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

: sectnon of the tutonal and check your spacmg and spelling Once you V-
found the error and corrected it, try running the application again.

. S

Experiment with the freehand drawing tool for a while. Click and drag the
mouse cursor within the application’s window. You should see something sim-
ilar to Figure 11.9.

When youre done testing the application, Open the File menu and select the
Quit command or press Command+Q_to return to the REALbasic design
environment.

Handling Window Drawing

You may have noticed that the tutorial application window doesn’t redraw if
you resize it, or if another window is placed over the application window and
then moved away. This is because the paint canvas on which you are drawing
does not maintain the picture in memory so that it can be redrawn. What you
need to do is program the application to draw the picture in two places: on
screen and in memory. When the window is redrawn, you can copy the picture
in memory to the screen and refresh the window’s contents.

i ?%/ //

CHAPTER 11 * ADDING SIMPLE DRAWING COMMANDS 137

Adding the Picture Buffer Property

To store a copy of the picture in memory, you'll add a Picture property to the
PaintWindow class. You'll be painting to both the PaintCanvas control and
the Picture property so that the same drawing is being updated on screen and
in memory. Whenever the window needs to be repainted, the program will
copy the contents of the Picture property to the PaintCanvas control to update
the on-screen image.

To add the Picture property, do the following:

1. If the Code Editor window is not open, select the PaintWindow object
in the Project window and press the Option+Tab key combination to
open the Code Editor window.

2. Open the Edit menu and select the New Property menu item or press
Option+Command+P to open the New Property dialog box.

3. Type the following in the Declaration field of the New Property dialog

box:

picBuffer As Picture

4. Press Return or click on the OK button to close the New Property
dialog box.

Creating the Picture Buffer Property

Before you can use the new Picture Buffer property, picBuffer, you need to cre-
ate an instance of picBuffer. The REALbasic command that creates picture
objects is NewPicture. The parameters passed to the NewPicture command

specify the width, height, and number of colors of the picture object.

You only want to create the new picture object once, for every window that is
opened. The trick is figuring out where to create the picture object so that it is
created only when a new window is opened. Fortunately there is already an
event that perfectly suits this purpose. The Window class’s Open event is
called every time a new window is about to be opened. Any code added in this
event handler will be called every time a new window is being opened.

To add the code to create the Picture Buffer property, do the following:

1. Expand the Events item in the Code Editor Browser pane by either
clicking on the triangle next to the Events icon, or double clicking on
the Events item.

138

Figure 11.10
The Code Editor
window for the
PaintWindow,
Open event

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

2. Select the Open event in the Browser pane.
3. In the Code Editor window, for the Open event, type the following:

dim nColorDepth as integer
nColorDepth = Screen(0).Depth
picBuffer = NewPicture (640, 480, nColorDepth)

In this code, you used the Screen(0).Depth method to determine the number
of colors supported by the current monitor. You then use this value to deter-
mine the number of colors supported in the picBuffer picture object. The
Code Editor window will now appear as shown in Figure 11.10.

Drawing in the picBuffer Object

To ensure that the in-memory copy of the window contents is the same of the
on-screen copy, the application has to draw to the in-memory copy as well as
the on-screen copy. To program the application to do this, add the following
code in the PaintWindow, DragFreeHand method, after the current DrawLine
command:

if (picBuffer <> nil) then
picBuffer.Graphics.ForeColor = RGB(0,0,0)
picBuffer.Graphics.DrawLine(nLastX, nLastY, X, Y)
end if

This code first ensures that a valid picBuffer exists before attempting to access
it. It then sets the foreground color and draws a line in picBuffer’s memory.

b &7 Controls
v ﬁ Events
§ T nColorDepth = Screen(0).Depth

B Cclose picBuffer = NewPicture (640, 480, nColorDepth)
B cancelClose End Sub

a KeyDown

B MouseMove
a MouseEnter
B MouseExit

B Paint

dim nColorDepth as integer

@, MouseDown

a MouseDrag

Q MouseUp

EL EnableMenuitems
B Resized

B Moved

ﬁ DropObject

(=]
=
S0]

CHAPTER 11 - ADDING SIMPLE DRAWING COMMANDS

Figure 11.11

The Code Editor
window for the
PaintWindow,
DragFreeHand
method

139

) e -~ CodeE i ——— o8
13 ﬁmmtrols Sub DragFreeHand(X As Integer, Y As Integer)
b §9 Events If ((nLastX <> X) or (nLastY <> Y)) then
b Bo Menu Handlers PaintCanvas.Graphics.ForeColor = RGB(0,0,0)
PaintCanvas.Graphics.DrawLine(nLastX, nLastY, X, ¥)
< [Methods
8 if (picBuffer <> nil) then
D) Properties picBuffer.Graphics.ForeColor = RGB(0,0,0)
picBuffer.Graphics.DrawLine(nLastX, nLastY, X, Y)
end if
i nLastX = X
nLastY=Y
End if
End Sub
BEEE , o

After adding the above code, the PaintWindow, DragFreeHand method
should appear as shown in Figure 11.11.

Refreshing PaintCanvas Using the picBuffer Object

The only thing left to do is to update the contents of the on-screen window
contents whenever the contents need to be redrawn. The Paint event is called
whenever a window, or any of its controls, needs to be repainted. All you have
to do is add the following code in the PaintWindow, Controls, PaintCanvas,
Paint event:

if (picBuffer <> nil) then
g.drawpicture picBuffer, 0, 0
end if

After you add this code, the PaintWindow, PaintCanvas, Paint event should
appear as shown in Figure 11.12.

Testing Your Changes

Now that you've added the code for the window refresh, you should save your
work and test the code changes. If you run into any problems, simply review
this section of the tutorial and double-check your work.

While testing the application, draw something in the Paint window. Then make
sure that when you move the Paint window around, it is updated properly.

140 PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

= ; (PaintWind
[Controls Sub P g As Graphics)
L [E] Paintcanvas if (picBuffer <> nil) then
R @ g.Qrawplctura picBuffer, O, O
end if
Bl MouseDown End Sub
ﬂ MouseDrag
E MouseUp
E MouseMove
& MouseEnter
ﬂ MouseExit
ﬁ Open
H Close
E DropObject
D §3 Events
1l b To Menu Handlers
il > m Methods
il b (3 Properties

Figure 11.12
The Code Editor
window for the
PaintWindow,
PaintCanvas,
Paint event

<[]

S0

& 3] EID

Resize the Paint window to ensure that the entire picture redraws. Also try mov-
ing other application windows over the Paint window. When you move them
away, the Paint window should update.

Don't forget to open the File menu and select the Quit menu item or press
Command+Q_to return to the REALbasic design environment after you've
finished testing the application.

Review

In this chapter, you learned how to enable the Code Editor window and the
basics of navigating within that window. You learned about the Code Editor
Browser and the text-editing sections of the Code Editor window. You also
learned how to add event handlers, methods, and properties using the Code
Editor window.

In addition, you learned a bit about when various event handlers are called and
how you add code to handle the events. You also created a dynamic object, the
picBuffer picture object, using the new command.

You should be fairly comfortable navigating the various sections of the Code
Editor window by now, so getting around in future chapters of this tutorial
should be a lot easier.

Adding More
Drawing Commands

In This Chapter

® Adding menu items to select the drawing tools

® Adding a Line Draw tool and updating the Free Hand
drawing tool

® Adding two Rectangle and two Oval drawing tools
® Adding 2 Draw Shape tool

142 PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

n previous chapters, you created a paint application and added a simple free-
hand drawing tool. In this chapter, you'll add menu items to enable users to
select from multiple drawing tools, and the code to handle these new tools.

Adding Menu Items for the
Selection of Drawing Tools

The first thing you’re going to do is add the menus for the new tools you’ll be
adding: a Line Draw tool, two Rectangle drawing tools, two Oval drawing
tools, and a Draw Shape tool. You'll also add a menu selection for the freehand
drawing tool you created in the last chapter.

Understanding the
Application Menu Window

In REALbasic, you add menus to your project using the Application Menu
window. With this tool, you can add menu items, submenus, and menu sepa-
rators (the horizontal lines in Mac OS 8 and 9, and the blank spaces in Mac
OS X, that separate menu groups). You can define the menu item names, and
choose command-key shortcuts for the menu items. Additionally, you can
assign Balloon Help and Disabled Balloon Help text, which pops up when the
user has enabled the Macintosh help balloons. The Disabled Balloon Help text
is displayed when the user hovers over the menu item and it is disabled.

To add your new menu items, do the following:
1. Open the Project window (open REALbasic’s Window menu and
select the Project command, or press Command+0).
2. Double-click the Menu object.

3. The Application Menu window, shown in Figure 12.1, appears. Click
on the blank menu item. The Properties window displays the menu-
item properties.

4. Change the Text property to Tools and press Return. The menu item
that was formerly blank is now labeled Tvo/s, as shown in Figure 12.2.

5. Click on the blank menu item, in the Tools menu. The blank menu
item is the dotted line rectangle right under the Tools menu.

CHAPTER 12+ ADDING MORE DRAWING COMMANDS 143

Figure 12.1

The REALbasic
Application Menu
window

Figure 12.2
The Application
Menu window
with the Tools
menu added

The Properties window displays the properties for this menu item. As
you can see, there are more options for menu items than menus.

6. Change the Text property to Free Hand and press Return. You'll notice
that REALbasic automatically changes the Name property to
ToolsFreeHand for you.

7. Repeat steps 1-6, adding new menu items with the following names
(Figure 12.3 shows the Tools menu with all the items added):

* Line Draw ¢ Filled Rectangle
® Draw Shape ¢ Oval
* Rectangle ¢ Filled Oval

- keys to swutch be /een menu- ftems;
you valuable mncrosecond S '

“

144

Figure 12.3

The Application
Menu window with
all of the Tools
menu items added

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

Free

 Line Draw

_ Draw Shape
Rectangle

Filled Rectangld

Enabling the Menu Items

If you run/debug the paint app now (go ahead, we’ll wait for you), you'll notice
that the menu items you just added are disabled. When a REALbasic appli-
cation creates a window, the EnableMenultems event for that window is
called. This event, not surprisingly, is used to enable menu items. The reason
each window type has its own EnableMenultems event is to support the var-
ious valid menu items that different window types might have.

If you create an application class in your project, discussed in later chapters,
you also have the ability to enable menu items application wide, meaning that
any menu items enabled in the application class will be enabled throughout the
entire application.

To enable all your new menu items, follow these steps:

1. Click on the Paint window in the Project window.
2. Press Option+Tab to display the Code Editor window.

3. Expand the Events item (click its disclosure triangle or double-click
Events).

4. Select the EnableMenultems event in the Code Editor window, and
enter the following source code (Figure 12.4 shows the results of the
entries):

ToolsFreeHand.Enable
ToolsLineDraw.Enable
ToolsDrawShape.Enable
ToolsRectangle.Enable
ToolsFilledRectangle.Enable
ToolsOval.Enable
ToolsFilledOval.Enable

CHAPTER 12 « ADDING MORE DRAWING COMMANDS

Figure 12.4

The Code Editor
window for the
EnableMenultems
event

145

Sub EnableMenultems()
ToolsFreeHand.Enable
B cancelclose ToolsLineDraw.Enable
ToolsDrawShape.Enable
8 Keyown . ToolsRectangle.Enable
Bl MouseMove . ToolsFilledRectangle.Enable
Bl MouseEnter ' ToolsOval.Enable
El MoussExit ToolsFilledOval.Enable
B Paint | End Sub
@ MouseDown
B MouseDrag
E, Mouselip
8
EL Resized
@, Moved
B Dropobject
B Activate
lﬂ Deactivate
D T Menu Handlers
Il b [Methods
D (2 Properties

v

Now when you run the app (go ahead, it’s cool!), you'll notice the menu items
are all enabled. Note that you didn’t have to enable the Tools menu. This hap-
pens “automagically” when any of the Tools submenu items are enabled.

Adding Properties
for the New Tools

Before you get started on the actual code for the new tools, there are a few
properties that you should add. The menus are supposed to function as fol-
lows: When the user chooses a tool’s menu item, a checkmark is supposed to
appear next to it. The checkmark should remain enabled until the user selects
a new tool. To facilitate this, you're going to need to maintain the currently
selected tool as a property.

You're also going to add a couple other properties at this time, which you’ll cre-
ate now, but won’t be using until later.

Here’s what to do:

1. Open the Edit menu and select the New Property menu item (or press
Option+Command+P).

2. Enter nCurrentTool As Integer as the new property.

146 PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

3. Repeat steps 1 and 2, entering rgbLineColor As Color and
rgbFil1Color As Color, which will be used for color-selection tools
that you’ll add later (put them in place now to decrease coding time
later).

Updating the Menu Selections

Now that you have the property you need to track the currently selected tool,
you're going to add a method that places the checkmark next to the appropri-
ate menu item. Here’s how:

1. Open the Edit menu and select the New Method menu item (or press
Option+Command+M).

Enter SetMenuSelection as the new method name.

Enter nTool As Integer as the new method parameters.

Leave the return value blank.

SR S O

Click OK and enter the following source code in the
SetMenuSelection Code Editor window, as shown in Figure 12.5:

nCurrentTool = nTool

ToolsFreeHand.Checked = (nCurrentTool = 1)
ToolsLineDraw.Checked = (nCurrentTool = 2)
ToolsDrawShape.Checked = (nCurrentTool = 3)
ToolsRectangle.Checked = (nCurrentTool = 4)

ToolsFilledRectangle.Checked = (nCurrentTool = 5)
ToolsOval.Checked = (nCurrentTool = 6)
ToolsFilledOval.Checked = (nCurrentTool = 7)

The SetMenuSelection does a few things. First, it saves the contents of the
nTool parameter in the nCurrentTool property. You could have let the calling
function change the contents of the nCurrentTool property, but doing so
would violate the object-oriented encapsulation (see Chapter 9 , “Object
Oriented Programming”) of the nCurrentTool property. If you ever
changed nCurrentTool, and/or how it’s used, then every piece of code that
uses nCurrentTool would have to be changed. So, by passing the new value
for nCurrentTool into this function, you've centralized the code for what
nCurrentTool is used for and any future changes will only have to be done in
this function. Cool huh?

CHAPTER 12 < ADDING MORE DRAWING COMMANDS

Figure 12.5

The Code Editor
window for the
SetMenuSelection
method

147

ger)

3 @ Events nCurrentTool = nTool

| ToolsFreeHand.Checked = (nCurrentTool = 1)

/| © Yo Menu Handiors ToolsLineDraw.Checked = {nCurrentTaol = 2)

il = [rMetnoas ToolsDrawShape.Checked = (nCurrentTool = 3)

B pragFreetiand ToolsRectangle.Checked = (nCurrentTool = 4)
ToolsFilledRectangle.Checked = (nCurrentTool = S)
ToalsOval.Checked = {nCurrentTool = &)
ToolsFilledOval.Checked = (nCurrentTool = 7)

End Sub

SetMenuSelection

D (3 Properties

¥]

7
&l
(5]
3& 4]

The SetMenuSelection method then enables and disables the checkmark for
each menu item as is appropriate based on the value of nCurrentTool. It does
this by using a coding shortcut. You could have enabled and disabled each
menu item with code similar to the following:

If (nCurrentTool = 1) then
ToolsFreeHand.Checked = true
Else
ToolsFreeHand.Checked = false
End if

But that’s a heck of a lot of code, just to set one Boolean (true/false) value. A
more efficient method would be to remove the redundant code, making it look
something like this:

Dim bFreeHandChecked As Boolean
bFreeHandChecked = (nCurrentTool = 1)
ToolsFreeHand.Checked = bFreeHandChecked

This code works because the Equivalence operator (=) returns a Boolean value
that indicates whether the values being compared are equal to each other. Even
so, this code is inefficient, because it declares a variable that is used only once.
Variables should be declared only if you are using them two or more times. It’s
all about reducing code redundancy.

148

Figure 12.6

The Code Editor
window for the
Open event

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

You can simplify the code to remove the bFreeHandChecked variable completely
and just store the result of the nCurrentTool comparison directly in the
ToolsFreeHand.Checked property, as was done in the original SetMenuSelection
method’s code:

ToolsFreeHand.Checked = (nCurrentTool = 1)

Some developers might find this confusing at first; the use of the Assignment
operator on the same line as an Equivalence operator may be what’s confusing
them. Just remember that an Equivalence operator returns a Boolean value,
which can be stored in any Boolean variable.

Initializing the New Properties

Don’t run the application this time. It doesn’t do anything new yet. You've still
got a couple things to do before you'll notice any new functionality. First, you'll
need to initialize the new properties so that they’ll be ready when needed.
Here’s how:

1. Expand the Events item (click its disclosure triangle or double-click

Events).
2. Select the Open event, and add the following to the code, as shown in
Figure 12.6:
rgbLineColor = RGB(0, 0, 0)
rgbFil1Color = RGB(O, 0, 0)

SetMenuSelection 1

Sub Open()
dim nColorDepth as integer
nColorDepth = Screen(G).Depth
picBuffer = NewPicture (540, 480, nColorDepth)

8 cencelCiose rgbLineColor = RGB(Q, C, 0)
B KeyDown rgbFillColar = RGB(C, &, 0)
Bl MouseMove SetMenuSelection 1

a MouseEnter End Sub

B MouseExit
B paint

B MouseDown

EL MouseDrag

B Mousetp

B EnableMenuitems
Bl Resized

B Moved

§ DropObject

Activate
B Deactivate
b T Menu Handlers
-

7|

mcm

CHAPTER 12 + ADDING MORE DRAWING COMMANDS 149

If you run the application now, you'll notice that the Free Hand menu item is
now enabled by default.

Selecting Tools with the Menus

Now you're going to add the code that enables the checkmark on each menu
item as it is selected. To do this, you must add menu handlers for each of the
new menu items you added. To add each menu handler, follow these steps:

1. Open the Edit menu and select the New Menu Handler command (or
press Option+Command+H).

2. Select ToolsFreeHand from Menu Item list. The New Menu Handler
dialog box, shown in Figure 12.7, will open.

3. Click OK to display the Code Editor window for the ToolsFreeHand

menu handler.

4. Enter the following in the Code Editor window for the ToolsFreeHand
menu handler, as shown in Figure 12.8:

SetMenuSelection 1

Figure 12.7

The REALbasic New
Menu Handler
dialog box

Editor (aintWindoy) S

| Function Action As Boolean
SetMenuSelection 1

End Function

Figure 12.8

The Code Editor
window for the
ToolsFreeHand

menu handler b 1 Properties

@tbl

KD

150 PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

5. Repeat steps 1-3 for the following menus:

Menu Name Code to Add in the Menu
Handler’s Code Editor Window
ToolsLineDraw SetMenuSelection 2
ToolsDrawShape SetMenuSelection 3
ToolsRectangle SetMenuSelection 4
ToolsFilledRectangle SetMenuSelection 5
ToolsOval SetMenuSelection 6
ToolsFilledOval SetMenuSeTection 7

If you run the application now (come on, do it!) you'll notice that all the Tools
menu items will be updated when you select them. The checkmark will be dis-
played next to the menu item that you select. The checkmark will be removed
from the last selected menu item when a new one is selected. The drawing
commands obviously don’t work, however, because no code has been added for
each of the drawing commands.

Adding a Line Draw Tool and
Updating the Free Hand Drawing Tool

Now that you've added all the code to properly update the menu items’ check-
marks, you can start working on some of the drawing tools. First you're going
to work on the new Line Draw tool. Here’s how the Line Draw tool works:

1. The user clicks and holds down the mouse button, causing the Line
Draw tool to anchor the first end of the line at the location of the
mouse click.

2. The user drags the mouse. As she does so, a line will be drawn between
the anchored end and the current mouse location.

3. The user releases the mouse button, causing the other end of the line to
be anchored to the current mouse location.

You're also going to be updating the Free Hand drawing tool. The current Free
Hand drawing tool source code assumes it’s the only drawing tool available.
You're going to change it so that it fits into the new code design.

CHAPTER 12+ ADDING MORE DRAWING COMMANDS

151

Adding the DragRefresh Method

The first method you're going to add is the DragRefresh method, which will
be responsible for refreshing the background of the Paint window when a
drawing tool is being dragged across it.

To create the DragRefresh method, do the following:

1.

Open the Edit menu and select the New Method menu item (or press
Option+Command+M).

. Enter DragRefresh as the new method name.

Enter X1 As Integer, Y1 As Integer, X2 As Integer, Y2 As
Integer as the new method parameters.

Leave the return value blank.

Click OK and enter the following source code in the DragRefresh
Code Editor window, as shown in Figure 12.9.

Dim X, Y, nWidth, nHeight As Integer
If (X1 < X2) then

X = X1
Else
X = X2
End If
If (Y1 < Y2) then
Y=1Y1
Else
Y = Y2
End If

nWidth = Abs(X2 - X1) + 1
nHeight = Abs(Y2 - Y1) + 1
PaintCanvas.RefreshRect(X, Y, nWidth, nHeight)

Reread the code you just entered. Here’s how it works:

1.

First, the DragRefresh method declares four variables that are used to
locate the top-left coordinates of the area being refreshed. Because the
PaintCanvas.RefreshRect function doesn’t allow for negative heights
and widths, the DragRefresh method must determine which X coordi-
nate, X1 or X2, and which Y coordinate is to be used as the upper-left
coordinate. That’s what the first two If statements do.

152

Figure 12.9
The Code Editor
window for the
DragRefresh
method

PART Il DEVELOPING YOUR FIRST MAC PROGRAM

Sub DragRefresh(X1 As Integer, Y1 As Integer, X2
Dim X, Y, nWidth, nHeight As Integer
I (X1 < X2) then

b Fo Menu Hendlers

X=X1
= [Methods Else
E DragFreeHand X=X2
SWD ragRefrest) End If
B SetMenuSelection If (Y1 < ¥2) then
b (3 Properties EIsYe- i3
Y=Y2

End If

nWidth = Abs(X2 - X1) + 1

nHeight = Abs(Y2 - Y1) + 1

PaintCanvas.RefreshRect(X, Y, nWidth, nHeight)
End Sub

2. The DragRefresh method then calculates the width and height of the
refreshed rectangle before calling the PaintCanvas.RefreshRect
function.

In essence the DragRefresh method determines the proper X and Y coordi-
nates, along with the proper width and height values, and then refreshes the
rectangle as needed.

Adding New End Point Properties

The project already includes two properties used to hold the last-known
mouse location: nLastX and nLastY. For line drawing, two other mouse loca-
tion properties are needed. When a line is drawn the nlLastX and nlastY
properties will hold the location of the first mouse click (the start of the line),
and the two new properties will hold the location of the point at which the
mouse was released (the end of the line). These new properties, nLastEndX and
nLastEndY, will also be used in the drawing of other shapes, such as rectangles.

Here’s how to add these properties:
1. Open the Edit menu and select the New Property command, or press
Option+Command+P to open the New Property dialog box.
2. Type the following in the Declaration field of the New Property dialog

box:

nLastEndX As Integer

CHAPTER 12 - ADDING MORE DRAWING COMMANDS 153

3. Press Return or click on the OK button to close the New Property
dialog box.

4. Repeat steps 1 through 3, but this time add the following property
declaration:

nLastEndY As Integer

You'll see that these properties are used in a few methods, starting next with
the DragLineDraw method that refreshes the window.

Adding the
DraglLineDraw Method

Now you're going to add a DragLineDraw method that will refresh the rec-
tangular area of the line being drawn, set the proper line color, and then draw
a line between the anchored line end and the current mouse position. After all
of this, it will update the LastEndX and LastEndY values so that they can be
compared to the mouse position the next time the DragLineDraw method is
called. If the current mouse position hasn't changed since the last time
DragLineDraw was called, then nothing happens. This helps prevent flicker-
ing during redraws.

Follow these steps to add the DragLineDraw method:

1. Open the Edit menu and select the New Method command (or press
Option+Command+M).

Enter DragLineDraw as the new method name.
Enter X As Integer, Y As Integer as the new method parameters.
Leave the return value blank.

Click OK and enter the following source code in the DragLineDraw
Code Editor window, as shown in Figure 12.10:

If ((X <> nLastEndX) or (Y <> nlastEndY)) Then
DragRefresh(nLastX, nlLastY, nLastEndX, nlLastEndY)
PaintCanvas.Graphics.ForeColor = rgbLineColor
PaintCanvas.Graphics.DrawlLine(nlLastX, nlLastY, X, Y)
nLastEndX = X
nLastEndY =Y

End If

“oR N

154

Figure 12.10
The Code Editor
window for the
DragLineDraw
method

Bl SetMenuSelection
b () Properties

PART 11 DEVELOPING YOUR FIRST MAC PROGRAM

Editor (Paintwin E
b €] Controls Sub DragLineDraw(X As Integer, Y As Integer)
b ” Events If ((X <> nLastEndX) or (Y <> nLastEndY)) Then
b To Menu Handl DragRefresh(nLastX, nLastY, nLastEndX, nLastEndY)
Ll s PaintCanvas.Graphics.ForeColor = rgbLineColor

v [Methods PaintCanvas.Graphics.DrawLine(nLastX, nLastY, X, Y)

§ DragFrectand nLastEndx = X

8 nLastendy =Y

B pragRefresh End If

End Sub

DT
]

Adding the EndLineDraw Method

As we said before, use of the Line Draw tool is completed when the user
releases the mouse button. The EndLineDraw method does this by drawing a
line between the two anchor points. The line is drawn in the picBuffer so that
during future refreshing, the line will be maintained.

To add the EndLineDraw method, do the following:

1.

Open the Edit menu and select the New Method command (or press
Option+Command+M).

2. Enter EndLineDraw as the new method name.

Leave the parameters and return value blank.

4. Click OK and enter the following source code in the EndLineDraw

Code Editor window, as shown in Figure 12.11:

If (picBuffer <> nil) then
picBuffer.Graphics.ForeColor = rgbLineColor
picBuffer.Graphics.DrawLine(nLastX, nlLastY, nlLastEndX, =
nLastEndY)
End If

This code first checks to make sure that picBuffer was successfully created. It
then sets the proper line color and draws a line in picBuffer.

CHAPTER 12 - ADDING MORE DRAWING COMMANDS 155

 Editor (PalntWindow) =
Sub EndLineDraw()

Figure 12.11

The Code Editor If (picBuffer <> nil) then
H fi h D ¥ Menu Hendlers p!cBuﬂer.Graphlcs.FnraCnlnr= rgbLineColor
window for the picBuffer.Graphics.DrawlLine(nLastX, nLastY, nLastEndX, nLastEndY)
EndLineDraw v Methods End If
hod 8 pregFreetiand End Sub
metho E, DraglLineDraw
B pragRefresh

8
B SetMenuSelection
> (3 Properties

]

K

T«I»

Changing the MouseDrag
PaintCanvas Event

There’s no point in testing the code at this point. You won't see any results yet,
but you're getting there. First you need to change PaintCanvas’s MouseDrag
event so that it can either work with the Free Hand drawing tool or the Line
Draw tool.

To update PaintCanvas’s MouseDrag event, do the following:

1. Expand the Controls item (click its disclosure triangle or double-click
Controls).

2. Expand the PaintCanvas item (click its disclosure triangle or double-
click PaintCanvas).

3. Select the MouseDrag event and change the MouseDrag source code
to the following, as shown in Figure 12.12:

Select Case (nCurrentTool)

Case 1
DragFreeHand(X, Y)
Case 2
DragLineDraw(X, Y)
End Select

This code represents the first time you've used the Select/Case keywords. As
we mentioned in Chapter 6 “Making Your Program Flow,” the Select/Case

156

Figure 12.12

The Code Editor
window for the
MouseDrag event

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

w U Controls
v Eh;:::m” Case 1
DragFreeHand(X, Y)
§ Mousebown Case 2
8 DragLineDraw(X, Y)
B Mouseup End Select
B MouseMove End Sub
a MouseEnter
B Mousetxit 1
E Open
B Close
B Dropdbject
b §D Events
D o Menu Handlers
b [Methods
> (@ Properties

Select Case (nCurrentTaol)

4]

keywords allow you to execute various sections of code similar to multiple
If/Else 1f/Else/End If statements. The MouseDrag code now calls the
DragFreeHand method if the Free Hand item is selected from the Tools menu
and the DragLineDraw method if the Line Draw menu item is selected from
the Tools menu.

Changing the MouseUp
PaintCanvas Event

Last but not least, the MouseUp event needs to be updated just like the
MouseDrag event was. You're going to need to call the EndLineDraw method
if LineDraw menu item is selected from the Tools menu. There’s no need to

do anything for the Free Hand drawing tool.

All you need to do to update the code is to select the MouseUp event (it’s
listed right by the MouseDrag event under the PaintCanvas item) and enter
the following source code, as shown in Figure 12.13:

Select Case (nCurrentTool)
Case 2

EndLineDraw
End Select

Now, finally you can run the application and see the fruits of your labor. If
you run the application now, you'll notice that the Line Draw tool works cor-
rectly. The Free Hand drawing tool should still work as well. If either of the

CHAPTER 12 < ADDING MORE DRAWING COMMANDS 157

Flgure 12.13] 4 Sub Mouselp(X As Integer, Y As Integer)
The Code Editor < [E] Paintcanvas Select Case (nCurrentTool)

N Case 2
window for the |} § paint EndLineDraw

. 8 touseown . End Select
MouseUp event 8 Mousobrag | enasu

8
B Mousetove
a MouseEnter
B MouseExit
a Open
B closs
B oropobject
b §D Events
D o Menu Handiers
b [Methods
1l b @ Properties

EEEET [

@4]»!

tools works incorrectly, don’t be too concerned. Simply recheck your code and
try again.

Adding Rectangle

and Oval Drawing Tools

The Rectangle and Oval tools work in similar fashion. You use both by click-
ing and dragging to determine the shape and size of the object being drawn.
Both have optional filled-in versions, and both require new ToolDrag,
ToolEnd, MouseDrag, and MouseUp methods.

Here’s how these tools work:

1. The user clicks and holds down the mouse button, causing the
Rectangle or Oval tool to anchor the first corner of the shape at the
location of the mouse click.

2. The user drags the mouse. As she does so, a rectangle or oval will be
drawn between the anchored corner and the current mouse location. If
the user has selected the filled version of one of these tools, the area is
filled in with the selected fill color.

3. The user releases the mouse button, causing the other corner of the
shape to be anchored to the current mouse location.

Even though they operate the same way, the code is different enough to work
on these tools separately.

158

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

Adding the DragRectangle and
DragOval Methods

First, you must add the DragRectangle and DragOval methods. Both of these
methods first refresh the area being drawn, and then check whether the user
selected the filled-in versions of either the Rectangle or the Oval tool. If so,
the object is first drawn as a filled shape. The proper line color is selected, and
the shape outline is drawn. Last of all, the LastEndX and LastEndY values are
updated so that they can be compared to the mouse position the next time the
DragRectangle or DragOval method is called. DragRectangle and DragOval
do nothing if the mouse hasn’t changed location since the last time these
methods were called.

Follow these steps to add the DragRectangle method:

1. Open the Edit menu and select the New Method command (or press
Option+Command+M).

2. Enter DragRectangle as the new method name.

3. Enter X As Integer, Y As Integer, bFill As Boolean as the new
method parameters.

4. Leave the return value blank.

5. Click OK and enter the following source code in the DragRectangle
Code Editor window:

If ((X <> nLastEndX) or (Y <> nlLastEndY)) Then
DragRefresh(nLastX, nLastY, nLastEndX, nLastEndY)
If (bFil1l) Then
PaintCanvas.Graphics.ForeColor = rgbFillColor
PaintCanvas.Graphics.FiT1Rect(nLastX, nlLastY, X-nlLastX, w
Y-nLastY)
End If
PaintCanvas.Graphics.ForeColor = rgbLineColor
PaintCanvas.Graphics.DrawRect(nLastX, nLastY, X-nLastX, Y-nlLastY)
nLastEndX = X
nLasteEndY = Y
End If

Follow these steps to add the DragOval method:

1. Open the Edit menu and select the New Method command (or press
Option+Command+M).

CHAPTER 12 + ADDING MORE DRAWING COMMANDS

2. Enter DragOval as the new method name.

3. Enter X As Integer, Y As Integer, bFill As Boolean as the new
method parameters.

4, Leave the return value blank.

5. Click OK and enter the following source code in the DragOval Code
Editor window:

If ((X <> nLastEndX) or (Y <> nlLastEndY)) Then
DragRefresh(nLastX, nlLastY, nLastEndX, nLastEndY)
If (bFi11) Then
PaintCanvas.Graphics.ForeColor = rgbFiliColor
PaintCanvas.Graphics.Fill0val(nLastX, nLastY, X-nlastX, w
Y-nlLastY)
End If
PaintCanvas.Graphics.ForeColor = rgbLineColor
PaintCanvas.Graphics.DrawOval(nLastX, nLastY, X-nlLastX, w
Y-nlLastY)
nLastEndX
nLastEndY
End If

X

When we discussed the DragRefresh code earlier in this chapter, we men-
tioned that the RefreshRect method doesn’t support negative height and width
values. You therefore needed to choose the proper corner for the X and Y coor-
dinates and calculate the appropriate height and width. You would think that
the FillRect, DrawRect, Fi110val and DrawOval functions would work the
same way, but both of these functions use the X and Y coordinates of the
upper-left and lower-right corners of the shape to specify the region of the
shape being drawn. Therefore, the proper coordinates don’t need to be chosen
and the height and width are not calculated either.

Adding the EndRectangle
and EndOval Methods

As was explained previously, use of the Rectangle and Oval tools (and their
filled-in versions) is completed when the user releases the mouse button. If the
user chose the filled versions of these tools, the EndRectangle and EndOval
methods fill in the shape, using the proper fill color, in picBuffer. Last, the
methods draw the shape outline, using the proper line color, in picBuffer.

160 PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

Recall that picBuffer is updated so that future screen refreshes will display the
proper graphic.
To create the EndRectangle method, do the following:
1. Open the Edit menu and select the New Method command (or press
Option+Command+M).
Enter EndRectangle as the new method name.
Enter bFi11 As Boolean as the new method parameters.
Leave the return value blank.

b o A

Click OK and enter the following source code in the EndRectangle
Code Editor window:

If (picBuffer <> nil) then
If (bFil11) Then
picBuffer.Graphics.ForeColor = rgbFiliColor
picBuffer.Graphics.Fil1Rect(nLastX, nLastY, w
nLastEndX-nLastX, nLastEndY-nlLastY)
End If
picBuffer.Graphics.ForeColor = rgbLineColor
picBuffer.Graphics.DrawRect(nLastX, nLastY, w
nLastEndX-nLastX, nLastEndY-nlLastY)
End If

You create the EndOval method by following these steps:

1. Open the Edit menu and select the New Method command (or press
Option+Command+M).

Enter EndOval as the new method name.

Enter bFi11 As Boolean as the new method parameters.

Leave the return value blank.

Click OK and enter the following source code in the EndOval Code
Editor window:

If (picBuffer <> nil) then
If (bFill) Then
picBuffer.Graphics.ForeColor = rgbFillColor
picBuffer.Graphics.Fill10val(nLastX, nLastY, w
nLastEndX-nLastX, nLastEndY-nlastY)
End If

bANE O A

CHAPTER 12 « ADDING MORE DRAWING COMMANDS 161

picBuffer.Graphics.ForeColor = rgbLineColor
picBuffer.Graphics.DrawOval(nLastX, nlLastY, =
nLastEndX-nLastX, nLastEndY-nLastY)
End If

Now that you've added the code for the tools, all you need to do is call these
methods where appropriate.

Changing the MouseDrag

PaintCanvas Event

As with the Line Draw tool, the Rectangle and Oval tools’ “drag” methods need
to be called from the MouseDrag event. To do this, you'll be adding cases to the
select statement. Follow these steps to call these methods where appropriate:

1. Expand the Controls item (click its disclosure triangle or double-click
Controls).

2. Expand the PaintCanvas item (click its disclosure triangle or double-
click PaintCanvas).

3. Select the MouseDrag event and add the following to the end of the
Select Case statement in the MouseDrag source code:

Case 4

DragRectangle(X, Y, false)
Case 5

DragRectangle(X, Y, true)
Case 6

DragOval(X, Y, false)
Case 7

DragOval(X, Y, true)

Each of the Drag methods is called with the bFi11 parameter set to either
false or true, to handle the fact that the Rectangle and Oval drawing tools
can be used in filled or unfilled mode.

Changing the MouseUp

PaintCanvas Event

.. Last of all, the MouseUp event needs to be changed to call the proper End
drawing tool methods. As with the MouseDrag event, the Select statement of

162 PART 11« DEVELOPING YOUR FIRST MAC PROGRAM

the MouseUp event needs to be extended to include calls to the proper End
tool method. To add the new cases to the select statement, select the MouseUp
event (located right by the MouseDrag event under the PaintCanvas item) and
enter the following source code:

Case 4
EndRectangle(false)
Case 5
EndRectangle(true)
Case 6
EndOval(false)
Case 7
EndOval(true)

If you run the application now, you'll notice that both of the Rectangle and
Oval drawing tools function properly. Go ahead and run the app, and try the
new tools by selecting each one, clicking and dragging in the drawing window,
and releasing the mouse button once the shape is the size you want it. Make
sure you move the drawing window around on the screen and resize it to test
the DragRefresh function to insure that it’s working properly.

Adding a Dtaw Shape Tool

The Draw Shape tool is a bit different from the other tools you've worked on.
They all follow the click-drag-release method of operation. The Draw Shape
tool, however, works like this:

1. The user clicks and releases the mouse button, locking one end of a
line-drawing tool. The system “remembers” this location for future
reference.

2. The user moves the mouse; the application draws a line from the
locked end of the line to the current mouse position.

3. The user clicks and releases the mouse button again, locking the other
end of the line, which is then committed to the paint canvas. A new
line is started, with its end locked at the same location as the end of the
first line.

4. The user can then move the mouse to a new location and repeatedly
single-click, drawing one line attached to the end of the previous line.

CHAPTER 12+« ADDING MORE DRAWING COMMANDS 163

5. When the user wants to stop the shape-drawing process, she double-
clicks the mouse. At this point, the system draws a line from the end of
the last line drawn to the beginning of the first line.

So, as you can see, this tool is just a bit more complicated.

Adding Properties
for the New Tools

First you're going to add some new properties that will be used to track the
location of the mouse click that started the process. You're also going to add a
property to save the time that the mouse button was released. This will be used
to calculate the difference between the time of current mouse click and the last
time the mouse was released. This helps you to determine whether a double-
click occurred.

Now, let’s add those properties:

1. Open the Edit menu and select the New Property command (or press
Option+Command+P).

2. Enter the following new properties:

bDrawingShape As Boolean
nShapeStartX As Integer
nShapeStartY As Integer
dMouseUpTime As Double

Now that you've got these new properties in place, you're going to need to
modify three events to make the new tool work: MouseUp, MouseMove, and
MouseDown.

Changing the MouseUp

PaintCanvas Event

The only thing new thing that the MouseUp event has to do is keep track of
the last time the mouse button was released. The Microseconds function
returns the number of microseconds since the computer was lasted started up.
By calculating the difference between two Microseconds return values, the
application can determine the duration between two events—in your case, the
MouseUp event and the MouseDown event.

164

Figure 12.14

The Code Editor
window for the
MouseUp event

PART Il DEVELOPING YOUR FIRST MAC PROGRAM

Here’s how to change the MouseUp event:

1. Expand the Controls item (click its disclosure triangle or double-click

Controls).

2. Expand the PaintCanvas item (click its disclosure triangle or double-
click PaintCanvas).

3. Select the MouseUp event and add the following to the top of
MouseUp source code, as shown in Figure 12.14:

dMouseUpTime

Microseconds

Changing the MouseMove

PaintCanvas Event

The MouseMove event only has to draw a line from the last anchor point of
the current mouse position. Fortunately for us, the line drawing can be accom-
plished through the use of the existing DraglineDraw method, so you won't
need to do a lot to satisfy the needs of the MouseMove event.

Here’s what you need to do:

1. Expand the Controls item (click its disclosure triangle or double-click

Controls).

2. Expand the PaintCanvas item (click its disclosure triangle or double-
click PaintCanvas).

&

< [& peintconves
B Paint
B MousaDovn
B MouseDreg
8
B MousoMove
B MouseEnter

b $D events
b %o Menu Handters
D [Mothods
b (3 Properties

Sub MoussUp(X As Integer, Y As Integer)

dMouseUpTime = Microsecands
Select Case (nCurrentTool)
Case 2

EndLineDraw
Case 4

EndRectangle(false)

se
EndRectangla(true)
Case 6
EndOval(talse)
Case 7
EndOval(true)
End Select

fi
End Sub

CHAPTER 12« ADDING MORE DRAWING COMMANDS

Figure 12.15

The Code Editor
window for the
MouseMove event

165

Sub MouseMove(X As Integer, Y As Integer)
if ((nCurrentTool = 3) and (bDrawingShape)) Then
DragLineDraw(X, Y)
EndIf
End Sub

Controls
w [B Paintcanvas
B Paint

B MouseDown
E MouseDrag
Q MouselUp
g
B MouseEnter
Bl MouseExit
B open
B Close
Bl Dropdbject
b §D Events
b To Menu Handlers
b [Methods
D (1 Properties

1]

N R

3. Select the MouseMove event and enter the following source code, as
shown in Figure 12.15:

if ((nCurrentTool = 3) and (bDrawingShape)) Then
DragLineDraw(X, Y)
End If

The MouseMove event code only calls the DraglineDraw method if the
Draw Shape tool is selected, which you can determine by checking whether
nCurrentTool is equal to a value of 3. Also, the bDrawingShape Boolean vari-
able must contain a value of true. If both of these conditions are satisfied, then
the line can be drawn.

The reason you use the MouseMove event, rather than the MouseDrag event
as with the other tools, is that the requirements of the tool don't call for click-
drag-release functionality. The Draw Shape tool draws the line while the
mouse cursor is moving, not while it’s being dragged.

Changing the MouseDown
PaintCanvas Event

The real powerhouse of the Draw Shape tool is the MouseDown event, which
is responsible for

¢ Recording the mouse click that starts a new shape-drawing process and
saving this value.

PART I+ DEVELOPING YOUR FIRST MAC PROGRAM

¢ Completing a specific line segment when the user single-clicks the

Backward .
actwar? mouse after shape drawing has been started.
compatibility |
refers to the | ¢ Drawing a line from the end of the last line segment to the beginning
capability of an of the first line segment when the user double-clicks the mouse.
application to]
NCUSIUELIE To do all these things, almost all of the code in the MouseDown event has to
?l:‘ie;‘:;::t?;f be replaced. Don’t forget, though, that the MouseDown event is also used for
‘You might have the previously created drawing tools. So any new code must be backward com-
IOILOISLI patible with the other functions.

! used to refer to
PP Lollow these steps to modify the MouseDown function to add the shape-

word-processing drawing functionality:
applicationto |
open files from a 1. Expand the Controls item (click its disclosure triangle or double-click

previous version | Controls).
of the app. The ; :
term backward 2. Expand the PaintCanvas item (click its disclosure triangle or double-

| compatibility can | click PaintCanvas).

also be used in .
reference to 3. Select the MouseDown event and change the entire MouseDown

sections of your | source code to the following, as shown in Figure 12.16:
code. i If (nCurrentTool = 3) Then
If (bDrawingShape) Then
If ((Microseconds - dMouseUpTime) < 400000) Then
DraglLineDraw(nShapeStartX, nShapeStartY)
bDrawingShape = false

.| Function MouseDown(X As Intager, Y As Intager) As Bonlean
if (nCurrentTool = 3) Then
If (bDrawingShape) Then
If ({(Microseconds - dMouseUpTime) < 400000) Then
DragLineDr peStartX, tY)
bDrawingShape = false
End if

Figure 12.16

The Code Editor
window for the
MouseDown event

E Mousel E'SE:r!LineDr:-rw
8 MouseEnter nShapeStartx = X
B MouseExit nShapestarty = Y
B opsn , bDrawingShape = trug
§ closs End If
DropGhject 2 EndIf
» @on e
" nLastY =
b Yo Mena Handters Return true
1| > @ Mothods End Function
b (& Properties .

<]
¥

ElEgmwl - <>

CHAPTER 12 +« ADDING MORE DRAWING COMMANDS 167

End If
EndLineDraw
Else
nShapeStartX
nShapeStartY
bDrawingShape = true
End If
End If
nLastX = X
nLastY =Y
Return true

Il
=L

The new code for the MouseDown event does the following:

¢ If the Draw Shape tool is selected (nCurrentTool = 3), and a shape
is currently being drawn (bDrawingShape), the time since the last
MouseUp event is calculated to determine whether a double-click has
occurred. If the user double-clicked, then a line is drawn to the
coordinates where the shape-drawing command was started. Whether
the user clicked or double-clicked, the MouseDown event code calls
the EndLineDraw method to complete the current line segment.

¢ If the Draw Shape tool is selected and a shape is not currently being
drawn, the EndLineDraw method records the location of the mouse
click, which is used to close the shape when the user double-clicks. It
also sets the bDrawingShape Boolean variable to true, so that future
mouse clicks will be handled as above.

¢ The coordinates of the last mouse click are recorded and the
MouseDown event handler returns true, indicating that the application
is handling the MouseDown event. Alert programmers will realize that
this last step is the same as the original MouseDown event handler. So,
the original tools should function with no modifications.

Whew! You just gotta love those coding marathon sessions. Anyway, now
would be a great time to save and test the project. Test the new Draw Shape
tool. Select the tool, and then single-click in the Paint window to start the
Draw Shape tool. Move the mouse—don’t click and drag—to another loca-
tion. A line should be drawn between the first click location and the current
mouse location. When you single-click again, a new line should begin at the
end of the first line.

168

Review

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

Repeat the steps above, clicking the mouse and moving to a new location, a
few times, and then double-click the mouse. A line should be drawn from the
end of the last line to the beginning of the first line.

Test it a few more times, resizing and moving the window to ensure that the
DragRefresh functions are working properly. If everything is properly coded,
then it should be working without a hitch. If youre having problems, double-
check your work, fix any problems, and try again.

By now you should have a pretty good feel for events, methods, and variables.
You've added some of each and should be comfortable with these concepts.

When working on your own projects in the future, you will find that you rely on
the REALbasic Language Reference. All the events you've worked with are
documented in the Language Reference. Now might be a good time to take a
look at some of the objects and events you've used so far. Open the REALbasic
Window menu and select Language Reference (or press Command+0) to dis-
play the Language Reference window.

Browse a bit in the Language Reference. To search for information about the
canvas, type canvas in the edit field, and click the Search button; then read up
on the object you've been working with for the last few chapters.

If you're so inclined, browse around a bit more and see what you can pick up.
Don’t be discouraged if you don’t understand a lot of what you’re reading for
now. Understanding will come in time. For now, just get a feel for the layout
of the reference.

In later chapters, you'll be adding file operations (such as Save and Open),
clipboard operations (such as Cut, Edit, and Paste) and some color and line-
width selection tools. Purely for exercise, try to find some information about
these subjects in the Language Reference. The practice will do you good.

File Operations

In This Chapter

The new menu Items

Closing and creating windows
Saving to a file

Opening an existing file

Printing your pictures

NOTE

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

ou have a simple drawing program. But what if you want to save those

wonderful works of black-and-white art so that you can retrieve them
later? You need to add some file operations so that you can save and restore
your work.

Tal: SR O

TOgI:

The New Menu Items

Figure 13.1°

The My Paint menu
with the disabled
Tools menu items

Almost all programs that perform some type of editing—be they word proces-
sors or paint programs—support at least minimal file operations: New, Open,
Close, Save, Save As, and Print. Table 13.1 illustrates what these file menu
items are supposed to do.

Clever readers may have noticed something about the menu item descriptions
above: Some of the menu items are available whether or not a Paint window
is open, while others are available only when one or more Paint windows is
open. How does one accomplish this?

Your first instinct might be to try to write some kind of code in the Paint Win-
dow EnableMenultems event to show only those menu items that you need,
but youd be running down the wrong rabbit hole with that approach. Menu
items defined in the Paint Window class are automatically disabled when all
the Paint windows are closed. Don’t believe me? Give it a try. Run the My
Paint application as is. Close the one and only Paint window, and check out
the Tools menu. All the menu items are disabled, as shown in Figure 13.1.

CHAPTER 13 ¢ FILE OPERATIONS 171

TABLE 13.1 FILE MENU OPERATIONS

Menu item

Behavior

New

Open

Close

Save

Save As

Page Setup

Print

The menu handler for the New menu item creates a new Paint window,
allowing the user to work in more than one window at a time. The New
menu item should be available whether or not a Paint window is open.

The menu handler for the Open menu item enables the user to select and
open a previously saved My Paint file using a standard File Open dialog box.
The Open menu item should be available whether or not a Paint window is
open.

The menu handler for the Close menu item allows the user to close the
currently active Paint window. The Close menu item should only be available
only if one or more Paint windows is open.

The menu handler for the Save menu item enables the user to save the
contents of the currently selected Paint window. If the contents of the Paint
window have never before been saved, a standard File Save dialog box must
be displayed, allowing the user to specify a filename. If the contents have
already been saved at least once, then selecting the Save menu item simply
updates the saved file to reflect the changes made to that file since the last
time it was saved. The Save menu item should be available only if one or
more Paint windows is open.

The menu handler for the Save As menu item enables the user to save the
contents of the currently selected Paint window. Unlike the Save menu
handler, the Save As menu handler will always display the standard Save
File dialog box, allowing the user to change the name of the file before it is
saved. The Save As menu item should be available only if one or more Paint
windows is open.

The menu handler for the Page Setup menu item enables the user to change
the printer settings for the currently selected Paint window. The Page Setup
menu item should be available only if one or more Paint windows is open.

The menu handler for the Print menu item enables the user to print the
contents of the currently selected Paint window. The Print menu item should
be available only if one or more Paint windows is open.

Adding menu items to the Paint window won’t do you any good; they’ll all be
disabled when the Paint windows are closed. The New and Open menu items
need to be available even when there are no open Paint windows. If you can’t
put the menu items and menu handlers in the Paint Window class, however,
you have to put them somewhere else—but where?

172

Figure 13.2

The new theApp
class in the Project
window and its
associated
Properties window

PART |11« DEVELOPING YOUR FIRST MAC PROGRAM

Application-Wide Menu Items

What you need is another class that remains instantiated for the entire life of
the application. That means that if the application is running, this object
should exist—unlike the Paint Window object for which an instance exists
only when at least one Paint window is open on the screen.

You need to create a new class and then change its Super property (its class
type) to Application. Creating a class of Super type Application ensures that
the instance of that class will always exist when the application is running.
Here’s how to create that class:

1. Open the Project window (open REALbasic’s Window menu and
select Project, or press Command+0).

2. Open the REALbasic File menu and select New Class. REALbasic

will add a new class to the Project window, with a class name of Class?.

3. The new class, Class1, should already be selected, but if it’s not, click it
to select it and change the following items in the Properties window:

* Change the Name property to thedpp.
¢ Change the Super property to Application.

The Project window and Properties window should appear as shown in
Figure 13.2.

int¥indow
Menu
AD

theApp

Application

E\th

NOTE

CHAPTER 13 « FILE OPERATIONS 173

Today’s Menu Items Are...

Now that you've created the new Application class, in which the My Paint
application’s File/New and File/Open menu handlers will reside, all that is left
to do for now is to create the menu items. (You'll create the menu handlers
later, some in the Paint Window class and some in the Application class.)

To create the new menu items, do the following:
1. Open the Project window (open REALbasic’s Window menu and
select Project, or press Command+0).

2. Double-click the Menu object. The Application Menu window

appears.
3. Click on the File menu item to open it to see the results.

4. Click on the blank menu item and type New. Notice that when you
begin typing, the cursor moves to the Text field of the Properties
window.

5. Tab down to the Command Key field of the Properties window and
change its value to N. This will enable the user to select the File/New
menu item by pressing the Command+N key combination when the
My Paint application is running.

6. Repeat steps 3, 4, and 5 for the following menu items:

* Create an Open . . . menu item with a CommandKey property of 0.

—-Note-the-ellipsis-(--:)-in-the-Open-menu-itemr-text;-this-lets the-user-———---

~--know-that-a-dialog-bex-will-be-displayed-when-this-menu-item-is-selected:---

T e

A A YN R S R

* Create a Close menu item with a CommandKey property of W.

* Create a Save menu item with a CommandKey property of S.

* Create a Save As . . . menu item with a blank CommandKey
property.

* Create a Page Setup . . . menu item with a blank CommandKey
property.

¢ Create a Print . . . menu item with a CommandKey property of P.

174 PART 11 DEVELOPING YOUR FIRST MAC PROGRAM

* Click on the blank menu item, type a dash (-), and press the Return
or Enter key. This will create a menu separator (the horizontal line
that you often see in menus, which is used to group together related
menu items).

* Again, click on the blank menu item, type a dash (-), and press the
Return or Enter key to create another menu separator.

7. One by one, click on each of the new menu items and drag them up or
down the menu to position them in the following order:

° New

* Open'...

¢ Close

* Save

» SaveAG. .-

* Menu separator
* Page Setup . ..
* Print...

* Menu separator

® Quit
After you've rearranged the menu items they should appear as shown in
Figure 13.3.

Now that you've created all the new menu items, you probably want to see
what they look like. Save your project and run the My Paint application as is.
You'll see the new menu items in the File menu, but none of them are acti-
vated. We'll take care of that next.

Figure 13.3

The REALbasic
Application Menu
window with the
new File menu
items arranged in
their proper order.

NOTE

CHAPTER 13 ¢ FILE OPERATIONS 175

fac 0S X automatically hides
it item as the last ites

& Quit item you created; and it insertsa~ |
the application menu. CrmmpRsiE

Enabling the New Menu Items

To enable the various menu items, you add code to the EnableMenultems
event—but which one? If you have already dug around in the Application
class, you probably noticed that there is an EnableMenultems event in that
class as well as the one in the PaintWindow class.

Remember when we mentioned that some menu items (Close, Save, Save As,
and Print) should be enabled only when a Paint window is open, while others
(New and Open) should always be enabled? This comes into play here. You'll
enable the first four menu items in PaintWindow’s EnableMenultems event,
and the other two in Application’s EnableMenultems event, like so:

1. Click on the PaintWindow class in the Project window.

2. Press Option+Tab to display the Code Editor window.

3. Expand the Events item (click its disclosure triangle or double-click
Events).

4. Select the EnableMenultems event and add the following source code
to the end of the event’s code, as shown in Figure 13.4:

FileSave.Enabled = bPictureHasChanged
FileSaveAs.Enable

FileClose.Enable

FilePageSetup.Enable

FilePrint.Enable

5. Click on the Application class in the Project window.
6. Press Option+Tab to display the Code Editor window.

7. Expand the Events item (click its disclosure triangle or double-click
Events).

8. Select the EnableMenultems event and enter the following source
code, as shown in Figure 13.5:

FileNew.Enable
FileOpen.Enable

176

Figure 13.4

The Code Editor
window for the
PaintWindow class’s
EnableMenultems
event

Figure 13.5

The Code Editor
window for the
Application class’s
EnableMenultems
event

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

b 8] controls

B canceiClose
ﬁ KeyDown
E MouseMove
E MouseEnter
B MouseExit
B Paint

Q MouseDown

Sub EnableMenultems()
ToolsFreeHand.Enable
ToolsLineDraw.Enable
ToolsDrawShape.Enable
ToolsRectangle.Enable
ToolsFilledRectangle.Enable
ToolsOval.Enable
ToolsFilledOval.Enable

FileSave.Enabled = bPictureHasChanged
FileSaveAs.Enable

FileClose.Enable

FileOpen.Enable

FilePageSetup.Enable
FilePrint.Enable
End Sub

B Mousedrag

B MouseUp

g
B} Resized

E Moved

Bl Dropobject

Sub EnableMenultems()
FileNew.Enable
FileOpen.Enable

End Sub

]v ﬁ Events
i a Open
B close
a
ﬁ NewDocument
E OpenDocument
E HandleAppleEvent
B activate
Bl Deactivate
b Do Menu Handlers
D [Methods
| D 62 New Events
I b) Properties

ST

[«<D]Z2

You probably noticed in the first section of the preceding code that the
File/Save menu item is enabled based on the value contained in the bPicture
HasChanged property. You'll need to add this property to the PaintWindow
class:

1. Click on the PaintWindow class in the Project window.

2. Press Option+Tab to display the Code Editor window.

3. Open the Edit menu and select the New Property command (or press
Option+Command+P).

4. In the New Property dialog box, enter bPictureHasChanged As Boolean
as the new property, as shown in Figure 13.6.

5. Click the OK button to close the New Property dialog box and save
the new property.

Figure 13.6

The New Property
dialog box with the
bPictureHas
Changed property
definition

Figure 13.7

The Code Editor
window for the
MouseDrag event

b D Events End Select
1l & To Menu Handlers bPictureHasChanged = ((nCurrentTaol > 0) and (nCurrentTaol < 8))

CHAPTER 13 « FILE OPERATIONS 177

' Declaration: lelcturaHasl:hanged As Buulaan [
Clmwete e T PR
[Cvisible .

/ 4|“/7E;ﬁcen') oK g

You don't need to initialize the value of the bPictureHasChanged property.
Recall that Boolean variables are automatically given an initial value of false,
which just so happens to be the value to which you want it to be initially set.
Having a value of false will cause the Save menu item to be disabled by
default each time a new PaintWindow class is created.

That said, you will need to change the value of bPictureHasChanged when the
contents of the PaintWindow window have changed:

1. Expand the Controls item (click its disclosure triangle or double-click
Controls).

2. Expand the PaintCanvas item (click its disclosure triangle or double-
click PaintCanvas).

3. Select the MouseDrag event.

4. And add the following source code to the end of the MouseDrag
event’s source code, as shown in Figure 13.7:

bPictureHasChanged = ((nCurrentTool > 0) and (nCurrentTool < 8))

Controls Sub MouseDrag(X As Integer, Y As Integer)

< [E Pointce Select Case (rCurrentTool)

&up:mw” Case 1

DragFreeHand(X, Y)

§ touscpown Case 2
] DragLinaDraw(X, Y)
B Moussup Case 4
B Mouserove DragRactangle(x, Y, false)

Case
§ MoussEnter DragRectangle(X, Y, true)

a MouseExit Case 6

B open s DragOval(X, ¥, false)
B Close Case 7
a DropObject Dragoval(X, ¥, true)

b @ Mothods End Sub
D (3 Properties

178

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

Go ahead and save your work and run the My Paint application to make sure
all the menu items are enabled (except for the Save menu item, which should
be disabled until you actually change something in the Paint window). If
something isn’t working correctly, go back and check your work and try again.

Closing and Creating Windows

Figure 13.8

The Code Editor
window for the
incredibly simple
FileClose menu
handler

Closing windows (with the File/Close menu item) and creating new windows
(with the File/New menu item) are related tasks, so let’s tackle them together.
The code for closing windows is absurdly simple so we’ll do that first, just to
get it out of the way. After completing the last task, the Code Editor for the
PaintWindow should still be open. If it’s not, click on the PaintWindow class
in the Project window and press Option+Tab. Now do the following:

1. Open the Edit menu and select the New Menu Handler command (or
press Option+Command+H).
2. Select FileClose from the Menu Item list and click OK.
3. Enter the following in the Code Editor window for the FileClose menu
handler, as shown in Figure 13.8:
Close
All that happens with the FileClose menu handler, for now, is that the

PaintWindow class Close method is called. From there, the PaintWindow class
takes over. You'll add to this function later, but this is all it needs to do for now.

The code for creating a new window is only a little more complicated than
the code for closing windows. You added the code for closing windows in

— Code Editor (PaintWindow) —

| Function Action As Boolean
Close

End Function

#] Controls
D 99 Events

1| = Mo Menu Handlers

1 B

B ToslsDrawShape

E} ToolsFilledOval

B ToolsFilledRectangle
B ToolsFreeHand

B ToslisLineDraw

B Toolsoval
E ToolsRectanglie
b @ Methods =]
{l b (3 Properties = B
EEEs |

CHAPTER 13 « FILE OPERATIONS 179

the PaintWindow class, because the Close menu handler is needed only when
a window is open. You add the code for creating new windows in the Appli-
cation class, because you need to be able to create new windows even if no
other windows are open. To add the code for creating new windows, do the
following:
1. Click on the Application class in the Project window.
2. Press Option+Tab to display the Code Editor window.
3. Open the Edit menu and select the New Menu Handler command (or
press Option+Command+H).
4. Select FileNew from the Menu Item list and click OK.
5. Enter the following in the Code Editor window for the FileNew menu
handler, as shown in Figure 13.9:

Dim w As PaintWindow
w = New PaintWindow

Even though the preceding code looks simple, what happens behind the

scenes is what really matters:

¢ The first statement defines a new variable, which is a reference to a
PaintWindow object. When the variable is defined, it has an initial
value of nil, meaning that the variable is not yet pointing to an instance
of the PaintWindow class.

¢ The second statement creates a new instance of the PaintWindow
object and saves a reference to the object in the variable that was
defined in the first statement.

CETE

b =
Function Action As Boolean

Figure 13.9

Events

The Code Editor < o Menu Haodlers Dim w As PaintWindow
window for the | 5} - ‘;u':i';’l;f'"w"d""’

il > [Methods
D §2 New Events
D (A Properties

Application class’s
FileNew menu
handler

]

[SLDT

KD

180

Figure 13.10

The REALbasic Info
window’s memory
settings

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

When the new instance of the PaintWindow object is created, its Open event
handler is called automatically and the window is displayed. These two simple
lines do so much work!

Go ahead and save your work and test the changes you just made. Run the My
Paint application. You should be able to create new windows by using the
File/New menu item or by pressing Command+N. (Don't create too many
windows, or the app will run out of memory. Just create one or two and then
close them.) You should be able to close windows by using the File/Close
menu, by clicking the window’s Close button to the left of the title bar, or by
pressing Command+W.

If you ever have problems debugging a REALbasic application due to mem-
ory constraints in an operating system other than Mac OS X, you can always
increase the memory allocated to the REALbasic application. To do so, follow
these steps:

1. Locate the REALbasic application icon and click it.

2. Open the File menu, select Get Info, and choose the Memory
command, or press Command+] and select Memory from the Show
pop-up menu.

3. Increase the value of the Preferred Size field (see Figure 13.10) until
the REALbasic application has enough memory to debug your code.

| ~Show:| Melhorv'

‘Kiod: application program . . .
. Mamory Requirements .

| ‘Suggested Size: 8192 'K‘ :
' Minimum Size:]8!92 K
K.

 Preferred Size:]16384

1 | | Nota:This appiication may require 2,557 K mors -
- i memory {f moved to another hard disk or virtust
... memory I3 turned off In the Memary ¢o

CHAPTER 13 ¢ FILE OPERATIONS 181

Saving to a File

All these modifications do a fat lot of good if you still can’t save your paintings
to disk. To do so, you'll need to add the code to the FileSave menu handler
which will save the contents of the picBuffer property to a file. You'll also need
to add code to the FileSaveAs menu handler to allow the user of the applica-
tion to save the file with a new name.

Adding Supported File Types

Before you do anything, you must first add the supported file fypes to your
REALbasic application. File types help the Finder determine what kind of
document is in use in the Mac OS and which application should be used to
open it. On a Windows PC, this function is normally handled using the file
extension at the end of the file’s name, such as .doc for a Microsoft Word doc-
ument, or .jpg for a JPEG graphic file. In the Mac OS, file type information

is stored in the file’s resource fork.

My Paint can open, modify, and save files in PICT, the graphic file format
supported directly by Mac OS 9. Youre probably familiar with it; PICT files
are created when you take a picture of the Mac OS screen using Com-

mand+Shift+3. We’ll need to add PICT to the list of file types supported by
your app. Do the following:

1. Open the Edit menu and select the File Types command. The File
Types dialog box, shown in Figure 13.11, opens.

Figure 13.11

The File Types
dialog box

182

Figure 13.12
The Add File Type
dialog box with
the new file-type
definition

PART I+ DEVELOPING YOUR FIRST MAC PROGRAM

Click the Add button to open the Add File Type dialog box.

Choose image/pict from the Name drop-down list, as shown in Figure
13.12.

Click the OK button to close the Add File Type dialog box.

Click the OK button to close the File Types dialog box and to save the
new file type.

The Filename Property

Ready to add that code yet? Hold on. Before you add the code to save to a file,
you need to add a property to the PaintWindow class that will contain the file-
name and location. This property will be used by the FileSave menu handler
to determine whether the document has been saved, and to set the default file-
name during a Save As operation. This will become more clear to you when
you see how the code works.

First, let’s add that property:

1.
2.
3.

Click on the PaintWindow class in the Project window.
Press Option+Tab to display the Code Editor window.

Open the Edit menu and select the New Property command (or press
Option+Command+P).

Enter fiPaintDocument as FolderItem as the new property, as shown
in Figure 13.13.

Click the OK button to close the New Property dialog box and save
the new property.

Figure 13.13

The New Property
dialog box with the
fiPaintDocument
property definition

CHAPTER 13 ¢ FILE OPERATIONS 183

_ Declaration: |fiPaintDocument as Folderitem |
| Cerivate —
. Ovisible

A { ,Tfa:nicel JLoex §

The FileSave Menu Handler

Now that you've taken care of the filename property, you can create the File-
Save menu handler. It’s not very complicated code, so just go ahead and cre-
ate it now; we’ll explain how it works after you've coded the handler. Follow
these steps to create the FileSave menu handler:

1. Click on the PaintWindow class in the Project window.
2. Press Option+Tab to display the Code Editor window.

3. Open the Edit menu and select the New Menu Handler command (or
press Option+Command+H).

4. Select FileSave from the Menu Item list and click OK.

5. Enter the following in the Code Editor window for the FileSave menu
handler, as shown in Figure 13.14:

dim fiSavelocation as FolderItem

if (fiPaintDocument = nil) then
fiSavelLocation = GetSaveFolderItem ("image/pict", self.Title)
if (fiSavelocation <> nil) then
self.Title = fiSavelocation.Name
fiPaintDocument = fiSavelocation
End if
End if

if (fiPaintDocument <> nil) then
fiPaintDocument.SaveAsPicture picBuffer
bPictureHasChanged = false

End if

Figure 13.14
The Code Editor
window for the
FileSave menu
handler

the lffrhen statements. Wbite@these parenthesis are not "needed 1
- REALbasic programming, they do serve to make the code easier to read. -
Other languages, like C and C++, do require the use of parenthesis. So as
to not get into religious programming debates about the merits of using
or not using parenthesis, let it be said that some programmers prefer to
use them, and others do not. Choose whichever method you’re most com-
fortable with. Whichever method you choose, try to be consistent.
Consistent coding, above all, will make your code much easier to read.

Code Editor (PaintWindow)

b &) Controls
b §J Events
= o Menu Handlers
B FileClose
8
B FileSaveas
ﬁ ToolsDrawShape

B ToolsFilledoval

B ToolsFilledRectangle
B ToolsFreeHand

Bl ToolsLineDraw

El ToolsOval

Bl ToolsRectangle

Function Action As Boolean
dim fiSavelLocation as Folderitem

if (fiPaintDocument = nil) then
fiSaveLocation = GetSaveFolderitem ("image/pict”, self.Title)
if (fiSaveLocation <> nil) then
self.Title = fiSavelLocation.Name
fiPaintDocument = fiSaveLocation
End if
End if

if {fiPaintDocument <> nil) then
fiPaintDocument.SaveAsPicture picBuffer
bPictureHasChanged = false
End if
End Function

bR Methods

g

This code first creates a new FolderItem object, fiSavelocation, to be used
later. If the document has never before been saved (that is, if the fiPaintDoc-
ument object is nil), then a standard File Save dialog box is displayed. When
the File Save dialog box is closed, the file save location is copied to the fiSave-
Location object and, as long as the user doesn’t cancel the save, the PaintWin-
dow’s title is updated and the file save location is copied to the
fiPaintDocument property.

Last, but definitely not least, the fiPaintDocument property is checked to see
if it’s nil. If it’s not nil, it’s because it wasn’t nil when the menu handler started,
or because it was changed when the File Save dialog box was displayed. In
either case, the contents of the picBuffer property are saved to the file loca-
tion specified by the fiPaintDocument property. The bPictureHasChanged
property is then set to a value of false, so that the app knows the file has not
changed since the last time it was saved.

CHAPTER 13 ¢ FILE OPERATIONS 185

Simple huh? Well, don’t sweat it too much if you don't get it. Now would be a
good time to save your work and test the app. Go ahead and do so before we
move on.

The FileSaveAs Menu Handler

Did all of your changes above work? If so, good. If not, double-check your
code and try again. Hopefully you've got the hang of what’s going on. If so,
you can probably predict what the FileSaveAs menu handler is going to look
like. Make sure that the Code Editor for the PaintWindow is open (click on
the PaintWindow class in the Project window and press Option+Tab) and
then follow these steps to create the FileSaveAs menu handler:

1. Open the Edit menu and select the New Menu Handler command (or
press Option+Command+H).

2. Select FileSaveAs from the list and click OK.

3. Enter the following in the Code Editor window for the FileSaveAs
menu handler, as shown in Figure 13.15:

dim fiSavelocation as FolderItem

fiSavelocation = GetSaveFolderItem ("image/pict"”, self.Title)
if (fiSavelocation <> nil) then

Title = fiSavelLocation.Name

fiPaintDocument = fiSavelocation

fiPaintDocument.SaveAsPicture picBuffer
bPictureHasChanged = false
End if

This code is almost identical to that of the FileSave menu handler, except that
the original filename isn’t checked first to determine if the File Save dialog box
should be displayed. The File Save dialog box is always displayed so that the

user can save the current file with a different filename.

Go ahead and save the REALbasic project and test the File/Save As modifi-
cations that you just made. You should be able to save your painting with the
File/Save and the File/Save As menu items. When you use the File/Save
menu item, you should be prompted for the filename only the first time the
file is saved. You should be prompted for the filename every time you use
the File/Save As menu item.

186

PART Il DEVELOPING YOUR FIRST MAC PROGRAM

Flgure 13.15 £2) Controls Function Action As Boolean
The Code Editor b §9 Events dim fiSaveLocation as Folderitem

window for the Tfo Menu Handlers fiSaveLocation = GetSaveFaolderitem ("image/pict”, self.Title)
FileSaveAs menu § FileClose if (fiSaveLocation <> nil) then
R Fitesave Title = fiSaveLocation.Name
handler 58 fiPaintDocument = fiSavelLocation

B ToolsDrawshape R ;i o
fiPaintDocument.SaveAsPicture picBuffer

B ToolsFilledoval bRictureHasChanged = false
B ToolsFilledRectangle End if

ﬂ ToolsFreeHand End Function
& ToolsLineDraw
B Toolsoval

R ToolsRectangle

b [Methods

EEEE

Now that all that file-saving stuff is behind you, let’s move on to the File/Open
menu item so that you can retrieve the documents you've been saving.

Opening an Existing File

The process of opening an existing file is simple enough: Prompt the user for
a filename and location, and open the file. The code to do so is pretty simple,
but keep in mind that the user should be able to open a file, regardless of
whether a Paint window is open. Do the following:

1. Click on the Application class in the Project window.
2. Press Option+Tab to display the Code Editor window.

3. Open the Edit menu and select the New Menu Handler command (or
press Option+Command+H).

4. Select FileOpen from the Menu Item list and click OK.

5. Enter the following in the Code Editor window for the FileOpen
menu handler, as shown in Figure 13.16:

Dim fiOpenDocument as FolderItem

Dim pwNewWindow as PaintWindow

fiOpenDocument = GetOpenFolderItem ("image/pict")

If (fiOpenDocument <> nil) then
pwNewWindow = new PaintWindow
pwNewWindow.picBuffer = fiOpenDocument.OpenAsPicture
pwNewWindow.Title = fiOpenDocument.Name

End if

Flgure 13.16 b D Events Function Action As Boolean
The Code Editor < o Menu Handlers Dim fidpenDocument as Folderitem
5 @1 FileNew Dim pwNewWindow as PaintWindow
window for the fiDpenDocument = GetOpenFolderltem (“image/ pid
FileOpen menu § Emmm If (fidpenDocument <> nil) then
b @ Hethods pwhewwindow = new PaintWindaw
handler b §9 New Events pwNewWindow.picBuffer = fiDpenDocument.Ope
pwNewWindow.Title = fiOpenDocument.Name
b (1 Properties P
ndi
End Function
Ead =]
FIEl e ¥7

This code simply prompts the user for an existing document to open. If the
user chooses one, a new PaintWindow object is created, the contents of the
specified file are copied into it, and the new Paint window’s title is updated.

Like always, save your work and try out the code.

Printing Your Pictures

Printing a document is a bit more complicated than the rest of the file opera-
tions. First off, you have to allow for the user to choose a specific page setup
for each document he or she prints.

Adding the PageSetup Property

When the user opens the File menu and chooses the Page Setup command,
their page-setup selections must be saved for use when the File/Print menu
item is chosen. The property you'll add here is used to save these page-setup
properties. Do the following:

1. Click on the PaintWindow class in the Project window.

2. Press Option+Tab to display the Code Editor window.

3. Open the Edit menu and select the New Property command (or press
Option+Command+P).

4. Enter strPageSetup as String as the new property, as shown in
Figure 13.17.

Figure 13.17

The New Property
dialog box with the
strPageSetup As
String property
definition

Declaration: |strPageSetup As String
- [dPrivate
 [visible

o]

5. Click the OK button to close the New Property dialog box and save
the new property.

Adding the PageSetup
Menu Handler

Now that the page-setup property exists, you'll need to create the Page Setup
menu handler. With the Code Editor for the PaintWindow open, here’s what
to do:

1. Open the Edit menu and select the New Menu Handler command (or
press Option+Command+H).

2. Select FilePageSetup from the Menu Item list.

3. Enter the following in the Code Editor window for the FilePageSetup
menu handler, as shown in Figure 13.18:

Dim psPrinterSetup As PrinterSetup

psPrinterSetup = new PrinterSetup

if (strPageSetup <> "") then
psPrinterSetup.SetupString = strPageSetup

End if

if (psPrinterSetup.PageSetupDialog) then
strPageSetup = psPrinterSetup.SetupString

End if

The PageSetup menu handler first creates a new PrinterSetup object. If a pre-
vious printer setup has already been specified, then this value, strPageSetup, is
copied to the instance of the PrinterSetup object’s SetupString property.

The menu handler then displays the Page Setup dialog box . If the user clicks
the OK button, then the new page-setup preferences are copied to the
strPageSetup dialog, so that they can be used later by the Print menu handler.

Figure 13.18
The Code Editor
window for the
FilePageSetup
menu handler

P &) controls Function Action As Boolean

w o Menu Handlers

CHAPTER 13 ¢ FILE OPERATIONS 189

Dim psPrinterSetup As PrinterSetup

psPrinterSetup = new PrinterSetup

§ FileClose if (strPageSetup <> **) then

58 psPrinterSetup.SetupString = strPageSetup

B FileSave End if

El FileSaveas it (psPrinterSetup.PageSetupDialog) then

& TeolapravShape : sdt‘rfpageSetup = psPrinterSetup.SetupString
n

8 ToolsFilledoval End Function
B ToolsFilledRectangle

B ToolsFreeHand

B ToolsLineDraw

B Teolsoval

ﬂ ToolsRectangle

o

Adding the Print Menu Handler

Now that you've set down the building blocks, you're ready to add the actual
Print menu handler. While still working in the PaintWindow Code Editor,
follow these instructions:

1.

2,
3.

Open the Edit menu and select the New Menu Handler command (or
press Option+Command+H).

Select FilePrint from the list.

Enter the following in the Code Editor window for the FilePrint menu
handler, as shown in Figure 13.19:

Dim grPrinter As Graphics
Dim psPrinterSetup As PrinterSetup

psPrinterSetup = new PrinterSetup

if (strPageSetup <> "") then
psPrinterSetup.SetupString = strPageSetup
grPrinter = OpenPrinterDialog(psPrinterSetup)

else
grPrinter = OpenPrinterDialog()

end if

if (grPrinter <> nil) then
grPrinter.DrawPicture picBuffer, 18, 18
grPrinter.NextPage

end if

The Print menu handler builds upon all the previous work to create the abil-
ity to print your documents. It begins by defining Graphics and PrinterSetup

190

Figure 13.19

The Code Editor
window for the
FilePrint menu
handler

Review

PART 11« DEVELOPING YOUR FIRST MAC PROGRAM

Code E¢ intWindo
Function Action As Boolean

Dim grPrinter As Graphics
Dim psPrinterSetup As PrinterSetup

&) Controls
b §3 Events
b g ?o Menu Handlers

8 FileClose psPrinterSetup = new PrinterSetup

B FilePageSetup If (strPageSetup <> ") Then

38 psPrinterSetup.SetupString = strPageSetup

B FileSave grPrinter = OpenPrinterDialog(psPrinterSetup)
a Files Else

grPrinter = OpenPrinterDialog()
End If
If (grPrinter <> nil) Then
grPrinter.DrawPicture picBuffer, 1, 18
End If
End Function

B ToolsDrawShape

B ToolsFilledoval

Bl ToolsFilledRectangle
Bl ToolsFreeHand

E] ToolsLineDraw

E ToolsOval

|=]
*
D]

objects, which are used later in the menu handler. The menu handler creates
an instance of a PrinterSetup object; if a previous page-setup string, strPage-
Setup, exists, it copies the previous setup values to the current printer setup. It
then creates the instance of the grPrinter graphics object, using the current
printer setup values. If a previous printer setup wasn't selected by the user, an
instance of the grPrinter graphics object is created, using the default printer
setup values.

If either method of creating the instance of the grPrinter graphics object suc-
ceeds, then the contents picBuffer will be drawn to the grPrinter graphics
object.

Now would be a good time to save that work, as always, and test your modifi-
cations. Make sure everything works, and double-check your work if you have
any problems.

In this chapter you learned how to add menu items that are smart enough to
appear and disable themselves as needed so users won't be confused as they
open, save, and print their work. These are common to virtually every Macin-
tosh application so return to this chapter again as you build your own applica-
tions to refresh your memory.

Some developers have created variations on “Save As,” such as “Save a Copy.”
You may find your app may have a need for such a command if you want to
ensure that a user’s document will not be changed accidentally or should you
want to provide other file management options. Just remember: In a Macin-
tosh application, less is more. Don’t overdo the features of your application.

Editing Operations

In This Chapter
e Working with the clipboard

® The new source code
® The paste feature
e The copy feature

® The clear and cut features

192

Figure 14.1

A simple
representation of
the clipboard
operation

~PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

our little paint program is coming along quite well. You have controls for

different drawing tools, and can even save, open, and print files.
Although what you have is a perfectly serviceable application, there is one
important common feature that you need to consider: editing.

Almost all editing programs, whether they allow the user to edit text or graph-
ics, have the capability to copy, cut, and paste information to and from the
clipboard. The c/ipboard, in case you're not aware, is a portion of the computer’s
memory that has been set aside to allow programs to copy information to other
locations within the same document, multiple documents within the same
application, or documents within multiple applications. Figure 14.1 illustrates
the use of the clipboard.

Application One Information pasted into the clipboard from Application One,
Document 1 can be pasted back into Application One,
Document 1 or into Application One, Document 2 and

even into the Application Two Document.

Application Two

[——

Clipboard

| 7

CHAPTER 14 « EDITING OPERATIONS 193

Working with the Clipboard

Any type of data can be copied and pasted to and from the clipboard, but the
two most common types are text and graphics. REALbasic allows access to the
clipboard using the clipboard class, shown here:

Dim ¢ as Clipboard
¢ = new Clipboard

When an instance of a clipboard object is created, the application can then call
members of this class to perform various operations related to the clipboard.
For example, to copy text to the clipboard, youd do something like the
following:

Dim ¢ as Clipboard
¢ = new Clipboard
If (¢ <> nil) Then // the memory for the class might not have w
been available
c.text = "A11 your base are belong to us."
c.close // you have to close the clipboard, or an error will occur
End If

This code first attempts to create an instance of the clipboard class and makes
sure it was created successfully. If the clipboard object was created, then the
value of the clipboard’s text property is set to the string specified. The clip-
board is then closed. Closing the clipboard actually copies the data from the
clipboard class to the actual system clipboard. If you don’t close the clipboard
within the method or event handler in which the clipboard object was instan-
tiated, an error will occur.

If you want to check for data in the clipboard, and copy the data to a variable
within your application, youd do something like this:

Dim ¢ as Clipboard
Dim str as String
¢ = new Clipboard
If (¢ <> nil) Then // the memory for the class might not have =
been available
If (c.TextAvailable) Then
str = c.text

194

Figure 14.2

The standard Edit
menu items

PART 11 DEVELOPING YOUR FIRST MAC PROGRAM

End If
c.close // you have to close the clipboard, or an error will =
occur

End If

As you can see, copying data to and from the clipboard in REALbasic is rela-
tively easy. The REALbasic clipboard class also provides methods for copying
picture data as well. Using the PictureAvailable and Picture properties allows
the application to copy pictures to and from the clipboard just as easily as text.

The Edit Menu Items

Fortunately, you don’t really need to do anything when it comes to the Edit
menu items, which are shown in Figure 14.2. The REALbasic project editor
already includes all the standard menus needed to perform all the basic edit-
ing functions. You might want to double-check the menu items, however, just
to be sure that they’re still there, in case you accidentally deleted one or two
of them.

If any of the Edit menu items is missing, or out of order, correct the problem
now before moving on. To edit the menu items, double-click the Menu icon on
the REALbasic Project window. From there, just drag and drop property set-
tings. If the Properties window isn't visible, enable it by opening the Window
menu and selecting Show Properties, or by pressing Command+Option+2.

CHAPTER 14 ¢« EDITING OPERATIONS 195

The New Source Code

The code you'll be adding for the menu items needs to support the Edit menu
items: Copy, Clear, Cut (which is just a copy followed by a clear), and Paste.
Adding an Undo option is something we’ll leave for you to figure out on your
own.

You'll also add a new control to the Paint window, which will be used to han-
dle pasting a picture into the window. Adding a control will enable you to drag
the pasted-in picture around before the application copies it to the Paint win-
dow. You'll be adding event handlers to the new control to allow for the drag-
ging feature to work.

As far as changes to the PaintWindow class itself, you'll be enabling the Edit
menu items, adding methods for selecting areas of the paint window, copying
to the clipboard, clearing a portion of the picture, and pasting from the clip-
board. You'll also be modifying some existing methods and event handlers.
Lastly, you'll be adding the menu handlers for the Edit menu items.

Before you get started, open the Step 4 version of the My Paint REALbasic
project, and save it as Step 5 before moving on.

The New Properties

First, add some properties to the PaintWindow class, which will be used by
the new methods, menu handlers, and event handlers that you’ll be adding to
the PaintWindow class.

To add the menu items, select PaintWindow in the Project window, and press
Option+Tab to display the Code Editor window. Then open the Edit menu
and select the New Property item, or press Command+Option+P to add each
of the new properties described in Table 14.1. Figure 14.3 shows the resulting
Code Editor window.

196

PART 11« DEVELOPING YOUR FIRST MAC PROGRAM

TABLE 14.1 THE NEW PROPERTIES FOR THE EDIT FUNCTIONS

Property Definition

Description

nPasteDraglLastX As Integer

nPasteDraglastY As Integer

nLastMouseX As Integer

nLastMouseY As Integer

bSelectionAvailable As Boolean

Used during the paste functions while dragging the pasted
image. This, along with the nPastDraglLastY property, will
be used as the location where the pasted-in image should
be dropped.

Also used during the paste dragging functions.

Used to keep track of the last mouse position, so that you
know where to begin pasting the image in the clipboard.

Used along with the nLastMouseX property.

This property will contain a value of true when the user
has selected an area of the picture using the selection tool.

Figure 14.3

Look at all the
properties! The five
new properties have
added to the ever
growing list of
properties for the
PaintWindow class.

b o Menu Handlers
b [Methods
w (3 Properties

[873 bDrawvingShape As Boolean
@11 bPictureHssChanged As Boolean
[Bf] bSelectionAvailable 4s Boolean
B3 dMouselipTime As Double

B fiPaintDocument as Folderitem
(£ nCurrentTool As Integer

(351 nLestEndX As Integer
nLastEndY As Integer

(53 nLastMouseX As Integer

(313 nLastMouseY As Integer

(7] nLestx As Integer

(i3 nLesty As Integer

({3 nPasteDraglastx As Integer
E’E} nPasteDraglasty As Integer
(] nShapeStartX As Integer

(353 nShapeStarty As Integer

[picBuffer As Picture

(5] rgbFillColor As Color

[55 rgbLineColor As Color

[A52 strPageSetup As String

[

S0

The Paste Feature

We briefly mentioned that you'd need to add a new control to handle the capa-
bility to drag the pasted-in pictures around on the Paint window before copy-
ing the pasted-in data to the Paint window. This new control, called
PasteCanvas, will act as the repository of the data that is pasted in.

CHAPTER 14 EDITING OPERATIONS 197

Adding the PasteCanvas Control
To add the PasteCanvas control, do the following:
1. If the REALbasic project Window isn't visible, open it by opening the

Window menu and selecting the Project item, or by pressing
Command+0 (numeral zero).

2. Double-click the PaintWindow class to display the window editor.

3. Drag a paint-canvas control (the control that has a picture of a blue
sky on it) from the Tools palette to the Paint window, as shown in
Figure 14.4.

hke its size and position doesn t matter because |t wrll be reS|zed and :
“moved depending on what's being pasted. e

NOTE |

4. Change the name of the control to PasteCanvas and disable the
Visible property. Figure 14.5 shows the properties of the PasteCanvas

control.

Flgure 14.4 Name PaintWindow
int- Super Applet v
The-REw et LodhallEeaanmndisiianne vl)
canvas control Placement 0 - Default v
> Width 297
being dragged onto Helight 297
i i Min¥idth 64
the PaintWindow Aoty
Window Editor. MaxWidth 32000
MaxHeight 32000
Frame 0 - Document ¥indow v
HasBsckColor
BackColor
Backdrop None v
Title Untitled
Visible
FullScreen]
MenuBarYisible
| CloseBox 4
Growicon
Zoomlcon |
BalloonHelp e |
MacProcID 0

198

Figure 14.5

The properties of
the PasteCanvas
control

PART 11 DEVELOPING YOUR FIRST MAC PROGRAM

; LockTop
LockRight

BalloonHelp
DisabledBatloonHelp
|| AutoDesctivate
Backdrop
|| Enabled

The PasteCanvas Event Handlers

Whenever a picture is pasted into the My Paint application, it will first be
copied into the PasteCanvas control. That way, the user will be able to drag the
picture around to position it where she wants it to be. That means you must
add the code for the event handlers that allow the PaintCanvas window to be
dragged around. To do so, follow these steps:

1. If it is not already selected, click on the PasteCanvas control to select it.

2. Press Option+Tab to display the Code Editor window for the
PasteCanvas control.

3. Click on the MouseDown event and enter the following code, as
shown in Figure 14.6:

nPasteDraglLastX X
nPasteDraglastY b
return true // Enables the MouseDrag event

4. Click on the MouseDrag event and enter the following code, as shown
in Figure 14.7:

PasteCanvas.Left = PasteCanvas.Left - (nPasteDraglastX-X)
PasteCanvas.Top = PasteCanvas.Top - (nPasteDraglLastY-Y)
nLastMouseX = PasteCanvas.lLeft + X

nLastMouseY = PasteCanvas.Top + Y

Figure 14.6
The code for the
PasteCanvas
control’s
MouseDown
event

Figure 14.7

The code for the
PasteCanvas
control’s
MouseDrag event

CHAPTER 14 < EDITING OPERATIONS

b [& PaintCanvas
- @Puucnm

| B Paint

8

E MouseDrag

E, MouseUp

B MouseMove

ﬂ MouseEnter

Bl MouseExit

& Open

B Close

Bl Dropobject

i) Events

E] Bl [b

N e

Function MouseDown(X As Integer, Y As Integer) As Boolean
nPasteDragLastX = X
nPasteDragLastY =Y
return true

End Function

8

E MouseUp

B MouseMove

B MouseEnter

Bl MouseExit

ﬁ Open

ﬁ Close

Bl Dropabject
b §D Events

B B @

S s A

Sub MouseDrag(X As Integer, Y As Integer)

PasteCanvas.Top = PasteCanvas.Top - (nPasteDraglLastY-Y)

nLastMouseX = PasteCanvas.Left + X
nLastMouseY = PasteCanvas.Top + Y|
End Sub

PasteCanvas.Left = PasteCanvas.Left - (nPasteDrzglLastX-X)

ISGEDT

The Edit/Paste Menu Handler

199

As we said above, the Edit/Paste menu handler doesn’t actually paste an image
from the clipboard into the PaintCanvas. Instead, it pastes the image from the
clipboard into another control, the PasteCanvas control, and makes the con-
trol visible so the user can drag the pasted image around before actually past-
ing it to the PaintCanvas control.

To make this possible, you'll need to add code that will first check whether
there is an image available in the clipboard. If an image is available on the clip-
board, the size, location, and content of the PasteCanvas control will be
changed to match that of the clipboard before making the control visible.

To add the new Edit/Paste menu handler, do the following:

1. Click the PaintWindow class in the Project window.
2. Press Option+Tab to display the Code Editor window for the

PaintWindow class.

200 PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

3. Open the Edit menu and select the New Menu Handler item, or press
Command+Option+H.

4. Select the EditPaste item from the drop-down list, and click OK.

5. Enter the following code in the Code Editor window for the EditPaste
menu handler (see Figure 14.8):

dim ¢ as clipboard

c = new Clipboard

if (c.pictureavailable) then
if (PasteCanvas.Visible) then

PasteFromC1ipboard
End if
PasteCanvas.Left = nLastMouseX
PasteCanvas.Top = nLastMouseY
PasteCanvas.Width = c.picture.Width+2
PasteCanvas.Height = c.picture.Height+2
PasteCanvas.Backdrop = NewPicture (c.picture.Width+2, =
c.picture.Height+2, Screen(0).Depth)
PasteCanvas.Backdrop.Graphics.ForeColor = RGB(192,192,192)
PasteCanvas.Backdrop.Graphics.DrawRect 0, 0, =
c.picture.Width+1, c.picture.Height+l

PasteCanvas.Backdrop.Graphics.DrawPicture c.picture, 1, 1
PasteCanvas.Visible = true
SetMenuSelection (9)

end if

c.close

 Code Editor (Paintwindo

Figure 14.8 | >

Controls Function Action As Boolean
b Events dim c as clipboard
The C.Ode :fOI' the % g Mons Headlers ¢ = new Clipboard
PaintWindow/ it (c.pictureavailable) then
EditPast 8 if (PasteCanvas.Visible) then
ste-menu § FileClose PasteFromClipboard
handler B FilePageSetu End if

B FitePrint PasteCanvas.Left = nLastMouseX
B Filesave PasteCanvas.Top = nLastMouseY
a Fil PasteCanvas.Width = c.picture.Width+2

PasteCanvas.Height = c.picture.Height+2

B ToolaDraws! g PasteCanvas.Backdrop = NewPicture (c.picture.Width+2, c.picture.Height+2, Screen(0).Depth)
E ToolsFill PasteCanvas.Backdrop.Graphics.ForeColor = RGB(192,192,152)

B ToolsFilled PasteCanvas.Backdrop.Graphics.DrawRect O, C, c.picture.Width+ 1, c.picture.Height+1

B ToolsFreeHa PasteCanvas.Backdrop.Graphics.DrawPicture c.picture, 1, 1

PasteCanvas.Visible = true

§ ToolsLinenr SetMenuSelection (3)

B Toolsoval end it

B ToolsRectang[~ c.close L
b u Methods o End Function B

CHAPTER 14 - EDITING OPERATIONS 201

The PasteFromClipboard Method

It is in the PasteFromClipboard method that the clipboard image is actually
copied from the PasteCanvas control to the PaintCanvas control. To add the
code for this method, do the following:

1. Click the PaintWindow class in the Project window.

2. Press Option+Tab to display the Code Editor window for the
PaintWindow class.

3. Open the Edit menu and select the New Method item, or press
Command+Option+M.

4, Enter PasteFromClipboard as the new method name, and click the OK
button.

5. Enter the following code in the Code Editor window for the
PasteFromClipboard method, as shown in Figure 14.9:

dim nPasteX,nPasteY,nPasteW,nPasteH as integer
PasteCanvas.Visible = false
nPasteX = PasteCanvas.Left+l

nPasteY = PasteCanvas.Top+l
nPasteW = PasteCanvas.Width-2
nPasteH = PasteCanvas.Height-2

picBuffer.Graphics.DrawPicture PasteCanvas.Backdrop, =
nPasteX, nPasteY, nPasteW, nPasteH, 1, 1, nPasteW, nPasteH

PaintCanvas.refreshRect(0, 0, paintCanvas.width, =
paintCanvas.height)

Figure 14.9

The code for
thePaintWindow/

dim nPasteX,nPasteY,nPasteW,nPasteH as integer
PasteCanvas.Visible = false

B 1% Henviisdtors nPasteX = PasteCanvas.Left+ 1

= [Methods nPasteY = PasteCanvas.Top+1

PasteFromCllpboard B DragFreeHand nPasteW = PasteCanvas.Width-2
method B DregLineDraw , nPasteH = PasteCanvas.Height-2
B pragoval picBuffer.Graphics.DrawPicture PasteCanvas.Backdrop, nPasteX, nPasteY, nPasteW, nPas

PaintCanvas.refreshRect(C, O, paintCanvas.width, paintCanvas.height)

B DragRectangle End Sub

Bl pragRefresh
B EndLineDrav
§ Endoval

B EndRectangle

[PasteFromClipboard
B setMenuSelection
D (3 Properties

202

PART 11 ¢ DEVELOPING YOUR FIRST MAC PROGRAM

The PaintCanvas Paste Events

To actually paste information into the picture, the application has to handle
three events:
¢ It must keep track of the last-known mouse position so that it knows
where to paste into the picture.

¢ It must have a handler for the mouse-click event (in the PaintCanvas
control outside of the PasteCanvas control) to know when to actually
copy the data to the picture.

¢ It needs to be able to enable the Edit menu items as necessary.

Keeping Track of the Last-Known Mouse Position

So that it knows where the user is going to attempt to paste, your application
must keep track of the last-known position of the mouse. This will allow the
program to paste the image into the picture right where the mouse is when the
user presses the Command+V shortcut for paste. All you need to do is add
code to the PaintWindow class’s MouseMove event handler:

1. Click the PaintWindow class in the Project window.
2. Press Option+Tab to display the Code Editor window for the

PaintWindow class.
3. Expand the Controls item and the PaintCanvas item.
4. Click on the Controls/PaintCanvas/MouseMove event.
5. Add the following code, as shown in Figure 14.10:

X
Y

n

nLastMouseX
nLastMouseY

Copying the Pasted Data to the Picture

When the user clicks outside the PasteCanvas control that was being dragged
around, the application knows it’s time to copy the contents of the PasteCanvas
control to the PaintCanvas control. So that your program can handle this oper-
ation, you must add the code to call the PasteFromClipboard method in the
PaintCanvas/MouseDown event. To do so, click on the Controls/PaintCanvas/
MouseDown event and insert the following code above the last End If:

CHAPTER 14 < EDITING OPERATIONS 203

elseif (nCurrentTool = 8) then
paintCanvas.refreshRect(0, 0, paintCanvas.width, =
paintCanvas.height)

elseif (nCurrentTool = 9) then
PasteFromClipboard
nCurrentTool = 8

After you add this code, the code for the PaintWindow/PaintCanvas/Mouse-
Down event handler will look like the code in Figure 14.11.

Figure 14.10

The code for the
PaintWindow/
PaintCanvas/Mouse
Move event

Sub MouseMove(X As Integer, Y As Integer)
if ((nCurrentTool = 3) and (bDrawingShape)) Then
DragLineDraw(X, Y)
End If

- PaintCanvas
B Ppaint
§ MouseDown nLastMouseX = X
Bl Mousedrag nLastMouseY = Y|
B Mouseup End Sub
8
E MouseEnter
Bl MouseExit
ﬁ Open
B close
B oropobject
i > PasteCanvas
i D ﬁ Events
D T Menu Handiers
1 b [Methods
b (2] Properties

<]

e e o

teger) As Boolean

Figure 14.11

Controis

§ = f (nCi tTool = 3) Then
The code for the ¥ I Calutcawes ' I(I’n(:l;-rrae:nngshapa))Than
PaintWindow/ § _'D If {(Microseconds - dMouseUpTime) < 400000) Then
- nShapeStartX, nShapeStar
PainiCanvas/ || 8 necnos i S e,
MouseDown event § rouseup Endie
B MouseMove EndLineDraw
Else
§ rouseEnter nShapeStartX = X
E MouseExit nShapeStarty = Y
Open bDrawingShape = true
B Close End If
& Dropobject elseif {(nCurrentTool = 8) then
Bt paintCanvas.refreshRect(0, ¢, paintCanvas.width, paintCanvas.height)
. b elseif (nCurrentTool = 5) then
§ Paint PasteFromClipboard
B MouseDown nCurrentTool = 8
] MouseDrag end if
ﬂ MoussUp
nLastX = X
§ rousertove nLasty = Y|
§ MouseEnter Return true B
End Function

204

Figure 14.12
The new code for
the PaintWindow
EnableMenultems

event

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

Enabling the Menu Items

Now it’s time to add the code to enable all the menu items. More importantly,
you'll be enabling the Paste menu item, so that you can test it after the rest of
its coding is complete. The Edit/Paste menu item is enabled only if there is
picture data available in the clipboard, which is what the PictureAvailable
check in the following code is for. Do the following:

1. Click the PaintWindow class in the Project window.

2. Press Option+Tab to display the Code Editor window for the
PaintWindow class.

3. Expand the Events item and click on the EnableMenultems event and
enter the following code at the top of the EnableMenultems source
code, as shown in Figure 14.12:

dim ¢ as Clipboard

EditClear.Enabled = bSelectionAvailable
EditCopy.Enabled = bSelectionAvailable
EditCut.Enabled = bSelectionAvailable

¢ = new Clipboard
EditPaste.Enabled = c.PictureAvailable

— Code Editor (PaintWindow)

| Sub EnableMenultems()
dim ¢ as Clipboard
8 open EditClear.Enabled = bSelectionAvailable
8 close , EditCopy.Enabled = bSelectionAvailable
B cancelCiose EditCut.Enabled = bSelectionAvailable
B Keybown
B MouseMove ¢ = new Clipboard .
a MolsE Gr EditPaste.Enabled = c.PictureAvailable
8 Mousekxit | ToolsFreeHand.Enable
ﬁ Paint ToolsLineDraw.Enable
B MouseDown ToolsDrawShape.Enable
B Mousedrag - ToolsRectangle.Enable
B MouseUp ToolsFilledRectangle.Enable
ToolsOval.Enable
8 ToolsFilledOval.Enable
Resized
B toved FileSave.Enabled = bPictureHasChanged
B Dropobject FileSaveAs.Enable
FileClose.Enable
§ activate FileOpen.Enable
8 oesctivate FilePageSetup.Enable
b o Menu Handlers FilePrint.Enable
b [Methods L1 | EndSub
b (3 Properties = |
7

T<»

CHAPTER 14 < EDITING OPERATIONS 205

Testing the Paste Function

All the coding for pasting into the My Paint program is complete, so you
should now be able to save and test your changes. If you have access to some
other paint program, then copy a portion of a picture to the clipboard in the
other program, and try to paste it into the My Paint application. If you don’t
have another paint program, you'll have to test the Paste functions after you
write the Copy functions in the My Paint tutorial.

The Copy Feature

The Paste feature has been coded, and should be working correctly (assuming,
of course, that you were able to test and debug it). Now it’s time to code the
Copy feature.

Before users of your program can copy to the clipboard, you’ll need to add a
few things. First and foremost, you need to add a Selection tool, which the
user can use to select an area of the screen to be copied. You'll then need to

add the code for the Edit/Copy menu handler.

The Selection Tool

The Selection tool is simply a drawing tool that draws a rectangle around the
area that the user wants to select for copying (or cutting) to the clipboard. In
most drawing and painting programs, the Selection tool draws an animated line
of dashes, usually called a marguee but otherwise known as “marching ants,”
around the selected area. Although it’s possible to code for marching ants in
REALbasic, it tends to get a bit complicated, so instead, you'll add code that
enables users to draw a gray rectangle around the selection rectangle.

The addition of the Selection tool, as with all other tools you've added, is
accomplished in four parts:

1. Creating the menu item

2. Adding the code to enable the new menu item

3. Adding the code to add a checkmark to the active Tools menu item

4. Creating the menu handler for the new menu item

206

Figure 14.13
The new menu
item for the
Selection tool

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

Creating the Selection Tool Menu Item
The first thing you need to do is add the new Selection Tool menu item to the
My Paint application’s Tools menu. You should be fairly familiar with this
process by now, but if not, here’s a refresher for you:

1. Double-click the Menu icon on the REALbasic Project window.

2. Select the Tools menu in the Application Menu window.

3. Add a Selection Tool entry in the last slot of the Tools menu, as shown
in Figure 14.13.

Enabling the New Menu Item
The new menu item can’t be used until it’s enabled. To enable it, use the
EnableMenultems event handler:

1. Click the PaintWindow class in the Project window.

2. Press Option+Tab to display the Code Editor window for the
PaintWindow class.

3. Expand the Events item and click on the EnableMenultems event.

4. Enter the following code below the source-code lines that enable the
other Tools menu items, as shown in Figure 14.14:

ToolsSelectionTool.Enable

Line Draw
| DrawShape
| Rectangle |
| Filled Rectangld

oval
 Filled Oval

Selection Tool

Figure 14.14

The new
PaintWindow/
EnableMenultems
event handler after
the addition of the
code to enable

the Selection Tool
menu item

CHAPTER 14 < EDITING OPERATIONS

e

€7 Controls

dim ¢ as Clipboard

EditClear.Enabled = bSelectionAvailable
EditCapy.Enabled = bSelectionAvailable
EditCut.Enabled = bSelectionAvailable

¢ = new Clipboard
EditPaste.Enabled = c.PictureAvailable

ToolsFreeHand.Enable
ToolsLineDraw.Enable
ToolsDrawShape.Enable

207

ToolsRectangle.Enable
ToolsFilledRectangle.Enable
ToolsOval.Enable
ToolsFilledDval.Enable

3@ Enabietenultems

8 Resized ToolsSelectionTool.Enable
B Moved
B Dropobject FileSave.Enabled = bPictureHasChanged
E Activate FileSaveAs.Enable
FileClose.Enable
8 peactivate FileOpen.Enable

| D Bo Menu Handlers FilePageSetup.Enable
FilePrint.Enable

{ End Sub

Updating the New Menu Item

Your Tools menu has a checkmark beside the last selected tool to make it
obvious to the user which tool is currently in use. You'll need to modify the
SetMenuSelection method to allow for the new Selection Tool menu item that
you just added:

1. Click the PaintWindow class in the Project window.

2. Press Option+Tab to display the Code Editor window for the
PaintWindow class.

3. Expand the Methods item of the Code Editor window.

4. Select the SetMenuSelection method from the list.

5. Enter the following code before the PaintCanvas.Refresh line of code
in the SetMenuSelection method, as shown in Figure 14.15:

ToolsSelectionTool.Checked = ((nCurrentTool= 8) or =
(nCurrentTool= 9))

bSelectionAvailable = false
EnableMenultems

208

Figure 14.15

The code for the
SetMenuSelection
method after the
addition of the Copy
and Paste features

PART Il DEVELOPING YOUR FIRST MAC PROGRAM

= (CodeEditor(PaintWindow) =
ub SetMenuSelection(nTool As Integer)
nCurrentTool = nTool ;
ToolsFreeHand.Checked = (nCurrentTool = 1)
b T Menu Handiers ToolsLineDraw.Checked = (nCurrentTool = 2}
< [Methods ToolsDrawShape.Checked = {nCurrentTool = 3)

B pragFreetiand ToolsRectangle.Checked = (nCurrentTaool = 4)
B pragLinedraw ToolsFilledRectangle.Checked = (nCurrentTool = 5)
B pragoval ToolsOval.Checked = {nCurrentTool = &)

ToolsFilledOval.Checked = (nCurrentTool = 7}

a PregRestangle ToolsSelectionTool.Checked = {(nCurrentTool = 8) or {nCurrenzTool = 5))

Bl pragRefresh

B pregSelection i bSelectionAvailable = false
8 EndLineDraw EnableMenultems
Bl Endoval

PaintCanvas.Refresh

ﬂ EndRectangle End Sub

a PasteFromClipboard

SetMenuSelec

b (G Properties

KIEsE

You might be wondering why, in the preceding code, you're setting the check-
mark on the Selection Tool menu item if the nCurrentTool variable contains a
value of 8 or 9. If you recall, the Paste code you entered earlier uses a value of
9 when you’re in the middle of a paste operation. Because there is really no tool
for this operation per se, yow'll mark the Selection Tool as the current tool
when a paste operation is in progress.

Also notice that you're setting the bSeTectionAvailable property to a value of
false every time a Tools menu selection changes. This is so that the selection
goes away, and the Edit menu items are disabled, if the selected tool changes.

The Selection Tool Menu Handler

Finally you can add the code to the Selection tool’s menu handler so that the
Selection tool is activated when the menu item is selected. It’s a one-liner, so
without further ado:

1. Click on the PaintWindow class in the Project window.

2. Press Option+Tab to display the Code Editor window for the
PaintWindow class.

3. Open the Edit menu and select the New Menu Handler item, or press
Command+Option+H.

4. Select the ToolsSelectionTool item from the drop-down list, and
click OK.

CHAPTER 14 « EDITING OPERATIONS 209

Figure 14.16

|| = Fo Menu Handlers Function Action As Boolean
The code for the || B EditCopy | SetMenuSelection &
ToolsSelectionTool B EditPaste | End Function
menu handler B FileClose

@, FilePageSetup
B FilePrint

ﬁ FileSave

Bl Fitesaveas

E, ToolsDrawShape

B ToolsFitledoval

B ToolsFilledRectangle

El ToolsFreeHand

[ToolsLineDraw

@ ToolsOval

B ToelsRectangle

&
Btims e %

5. Enter the following code in the ToolsSelectionTool menu handler, as
shown in Figure 14.16:

SetMenuSelection 8

Adding the DragSelection Method

Now that the Selection tool menu stuff is done, you can move on to the guts
of the code. The first thing you're going to tackle is the method for drawing
the selection rectangle in the PaintWindow. This code, not surprisingly, looks
a lot like the DragRectangle code, which is used for drawing a rectangle with
the Rectangle tool. After all, both do the same type of thing: They draw a rec-
tangle. The major differences are that the color, pen height, pen width, and
background of the rectangle are hard-coded to a specific value. Let’s go ahead
and create the method, and you'll see what we mean:

1. Click the PaintWindow class in the Project window.

2. Press Option+Tab to display the Code Editor window for the
PaintWindow class.

3. Open the Edit menu and select the New Method item, or press
Command+Option+M.

4. Enter DragSelection as the new method name.

5. Enter X As Integer,Y As Integer as the parameters.

210 PART Il DEVELOPING YOUR FIRST MAC PROGRAM

Flgure 14.17 P § Events Sub DragSelection(X ?s In(teger, ¥ As Integer)
1 if ((nLastEndX <> X) or (nLastEndY <> Y}) then
The code for the 1 :%’ :::.:“h" bSelectionAvailable = ((nLastX <> X) and (nLastY <> Y))
new DragSelection EnableMenultems
B CopyToClipboard DragRefresh nLastX, nLastY, nLastEndX, nLastEndY
method [l B bragrreetand PaintCanvas.Graphics.ForeColor = RGB (162,192,152)
E] DragLineDraw PaintCanvas.Graphics.PenWidth = 1
B pragoval PaintCanvas.Graphics.PenHeight = 1

PaintCanvas.Graphics.drawRect nLastX, nLastY, X - nLastX, ' - nLastY
nLastEndX = X
B pragefrosh nLastEndY = Y

3§ end if

B EndLineDraw End Sub

B Endoval

B} EndRectangle

B PasteFromClipboa)

a SetMenuSelection
» (3 Properties

& DpragRectangle

@4}){

[a¥]z

6. Leave the return type blank and click OK.

7. Enter the following code in the DragSelection method, as shown in
Figure 14.17:

if ((nLastEndX <> X) or (nlLastEndY <> Y)) then
bSelectionAvailable = ((nLastX <> X) and (nlLastY <> Y))
EnableMenultems
DragRefresh nlLastX, nlastY, nlLastEndX, nlastEndY
PaintCanvas.Graphics.ForeColor = RGB (192,192,192)
PaintCanvas.Graphics.PenWidth = 1
PaintCanvas.Graphics.PenHeight =1
PaintCanvas.Graphics.drawRect nlLastX, nlastY, X - nlLastX, =
Y - nlastY
nLastEndX
nLastEndY

end if

The MouseDrag Event
Handler Changes

Just as with the other tools, you'll need to modify the PaintCanvas/Mouse-
Drag event handler so that it calls the appropriate drag method depending on
the currently selected tool—in this case, the DragSelection method:

1. Click the PaintWindow class in the Project window.

2. Press Option+Tab to display the Code Editor window for the
PaintWindow class.

Figure 14.18

The code for the
MouseDrag event
handler, after
adding the case for
DragSelection

3.

4.

Case 2

5% DragLineDraw(X, Y)

B Mouseup Case 4

H MouseMove DragRectangleiX, Y, talse)

8 MouseEnter

8 MouseExit 4l Ccases

8 open Dragoval(X, Y, false)

B closs Case

B bropobject Dragoval(X, Y, true)
> &

CHAPTER 14 ¢ EDITING OPERATIONS 211

Sub MouseDrag(X As Integer, Y As Integer)
y Select Case (nCurrentTool)
Case 1
DragFreeHand(X, Y)
>

ase S
DragRectangle(X, Y, true)

PasteCanvas

case 8
DragSelection(x, y)

b 93 Events End Select ’

D B Menu Handlors

b @ Mothods bPictureHasChanged = ({nCurrentTool > 0) and {nCurrentTool < 8))

End Sub

Expand the Controls and PaintCanvas items in the Code Editor
window.

Select the MouseDrag event handler and insert the following code
above the End Select line of code, as shown in Figure 14.18:

case 8
DragSelection(x, y)

The CopyToClipboard Method

You're almost there, almost ready to actually add the EditCopy menu handler,
but not quite. You need to create a method that will be used to copy data from
the PaintCanvas, based on the current selection rectangle, to the clipboard.
You could just put the following code in the EditCopy menu handler, but
because you want to be able to reuse the code elsewhere, you'll create a new
method instead:

1.
2.

Click the PaintWindow class in the Project window.

Press Option+Tab to display the Code Editor window for the
PaintWindow class.

Open the Edit menu and select the New Method item, or press
Command+Option+M.

Enter CopyToC1ipboard as the new method name, and click the OK
button.

Enter the following code in the CopyToClipboard method, as shown in
Figure 14.19:

212 PART 11 DEVELOPING YOUR FIRST MAC PROGRAM

= i de Editor (Paintwind = =
Flgure 14- 19 b B controls | | Sub CopyToClipboard{)
dim c As Clipboard
The code for b e Mens Handi dim p as Picture
the new ol r;::od’ e dim x1, X2, ¥1, ¥2, nWidth, nHeight as integer
COpyTOC”pboard 8 if (nLastX < nLastEndX) then
B DragFreetiand x1 = nLastX
methOd a DragLineDraw x2 = nLastEndX
glse
g :::?a:: . i X1 = nLastEndx
Sl %2 = nLastX
{ pragRefresh end if
DragSelection v
g EndLineDraw : if (nLastY < nLastEndY) then
y1=nLasty

% ::“m": Y2 = nLastEndy
ctangle b slse

Bl PesteFromCiipboard| | y1 = nLastEndy
B setMenuSelection ¥2 = nLasty
b (3 Properties : endif

nWidth = x2-x14+1
nHeight = y2-y1+1

p = NewPicture (nWidth, nHeight, Screen(©).Depth)

p.Graphics.DrawPicture PicBuffer, &, Q, nWidth, nHeight, x1, y1, nWidth, nHeight
€ = new Clipboard

c.Picture =p

c.close

bSelectionAvailable = false

EnableMenultems

DragRefresh x1, y1, x2, y2
End Sub

dim ¢ As Clipboard
dim p as Picture
dim x1, x2, yl, y2, nWidth, nHeight as integer

if (nLastX < nlLastEndX) then

x1 = nlastX

x2 = nlLastEndX
else

x1 = nlLastEndX

x2 = nlLastX
end if

if (nLastY < nlLastEndY) then

yl = nlastY

y2 = nlLastEndY
else

yl = nlLastEndY

y2 = nlastY
end if

nWidth = x2-x1+1

CHAPTER 14 ¢ EDITING OPERATIONS 213

nHeight = y2-yl+1

p = NewPicture (nWidth, nHeight, Screen(0).Depth)

p.Graphics.DrawPicture PicBuffer, 0, 0, nWidth, nHeight, =
x1, yl, nWidth, nHeight

¢ = new Clipboard

c.Picture =p

c.close

bSelectionAvailable = false
EnableMenultems
DragRefresh x1, yl, x2, y2

This code looks pretty complex, but it really isn’t. It starts by defining a few
variables, the most important of which is the clipboard variable. It then figures
out what the proper upper-left and lower-right corners of the rectangle should
be, and calculates the width and height based on these values. The contents of
the PicBuffer are copied to a new picture, based on all these calculated values.
The contents of the new picture are then placed in the clipboard. At this point,
the Edit menu item status is refreshed and the selection rectangle is removed
from the screen.

The New EditCopy Menu Handler

Now that all the behind-the-scenes work is done, you can add the EditCopy
menu handler. The code for this menu handler is amazingly simple, because
all the work is being done in other methods:

1. Click on the PaintWindow class in the Project window.

2. Press Option+Tab to display the Code Editor window for the
PaintWindow class.

3. Open the Edit menu and select the New Menu Handler item, or press
Command+Option+H.

4. Select the EditCopy item from the Menu Item drop-down list, and
click OK.

5. Enter the following code in the EditCopy menu handler, as shown in
Figure 14.20:

CopyToClipboard

214 PART 11 DEVELOPING YOUR FIRST MAC PROGRAM

. ode Editor (PaintWindow)
(7] Controls function Action As Boolean

Figure 14.20

The deceptively b §4 Events CopyToClipboard
simple code for the w fFo Menu Handlers . End Function
EditCopy menu || 8
handler Bl EditPaste

B FiteClose
Q FilePageSetup
B FilePrint

B Fitesave

The code for the menu handler might be simple—one line and no parame-
ters—but what happens behind the scenes is where the complexity comes in.
All the supporting methods and properties used by this simple menu handler
are fairly complex, but when broken into smaller chunks, they become much
more manageable.

The Clear and Cut Features

The last two Edit menu items you'll be working on are the Clear and Cut
items; both are similar in function. The Clear menu item clears the area of the
window selected with the Selection tool. The Cut menu item does the same
thing, after copying the contents of the selected rectangle to the clipboard.

The New ClearSelection Method

The ClearSelection method is used when the user chooses the Edit/
Clear menu item, and is also used by the Edit/Cut menu item. By creating
a ClearSelection method rather than putting this code in the EditClear menu
handler, you can take advantage of code reusability. Here’s how it’s done:

1. Click the PaintWindow class in the Project window.

2. Press Option+Tab to display the Code Editor window for the
PaintWindow class.

3. Open the Edit menu and select the New Method item, or press
Command+Option+M.

4. Enter ClearSelection as the new method name, and click the OK
button.

Figure 14.21

The code for the
new ClearSelection
method, which will

shortly make your
life much simpler

CHAPTER 14 < EDITING OPERATIONS 215

picBuffer.Graphics.ForeColor = RGB{255, 258, 255)
picBuffer.Graphics.FillRect nLastX, nLastY, nLastEndX-nLastX, nLastEndY-nLastY
bSelectionAvailable = false
EnableMenultems
DragRefresh nLastX, nLastY, nLastEndX, nLastEndY
End Sub

e

i ’ Events

il b B Menu Hondlers

m Methods
S8cicorSelection

B copyToClipboard

B DPragFreeHand

a DragLineDraw

B pragoval

§ DragRectangle

B pragRefresh

E DragSelection

% EndLineDraw

v
<2

5. Enter the following code in the ClearSelection method, as shown in
Figure 14.21:
picBuffer.Graphics.ForeColor = RGB(255, 255, 255)
picBuffer.Graphics.FillRect nlLastX, nlLastY, =
nLastEndX-nLastX, nLastEndY-nlLastY
bSelectionAvailable = false
EnabTeMenultems
DragRefresh nLastX, nlLastY, nlLastEndX, nlastEndY

The EditClear Menu Handler

As we said earlier, the EditClear menu handler will use the code in the
ClearSelection method; as a result, the code for this menu handler is amaz-
ingly simple. All it needs to do is clear the selected area of the Paint window
using the ClearSelection method:

1. Click on the PaintWindow class in the Project window.

2. Press Option+Tab to display the Code Editor window for the
PaintWindow class.

3. Open the Edit menu and select the New Menu Handler item, or press
Command+Option+H.

4. Select the EditClear item from the Menu Item drop-down list, and
click OK.

5. Enter the following code in the EditClear menu handler, as shown in
Figure 14.22:

ClearSelection

216

Figure 14.22

The deceptively
simple code for the
EditClear menu
handler

Figure 14.23

The even-more
deceptively simple
code for the EditCut
menu handler

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

Code Editor (PaintWindow)

Function Action As Boolean
| ClearSelection
b ot | End Function
= o Menu Handlers
g
B Editcopy
B EditPaste
B FileClose

The EditCut Menu Handler

Just like the EditClear menu handler, the EditCut menu handler uses pre-
existing code, so the actual menu-handler code is also very simple. All it needs
to do is copy the selection to the clipboard and then clear the selected area of
the Paint window:

1. Click on the PaintWindow class in the Project window.

2. Press Option+Tab to display the Code Editor window for the
PaintWindow class.

3. Open the Edit menu and select the New Menu Handler item, or press
Command+Option+H.

4. Select the EditCut item from the Menu Item drop-down list, and click
OK.

5. Enter the following code in the EditCut menu handler, as shown in
Figure 14.23:

CopyToClipboard
ClearSelection

Code Editor (PaintWindow) =

Function Action As Boolean
CopyToClipboard
ClearSelection

End Function

Review

CHAPTER 14 - EDITING OPERATIONS 217

The last two code examples aptly demonstrate the power of code reusability. It
is possible to write code that is very readable, but that at the same time does a
lot of work. You should always keep in mind, however, that code reusability
comes at the expense of performance. Don’t overuse code reusability just for
the sake of simplifying code. If the code you're writing has performance con-
siderations, you may want to avoid, or at least keep to a minimum, the amount
of reusable code you write.

What started out sounding fairly simple—copying data to and from the clip-
board—turned into quite a task! Sometimes, what sounds like a simple pro-
gramming task may in fact balloon into a much more complicated one. Always
consider the user-interface elements and the structure of your program when
assessing the difficulty of a task. What seems like a simple change might
require you to work with many parts of your program. You can save time by
sitting down in advance and figuring out how you’re going to achieve any goal,
rather than just jumping in and doing the coding.

After reading the chapter, you should be comfortable adding new controls to
a window and hiding them in response to conditions in your program. You
could do this with buttons, text, and just about every other window control as
well. Controls in windows don’t have to be static items; they can respond to
and change based on the conditions of your application.

You began by learning about the clipboard functions, and about how data is
moved to and from the clipboard, concentrating on the functions for copying
text to and from the clipboard. You then learned about the Paste feature, start-
ing with the PasteCanvas control. You added code for pasting from the clip-
board into the control, and then copying the data from the control to the
window.

For the Copy feature, you added a new menu item and the methods used
by the new tool, and modified its menu handlers and event handlers. Lastly,
you added the code to copy the data from the clipboard to the PaintCanvas
control.

218 PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

Finally, you coded the Clear and Cut functionality. The Clear feature required
new coding, but you created the Cut feature by combining the Clear and Copy
features, enabling you to reuse code. Although code reusability can be a great
thing, it can negatively affect program performance.

Tool Palettes
and Cursors

In This Chapter

e (reating tool palette icons
® (reating a tool palette window

e Mapping the tools to the menu items

Creating the tool cursors

e Using the appropriate cursors

220

PART Il DEVELOPING YOUR FIRST MAC PROGRAM

his chapter discusses how one goes about creating a tool palette, which is
a window that contains icons for the program’s drawing tools. We'll also
talk briefly about using custom cursors in your application (for example, you
might want to have a different cursor for each drawing tool in the application).

We'll lighten up on the tutorial stuff from now on. You should be fairly com-
fortable with using REALDbasic by now, so consider the sections that follow to
be exercises for you. If you want to attempt to add these features on your own,
feel free to do so.

A lot of the material in this chapter relies on the ability to create and edit
resource files. If you're working on pre—-Mac OS X applications, you'll want to
download and learn how to use a tool like Apple’s ResEdit or Mathemaes-
thetics’ Resourcer application. You can download any tools you'll need at the
Apple Developers Connection Tools Web site (http://developer.apple.
com/tools). We aren’t going to get into how to use these tools; you'll find
plenty of documentation about these tools on the Apple Developers Connec-
tion site.

Creating Tool Palette Icons

When you create tool palette icons, you'll add them to a resource file created
using one of the tools we talked about in the preceding section. After you've
created your icons, save the resource file, naming it Resource, and place it in the
same folder as your REALDbasic application.

The file must be named Resources so that you can drag and drop it into the
REALbasic project window. For example, suppose you've created a resource
file in ResEdit with four icons (which, by the way, are created via ResEdit’s
Resource/Create New Resource menu item, shown below in the “cicns” win-

dow). It would look something like the one in Figure 15.1.

r~ P——— S — . S 1 WO s S T et R AR AR 505 AR NS

g

Figure 15.1

Four icons defined
in a ResEdit
resource file.

CHAPTER 15 « TOOL PALETTES AND CURSORS

221

o Resources
cien CURS
L]
]
0 0 S
SEERECS S MR s
ER B I 5 5 0
R 5 0 3t 0 4 i £ 0% 9 0 162 W
EEED MM o0 e S ML
1 O
L T e e e e
0 0 0 5 M
115 6 I 5 3 6 9 0 0 42 0 3 5 B
15 I 5 50 5 6 A 0
I 5 O
| 55 5 5 80 T O 0 2
i 50 06 10 00 0 000 2 0 1 B
‘503 0 2
SEEsSEnRRaEEOEnEn aaEs D IEE e
S G S e R 6)
s I 3 2 O 0 N
o 5 4 5 0 0 4 1 5 O
£ 0 W 5 5 1A W 98 3 1 6 0 A A 57 5 R
20 N 0 1
I 0 5 0
SocnelcEEEG e
Baoen ammaaEEEEC
-
3 0
-= H

Now that you've created a resource file, all you need to do is drag it into the
REALbasic Project window of your application, as shown in Figure 15.2, and
voila! You'll be able to use the icons in your REALbasic application.

Creating a Tool Palette Window

Figure 15.2

The resource file in
the REALbasic
project

If you've ever used a Macintosh drawing or painting program, you're familiar
with tool palettes. As a matter of fact, REALDbasic itself contains a tool palette.
As mentioned before, tool palettes are those windows with the thin title bars
that contain icons used to select the various application tools. A typical tool
palette window is shown in Figure 15.3. To create a tool palette window in
REALbasic, do the following:

1. Open the File menu and select the New Window item.

2. Change the window name to ToolPalette.

222 PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

Figure 15.3

A typical tool
palette window

3. Change the window frame to 3 - Floating Window. This enables you to
create a window with a narrow title bar, like you normally see in palette

windows.
4. Add one 32 x 32 image-well control to the tool palette window for
each tool that you want to add.

Figure 15.4 shows a blank tool palette window created in REALbasic.

Figure 15.4
A blank tool palette

window created in
REALbasic

MinHeight
MaxWidth
MaxHsight

3 - Floating Window
(4

None
Untitled
=

1l Fullscreen
MenuBarVYisible
CloseBox
Growlcon O
Zoomicon o
BalloonHelp
MacProcID

CHAPTER 15 « TOOL PALETTES AND CURSORS - 223

Mapping the Tools to the Menu Items

Simply creating a window, dropping some controls on it, and setting the con-
tents of those controls to some icons isn’t enough to make them work the same
as your Tools menu items. You'll need to add MouseDown event handlers to
each of the image-well controls to change the icon to the selected tool icon,
and then call the PaintWindow.SetMenuSelection method to choose the appro-
priate tool. You could do this in each image-well control’s MouseDown
method, but it would be better to create a few new methods, which would be
called from each MouseDown event:

Sub SetToolIcon (iwImageWell As ImageWell, nBaselcon As Integer, w=
bSelected As Boolean)
' Set the contents of an image-well control to one of two icons
Dim nIcon As Integer
If (bSelected) Then

nlcon = nBaselcon + 1
Else
nlcon = nBaselcon
End If
jwImageWell.image = app.ResourceFork.Getcicn(nlIcon)
End Sub

Sub SetToolSelection(nTool As Integer)
' Set each tool icon, depending on what the currently selected =

tool is
SetToolIcon(ImageWelll, 128, nTool = 1)
SetToolIcon(ImageWel12, 130, nTool = 2)
SetToolIcon(ImageWel13, 132, nTool = 3)
SetToolIcon(ImageWel14, 134, nTool = 4)
SetToolIcon(ImageWell5, 136, nTool = 5)
SetToolIcon(ImageWell6, 138, nTool = 6)
SetToolIcon(ImageWell7, 140, nTool = 7)
SetToolIcon(ImageWel18, 142, nTool = 8)
'PaintWindow.SetMenuSelection(nTool) me.image = w

app.ResourceFork.Getcicn(129)
PaintWindow.SetMenuSelection(6)

End Sub

224

PART 11 ¢ DEVELOPING YOUR FIRST MAC PROGRAM

Function MouseDown(X As Integer, Y As Integer) As Boolean
' Since this image-well control was clicked, change the tool =
selection
SetToolSelection (1)
End Sub

After making all these modifications, you want to change the original menu han-
dlers of the PaintWindow class to use the new ToolPalette.SetToolSelection
method so that you can select tools by selecting the menu items or by selecting
the icons in the tool palette. When running, the new tool palette will look sim-
ilar to the one shown in Figure 15.5 (but, obviously, with more icons).

Creating the Tool Cursors

If you've used other drawing programs before, youre no doubt aware that
when you select different drawing tools, the mouse cursor changes to reflect
the selected tool. Just as with the icons you created earlier, you'll create your
cursors in your Resource file, using the appropriate resource editor for your
operating system. You create cursors by adding CURS resources to the
resource file, like the ones shown in Figure 15.6.

Using the Appropriate Cursors

Figure 15.5
A tool palette

window taking
shape in REALbasic.

To swap to the appropriate cursor, you use the PaintWindow.SetMenuSelection
method to change the active cursor. If you create a new cursor for each tool, with
resource IDs beginning at 128, then all you need to do is add the following line
of code to the SetMenuSelection method:

PaintCanvas.MouseCursor = app.ResourceFork.GetCursor(127+nTool)

225

Figure 15.6

A few cursors
defined in a ResEdit
resource file

128 129 130

This sets the mouse cursor for the PaintCanvas control to the specified cursor
in the Resource file. If you remember, each tool is specified as tool number 1,
tool number 2, tool number 3, and so on. These tool values are added to 127,
giving values of 128, 129, 130, and so on, which are the values of the CURS
resources you'll be using.

In Figure 15.7, the cursor is displayed as the free-hand pencil cursor. If you
drag the mouse cursor off the canvas, as shown in Figure 15.8, it reverts to the
standard arrow cursor.

Figure 15.7

The PaintWindow
window, with the
free-hand pencil
mouse cursor

Figure 15.8

The PaintWindow
window, with the
standard mouse
cursor

226

Review

PART 11« DEVELOPING YOUR FIRST MAC PROGRAM

Although creating resource files might seem like a bit of a pain, it’s really not
all that bad. You can create icon (CICN), cursor (CURS), and even picture
(PICT) and sound (SND) resources within ResEdit, or the resource-editing
tool of your choice, and easily use them in your REALbasic application. Refer
to your resource-editing application for the instructions on how to create
resources.

If you want to learn more about using resources in a REALbasic application,
refer to Chapter 8 in the REALbasic Developers Guide, included on the CD-
ROM. The section titled “Working with Macintosh Resources” will give you
all the information you need on using cursor, icon, picture, and sound
resources in your apps, along with other custom resources.

This chapter is intended only to point you in the right direction to add these
new features to your application. We can’t give you all the answers and source
code this time. The implementation of these features is left as an exercise for
you. If you get stuck, refer to the REALbasic Developers Guide and Language
Reference documents included in the Open Me For REALbasic folder on the
CD-ROM that comes with this book.

By the way, don’t get overly hung up on the “right way” to write your new code.
There are countless ways to write program code, all of which will yield the
same results. It’s like walking through a forest with many paths. Each path
might have different advantages and pitfalls, but all lead to your goal, the other
side of the forest. Different designs may have benefits of performance, appli-
cation size, ease of use, and features. The design choices you make should be
based on your level of experience and the features you most value for your
application.

Finishing Touches

In This Chapter

e Adding color selection tools
® Adding line-width selection tools
e The About box: patting yourself on the back

228

PART 11« DEVELOPING YOUR FIRST MAC PROGRAM

bout the only things left to wrap up in the tutorial section of this book

are some of the finishing touches of the application. As with just about
any other project, there are always some features that youd classify as not nec-
essary, but nice to have—in other words, fluff. That said, fluff can be the dif-
ference between a mediocre product and one that’s, well, still mediocre, but
that looks better.

Seriously though, touchy-feely features often sell a product. If you had the
choice between two applications with the exact same “useful” features, but one
of them threw in some additional “purely-for-fun” features, youd probably pick
the one with the additional features, even if they weren't something you were
looking for.

Don't get me wrong. Fluff isn't what you should be concentrating on when
designing a product. Always work on the features that you deem necessary first,
and then work on the fluff later. Fluff is like dessert—you don't have it until
you've eaten your main course. The same goes for your applications. You've got
to worry about the meat of your apps before worrying about the frills.

Along the same lines as fluff is “feature creep.” Quite often, developers add
features to a product just because designing and implementing those features
is fun for the developer. Whether something is feature creep, or as some put
it, “creature feep,” is sometimes hard to judge. This is why, quite often, a lot of
software-development companies leave decisions about features to someone
other than the software developers. Sometimes marketing is best suited to
make feature decisions.

Conversely, don’t assume that just because something is fun to develop, it’s fea-
ture creep. If the feature you're adding has any measurable benefit to the user
of the application and doesn’t severely affect your development schedule, then
by all means add the feature. It’s good to get into the practice of honestly ask-
ing yourself whether the feature is absolutely necessary, or whether you are
adding it just because it would be fun/neat/cool to work on. If you can objec-
tively state that you’re adding features based on their merits, then they pass the
test and should be included in your application’s feature set.

Adding Color-Selection Tools

So maybe being able to paint and draw in color isn't quite a fluff feature. Of
course, you could argue that your application is just a sketching program in

Figure 16.1

The Color
Selection menu

Figure 16.2

The menu items in
the Color Selection
submenu

CHAPTER 16 * FINISHING TOUCHES 229

which the only tools available to the artist are pencils. In reality, however, just
about everyone expects a paint program to support color.

Adding and Enabling
the New Menu Items

First, you need to add the Color Selection menu as a submenu of the Tools
menu. To do so, simply select the blank item in the Tools menu, change the
menu’s Name property to Color Selection, and enable the SubMenu property, as
shown in Figure 16.1.

Next, add the menu items for the Color Selection submenu, just as you would
with any normal menu, so that they look like those in Figure 16.2.

You need to add the menu handlers for these new menus to enable users to
select the line or fill color, but before you do, you should add a method. That’s
because the code for the menu handlers is almost identical. By adding a
new method, you can reduce redundant code. Besides, you'll be using the
SetColorSelection method again later, so it’'s worth the effort. Add a new
method named SetColorSelection to the PaintWindow, giving it a parameter

Color Selection

ColorSelectionFillColor
nultel

230 PART Il ¢ DEVELOPING YOUR FIRST MAC PROGRAM

of bIsFillColor As Boolean. Your new SetColorSelection method code
should look something like this:

Sub SetColorSelection (bIsFillColor As Boolean)
Dim rbgSelectedColor As Color
Dim strSelectionPrompt As String

strSelectionPrompt = "Select the "

If (bIsFil1Color) Then

rbgSelectedColor = rgbFiliColor

strSelectionPrompt = strSelectionPrompt + "fill color.”
Else

rbgSelectedColor = rgbLineColor

strSelectionPrompt = strSelectionPrompt + "line color.”
End If

if (SelectColor(rbgSelectedColor, strSelectionPrompt)) then
If (bIsFill1Color) Then
rgbFil1Color = rbgSelectedColor
Else
rgbLineColor = rbgSelectedColor
End If
End If
End Sub

- ggdemmom:gs*mrmmmmram;ﬁftcgm:wgm@ee why v
~--gid-this-in-advance:-if-you-| ‘had-waited-until-now-to-doso; you - would - -
- have needed-to change all of the drawing functions so that they- support -
ed the ability to change the line and fill colors. By thinking ahead and "
desrgmng in this capablhty, you saved yourself lots of work. If you ever
suspect that some value (like our line- and fill-color values) may need to

be changed in the future, then consider making that value a property of
your class, rather than using the value dlrectly in your code. This way

| vyou can easily change it, and even allow for the user to change it, with
minimal effort on the part of the developer

NOTE

Figure 16.3

The CMYK Picker
dialog box

Figure 16.4

The Crayon Picker
dialog box

CHAPTER 16 ¢ FINISHING TOUCHES 231

The SelectColor function is used in REALbasic to select a color and return it
as one of the parameters of the function. The SelectColor function returns
true or false, depending on whether the user clicks the OK or Cancel but-
tons on the Color Picker dialogs. The function supports all the color-selection
methods available to the operations system. If your Macintosh is like
mine, you can use the CMYK, Crayon, HLS, HSV, HTML, or RGB color-
selection tools that you see in Figures 16.3-16.8. The nice thing is that you can
use any of these cool color-selection tools in your applications without having
to write a stitch of code for them. They’re part of the Mac OS and every appli-
cation gets to use them.

Select the line color. original: %

New:

Cyan: L

- %m‘“‘"’?m El

S w
?"”‘“"’2‘5""‘"56-_—75——?60 E

Yellow: %

=g %MMMO E]

Black: =} []%

25 S0 75 100

1]

Select the line color.

-

HLS Picker

HsY Picer z
‘ .

232

Figure 16.5

The HLS Picker
dialog box

Figure 16.6
The HSV Picker
dialog box

Figure 16.7

The HTML Picker
dialog box

Figure 16.8

The RGB Picker
dialog box

PART Il DEVELOPING YOUR FIRST MAC PROGRAM

Select the line color.

00°

Hue Angle: E L
saturation: [0 |%
Lightness: IE] %

Select the line color,
120° 60°

0°

Original: u

Hue Angle: E'
Saturation: [E%
[75]%

Value:

RGB Picker

Selectthe line color.

00 33

HLS Picker

Selectthe line color.

original: ‘

Green:

CHAPTER 16 * FINISHING TOUCHES - 233

You can now add the menu handlers for those new color-selection menu
items. Because you added a method previously to do the actual color-selection
itself, the code for the menu handlers will be extremely simple. For the Fill
Color menu item add a new ColorSelectionFillColor menu handler for the
PaintWindow. Here’s what the code for the Fill Color menu item looks like:

Function Action as Boolean
' The ColorSelectionFillColor Menu Handler
SetColorSelection(true)

End Function

For the Line Color menu item add a new ColorSelectionLineColor menu
handler for the PaintWindow. And here’s the code for the Line Color menu
item:

Function Action as Boolean
' The ColorSelectionLineColor Menu Handler
SetColorSelection(false)

End Function

Don’t forget that you have to add code to enable the new menu items. Add the
following code to the EnableMenultems event handler of the PaintWindow
and you should be able to test the changes:

ToolsColorSelection.Enable
ColorSelectionFill1Color.Enable
ColorSelectionLineColor.Enable

Go ahead and compile and then test the MyPaint application. You should be
able to select any color for the line or fill color and use any of the drawing tools
with those colors. If you find that you have any problems with the drawing
tools using the correct color, double-check the Drag . . . method for that draw-
ing tool to make sure it’s using the rgbFi11Color and rgbFil1Color properties
correctly.

-~~coded-incorrectly with: mmmgmﬁmmmmmmmm
vvvvv what-a DRAG! But think-of-it-like-this; you're FREE; practice-your-debug----~-]

PART 11 ¢ DEVELOPING YOUR FIRST MAC PROGRAM

Adding Color-Selection
Tools to the Tool Palette

Before you start adding the controls to handle color selection via the tool
palette, you'll need to add some properties to the application class to track
which PaintWindow window is active, so that the tool palette displays the
proper colors for the active PaintWindow window.

Keeping Track of the Active PaintWindow

First you need to add the following properties to the Application class
(theApp):

ActivePaintWindow As PaintWindow
wToolPalette As ToolPalette

Then, in the Application class’s Open event handler, add the following code
to create the ToolPalette window:

wToolPalette = New ToolPalette

At this point, you need to add the following code to the PaintWindow’s Acti-
vate event handler, which will set the Application class’s ActivePaintWindow
property whenever a new PaintWindow is created or when the user swaps
PaintWindows:

app.ActivePaintWindow = me
app.wToolPalette.UpdateColors(rgbLineColor, rgbFillColor)

WEe’ll explain what the UpdateColors function does in just a bit; just go ahead
and code it for now. Also, you'll want to add the same function-call code to the
PaintWindow.SetColorSelection method so that the colors are updated when-
ever the user chooses a new color:

app.wToolPalette.UpdateColors(rgbLineColor, rgbFillColor)

Go ahead and add the following code to the PaintWindow’s Close event han-
dler, which will clear the Application class’s ActivePaintWindow property
whenever a PaintWindow is closed:

app.ActivePaintWindow = nil

The addition of this code will help you later to prevent an error when attempt-
ing to change the selected colors if no windows are open.

Figure 16.9
The Tool Palette
dialog with the
Canvas controls
added

CHAPTER 16 * FINISHING TOUCHES

The Actual Tool Palette Work

Like always, you'll add some properties before you do any code work. First,
add the following properties to the ToolPalette dialog class, which will be used
to store the line and fill colors for the last-selected PaintWindow:

¢ rgbCurrentFillColor As Color

¢ rgbCurrentLineColor As Color

To add the Color Selection tool to the tool palette, you simply add two Can-
vas controls to the ToolPalette dialog window: one shaped like a line, and one
shaped like a box. These tools will correspond to the Line Color and Fill Color
menu items. Your Tool Palette window might look something like the one
shown in Figure 16.9 when you finish.

Now that you've added the Canvas controls, you'll want them to show the
actual color selections. You can do this by changing the Paint event handler for
these controls to include a Fi11Rect call. For the Line Color Selection Canvas
control, double-click on the control itself, then enter the code in the Paint
event handler so that that handler looks like this:

Sub Paint (g as Graphics)
g.ForeColor = rgbCurrentLineColor
g.Fil1TRect(0,0,Width,Height)

End Sub

LineColorCanvas

Canvas v

BalloonHelp

. || DisabledBalloonkelp [
AutoDeactivate [|
Backdrop None i
Enabled [i

236

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

The Fill Color Selection canvas control’s Paint event handler would look
something like this:

Sub Paint (g as Graphics)
g.ForeColor = rgbCurrentFiliColor
g.Fi11Rect(0,0,Width,Height)

End Sub

Now you'll need to add code to the MouseDown event handlers for these two
Canvas controls. The FillColorCanvas control’s MouseDown event handler

code should be

If (app.ActivePaintWindow <> nil) Then
app.ActivePaintWindow.SetColorSelection(true)

End If

And the LineColorCanvas control's MouseDown event handler should be

If (app.ActivePaintWindow <> nil) Then
app.ActivePaintWindow.SetColorSelection(false)

End If

This code calls the SetColorSelection method of the currently active
PaintWindow (if there is a currently active paint window). When the user
clicks these color-selection controls on the paint canvas, the SetColorSelection
method for the proper PaintWindow is called, displaying the proper Color
Selection dialog.

Remember that mysterious UpdateColors method we mentioned earlier?
You're going to add this to the ToolPalette dialog class now. This is where you
magically tie together the PaintWindow and the ToolPalette windows. This
method takes two colors, the fill color and line color, as parameters. The val-
ues in these parameters are stored in the ToolPalette properties that you added
when you started all this ToolPalette work. Lastly, the UpdateColors method
forces the ToolPalette’s Fill Color Selection and Line Color Selection canvas
controls to update. Here’s what the ToolPalette’s UpdateColors method looks
like:

Sub UpdateColors(rgbLineColor As Color, rgbFil1Color As Color)
rgbCurrentLineColor = rgbLineColor
rgbCurrentFil1Color = rgbFiliColor
LineColorCanvas.Refresh
Fil1ColorCanvas.Refresh
End Sub

CHAPTER 16 * FINISHING TOUCHES 237

That may seem like a lot of work, but it’s worth the effort. You should now be
able to click on the color-selection controls on your tool palette and bring up
the Color Selection dialogs. Also, when the color selection changes, be it via
clicking on the control in the tool palette or selecting the menu item, the color
of the respective control in the tool palette should be updated. Finally, you
should be able open more than one PaintWindow and change the fill and line
color in each window independent of the other windows. Swapping between
all the windows should change the colors in the ToolPalette dialog window
when you change from one window to the other.

Adding Line-Width Selection Tools

You could argue that the capability to select the width of the drawing tool’s
line is not a necessary feature, but, as we said before, most users expect a paint
application to have this feature. We’ll show you how to add it here.

Adding and Enabling
the New Menu Items

As with the color-selection tools, you must add menu items and tool-palette
controls for line-width selection. You are, however, going to do something a
little different for the menu items: you'll be adding the menu items to the
menu dynamically.

When we talk about adding menu items “dynamically,” we mean that you’re not
going to predefine the menu items. Instead, you'll add them to the menu when
the application runs. They'’re dynamic in the sense that they aren’t defined stat-
ically as a menu-item definition in the REALbasic application’s project.

Still, you need to define something in the REALbasic project to let it know that
youre going to be adding items to the menu dynamically. You do this by
adding an indexed menu item to the menu that contains the dynamic menu
items.

For example, add a Line Width submenu to the Tools menu as you did earlier
for the color-selection tools. Then, as the first and only item of the submenu,
add an indexed menu item by adding a Points menu item as a marker and
then entering an index property of 0 in the menu item’s Properties window (see
Figure 16.10).

238

Figure 16.10
The new Line Width
submenu

PART Il +DEVELOPING YOUR FIRST MAC PROGRAM

BalloonHelp
DisabledBatioonHelp

SubMenu

Points

You'll need to add the dynamic menu items at this point, so change the Appli-
cation class’s Open event handler so that it looks like the following:

Sub Open()
Dim i As Integer
Dim m As Menultem

wToolPalette = New ToolPalette

LineWidthPoints(0).Text = "1 Point"
For i =1 To 7
m = New LineWidthPoints
m.Text = str(i+l) + " Points"
Next
End Sub

The cool thing is that you only need to add one menu handler for all the
menus you just added. Because the menus are indexed, your one menu handler
will be used for all these menus. You add menu handlers for indexed menus
the same way as for other menus: by opening REALbasic’s Edit menu and
selecting the New Menu Handler item. Almost identical menu-handler code
will be added to your project window, the only difference being that an Index
parameter has been added. You'll use this parameter to determine which of the
dynamically created menus was actually chosen.

For example, say you add the LineWidthPoints menu handler to your appli-
cation. All you need to do to respond to the various menus being clicked is to

CHAPTER 16 ¢ FINISHING TOUCHES 239

create a menu handler for the LineWidthPoints menu that looks like the
following:

Sub Action(Index As Integer) As Boolean
' The LineWidthPoints Menu Handler
nLineWidthIndex = Index - 1

End Sub

That’s it! Because all youre doing is changing the line width, you don’t have
much other than that to do.

Adding an Other ... Menu

You might also want to add an Other . . . menu item to the end of the menu
items above. You'd change the code that creates the menu items to include the
following line at the end of the subroutine:

m = new LineWidthPoints
m.Text = "Other..."

WEe leave it to you to implement handling the Other . . . menu item, if you so
choose. Here’s a hint: Create a new dialog window containing a single-line
text-edit control, which allows the user to type in the value to use. When the
user selects the Other . . . menu item (index 9), you'll want to display the dia-
log and use the value typed in as the line width. It’s really not too terribly dif-
ficult, give it a shot. Look through the examples in the REALbasic Developers
Guide and see if you can figure it out. If not, don’t be too concerned; just move
on to the next step and come back to it later. Maybe you’ll have an epiphany
in the meantime.

Adding a Line-Width Selection
to the Tool Palette

There are many ways that you could enable the user to choose the line width
via the tool palette. We're going to discuss a fairly simple method of doing so:
adding a single-line text-edit control to the Tool Palette dialog, which will
enable the user to simply type the line width that she wants to use. (Sound
familiar?) After you add the text-edit control, the Tool Palette dialog window
should look something like the one shown in Figure 16.11.

240 PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

“Figure 16.11

Name EditField]
Index
Th-e Tool lf‘alette Super EditField
dialog with the Post e
Line Width control j Top 169
Width 38
added :l it B
Lockleft
LockTop
 LockRight o
= LockBattom 5
R ,
Border]
e MultiLine O
Scrol|Bar: o
Styled
Password B
‘UseFocusRing]
TextColor
| BackColor
Enabled =
Yisible
HelpTag &
BatloonHelp
~ DisabledBalloontelp :
AutoDeactivate
TextFont System
TextSize 10
Bold &
Htalic
Underline
Text
ReadOnly 5
LimitText 2

All that’s left to do is to update the line width using the contents of the selec-
tion tool. You can do this in the text-edit control’s TextUpdate event handler.
Simply modify the ToolPalette. EditField1.TextUpdate event handler to look
like the following:

Sub TextChange
app.ActivePaintWindow.nLineWidthIndex = val(me.Text)
End Sub

You might want to change the LineWidthPoints menu handler at this point,
so that it looks like this:

Sub Action(Index As Integer) As Boolean
' The LineWidthPoints Menu Handler
nLineWidthIndex = Index - 1
app.wToolPalette.EditFieldl.Text = str(Index+l)
End Sub

This change will update the contents of the tool palette’s line-width text-edit
control so that when the user chooses a line width using the menu, the tool
palette will be updated to show the new line width.

CHAPTER 16 ¢ FINISHING TOUCHES 241

~=yyidth-on the*todl'palp@ejﬁjnk"aboqv some-other-ways:to-select-the

-line-width-on-the-tool- palette -and see if you can-figure out how to make
them work.

\)

The About Box: Patting
Yourself on the Back

NOTE

If you've used your Macintosh for any length of time, you've probably noticed
that just about every application adds at least one menu item to the Macin-
tosh’s Apple menu—at the very least, an About menu item.

he st”andaxd Iocatlon‘:”for“théuAbmt menu; ”item on.a: Windmﬁ‘mmﬁ E

~tion is not the Apple menu-=after all, Windows applications don’t even- -

- '?have an-Apple menu. Instead; m ‘Windows-applications; the-About-menu--

: lltem is u3ually located in‘the. Help menu, typically the last item in the -
menu, after a menu separator To save you some work, REALbasic auto-
matically places the About menu item in the Help menu of your

Windows version of the application
_ S

When the user selects the About menu item, the program usually responds by
displaying a dialog box (most developers call it the “About box”) containing
information. Contents of the About box might include information about the
application and the company that created it, as well as trademarks, copyrights,
patent numbers, company contact information (e-mail addresses or URLs),
the company or product logo, and so on.

There is no standard for what an application’s About box should look like.
Some are simple dialog boxes, with a single OK button, that contain only the
product name and copyright information, as shown in Figure 16.12. You can
create About boxes such as these simply by using the MsgBox function to dis-
play the desired effect. Other About boxes, like the one shown in Figure 16.13,

242

Figure 16.12
A simple
About box

Figure 16.13

A more-complex
About box

PART 11+ DEVELOPING YOUR FIRST MAC PROGRAM

@ REAL Software S

m—

REALD
a C PROFESSIQNAL EDITION
® 1997-2001 REAL Software, Inc.

PMB 220, 3300 Bee Caves Road, Suite 650, Austin, TX 78746 - (512) 263-1233
All rights reserved. REALbasic is a registered trademark of REAL Software, Inc.

By : Cortis Clark, Joe Strout and William Yu. Based on original works by Andrew Barry.

Contributors : David Grogono, Jason Parsley , Geoff Periman, Lorin Rivers
Mike Bailey, David Brandt, Damon Law

Serial Number : ULEL

include bitmaps, icons, logos, or other information, like a scrolling list of cred-
its, which requires the design of a new window with multiple controls.

Regardless of how complicated you want to be, you should always include an
About box in your application. At the very least, include an About menu item
under the Apple menu, enable it, and add a menu handler in your Application
class. Then, add a MsgBox function call in the menu handler—something like
this:

Function Action As Boolean

" AppleAboutMyPaint Menu Handler

MsgBox "MyPaint Tutorial Application"+chr(13)+"Copyright, © 2001"
End Function

This way, you've at least claimed a copyright on your product, and people can
check the date to see how old your application is. By the way, the chr(13) in
the preceding code adds a line feed to the text so that the MsgBox displays two
lines of text in the About box. Also note that if you're using Mac OS X, the
About menu item will appear under the Application menu rather than under
the Apple menu.

Review

CHAPTER 16 * FINISHING TOUCHES 243

Adding these two simple features actually involved a lot of code, even though
they weren't really necessary to the application. You may find that certain fea-
tures don’t merit the effort involved in adding them. Use your best judgment
to determine how much effort is acceptable for adding a specific feature.

Even though this part of the tutorial might have seemed a bit painful, you
learned about some important things: SubMenu items, the SelectColor dialog,
how to create dynamic menus, and how to effectively use and change proper-
ties in one window from another window. All are important skills that you’ll
probably use in more than one application that you create in the future.

Finishing touches such as the ones discussed in this chapter often add just the
right amount of polish to your apps, which can distinguish your tools from
others. Remember, though, that you can’t get bogged down fiddling around
with the cosmetics of your program. If you are always cleaning it up, adding
touchy-feely features, and working in new cute ideas, then you’ll never release
your program. A program that no one ever sees, no matter how nice it looks
or what cute features it has, won't ever make a dime. Eventually, you have to
stop programming and release it already!

On the other hand, an application that is feature complete but lacks a suffi-
cient amount of spit and polish probably won't be purchased; it will sit on the
shelf unnoticed. Knowing when enough is enough can be a tough decision,
and one that will take experience to nail down. A good marketing person can
make this decision a little easier if he has a better understanding of your poten-
tial customers than you do.

Designing, developing, and marketing your application isn’t an exact science.
As with all artistic endeavors, you'll get better at it as you gain more experi-
ence. Don't let the fear of making mistakes keep you from proceeding. Sure,
mistakes can be both emotionally and financially painful, but making mistakes
can be the best way to learn.

: . N

The Age of
Mac OS X

eeisenss " S . s = g R e .
s
. . S o
] : i .
-
" X s " 4 :
; .

Enter the
World of Aqua

In This Chapter
o In the beginning

® Aqua is more than a pretty face
® A quickie tour of Mac OS X features
e Apple interface guidelines

248

PART 11l THE AGE OF MAC 0S X

hat makes a Macintosh a Macintosh is the simplicity of its graphical

interface. Despite the improvements that Microsoft Windows has
brought to PCs, the Mac OS has led in the ease-of-use department. Others in
the computing industry have complained of the rather ancient speed and per-
formance of the original Mac OS, but few will deny the success of the Mac
OS interface.

It’s important that you get acquainted with the successor to Mac OS 9
because, eventually, your applications must run on it. We thought it important
to give you a digest on the new operating system so you won’t have to go out
and buy another book for now. As a programmer, you'll need to know more
about the new operating system under the hood.

In the Beginning . ..

Mac OS X is the latest generation of an evolving operating system developed
by NeXT Computer, the company Steve Jobs created after his expulsion from
Apple in 1987 as Chairman.

The very advanced NeXT Cube computer used NEXTSTEP, yet another
UNIX~derived operating system. After NeXT stopped further production of
the Cubes, NEXTSTEP continued to grow and change under the new name
of OpenStep, Mac OS X’s grandfather.

Apple, struggling to make a revised version of the Mac OS, purchased NeXT
in 1996 in hopes of adapting the OpenStep technologies to a new Mac OS.
Apple’s first attempt, the Rhapsody project, essentially adapted most of Open-
Step’s features and programming schemes outright. This did not please Mac
OS developers because Rhapsody would force them to spend too much time
and energy in rewriting applications designed for the original Mac OS. Worse,
Apple told the developers that they could only use Objective C, a version of
the somewhat scary C programming language. Most developers (until REAL-
basic developers take over the world, that is) use C++ as their development

language.

Rhapsody was renamed as Mac OS X Server 1.0, a powerful, but still compli-
cated server OS. But Apple still had to take the lessons learned from Rhap-
sody, OpenStep, and irate developers and form something useful to replace

Mac OS 8.

CHAPTER 17 *ENTER THE WORLD OF AQUA 249

: + Rhapsody developer releases included-an Intel- ——
-~ compatible version-as well as a PowerPC version. So far, despite a
grass-roots effort on the Web in support of an Intel-compatible

version, Apple has not announced any plans for Mac OS X for Intel.
Apple has, however, released the core operating system of Mac OS

X as open-source software known as Darwin. If you're interested in
“helping the Darwin project move toward a Mac OS X-like experi-

ence on other computer hardware, visit Apple’s official Darwin Web
site at http://www.darwin.org.

Apple went back to the drawing board and fashioned portions of OpenStep
and Rhapsody’s technologies so that developers could rewrite only a portion of
their original Mac OS applications to make them work in a new Mac OS. They
also created the necessary programming tools to develop applications designed
especially for the new operating system. Developers were again given Objective
C as one development environment, but were also given Java, an impressive
programming language created by Sun Microsystems. Java gave developers new
directions, as Java code can be created once and then recompiled (converted from
program code to an application for another computer) for any other computer
that can use Java. That means you could write a Cocoa application for Mac OS
X using Java, then port the code to Windows or Linux and have the applica-
tion run on these operating systems with very little modification.

We'll talk more about Cocoa and Java in Chapter 20, “The Cocoa

Environment.”

Aqua is More than a Pretty Face

All versions of UNIX use an application called a window manager. And,
almost all members of the UNIX family use X Windows for their window
manager. As you can guess, a window manager provides the mechanics neces-
sary to draw a basic graphical interface on a computer display.

250

Figure 17.1

Mac OS X's Aqua
interface is created
through a series of

technologies
collectively known
as “Quartz.”

PART 11l « THE AGE OF MAC 0S X

X Windows provides a very simple interface called wm, and it’s not a very
pretty sight. Fortunately, X Windows is highly flexible and allows other inter-
faces to be grafted to it. Linux, the UNIX clone that’s popular in the
open—source operating system arena, offers two very popular graphical shells
for X Windows: KDE and GNOME. Other versions of UNIX used for
graphics professionals, such as IRIX from Silicon Graphics, have their own
graphical shell.

View (and Print) Different

Apple, never being a company to follow the status quo, chose something else
for the Mac OS X window manager. (See Figure 17.1.) They decided on com-
bining three technologies to make a stunning new interface environment

called Quartz.

Like X Windows, Apple divided their Quartz plan into two components: the
window manager and the graphical shell library. The Core Graphics Server, as
Mac OS X’s window manager is called, handles events and manages services

from the operating system and the graphical shell.

i Finder File Edit View Go Window Help

) W B e A

- Camei e PRI APPRCANAS

e

Applescript Caleulator

s

Dock Extras GraphicConverter US

g L)

Internet Connect Intetnet Explorer iTunes
bl Plus

] Forx
Omniweb-4.0.dmg Plus

o

tmana Cantirs Mail

CHAPTER 17 «ENTER THE WORLD OF AQUA 251

The Core Graphics Rendering component of Quartz was given the task of pro-
viding the tools needed to make the 2D elements on a display. For this, Apple
would employ three additional graphic libraries.

The first element wasn't hard for Apple to consider. OpenStep enjoyed a
rather revolutionary graphic engine named Display PostScript. It’s an Adobe
technology that allows extremely accurate reproductions of text and graphics
on a printed page. Display PostScript simply reversed that process and gave
OpenStep a smooth, detailed interface.

For the second element, Apple looked to an improved kind of Display Post-
Script. The answer was another Adobe technology: Portable Document For-
mat, or PDF. You've used this technology in Adobe Acrobat Reader to view
documents that can be read on any computer with an app that can open PDF
files. Like a PostScript—printed page, PDF gives you a what-you-see-is-what-
you-get experience whether you print or view the document.

The PDF engine in Quartz not only provides the precision display that Post-
Script generation creates, but also gives a bonus for Mac OS X in the form of
a new printing system. The Mac OS print system supports PDF as a native
element of the operating system where all applications (except those in the
Classic environment) can save their document information as PDF documents
when possible. The print system supports PostScript printers as well as inkjets
and other non-PostScript printers, and handles print previews for all Carbon
and Cocoa applications. The Classic environment isn’t supported, however;
Mac OS 9 must use its LaserWriter or other printer drivers.

OpenGL, the third element of the Core Graphics Rendering component, was
a no—brainer for Apple. When it comes to 3D graphics such as modeling or
monsters youd find in the latest realistic computer games such as Quake 3,
Apple’s continued support of OpenGL was critical to present and future appli-
cations available on other systems that don’t depend on proprietary graphic
APIs such as Microsoft DirectX.

The fourth element of Apple’s graphics technology plan was QuickTime,
Apple’s popular multimedia software used for creating and viewing video, ani-
mation, music, and the like.

Much of what you would use from Quartz, as a beginning REALbasic devel-
oper, is transparent to you since REALbasic provides you with all the neces-
sary interface tools built in Mac OS X.

252

PART Il « THE AGE OF MAC 0S X

A Quickie Tour of Mac 0OS X
Interface Features

When a traditional Mac OS user views Aqua for the first time, they are typi-
cally enchanted and confused at the same time. The Mac OS X interface is
familiar but has many new features that users must adapt to, and developers
must learn to utilize in a Carbon or Cocoa application. There are many books
on learning Mac OS X available right now, so we won't get into a detailed
analysis on all the features—just the differences you should remember when
creating an app that will work in Mac OS 9 as well as Mac OS X.

Windows, the Finder, and the Dock

For the most part, the Mac OS X desktop isn't extremely different from pre-
vious Mac OS versions, but it returns to the desolation of the first Mac OS of
1984. The Finder remains a separate application, and its distinction from the
desktop is more apparent in Mac OS X.

Finder windows can only be moved by their title bar, unlike in Mac OS 8 and
later. Finder window contents can be shown in three different configurations:
icon view, list view, and the browser view (see Figure 17.2). The three buttons
on the left of the title bar are, from left to right, close, minimize, and maxi-
mize. A toolbar containing various Finder settings can be shown in a Finder

window and can be toggled on and off by the clear button on the right side of
the title bar.

The WindowShade feature has been replaced by the minimize effect, which
moves the window in a dramatic “genie” effect from the desktop to the right
side of the Dock. With this change, pop—up windows in the Mac OS are a
thing of the past.

The Dock combines the functions of application switching with a launcher.
Application icons can be dragged to the left side of the border where the Dock
makes an alias of the application for launching. The right side of the Dock
holds document windows from these applications. The Dock’s appearance can
be dynamically different from user to user by changing the Dock’s size and
icon magnification settings from the Apple Menu’s Dock settings. Officially,
Apple does not allow the Dock to be moved from its bottom center location
in Mac OS X version 10.0.3, however, third-party utilities can reactivate these

Figure 17.2

The Mac OS X
desktop in action.
Note the Dock
location, the Trash
icon, and the
relative size of icons
in the Finder
window. Items are
being shown in the
new Browser view.

CHAPTER 17 «ENTER THE WORLD OF AQUA 253

8 Finder File Edit View Go Window Help Fri315 PM

{ﬁg @ 7% htip./ jwww.macaddict.com/

Bookmarks History

Applescript
Caleulatar

mage Capture
nternet Connect

B omniwed

dormant features, allowing the Dock to float on any edge of the screen. Ver-
sion 10.1 of Mac OS X removes the stationary limitation of the Dock. The
Trash resides in the Dock and cannot be moved to the desktop.

The Finder’s preferences are changed from the Preferences command under
the Application menu when the Finder is the active application. Finder Pref-
erences allow you to change the desktop picture (no Mac OS 9 appearance
themes are directly supported in Mac OS X) and change a couple of additional
settings. With these preferences, it is possible for a user to hide any mounted
disks from the desktop. If the user also hides the Dock, running applications,
and closes all Finder windows, there will be a Mac OS X desktop with
absolutely nothing on it but the menu bar. (Figure 17.3) Keep this in mind as
you develop and document applications that make assumptions about a user’s
desktop appearance.

Menu Changes

When developing for REALbasic, most of the menu changes are transparent to
you when you compile your project as a Mac OS X/Carbon application. Keep in
mind, however, key changes in application and Finder menus in Mac OS X.

254

Figure 17.3

The Mac OS X
desktop, with the
Dock hidden, the

Show Disks on

desktop setting
turned off, and no
Finder windows
open, is a very
unusual sight.

PART 11l - THE AGE OF MAC 0S X

Finder File Edit View Go Window Help Fri 3:17 PM

The Application menu is located immediately right of the Apple menu. This
menu should be the location of your application’s Preferences command, if you
happen to have any preferences available to the user. The Application menu no
longer handles switching between applications; that’s now the job of the Dock.
(See the following section, “The Dock” for more information.)

The Apple menu in Mac OS X combines the commands of the Special menu
in Mac OS 9 with some features available from the old Apple Menu Options
control panel. Recent Items shows recently opened documents and applica-
tions (but not servers). The Restart, Sleep, and Shut Down commands now
reside here in addition to several new commands, including Force Quit, and
Logout. Unlike Mac OS 9, the contents of Mac OS X’s Apple menu cannot
be modified directly by users.

Same Stuff, Different Places

Mac OS 9 allowed users and developers to place all kinds of things in practi-
cally any location. In Mac OS X, this is not allowed to prevent unwanted and
potentially disastrous changes to Mac OS X’s system files or other user’s data.

Figure 17.4

The Home folder is
a Mac OS X user's
storage spot for
their documents.
All applications
are stored in the
Applications

folder and are
available to all.

CHAPTER 17 ¢ ENTER THE WORLD OF AQUA 255

Following the UNIX tradition of separate documents and workspaces, each
Mac OS X user has a login and password which allows them access to their
Home folder. The Home folder name is based on a condensed version, or short
name, of their full name created when the computer administrator (the owner)
creates their login account. Each account stores different Finder, Dock, desk-
top picture, and system settings.

Each Home folder has a built—in set of folders as illustrated in Figure 17.4.
Users can add additional folders here and in subfolders. This feature can be
advantageous to developers who develop only Mac OS X applications since
the Mac OS provides a consistent location for user documents.

As in other forms of UNIX, Mac OS X is very strict about access to folders
without proper authorization. Keep in mind that your applications can only
change what the user’s permission level allows them to change. For instance,
each user has a Library folder, which works much like the Preferences folder
in the Mac OS 9 System Folder. The Library/Preferences folder is user—
customizable, as is the user’s Library/Fonts folder. However, Mac OS X also
has a Library folder that’s restricted in most cases, and other user accounts and
their folders cannot be altered without administrative privileges.

Finder File Edit View Go Window Help

1 stevecod

Public

256

PART 111« THE AGE OF MAC 0S X

System extensions as used in Mac OS 9 no longer exist. Your applications in
Mac OS X are self-sufficient entities that don’t leech off any common system
files, for the most part. Preferences that were adjusted by Mac OS 9s control
panels are now available through the System Preferences application from the
Apple menu. As with files, applications and users must have administrator priv-
ileges to change some preference settings, such as network and startup disk set-
tings. If you happen to be porting an older REALbasic application that might
have created Mac OS 9 extensions and control panels, you will have to integrate
that functionality directly into the application or seek another alternative.

Apple Interface Guidelines

Ever look at a typical application from the Microsoft Office suite? It’s filled
with all sorts of controls and menus. To us, Microsoft Word seems more like
the cockpit of the Space Shuttle than a word processor. We wanted a computer
program, not a space program!

Why do many computer users prefer the Macintosh interface and applications
over those found in Microsoft Windows? The answer is obvious: simplicity
and ease of use. Since 1984, when the Mac OS was created (it was known sim-
ply as the System back then), Apple has taken the time to refine the Mac OS
so that it remains aesthetically appealing and easy to understand. Apple feels
that keeping programmers to a set of guidelines in Macintosh programming
keeps a level of consistency from application to application.

There’s at least two Mac OS conventions we’re sure you've noticed. In fact, so
has Microsoft. Figure 17.5 shows you both of them in a single shot.

The File and Edit menus appear in practically every Macintosh application.
Actually, they also appear in practically every Windows application as well.
These menus are the cornerstone of Mac OS interface consistency. When
commands are consistently easy to find, computer users can get their work
done faster.

It’s also easier to describe and document a well-designed Mac application once
it’s finished. Menus and buttons appear in logical locations. Labels use simple
language with as little jargon as possible. In short, because of its design, a typ-
ical Macintosh application doesn’t get in the user’s way.

Figure 17.5

The File menu, and
Edit menu, with its
Cut, Copy and Paste
commands, are
always where you
expect to find them
in almost every
application.

CHAPTER 17 ¢ ENTER THE WORLD OF AQUA 257

Fri3:21 PM

Select All ®A
Show Clipboard =
e e i i

Computer Home Favorites.

G
i;
tibrary

Pictures

Public

If you're considering the idea of selling your finished application, you should
remember that there are plenty of Macintosh users out there that love a great
application. Quite a few of those users are also critics that won't hesitate to tear
you and your application design apart if it fails to be logical, consistent, or
understandable. Oh yeah—Mac users will certainly berate you for making a
buggy app, too. It pays to do your homework in design.

Apple has extensive documentation on human interface design, which are
available free from Apple Developer Connection on the Web at http://devel-
oper.apple.com. (Remember that you need to register on the site to have access
to these and all other documentation. Registration for online access is free.)
Let’s highlight some of Apple’s interface guidelines.

Rule 1: Stick to Metaphors
in Your Application

Apple describes Aqua as a human interface, not a computer interface. That
makes sense. After-all, does a computer really need buttons, windows, a mouse

258

PART |1l « THE AGE OF MAC 0S X

and keyboard to work? Not really. All of these items are devices intended to
make it as easy as it can be for people to communicate with the computer and
get something useful from the experience.

A good way for computers to communicate its elements to a human is through
the use of metaphors. The best Macintosh application is a perfect metaphor for
a physical object that works in much the same way. Look at the Calculator
application in Mac OS 9. It looks and works like, well, a calculator! Can’t make

things any simpler than that, we think.

The most visible metaphor of the Mac OS is the deskzop. This was a powerful
comparison as offices have been around for years, complete with a place to
place your paperwork, folders to store your papers, objects to use to create
more paperwork, and a place to dispose of unneeded materials.

To complete the visual metaphor, Apple uses icons to represent the items you
manipulate in the Mac OS. The best icons look like the object or function they
would be in real life, if most developers could help it.

Over the years, the Apple desktop metaphor became strained. Dozens of
improvements by third-parties and adjustments by Apple were made to the
Mac OS to improve a thing here and there. In the 1990s, Apple began adjust-
ing the Mac OS to appear more like Microsoft Windows so that Windows
users who make the move to a Macintosh would feel more comfortable. In the
end of the original Mac OS development, starting with Mac OS 9, the com-
plication of the desktop became readily apparent to Apple.

Mac OS X returns to the simplicity of the first Macintosh interfaces to make
it easier for users to understand their desktop once more. Aqua’s introduction
raised much praise and criticism from the media and Apple’s faithful. But
Aqua is really a blast to the past. Our computers have become so complicated
that it seems to take more time for an application to explain how it works than
a user will actually spend using the application. In case you've never realized it,
Figure 17.6 shows you what System 6.0, the Mac OS of 1988, looks like. Even
if you've never used this older Mac OS yourself, we bet that you could use this
version without any training. The Mac OS desktop, uncluttered in System 6.0,
and uncluttered in Mac OS X with Aqua, works like your bicycle: you’ll never
forget how to ride it.

Figure 17.6

System 6.0 was, for
many Mac OS
users, their first
bicycle. Mac OS X
is merely a flashier
bicycle with extra
horsepower and
better paint.

CHAPTER 17 ¢ENTER THE WORLD OF AQUA 259

[& File Edit Diew Special g
e O
[E0=— HardDrive =—0
3 items 4,851K in disk 649,226K available
i
System Folder Games
Utilities
¥
Kd Dld

]

Trash

Rule 2: Keep a Logical Design

with Aesthetic Consistency

Nothing ticked off more Macintosh users about Mac OS X Public Beta than
the disappearance of the Apple menu. The Apple menu of Mac OS 9 was a
highly customizable way to configure the Mac OS and launch applications.
Without this simple menu, many Mac OS X Public Beta users suddenly found
it very difficult to maneuver about.

Apple eventually returned an Apple menu to Mac OS X, although it is not
customizable as its Mac OS 9 predecessor. Apple managed to maintain its goal
of simplifying the Mac OS but also realized that moving such a powerful tool
that has been available since the beginning of the Mac OS was tantamount to
changing around the controls of a car.

As you create and evolve your application, remember Apple’s lessons from
Mac OS X. Think of a logical or aesthetically pleasing design for your appli-

cation’s menus and components. Then, stick to it. If your program is useful to

260

PART Il « THE AGE OF MAC 0S X

others, eventually your customers will become accustomed to where things are
and how things work. This is particularly true of menus, not only in location,
but also in their content.

The most horrific example of bad design in Macintosh history came in 1995
when Microsoft updated the Word for Macintosh word processor from ver-
sion 5 to 6. Essentially, Word 6 was a very un—optimized and buggy port of
the Windows version of the application. Worse, Word 6’s menus were filled
with illogically placed commands, most of which were in a completely differ-
ent location from Word 5. Worst of all, Microsoft managed to make Word a
rather ugly application. The interface conventions from Windows (such as
they are) did not port well at all to the Macintosh, resulting in overlapping
interface elements, difficult to read text, and other problems.

You can guess what happened. So many users complained to Microsoft (some
demanding their money back) that the company was forced to write a filter
that allowed Word 5 users to open the otherwise—unreadable Word 6 files.

A positive example of good menu maintenance falls again to the Mac OS, in
this case, the Finder. Over the past 17 years, Apple has added only two menus:
the application menu in System 7, and the Window menu in the Mac OS 9.1
update for later Mac OS X compatibility once a user installed the new oper-
ating system. Some of these menu’s contents changed slightly to meet the
times. We bet you barely noticed. Hopefully, any future menu changes you
offer in your updates of your application will go just as unnoticed until needed.

Rule 3: Forgive Mistakes
and Allow Reversal

One thing that many Windows applications seem to do is punish a user for a
mistake in a command selection. We’re sure that’s not intentional, but it shows
the distinction between Microsoft and Apple interface guidelines.

If you're like most Macintosh users, you like to play with your new applications
before you put them to use. In the case of games, you literally play with them.
In any case, the last thing you want to do is accidentally change a setting in the
application that completely rearranges the work you spent hours creating.

Exploration is a crucial component to learning a new tool and determining
how it meets your needs. One of the most powerful commands in a Macintosh

CHAPTER 17 « ENTER THE WORLD OF AQUA 261

application is Undo. As you know, the Undo command will reverse the last
action you performed in an application. Some programs, such as the well-
written Microsoft Word 2001 for Macintosh, will undo a series of actions.

As you create your application, provide your users the ability to reverse their
selections or options. Undo options provide users some comfort in knowing
that their actions are not completely etched in stone. Whenever possible, alert
the users using message boxes when they are about to perform an action that
cannot be undone.

Be careful of overdoing this guideline, however. Microsoft Word allows
repeated undos by using temporary files containing the present changes. Worse,
with its “Allow Fast Saves” feature enabled, a document is not fully saved until
you quit the application. In an application crash or if the user has poor docu-
ment management, data could be lost. Be sure that your application reasonably
ensures the user’s data or provides warnings or notes to inform the user.

Rule 4: Use Dialogs Wisely

Language plays a proper role as well in your application. Emotionally charged
words or computer jargon appear in the worst applications by far. Your job is
to help simplify information while keeping your app’s visual appeal.

Informing or instructing the user to make changes to documents or to your
application as a whole must be clear and concise without being overly techni-
cal. Apple also wanted to eliminate the practical hijacking of a computer when
error or open/save messages appeared on the screen. Mac OS X has refined
their concept of message windows that appear to inform or direct a user to a
particular course of action. These windows are known collectively as dialogs.

There are actually three kinds of dialogs in Mac OS X. The first type are doc-
ument modal dialogs, also known as sheets (see Figure 17.7), which swish out
from the bottom of a document title bar when a user performs an action that
requires a decision to be made. Similar to its Classic counterpart, document
modals prevent further changes to the document and require the user to han-
dle an action in regards to the entire document. For instance, attempting to
close a document window in a Mac OS X application brings up a familiar “Do
you want to save changes” sheet at the top of the document window, but unlike
original Mac OS applications, you can ignore the message indefinitely while
opening other applications, documents and the like.

262

Figure 17.7

Sheets hold alert or
dialog boxes in Mac
OS X applications,
both shown here.
They’re modal only
to the document
window, so you can
move to other
windows or
applications.

PART 11l « THE AGE OF MAC 0S X

TextEdit File Edit Format Window Help Fri 3:31 PM

7
77 Do you want to save changes to this document before
clasing?

o

{ Don'tSave Cancel 3 {save)

Uniitled 2.0t7

L4 Munes

| {# Library
i Movies
8 Music
4 Pictures
4 public
(4 sites

€

S e —— -
£ "NewFoider & { Add to Favorites]

£Cancel

Remember, sheets are a feature of a Carbonized application running natively in
Mac OS X. Applications running in Classic still use the old-style dialogs and
will still prevent a user from switching to another Classic application, but the
user can still switch to or launch other Mac OS X applications.

Open and Save dialogs also appear as sheets that drop from a document win-
dow. Normally these windows are minimized to show only the most pertinent
information: the name of the saved file, the location where the file will be
saved, and the appropriate Save and Cancel buttons.

The second type of dialog, an application modal dialog, prevents further use of
an application until an action is chosen. Application modal dialogs commonly
appear as alerts, floating windows which immediately ask a user for a critical
decision. In Mac OS 9, users routinely encounter Save alerts that appear when
a user attempts to close a document window before they have saved their work
with the Save command. Figure 17.8 shows a typical one from Microsoft
Word running in Mac OS 9.

We have two problems with alerts in Mac OS 9. The first problem is that
Microsoft applications display alerts with generally useless error information,
such as “Error in writing file to disk.” Such a message is not only uninforma-
tive, but typically causes a user to, well, freak out because they can’t understand

Figure 17.8
Closing a document
window in Word
2001 shows you
this alert, which
prevents further use
of the application
until a decision is
chosen from the
alert.

CHAPTER 17 ¢ ENTER THE WORLD OF AQUA 263

L File Edit View Jwert Format Fort Tools Toble Window Work Help
fegue Baa] s

what the application is telling them. Most Macintosh applications will report
the problem and also suggest a course of action to fix the problem. Windows
applications can do this as well; the problem is not the code but the docu-
mentation that developers write within the application. That means, in short,
that alerts in your app should explain what is going on, why it might be occur-
ring, and Aow to fix the issue.

The second problem was that alerts in Mac OS 9 would also stop the user
from doing any other action with the computer until the alert box was dis-
missed. Syszemn modal behavior such as this is discouraged in Mac OS X. Alerts
in Mac OS X applications allow users to move from application to application
while the alert remains “attached” to the application’s view.

Apple encourages the generous use of white space around your alert informa-
tion to minimize clutter. You can also place more explanatory text in a smaller
font below the primary message. Apple encourages developers to use your
application’s icon in most alerts. In rare instances where a serious problem may
occur in an application, Apple advises that you use the Caution icon in place
of the application’s icon in an alert.

The third type of dialog is the modeless dialog. Generally, a modeless dialog

is a smaller window, complete with minimize, zoom, and close controls on a

264

Review

PART |11« THE AGE OF MAC 0S X

tiny title bar. In applications, modeless dialogs work great as preference win-
dows where a user can change settings or select tools on the fly in an applica-
tion. REALDbasic’s Property window is an example of a modeless dialog.

Because Mac OS X is such a new operating system, Apple is routinely
revising its documentation and adding improvements and new programming
tools. Keep up by connecting to Apple Developer Connection on the Web at
http://developer.apple.com and visiting the documentation section. Search for
“Human Interface Guidelines.” REALbasic 3.2 is also relatively new to the
scene in Mac OS X development and Aqua compatibility, so be sure to read
its documentation for tips and vital information on meshing your Carbon pro-
jects properly in Mac OS X.

The Classic
Environment

In This Chapter

e Windows and the great compatibility problem

® You can'’t play vinyl records in your compact disc player
® The 16-bit egg and the 32-bit chicken

e Apple’s turn

266 PART Il « THE AGE OF MAC 0S X

Making a new operating system is a monumental task. Making a new
operating system that allows full compatibility with older programs is
even tougher. Both Microsoft and Apple have had their share of headaches
here.

Windows 95 and the Great
Compatibility Problem

In 1994, Microsoft was midway through developing Windows 95, its next-
generation PC operating system. Windows 95 promised fast performance and
a level of crash-proof behavior unlike any other operating system made for
home and business users.

To do that, Microsoft had a programming challenge to overcome. Windows
3.1, the previous version, was merely an interface over an old operating system,
MS-DOS. For its time, MS-DOS was reliable, but nothing like the Mac OS
that used a graphical interface—icons, buttons, windows, and so on. Windows
3.1 simply draped some windows and icons over MS-DOS but added no
improvements.

MS-DOS was a 16-bit operating system. Bis are elements of a computer pro-
gram or memory. The more bits that a computer can manipulate, the more
realistic and powerful the computer and the applications become. Remember
the old computer video games of the 1970s? The edges of the pictures on the
game screen were really jaggy, with few colors. Compare that with 32-bit
games like Quake 3 Arena with dramatically realistic shapes and colors.

Being only a 16-bit operating system meant that the MS-DOS programs
made for it weren't as versatile, suffered from instability, and couldn’t take
advantage of advanced operating-system features. MS-DOS was designed to
use only 640KB (that’s kilobytes, or about 1000 bytes) of memory. Today’s
computers require 64MB (megabytes) or more of RAM to operate.

Also, MS-DOS and Windows 3.1 couldn’t handle the larger hard-disk drives
that began to appear in the market. Although there were a few utilities here
and there in the computing world that could help MS-DOS over one of its
many limitations, Microsoft knew that Windows 3.1 was limited until it could
be modernized.

CHAPTER 18 ¢ THE CLASSIC ENVIRONMENT 267

You Can’t Play Vinyl Records
in Your Compact-Disc Player

A challenge to making a new computer and its operating system is designing
the computer in such a way that it can run programs used on a previous com-
puter or operating system.

Remember the original Nintendo computer game console? It used square, flat
game cartridges for its games. When Nintendo introduced the Super Nin-
tendo game console, game players were dismayed to find that their game car-
tridges wouldn’t work in the more advanced Super Nintendo’s game system. A
few years later, Nintendo completely skirted the compatibility issue again by
making Super Nintendo cartridges incompatible with the Nintendo 64 game
console.

Compare this to Sony Corporation’s original PlayStation game console.
Games for this machine were stored on CD-ROMs much like the
CD-ROMs used in computers. Recently, Sony introduced the PlayStation 2
(or PS2), a game console with many advancements over its predecessor. Since
CD-ROM drives use the same disk sizes as DVD-ROM drives (which the
PlayStation 2 uses), Sony’s PS2 accepts old PlayStation games in addition to
PS2 games.

In the mid-1980s, the compact disc appeared and changed the way we listened
to music forever. The machines you needed to play them replaced the turnta-
bles for vinyl records and albums. The record industry skirted the compatibil-
ity issue here as well, because trying to make vinyl albums (which played music
from an analog, or non-digital format) work in a digital compact disc player
was more trouble than it was worth. Luckily for the recording industry, the
quality and advantages of audio CDs over vinyl made it worthwhile to buy
new, somewhat expensive CD music players.

The 16-Bit Egg and
the 32-Bit Chicken

Microsoft couldn’t skirt the compatibility problem. Many homes and busi-
nesses relied on the MS-DOS programs they used in Windows 3.1; that
meant Microsoft had to design Windows 95 in such a way that MS-DOS
could operate as part of Windows 95 without affecting Windows 95’s speed

268

PART Il « THE AGE OF MAC 0S X

and reliability. Even so, a chicken-and-egg problem was hatched. Many MS-
DOS programs made long before Windows 95 would not be able to handle
the existence of Windows 95.

When Windows 95 arrived in August 1995, it was praised for its new appear-
ance and greater stability. Many users of MS-DOS programs, however, soon
found problems with the new operating system. Sometimes, running MS-

DOS programs would make Windows 95 slower. In a few cases, the MS-DOS

program would not run at all.

Microsoft tacitly admitted that, in order for Windows 95 to meet its shipping
deadline, and to ensure that the new operating system as a whole would
function, it had to cut a few corners. Basically, Windows 95’s version of
MS-DOS was still fairly integrated within the new 32-bit parts of Windows
95 itself. Since the new version of MS-DOS wasn't really walled off in the
way Microsoft preferred it, Windows 95’s stability and speed did suffer for a

time.

It wasn’t until Windows Millennium Edition (Windows Me) arrived in 2000
that the last parts of MS-DOS were removed in an attempt to improve speed
and performance in the consumer version of Windows. Sadly, however, no vis-
ible performance increases ever came from the consumer Windows client. Per-
haps Windows XP, an upcoming version based primarily on the refined
Windows NT code, will prove itself as a compatibility winner.

Apple’s Turn

Apple had enough operating system—project failures by the mid-1990s to
make people in the computing community worry that Apple would never cre-
ate another operating system. When Apple bought Steve Job’s NeXT com-
puter company in 1996 and took in its OpenStep operating-system
technologies, it was a breath of fresh air. Work soon began on another possi-
ble successor to the original Mac OS, code-named Rhapsody.

In OpenStep, Apple found a strong system kernel (the heart of an operating
system) that could keep up with many computing tasks at once. Apple decided
that one of these tasks could be to run programs designed for the original Mac
OS while the operating system performed its business.

CHAPTER 18 ¢ THE CLASSIC ENVIRONMENT 269

It's Virtually Simple

Apple decided that the best way to get the original Mac OS to work with
Rhapsody was to wall off the old operating system from the new. The plan
would still allow the old operating system full access to the hardware as if the
original Mac OS was the only thing running. This programming principle is
known as a virtual machine. A virtual machine would run at near-native com-
puter speeds. If the virtual machine was designed well, few people could tell it
from a computer running the original OS single-handedly.

Apple first created its virtual machine for the Rhapsody project, which was
later named Mac OS X Server 1.0. The “Blue Box,” as Apple called its original
Mac OS compatibility environment, ran a version of Mac OS 8. The Blue Box
wasn’t without its faults and limitations, but it successfully kept to its business

without affecting Mac OS X Server.

The Blue Box Goes Classic

Rhapsody/Mac OS X Server wasn't a big hit for programmers. New programs
designed for the new OS had to be written using Objective-C, a version of the
C programming language that few people knew. In addition, Mac OS develop-
ers practically had to rewrite existing programs so they could run in Rhapsody.

As a result, few developers wrote much Mac OS X Server 1.0 software. It
would take too much time and energy. So Apple spun off Rhapsody to form
the Mac OS X Server project, then proceeded to take some of the lessons
learned to build yet another new OpenStep-inspired OS.

As the pieces of Mac OS X came together, the original Mac OS—compatibility
issue came up again. The Rhapsody Blue Box would be needed once more, with
a few refinements, and a name change: the Classic environment.

Installing Mac OS X for Classic

During the end of Mac OS X’s completion, Apple realized that, as with the
PowerPC chip transition in the early 1990’, few applications would be avail-
able on Mac OS X’s release that would run natively in Mac OS X. With each
copy of Mac OS X, you receive a copy of Mac OS 9.1 to install on your com-
puter to run traditionally, or as the basis of Classic.

270 PART 11l « THE AGE OF MAC 0S X

~ Virtual Machines Versus Emulation

A virtual machine works almost as quickly as an ope'rating'system running in full con-
trol of the computer’s hardware. Virtual machines send the same instructions to a com-
puter processor in the same format as the dominant operating system. When Mac OS X
is running, the Classic environment allows the Mac OS 9 installation to behave as if it is
the only operating system in place, and allows the user to interact with OS 9 on almost
all levels. Most importantly, Classic runs at near-normal speeds since it sends the same
kind of processor instructions as Mac OS X would to the computer processor. No trans-
lation or conversion of instructions from a virtual machine is needed.

Emulation simulates hardware and some software elements of a computer. For exam-
ple, Connectix’s Virtual PC works as a Macintosh application that simulates the hard-
ware and system responses of an actual Pentium-style PC (see Figure 18.1), complete
with sound card, network card, processor, and video card. Virtual PC is slower than a
virtual machine or an actual PC because it must take the Pentium processor instructions
created in the simulated PC and Windows environment and convert them into some-
thing that a Macintosh’s PowerPC processor can understand. Likewise, Virtual PC must
translate instructions from the PowerPC processor back into Pentium instructions for the
emulation to complete its work.

Figure 18.1
Virtual PC running
on a Macintosh.
Yes, it's always a
weird sight to see
Windows running
on a Macintosh. o8
Thank goodness b dnterrat
you can turn it off. Explorer

My Dosuments

= Hard Drive

—
w Eiherned e COROM

CHAPTER 18 ¢ THE CLASSIC ENVIRONMENT 271

Err)ulators almost always have some performance hit. From our experience, Virtual PC
_is about three times slower than the Macintosh it runs on. On a 500MHz Power Mac G4,
Virtual PC works around166MHz when running most PC applications, give or take some
programs that have lots of sound or graphics. Remember that emulators such as Virtual
PC have programming that simulates a graphics card and sound card, too. With a really
 complex application such as a game, so many parts of Virtual PC are translating that the '
whole application begins to slow down dramatically, '

~Not all emulator applications have issues, however. Because today’s computers are
~much faster than earlier ones, there are many game-console and computer emulatprs
 available for Macintoshes and PCs that play old computer games such as Pac-Man at
~ the same speed and quality as the onglnal The hard part in making these emulators is
o trymg to keep them from bemg too fast -computmgﬂ power today would make Pac-Man ,

Apple recommends that you install Mac OS 9.1 before installing Mac OS X.
You must use Mac OS 9.1 or later if you intend to run applications in Mac OS
X that aren’t designed with Mac OS X in mind. Earlier versions of the Mac
OS will not be accepted as a Classic environment. You can use the Mac OS
9.1 installer CD to update your hard disk if you are using Mac OS 9.0.4 or
earlier.

Mac OS 9.1 will rearrange previously created Mac OS folders found at the
root of your hard disk to make it compatible with Mac OS X’s folder struc-
ture. If you have Mac OS 9.1 installed on a separate partition, this is only a
minor nuisance. If you install Mac OS X in the same location as Mac OS 9.1,
the Mac OS X installation moves the entire Mac OS 9.1 disk installation into
its own folder on the disk. We've read more than our share of reports on prob-
lems with Mac OS X and 9 installations on a single volume. We recommend
installing Mac OS 9 and X on separate partitions, as shown in Figure 18.2.

Classic remains a virtual machine in Mac OS X. When you start up any appli-
cation designed for Mac OS 9 and earlier, Mac OS X will activate the Classic
environment. When you start up Classic for the first time, Mac OS X asks you
if it can add a few new components inside Mac OS 9’s System Folder to make

272

PART 11l - THE AGE OF MAC 0S X

Figure 18.2

It's a good idea to
have two separate
hard disks or divide
a single hard disk
into two or more
partitions for Mac
OS X installation.
Here, my
installation of Mac
0OS X resides on the
drive partition
named Tycho.

" The Public Beta of Mac OS X made more radical changes toa
single-disk installation on one of our computers. After a time, a
problem occurred on the Mac OS 9 side that prevented the comput-
er from starting up in Mac OS 9. Because the installation was com-
bined, there wasn’t much of a choice other than to reformat the
drive and reinstall Mac OS 9 and Mac OS X—this time on separate
partitions. Yep, it was pretty painful. It helps to be a certified Apple
Service Technician in these moments.

In the PC world, one of us met a similar fate on a Windows 3.1 PC
upgraded to Windows 95, which recommended updating the C drive
where Windows 3.1 existed. Even after Windows 95 was removed
and the C drive downgraded to Windows 3.1, the PC never seemed
quite the same.

Because the release version of Mac OS X is such a radically differ-
ent operating system, it's probably best to install it to a separate
hard disk or partition. But no matter how you install Mac OS X, the
Macintosh hardware still recognizes that there are two operating
systems through Open Firmware—the boot software in the logic
board, unlike Windows 95, which completely assumed control of a
PC, leaving previous operating systems that were installed dormant.

CHAPTER 18 ¢ THE CLASSIC ENVIRONMENT 273

it work in the Classic environment, as shown in Figure 18.3. On startup, a tem-
porary window, normally closed, appears. Open it, and you see the old face of
Mac OS starting up in a window that’s basically a monitor window within the
monitor. Everything operates in the same way as when Mac OS 9 works alone,
right down to the icons for extensions appearing as they load into Classic.

Once startup is complete, the Classic startup window disappears, and
moments later, your Classic application appears. The wild thing about Classic
is that Mac OS 9’s menus, buttons, and windows are active when you are using
a Classic application, as shown in Figure 18.4. When you switch to the Mac
OS X desktop, document windows in Classic move to the foreground, but the
Mac OS X menu bar returns.

What Classic Means to Developers

Figure 18.3

When you double-
click a program
written for the
original Mac OS,
the Classic
environment turns
on. Mac 0OS X
requires you to add
a few new parts to
make your Mac OS
9 installation also
work as a virtual
machine to start
applications in
Classic.

The age of Mac OS X means that the original Mac OS lifetime is coming to
an end, although not in the near future. Any useful applications available today
will eventually have to be porzed to (that is, converted to a form useable within)

Some Classic-specific resources need to be
added to or updated in your System Folder on
Leela. These changes should not affect your
ability to use your System Folder with native
Mac059.

Do yau Want 10 38 10 or update them?

274

PART I« THE AGE OF MAC 0S X

Figure 18.4

Mac OS Classic
programs use their
old windows

and menus, but
portions of the
Aqua interface do
show through.

Mac OS X. Being able to run programs in Classic slows the clock a little so
developers have time to make the switch, but that clock is ticking away.

Classic keeps alive many of the programs designed for Mac OS 9 and earlier.
But there are some limits to what Classic can do.

Bug-for-Bug Compatible
with Mac OS 9

First, the Classic environment is a sealed-off environment from Mac OS X.
Programs running in Classic run inside an area that works and acts just like
the original Mac OS. As you might guess, that means applications that crash
in Mac OS 9 will crash in Classic as shown in Figure 18.5.

Classic applications, however, or Classic itself, shouldn’t cause Mac OS X to
crash. If the Classic environment hangs, a Mac OS X user can simply force-
quit the Classic environment as they would any other Mac OS X application

that stopped working properly. You can then restart Classic without restarting
Mac OS X.

Figure 18.5

Whoops!
Fortunately, crashes
that happen in
Classic don't affect
Mac OS X.

CHAPTER 18« THE CLASSIC ENVIRONMENT 275

/ ‘The application BombApp has
B unexpectedly quit
"\ The system and othe: applications have not been
affected.

Classic Applications
Use Mac OS 9 Only

Applications designed for Mac OS 9 aren’t written to take advantage of the new
features in Mac OS X. All Classic applications are isolated from Mac OS X.
That means OS 9 applications offer no pre-emptive multitasking, no advanced
memory management, or any other Mac OS X buzzword you can think of.

To use Mac OS X features with an application, the programmer must make
adjustments to the program in a process Apple calls Carbonizing (more about
this in the next chapter).

No Direct Hardware Access

In the early days of computer programming, many hardware features weren’t
as easily accessible to a developer because the operating system didn’t provide
a practical way to use the new components. Fortunately, some savvy program-
mers learned to use their programs to directly talk to the hardware parts they
needed for their work.

276 PART |11l « THE AGE OF MAC 0S X

~REALbasic 3.2 (included on the book’s CD-ROM) is designed to cre-
ate applications that work for any Mac OS version since 7.6.1. To
make applications that work in both Mac 0S 9.1 and Mac OS X, you
need a Power Macintosh that qualifies to run Mac OS X, and
REALbasic 3.2 for Carbon appllcatlons

To create an application that works on any Macintosh running Mac
0S 7.6.1 or later, select the “Macintosh” option at the top of the
Build Apphcatlon ‘window. If the appllcatlon is intended for Power
Macs only, you can uncheck the 68K code checkbox under “Include”
in the Mac OS Application Settings section.

To create an application designed for Mac OS 9.x and Mac OS X,
select the “Mac OS X/Carbon” build selection. When you select
this, all options to change what code to include are greyed out—
only PowerPC code is used in a Carbon application.

If you choose to port your application to Windows, see Chapter 23
first for helpful information. When you're ready to build the applica-
tion, check the Windows build option at the top of the Build
Application window.

As more advanced operating systems such as the Mac OS and Windows
appeared and evolved, direct access to computer hardware caused many prob-
lems, particularly if one application improperly used a hardware component
while another properly written program became confused because it could use
the hardware at the same time. Such conflicts usually cause the original Mac
OS to hang or crash.

The whole idea of an operating system is to manage what applications can use
on the computer without crashes or poor system performance. With that in
mind, Mac OS X is designed to ignore any attempts by Classic applications to
directly communicate with hardware such as CD-ROM burners, video cards,

CHAPTER 18 ¢ THE CLASSIC ENVIRONMENT 277

and the like. Many software companies have announced forthcoming releases of
applications that can use hardware in the manner Apple dictates in Mac OS X.

What Classic Can and Can’'t Do

Using Classic has a few advantages and several pitfalls, at least as of the Pub-
lic Beta. Hopefully, many of these issues will have workarounds in the official
release of Mac OS X by the time you read this.

Personally, we're hoping that the companies and people who created the appli-
cations that have problems in Classic will just Carbonize their applications to
run natively in Mac OS X and save all of us the trouble of dealing with Clas-

sic’s shortcomings.

¢ Classic cannot mount Windows NT file server volumes. This is a bit
bizarre because AppleTalk still survives in Classic. To confirm this on a
Macintosh running Mac OS X with Classic active, open the Chooser.
You'll see AppleTalk NT servers in the Chooser, and can log into any of
them provided that your Mac OS 9 System Folder has a Microsoft
networking information file, a user authentication module, installed. When
you try to access the mounted volume from Mac OS X (remember, the
Classic side doesn’t have a desktop where volume icons appear) you
realize that there aren’t any volumes on the Mac OS X desktop. Whoops.

¢ Classic can’t save to PDF format without help. If your Classic/Mac OS
9 installation has the full Adobe Acrobat application installed, you can
create Portable Document Format documents (OK, it’s redundant, but
I didn’t name the thing). PDF documents are based on Adobe’s high-
quality PostScript technology with two major advantages. First, PDFs
retain the high-quality graphics and font styles from the original
document. Second, 2 PDF document made on a PC can be read on a
Macintosh without any adjustments. Mac OS X includes Quartz, a
graphics engine based on PDF technology. Quartz runs the Aqua
interface, providing the rich details and colors on that interface. Quartz
also allows any Mac OS X application to print graphics or text as PDF
documents. Because the original Mac OS running in the Classic
environment wasn't designed with PDF technology built-in, Classic
applications can’t create PDFs without Acrobat.

278

Review

PART 111+ THE AGE OF MAC 0S X

¢ Classic uses only Mac OS 9's printing and page-preview support.
Classic applications use the same LaserWriter and inkjet printer
support as found in Mac OS 9, but Classic doesn’t get any further
benefits from Mac OS X’s presence. In Mac OS X, print previews are
actually PDF documents.

¢ Classic is the only place where non—Power Macintosh applications will
operate. If you have to use a really, really old Macintosh application
designed expressly for Macintosh II family computers, Classic is your
only avenue. Mac OS X can't run original Mac OS applications, and
certainly not 68K code designed originally for Quadras and other older
Macintoshes, without Classic. The only condition to running old
applications in Classic is that the application was initially compatible
with Mac OS 9.

¢ TCP-IP has limits in Classic. Certain features of TCP/IP, such as
access to AppleShare IP servers, don’t work if you select servers from
the Chooser in Classic. You need to use Mac OS X’s Connect To
Server command in the Finder’s Go menu to handle these connections.

Classic is a great Apple solution for running otherwise incompatible Mac OS
software in Mac OS X. Classic has frustrated some users who have become
used to a particular way of performing tasks in the original Mac OS, but this
problem should subside as more applications are carbonized to work only with
Mac OS Xs interface and abilities. You should write and build any REALbasic
applications with Mac OS X in mind.

The Carbon
Environment

In This Chapter

It’s tool time

A few small repairs

Carbon: good for your programming diet
Carbonized applications can use Aqua

How REALbasic uses Carbon

280 PART 11l e THE AGE OF MAC 0S X

hen Apple announced the Rhapsody project, programmers’ hopes for a

powerful new operating system were finally realized. Then, the other
shoe dropped. Rhapsody required developers to spend days or weeks rewriting
their existing Mac OS programs, and they had to do it using Objective-C, a
variant of the C programming language that few programmers knew. Most
programmers preferred C++, a different variant.

After shoving the Rhapsody project to the side as a consideration for the new
Mac OS replacement, Apple realized then that they had to figure out another
way for existing developers to port their old programs to the new Mac OS X
without causing a lot of pain. Further, Apple had to allow the ported programs
to take advantage of most of Mac OS X’s features.

[
It’s Tool Time
While developing the first version of the Mac OS in 1983, Apple realized that

it would be terrible for programmers to write the code needed to draw win-
dows, buttons, and icons to the desktop. Even if the programmers could do that
much work, it’s likely that each element of the Mac OS interface would look
and work differently because no single programmer would write things the
same way as another. (Some of us would say that the applications would be as
cluttered and ugly as the Windows interface, but that’s another argument!)

For this reason, Apple provided a set of application programming interfaces, or
APIs, which were, essentially, canned Mac OS programming for every graph-
ical element that a programmer could use in a Macintosh application. Instead
of having to write a section of code that said, “draw a window using this pro-
cedure,” a developer would only need to write in the name of the subroutine
used for drawing a window.

Apple gave a nickname to this collection of programming subroutines: the
Toolbox.

A Few Small Repairs

The Mac OS original Toolbox became cluttered with obsolete and redundant
subroutines over the 15 years of the original Mac OS. The Toolbox was still

CHAPTER 19 « THE CARBON ENVIRONMENT

~ Why the name Carbon? Steve Jobs, during a Macworld Expo -~~~
~ keynote speech, said with a smile that everything good evolves
from it.

' The joke, in case it flew right over you, is that humans and other life
forms are based on the element carbon, and that life evolved from
those carbon building blocks.

versatile, but was bogged down with code from discontinued versions of the
now-ancient original Mac OS architecture.

Apple had to allow original Mac OS applications to work with their new Mac
OS X operating system. To do this, Apple realized that, both Mac OS X and
Mac OS 9 could use a refined version of the Toolbox APIs. That way, moving
a Mac OS 9 application to Mac OS X would take much less time to do.

Apple essentially threw out many old and obsolete Toolbox APIs, then added
and modified others. About 70 percent of the original Toolbox routines were
left. Most of the things that were chucked were Toolbox routines for 68000-
type processors used in the old Macintosh II family and Quadra systems. The
result was a new set of APIs for use in Mac OS X programming. Apple retired
the name Tvolbox for its API set and christened the new set Cardon.

Carbon: Good for
Your Programming Diet

Carbon APIs allow you to design programs you create to work in original Mac
OS or Mac OS X. When you convert a Mac OS 9 application to also work in
Mac OS X using the Carbon APlIs, you've Carbonized it. A Carbonized appli-
cation running in Mac OS 9.1 and later will take the windows, menus, and
button appearances of the original Mac OS.

282

PART 11l « THE AGE OF MAC 0S X

To use Carbonized applications, Mac OS 9.1 and later must have a system
extension, CarbonLib, installed in the System Folder. CarbonLib adds the new
routines necessary for Carbonized applications to operate properly.

If history has told us anything, it’s this: Software development forces addi-
tional hardware and software upgrades. In other words, as a Mac OS devel-
oper, it’s a good idea for you not to bet on the idea that Carbon applications
for Mac OS X will be supported in anything earlier than Mac OS 8.6. Write
for Mac OS 9 and Mac OS X.

Keep an eye out on the Apple Developer Connection Web site at
http://www.apple.com/developer. Once you sign up for a free membership,
you'll have access to many software development kits (also known as SDK5)
and development tools. The downloadable Carbon SDK contains the latest
developmental version. Most importantly, Apple will indicate what original
Mac OS version is supported in later versions of CarbonLib.

The SDKs deal primarily with C/C++ programming techniques, but the
information can be useful with some issues in REALbasic programming.

Carbonized Applications Can Use Aqua

Applications designed with Carbon APIs take on the interface styles of Mac
OS 9 when running in that environment as shown in Figure 19.1. You don't
get any Mac OS X benefits from a Carbonized application running in Mac OS
9, except perhaps the likelihood that it may have better stability than an appli-
cation created with the original Toolbox. Know why?

The original Toolbox APIs included many obsolete routines not designed with
Power Macintosh systems or Mac OS 8 and 9, such as routines for Macintosh
Quadras, Macintosh II systems, and other computers without PowerPC
processors. Those routines, if activated by mistake on PowerPC systems, can
cause odd behavior or crashes. So a Carbonized application has all-PowerPC
routines that aren’t as likely to destabilize Mac OS 9.

When you double-click a Carbonized application in Mac OS X, it operates
within the Mac OS X environment, not in the Classic environment, as shown
in Figure 19.2. A Carbonized application inherits the Aqua look and feel,
from the windows to the warm pulsating buttons. It’s not necessary for Mac
OS 9 to be installed to run any Carbonized application with Mac OS X.

Figure 19.1
REALbasic 3.2
running in
Mac OS 9.

Figure 19.2
REALbasic 3.0
running in Mac OS
X. Windows and
buttons use Aqua'’s
interface features.

CHAPTER 19 « THE CARBON ENVIRONMENT

Placement: 0 - Definlt v
Width 300

284

PART Il « THE AGE OF MAC 0S X

According to Apple, Carbonized applications also take advantage of most of
Mac OS X’s special capabilities, including the following:

¢ Improved stability
¢ Improved responsiveness

¢ Better resource management

Improved System Stability

In the original Mac OS, programs and the memory they reside in when oper-
ating weren't separated by much more than a few bytes of empty RAM. The
original Mac OS also used a memory design that didn’t allow applications to
take as little or as much RAM as they needed. When an application crashed,
the Mac OS couldn’t recombine the unused RAM so that other applications
could use it.

Worse, the Mac OS usually had no idea that the memory is unused. So, if you
continued to do work in the Mac OS after an application had crashed, the
Mac OS got confused quickly. When the Mac OS attempted to use the
“unused” RAM, boom. It crashed. This is why Apple sternly recommended
that you restart your Mac after a program quits unexpectedly.

In Mac OS X, however, each program has its own memory space. The techni-
cal term for this is protected memory, in case you're interested. If the program
quits or crashes, Mac OS X is designed to recover gracefully without crashing;
this occurs through the use of a force quit, as shown in Figure 19.3. After a
force quit, you need not restart Mac OS X, and you should be able to restart
the crashed program and return to work (provided, of course, that there’s not
something really wrong that caused the app to crash in the first place).

Improved Speed and
Responsiveness

The original Mac OS was a marvel in its heyday, but it’s never been a speed
demon. That’s because the way the original Mac OS allowed programs to
share time with the processor—called cooperative multitasking—wasn’t very
efficient.

Figure 19.3

Applications that
aren’t running
properly or at all
can be force quit
in Mac OS X.

CHAPTER 19 ¢ THE CARBON ENVIRONMENT 285

if an application doesn't respond for a while,
select its name and click Force Quit.

You can open this window by pressing
Command+Qgtions Escape.

Imagine you're a Mac OS program, trying to tell the PowerPC processor to
handle a task. Now imagine you're one of several Mac OS programs, all ask-
ing for time with the processor as well. In cooperative multitasking, the
processor would ask other applications to give up their time so that the proces-
sor could tend to the needs of one program. From there, the processor would
look to the next program in line and handle its needs while temporarily ignor-
ing the other applications’ needs. If that particular Mac OS app hung or
crashed during its time with the processor, the processor couldn’t switch to
other apps, and your Mac was frozen.

Here’s one way you can watch the pitfalls of cooperative multitasking. Start up
your Macintosh, then run a QuickTime movie and click on any menu on the
menu bar. Notice that the movie no longer plays while the menu is open?
That’s cooperative multitasking. The Mac OS cannot play the movie and han-
dle your menu selections at the same time. Once you select a menu command
and release the mouse button, however, the movie resumes play.

Try the same trick in Mac OS X. Notice how the movie keeps playing while
you select any menu command? That’s preemptive multitasking. It controls the

286

'PART 111+ THE AGE OF MAC 0S X

computer’s functions to meet all needs asked of it, allowing all applications to
use the processor and other computer components equally, for the most part.
As a result, the computer feels smoother and programs feel agile even when
there are many applications in use.

Carbonized applications should generally benefit from at least the stability
gains of Mac OS X, but may likely have greatly improved performance. How-
ever, Mac OS X 10.0 arrived with a Carbonized version of Internet Explorer
5.1, a preview release, as Microsoft called it. We feel that this applications is a
good example of what 7ot to do when porting an application to Carbon. Of
course we allow for the fact that this is a Microsoft application (you can read
in the words buggy and bloated), but there are so many fundamental problems
in this application that we can’t list them all.

To make the point: a buggy program is a buggy program, Carbonized or not.
Mac OS X did not promise to make your whites brighter, bring peace to the
world, or make poorly written software operate cleanly. It’s up to developers
like yourself to ensure that your Carbon apps work properly.

Apple initially claimed early on during Mac OS X development that Cocoa
applications would benefit best in Mac OS X. Today, Apple appears to have
improved overall operating system performance sufficiently to claim that Car-
bon and Cocoa apps work equally well. Writing an application using the
Cocoa frameworks is a labor of love, but usually just a labor. We'll touch on
Cocoa applications a bit in Chapter 20, “The Cocoa Environment.”

Better Resource Management

To allocate more RAM to a Mac application today, you have to open the appli-
cation’s Get Info window and change the number of bytes of RAM assigned
by the program’s maker. But many programmers tend to overestimate the
actual amount of memory a program needs. Or, when a program misbehaves,
some people simply allocate more memory in hopes of bringing things back in
order. As a result, programs running under the original Mac OS become a bit
greedy. Your computer hasn't sufficient resources to do what it’s asked to do.

Carbonized applications in Mac OS X are assigned as little or as much mem-
ory and other resources as it requires. Precious RAM and other energies aren’t
wasted.

CHAPTER 19 « THE CARBON ENVIRONMENT | 287

Carbon APIs are, by Apple’s design, a convenient and fast way to develop new
Mac OS X applications. By using Carbon, you’ll take advantage of the current
methods and tools to develop original Mac OS programs so your learning
curve is less steep.

How REALbasic Uses Carbon

Figure 19.4
REALbasic 3.2's
Build Application
window has three
options for building
your Macintosh
application. Most of
the time, Mac OS
X/Carbon will work
for your needs.

There are actually several versions of REALbasic 3.2 included on the CD-
ROM in this book. All of them function identically in terms of developing.
However, the 68K version of REALbasic cannot create applications for Car-
bon or PowerPC. Do note that any Power Mac can create Carbon apps with
REALbasic 3.2, however, only Power Macintosh systems capable of running
Mac OS X can test the results in that operating system.

REALbasic 3.2 takes full advantage of the Carbon APIs as you develop.
When it comes to developing for Mac OS 9.1 and X, you can't find an easier
to use programming tool.

When you're ready to build your application, all that’s necessary to Carbonize
it is to choose the Mac OS X/Carbon option in the Build Application win-
dow, shown in Figure 19.4.

‘ol

| W {MyUiiewindow 1.0) T

gk Code - ¥ PowerPC Code 5

i Names %An;Name exe
1 (3 mutiple Documnt imerfacs -
o

288

Review

Figure 19.5

MyLittleWindow, a
Carbonized Mac OS
X application.

PART 111+ THE AGE OF MAC 0S X

Using REALDbasic over other programming environments offers you a huge
advantage. For the most part, Carbonizing an application doesn’t require you
to change your processes for building a project. Figure 19.5 shows a basic Car-
bonized application running under Mac OS X. However, you should pay
attention to the interface differences between Mac OS 9 and Mac OS X.
Apple Developer Connection offers comprehensive interface guidelines for
Aqua. These guidelines may undergo some final tweaking by Apple as Mac
OS X becomes a finished product, so be sure to drop in and download the lat-
est information. See also Chapter 17, “Enter the World of Aqua.”

Thanks to the abilities found in REALbasic 3.2, creating Carbonized applica-
tions can’t be much easier. However, sloppy coding will not magically work
when Carbonized. Remember that building a Carbon application allows you
to use it on Mac OS 9.x as well as Mac OS X. Carbon apps should run better
in Mac OS X due to its better multitasking and memory protection features.

The Cocoa
Environment

In This Chapter

e Have some hot Cocoa
® Java: it’s not just for Web pages anymore
e What you need to begin Cocoa development

e For more information

290

PART |11« THE AGE OF MAC 0S X

fter listening to developers, Apple decided that the Rhapsody program-

ming strategy would work over time once programmers obtained the
proper tools. In the meantime, Apple applied the Carbon API approach to
immediately bring original Mac OS apps to Mac OS X as soon as possible.

Although Carbonized apps work great in Mac OS X, the best application may
be a native Mac OS X application that works only in Mac OS X and takes full

advantage of the features of the new operating system.

In Rhapsody, the native APIs were known as the “Yellow Box.” Today, in Mac
OS X, you'll know them as Cocoa.

Have Some Hot Cocoa

Cocoa is an advanced set of programming frameworks for developing native
Mac OS X applications. Frameworks are application-programming interfaces
that replace Carbon and previous Mac OS programming interfaces. With this,
you would design a new application that can run natively in Mac OS X.

Cocoa (implemented by Apple in Objective-C) projects can make use of exist-
ing C and C++ libraries, and can even use Java routines. Yes, #hat Java—the
same programming language that adds so many features and enhancements to
Web sites, among other things.

---Cocoa's-name likely originated from the blend-of programming

~languages and-APls available In particular; the Java programming
language spawned more than enough coffee and hot beverage
. metaphors within the computer industry. Apple wanted to take its

stab at it.

CHAPTER 20 ¢ THE COCOA ENVIRONMENT 291

Java: It's Not Just for
Web Pages Anymore

Java was introduced in 1994 by Sun Microsystems. Back in 1991, Sun began
a project to develop a way to make software for many kinds of household elec-
tronics such as TVs and VCRs. Imagine a smart toaster that makes the bread
and bakes it, too! The whole idea behind the various implementations of the
Oak Project (as it was known then) was to make an efficient way to program
many kinds of consumer-electronic products, including computers.

Java works by separating the idea that a computer’s programming must be
natively created, or compiled, for the computer on which it would run. For
example, say that you were writing a new word-processing application. You
want the application to work on both Macintosh and Microsoft Windows
operating systems.

If you're not using REALbasic to write your Macintosh application (that is,
you're using CodeWarrior or some other IDE), your first (or, to be more accu-
rate, second or third) challenge after writing an application is to compile a ver-
sion of the code to work on Intel-compatible systems. After the bugs were
removed and additional Windows conventions added, hopefully, you would
have two versions of the same application.

Because we're so pleasantly used to REALbasic, we oversimplified our exam-
ple. Unfortunately, very few development tools or procedures are around to
help you with cross-platform development. REALbasic’s abilities are among
these few exceptions. To make a cross-platform application, your IDE has to
be able to compile the application code into instructions that the computer’s
processor can understand. That’s not an easy task when you're dealing with
such diverse chips as Intel's Pentium and the PowerPC processors used in
IBM mainframes and Apple Macintoshes.

So Sun changed the paradigm of traditional computer programming. As we’ve
said, normally the process of compiling the code for an application is proces-
sor dependent because the IDE’s compiler you use is designed to create appli-
cation code only for one kind of processor. So, Sun thought, why not simulate
the computer hardware using another specialized application for Java on each

292

PART Il « THE AGE OF MAC 0S X

computer platform? This way, in theory, the unique parts of Java’s operation
that require an understanding of the unique abilities of a particular computer
is built in each application that simulates a Java computer. This kind of appli-
cation is called a virfual machine.

Once you slam out some Java code, it needs to be converted to a file that can
run on those virtual machines. Sun’s answer to that dilemma (because you still
can’t run Intel instructions through a PowerPC or other chip without help)
was to create a compiled form of Java that runs through the virtual machines
on any platform. When you compile Java code from your computer, you cre-
ate a bytecode file. Run the bytecode through your Java virtual machine, and out
comes the completed Java application, running happily and doing its job. Well,
that was the idea, anyway.

When Sun introduced Java, most of the newest programs available came in the
form of applets, tiny Java applications that were called up within a Web page
using a Web browser that could run Java code through a virtual machine built
in the browser. For the most part, most of us have only had this kind of expo-
sure to Java. Most of us probably haven’t seen Hot/ava, an experimental Web
browser developed by Sun that could run Java applets. Later on, however, a
tiny Internet startup company named Netscape modified its Web browser to
run Java applets, and the Java craze took off.

For a time, hundreds of Web sites happily announced their use of Java applets.
However, most sites presented rather simple and mostly useless applets that
served more as novelties and programming examples than anything else. I
mean, you could only appreciate Java clocks and tic-tac-toe games so much.

Another problem introduced itself that re-ignited the computer-
software/platform-compatibility issues. When Java first arrived on the scene
for personal computers, it seemed more equal for some computers than others.
Although a Java software development kit for Windows was available almost
immediately, it was some time before versions for the Mac OS appeared.
Worse, there appeared to be glaring incompatibility issues that hobbled or
crippled Java functionality under the Mac OS, version 7.5 at that time.

The biggest issue involved Java’s maturity. Although showing a lot of
promise, Java was a rich programming language that required a lot of horse-
power from both operating system and computer hardware. Because of this,
running Java outside of a Web browser wasn't consistent between most com-

CHAPTER 20 * THE COCOA ENVIRONMENT 293

puter platforms. Windows Java tended to run as much as twice as fast as the
Mac OS implementation.

It wasn’t until version 1.1 or so of Java that greater features and stability
appeared for the Mac OS. Available for Mac OS 7.6.1, Macintosh Runtime
for Java, or MR]J for short, included a stronger Java virtual machine that other
applications on your Macintosh could use for running Java applications. In
fact, you probably use MRJ and don’t know it; Internet Explorer for Macin-
tosh, the Web browser from Microsoft, allows you to use the MRJ for running
Java applets in that browser.

Today, with the hype subsided, Java’s still mostly on Web pages, used for those
many clocks, forms, and some online applications. But Apple has led the fore-
front in adapting Java as a major player in Mac OS X by providing tools you
can use to develop large, complex Mac OS X applications with Java. No other
operating system to date has so fully integrated Java as part of its development.

Sun, as we told you earlier, created Java from elements of C and C++. Their
Web site contains a comprehensive assortment of information on learning and
using Java that you can try out. Visit the official Java home page at
http://java.sun.com for information on Java development, as well as compre-
hensive tutorials for many computer platforms, including the one probably
closest to your mind, the Mac OS.

About Objective-C

Objective-C first came to light as part of NeXT’s OpenStep operating sys-
tem. Objective-C code is a cross between C and Smalltalk, an object-oriented
programming language of the 1980s. Objective-C is fully compatible with
conventional C programming environments, so if you or a friend happened to
have some source code to a C-based application you were doodling with, you
could port it to Objective-C and Mac OS X with little trouble.

If you're familiar with C or C++, you can adapt your code to Objective-C so it
can operate as a native Mac OS X application. Objective-C, as the name
implies, is a subset of C that adds object-oriented programming compatibility
to the programming language. While it’s beyond the scope of this book to
teach you how to program with Objective-C, there are some resources avail-
able from the Internet and elsewhere that you can study for more information.

294

PART 1l « THE AGE OF MAC 0S X

Swarm.org (http://www.swarm.org/resources-objc.html) is a great starting
place for more Objective-C information. An Objective-C information page
compiled by Steve Dekorte (http://www.dekorte.com/Objective-C/) has more
links on the language.

What You Need to
Begin Cocoa Development

A caution or two: Eventually, Apple would like every developer to program
using the Cocoa environment, and better sooner than later. Keep in mind that
programming in Objective-C, C++, or Java isnt the easiest thing in the world.

We hope you learn all you need to know about object-oriented programming
concepts in our book as a stepping stone to Cocoa development. This chapter
is intended to introduce you to Cocoa programming and the available tools,
but isn’t a comprehensive guide in any way. (You 4id want to keep your first
steps in Mac OS programming easy, right?) We won't be going too deep, but
will give you a taste of what you can explore later as you venture deeper into
Mac OS programming.

The best thing about Cocoa development is that Apple provides you with all
the tools you need to create the programming elements as well as the graphic
interface elements for the time it takes you to download them from their Web
site.

Or, better yet, why download the tools when you can get them free when you
buy your copy of Mac OS X? That’s right—one of the three CD-ROMs
included in your Mac OS X purchase contains all the developer software you
require to build Carbon or Cocoa applications. Although practically all other
members of the UNIX family include their tools as integral applications when
the operating system is installed, Apple thought it best to keep the tools sep-
arate. Nevertheless, Apple upholds the UNIX family tradition of providing the
needed software to build more applications.

Once you install the tools, your next step should be to subscribe free to Apple
Developer Connection, Apple’s official Web home for Mac OS development,
shown in Figure 20.1. The free subscription allows you access to any down-
loadable tool or documentation. Apple Developer Central is located on the
Web at http://developer.apple.com.

CHAPTER 20 * THE COCOA ENVIRONMENT 295

Figure 20.1 Explorer File Edit View Go Favorites Tools Window
s 8006 © Apple -
The Apple f‘
Developer [i* 1 |
comsanene B Apple Developer Connection A
provide you b
with a plethora of ™ Geyaur —~
Mac OS X / ~
information and g pxu‘a'e%:nhcgw /'\
B
software. § w’fm‘m) ’
or
; etk DP|
S DYRAMIC IROTUCTIONS, INC
jg' (‘ TAIDIG] Membership Technical Business Login Site Map | simunc“j
i Partner | Develo Build
z With Apple Great Products A Strong Business
| Mombership, Technical Business
Maz OS X Seedng Mac OS X Resources Mac O5 X Migration
Frequently Asked Quesbons Getting Started Appie's Business Case
Developer Programs Documentation Marketing Services & Discounts

] W ‘Nﬁ Scinace Sarvices & [sroat

Project Builder and
Interface Builder

Apple provides two powerful programming tools you can use immediately to
create a Cocoa application. The first is, appropriately named, Project Builder,
and is shown in Figure 20.2.

When you open Project Builder and create a new project, the New Project
window asks you to select a project type. As you can see in Figure 20.3, Pro-
ject Builder can design Objective-C and Java applications for any variety of
Mac OS. It can even create Carbon applications, which, as you know now,
allow you to support older Mac OS 9 systems.

Where Project Builder helps you create an application, it doesn’t provide the
graphical elements for the Aqua interface. Logically, that’s where Interface
Builder comes in. Its name, in typical Apple style, describes what it does
precisely.

Interface Builder serves as, you guessed it, the graphic interface construction
kit for a program. This program, shown in Figure 20.4, might seem a bit
familiar to you. In what we felt was a sincere bit of imitation as flattery, Inter-
face Builder also works much like REALbasic in terms of accessing interface

PART 11l « THE AGE OF MAC 0S X

Fi M Builder File Edit Format Find ﬂm Build chﬂ SCM Window Hnlz
igure 20.2 f55S [SimpleText.pbxproj ~ /Developer/Examples/Carbon/Simp
Project Builderis | % = 3
designed so you e
[© simplaText (Application) i
can slam out i o . gl <> 3 simpleTextcs EEE
i ¥ Grot i * a
great MaCIntOSh < SimpleText i File: StmpleText.c
code for Cocoa as » 9 Headers 8 | _))
We" as Carbon <83 Sources ! " sh‘mm“‘l‘x:nf‘.ams: StapleText - g simple document editing applicotion for
3 o o {€) AboutBox.c with systes software.
applications. |’ B Clltbostd.c
B iy Version: SimpleText 1.4 or loter
° (€] Moviefile.c
o {¢) PICTFile.c i Written by: TED = Ton Dowdy
o (€] SimpleText.c b] DAL = Dave Lyons
° (6 TextFile.c 5 . i Appie e . Iy {ohts
o (€] NavigationServicesSup E m"mC_w Tight: © 1993-1998 by Apple Computer, Inc., ail rights
o [€) TextDrag.c 2
= {7 Images and Sounds Al Fils:Oumership:
o [B1 SimpleText.icns |) ORI: Tou' Dosdy
o % SimpleText.tiff
o & SimpleTextDoc.tiff Other Contact: Jum Negrette
:g?:;:::fsg files Technclogy: Hacintosh Graphics Group
In
b {22 External Frameworks anc. Writers:
(dmp) Dave Polaschex
£ (2cs) Eric Schiegel
: (ted> Tom Dowdy i
£ Br) Greg Robbins 5
(1) Tom Dowdy i
R
Chonae. Histar, (anst recent £irst s 5.4
roject Builder B0 Edit Format Find Project Build Debug SCM Window Help

Figure 20.3
Starting a new
Project Builder

project.

Empty Project
Application
Carbon Application
Carbon Application (Nib Based)
Cocoa Application
Cocoa Document-based Application
Cocoa-Java Document-based Application
Java Application
: ¥Bundle
| Carbon Bundle
CFPlugin Bundle
Cocoa Bundle

Cancel) £ dack > C et > £vinsh

Figure 20.4
Interface Builder
adds the necessary
Aqua finishes for a
native Mac OS X
project.

CHAPTER 20+ THE COCOA ENVIRONMENT 297

InterfaceBuilder File Edit Classes Format Layout Tools Window Help

F 1d1:

First Respon... MainMenu
Flele
) Switch

® Radio
Radio | 4 E
) Radio

and control elements from floating palettes. From there, however, the similar-
ities start to disappear. For the most part, this is an application specifically
designed to integrate your code with the Aqua GUL. Interface Builder not only
provides the visual controls needed for any interface, but also aids you with
making your project conform to Apple’s interface standards as you develop it.

For More Information

Java and other programming languages that Project Builder and Interface
Builder support are a bit above the curve of what we’re trying to teach you in
this book. There are plenty of books on C, C++, and Java that will be of help
to you to develop in Cocoa as you gain more experience in object-oriented

programming with REALbasic.

We've found several great resources on the Internet for Java and Objective-C
information. The best ones are from Apple itself, in the form of tutorials for
creating an Objective-C and a Java application using Project Builder and

298

Review

PART 111 ¢ THE AGE OF MAC 0S X

Interface Builder. You'll find them at http://developer.apple.com/techpubs/
macosx/Cocoa/CocoaTopics.html. One important reason we can’t get into
these great applications here is that they’re still in beta form. The features of
these applications may change sufficiently in the final release.

We can’t emphasize enough that it’s not necessary for you to absolutely know
how to create Objective-C or Java applications anytime soon. However, it’s
important for you to know where Mac OS X may eventually go, particularly
as the tools to create native OS X applications improve and hopefully simplify
a little. Should you start the plunge, stick with Apple’s free tools since Apple
itself will be happy to provide you with plenty of support to generate as many
applications for Mac OS X as you can pump out.

UNIX:
A Shell Surrounding
a Tasty Kernel

In This Chapter
e Forward to the past: the command line
e She sells C shells by the C shore
® The Terminal application

® A summary of useful Terminal commands

300

PART 111 « THE AGE OF MAC 0S X

he innards of the classic Mac OS were pretty complex in its heyday. Com-

pared to modern operating systems, however, the original Mac OS had
many weaknesses that had to be addressed for it to keep in step with other
advanced operating systems such as Windows N'T/2000 and UNIX. One lim-
itation of the classic Mac OS was that it didn’t offer users much in the way of
choices when it came to telling the computer not just what to do, but how to
do it. In other words, a graphical interface was designed to reduce your choices
and so reduce your operating system’s relative power or efficiency. Despite the
advantages of graphical interfaces, the most powerful way to direct a computer
in its fundamental tasks of file management, systems control, and user man-
agement, is a command-line interface.

Forward to the Past: The Command Line

The BSD/Mach kernel fusion that forms the underpinnings of Mac OS X
brings something brand new to the graphical world of the Mac OS: a native
command-line interface, or CLI. As many of you know, the original Mac OS
was among the first personal-computer operating systems without a CLI. To
move documents from one disk to another, you moved icons on the screen that
represented files to and from windows that represented the contents of a disk
or folder.

The greatest advantage of a graphic interface is that commands sent to the
computer are greatly simplified. Suppose you have stored a text file,
MYWORK.TXT, in an MS-DOS subdirectory named C:\MYDIR\
MYFILES, and that you need to copy MYWORK.TXT to a subdirectory on
a floppy drive named A:\BACKUP\MYFILES. To copy the file from the C
drive to the A drive, you would need to type in the following command at the
MS-DOS prompt:

COPY C:\MYDIR\MYFILES\MYWORK.TXT A:\BACKUP\MYFILES

As some of you who've used MS-DOS can remember, this command will fail if
any of the characters within it are mistyped. Worse, there are at least two other
ways to complete this command. For instance, you could use the command:

D \MYDIR\MYFILES
COPY MYWORK.TXT A:\BACKUP\MYFILES

CHAPTER 21 « UNIX: A SHELL SURROUNDING A TASTY KERNEL

301

or perhaps this command:

A:
CD \BACKUP\MYFILES
COPY C:\MYDIR\MYFILES\MYWORK.TXT

Life’s stimulating enough without having to practically learn a new language
just to operate a computer, don’t you think? It’s no wonder that the Mac OS
and, later, Microsoft Windows, became the preferred way for most computer
users to interact with their applications and data. Still, a command-line inter-
face is inherently more powerful because of the complex ways you can adjust
your instructions.

Graphical user interfaces like the one used by Mac OS were oft referred to by
CLI enthusiasts by this disparaging acronym: WIMP (windows, icons, menus,
and pointers). Although the simplicity of GUIs had its advantages, a com-
mand-line interface allowed faster access to the power of an operating system.
As you can guess, however, using a command line has a much steeper learning
curve. There are hundreds of commands available in some UNIX versions, and
Mac OS X, underneath that beautiful Aqua exterior, is no different.

She Sells C Shells by the C Shore

One advantage of using UNIX is that there are many command interpreters
available. A command interpreter is a program that translates the commands
you type into instructions upon which the operating system can act. In con-
versation, UNIX-savvy individuals simply call them she/ls.

To most Macintosh users, shells are foreign entities. If you've used the old
Apple security/interface called At Ease, however, you've already used a type of
shell. Shells provide flexibility in the operating system by allowing the user to
modify the complexity of input and output from the computer. Graphical
shells like At Ease were designed to reduce the options available to you to run
the computer or change its settings. In short, Macintosh “shells” simplified the
Mac OS even further, giving extra security from, for instance, crazed, file-
trashing youngsters. Or, you use Mac shells to simplify things beyond what
you can do in the Finder.

302

PART 11l - THE AGE OF MAC 0S X

There are many UNIX shells out there, although a few aren'’t free and can’t be
distributed. About four of them are pretty common and can be found on most
UNIX versions. The second most-popular command shell is the terminal-
based C shell, or #ch. (We haven't found a pronunciation that sounds quite
right, although we once heard a Linux guy pronounce it “see-cee-shell.”) The
tsch shell is a variation of the C shell, the most popular shell. The tsch shell
happens to be the default shell when you install your copy of Mac OS X.

In the case of UNIX, a shell interprets the barely English—like instructions
from a command-line prompt into binary instructions that the computer ker-
nel reads and executes.

Many typical UNIX and Linux users mix and match the convenience of a
graphical interface with a command-line interface using a graphical-interface
generator and interpreter known as X Windows. X Windows interacts with the
kernel and whatever graphical interface you choose to use. That probably
sounds weird to you if you're a Mac user—unless you've used the shareware
program Kaleidoscope, which patches Mac OS 9’s interface with snazzy win-
dow and button changes. The one important difference is that most Linux and
UNIX graphical shells don’t make your life easier. These GUIs simply tend to
be graphical representations of the gazillion possible commands you would
encounter from a typical command-line shell. KDE and GNOME are popu-
lar examples of graphical shells used with X Windows.

If you're thinking that Aqua is a shell of sorts, you're right. Aqua is a graphi-
cal interface like KDE and GNOME. The similarity continues in that the X
Windows and Quartz display engines provide the necessary resources for
KDE or Aqua, respectively, to display, send, and receive instructions from the
kernel. The main difference—and this is an important one that makes a Mac
the easiest computer to use—is that most X Windows interfaces maintain a
similar complexity as the command-line shells they supplement. Yes, that’s
right, supplement, not replace. Mac OS X’s interface is designed to fully control
the UNIX underpinnings without having to use a terminal window or other
non-Mac OS component.

Like all other forms of UNIX, however, you could strip the interface (Aqua)
and the window manager (Quartz) away and still have a useful (but dry as a
martini) operating system. Figure 21.1 shows the onion that is Mac OS X
from an interface standpoint. Even without Quartz and Aqua, you can still
happily operate Mac OS X’s innards from a command line.

CHAPTER 21 < UNIX: A SHELL SURROUNDING A TASTY KERNEL

Figure 21.1

Aqua is a graphical
shell over the
Quartz graphics
engine, which
communicates with
the Mac OS X heart.

303

Mac OS X Kernel &
Core Services

Aqua
(Interface Software)

Quartz
(Graphics Engine)

With so many shells comes the number of commands available in each one.
Nobody can remember all those commands, but fortunately, some shells have
similar commands to each other (such as tsch, which is derived from csh).
Because the C shell is by far the most popular shell in the UNIX world, most
of the commands you may run into later may work fine in Terminal, the com-
mand line application included in Mac OS X.

Keep in mind that shells aren’t the actual operating system. A shell is merely
one way of sending instructions to components that the operating system con-
trols. That’s why the Aqua interface has as much basic control over the com-
puter as a typical shell, but can’t compare to the complexity and detail of
instructions you can give the computer from a command line. Command-line
interfaces are known more for complicating the process of using your com-
puter—but in a good way.

Most importantly, keep in mind that UNIX itself understands only one thing:
the binary information that a command interpreter (be it terminal shell or
graphic interface shell like X Windows or Aqua) translates from mouse clicks
or phrases you type. Because a typical UNIX kernel is extremely flexible,

304

PART 11l « THE AGE OF MAC 0S X

the more complex the command interpreter used, the more dynamic your
computer can be.

Before we get into how powerful UNIX’s command-line interfaces can be,
perhaps you should get acquainted with Terminal, the Mac OS X application
that allows you access to the UNIX command line.

The Terminal Application

Figure 21.2

It's new! It's bland!
It's Terminal!
There's not much
toit, butit's a
powerful way to
use Mac OS X’'s
hidden powerful
features.

You'll find the Terminal application in the Applications folder, inside the Util-
ities folder. Double-click the Terminal application, and you'll be greeted with
the window shown in Figure 21.2.

If you've used a computer terminal, MS-DOS, or older online services like
CompuServe before 1996 or so, Terminal will seem a bit familiar. It’s nothing
more than a text interface in which you enter UNIX commands at the com-
mand prompt.

But why use Terminal? Aside from the sheer geek chic of using a command
line in the Mac OS, you’ll need Terminal if you want to recompile an applica-

tion that’s compatible with Mac OS X’s BSD UNIX heart for use on your
computer.

[localhost:~] biff¥ 1s

Desktop Documents Library Movies Music Pictures Public Sites
[locathost:~] biff% |

CHAPTER 21 ¢ UNIX: A SHELL SURROUNDING A TASTY KERNEL 305

Prompts, Lists, and Permissions

One thing that’s cool about shells is how much direct power and information
is available from just a few keystrokes. Now, we know the Macintosh argument
about this: “But the mouse makes using a computer so easy.” Easy, yes. Pow-
erful? It depends on what you're doing. Are you drawing something complex
and colorful with layers and gradients and all that other graphic mumbo-
jumbo? Okay, then, a mouse is better. Are you trying to copy many different
files from many different locations to another spot on your computer? Or are
you attempting to install software you've found that requires you to launch an
application that doesn’t have a graphical interface? Ah, that’s the beauty of
working with the command line.

The only hard part of using a command line, especially with shells, is the sheer
number of commands and their variations that are possible. Let’s look at a few
tsch commands and let you explore a new world. If you happen to have Mac
OS X installed on your computer, just locate Terminal in Applications/Utili-
ties and launch it. For those of you who don’t have Mac OS X installed yet,
just follow along with the screenshots.

When you start up Terminal, all that greets you is a single window with a
prompt, as shown in Figure 21.3. (It was nice of Apple to make the format as
black text on a white background. That makes it easier to see and less harsh on
the eyes if you have to stare at it for a while.)

—

0686 .. ibianeh mvel)
Figure 21.3 [localhost:~] biffk pud 2
This prompt | Roemstr) vieex
indicates the name
you gave the
computer when
you installed Mac
0OS X. The pwd
command can tell
you exactly where
you are.

306

PART 11l « THE AGE OF MAC 0S X

The hardest part about using a command line is the fact that the commands
available to you usually depend on where you are. Well, that is, not where you
are (computers care little about your geography), but the directory to which
your shell is pointing. The prompt itself tells you where you are when you open
Terminal. By default, Terminal places you in your own user directory. You'll see
your directory name represented as your login short name. The default name
of a Mac OS X computer (from a UNIX point of view in terms of network-
ing, not AppleTalk) is Jocalbost. Unless you changed the name during Setup
Assistant (like we did), that’s what you’ll see in your prompt.

To find out what working directory you're using at any time, type in pwd. (This
command stands for “present working directory.” Don’t confuse this with other
UNIX commands that allow you to change your login password.)

Let’s try a simple command. Type 1s at the command prompt, and press
Return. The Terminal will list all directories and files available from a folder.

Like the MS-DOS command named 477, the s command lists the contents
of a directory. Typing in Is by itself shows the contents of your current direc-
tory. By default, Terminal points to your home folder for the login you're
using.

When you or someone who administers your Mac OS X system creates a new
user, a folder is created in the Users folder on the Mac OS X hard drive. Each
user folder contains the following folders: Desktop, Documents, Library,

Movies, Music, Public, and Sites. Many of these folders work like their old
Mac OS 9 counterparts and are essentially places to store your stuff.

In the case of Mac OS X programming, you can take advantage of the fact that
all users have this basic folder structure. You can use this information to build
your applications to search, add, or remove items from these folders—with the

A directory is a location where files and applications-are stored: You

--may know them by a simpler name: folder. When we mention-direc- |
tory or subdirectory, just think “folder” or “subfolder.” And yes, the
term “directory” came from the UNIX world.

CHAPTER 21 ¢ UNIX: A SHELL SURROUNDING A TASTY KERNEL 307

proper system administrative access, of course. Mac OS X’s UNIX security
requires Administrator access for changing or accessing the most critical sys-
tem functions. In some cases, your application or the user who installs your
application may require superuser access, or r7oo¢ access to the computer. Gen-
erally, you shouldn’t need to use root, and it’s a good practice to keep from
changing files in Mac OS X that you aren’t meant to change.

One thing you should note is that Mac OS X’s Is command does not show cer-
tain files and directories; this is for the sake of security and simplification. To
show every item in a directory, you could type in 11, the command for a long
list. This shows files in a table (see Figure 21.4).

Notice that Il gives you far more information about the directory’s contents
than the simple Is command, including hidden system files such as the ones
with periods at the beginning of their names. Some of the more useful infor-
mation involves the permissions for each folder or directory.

“root” admmtstrator account 18 the ‘one you, as the computer owner(
and administrator, would be asked to create on setup of your com-
puter. The root is the superuser. A person with root privileges can
make changes to all files of the computer. If you're not savvy in
UNIX administration, this could be a bad thing.

Apple, knowing how users of the classic Mac OS love to tweak

| things in their System Folder, disabled the root account in Mac OS
X. This is a good thing. Change the wrong thing in 0S X, and your
computer turns into a paperweight.

If you really need root access—-for example, to install a piece of
*software—-you can open the Netinfo Manager apphcatlon in the
Applications/Utilities folder. From the Domain menu, choose
Security, and then Enable Root User. You’ll need to be an adminis-
L ~ ‘trator of the computer to make this change.

308

Figure 21.4

Use the Il command
to list all directories
and files available
from a folder. This
view is more like
the MS-DOS dir

command.

PART 11l « THE AGE OF MAC 0S X

eoe {einficsh toypl)

[localhost:~] biff% 11 o
total 8

drwxr-xr-x 12 biff staff 364 Apr 3 21:49 .

drexr-xr-x 6 root wheel 160 Apr 3 21:48 ..

1 biff
2 biff
3 biff
4 biff
16 biff

staff 3 Nov 14 13:39 .CFUserTextEncoding
264 Apr 3 21:49 .Trash

264 Feb 20 12:29 Desktop

92 Apr 3 22:08 Documents

500 Apr 3 21:48 Library

264 Nov 1S 17:14 Movies

264 Nov 15 17:14 Music

264 Nov 15 17:14 Pictures

264 Nov 1S 17:09 Public

264 Feb 13 19:31 Sites

staff
staff
staff
staff
staff
staff
staff
staff
staff

drvexr-xr-x 3 biff
draxr-xr-x 4 biff
[localhost:~] biffx |

Permissions in Mac OS X work much like the privileges you could place on a
folder in Mac OS 9, except you can place restrictions on individual files in Mac
OS X, whereas sharing permissions were only for folders and disks, not files,

in Mac OS 9.

First, let’s get some terminology down. When you create a file in Mac OS X,
it assigns your account name to the file as the owner of the file. As owner of
the file, you can read the file, change (or write to) the file, or execute the file
(if the file is an application).

Files can also be available to groups. A group consists of a list, maintained by
Mac OS X, of users who have identical permissions for particular items. As
with owners, groups also have read, write, and execute permissions for files.
Most applications and files are assigned to one or more groups so that mem-
bers of those groups can share the applications and files, and work on them
collectively.

Lastly, there are files and directories, where everyone shares access. In the
UNIX universe, files and directories that everyone can use are given world

‘permissions.

So, what do owner, group, and world permissions have to do with the funny
code to the left of each file and directory name? Let’s break it down.

The first character simply indicates whether an item is a file or a directory. If
there’s a d, it’s a directory. If there’s a hyphen (-), it’s a file.

309

CHAPTER 21 ¢ UNIX: A SHELL SURROUNDING A TASTY KERNEL

Next are three groups of letters, each with a series of characters: r (read), w
(write), and/or x (execute). These permissions work similarly to the ones you're
used to in Mac OS 9 and earlier. The first group of letters indicates owner per-
missions. For example, if you're logged in with your account, as the owner of
your Public folder, you have full access to look in, change the contents of, or
open any item in that folder.

The second group of letters indicates group permissions. Unlike in Mac OS 9,
Apple hasn't yet provided a defined way to create groups for users, but Mac OS
X comes with a few built-in groups. For now, note that “staff” is a general
group where users with Admin and User privileges reside. A root administra-
tor has permissions in the “wheel” group.

World permissions, the third set of three letters, are generally set to read—only
access or no access at all for most files, since a typical UNIX installation
(including Mac OS X) tries to keep inquisitive minds out of places and files
that don’t belong to them. This permission is equivalent to using the “Every-
one” privilege in Mac OS 9 File Sharing. Items that you place in the Public
folder for file sharing on a network might have certain World permissions for
users to read and launch the files in the folder.

To remember which permissions are which, try assigning a number to each
letter in each permission. Break down the permission letters into its three
groups (ignore the first character that shows a file or directory designation).
Next, assign a 4 to each 7, a 2 to each w and a 1 to each x. Now look again at
Figure 21.4. It shows the permissions normally given by Mac OS X to a Pub-
lic folder for any user. Assign the necessary numbers for the owner, group, and
world permission letters, then add the three numbers in each group together.
In this case, the owner has rwx permissions, or 7; the group permissions are
rw, or 5; and the world permissions are rw, or 5. For this reason, this type of
permission is referred to as “755” access—the owner of the directory can do
anything he or she wants, while groups and all others can see that the
directory exists and can open anything in it, but can’t change or delete items
from it.

Any files you happen to come by with 700 access (the owner has rwx permis-
sions, but the group and world have no permissions at all) are for a superuser,
or root access only. Generally, that includes all Mac OS X system software
components. Don’t mess with these.

310

Figure 21.5
Changing
directories doesn't
show an obvious
result until you view
the changed
information within
the prompt.

PART 11l » THE AGE OF MAC 0S X

A Few Basics in Terminal

Let’s move about from directory to directory. Right now, because you just
opened Terminal, you should be pointed in your home directory. In the Ter-
minal window, type the following and press Return.

cd ..
You'll see a screen like the one shown in Figure 21.5.

Congratulations. You just moved yourself to the Users directory. This com-
mand, cd, is short for “change directory.” The two periods tell the shell to go
backward one directory level. Type Is, and you'll see all the various home fold-
ers for any other users of your Macintosh.

Now, time to move back to your home directory. Type cd homefolder and press
Return, where homefolder represents your home folder’s short name (hint: it’s
the last part of your Terminal prompt’s name).

Ta-da. You're back in your home folder.

Notice something about the folder’s name: it’s typed in all capitals, even
though the folder name is actually lowercase. Those of you familiar with other
versions of UNIX may think, “Hey! They didn’t type the folder name in the
proper case!” That’s right, we didn’t. In practically all other UNIX versions and
clones, Applications, applications, and APPLICATIONS are three different file
or directory names. Not so in Mac OS X. We entered applications as the direc-

[locathost:~] biff¥% c¢d ..
[localhost:/Users] biff¥ cd BIFF
[locathost:~) biff¥

Fe

CHAPTER 21 « UNIX: A SHELL SURROUNDING A TASTY KERNEL

CAUTION

311

tory path, and Terminal dutifully moved us to Applications. Apple decided to
change this UNIX convention to match the classic Mac OS convention.

~-Although-movitig-about imMac 0S: X sholild.be-a breeze with this oo
-hange; you should: emmwmﬂﬂpmgnn@mngﬂmj&gmmmy e

“to M . til ac OS X application code that- you -
““can port to other UNIX operatmg systems Most other versions of UNIX

must receive its directory and file names precnsely, or your apphcatlons

or commands will get treated poorly.

\ S

If you wanted to jump to any directory, you could type in the full directory
path. Alternatively, if, for example, you wanted to go the Applications folder
from your home folder, you can simply type the following and press Return:

cd /Applications

Probably the most useful command for UNIX newbies is man. No, not “man”
as in “man and woman,” but the command that’s short for “manual.” (In case
you haven’t noticed, the UNIX world not only loves making obscure abbrevi-
ations, but ones that seem to have very little basis in the English language or
is part of some geek humor.) All versions of UNIX have built-in help available
through a terminal window. To access it, you simply type man and the com-
mand about which you want more information, as in the following:

man top

After typing this command, you'll see the text of the manual page for the top
command, as shown in Figure 21.6. Most of the pages are based on BSD
UNIX commands and usually show “BSD Experimental” and the date the
man page was last updated. But, as with any UNIX version, some man pages
you'll see are clearly revised for your benefit.

Wmﬁﬁﬁﬁé,mmﬁmﬁﬁﬁfo“ﬁémﬁsr gﬁfﬁmfdﬁmm

312

Figure 21.6

This last page
from the man top
command shows
at the bottom of
the page that it
was updated just
for you, the Mac
OS X user.

"PART 11l « THE AGE OF MAC 0S X

a6 ... -fbinfsgsh owpl o
MSGS_RCVD the number of mach messages received by the process.
BSOSYSCALL the number of BSD system calls made by the process.
MACHSYSCALL the number of MACH system calls made by the process.
CSWITCH the number of context switches to this process.

Y

The top command also displays some global state in the first few lines of
output, including load averages, cpu utilization and idleness, process
and thread counts and memory breakdowns for shared libraries and process-
es. The top command is SIGWINCH sawvy, so adjusting your window geometry
may change the number of processes and number of columns displayed. Typ-
ing a 'q’ will cause top to exit immediately. Typing any other character
will cause top to iwmediately update it's display.

SAMPLE USAGE
top -u -s5 28

top will sort the processes according to cpu usage, update the output at
S second intervals, and limit the display to the top 20 processes.

SEE ALSO
we_stat(1)

Mac 05 X Septerber 30, 1999 2 R
[localhost:~] bifek i ¥

A Summary of Useful
Terminal Commands

NOTE

So as not to bore you with more text screens than you (or the publisher) would
care to see, we've compiled a list, shown in Table 21.1, of some of the more
useful commands in Terminal. You can use these commands to speed up your
work or to access information not easily seen through the Finder. Just remem-
ber that Mac OS X, like all good members of the UNIX family, evolves con-
stantly, so commands will appear and change over time. Be sure to use the man
command for more information on how these commands can be adjusted to
serve you.

N
i - N

I think the coolest comi mand.youcan show aWindows: mmaﬁﬂmmﬁ’

Type thisin your Terminal and-fet your PC-loving friends feast theireyes~——

~-0n-how-long-your-computer-has been-running-without-restarting--in
-UNIX, the time between OS restarts could be ‘months or even yearsl. Not
_even Windows 2000 can make this claim.

A

CHAPTER 21 ¢ UNIX: A SHELL SURROUNDING A TASTY KERNEL

313

TABLE 21.1 GOOD COMMANDS TO KNOW IN TERMINAL

Command

What It Does in Mac OS X

Is

]

man command
whereis

find arguments

cp file file
mv file file

top

open filename

kill process ID

zip filename

unzip filename
mkdir directory
rm filename

rmdir directory

pwd

Displays a list of the contents of the current directory.
Displays a detailed list of a directory’s contents.
Displays a manual page for command.

A quickie search for files in a few nearby directories.

Can extensively search by many, many different variables. For instance,
the command find / -name apache -print would locate all instances of
“Apache” in all directories.

Copies files from one location to another.
Moves files from one location to another.

Shows all processes running in Mac OS X. (You can see the same
information with the Process Manager application. This is just cooler.)

Opens a file or application.

Force-quits an application. The process ID is the number next to each
process listed by the top command or in the Process Manager application.

Compresses ZIP archive files made on a Windows PC (Yay! a ZIP
command that’s finally built-in!).

Decompresses ZIP archive files made on a Windows PC.
Creates a new directory.

Removes a file.

Removes a directory.

Shows your present working directory.

Review

We've only scratched the surface of Mac OS X’s powerful BSD interior. Pro-
gramming while using Mac OS X as your operating system offer abilities not
possible in Mac OS 9, such as shell scripting (like MS-DOS batch files) con-
taining commands to execute in Mac OS X automatically when you launch an
application. For now, you can relish at the ability to rename files all at once, or
perform other tasks that seem to take forever under a graphical interface.

Advanced
Things to Do

0 SR RIS = 5 o R R KGR i AR AR . sz s - £ R A
R O e . . s — o s s 2
gt @ " 5 - : - .
. - . e . R . " e — . "
S 0 comizni .
o A v
P— i S s " . R N R S
e i R IS o . e - . B
2 RS R R RN S e SR s S e T SR 1L S £ AR e
5 . npa R e SRR R SRR T R RN 2
x R 2 . . s . - I s
R T - s * R S T L S R S I PR IR S A P e SRR 200 5 vz sssesmns
aneses : B = o » RS T L S s TS
T e ssons R D - N e R - - . s
e s . s SR ki oz i AR R s e
" - . . AR TN — S p— = s
S e B IR S e s e A & e AL R S— e o
.
;
.
S :
1
3 :
~ .

Porting
Applications to
Microsoft Windows

In This Chapter

e Start with a Macintosh application

e Handling path names

e Watch out for conventions

e Compile only the code required for the ported application
® Porting Visual Basic code

318

PART 1V « ADVANCED THINGS TO DO

We bet you're feeling pretty happy after completing your first useful Mac-
intosh application. There’s no feeling better than that cosmic power of
creation, right? Hey, ask any new dad.

That said, although your new Macintosh application is a sparkling gem, there’s
the matter of simple exposure. Sure, there are lots of Macintosh users out
there, but why keep a good application just to yourself and other Mac afi-
cionados? REALbasic enables you, with the selection of a single option, to
build a version of your application that runs in Microsoft Windows. That’s a
great feeling, and, depending on what you build, it could be a profitable feel-
ing, too.

To get the most out of your creation, you can add some REALbasic code that
optimizes the application to perform efficiently on a particular platform. In
addition, you'll need to adjust your code for Mac OS features that aren’t imme-
diately available or allowed in a Microsoft Windows version of your completed
applications.

Start with a Macintosh Application

Your first REALbasic applications probably won't require extensive modifica-
tions just to make them work under Windows. The parts you have to worry
about involve the different ways that Windows users operate their applications
as compared to Macintosh users, as well as special Macintosh-only code you
should isolate so that only specific code will be compiled for the particular
platform you're using.

Our first words of advice involve when to build your Windows version. It’s a
good idea to build your application first for Macintosh only. After you're sat-
isfied that the application works well under the Mac OS, you can revisit your
project, save a version of it, and then add the modifications to make it work
satisfactorily under Microsoft Windows.

Handling Path Names

One thing to watch out for during modifications are path names. A pazh is an
address of sorts for a particular folder or file on a hard drive or network vol-
ume. A path works much like a street address; the difference is that although

CHAPTER 22 « PORTING APPLICATIONS TO MICROSOFT WINDOWS 319

a street address begins with the item you want to find and the area surround-
ing it outward, a path begins with the surrounding area and works its way
inward. If we were to write a street address in the way that paths are written,

it would look like this:
MN\Metropolis\Broadway\5120

On a Macintosh, hard-disk names are whatever you want them to be, up to 32
characters. (That’s Classic Mac OS, as in Mac OS 9. Your mileage may vary
with Mac OS X, which plans support for many more characters using the Uni-
code standard.) In Windows, the various hard drives and volumes are not
assigned names; they are assigned letters. Typically, a Windows system with a
single floppy drive (how quaint), a single hard drive, and a CD-ROM drive
will have volumes named 4, C, and D, respectively (B is skipped, but would be
used if the system had a second floppy-disk drive).

These letter assignments aren't set in stone, however. The CD-ROM drive let-
ter might be different if the hard drive has multiple partitions. For example,
Windows normally assigns drive letters after 4 and B to each hard drive or
partition it detects. So if Windows finds three hard-drive partitions, it names

them C, D, and E, and the CD-ROM drive is assigned F. The CD-ROM

The use of dnve Ietters lnstead of volume names in: Wmdows isa
holdover from an old, old operating system named CPM. I'll give
100 quatloos to anyone who remembers this OS fossil. Better yet,
I'll give 1,000 quatloos to anyone who gets my joke about * quat-
loos.” (If you don't, turn in your computer-geek card—you don t ‘
watch enough TV, particularly science fiction!) :

In CPM, drives were labeled as numbers: 0, 1, and so on. IBM bor-
rowed this idea from CPM, but changed the numbers to Ietters to ¢
make it simple—well, as simple as it could be until we mount that |
27th hard drive.

320 PART IV « ADVANCED THINGS TO DO

drive letter could still be D with the other hard-drive partitions named E and
F. Fun, huh? No wonder Windows users are always losing files.

Path names in Mac OS and Windows are separated by various characters,
which delineate a component (drive, directory, or file). The Mac OS, which
rarely uses path names because of the simplicity of getting around, separates
its items by colons, like this:

Macintosh HD:Applications:Classic Arcade Games:Tron

In Windows, a backslash is used to separate drives, folders (also called directo-
ries), and files. For example, a Microsoft Word application is typically available

at
C:\Program Files\Microsoft Office\winword.exe

To confuse things even more, Windows uses a different method of specifying
where an item is on a network server. Two backslashes are added before the
network volume’s name, like so:

\\Computer Name\Shared Directory Name\Directory Name\Another
Directory Name\File Name

Here’s an example:
\\jeffserver\backup drive\embarrassing\babypictures.jpg

REALbasic’s Folderltem class (in combination with other tools for cross-
platform development, which we’ll cover shortly) is the key to handling paths
and the items within them.

CAUTION

Watch out for Conventions

There are other internal differences and conventions you need to keep in mind
if you choose to make your REALbasic application in Macintosh and Win-

dows versions.

CHAPTER 22 « PORTING APPLICATIONS TO MICROSOFT WINDOWS 32 1

Window, Window,
Who's Got the Window?

One significant difference between Windows and Macintosh applications
involves documents displayed by an application. Take Microsoft Word, for
instance. When you open that application on a Macintosh, there’s the menu
bar at the top of the screen, the Word toolbars, and a document window. Now
view the same application in Microsoft Windows. The application resides in a
window itself, floating on the desktop. Document windows float inside the
application’s window. The menu bar rests at the top of the application window.
Odd, to say the least.

This format is what REALbasic calls a multiple document interface. The appli-
cation window is also known as a frame. In REALbasic 2.1.2, the completed
Windows application’s frame size can't be changed, so you'll need to ensure
that the application works under larger or smaller screen resolutions, or that
the user can see the content of your application’s window. If you don’t choose
the multiple document interface option in the Build Application window, then
your Windows application will be compiled with a single document interface.
That is, your app has a single window, and any content within adjusts to the
window. You should test out your builds of applications with both options to
see which configuration is most appropriate.

Take Note of OS-Specific
Folder Items

Both the Mac OS and Microsoft Windows have common areas you can take
advantage of when developing your application for cross-platform use.

Table 22.1 contains the REALbasic functions you can use for getting to key
Mac OS system folders, Finder folder items, or their Microsoft Windows
counterparts. Make a note of the ones that you can’t use in Microsoft
Windows (ControlPanelsFolder, ShutDownltemsFolder, StartupItemsFolder,
and TrashFolder). In all cases, you should use TargetWin32 or TargetMacOS
to determine what code should be used. We'll talk about the Target
constants in the following section, “Compile Only The Code Required for the
Application.”

322

TABLE 22.1 SPECIAL FUNCTIONS FOR ACCESSING
SPECIAL LOCATIONS IN MAC OS AND MICROSOFT WINDOWS

PART IV » ADVANCED THINGS TO DO

Function

What It Does in Mac OS

What It Does in Windows

AppleMenuFolder

ControlPanelsFolder

DesktopFolder

ExtensionsFolder

FontsFolder
PreferencesFolder

ShutDownltemsFolder

StartupltemsFolder

SystemFolder

TemporaryFolder

TrashFolder

Accesses the Apple Menu
Items folder

Accesses the Control Panels
folder

Accesses items in the Desktop
Folder (that is, items on the
desktop)

Accesses the Extensions folder

Accesses the Fonts folder
Accesses the Preferences folder

Accesses the Shutdown Items
Accesses the Startup ltems
Accesses the Mac OS System

folder

Accesses the invisible
Temporary ltems folder in
Mac OS.

Accesses the Trash folder

Accesses the Programs folder in
the Start Menu folder

Returns Nil (not available for
Windows)

Accesses the Desktop folder

Accesses the Windows\System
folder

Accesses the Windows\Fonts folder
Accesses the Windows folder

Returns Nil (not available for
Windows)folder

Returns Nil (not available for
Windows) folder

Accesses the Windows\System
Folder

Accesses the Windows\Temp
folder

Returns Nil (not available for
Windows)

Adding Hot Keys for Windows

Not to get into the whole Windows-versus-Macintosh thing, but there’s a dis-
tinct philosophical difference in navigation between the operating systems.
When the Mac OS was created, the mouse was chosen as the primary way to
initiate commands and manipulate stuff, period. A few keyboard shortcuts
(also known as acceleratorsin REALDbasic or Aot keys in other circles) were avail-
able to help users avoid unnecessary repetition, such as the Clipboard com-
mands: Cut (Command+X), Copy (Command+C), Paste (Command+V), and

sometimes Select All (Command+A).

CHAPTER 22 « PORTING APPLICATIONS TO MICROSOFT WINDOWS 323

In Microsoft Windows, however, things get a little more complicated. Win-
dows has never fully shaken its roots in MS-DOS, where its command-line
interface brought confusion—not to mention tears of frustration—to many
users. The first commercially successful version, Windows 3.1, included key-
board shortcuts for most commands in the Program Manager (the desktop-
manager application, which is similar to the Macintosh Finder), and for most
applications as well. In fact, there are so many keyboard shortcuts in Windows
that it’s possible to operate it almost completely without a mouse. Figure 22.1
shows a simple Windows application, Notepad. Virtually every command in
every menu has a keyboard shortcut.

Most of us who've sampled the Mac OS took a liking to the simplicity created
by using the mouse for practically everything. In fact, the Mac OS’s hardware
and applications are designed so that having a mouse is virtually mandatory;
you can’t be very productive on a Macintosh without one. The mouse makes
the Mac easier to use than any other operating system. But because the Mac
OS is so mouse dependent, there are rarely more than two ways of performing
any command from the Finder level.

In REALbasic, keyboard shortcuts are handled differently with Mac OS than
with Windows. In Mac OS, you can add keyboard shortcuts through a menu-
item property, but in Windows you can add keyboard shortcuts for both
menus and menu-item properties. If you are developing an application, you
can add the underlined shortcuts for the Windows version of that application

Figure 22.1

In Windows,
keyboard shortcuts,
or accelerators

(like the ones in
Notepad’s menus),
make for less
mousing about.

E
e

324

Figure 22.2

In your application,
create a new
module, then add a
new constant for
each keyboard
shortcut.

PART 1V « ADVANCED THINGS TO DO

through the use of modules, which can store a constant that adds the shortcut
in a Windows version of your application. To do this, you create a new con-
stant in a module in your application. Here’s how:

1.

2.

Select the project window, and choose New Module from the File
menu.

With the newly created module window open, choose New Constant
from the Edit menu.

In the Value field of the New Constant window, type the name of the
menu item for the Macintosh side of the application.

Click the Add button in the New Constant window to bring up a new
dialog for entering a different constant value.

Choose Windows from the Platform selection.

In the Value field, type the menu item name. It should be identical to
the corresponding Macintosh command, but with an added ampersand

(&) character immediately before the letter in the command name that
should have the shortcut underline (see Figure 22.2).

Another way to add certain constants in captions for buttons and tab controls

is simply by adding an ampersand before the letter you want to set as the key-

board shortcut. To a Macintosh application, the ampersand is invisible. To a
Windows application, the letter following the ampersand will have a keyboard
shortcut, making it easier for Windows users to move about using the Tab key,
which moves the button focus from one keyboard shortcut to another. To actu-
ally show an ampersand, place two ampersand characters.

CHAPTER 22« PORTING APPLICATIONS TO MICROSOFT WINDOWS 325

Compile Only the Code Required
for the Ported Application

There may be Windows-specific or Mac-specific items you need to access, or
code that you'd rather not include in your app if it’s not needed, which could
cause the whole app to misbehave or halt. For instance, a problem you might
encounter is in testing the application during debugging as youre running the
app in the runtime environment. Goodness knows you don’t want any code
you've added for Microsoft Windows—specific events to attempt to activate
while running there. So, you'll need to isolate platform-specific code by iden-
tifying the code that’s running in the application.

REALbasic code should make a distinction between Power Macintosh sys-
tems with PowerPC processors and older Macintosh systems using 68000-
style processors, like Macintosh II and Quadra computers. There’s always a
chance that someone who gets your application will run it on older hardware.
When you build your application, the Build Application window gives you the
option of compiling for Mac 68K or Mac PPC. Although an app designed for
68K will run (slowly) on a Power Mac, the reverse isn’t true—a PPC app won'’t
run at all on most 68K systems.

Rather than use the rather generic TargetMacOS flag, try using the TargetPPC,
TargetCarbon or Target68K constants instead to weed out unneeded or unde-
sirable code when you compile.

There are six constants you can use to prevent compilation of unneeded code:

¢ TargetWin32

¢ TargetCarbon

¢ TargetMacOS

¢ TargetPPC

¢ Target68K

¢ DebugBuild
All of these target flags are Boolean constants that allow you to isolate code
not needed for a specific build of your application for a specific platform. Of

these, the one you might use the most is the DebugBuild constant. This flag
is useful when preventing snippets of code from running while in the runtime

326

PART 1V « ADVANCED THINGS TO DO

environment during debugging. If you're making an iiber-app that runs on
everything, the DebugBuild flag can be a godsend by preventing the non-Mac
OS code from killing a test run.

The TargetWin32 constant, to give a quick example, assigns a Boolean result
to any variable you assign to it. Suppose you've created a variable named
checkTarget. You could use the following to indicate code that should or
shouldn’t be included in the application built for Microsoft Windows:

checkTarget=TargetWin32

The variable would return true or false in response to the check. The other
flags do the same thing but, logically, respond to the presence of the platform
it detects.

The target flags are most useful with the #If/#Else/#EndIf statement. It works
much like the conventional If statement, but allows you to isolate the code
after the #If statement if the platform check was true. If the platform check
from the Target constant is false, the code after #Else will be compiled into the
built application.

Suppose your application creates documents that allow the user to save her
work. (What a concept, huh?) On the Macintosh, you've instructed the appli-
cation to open a Save dialog box and provide a default name for the document,
Untitled. In Microsoft Windows, you need to ensure that a file extension is
added to the default file name. You could use the #If statement in combina-
tion with the TargetMacOS (or TargetPPC or TargetCarbon, if the app you
created is meant for PowerPC systems running Mac OS 9.1 or Mac OS X)
like this:

#I1f TargetMac0S then
Dim workfile As FolderItem
Dim unsavedFile as TextOutputStream
workfile=GetSaveFolderItem ("","Untitled")
//...more file saving code...
#E1se
//Windows-specific instructions for the file save
#EndIf

You should use #If not only for Macintosh-specific instructions and unique
features not available on Microsoft Windows (such as AppleEvents, Apple-
Script and Toolbox items), but also for Windows-specific calls to features

CHAPTER 22 « PORTING APPLICATIONS TO MICROSOFT WINDOWS 327

available only in Windows that could make your cross-platform application
stronger when run on that platform.

Porting Visual Basic Code

If you happen to have written an application in Visual Basic (or know some-
one who wants to give you free code), an integrated programming environ-
ment for Microsoft Windows, you can import those applications into
REALbasic and create a Macintosh version. This isn't a completely perfect
port—there are a few incompatibilities, but some can be repaired rather
quickly. REALbasic automatically re-creates all the VB controls, event han-
dlers, and methods from the imported code.

A quick and dirty way to import Visual Basic form files (files with the .frm file
extension) is to drag and drop the .frm files in a Project window of a new
REALbasic project. However, this process leaves much to be desired in terms
of locating and correcting the syntactically different or incompatible code in a
Visual Basic form.

A better way to start the import process is to use a utility included with
REALbasic called VBCleaner. This utility examines and modifies the various
classes, forms, and projects in your VB code and prepares them so that import-
ing them into a REALbasic application is less time consuming. Processed VB
class files are saved as VB forms and not classes, however, so you'll need to
import those classes manually into REALbasic later.

il

- {reviewed here) was designe Of'COI’I'; t code to work w:th
-REALDbasic 1.0. Although REALbasic 2 and later may accept most -
commands from its previous incarnation, there are certain to have S
“been a few changes in REALbasic syntax Don't port code and ‘
assume that you need to correct only the VB i lssues—you may have :

REALbasnc 1.x-to- 2 x or -3.x issues, too. : o

328

Figure 22.3

FreeVBCode is one
of many Web sites
with loads of

code samples. Of
course, they're
Greek to you until
you get REALbasic
to import them.

PART 1V « ADVANCED THINGS TO DO

The great news about cleaning up your code from a Visual Basic import is that
REALbasic and Visual Basic share the old BASIC language as an ancestor.
Also, both IDEs are modern, object-oriented programming environments.
Best of all to you, there are plenty of sites to visit for VB code that you can port
to create a Macintosh version of the application. (This is where you cheer the
crowd of Microsoft Visual Basic developers for their work!) It didn’t take us
long to find some free VB code snippets on the Internet. One place was
http://www.freevbcode.com/, shown in Figure 22.3, where we found samples
for just about any application or task (for Microsoft Windows, of course).

r .

I the sample code you find here will be compressed in the ZIP archi ,
- format, which means you'll need Stufflt Expander 5.5 or greater to prop-
~erly extract the file’s contents. Mac OS 9 and recent versions include a
copy of Stufflt Expander 5.5, but you can download the latest version
from Aladdin Systems at http://www.aladdinsys.com.

L J

As a simple example, we downloaded the free source code for a Visual Basic
application called Graphic Browser, made by a group called LazersDesign. The

=
3
ki
L
o2 Find Code: [Searen) aavanced search e
: mwed
I Home News et Best Eorum
1 News lobs Links Newsletter Submit Coda Click here if you |
. |
g If you |
- 3 v broke it, |
0 EreevVBCodelcom '
£ liem #112589
i Walcoma to Freav¥bCoda.Com, the placa on tha Wab for the highost quality, frea v:eval basic coda Artnouseau |
& Currently, there are 1498 code examples and articles on ths site. New code is added evary day. vase |
; Every month, FrueVECndn com zelacis the devaioper wha submits the best code examoles as the |
. The winner receives a web page on our site, and twc prizes: Frint Preview.ccx
2 | by Mmmmi,ﬂm, and VBCodeLbrary by Chris Eastwood. To be considered for this racognition,
& submit & code wcamgle to us. The current developer af the month is Elad Rosenheim. I
ASP, HTML, and XML omevsa lost it, J
Brgiog Inemmediaie, Adv Intmediate, Advaneed
Suppety, Apleatons, Cluses, Corticl, Medulen Suppeia Clasey, Contialy Modules Bare coln
Datatase Network/Internet
Lemedian, advauced Inteqned ate, Advanced
Snigpcta, Clasags, Conticls, Modules Sopma Claxes, Contiob Modulo “
Dates and Matl Registry
Adviveed , Intsnediats, Advanced
Suppets, Apphestors, Classer, Cortrely, Madules Smmn Clasaes, Contials Modules 5l
= P : %

CHAPTER 22 « PORTING APPLICATIONS TO MICROSOFT WINDOWS 329

code files, once decompressed, are essentially text files readable by any text edi-
tor or word processor.

After installing VBCleaner from the REALbasic CD and downloading the
Graphic Browser code, it was time to let the Little App That Could do its

work:

1. First, we opened the folder containing the VB code and identified the
VB project file. Typically, VB project file names have the Windows file
extension . VBP, which stands for (obviously enough) Visual Basic
Project.

wwyeu -are- usmgs The ¥|l”"" extensmﬁ (whach r&netuthe«same -a8- Mac QSw
- extensions-in any. way)- is:separated by the file name with a period. File :
~ with .EXE as their extension are Windows applications. A file with a .DOC
extension is probably a Microsoft Word document. (We say ”probably”
because f' le extensnons are a bit arbitrary and sometimes Windows mls- -
takenly uses the wrong appllcatlon to open a partlcular file. Keep this m ,
mind when you create Wlndows versions of your applications.)

.)

NOTE

2. Next, we opened VBCleaner’s File menu and clicked the Open

command.

3. We selected the file Bmpbrowser.vbp.

- Attﬁnmmcreﬁnmmmmr files, it's SASiESt 16- 0P

-.-VBP-project file; which-will-automatically: pggggamrmg&mm same-—
wwlecauewras«»the»pr«ejeetmﬁle.

NOTE e

4. VBCleaner’s default settings exhaustingly detailed each step of the
process, starting with a confirmation asking whether the file we
selected was really the one we wanted to process (see Figure 22.4).

330

Figure 22.4

VBCleaner is very
hard at work. The
VB code we
downloaded
doesn’t look
particularly special.
Note the Windows
file extensions on
each file.

PART 1V « ADVANCED THINGS TO DO

ICESSING METHOD: Fom. L

worh foral name

W) /2, 15 - hAe He

; :gywm 2, (Sevoen h)-%‘. Ha Hol 3
wordd charged for g name

4 ’M"V\ﬁlé) /2, {Saeen. Vi~ Me Height) 4

5. After each file we processed (involving yet more confirmation dialog
boxes), a summary window appeared that detailed what was found and

modified in each file.

The upside to this blitzkrieg of windows is that you can save or print each
summary for later review. For example, you might find a change that wasn't as
useful or clear as it should be. Or there might have been a bug in the original
code that VBCleaner changed from annoying to outright nasty.

VBCleaner doesn't alter the original code files; rather, it creates a new copy and
deposits it without ceremony on your Desktop by default. In the version of
VBCleaner we used (2.0), we couldn’t change the default folder for some reason,
so perhaps you can color-code your Desktop icons one color using the Finder’s
Label command (you do this by selecting the files, Ctrl+clicking one of them,
and choosing a color from the Label menu context). When VBCleaner’s fin-
ished, the files it processes will be on your Desktop in a different color, and you
can move the files into a new folder somewhere on your computer.

With the files processed, the next logical step would be to go through the sum-
mary reports and begin the process of correcting code that VBCleaner can’t
modify—and that’s exactly what you should do. But, being us, we wanted to
see how well the VB code was translated. We fired up REALbasic, opened the

CHAPTER 22 - PORTING APPLICATIONS TO MICROSOFT WINDOWS

Figure 22.5

Although the
Graphic Browser
interface isn’t much
to look at and needs
a lot of additional
work, remember
that this was
originally designed
for use only on
Microsoft Windows.

331

File menu and selected the Import command, and selected the .VBP project
file. Figure 22.5 shows the promising result. REALbasic dutifully displayed a
section of the ported application’s interface, but not much else. To add the
remaining code, you'll need to cut and paste the snippets of code into the
appropriate parts of your project. The great thing is that, thanks to VBCleaner,
most of the code is already properly formatted in the correct syntax.

The next stages of porting are among the hardest. It may feel harder since it’s
difficult at this point for us to anticipate what code you will encounter in the
wild that warrants a port. This is where your growing programming experience
must pay off in identifying what you see. Try running the code to spot the
errors first. You'll definitely see quite a few problems. To begin, watch for
things such as

¢ Variable names that attempt to define the variable’s type using the “%”
and “$” characters, which stand for string and integer variables.

¢ Code relating to the opening of files. Windows file and folder name
structure handles this a bit differently.

¢ Any kind of code that appears to be related to ActiveX and Visual
Basic Scripting. These items aren’t supported in the Mac OS or
REALbasic since they utilize quite a few APIs from Microsoft that the

company reserves for use only in Microsoft Windows applications.

A program such as this is probably fairly easy to re-construct from here on a
Macintosh because of its graphical nature. The real challenges for you come
when you try to port larger, complex applications. Fortunately for you, you can

use many online resources to help—one you should jump to right away is
the Visual Basic/REALbasic Rosetta Stone at http://kode-fu.com/rosetta/

332

Figure 22.6

The VB/REALbasic
Rosetta Stone Web
site should be
useful for correcting
errors in translation
that VBCleaner
doesn't catch.

Review

PART 1V « ADVANCED THINGS TO DO

REALBasic/Visual Basic
Rosetta Stone

The VB-to-RB porting reference

‘written and maintained (after a long hiatus) by Joey devilla

Last updated Thursday, May 25, 2000.
Next update: Thursday, June 1, 2000.

Nicar graphics to follow.

Line mary REALBasic sites, this site aims to be a nesuures for the REALBasic programming community. Unlike these
sites, it doas so with a different approach: thicugh with its Windows L, Microsoft Visual Basic.
1n this site, you'll find features of Visual Basic and their REALBasic counterparts listed together, Where one language
has a feature tha: the other doesn't, a workaround is provided if one exists.

The morz obvious purpose of this site is to be a resource for programmers wko are porting applications from Visuai
Basic to REALBasic, Whila the slant of this site s towards REALBasic (it being the newer ianguage with fewer
appications written using it), there's no reason you can't Lse this site as a resuurce for porting appications written
in REALBasc to Visual Basic. To add more depth, the other pr such as
G/C+4, Java, Pythan, Perl, Pascal and Lingo is used. This ste takes to haart rh« hefef that you can learn a lot
about your own language by studying other languages.

The less obvious (and possibly mere important) purpose of this site is 1o be a source of prograniming techniques for
REALBasic that have been adapted from techniques for Visual Basc, This site attempts to address "Mac
programmer's heartlreal,” which is best described as thal horrible feefng you gat when you go to a buakstors and
comrpare the selection of Visual Basi: books to REALBasic bocks, It is a ¢oal of this site lo help you take advantage
of the wealth of Visua Basc resources and adapt them for your own Lse as a REALBasic programmer. To this end, 1
plar: to cite materal from my own library of Visual Basic books anc magazinas as wel as from Web sites and of
Tourse, My OwWn experience as someane who codes n VB for food, sneiter and Jagermeister.

(see Figure 22.6). This site contains information about differences between
certain commands in Visual Basic and its REALbasic counterpart, if one
exists.

Should your taste in porting VB applications become unquenchable, we sug-
gest that you drop in on your local bookstore and find a few books on VB to
get a bit more familiar with it. REALbasic and Visual Basic make for good
counterparts and a powerful alternative to the conventional C++ programmers.

REALbasic and Visual Basic have a few common roots that can make it a
worthwhile experience to port useful Windows applications for Macintosh
users. The double-whammy in porting with REALDbasic is that applications
can also be Carbonized for Mac OS X as well.

Porting applications is among the hardest programming tasks. This process
will take time for you to learn the nuances of the source code, and rearrange
the components in REALbasic to make a good fit. In addition to online Web
resources, take advantage of REALbasic’s mailing lists. Don't feel afraid to
write other developers for more information on their code.

A Word about
Advanced
Programming

In This Chapter

e Let’s C what develops
® Macintosh C++ development

e The Apple Developer Connection Web site

334

PART IV « ADVANCED THINGS TO DO

he great thing about using REALbasic to create Macintosh (and Win-

dows) applications is how easy REALDbasic is to use compared to other
application-programming environments. The challenging thing is that the
majority of source code and programming tools are based on the most popu-
lar programming languages, some of which can be a bit of a challenge for
beginning and intermediate programmers.

Although REALbasic is a very powerful development tool, keep in mind that
other advanced programming and development tools usually have more fea-
tures and are more versatile in certain situations. Try as you might, you'll be
hard pressed to use just one programming tool to write all the types of appli-
cations and programs you might ever want. Some tools are more suited for
specific tasks than others. As you gain more experience with programming and
development, you’re probably going to run into these other languages and
development tools.

Let's C What Develops

The C programming language, like the UNIX operating system, was created
at Bell Labs in the early 1970s. To discuss the history of C, you have to dis-
cuss the history of UNIX. In a way, they both created each other.

In the Beginning...

Way back in 1969, hippies, long hair, incense, and peppermints weren't the
only thing people were thinking about. Although some were tuning in, turn-
ing on, and dropping out, Ken Thompson (no relation to the co-author of this
book) was working on a computer-programming research project for Bell Labs
in Murray Hill, New Jersey. He was developing computer programs that
would be used to write other applications. (Talk about your chicken-and-egg
problems, this guy was writing software to write software.) Ken’s work was
related to a project that Bell Labs had been working on in conjunction with
MIT and General Electric. The Big Three were working on the development
of the Multiplexed Information and Computing Service, or, for those who
didn’t want to deal with that tongue twister, the MULTICS operating system.
Bell Labs decided to drop out of the MULTICS project and develop their own

operating system.

3

CHAPTER 23+ A WORD ABOUT ADVANCED PROGRAMMING

g The name UNIX

was a

backhanded play |

on words.

i Because a single

| developing UNIX, !

| decided to drop v

group was

instead of the

previous three
that were
developing

MULTICS, they

the MULTI,

! meaning “many,”

| replaced with X— |
| probably because ‘

and replace it
with UNI,

meaning “one.” |

The CS was

i it looked cooler.

335

Not long after Ken started working on his research, Dennis Ritchie stepped in
to assist. The two of them transmogrified Ken's initial work into an operating

system, which was the seed of the operating system that would eventually
become UNIX.

Writing the Programs
to Write UNIX

One of the main goals of the UNIX development project was to write the
operating system in a high-level language instead of in machine language. Writ-
ing in machine language usually means that your programs won’t work on
multiple computer platforms, and the creators of UNIX wanted to be able to
use the operating system they were developing on all types of computers.
Using a higher-level language, one that looks more like English, would allow
them to compile the source code for multiple computing platforms with very
few changes. This is probably the very first use of the term cross-platform com-
patibility, a term near and dear to the hearts of Macintosh users, who have to
work in a world dominated by PCs.

A high-level computer language, among other things, is based closer to an
English syntax, making it easier for humans to create and debug their pro-
gramming work. C++, BASIC, and FORTRAN are examples of high—level
languages. On the other hand, machine language is generally a complex string
of either binary or hexadecimal numbers. Binary is sometimes (but not often)
called base 2; hexadecimal counts up to 16 numbers, so additional “numbers”
in base 16 are represented by the letters A through F.

For example, we know the number of fingers on both (human) hands is nor-
mally represented in decimal (base 10) as the number 10. In binary, there are
only two numbers, 0 and 1, as opposed to base 10, which has 0, 1, 2, 3, 4, 5, 6,
7,8,and 9. So, to represent the number of fingers on your hand in binary nota-
tion, you would have to see the decimal number 10 as 2 + 2 + 2 + 2 +2. Then,
knowing that 2 in decimal notation is 10 in binary, you add things up, remem-
bering to carry your “1” for each time you count to 10 base 2, or 10. Without
belaboring this further, 1010 is the binary notation for decimal 10. Confusing?
Now try writing decimal 20 in hexadecimal notation. (We'll let you figure this
one out yourself.)

336

PART 1V ¢ ADVANCED THINGS TO DO

Although you're certain to have to learn how to count and translate numbers
from binary or hexadecimal as part of some computer class, we suggest that
you grab your sibling’s or child’s math book to see why coding a computer in
this way is far more trouble than it’s worth today.

In order to write UNIX in a high-level language, the folks at Bell Labs had
two choices: they could use an existing language or write their own. They
chose the latter, because there really wasn't a cross-platform language available
at the time. They began working with a computer-programming language that
was written by Ken Thompson; this language was based on Martin Richard’s
BCPL. The name Ken gave his computer-programming language was B.
Dennis Ritchie improved upon Thompson’s language, adding features that
became necessary as the UNIX project progressed. Dennis, in a brilliant flash
of insight, decided on the name C for his improved version of Ken’s B pro-
gramming language.

UNIX, C and Beyond

In 1973, the fruits of the labors of Ken Thompson, Dennis Ritchie, and many
other unsung programming heroes at Bell Labs were released to colleges and
universities worldwide. UNIX became so popular that a mere six years later,
UNIX Version 7 was released, which was written almost entirely in C, remov-
ing parts of the OS that were, of necessity, still written in machine language.

The first versions of C were available only with UNIX installations. C was
included with UNIX so that programmers and developers could expand the
capabilities of UNIX using the same language in which UNIX itself was writ-
ten. Because C was such a powerful language, allowing the programmer to
work very closely with the computer hardware and operating system, it wasn’t
long before non-UNIX programmers started clamoring for their very own ver-
sion of C.

With the advent of personal computers in the early 1980s, it wasn’t long before
home-computer users could become fledgling computer programmers.
Although most beginning programmers didn’t opt for C as their language of
choice, the software companies, which wrote the programs used by home-
computer users, demanded it. Soon, countless versions of C were available for
microcomputers, and C development caught on like wildfire.

CHAPTER 23 - A WORD ABOUT ADVANCED PROGRAMMING - 337

An Object-Oriented Revolution

About the same time that C was gaining a foothold in the personal-computer
market, a change was occurring in the computer-programming community.
Previously, most computer programming followed the standard structured
methodology, in which the programmer decided on the tasks that the program
must perform and wrote many separate routines to perform those tasks. This
is often referred to as fop-down programming because, for the most part, you
can read the source code from the first line to the last, top to bottom, and glean
from it an understanding of the tasks performed.

A bunch of wildcat, think-outside-the-box, do-things-differently kinds of
programmers decided that there must be a better way. They wanted their code
to be organized into chunks of functions, all of which operated on specific
tasks or areas of the applications they were developing. Not only would this
make it easier to locate specific code, but these chunks of related code, which
they referred to as objects, could be used in more than one application, sup-
porting code reuse and thus reducing duplication of effort.

Surprisingly, this object-centric view of programming, called odject-oriented
programming, wasn't really such a new idea. Even though most object-oriented
languages didn’t come into existence until the 1980s, the concepts of object-
oriented programming had been around for quite some time. Some of the first
object-oriented languages pre-date the existence of C itself.

Not wanting to give up the low-level hardware and operating-system control
of C, developers began working on their very own object-oriented version of
C, known as C++. C++ can be thought of as a bigger, better version of C. It
can do everything C can, plus a whole lot more.

The Once and Future King

Sure, there may be a few Java and Visual Basic holdouts in the development
world, and of course, we REALbasic developers count, too. But C and its vari-
ant languages are still the dominant force in the programming world, and
many tools are based on it. When new languages are developed, their syntax is
often compared to C, and the more C-like they are, the more popular they
seem to become.

338

PART 1V « ADVANCED THINGS TO DO

Although other languages have gained in popularity, good old C, and its more
feature-rich descendant C++, are going to be around for a long time. It’s worth
a bit of your time to become familiar with the de facto standard of C and C++
programming on the Macintosh platform, Metrowerks CodeWarrior.

Macintosh C++ Development

Those not-too-faint-of-heart developers who wish to jump into C or C++
development have a quite few options to choose from. As with most software,
there are both commercial and shareware tools for C and C++ development.
The commercial versions usually offer more features, but they’re pricier, and
the features you gain might not make up for the difference in price. Commer-
cial versions usually have better support, but shareware versions often make up
for this with online support forums or discussion groups where you can con-
verse with other users about the development tool you have chosen. Whether
you choose to use a shareware or commercial package is up to you. It’s really
about what you’re most comfortable with and your budget.

If your budget is a major issue, then first, thanks for setting aside a small por-
tion of your budget on this book. Second, there’s another option that should
be attractive to you. Unlike other computer platforms, there are actually some
free C and C++ compilers available for Macintosh development—yet another
reason why owning a Macintosh is so cool!

Metrowerks CodeWarrior

When it comes to Macintosh C++ development, Metrowerks CodeWarrior
stands head and shoulders above the competition. Founded in 1985,
Metrowerks makes many development tools for many platforms. Not only
does Metrowerks have a Macintosh C++ compiler, it also has compilers for
Windows, Solaris, and Linux, not to mention Java compilers and tools for
Nintendo, PlayStation, and PlayStation2 development. It even has tools for
developing software for the Palm handheld organizer. But enough of that,
what we're interested in is their C++ development tool, CodeWarrior.

Examined on a large scale, CodeWarrior, along with most other development
tools, is a lot like REALbasic. It has a Project window, a Code Editor window,
tools to edit user interface elements, and so on (see Figure 23.1).

CHAPTER 23+ AWORD ABOUT ADVANCED PROGRAMMING

Figure 23.1
Metrowerks
CodeWarrior’s
integrated
development
environment

339

private:
void Initialize();
i

SinpleAlert::SimpleAlert()
B SimpleAlert.cp » P

' ¥ [Resources
| & B SimpleAlertrsrc
= ¢ [ANSI Libraries
i B2 MsLcPPCLD
[MSL C++PPCLib
B3 MSL SI0UX PPC Lib

Initialize();

void SimpleAlert:iinitialize{)

Ini tGraf(&qd. thePort);
Ini tFonts();

Ini thindows();

Ini thenus();

TElni t();

Ini tDialogs{nil);

Ini tCursor();

}
void Simplefilert::Run()

3 Mac Libraries
B2 MSL RuntimePPC Lib
IS InterfaceLib
[MathLib

cnoBo0o0® aocnl
coo0®0O0O0O®s 008!
00EEREENEEEE)

HoteRlert{kAlertID, NULL);

void main{void)
SimpleAlert thefpplication;

theRpplication.Run();

8 files

Metrowerks offers a Learning Edition version of CodeWarrior, which can do
darned near everything that the commercial version of CodeWarrior can do.
The only real limitation of the CodeWarrior Learning Edition is that you can’t
use it to develop applications that are released to other users.

The benefit of using the Learning Edition (besides being cheaper than the
full-blown version of CodeWarrior) is that it gives you a chance to try out an
advanced Macintosh programming tool without shelling out a large chunk of
money. If you decide that CodeWarrior is the way you want to go, you can
always upgrade to the full-blown commercial version. Metrowerks will even
give you a discount on the full version to help make up for the cost of the
Learning Edition.

Although the Code Warrior path to enlightenment is cheap, there are cheaper
ways to go. How does free sound?

Macintosh Programmers’
Workshop (MPW)

Free you say? Yep, that’s right. Like any good computer hardware company,
Apple wants third-party developers to build applications for its platform—so
much so that Apple is willing to give away the tools to develop applications for

340

Figure 23.2

The Macintosh
Programmers’
Workshop

PART 1V « ADVANCED THINGS TO DO

Hort wgyelcu;ﬁenfwmm%ksnggt e

#include <Types.h>
#include <Memory.h>
#include <Quickdrau.h>
®include Fonts.h)
#include <Events.h>
®include <Henus.h>
#include <Mindows.h>
sinclude <TextEdit.h>
#include <Dialogs.h>
include <Sound,h>
sinclude <ToolUtils.h>
#include <Processes.h>

M Constants */

#dafine BallHidth 120
#define Bal IHeight 128
#define BobSize 8 /% Size of text in each ball */
/* Blobals */

Rect windRect;

/% The qd global has been removed from the Libraries */
QDGlobals qd;

TR TR

/% Prototypes */
void Initialize{void);
void NewBal l(void);

/*
** Hain body of program SillyBalls
*

void main({void)

Initialize();

NewBal L{);
} while (!Button(});

Apple products. One major development tool offered by Apple is the Macin-
tosh Programmers’ Workshop, or MPW, shown in Figure 23.2.

You can download MPW from the developers section of the Apple Web site
if youd like to check it out, but be prepared for your brain to hurt. The first
thing you’ll notice is that the only real tool that exists in the MPW is a text
editor. You use the text editor to edit your source code, to edit the project def-

inition files, and to build your application. It’s only about one step above a
UNIX, or MS-DOS, command-line editor and code compiler.

There’s an old saying about anything that’s free: You get what you pay for.
Although it’s possible to develop applications using the Macintosh Program-
mers’ Workshop it’s not something to attempt unless you've got a lot of time
and patience. Developing applications using the Programmers’ Workshop isn’t
impossible, but it can be painful. Don’t get us wrong: we’re sure there are
developers out there who are big fans of the MPW, and can do great things
with it—we’re just not them.

We recommend that anyone who finds modern Macintosh application devel-
opment to be difficult should download the MPW. You'll gain a whole new
level of appreciation for the other development tools.

CHAPTER 23+« A WORD ABOUT ADVANCED PROGRAMMING 341

Project Builder and Mac OS X

When it comes to developing applications for Mac OS X, one of the best-
known tools is Apple’s Project Builder, shown in Figure 23.3. Using Project
Builder, you can build applications for OS X in one of many development
environments. With Project Builder, you can create applications using Carbon
and Cocoa, which are written in C, C++, Objective C, and Java.

Project Builder sounds like a great tool for developing Mac OS X applica-
tions—but you're probably wondering how much it costs and where you can
get it. Well, good news! Every Mac OS X box comes with the Developer Tools
for Mac OS X 10.0 CD. That’s right, it’s free! Everyone who buys Mac OS X
gets a copy of the Developer Tools CD! Not only does the Developer Tools
CD include Project Builder, it also includes other development, design, and
debugging tools, all of which integrate with Project Builder to provide you
with everything you need to build OS X applications.

So if Project Builder is so great, why is this book about REALbasic instead of
Project Builder? Well, Project Builder, like all advanced development tools,
can be very hard for beginning and intermediate programmers to wrap their
brains around. It’s not that REALbasic is less powerful than these advanced

Figure 23.3

Project Builder and
Mac OS X

342

NOTE

PART IV « ADVANCED THINGS TO DO

tools, it’s just a lot easier to pick up and start using. Plenty of applications writ-
ten in REALbasic compete with applications written using more-advanced
tools.

mwfeatupes@bemgm@ddedmawthemme«%y@u f‘ ndvthat your»»«eurrent -version- of
o REAEbaé’i‘ifE’%ﬁ"t do what you.want, check the latest.version—it might.~
L;juyswt.supp,ort, your needs.

The Apple Developer
Connection Web Site

Apple Computer, being the clever hardware and software company that it s,
is well aware of the fact that developers are the lifeblood of its survival. With-
out third-party developers to write the applications, utilities, productivity
tools, and games that computer users demand, the very survival of Apple
would be threatened. Apple is simply not capable of developing all the various
applications that people who use its hardware and software require.

For this reason, Apple provides resources for the would-be software developer
to get him on his way. The Apple Developer Connection Web site, shown in
Figure 23.4, is the gathering place for all sorts of Macintosh software devel-
opers. You'll find resources there for C, C++, Java, Cocoa, FORTRAN, Lisp,
and REALbasic. You'll also find information on integrated development envi-
ronments, code editors, debugging tools, and various application frameworks.

The Apple Developer Connection Web site is divided into three main areas
specializing in the various needs of the dedicated developer:

¢ The Partners Program

¢ Technology and development resources

¢ Business and marketing information

CHAPTER 23 - A WORD ABOUT ADVANCED PROGRAMMING

Figure 23.4
The Apple
Developer

Connection
Web site

343

ICa'rds\""I QuickTime | Support |

Sigre | *ifools | icarvs] Quleetime | ©

ohihasi e, ol Cretive Srmalial

Apple Developer Connection

. Build Your Brand

Z ! Download the new
@ WWDC | rsutforacosx"

artwork /¢ 5
Werkivdde Deselopers Corfirencs 2004 today' %
sk for Mo (;ﬁ!

(@ A1D/C] Membership Technical Business Login SteMap | Search ADC |

..

__Partner | Develop |

Grab Your Partner:
The Partners Program

The first and foremost of the ADC areas is the Partners Program area, shown
in Figure 23.5. In this area, you have access to the online version of the ADC
newsletter and can get information about various ADC programs and prod-
ucts. You can also visit technical-support areas and the Macintosh Product
Guide, which can provide much-needed information and assistance regarding
the thousands of existing Macintosh products.

One of the nicest features of the ADC Partners area of the Web site is that it
offers you the ability to join various Apple Developer Connection programs,
geared toward both large and small development shops. There are various lev-
els of membership:

¢ The online program

¢ The student program

¢ The select program

¢ The premier program

344

PART 1V « ADVANCED THINGS TO DO

Figure 23.5

The Apple
Developer
Connection Partners
Program section

[T7@] swre | ools | iCards | QuickTime | Suppot | MacOSX |

- Hardware | Software - MadeAMac - Craative Smaliiz BDEVGIBPEEY Where to Buy

("An‘c “Membership Technical Business Login SieMap | * Search ADC |

s, | Partnerwith Apple

Student Gift Memberships y 7
Resources / Benefits

£DC Maling

£DCHewy H

Compalibiity Labs Woridwide Developers Conference 2001

Hardware Discount Progmm S % and
Softwere Jeedng Program RopTe Developer Connection CHDC) Members may downioad the Mac 05 X Public Beta
Technical Support Developer tools from the Download Software area of the ADC Member Site.. ADC

Premier and Select members receive Mac 0S X Public Beta and the Beta Developer Tools
h\vm% uptotheminute

automatically on CD-ROM.
technical, business, and program

‘We are very eager to hear about the applications you create for Mac 05 Ince your Mac
0S¥ nrad du_n b a hem Lo the Macintash D ide W

The Online Program

When you join the free ADC online program, you can download various free
development tools and receive weekly updates via the Apple Developers Con-
nection newsletter. Just about anyone who is considering becoming even a
part-time author of Macintosh shareware—or if youre just interested in
learning about Mac programming—should consider joining the online pro-
gram. You can'’t beat the price.

The Student Program

Another notable membership program is the student program. For a small
annual fee, you get all the benefits of the online program, plus discounts on
select third-party tools and conferences. This level is geared toward college
students, so most of the benefits are geared toward discount programs. A stu-
dent developer can more than make up the cost of membership with the var-
ious discounts she receives. So think of this as a coupon book that will pay for
itself after the first few purchases.

The Select Program

The select program gives semi-professional developers the most bang for their
buck. At this level, you receive the benefits associated with the online and stu-

CHAPTER 23+ A WORD ABOUT ADVANCED PROGRAMMING 345

At the online and student levels; you-have the option-of adding th

- ADC Developer Mailing feature, a 12-month subscription of CDs that-
contain updates on Macintosh technical and marketing information.
You'll also get at least one. edition of the Developer CD Series, which
includes the following:

» System software. This includes the latest versions of Macintosh
Operating System software, including foreign-language ver-
sions. Having access to the foreign-language versions of the OS
will allow you to develop versions of your apblications for other
countries. :

* Mac OS Software Development Kits. These are development kits
that allow you to develop tools that work with the various
Macintosh operating systems and applications. You'll get all the
system software, programming interfaces, libraries, sample
code, and technical documentation you need to develop applica-
tlons, that work with QuickTime, AppleScrlpt and the like.

« Tool Chest. This includes development tools, utllltles, sample
source code, and documentation.

» Reference Library This contains a complete set of the core.
Apple development documentatlon series, and includes the
Macintosh Human Interface Gu:dellnes, Inside Macintosh,
Developer Tech Notes, and Develop Magazine—all on CD.

dent programs. In addition, you get monthly updates of system software,
development tools, and technical documentation—all part of the ADC
Developer Mailing option, which is included in with the select program. As a
member of the select program, you'll become part of the Mac Seeding pro-
gram, which allows developers to get pre-release versions of Macintosh appli-
cation and system software. You’ll also get two free non-warranty
technical-support calls, allowing you to get help straight from the horse’s
mouth without having to pay the cost normally associated with calls made on
non-warranty products.

346 PART 1V ¢ ADVANCED THINGS TO DO

The Premier Program

The ADC Premier program, costing $3,500, is the end-all, be-all level of
ADC membership. At this level, you get everything the previous levels get,
plus the ADC premier mailing. You also get free access to various Apple con-
ferences, eight tech-support calls, software discounts, and more. This is the
level of membership that the serious commercial application developer should
consider purchasing. You get access to more information and discounts than at
any other level. It’s the priciest level of membership, but the benefits make it
worthwhile.

Development Resources
The second most useful of the ADC areas is the Technology and Develop-

ment Resources section, shown in Figure 23.6.

The Technology and Development Resources section is where you can go to
get information on various Apple developer products. You can download
Apple development tools, such as the Macintosh Programmer’s Workshop and
Project Builder. You can even download sample code and technical documen-
tation to help you learn more about Macintosh software development.

Figure 23.6.
The Apple Adsras @n«p://a"mp«.wbmlmmmll 9
Developer
Connect?on f & I Store I n'ools T icards T QuickTime L Support l MacosX |
! |77 Horwews ~ Hardware - Software Creative Smailgiz } WhereToBay
Technology section
@& //D/C] Membership Technical Business Login Site Map | Search ADC |
e evelop Great Products
MecOSX
MacOS8and9
QuickTime y
WebObjects
Solutions
AudioDeveloper
Game Developer
Intemet Developer
ADC Resources ¢
BugRepoding Wridwide Developers Conference 2001
Documentation
Registrations
Sample Code CarbonlLib 1.3d9 SDK
Seedng The Iatest prerelease version of the CarbonLib 1.3 SDK for Mac 0S is now available to
S it Leinann all ADC Members. This SDK provides all the files needed to begin Carbon development.
Carbonib 1.3d9 supports Mac 05 8.6 and greater. [Mar 19 2001]
Testingend Compatibity CarbonLib 1.2.5 6M SDK
Tods B nLTh 235 335 T HMac 05 i now avallabl f il develoers. This SOK
provides all the files needed to begin Corbon development, CarbonLib 1.2.5 supports Mac

CHAPTER 23+ A WORD ABOUT ADVANCED PROGRAMMING 347

The Getting Started section is extremely valuable for the beginning to inter-
mediate developer who wants to learn how to use the various Apple develop-
ment tools. In this section, you'll find step-by-step tutorials and sample code
to lead you through creating applications in Carbon, Cocoa, and Java.

Grow Your Business: The
Business and Marketing Section

The last of the ADC areas is the Business and Marketing section, shown in
Figure 23.7.

This under-appreciated section of the Apple Developer Connection Web site
will come in particularly handy when you decide to turn your small program-
ming company into a larger professional company. You'll find resources in this
area to help you understand Apple’s various market advantages in consumer,
education, creativity, and small-business markets. You'll learn how to best tar-
get your applications for each of these markets to improve your chances of
delivering a successful product.

As an Apple user, youre aware—or will be shortly—of others’ resistance to
using Macintosh products. The documentation in this area will help you

Figure 23.7.
The Apple
Developer
C9 nnection i bl il pide i, R
Business and
Marketing section {@ADIC! membership Technical Business Login SiteMap | Search ADC |
[Apple's Business Case | B ﬂ d S B '
iroduction
e uild a Strong Business
Markets
Compelitive Adventage
Business Benefts
, .
o It’s tool time!
e S 10O c
i tinfo for ADC Premier and
- ﬁeﬁ&?\nemben on obmmmg Mac OSX
Member Services & Public Beta Developer Tools.
Discount Opportunities
Business
Markeling
Events
Regional Information e amlar :&TT?:&.?;?WW to 9;1 vroduct informationdirecly int th hands
Americas of 8 highly sctive and qualfied Macintosh udience, & ique benefit of ADC Premier
Asie Pacific Membership, Premier developers may rent Apple’s Pwe r Mac G3/G
Europe PowerBook G3, and iBook customer list for use in an upcoming dlrect mll umpllun
Japen

gy Buide to Jopan for Macintosh 3

348

Review

PART 1V « ADVANCED THINGS TO DO

convince these Nervous Nellies that not only is the Macintosh a stable, safe,
and affordable computing platform, it’s just plain more fun than using IBM-
compatible PCs. You can check into various market-research studies published
by Apple and read various Apple business cases to help you strengthen your
arguments when trying to convince that reluctant business owner that Apple
(and your applications) is the best way to go.

Advanced programming is something that can be achieved with just about any
Macintosh development tools. Although the choice of tool is based more on
preference than on anything else, you might want to talk to other developers
to help you decide on the best avenue for you. The Apple Developer Connec-
tion is going to be your best first resource for finding information on Macin-
tosh application development tools.

Appendixes

REALDbasic Resources

We admit, albeit proudly, that REALbasic is an underdog IDE com-
pared to CodeWarrior and other IDEs that use C++ and other pop-
ular programming languages and tools for Macintosh development. We
know most developers out there prefer C++ or have been trained that way.
For REALbasic, like the Macintosh itself, being an underdog has its advan-
tages. You should know that underdogs like poodles are listed among dogs
that bite the most.

There is a strong following of REALbasic developers who make their
knowledge and tools available over the Internet. You'll find everything from
tutorials to freeware to sample code, and lots of people willing to help you.

REAL Software: The Official
Home of REALbasic

http://www.realbasic.com

REAL Software, if you've been sleeping or studying this book through
osmosis, is the creator of REALbasic. At REAL Software’s Web site,
shown in Figure A.1, you'll find the latest Standard and Professional ver-
sions, helpful tools, and tutorials. You can buy a copy online, if you like.
There’s contact information for technical support, and links to other

Figure A1

The official home of
REALbasic, from
REAL Software

APPENDIX A °REALbasic RESOURCES 351

S

@ REAL Software, Inc.

Announcing the Cubies, REAL Software's own awards for excellence!

We want ta recognize the contributions our users have made to the industry by recognizing the excellence of

| what they have produced with REALbasic. The contest opens now, and closes December 15, 2000, REAL Softwars

| will announce the finalists the following week and the winners in each category at MacwWorld San Francisco.
<more>

| REALbasic® 2.1.2 Now Available! -- New Version!
Buy now, receive free upgrade to REALbasic 3!

REAL Software announced on November 13, 2000 that any purchase
of or upgrade to REALbasic 2 occurring on or after November 1, 2000
will be eligible for a free upgrade when REALbasic 3 ships,

New Users - Download a Free Demo

Place your order now or download any REAL Software item and try it
out for 30 days free!

.
REALbasic is powerful and easy ta use. You can build anything from REALbaS | Cm

protatypes to complete professional qua!ity applicadnps for both Macs

and Windows, Whether you are a hcbbynst_, a professional : the award-winning, visual,
programmer, or someone whao nggds to build a program for a specific object-oriented BASIC

task quickly and easily, REALbasic is the tool for you! development environment for

Macintesh.

Learnmore ahoy

A internet zane

REALbasic-oriented sites. Geoff Perlman and his crew have sweated long and
hard to bring you one of the best—if not the easiest— programming environ-
ments available for both classic Mac OS and Mac OS X development.

The REALbasic CD (of which we've provided a copy in the REALbasic folder
on this book’s CD) includes many applications created with REALbasic,
including the electronic versions of the tutorial, developer’s guide, and lan-
guage reference. You can download the latest versions of these guides here.

REAL Software loves to expose developers to new alpha and beta versions of
REALbasic so they can refine the features for a new general release. Remem-
ber that alpha and beta versions of REALbasic may have bugs and shouldn’t
be used for full-scale development. Use them at your own risk.

REALgurus

http://www.realgurus.com

If there’s any RB support site you should visit often, it’s REALgurus, shown
in Figure A.2. It offers a message board, a massive collection of tutorials, sam-
ple code, and much more.

352

Figure A.2°
REALgurus is rich
with tutorials.

PART V ¢ APPENDIXES

www.REALgurus.com

IS ~ Hesoirees BEALGESIEANOnTL) ~ ContaetUs

News | Tutorials | Resources | REALbasic Monthly | Contact Us

Important Note
Revised June 29 2000

Many of these tutorials are works in progress. If you
have trouble with one of them, please get in touc]
with the author (there will be a link at the bottom of
each page) or with the webmaster, Help us make
these tutorials perfect!

REALbasics ’ 2 .
® Tutorial 1: Your First REALbasic Program
BASICs
This quick and easy tutorial introduces REALbasic's
1. Statting user interface and gets you up and running quickly.

2. MacStuff Tutorial 2: Your First Real Mac Program

3. Interfaces This tutorial covers writing a Mac program with
menus, multiple document windows, which loads and

4. Graphics saves, and can have files dropped on it in Finder. It
even gets around to handling undo!

&, Files

REALGoodies
http://www.geocities.com/SiliconValley/Station/7130/home.html

The REALGoodies site provides a few projects that you can peruse to further
your understanding of REALDbasic programming. Kevin Mullins, the Web-
master, also has a part of a game written in REALbasic that uses many tech-
niques you could use in your own game.

REALbasic Monthly
http://www.nd.edu/~jvanderk/rbm/

The Webmaster and author of REALbasic Monthly decided to stop new pub-
lications not long ago, but left the site, shown in Figure A.3, available for
developers to find some inventive resources on programming. Perhaps some-
one out there (maybe even you) can get RBM back on its feet.

Figure A.3

RBM is no longer
published regularly,
but its information
is still available and
informative.

APPENDIX A «REALbasic RESOURCES 353

&&é@}%& W@WMWMMWQW 2

REALDbasic Monthly

Current Issue Compilations Older Issues ContactUs

) o - -
i Welcome to REALbasic Monthly, the premier REALbasic magazine!

S - Amnouncements

Previous Issues: The August issue of RBM is now out! The cover story is an AP] access, and CanvasPaint is reviewed.
It also has a continuation of last month's cover on AppleScript and a database article designed to be

Vulmm 2 (1999) simpler than the April Caver.

’99 Well, there's some sad news: The next issue of RBM will be the last. Creating each issue has started to
take up far too much time, and virtually no one has been willing to actually write (I don't count saying
you'll write and not doing anything as writing). I'll have more on this in my editorial, but the descision
15 final

Volume 1 (1998} Sorry about the delay on the June issue. For RBM's first anniversary, I gave myself some time off. I'l
December '98 put up a notice when the next issue is about ready to come out
Octobier 98 '98
Surprised by the new layout? It's samething I've had in the worles for a while. The main advantage is

that it's simpler to add searching and various subpages to (which I've done). Alsa though, it hasa nicer
feel than the prevous setup, and 1t also loads faster, because I've split the 1ssues into their volumes (1
and 2). Older issues appear on a seperate page. Feedback is certainly appreciated though, so e:mail me
your thoughts.

Einhugur Software

http://www.einhugur.com/

REALbasic’s power can be extended through plug-ins, and Einhugur Soft-
ware offers members and visitors samples of complex REALbasic plug-ins and
classes for many project ideas. If you plan on developing Windows applica-
tions in addition to Macintosh, this site, shown in Figure A.4, offers items that
can make your project shine.

REALnews

http://www.swssoftware.com/realnews/

As a Macintosh technician, I regularly visit a handful of Macintosh news sites
on the Web. Two sites, Macintouch (http://www.macintouch.com) and Mac-
FixIt (http://www.macfixit.com) offer everything I need to know in daily
happenings in the Apple world. REALnews, shown in Figure A.5, reminds
me of these sites—it’s one of the best programming news sites I've found,

354 PART V ¢ APPENDIXES

Figure A.4
Einhugur Software ;
sells some software, | ; € Click here to get info on
but is also a / i Ing resources how to become a member
comprehensive | - 5 ; S .
REALbasic - Eree downloads — Mail us

resource site.

New 25, Oct 2000 New FileLib 2.5 N:'\vz ¢

ew
. Lib 22 N
EngineManager 2.0 %—fm“:“:

&-Cryptlt 5.8 New

Flexible plugin driven crypto engine plugin for
REALUbasic (REALbasic plugin that launches
Crypto plugins)
. Mulli:lad‘nrm (PPC, 68k Carbon and m)
15 very
in version 2 ‘7 .0 we added support for Carbun Wm3"
OHOOIO and fixed the 68k plug
o New engines: Both of the Crypto engines that ship with the
EngineManager have been rewritten ta support EngineManger 2 and
all of the Target platforms. A third engine has been added, which 15
Endian safe BlowFish engine (Very good in Cross platform apps).

« New properties: New properties have been added to the ;?mym‘;::‘yf"‘:d
EngineManager that enable applications ta ine minimumand < EE RGN B

Figure A.5

Next to REAL
Software’s site,
REALnews is the
place to go for the
latest news in the
REALbasic world.

REALbasic Related November 27,
Uinks: : :

Squirrel Software's MEﬁ_mugm has agaln been upuzted. adding
£ B various new abilities and upﬂmlzztluns
(The Folks that make this

i fa! PEVaocoder Plugin 1.0 s a freeware REALbasic plugin providing
whole camminity possiblel) vacader functionality in REALbasic.

rchars Solutions g
ndrew Barry has postad a mmvarsmn of E;Aﬁﬂﬂ; g, his
{SnonSUrE BrREN NigME): PowerPC assembler plugin for REALbasic, and
a REALbasic plllgfn that allows

N instructions.

REALDasic-NUG
{Home aof the REALbasic
Malling List FAQ) Aaron Bratcher has posted the

5 his db Too databuss manrtlngtuol aa snnarata. free
EEAL!&M&MIILUSL -

(A fully sear:hzbls archive Benjamin Schnsider's mmgmms been upaanm to
of REALbasic Malllng Llst 5 Version 1.0a6, adding a variety of new methods and functions
e : el

and an essential resource to keep up on REALbasic news. You can also send
announcements to this site when you finish your big projects, telling people
where they can find them on your Web site.

Figure A.6

Find some great
shareware tools at
Zegsoft.

APPENDIX A «REALbasic RESOURCES 355

Zegsoft
http://zegsoft.tripod.com/realbasic.html

Thinking of making the next great desktop-publishing or word-processing
program? Perhaps you should visit Zegsoft, whose shareware ruler class and
printing plug-in might be useful in your development. Best of all, Zegsoft
claims that its plug-ins work in Windows applications, too. The Zegsoft site
is shown in Figure A.6.

The REALbasic Mailing List

http://www.realsoftware.com/support.html

REAL Software provides several mailing lists to which you can subscribe and
contribute your tips and get help on using REALbasic. All five mailing lists
are available as they are posted or in a single-message digest version. I've been
pleasantly peppered with the digests each day, and each contains at least one
useful tidbit. Also available from this page is a link to archives of each mailing
list. A Sherlock plug-in is available for users of Mac OS 8.6 and later to search
the archives quickly.

G File Edit View Go Favorites Tools Window Help 10:11:20 PM

REALbasic Classes and Plugins

NEWS: Zegs Graphics a7 now available 1 November 2000

Classes

= cgiﬁulal 1.0 Es)sasatmdgﬁesmamm yguu:amalsunsufnlasw
asywel exmvemmdovai'e

can be either plain or 3D. More in
e or you can downioad it directy fom my dovinioad page.

Articles:

"nooqdons N ihmas |\ Ao . saeany (B8 0 0

ZegsGra nlcs(alg\ha'l)isamvasra h it with all sorts of extra features
as onx
m“—ﬁfm\ Usec gt et scaing on X n y s, Aot

hlrsswlmpmhgrmiresmmﬂ APIbheMacragmbdbomvae
info is avallable here or y
page.

Note: My MaxRezPPC i s printet lugin ias been deleted. If you need i
tesolution printing you should try this plugin instead.

Figure A.7
Besides being a
good porting
reference, this
site also has a
humorous
domain name.

PART V ¢ APPENDIXES

The REALbasic/Visual Basic
Rosetta Stone

http://kode-fu.com/rosetta/

Each time I type this URL, I think of that scene in the The Matrix in which
Keanu Reeves’s character downloads martial-arts training into his brain and
announces, with awe, “I know kung-fu.” My mind conjures up an image of a
developer in martial-arts training robes at a computer.

If you happen to use Visual Basic or know of others who use that Windows-only
IDE, you may find yourself with questions on the differences and compatibility
between it and REALbasic. This Web site, shown in Figure A.7, provides infor-
mation on many function and control uses available in Visual Basic, and how to
adapt them to work in REALbasic. If you happen to know of a Visual Basic
developer who's seriously considering making a Mac app, toss her a trial version

of REALbasic and point her to this site. You'll be glad you did.

mmmoonmm.snpumm;;_

e REALBasm/VlsuaI Basic
Rosetta Stone

The VB-to-RB porting reference

Written and maintained (after a long hiatus) by Joey deVilla

Last updated Thursday, May 25, 2000,
Next update: Thursday, June 1, 2000,

Nicer graphics to follow.

Like many REALBasic sites, this site aims to be a resource for the REALBasic
programming community, Unlike these sites, it does so with a different approach:
through comparison with its Windaws counterpart, Microsoft Visual Basic. In this site,
you'll find features of Visual Basic and their REALBasic counterparts listed together.
Where one language has a feature that the other doesn't, a workaround is provided if
one exists.

The more obvious purpose of this site is to be a resource for programmers who are
porting applications from Visual Basic to REALBasic, While the slant of this site is
towards REALBasic (it being the newer language with fewsr applications written using
it), there's no reason you can't use this site as a rasaurce for porting applications
written in REALBasic to Visual Basic, To add more depth, the occasional comparison to
other programming languages such as C/C++, Java, Pythan, Perl, Pascal and Linga is
used, This site takes to heart the belief that you can learn a lot about your own
language by studying other languages.

How to Use the CD-ROM

he Beginning Mac Programming CD-ROM contains a trial version of
REALbasic and other tools you need to get started with Macintosh
application development.

System Requirements

To use our CD-ROM, your computer should meet the following minimum
requirements:

¢ It must have a CD-ROM drive.
¢ It must run Mac OS 7.6.1 or later.
¢ It must have a hard disk with 6.5MB of free space.

Although REALbasic itself has pretty relaxed requirements, do note that,
in order to benefit and create decent Macintosh applications within your
lifetime (given that speed isn’t the first thing you think about with a Mac-
intosh Quadra), you really should use a Power Mac—any Power Mac. Note
also that non-Power Macintosh versions of REALbasic cannot create
Power Macintosh versions of REALbasic apps, although you can create
non-Power Mac apps on a Power Mac.

358

PART V « APPENDIXES

Navigating the CD-ROM

The starting place for the CD-ROM when you open it for the first time is the
License Agreement document, which greets you with (surprise!) a license agree-
ment. Although we’re sure you've seen these time and time again, be sure to note
what you can and can't do with this CD-ROM and the software it contains.

Next, you can visit the How fo Use this CD-ROM file, which is a duplicate of

this appendix, but may contain last-minute information that came too late to
be added to the book-bound version.

REALbasic 3.2

REALbasic is an integrated programming environment—that is, an applica-
tion that creates other applications. The folder Open Me for REALbasic 3 con-
tains the same software and accessories available from the REALbasic trial
CD and REAL Software’s Web site.

To install REALDbasic and its support folders, documentation, and third-party
applications on any Power Mac or 68K Macintosh computer running Mac OS
7.6.1 or later (but not Mac OS X), do the following:

1. Open the folder named Open Me for REALbasic 3.

2. Drag the REALbasic 3.2 folder to your Applications folder on your hard
disk.

To install only the REALbasic application that’s designed for your computer,
follow the steps to install the REALbasic application and accessories as
described above, then do the following:

1. Open the folder named Open Me for REALbasic 3.

2. Open the folder named Other Versions.

3. If you use a 68K Macintosh, open the 68K folder, and drag the
REALbasic application from that folder into the REALbasic 3 folder on
your hard disk. When prompted whether you want to replace the
existing copy of REALbasic, click OK.

4. If you use a Power Macintosh, open the PowerPC folder, and drag the
REALbasic application from that folder into the REALbasic 3 folder on

your hard disk. When prompted whether you want to replace the
existing copy of REALbasic, click OK.

APPENDIX B+« HOW TO USE THE CD-ROM 359

If you’re a Power Macintosh user who wants to develop Carbon applications,

you should install the REALbasic Carbon application for Mac OS 9.

1. Open the folder named Open Me for REALbasic 3.

2. Open the folder named Other Versions.

3. Open the Mac OS 9/Carbon folder and drag the REALbasic application
from that folder into the REALbasic 3 folder on your hard disk. When
prompted whether you want to replace the existing copy of

REALbasic, click OK.

Mac OS X users can use a Carbonized version stored in a Disk Copy for Mac
OS X image. To install REALbasic in Mac OS X:

1. Open the folder named Open Me for REALbasic 3.
2. Open the folder named Other Versions.

3. Open the Mac OS X Disk Image folder.
4

. Double-click the REALDbasic3.2.dmg image file. (If the file fails to
open, launch Disk Copy (located in Applications/Utilities on your Mac
OS X hard drive) and drag the image to the Disk Copy window. A
virtual disk of REALbasic will appear on your desktop.

5. In your Applications folder, create a new folder named “REALbasic”.

6. Open the REALbasic disk image and drag all its contents into the
REALbasic folder in your Applications folder.

In addition, the Open Me for REALbasic 3 folder contains links to REAL
Software’s tutorials and lots of sample code and third-party applications to
help further inspire you. To read the documentation, you need the Adobe
Acrobat Reader application. An HTML page containing a link for this appli-
cation is included in the Open Me for REALbasic 3 folder.

It’'s a Trial Version Until You Pay for It

The copy of REALDbasic you install will work as a trial version of the Standard
version for 30 days until you register it. In trial mode, applications you create
will work for only a few minutes, and an annoying message will appear when
you launch any application you created from the trial version. Certain other
database features and Windows development options are limited, as well.

To get rid of the messages and the time-out of the application, just drop by
REAL Software and kindly plunk down some change to purchase a license

360

PART V « APPENDIXES

code. This code will activate the copy you install as a Standard or Professional
version, depending on how much you paid. Go ahead. You'll be glad you did.

Sample Projects from the Book

Some chapters of the book describe REALbasic programming processes and
projects you will create as you learn how to develop applications and use
REALbasic tools. Included in the CD-ROM are those very same projects in
the My Paint-Sample Project folder. Simply open the projects or access the code
as you need.

How Did We Make the Picture
in the CD-ROM Window?

A few of you may notice that we created a picture of the book’s cover within
the window of the CD-ROM. Great trick, but how did we do it? Answer: a
freeware application called Iconizer Pro. This application breaks any graphic
into icons that form a picture in a Finder window as a mosaic.

After you make your first application, you can use Iconizer Pro to create a great
folder arrangement where your application and support materials are stored.
And yes, folder pictures made in Iconizer Pro work in both Mac OS 9 and
Mac OS X, provided that you show things in Icon view (now that’s obvious,
right?).

Iconizer Pro is available for download from many locations on the Web.
Although it is free, be sure to register the application with the author so that
pictures you create with it don’t show “unregistered” on each icon’s informa-
tion (from the Get Info window).

Index

A

About menu item, 241-242
accelerators for Windows, 322-325
Acrobat Reader, Adobe, 251
ActivePaintWindow property, 234
ActiveX code, 331
ACTOR, 29
addition operator (+), 55
Administrator access, 307
Adobe

Acrobat Reader, 251

Display PostScript, 251
Aladdin Systems, 328
alerts, 262-263
ALGOL, 29
Allow Fast Saves feature, 261
alpha releases, 28

APIs (application programming interfaces), 280.
See also Carbon environment

Appearance property, 13

Apple Computers. See also Apple Developer Connection
Web site; Macintosh computers; ResEdit

Human Interface Guidelines, 23, 345
interface systems, 256-257

Apple Developer Connection Web site, 23, 220, 257,
282, 294-295

areas of, 342-343
Business and Marketing section, 347-348
mailing option, 345

online program, 344

Partners Program area, 343-344
premier program, 346

select program, 344-345
student program, 344

Technology and Development Resources section,
346-347

AppleEvents, 326
Apple menu, 259-260
in Mac OS X, 254
AppleMenuFolder, 322
AppleScript, 326
AppleShare IP servers, 278
AppleTalk, 277
applets, 292
Application class, 173
color-selection tools, adding, 234
Application menu
EnableMenultems event for, 175-178
Mac OS X changes, 254
new items, creating, 173-174
window, 142-144, 174
application modal dialogs, 262-263
application-wide menu items, 172
Aqua interface, 250
Carbonized application using, 282-284
description of, 257-258
Quartz running, 277
as shell, 302, 303

362 INDEX

arrays of variables, declaring, 52
ASSEMBLE, 29

assignment operator (=), 53-54, 55, 148
At Ease, 301

AT&T solid-state devices, 33
auto-complete feature, 16

background colors, changing, 12
backward compatibility, 166
Balloon Help text, 142
BASIC, 4-5, 29, 328, 335
TRS-80 Radio Shack, 34
BASIC-A, 29
BCPL, 336
Bell Labs, 334, 336
beta releases, 28
binary system, 32, 335
bits, 266
B language, 336
body of subroutine, 94-95
Boolean variables, 51
default values, 54
branches, 62
Browser pane, Code Editor window, 129
BSD/Mach kernal fusion, 300
BSD UNIX commands, 311
Build Application window, 16-17, 276, 325
BUSINESS BASIC, 29
bytecode files, 292

C

Calculator application, 258
canvas control, 122-125
position and size, changing, 123-124

Carbon environment, 251, 275, 279-288
Aqua, applications using, 282-284
dialogs, 262
preemptive multitasking, 285-286
RAM in, 286-287
REALbasic using, 287-288
system stability in, 284
using Carbonized applications, 281-282

CarbonLib system extension, 282

CD-ROMs
contents of, 4-7
Microsoft Windows, 319
Sony PlayStation, 267

child classes, 109

CICN resources, 226

C language, 334-335, 336337
Cocoa projects using, 290

C++ language, 4, 5, 29, 248, 335, 337-342
class definition in, 102
Cocoa projects using, 290
CodeWarrior, Metrowerks and, 338-339

classes, 102-103
child classes, 109
defined, 103
encapsulation, 106-107, 107
event handlers, 112-114
inheritance, 107-110
member variables, 105
methods, 106
parent classes, 109
polymorphism, 110-112
properties of, 105-106

Classic environment, 251, 265-267
advantages/disadvantages of, 277-278
crashes in, 274-275
dialogs, 262
installing Mac OS X for, 270-273

older Macintoshes, 278
running applications in, 274
significance of, 273-277
Clear menu
ClearSelection method, 214-215
EditClear menu handler, 215-216
ClearSelection method, 214-215
CLI (command-line interface), 300-301
in Terminal application, 305-309
clipboard, 192
copying text to, 193
CopyToClipboard method, 211-213
PasteFromClipboard method, 201
working with, 193-194
Close menu item, 171
closing windows, 178-180
CMYK color-selection tool, 231
COBOL, 29
Cocoa environment, 249, 251, 289-298
Interface Builder, 295-297
Mac OS X and, 286
Project Builder, 295-297
requirements for developing in, 294-297
Code Editor window, 15, 128-129
for DragRefresh method, 152
for EnableMenultems event, 145, 176
for EndLineDraw method, 155
for FileClose menu handler, 178
for FileNew menu handler, 179
for FileOpen menu item, 187
for FilePageSetup menu handler, 189
for FilePrint menu handler, 190
for FileSave menu handler, 184
for FileSaveAs menu handler, 186
for MouseDown event, 166
for MouseDrag event, 156, 177
for MouseMove event, 165

INDEX 363

for MouseUp event, 157, 164
for Open event, 148
quit command, 16
for refreshing backgrounds, 154
for ToolsFreeHand menu handler, 149
CodeWarrior, Metrowerks, 338-339
coding, 23-24, 48
Color Picker options, 12-13
colors
background colors, changing, 12
Color Picker options, 12-13
Color Selection menu, 229-233
color-selection tools, 228-237
fill values, 230
ColorSelectionFillColor menu handler, 233
ColorSelectionLineColor menu handler, 233
Color Selection menu, 229-233
color-selection tools, 228-237
Colors window, 8, 121
command interpreters, 301-304
commands, 40-42, 50
examples of, 42—43
in shells, 303
commenting out, 46
Comment Lines command, 46
compact disks, 267
compiling. See¢ also recompiling code
ported application, code for, 325-326
CompuServe, 304
computer viruses, 37
Connectix’s Virtual PC, 270
constants, 56—58
adding, 324-325
compilation of unneeded code, preventing, 325
declaring, 5657
list of, 57
use of, 58

364 INDEX

ControlPanelsFolder, 322
controls in Code Editor window, 129
cooperative multitasking, 284-285

Copy feature, 205-214. See also Selection tool

copyright information, 242
CopyToClipboard method, 211-213

Core Graphics Rendering, Quartz, 251

Core Graphics Server, Quartz, 250

Counter variable in For/Next loop, 74, 75

cp file file command, 313

CPM drives, 319

Crayon color-selection tool, 231
cross-platform compatibility, 335
cursors, 224-225

CURS resources, 224-226

D

data design, 23
data forks, 38
DBL, 29
DebugBuild, 325-326
debugging, 16-17, 24, 126
alpha releases and, 28
beta releases and, 28
Exit statement in, 85
memory constraints and, 180
Debug menu, 16-17
declarations
constants, 5657
functions, 93-94
subroutines, 93-94
variables, 51-53
default settings, changing, 121-122
defining requirements, 22
Dekorte, Steve, 293-294

designing program, 22-23

Desktop, 258
VBCleaner files on, 330
DesktopFolder, 306, 322
developers, 23-24
Developer Tech Notes, 345
Develop Magazine, 345
dialogs, 261-264
DIBOL, 29
Dim statement, 5253
dir command, 306
directories, 35, 306
changing, 310
Disabled Balloon Help text, 142
Display PostScript, 251
The Dock, 252-253
docklings, 9
documentation, 43-44
combining methods of, 47
on human interface design, 257
inline documentation, 45-46
repositories, 4445
standards for, 4748
document modal dialogs, 261262
Documents folder, 306
Do loops, 81, 84
DOS. See also MS-DOS
programming for, 36
double variables, 51
default values, 54
Do/Until loops, 81-84
Goto statements and, 87
REALbasic example of, 83
DragFreeHand method, 133-134
DragLineDraw method, 153-154
MouseMove event calling, 165
DragOval method, adding, 158-159

DragRectangle method, 158

DragRefresh method, 151-152

DragSelection method, 209-210
MouseDrag event handler, 210-211

drawing tools. See also Line Draw tool
freehand tool, adding, 127-140

Draw Shape tool, 162-168
MouseDown event for, 165-168
MouseMove event for, 164—165
MouseUp event for, 163-164
properties, adding, 163

drive letters, 319-320

DVD-ROM:s, 267

dynamic menu items, 237

E

early computers, 32-33
Edit/Clear menu item, 214-215
EditCopy menu handler, 213-214
editing. See clipboard; Edit menu
Edit menu, 194, 256-257
properties, adding, 195-196
source code for, 195-196
Editor pane, Code Editor window, 129
Edit/Paste menu handler, 199-200
Edit Value window, 13-14
ellipsis (...) in Open menu item, 173
Else If statement, 70-71
Else statements, 67-69
nesting code blocks in, 69-70
empty arrays, 52-53
emulation, 270-271
EnableMenultems event, 144-145
for Application Menu, 175-178
for Paste feature, 204
for Selection tool, 206207

INDEX 365

EnableMenultems event handler, 233

Enable Root User, 307

encapsulation, 106-107

End Function statement, 9495

EndLineDraw method, 154-155

EndOval method, 159-161

end point properties, adding, 152-153

EndRectangle method, 159-161

End Sub statement, 94-95

EndValue parameter in For/Next loop, 74, 75

equivalence operator (=), 55, 148

error messages, 136
in Mac OS X, 261-264

event handlers, 112-114. See also specific event handlers
for MouseDown event, 131-132
for MouseDrag event, 135
PasteCanvas control, 198200

events, 112—114. See also specific events
in Code Editor window, 129

existing file, opening, 186-187

Exit statement, 84-85

ExtensionsFolder, 322

F

FileClose menu handler, 178
file extensions, 181

to default file names, 326

in Microsoft Windows, 329
File menu, 256257

operations, 170-171
Filename property, 182
FileNew menu handler, 179
File/New menu item, 180
FileOpen menu item, 186-187
FilePageSetup menu handler, 188-189
FilePrint menu handler, 189-190

366 INDEX

files
groups of, 308-309
in Mac OS X, 308
types of, 181
FileSave menu handler, 183-185
Filename property with, 182
FileSaveAs menu handler, 185-186
File Types dialog box, 181-182
Fill Color menu, 233
Fill Color Selection Canvas control, 236
find arguments command, 313
The Finder, 252-253, 260
floating-point division operator (/), 55
floppy disks, 35
flowcharts, 62, 63
flow control, 62—-66, 74
folders
Home folder, 255, 310
Mac OS X access, 255
organizing projects in, 126
permissions, 307-308
FontsFolder, 322
Force Quit command, 254
forks of file, 38
For/Next loop, 74-77
ending value of, 76-77
While/Wend loop compared, 80-81
FORTRAN, 4, 29, 335
frames, 321
freehand drawing tool
adding, 127-140
method, adding, 133—-134
testing, 135-136
updating, 150157
freehand pencil cursor, 225
freeware, releasing, 25

frm file extension, 327

functions, 90-93
declarations, 93-94
libraries of, 94
in object-oriented programming, 102
parameters for, 95-96
recursions, 96—97
return-values with, 96
stacks, 98-99

subroutines compared, 91-92

G

Gates, Bill, 35
General Electric, 334
Get Info window for RAM information, 286
GNOME, 250, 302
Goto statements, 85-88
labels with, 85-86
Graphic Browser, 328-329, 331
greater-than operator (>), 55
greater-than-or-equal-to operator (>=), 55
groups of files, 308-309
Grow Window, 124
grPrinter graphics option, 190
GUI (graphical user interface), 35, 301
creating code for, 35-36
GWBASIC, 29

handlers. See event handlers; menu handlers
hard drives, 319-320

hardware in Mac OS X, 275-277
HasBackColor check box, 12

height properties, 12

Hello World application, 10

high-level language, 335-336

Home folder, 255, 310

HotJava, 292

hot keys for Windows, 322-325

HSL color-selection tool, 231, 232
HSYV color-selection tool, 231, 232
HTML color-selection tool, 231, 232
Hungarian Notation, 53, 131

IBM, 319
UNIX, 34
icons, 35, 258
tool-palette icons, 220-221
Trash icon, 253
IDE, 302
1f/Else/EndIf statement, 66—72
target flags with, 326-327
If/Then/Else statement, 66—72
1f/Then/End statement, 68
If/Then statement, 184
I Love You virus, 37
implementation of program, 24-27
infinite loops, 74, 76
Goto statements creating, 87
recursions, 96-97
Info window for memory settings, 180
inheritance, 107-110
in REALbasic, 109-110
initializing new properties, 148-149
inline documentation, 45-46, 47
Inside Macintosh, 345
installing
Classic environment, Mac OS X for, 270-273
REALbasic, 7
instances, 103

integer division operator (\), 55

INDEX 367

integer variables, 51
default values, 54
Intel
Rhapsody, compatible version of, 249
viruses in PC hardware, 37
Interface Builder, Cocoa environment, 295-297
Internet Explorer in Mac OS X, 286
interpreting systems, 34
IRIX, 250

J

Java, 249, 291-293
Cocoa projects using, 290
Macintosh Runtime for Java (MR]), 293
resources on, 297-298

Jobs, Steve, 35, 248, 268, 281

JPEG files, 181

K

Kaleidoscope, 302
KDE, 250

resources for, 302
keyboard shortcuts, 322-325
kill process ID command, 313

L

labels, 13-14
examples of REALbasic labels, 86
with Goto statement, 85-86
Language Reference document, 226
last-known mouse position
for PaintCanvas control, 202
properties, adding, 130
launching REALbasic, 10, 120

368 I’ND/EX

LazersDesign’s Graphic Browser, 328-329, 331
less-than operator (<), 55
less-than-or-equal-to operator (<=), 55
libraries
of functions, 94
of subroutines, 94
Library folder, 255, 306
Line Color menu, 233
Line Color Selection Canvas control, 235
Line Draw tool
adding, 150-157
DragLineDraw method, adding, 153-154
EndLineDraw method, adding, 154-155
end point properties, adding, 152-153
MouseDrag event with, 155-156
MouseUp event with, 156-157
line fill values, 230
LineWidthPoints menu handler, 238-239, 240
line-width selection tools, 237241
Other... menu, adding, 239
Tool palette, adding to, 239-241
Line Width submenu, 237-238
Linux
code, 249
as open-source product, 27
shells, 302
X Windows and, 250
Lisa computer, 35
LISP, 29
1l command, 307-308, 313
Logout command, 254
looping, 74. See also For/Next loop; infinite loops
Do/Until loops, 81-84
Exit statement, 84-85
‘While/Wend loop, 80-81
Is command, 306-307, 313

machine language, 335

Macintosh computers. See also Mac OS 9; Mac OS X

birth of, 35

Macintosh II computers, 278

Mac OS, 35

Office 98 Macintosh Edition, 37

older Macs, programming for, 67
Macintosh Human Interface Guidelines, 23, 345

Macintosh Programmers’ Workshop (MPW), 339-340

Macintosh Runtime for Java (MR]), 293
Mac OS 9. See also Classic environment
installation issues, 272
virtual machines, 270

Mac OS X, 248-249. See also Classic environment;
Cocoa environment

Apple menu, 259-260
error messages, 261-264
hardware features, 275-277
Home folder access, 255
interface features, 252256
Java and, 293

memory space, 284

menu changes, 253254
ownership of files, 308

PDF (Portable Document Format) support, 251

porting applications to, 273-274
preemptive multitasking, 285-286
Project B‘uilder, 341-342
Public Béta of, 272
special los\:ations, functions for accessing, 322
UNIX applications, porting, 311
user folder, 306—307
Mac OS X Server project, 269
man (manual) command, 311, 313

marquee, 205

Mathemaesthetics’ Resourcer application, 220
Melissa virus, 37
member variables, 105
memory
debugging and, 180
in Mac OS X, 284
RAM (Random Access Memory), 286—287
Memory command, 180
menu handlers
in Code Editor window, 129
Edit/Paste menu handler, 199-200
for Selection tool, 208209
menus, 35
adding, 142-145
Application Menu window, 142-144
application-wide menu items, 172
dynamic menu items, 237
enabling menu items, 144-145
file menu operations, 170-171
initializing new properties, 148-149
Mac OS X changes, 253-254
properties for tools, adding, 145-146
tools, selecting, 149-150
updating selections, 146—148
methods, 106
in Code Editor window, 129
encapsulation, 107
freehand drawing tool method, 133-134
Metrowerks CodeWarrior, 338-339
Micromat Systems’ TechTool, 26
Microseconds function, 163
Microsoft Windows, 36
command areas with Mac OS, 321
compiling code for ported application, 325-326
data distribution methods, 38
desktop, 258
documents, displaying, 321

INDEX 369

hot keys, adding, 322-325

menus in, 256

network servers, items on, 320

path names, 318-320

porting applications to, 317-332

special locations, functions for accessing, 322

viruses, 37

Visual Basic code, porting, 327-332
Microsoft Windows 3.1, 266, 267-268
Microsoft Windows 95, 266—268, 267-268

Microsoft Windows Millennium Edition (Windows
ME), 268

Microsoft Windows NT, 268, 300
Classic environment and, 277
Microsoft Windows XP, 268
Microsoft Word, 256
for Macintosh 6, 260
Undo command, 261
MIT, 334
mkdir command, 313
modal windows, 12
modeless dialogs, 263—264
modules, 324
mouse, 35. See also last-known mouse position
usefulness of, 305
MouseDown event, 114, 130
for Canvas controls, 236
for Draw Shape tool, 165-168
event handlers for, 131-132
for PasteCanvas control, 202—203
for tool-palette window, 223-224
MouseDrag event
for DragSelection method, 210-211
event handler, 135
with Freehand tool, 130
with Line Draw tool, 155-156
with Rectangle/Oval drawing tools, 161

370 - *INDEX |

MouseMove event
for Draw Shape tool, 164-165
for PaintCanvas control, 202, 203
MouseUp event
for Draw Shape tool, 163-164
with Line Draw tool, 156-157
with Rectangle/Oval drawing tools, 161-162
Movies folder, 306
MS-DOS, 266, 267-268
copying files in, 300-301
MsgBox function, 42-43
for About menu item, 241-242

MULTICS (Multiplexed Information and Computing
Service), 334

multiple document interface, 321
multiplication operator (*), 55
Music folder, 306

mv file file command, 313

My Paint menu, 170

Name property, 10
nesting
Else statements, 69-70
If/Then/End code, 68
NetInfo Manager application, 307
New menu event, 171
New Menu Handler command, 149-150
New Method dialog box, 133
NewPicture command, 137
New Property command, 152
New Property dialog box, 177
with fiPaintDocument property definition, 183
for Page Setup, 188

new windows, creating, 178-180
NeXT Computer, 248, 268
NEXTSTEDP, 248

NIL value, 104

Nintendo, 267

Notepad, 323

o

Oak Project, Sun Microsystems, 291
Objective-C, 248-249, 280
for Mac OS X applications, 293294
resources on, 297-298
object-oriented programming, 101-115, 337
encapsulation, 106-107
events, 112-114
handlers, 112-114
inheritance, 107-110
polymorphism, 110-112
terminology of, 103-104
objects, 102-103
instance of, 103
memory, allocating, 104
Office 98 Macintosh Edition, 37
older Macs, programming for, 6-7
open command, 313
Open event, 137
Code Editor window for, 148
Open Firmware, 272
OpenGL, 251
Open Me for REALbasic folder, 226
Open menu item, 171
ellipsis (...) in, 173
Open/Save dialog box, 12
open-source program, releasing, 26-27

OpenStep, 248, 251, 268
operators with variables, 55-56
Other... menu, 239

Oval drawing tool. See Rectangle/Oval drawing tools

owner permissions, 309

P

Pac-Man, 271
Page Setup, 171
menu handler, adding, 188-189
property, adding, 187-188
PaintCanvas control, 202
PaintWindow, 122
PaintCanvas, Paint event, 139
parameters, 42—-43, 50
with functions, 95-96
stacks and, 99
with subroutines, 95-96
parent classes, 109
parentheses(), use of, 72, 84
PASCAL, 29
PasteCanvas control, 196-205
copying pasted data to picture, 202-203
Edit/Paste menu handler, 199-200
event handlers, 198-200
PasteFromClipboard method, 201
properties of, 198
Paste feature, 196-205
Edit/Paste menu handler, 199-200
enabling menu items, 204
PasteFromClipboard method, 201
testing Paste function, 205
PasteFromClipboard method, 201
path names, 318-320

INDEX

PC-DOS, 34, 35
PDF (Portable Document Format), 251
Classic environment and, 277
pentium processors, 270
permissions, 307-308
owner permissions, 309
world permissions, 309
PI, value of, 58
picBuffer, 138-139, 154

EndRectangle/EndOval methods, 159-160

refreshing window contents, 139
PICT files, 181, 226
Picture property, 137
pointers, defined, 103-104
Points menu, 237-239
polymorphism, 110-112
porting, 273-274

Microsoft Windows, applications to, 317-332

UNIX applications to Mac OS X, 311
Position header, 13
PostScript, 251
Power Macintosh G3 systems, 6, 7
preemptive multitasking, 285-286
PreferencesFolder, 255, 322
printing. See also Page Setup
in Classic environment, 278
grPrinter graphics option, 190
with Mac OS X, 251
Print menu handler, adding, 189-190
Print menu handler, 189-190
Print menu item, 171
private beta releasees, 28
product support, 27
Professional REALbasic, 5
Program Manager, 323

372 INDEX

Project Builder, 295-297, 341-342
Project window, 8, 9, 120
properties
of class, 105-106
in Code Editor window, 129
for Draw Shape tool, 163
for edit functions, 196
encapsulation, 107
initializing new properties, 148-149
last mouse location properties, adding, 130
tools, adding properties for, 145-146
Tools palette, adding to, 235237
Properties window, 9, 10, 121
example of, 11
protected memory, 284
public beta releasees, 28
Public folder, 306
PushButton control, 14, 15

pwd (present working directory) command, 306, 313

Q

Quadra systems, 7

Quake 3 Arena, 266

Quartz, 250-251, 277
KDE, resources for, 302

QUICK BASIC, 29

QuickTime, 251

quit command, 16

Quit menu item, 174, 175

Radio Shack TRS-80, 5, 34
RAM (Random Access Memory), 286-287
ReadMe file, 6

REALbasic, 4
CD-ROM, contents of, 47
comments, 45—46
evolution of, 5
inheritance in, 109-110
installing, 7
REALbasic Developers Guide document, 226
REAL Software, 5
Recent Items feature, 254
recompiling code, 249
Terminal application for, 304
Rectangle/Oval drawing tools, 157-162
DragOval method, adding, 158-159
DragRectangle method, adding, 158-159
EndRectangle/EndOval methods, 159-161
MouseDrag event with, 161
MouseUp event with, 161-162
recursion, 96—97
Redim keyword, 53
refreshing background
DragLineDraw method, 153-154
DragRefresh method, 151-152
refreshing backgrounds, 139
REM keyword, 46
repositories for documentation, 4445
requirements, defining, 22
ResEdit, 38, 220
cursors defined in, 224-225
icons defined in, 220-221
resizing handle, moving, 125
resource forks, 38
Restart command, 254
retail product, releasing, 25
return-values with functions, 96
Reverse Hungarian Notation, 53
RGB color-selection tool, 231, 232

Rhapsody project, 248, 249, 268, 280
virtual machine for, 269

Richard, Martin, 336

Ritchie, Dennis, 335

rm command, 313

rmdir command, 313

root administrator account, 307

Rosetta Stone, 331-332

RPG, 29

Run command, 135-136

Run item, 126

runtime environment, 126

S

Save alerts, 262
Save As menu item, 171
FileSaveAs menu handler, 185-186
Save menu item, 171
saving
to file, 181-186

with FileSave menu handler, 183-185

work in progress, 125-126
Select/Case keywords, 72—74
SelectColor function, 231
Selection tool, 205-209

DragSelection method, 209-210

enabling menu item, 206—207

menu handler, adding, 208-209

menu item, adding, 206

SetMenuSelection method for, 207-208

self-documenting code, 43-44, 47
semiconductors, 33
SetColorSelection method, 229-230

for Canvas controls, 236

INDEX

SetMenuSelection method, 146—148
for Selection tool, 207-208
Setup Assistant, 306
700 access files, 309
shape drawing. See Draw Shape tool
shareware product, releasing, 25
sheets, 261-262
shells, 301-304
commands in, 303
Shut Down command, 254
ShutDownltemsFolder, 322
silicon, 33
Silicon Graphics’ IRIX, 250
simple applications, 9-18
single variables, 51
Sites folder, 306
Sleep command, 254
SND resources, 226
solid-state devices, 33
Sony PlayStation, 267
source code. Se¢ also documentation
commenting, 45—46
design, 23

Edit menu items, support for, 195-196

open-source programs, 26—27
for operators, 55-56
self-documenting code, 43—44, 47
top down execution, 40

Special menu, 254

stacks, 98-99

Standard REALbasic, 5

standards
coding standards, 48
documentation standards, 48

StartupItemsFolder, 322

373

374 INDEX
StartValue parameter, 74 TargetPPC, 325
Static Text control, 13 Target68K, 325
Step parameter, 76 TargetWin32, 321, 325, 326
StepValue parameter, 74, 75 TCP/IP in Classic environment, 278
string variables, 51 TechTool, 25
default values, 54 TemporaryFolder, 322
StuffIt Expander 5.5, 328 Terminal application, 304-312
subroutines, 90-93 basics of, 310-312
body of, 94-95 CLI (command-line interface) in, 305-309

declarations, 93-94
functions compared, 91-92
libraries of, 94
in object-oriented programming, 102
parameters for, 95-96
polymorphism and, 111-112
recursions, 96-97
stacks, 98-99
subtraction operator (-), 55
Sun Microsystems, 249. See also Java
support system, 26
Swarm.org, 293-294
System 6.0, 258-259
system extensions, 256
SystemFolder, 322
system modal behavior, 263
system requirements, 6

system software, 35

T

Tab key
with auto-complete feature, 16
multiple properties, changing, 123
TargetCarbon, 325
target flags, 325-326
TargetMacOS, 321, 325, 326

commands, summary of, 312-313
prompt, 305-306

terminal-based C shell, 302

testing
changes in application, 139-140
designing process, 23
freehand drawing tool, 135-136
new applications, 126
Paste function, 205
saving work before, 125
unit testing, 24

TextAlign property, 13

Text property, 143

third-party tools, 45

Thompson, Ken, 334-335, 336

3D graphics, 251

tips
Comment Lines command, 46
error messages, 136
folders, organizing projects in, 126
Hungarian Notation, 53
operating systems, differences in, 10
organizing projects in folders, 126
parentheses(), using, 72, 184
resizing handle, moving, 125
Reverse Hungarian Notation, 53
StuffIt Expander 5.5, 328

Tab key, using, 123
Text property, 143
Toolbox, 9, 36, 280-281, 281
If statement with, 326
ToolPalette dialog, 235
with Line Width control, 239-240
UpdateColors method with, 236-237
tools. See also specific tools
menus, selecting with, 149-150
properties, adding, 145-146
ToolsDrawShape menu handler, 150
ToolsFilledOval menu handler, 150
ToolsFilledRectangle menu handler, 150
ToolsFreeHand menu handler, 149-150
ToolsLineDraw menu handler, 150
ToolsOval menu handler, 150
Tools palette. See also Tools window
Canvas controls, adding, 235
color-selection tools, adding, 234-237
icons, 220-221
line-width selection tools, adding, 239-241
properties, adding, 235-237
Selection tool menu item, adding, 206
ToolsRectangle menu handler, 150 |
ToolsSelection Tool menu handler, 208—209
Tools window, 8, 120, 221-222
cursors, creating, 224-225
MouseDown event for, 223-224
top command, 313
top-down programming, 337
transistors, 33
TrashFolder, 322
Trash icon, 253
TRS-80 Radio Shack, 5, 34
tsch shell, 302
twm interface, 250

INDEX 375

U

Undo command, 260-261
Unhandled Stack Overflow Exception, 97, 98-99
UNIX, 34, 299-313
C language and, 334-335
command interpreters for, 301-304
data distribution methods, 38
meaning of name, 335
porting applications to Mac OS X, 311
scrolling in, 311
X Windows, 249-250
unzip command, 313
UpdateColors method, 234, 236
updating
freehand drawing tool, 150-157
menu selections, 146—148
uptime command, 312
user authentication module, 277
user directories, 306
Users folder, 306

\"/

vacuum tubes, 32
variables, 50-56
arrays of, 52
assigning values to, 53—-54
data types of, 51
declaring, 51-53
default values, 54
naming, 131
in object-oriented programming, 102
operators with, 55-56
Reverse Hungarian Notation, 53
use of, 58

'376 INDEX

variant variables, 51
assigning values, 54

VBCleaner, 327, 329-330

video displays, 33

virtual machines, 269
emulation wvs., 270-271
Java and, 292

viruses, 37

Visual Basic, 29
free code, 328
Microsoft Windows, porting code to, 327-332
Rosetta Stone, 331-332
Scripting code, 331

viruses and, 37

W

Web sites. See also Apple Developer Connection Web
site
Dekorte, Steve, 294
Developer Connection Web site, 282
Java
applets, 292
resources for, 297-298
Objective-C information, 294
Objective-C resources, 297-298
product support, 27
REAL Software, 5

Rosetta Stone, 331-332
Swarm.org, 293-294
whereis command, 313
While/Wend loop, 80-81
width properties, 12
WIMP (windows, icons, menus, and pointers), 301
Window Editor, 9, 121
changes, displaying, 12
for new project, 11
window managers, 249-250
windows, 35
closing windows, 178-180
new windows, creating, 178-180
in REALbasic, 8-9
tool-palette window, creating, 221-222
WindowShade feature, 252

world permissions, 309

X

Xerox, 35
X Windows, 249-250, 302

Z

.zip archive, code in, 328

zip command, 313

License Agreement/Notice of Limited Warranty

By opening the sealed disk container in this book, you agree to the following terms and conditions. If,
upon reading the following license agreement and notice of limited warranty, you cannot agree to the
terms and conditions set forth, return the unused book with unopened disk to the place where you
purchased it for a refund.

License:

The enclosed software is copyrighted by the copyright holder(s) indicated on the software disk. You
are licensed to copy the software onto a single computer for use by a single concurrent user and to a
backup disk. You may not reproduce, make copies, or distribute copies or rent or lease the software in
whole or in part, except with written permission of the copyright holder(s). You may transfer the
enclosed disk only together with this license, and only if you destroy all other copies of the software
and the transferee agrees to the terms of the license. You may not decompile, reverse assemble, or
reverse engineer the software.

Notice of Limited Warranty:

The enclosed disk is warranted by Premier Press, Inc. to be free of physical defects in materials and
workmanship for a period of sixty (60) days from end user’s purchase of the book/disk combination.

During the sixty-day term of the limited warranty, Premier Press, Inc. will provide a replacement disk
upon the return of a defective disk.

Limited Liability:

THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST ENTIRELY
OF REPLACEMENT OF THE DEFECTIVE DISK. IN NO EVENT SHALL PREMIER PRESS, INC. OR
THE AUTHORS BE LIABLE FOR ANY OTHER DAMAGES, INCLUDING LOSS OR CORRUPTION
OF DATA, CHANGES IN THE FUNCTIONAL CHARACTERISTICS OF THE HARDWARE OR OPER-
ATING SYSTEM, DELETERIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPE-
CIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF PREMIER
PRESS, INC. AND/OR THE AUTHOR HAVE PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILI-
TY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:

PREMIER PRESS, INC. AND THE AUTHORS SPECIFICALLY DISCLAIM ANY AND ALL OTHER
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILI-
TY, SUITABILITY TO A PARTICULAR TASK OR PURPOSE, OR FREEDOM FROM ERRORS. SOME
STATES DO NOT ALLOW FOR EXCLUSION OF IMPLIED WARRANTIES OR LIMITATION OF INCI-
DENTAL OR CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS MAY NOT APPLY TO YOU.

Other:

This Agreement is governed by the laws of the State of California without regard to choice of law prin-
ciples. The United Convention of Contracts for the International Sale of Goods is specifically dis-
claimed. This Agreement constitutes the entire agreement between you and Premier Press, Inc.
regarding use of the software.

Beginning Mac
AEEEENNnNNRNE

Build Your First Mac Progran

ongrats! You've found your one-stop guide to programming for Mac® OS! Even if you have zero progran

ming know-how, you'll be up to speed in no time as you progress from Macintosh programming basics t
building your first application using REALbasic? Along the way, you'll learn the ins and outs of Object Oriente
programming, Classic, Carbon, and Cocoa!

Use this book to make Mac applications!

B Get acquainted with REALDbasic - - M\)

@ Learn the parts of 2 Mac program | L

B Understand variables and constants \\//
Develop and build your first Mac program .

- e Sk What's on the CD?

B Work with editing features and _ _
add final touches to your program e i i
y prog from REAL Software

B Learn about Mac 0S X programming Sample project from the book

@ Explore advanced programming for Mac 0S

As a tech support specialist, Kevin Spencer has been explaining difficult topics to people for years. He is an avid Macintosh fan and knows the Mac inside and out. He is a
frequent contributor to various Macintosh publications. Kevin lives in Indianapolis with his wife and two children.

Working as a software developer since 1985, Jeff Thompson has written applications in various languages such as BASIC, Z-80 Assembler, 0502 Assembler, DBL, 808
Assembler, C, and C++. Jeff worked with and developed applications on various platforms from the good old days of the TRS-80, Apple 11, DEC minicomputers, [BM PC’s, an
the Macintosh Plus all the way up to today’s latest Pentium PC's and Macintosh PowerPC systems. He's currently employed by CTI Data Solutions as Senior Systems Analys
and Technical Lead on one of the highest rated Billing Analysis software applications in the country. Jeff currently resides in Indianapolis with his wife and two children.

T

Premier Premier Press

www.premierpressbooks.com
User Level: Beginning/Intermediate
Category: Operating Systems

Press US $39:99 Can. $5995 UK. £29.99 oltlig20

u_
W e—
==
P —
o
S

