
1111111111111111 1111
For Classic Mac® OS and Mac® OS X

Premier

• P r e s s KEVIN SPENCER AND JEFF THOMPSON CD Included

Premier

• Press

© 2001 by Premier Press, Inc. All rights reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system without written permission from Premier Press, Inc., except for the inclusion of brief quotations ina
review.

I
P r e s s Premier Press is a registered trademark of Premier Press, Inc.

Publisher: Stacy L. Hiquet
Associate Marketing Manager: Heather Buzzingham
Managing Editor: Sandy Doell
Acquisitions Editors: Jawahara K. Saidullah, Kevin Harreld
Project Editor: Brian Thomasson
Technical Editors: Geoff Perlman, Dan P. Sydow
Copy Editor: Kate Welsh
Interior Layout: Marian Hartsough
Cover Design: Mike Tanamachi
Indexer: Katherine Stimson

Apple, Apple logo,,A,pple)Y<;>tks,Balloon Help, Charcoal, Chicag9, Claiis)Y9rks, <::;olorSync, EictensionsManager,
Finder, iMac, ImageWriter, iMovie, "keyboard" Apple logo, LaserWriter, LocalTalk, Mac, Macintosh, Mac logo,
"Moof" and Dogcowlogo, Quick Time, Sherlock, Think different, TrueType,VideoSync, ViewEdit, are trademarks
or registered traderriarks of Apple Computer, Inc. "AOL" and the AOL triangle logo are registered trademarks of
America Online, Inc. All rights reserved. EarthLink and EarthLink logo are trademarks of EarthLink Network, Inc.
Internet Explorer logo, Microsoft, Outlook, are trademarks or registered trademarks of Microsoft Corporation.
Netscape and Netscape Navigator are trademarks orregistered trademarks of Netscape Communications Corpora­
tion. Quicken is a registered trademark oflntuit, Inc. Acrobat, the Acrobat logo, Adobe, and the Adobe logo are
trademarks or registered trademarks of Adobe Systems, Inc. Stuffit and Stuffit Expander are trademarks or registered
trademarks of Aladdin Systems, Inc. REALbasic isa copyright of REAL Software, Inc. All tights reserved.

Important: Ifyou have problems running REALbasic, go to REAL Software's Web site at
http://www.realsott\Vare.com. Premier Press, Inc. cannot provide software support.

Premier Press, Inc. and the author have attempted throughout this book to distinguish proprietary trademarks from
descriptive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press, Inc. from sources believed to be reliable.
However, because of the possibility of human or mechanical error by our sources, Premier Press, Inc., or others, the
Publisher does not guarantee the accuracy, adequacy, or completeness of any information and is not i:esponsil:ili: for
any errors or omissions or the results obtained from use of such information. Readers should be particularly aware of
the fact that the Internet is an ever-changing entity. Some facts may have changed since this bookwentto press.

ISBN: 1-931841-00-4
Library of Congress· Catalog Card Number: 00-110736
Printed in the United States of America

00 01 02 03 04 II 10 9 8 7 6 5 4 3 2 1

Acknowledgments

A ll my thanks go to my co-author, Jeff, who spearheaded the code writ­
ing for this book. Your dedication is a rare find. Many thanks also to

Brian, Kate, Kevin H, and the crew at Premier Press, Inc., who provided a
solid base in times of trouble. Many thanks to Geoff Perlman and the folks at
REAL Software for their excellent help with technical corrections and sug­
gestions. A special thanks to Marta Justak, for her guidance. And a very spe­
cial thank you to my wife, Rebecca, who suffered for agonizing hours as she
watched over 150 satellite television channels while I worked.

-KS

My thanks go out to those that Kevin has already thanked, along with thanks
to Kevin as well. Your experiences and talents as a writer, not to mention your
assistance along the way, are much appreciated. Special thanks go to my High
School computer-programming instructor, G. Ross Buckman, for convincing
me that a career in computer programming is right where I belong. Very spe­
cial thanks go to my wife, Kathie, and my children, Neil and Samantha, for
their encouragement and patience. Lastly I'm sure Kevin would like to join me
in thanking all of our friends, whose support was very important to us.

-JT

·About th.e Authors
KEVIN SPENCER is a certified Apple Service Technician, computer hobbyist,
and writer. Kevin has worked with some of the earliest personal computers of
the late 1970's and still thinks the BASIC computer language was a pretty
nifty idea. When not bicycling or wading in weeds while working in the yard,
he spends his time with his wife, two sons, and two computer-illiterate cats in
Indianapolis.

Working as a software developer since 1985, JEFF THOMPSON has written
applications in various languages such as BASIC, Z-80 Assembler, 6502
Assembler, DBL, 8088 Assembler, C and C++. Jeff worked with and devel­
oped applications on various platforms from the good old days of the TRS-
80, Apple II, DEC minicomputers, IBM PC's, and the Macintosh Plus all
the way up to today's latest Pentium PC's and Macintosh PowerPC systems.
Jeff's computer career also includes a couple of years work as a computer
technician, salesman and a short stint where he taught classes on the BASIC
programming language. Jeff also had a passing acquaintance with HTML,
Java, and Perl. Jeff has developed a wide variety of applications including,
payroll, accounting, shareware entertainment, billing systems, and billing
analysis tools. He's currently employed by CTI Billing Solutions as Senior
Software Engineer and Technical Lead on one of the highest rated billing
analysis software applications in the country. Jeff is currently listed as an
inventor on a software patent used in CTI Billing Solutions' billing analysis
software, Smart Bill™. The patent is also licensed for use by more than half
of the long distance and local telephone carriers in the United States. Jeff cur­
rently resides in Indianapolis, Indiana with his wife, two children, two dogs,
four cats and an indeterminate number of ducks which have taken up perma­
nent residence in his pond. He also has an ever-increasing collection of Mac­
intosh computers, which require a lot less care and feeding than the other
members of his family.

Contents at a Glance

Part I
Getting Your Feet Wet 1

Chapter 1 Getting Acquainted with REALbasic 3
Chapter 2 Programming's Big Picture 19
Chapter 3 The Parts of a Mac Program 31
Chapter 4 Under Your Command 39
Chapter 5 Variables, Operations, and Constants 49
Chapter 6 Making Your Program Flow 61
Chapter 7 And Still More on Program Flow 79
Chapters Subroutines, Functions, and Recursion 89
Chapter 9 Object-Oriented Programming 101

Part II
Developing Your First Mac Program 117

Chapter 10 Making My Paint 119
Chapter 11 Adding Simple Drawing Commands 127
Chapter 12 Adding More Drawing Commands 141
Chapter 13 File Operations 169
Chapter 14 Editing Operations 191
Chapter 15 Tool Palettes and Cursors 219
Chapter 16 Finishing Touches 227

Part Ill
The Age of Mac OS X 245

Chapter 17
Chapter 18
Chapter 19
Chapter 20

Chapter 21

Part IV

Enter the World of Aqua 247
The Classic Environment 265
The Carbon Environment 279
The Cocoa Environment 289
UNIX: A Shell Surrounding a Tasty Kernel

Advanced Things to Do 315

299

Chapter 22

Chapter 23

Porting Applications to Microsoft Windows 317
A Word about Advanced Programming 333

Part V
Appendixes 349

Appendix A
AppendixB

REALbasic Resources
How to Use the CD-ROM

Index 361

350
357

Contents

Part I
Getting Your Feet Wet 1

Chapter 1 Getting Acquainted with REALbasic 3
What's on the CD-ROM 4

Installing REALbasic 7

What REALbasic Looks Like 8

Making Your First Application 9

Chapter 2 Programming's Big Picture 19
The Phases of Programming 20

Defining Requirements 22
Design 22
Programming 23

Testing and Debugging 24

Implementation 24

Releasing a Retail Product 25
Releasing a Shareware Product 25

Releasing Freeware 26

Releasing an Open-Source Program 26

Support 27

Sprecken sie REALbasic? 27

Review 29

Chapter ~ The Parts of a Mac Program 31
From the Source: Programming Code 32

In the Beginning 32

From Interpreting Systems to Operating Systems 34

Early Personal Computers Get Smarter 34

Do It with Pictures 34

The GUI: Why Mac Programming Can Seem a Little Tougher 35

Resources: How Pictures and Icons Are Connected 36

Review 38

Chapter 4 Under Your Command 39
What Commands Do 40

Trying out Some REALbasic Commands 42

Good Documentation Makes Happy Programmers 43

The Myth of Self-Documenting Code 43

Documentation Repositories 44

The Promise oflnline Documentation 45

Inline Documentation and REALbasic 45

The One and Only Documentation Solution 47

Documentation Standards 47

Review 48

Chapter ; Variables, Operations, and Constants 49
Keeping Track with Variables 50

Common Types of Variables 51

CONTENTS

Declaring Variables 51

Assigning Values to Variables 53

Operations and Variables 55
Constants Are Constant 56

Where to Use Variables and Constants 58

Review 58

Chapter 6 Making Your Program Flow 61
What Is Flow Control and Why Is It Important? 62

The If!fhen/Else If/Else/End If Keywords 66

The Select/Case Keywords 72

The For/Next Keywords 74

Review 77

Chapter 7 And Still More on Program Flow 79
The While/Wend Keywords 80

The Do/Until Keywords 81

The Goto and Exit Keywords 84

The Exit Statement 84

The Goto Statement 85

Review 88

Chapter 8 Subroutines, Functions, and Recursion 89
What Are Subroutines and Functions? 90

Subroutine and Function Declarations 93

Check out the Bodies on These Subroutines 94

Parameters and Return Values 95

Recursion, Recursion, Recursion . . . 96

Review 99

Chapter 9 Object-Oriented Programming 101
Understanding Classes and Objects 102

The Terminology 103

Properties and Methods: The Two Halves of an Object 105

CONTENTS xiii

Encapsulation 106

Inheritance 107

Inheritance in REALbasic 109

Polymorphism 110

REALbasic Events and Handlers 112

Review 114

Part II
Developing Your First Mac Program 117

Chapter 10 Making My Paint 119
Introduction to the Tutorial 120

Creating the New Project 120

Adding the Main Window 121

Adding the Paint Canvas 122

Testing Your Work 125

Saving Your Work in Progress 125

Testing Your Application 126

Review 126

Chapter 11 Adding Simple Drawing Commands 127
Adding a Freehand Drawing Tool 128

Using the Code Editor Window 128

Adding the Drawing Code 129

Adding the Property Declarations 130

Adding the Event Handlers 131

Testing the Freehand Tool 135

Handling Window Drawing 136

Adding the Picture Buffer Property 137

Creating the Picture Buffer Property 137

Drawing in the picBuffer Object 138

Refreshing PaintCanvas Using the picBuffer Object 139

Testing Your Changes 139

Review 140

xiv CONTENTS

Chapter 12 Adding More Drawing Commands 141
Adding Menu Items for the Selection of Drawing Tools 142

Understanding the Application Menu Window 142

Enabling the Menu Items 144

Adding Properties for the New Tools 145

Updating the Menu Selections 146

Initializing the New Properties 148

Selecting Tools with the Menus 149

Adding a Line Draw Tool and Updating the Free Hand Drawing Tool 150

Adding the DragRefresh Method 151

Adding New End Point Properties 152

Adding the DragLineDraw Method 153

Adding the EndLineDraw Method 154

Changing the MouseDrag PaintCanvas Event 155

Changing the MouseUp PaintCanvas Event 156

Adding Rectangle and Oval Drawing Tools 157

Adding the DragRectangle and DragOval Methods 158

Adding the EndRectangle and EndOval Methods 159

Changing the MouseDrag PaintCanvas Event 161

Changing the MouseUp PaintCanvas Event 161

Adding a Draw Shape Tool 162

Adding Properties for the New Tools 163

Changing the MouseUp PaintCanvas Event 163

Changing the MouseMove PaintCanvas Event 164

Changing the MouseDown PaintCanvas Event 165

Review 168

Chapter 13 File Operations 169
The New Menu Items 170

Application-Wide Menu Items 172

Today's Menu Item Are . . . 173

Enabling the New Menu Items 175

CONTENTS xv

Closing and Creating Windows 178

Saving to a File 181

Adding Supported File Types 181

The Filename Property 182
The FileSave Menu Handler 183
The FileSaveAs Menu Handler 185

Opening an Existing File 186
Printing Your Pictures 187

Adding the PageSetup Property 187
Adding the PageSetup Menu Handler 188

Adding the Print Menu Handler 189

Review 190

Chapter 14 Editing Operations 191
Working with the Clipboard 193

The Edit Menu Items 194

The New Source Code 195

The New Properties 195

The Paste Feature 196

Adding the PasteCanvas Control 197
The PasteCanvas Event Handlers 198
The Edit/Paste Menu Handler 199

The PasteFromClipboard Method 201
The PaintCanvas Paste Events 202

Keeping Track of the Last-Known Mouse Position 202
Copying the Pasted Data to the Picture 202

Enabling the Menu Items 204
Testing the Paste Function 205

The Copy Feature 205
The Selection Tool 205

Creating the Selection Tool Menu Item 206
Enabling the New Menu Item 206

xvi CONTENTS

Updating the New Menu Item 207

The Selection Tool Menu Handler 208

Adding the DragSelection Method 209

The MouseDrag Event Handler Changes 210

The CopyToClipboard Method 211

The New EditCopy Menu Handler 213

The Clear and Cut Features 214

The New ClearSelection Method

The EditClear Menu Handler

214

215

The EditCut Menu Handler 216

Review 217

Chapter 15 Tool Palettes and Cursors 219
Creating Tool Palette Icons 220

Creating a Tool Palette Window 221

Mapping the Tools to the Menu Items 223

Creating the Tool Cursors 224

Using the Appropriate Cursors 224

Review 226

Chapter 16 Finishing Touches 227
Adding Color-Selection Tools 228

Adding and Enabling the New Menu Items 229

Adding Color-Selection Tools to the Tool Palette 234

Keeping Track of the Active PaintWindow 234

The Actual Tool-Palette Work 235

Adding Line-Width Selection Tools 237

Adding and Enabling the New Menu Items 237

Adding an Other ... Menu 239

Adding a Line-Width Selection to the Tool Palette 239

The About Box: Patting Yourself on the Back 241

Review 243

CONTENTS xvii

Part Ill The Age of Mac OS X 245

Chapter 17 Enter the World of Aqua 24 7

In the Beginning . . . 248

Aqua Is More than a Pretty Face 249

View (and Print) Different 250

A Qyickie Tour of Mac OS X Interface Features 252

Windows, the Finder, and the Dock 252

Menu Changes 253

Same Stuff, Different Places 254

Apple Interface Guidelines 256

Rule 1: Stick to Metaphors in Your Application 257

Rule 2: Keep a Logical Design with Aesthetic Consistency 259

Rule 3: Forgive Mistakes and Allow Reversal 260

Rule 4: Use Dialogs Wisely 261

Review 264

Chapter 18 The Classic Environment 265

Windows 95 and the Great Compatibility Problem 266

You Can't Play Vinyl Records in Your Compact-Disc Player 267

The 16-Bit Egg and the 32-Bit Chicken 267

Apple's Turn 268

It's Virtually Simple 269

The Blue Box Goes Classic 269

Installing Mac OS X for Classic 269

What Classic Means to Developers 273

Bug-for-Bug Compatible with Mac OS 9 274

Classic Applications Use Mac OS 9 Only 275

No Direct Hardware Access 275

What Classic Can and Can't Do 277

Review 278

xviii CONTENTS

Chapter 19 The Carbon Environment 2 79
It's Tool Time 280

A Few Small Repairs 280

Carbon: Good for Your Programming Diet

Carbonized Applications Can Use Aqua

Improved System Stability 284

Improved Speed and Responsiveness

Better Resource Management 286

How REALbasic Uses Carbon 287

Review 288

Chapter 20 The Cocoa Environment 289
Have Some Hot Cocoa 290

281

282

284

Java: It's Not Just for Web Pages Anymore 291

About Objective-C 293

What You Need to Begin Cocoa Development 294

Project Builder and Interface Builder 295

For More Information 297

Review 298

Chapter 21 UNIX: A Shell Surrounding a Tasty Kernel 299
Forward to the Past: The Command Line 300

She Sells C Shells by the C Shore 301

The Terminal Application 304

Prompts, Lists, and Permissions 305

A Few Basics in Terminal 310

A Summary of Useful Terminal Commands 312

Review 313

CONTENTS

Part IV
Advanced Things to Do 315

Chapter 22 Porting Applications to Microsoft Windows 317
Start with a Macintosh Application 318

Handling Path Names 318

Watch out for Conventions 320

Window, Window, Who's Got the Window? 321

Take Note of OS-Specific Folder Items 321

Adding Hot Keys for Windows 322

Compile Only the Code Required for the Ported Application 325

Porting Visual Basic Code 327

Review 332

Chapter 2~ A Word about Advanced Programming 333
Let's C What Develops 334

In the Beginning . . . 334

Writing the Programs to Write UNIX 335

UNIX, C and Beyond 336

An Object-Oriented Revolution 337

The Once and Future King 337

Macintosh C++ Development 338

Metrowerks CodeWarrior 338

Macintosh Programmers' Workshop (MPW)

Project Builder and Mac OS X 341

The Apple Developer Connection Web Site

Grab Your Partner: The Partners Program

The Online Program 344

The Student Program 344

The Select Program 344

The Premier Program 346

339

342

343

xix

xx CONTENTS

Development Resources 346

Grow Your Business: The Business and Marketing Section 347

Review 348

Part V
Appendixes 349

Appendix A REALbasic Resources 350

Appendix B How to Use the CD-ROM 357

Index 361

Beginning . ac·
•••••••••• ,.

II

Getting Acquainted
with REALbasic

• What's on the CD-ROM

• Installing REALbasic

• The REALbasic design interface

• Making your first application

4 PART I •GETTING YOUR FEET WET

M aking a very simple Macintosh application takes only a modest
effort using REALbasic. You'll be surprised what you can do in about

15 minutes.

REALbasic is, simply put, a program designed to make other programs, such
as a spreadsheet, a game, or a word processor. As you progress through each
chapter, you'll learn more about REALbasic's programming tools and lan­
guage, and programming concepts in general. But first, you'll need to obtain
and install a copy of REALbasic.

What's on the CD-ROM
To teach you the ins and outs of Macintosh programming, we decided to go
against the grain in the programming world. Many programmers prefer to use
a programming language known as C++ (that's pronounced cee-plus-plus);
many programming tools use C++ for development as well. Although C++ is
very powerful and versatile, it's difficult to learn for a novice programmer, and
a bit arduous for even seasoned programmers.

A few of you may have taken a computer-programming course before, or
remember way back in the late 1970s when the first microcomputers for home
and business use arrived. Back then, you couldn't buy many computer pro­
grams-you were stuck having to type computer programming instructions
into your computer. Later, you could buy some canned programs from the local
store, instead of typing in instructions like these:

10 LET A=5+10
20 LET B=5*10
30 LET C=A+B
40 PRINT C
50 END

The computer language used on many of the first personal computers of
the 1970s was BASIC. No, not basic as in simple, but BASIC (Beginner's
All-Purpose Symbolic Instruction Code). Although BASIC wasn't a very strong
programming language, it wasn't very hard to understand. Like many pro­
gramming languages in history, BASIC is based on FORTRAN, another
programming language used on early large computers.

CHAPTER 1 •GETTING ACQUAINTED WITH REALbasic 5

~:,"~:=7""'~~W.N'."~'·'••:~·~-,..._,-~...,,,,:-~~~;,x.,.,_,,,..,;)',>•,~,,N,~~·,_,,,,_ ___ $l>lx«'-'<.~'~¢''~>~~<.~.'>.~,~...-,-·kJ!>l~''~.>\'\'\':i~ «;

.. ,, f:Dv~rs ot:tbf:lmdilmtmu:in1o~:tum~in:ttnm::::

.:;·;:;:i'?Rms!iiii~J~ff:l'.afsilir~Qt&i.f::m:;m~iiiii~;::i;n~!!&~:fNw'.:?:~:=M~
Radio Shack and 0th.er early computers added an audi9 cassette
deck for loading in software created by others, and later added
floppy disk drives. So, basically, the idea of manually writing appli­

cati°'ns for a perso.'?~'t(;~mpu~er isn'Htriew. one.-it;u~t,became
less efficient to do it. · "

>.···,~:,.,.., ~t~,~>r>~~,

In the following years, some companies improved and strengthened their own
versions of BASIC to make it more like C++ and other high-level program­
ming languages. One of these evolved versions is REALbasic, a programming
tool with many easy-to-use features.

REALbasic is available in a Standard and Professional version. REAL Soft­
ware has provided a trial Standard version on the CD included with this book.
The makers of REALbasic, REAL Software, continue to improve and update
this program, so your copy on the CD might be off a few version points by the
time you get our book. The latest version of REALbasic is available online at
REAL Software's Web site, http://www.realbasic.com/realbasic.

The Professional version of REALbasic allows you to create Windows
95/98/NT4/ 2000/ ME versions of your applications at the same time as your
Macintosh applications, and has extensive database support. The Standard
version has demo support of the Professional version's features so you can get
an idea how cool it is to make a Windows and Macintosh app all at once.

If you find REALbasic to your liking, you can purchase a serial number from
REAL Software that will turn the trial Standard version to a live Standard
version with full functionality. The trial Standard version of REALbasic has
one major limitation you should remember. After 30 days, the program ceases
to operate until you purchase a serial number from REAL Software to acti­
vate the program. Any applications you build with a trial version of REAL-

6 PART I• GETTING YOUR FEET WET

basic will also cease operating within 30 days. Any Windows applications you
create with the trial version will only work for 5 minutes. You'll also be
greeted by a little dialog box that, when you start up REAL basic (or any
applications you create using REALbasic), reminds you that REALbasic and
anything you create using it will stop working soon. Needless to say, to get the
most out of REALbasic and to get rid of the reminders, you should purchase
a copy.

Depending on the version you purchase, once you register REALbasic, it
transforms into a fully functional Standard or Professional version right before
your eyes!

The great thing about REALbasic is that it runs on older Macs as well as the
new PowerPC G4 systems. Before you rip the CD out of the book, make sure
your Macintosh computer meets these minimum requirements for our projects:

+ Mac OS system software 8.1 or later

+ A PowerPC processor

+ A CD-ROM or DVD-ROM drive (for using the CD-ROM)

+ 32MB of total computer memory (with virtual memory on)

+ 6.SMB of free hard disk space.

As you go through REALbasic's system requirements (as found in its Read
Me and documentation), you might notice that our system requirements are
steeper, and for good reason. Yes, I, too, love the fact that a Macintosh is the
Maytag of computers-they keep running forever. But so do certain poten­
tially explosive cars and politicians. After a point, it's not cost effective, prac­
tical, or (if you so happen to start a career from this book) profitable to support
older Macintosh hardware.

Don't get us wrong-REALbasic is quite able to create applications for older
Macintosh systems as well as Power Macintosh systems. Nonetheless,
although the programs you create in REALbasic could likely run on older Mac
hardware (that is, computers that aren't Power Macintosh class) or on Mac OS
7.6.1 or earlier, we're not able to show you how to support applications created
for these systems.

There's a line that must be drawn because, basically, Apple drew it first, and
we're toeing the line so that we keep this book lean with information you

CHAPTER 1 •GETTING ACQUAINTED WITH REALbasic 7

require for modern application development. Eventually (read: soon), Apple
will likely offer hardware and software support for only Power Macintosh G3
systems and newer, as these are the only systems that can officially run Mac
OS X, the successor to Mac OS 9. Many companies that create Mac pro­
gramming software (including REAL Software) are designing their new ver­
sions of applications to work only on Power PC systems. If you're considering
dusting off that old Qyadra so you can make a Mac OS 9 or Mac OS X appli­
cation with REALbasic or another programming tool, it's likely you may be
out of luck. While you can use REALbasic on your Qyadra to create new
applications meant for other Qyadras and older Macintosh systems, doing so
is much like designing a new, high-efficiency engine manifold for a Ford
Pinto. There's just not a lot of point to it unless you have a real need for an
application you can't find anywhere else.

Needless to say, the more modern your Mac, the easier it will be to create new
programs.

Installing REALbasic
Installation's a breeze for REALbasic if you use a Power Mac running Mac OS
9 or Mac OS X. Follow these steps:

1. Insert the book's CD-ROM in your CD-ROM or DVD-ROM drive.
The Beginning Mac Programming CD-ROM icon appears as an icon
on the Mac OS Desktop.

2. Double-click the CD-ROM icon on the Desktop and locate the "Open
Me for REALbasic 3" folder.

3. Drag the REALbasic folder from the CD-ROM to your applications
folder on your hard disk.

If you use an older Macintosh (that is, a non-Power Mac, such as a Qyadra or
Centris), see Appendix B for more detailed instructions

That's all there is to it! Inside the REALbasic folder is the REALbasic
application. Additionally, the CD includes documentation, sample code, and
other items that you'll find useful as you gain experience with REALbasic
programming.

8 PART I• GETTING YOUR FEET WET

What REALbasic Looks Like

Figure 1.1
Welcome to the

REALbasic
design interface.

The REALbasic application has five windows that serve as your workplace for
creating (or developing) the parts of your program. The folks at REAL basic
officially call it the design interface; it's shown in Figure 1.1.

The design interface consists of the Project window, which is, in a sense, a con­
tainer. It holds all the pieces that form a REALbasic application, including the
following:

• Tools window. The Tools window is a toolbar of a sort that contains
Mac OS interface elements, called controls, which you can drag into the
Project window.

• Colors window. The Colors window is a palette where you can place
colors that you use often in your projects. You can use the Colors
window to give colors to properties that accept color assignments.

Tools window Project window

Window Editor

ktkd•GP~

T"t1lt-: UntJtltd

VIJible ~
r .. tlSl:re"'. 0

Properties
window

Colors -m:.i..~ Merwht\li•lb!t @!'
Oonl:oo:: ~
C.-!can Q
Zl>Omlcan:Q

window
tltloMH<;p 0

CHAPTER 1 •GETTING ACQUAINTED WITH REALbasic

+ Properties window. The Properties window shows information about
an item selected in the Project window or Window Editor.

• Project window. The Project window shows all the components that
make up your project as you build it.

9

• Window Editor. The Window Editor represents a window in the
program you are building. You add interface controls to it by dragging
them from the Tools window into the Window Editor. When you first
launch REALbasic, a new project is created with a single, blank
window to get you started. You can add more windows to your project
later as you need them.

Making Your First Application
REALbasic provides you access to the key graphical elements available within
most Macintosh applications. These graphical elements can form a program
quickly. The program I'll have you write here won't do a great deal and hasn't
a lot of substance. You might even call it a "simple" application. But, as my
friends at REAL Software point out, a "simple" application can be quite use­
ful and packed with a feature or two that's invaluable. For instance, docklings
are applications that are placed in the Mac OS X dock. A dockling is a simple
application, yet it can provide users a quick way to change a system preference
without having to open the System Preferences application from the Apple
menu. In short, programming is literally what you make of it.

Essentially, you'll take advantage of built-in programming within the Mac OS
that forms windows, scroll bars, and other pictures on the screen. Apple refers
to these programming parts collectively as the Toolbox. The Toolbox makes
your programming life much easier by simplifying and minimizing the pro­
gramming skills you need to know to create a program. You'll learn more about
the Toolbox in Chapter 19, "The Carbon Environment."

You'll be using all of REALbasic's interface items except the Colors window
for this exercise. Don't worry if you don't know anything about programming
at this point. The object of this exercise is to show you how relatively easy it
can be to write a Macintosh program.

The application we're going to write simply displays a message window with a
button that quits the application. Most experienced programmers would

TIP

NOTE

PART I• GETTING YOUR FEET WET

recognize this little gem as a version of the revered "Hello World" application
that demonstrates the most basic of programming instructions-a message on
the screen. A Hello World application like this one is always a good way to get
your feet wet, so let's get started.

1. Start by launching REALbasic on your computer. Locate the
REALbasic program and double-click its icon to start the program. The
REALbasic application will launch and a new Window Editor appears
as shown in Figure 1.2. You just started a brand-new REALbasic
programming project and, even as an untitled project with nothing done
yet, REALbasic still views it as an application that can run!

2. Right now, you should be looking at a blank project window, simply
named "Untitled." The Properties window currently displays the
properties, or programming characteristics, of the Project window as
shown in Figure 1.3. The properties of the Project window start with
the Name field at the top of the window, under the ID header. The
default (or preset) name of the Name property is Windowl.

~~-"l:, ~-,!l~~~<••<<.~-!!t>~,ffe•=<-<,<•••·W~•!~ll',,,,~~=!~<<
·~:::rusf:cnac:lrn:tf:ie':ewrea:w.nttawl'faa'r t11e:.cente·r.·onna.scteen::to:vmw·····""'
·wa~"··~·tr(;lir1~~T/i~9~;p~Q~;~~~~~;!~i:·~~~ei~~s.~in·:·.·;.==· ······· · ····· ····=··

.•.. ·. t~ to tUiiplay the Ptf>Pert1e$'.~'f~l1e. ttem':YQ!J Just s~I
· • 'tlick on ~rtttols or ot~~r elem~rit~ later, the ~onten~ of the Prop~rties
.•.. window will. change again to refleci: the properties ofthat item.
·»~r~~~c: · .. · /;:2 · ,;~ · .. };:;. · . £~·,, · . ;~~·

CHAPTER 1 •GETTING ACQUAINTED WITH REALbasic

Figure 1.2
The Window Editor
looks like this when

you create a new
project: a totally

empty and
featureless window.

Figure 1.3
The Properties

window here shows
what you should

see once you select
the Window Editor

to work on.

eoo Untitled

3. Next, you'll change the window's appearance by adjusting the Project
window's properties in the Properties window. To begin, look for the
properties listed under the Appearance header at the bottom third of
the Properties window.

4. Click to the right of the first property field in this area, Frame, and
select Movable Modal.

0 0 0 Propertios
IO

Name: Windowl
Super: ·· Applet

..... Ion ·---·--· ~-··--------~-~
Placement; o- Oefaull

Width: 300

Height: 300

MlnWldth: 64

MinHeight: 64

MaxWidth: 32000

Backdrop: Hono

Tide: Untitled

Vlslblt: ®
FuUScre.en: ()

MenuBarVisible fJ
Ctos«!:Box: ~
Growlcon: [)
Zoomlcon: ·El

Balloon Help: ()

MacProclO: 0

12

NOTE

NOTE

PART I• GETTING YOUR FEET WET

-~~~:ib.mu:mmn:mmPm~.::a:smGg1niriiio:; .
. v~:~-n~~6iX;'.Vou~+uS&'.'ffiis:'.l('.ffiO::erwtn0ow~rWnest:·~,.~--. --·~-,~,, ~,~ .w-~;~··•·h·e,.~y-.;,_,-,, -··<>• _, .. _ - ,•.- -·· ,,_J:•'>'-,-- • .,_,,-,,., • .,~··"'"'"""-"~=:"W'.,._..,,,.,v ,,_,~ ••· · --~~ ,_ __ •.• "·'·*·-"'' ""'*''"MY,~-'*-"""""'"~--:w·;.,,.;;;;,<;•:w•~V'~>:,~~~<#<.-W»-"<

•··· :conventron111:11pplications;. ft'SJooo;::t10wever.'..to':apprlR:iate~a:'.aiffiftartr::::~:~
way ofvi~;ji19'tttings, pro~icieci'i~aivou stick to App1e'iniertace conven:·~j
tions·~$: ' .· .. · . as possible to a~ofdiacumbersome, (:'o~:ft.ising applicatioh; ··)
•.. -&·-,.>--~, --~-~ >-:· -:' · ·_,·-.-~;";\1·~i~~d~:-~:~~_,:~-~::_; -· · ,~,·.,;':~J;?-i~:r~:~~> · :: ·,,: __ :'..>:.<:,;:,"
mte1 . .1ElcE(.,. ·:/'.'. · ·. ··· ·

5. Change the numbers that appear under the Width and Height,
properties as follows:

• Width: 318

• Height: 166

The minimum width and height properties should remain at their
preset, or default values, so you won't need to adjust them.

6. To change the background color of your window, click on the
HasBackColor check box in the Appearance section of the Properties
window to activate that option.

7. Double-click on the white-colored area to the right of the BackColor
label. A Mac OS color window appears. The Color Picker options
should be selected.

8. Pick any color you like from the Color Picker (how it appears to you
depends on which option you select), and click OK. In my case, I used
the crayon color picker and chose a bright blue-green. The Window
Editor will change to the background color you selected.

CHAPTER 1 •GETTING ACQUAINTED WITH REALbasic 13

TIP

NOTE

,:::::::we:s-~n:ttrar~?rsir:a·t41hD:'dto:t::S'Ste:ettng:11:;ttark:C'Cila:t:wllt::=:

:::·'.:m~k~iii~iitn~:;i~]g!Eii'.1h~ iilii<!ii~·~ii:Eii:fi~iiEi1:m~a:.~::,::,::::;:::::::::.:::::
,, .,,,,.,.,,._..,., " · ·•:'•",'·<·«.·, ,.,~:w=-*---00-----,-,c.;:yM;;"'''«<'""'~"'''"""Y-=,,,-,"'"'~'~"''"'""""'~'-'~'· ... ,,,., ,,,,., .. ,,,.,,,.,,,".''~'"'~~-~e;,~,.,;cu.'"""

'"'' ,-,--;,c-_,:,."W!:'_"°'":";'-'""-'~·~:c:s·c·:<<"~>

9. See the large A item in the Tools window? That's the Static Text
control. It enables you to create text or labels within your program to
show information. Drag and drop that control anywhere inside the
window editor.

10. Change the properties that appear under the Position header to the
following:

• Left: 35

• Top: 30

• Width: 250

• Height: 50

11. You just specified that the label's relative size fit some text you'll add in
a moment. Now you need to adjust the alignment of the text within the
field. With the label still selected, click on the TextAlign property and
select 1-Middle from the pop-up menu. Now, any text will be centered
in the label.

12. Next, you need to change the text to something meaningful. Find the
Text field just below the Appearance property header. Right now, it
should simply say Label·. Click on the button to the right of this to
open an Edit Value window.

13. The Edit Value window is just a place to change the information in
specific controls. In your case, you're just typing in some new text. To
do so, delete the Label· text and type the following:

This is MyLittleWindow.
It's not much of a program, but it's mine!

::::::::Basata'lO',i;>tess::B:etmo:m:l:rte'lik:ttre::,textintti.two.'.:lln:e;s;::~stt.own::~b1lSte:;:.:::.~:
,-- ~"""""-''·" ·""-;;:~_.;=~.¢=•-·=·,;ruoo"'=·""""'<Y:<'O''>;,,;:,=.~~":<.'~'-~=;~'"'"'-~'""·";;cc'C.~·~4'>V',~'-C~.>,·.d,«o''-':~;.,:'<l"WwK";,,,,~.C.~C""-""''°""~°"'~"&;,._~,~""°'=•-"'-;"=<.:,<',<xc.,..g~-'"'<,;;;!."'="'-~

14

Figure 1.4
Your new window

editor shows the
label, but it looks a
little bare. Time to

add a button using
the PushButton

control

PART I• GETTING YOUR FEET WET

_......, __ .j.-_ PushButton
ll~ht: SO

""'""' o control
Lcd::Top: (J

t 0<kR!pht: (3

lo<;Uonom; tJ

~~~:. ~~···-·-
Tur. ,,_bMi,Ullt- 0 

ThtlJig11 . I ·~ ,.­

Tu1Color;~ 
M!.~IU~ : 0 .. 

\lb!b!t: ~ 
Htlp"fag Q 

R.1U01»1Hl'lp G; - " 

14. Click on OK to close the Edit Value window when you're done. Figure 
1.4 shows the completed window thus far. 

15. Because your program will be a floating modal window with no 
menus, you need to be able to turn the silly thing off once you've 
marveled at it. You can do that easily enough by adding a button to the 
window. To begin, find the PushButton control on the Tools window 
(it looks like an OK button) and drag it just below the text inside the 
Window Editor. 

16. Change the Position values in the Properties window for your button to 
the following: 

• Left: 130 

• Top: 100 

• Width: 60 

• Height: 20 

17. The button should now be centered under the text. Click on the button 
to the right of the Caption field under Appearance in the Properties 
window. Another Edit Value window appears for you to change the text 
of the button. 



CHAPTER 1 •GETTING ACQUAINTED WITH REALbasic 15 

Figure 1.5 
Between the two 

pre-entered 
commands, you'll 

enter one magic 
command. 

18. Type in this really complex bit of text and click OK to close the Edit 
Value window: 

Great! 

19. Now it's time for you to write your first REALbasic code to activate 
the button and make it operate. Get your thinking caps on. Begin by 
double-clicking the PushButton control in the Window Editor to open 
the Code Editor window. 

20. The Code Editor window assumes that you want to program the 
Button control to perform a specific set of commands; as a result, 
REALbasic has placed the text cursor exactly where you need to type, 
between the Sub Action () and Sub lines. Type in the following text (be 
sure not to enter any other characters, and don't press the Return key). 

quit 

The results are shown in Figure 1.5. 

21. Click on the Close box at the top-left of the Code Editor window to 
close the window. 

22. To follow Apple graphical interface conventions, you should make your 
little button the default button so it has that familiar doubled outline 
around it, or in the case of Mac OS X, the button pulsates. To begin, 
select the Great! Button control, then click the Default check box 
under the Appearance heading in the Properties window. 

V Iii) PushButtonl 

!l Action 

' MouseMave 
la MouseEnter 

6,l MouseExit 

!l Open 

~Close 
~ DropObject 

I> ~ StatlcTextl 

I>- fJJ Events 
I> 1l'$ Menu Handlers 

(> {l Methods 

I> II Properties 

Sub Action() 
quitj 

End Sub 



16 PART I •GETTING YOUR FEET WET 

You might have noticed thafygur q1Jit .command appe~redautomaF 
ically in the Code Editor after you typed a couple ofJetiers. That fea­
ture. is what. REAL Software appropriately calls auto-complete. The 
Code Editor window knows all legal commands and will try to com­

plete any command as you type then. If the command that the Code 
Editorshows is the right one, just press theTab key to .let REALbasic 
complete the suggestion. lfthe c.omrriand REALb!'lsic sqggests isn't 
the right one, just keep typing out the comrnand you intended. 

23. Let's complete matters by saving your work. Open the File menu, and 
choose the Save command. Save your work under the name 
MyLittleWindow in your REALbasic folder. Wonderful! Your program 
is ready to be tested. 

REALbasic allows you to test programs you've made in a debugging environ­
ment. This debug mode lets your application operate as if you were running it 
as a standalone program in the Mac OS. The main advantage of the debug 
environment is that you won't lose control of the application there. Should a 
program you test in debug mode ever get out of hand, press Command+Shift+ 
Period, or click on any design environment window to return to REALbasic. 

24. To run your new program, click on the Debug menu and choose Run. 

25. You should see your new program as it appears on the screen in a 
floating window. When you click the Great! button, the program quits 
and returns you to the REALbasic environment. 

26. Finally, let's make this program a true standalone Macintosh 
application that you can run from the desktop. To begin, open the File 
menu and choose Build Application. 

27. The Build Application window appears, as shown in Figure 1.6. Leave 
the Macintosh option checked. (In case the Windows option catches 
your eye, don't worry-we'll touch on making Windows versions of 
your programs in Chapter 22, "Porting Your Applications to Microsoft 
Windows.") 



CHAPTER 1 • GETTING ACQUAINTED WITH REALbasic 

Figure 1.6 
The Build 

Application 
window is your 

final step to turning 
your REALbasic 

project into a 
working standalone 

program. 

Figure 1.7 
Ta-da! Your 

finished program 

Build Application 

(3 Maclncosh {i_ Mac OS X I C.ubon EJ Windows 

I Mac OS Application Settings: 

Name: IMvLittleWindow i.q I r_ Ge.~lnfo: __ ,, _____ i 

ro~~:~~d~ - @5~:~~;~-~;;J~-----, 1 ~:::::: lBP~ . I 
Memory: . j Non ~release : ~ I 

!suggeste:d Size: ~ k + S12k I Shon Version: ! 

!·_Minimum Siz~-: ~ k T 512k j Long Version: ! _ I Package Info: ; 

: Region: ( United Stale.s 
L ....... ---·-····--.............................. .. 

l
l :::cwlA~::~:::".::nin9s: 

CJ Multiple f.h:i,·ume-l'it Jnwrf.Ki! 

Ca;mon: j My Ar;piicat:tcn J 

Icon: ~ l.angu•ge: (oef~.;;;;)~ 

CE) €~~ 

28. In the Name field in the Mac OS Application Settings area, type 
MylittleWindow 1.0. 

29. In the Get info area, select Final from the Release pop-up menu. 

30. Click the Build button to build your new application. 

The new application will have a generic icon appropriate to your version of the 
Mac OS. Your new application is stored where you saved the project file . 

Try using your program. When you do, you'll see exactly what you created­
a modal window, as shown in Figure 1. 7. When you click on the Great! but­
ton, the program will quit. 



NOTE 

""""~· ·- ... - .... ~~ 

In unregistere't:t:v-ersions of REALbasic;::each:time you open an,;;3'p;plica"~- ~-

tion you've bailt,-you'll see a message V,Yarning that your appl i'Cation was 

built with the trial version and that if works only for a limited~time. 

Congratulations! Consider yourself a Mac programmer-but don't go adding 
your new credentials to your resume just yet. There's more to learn about pro­
gramming, and it'll be a sad waste of a good book if you don't peruse the rest 
of the chapters. 



Programming' s 
Big Picture 

In This Chapter 

• The phases of programming 

• Sprecken sie REALbasic? 



20 PART I• GETTING YOUR FEET WET 

After installing REALbasic and having a chance to play around with it, 
you're probably itching to get started writing your own programs. Well, 

hold on a minute there, partner! You can't run before you learn to walk, and 
you can't code until you learn a little more about programming. 

The next few chapters are for the benefit of those readers who are unfamiliar 
with the concept of programming. If you already have a good grasp of the sim­
ple concepts associated with programming, you may just want to skim these 
chapters. On the other hand, if you have no idea what programming is all 
about, then this is the place to start. 

The Phases of Programming 
Depending on whom you ask, computer programming is either a science or an 
art. I like to think of programming as a mixture of the two. Even though the 
process of writing a computer program is methodological, the design, look and 
feel, and even the programming source code can express the programmer's 
artistic talents. For instance, a sculptor can make a beautiful fountain. It's art, 
naturally, for its aesthetics. The fountain also holds practicality on a hot day as 
its cool spray drifts on nearby people. The function of the fountain goes 
beyond its original purpose by serving as a wishing well as it gathers coins 
dropped inside it. 

The objects in Figure 2.1 have both an aesthetic quality and at least one func­
tion. As a developer, remember that both concepts are needed to form a good 
application. Of course, a comb with no teeth is not a comb. You'll still need to 
provide a clear primary function for your application, although it can have 
more than a single function. 

Be it science or art, the goal of computer programming is to allow a computer 
to perform a predefined set of tasks accurately, predictably, reliably, and repeat­
edly. The tasks being performed vary from program to program. In one pro­
gram you might keep track of your checkbook register, and in another you 
might simulate the experience of protecting the world from an alien invasion. 

Even a sculptor must follow a plan or a set of rules to create art. Programming 
is no different. Many developers find it useful to use drawings to illuminate. 
With that in mind, Figure 2.2 shows a path to programming enlightenment. 



Figure 2.1 
Programming is 

much like a 
collection of 

everyday objects­
having both 

aesthetic and 
functional qualities. 

Figure 2.2 
The better your 

application's 
design, the less 
likely you are to 

have to backtrack. 

CHAPTER 2 • PROGRAMMING'S BIG PICTURE 

Define Requirements 

~._ __ o_e_si_gn __ _, ------+ij Pmg<amm;ng 

1 r.,11ng an: !ebugg;ng 

ti 
Implementation 



22 PART I •GETTING YOUR FEET WET 

Even though this book deals primarily with the process of writing computer 
programs, there is more to programming than that. The complete process of 
computer programming includes many phases: 

+ Defining requirements 

• Design 

+ Programming 

+ Testing and Debugging 

+ Implementation 

+ Support 

Defining Requirements 
All computer programs exist to fulfill one or more needs. Defining a program's 
requirements is the process of documenting everything the computer program 
should be capable of doing. When you decide to write a program, you should 
always begin by defining the requirements of the program. 

The process of defining the program requirements can be as formal or as infor­
mal as you like. In large software companies, the requirements-definition phase 
can be very extensive. In addition to simply documenting the tasks that the pro­
gram must perform, many companies make use of market analysis, focus 
groups, and research projects to assist in determining a program's requirements. 
For smaller companies, and some shareware authors, requirements documenta­
tion might consist of a few notes scribbled on a cocktail napkin. 

Regardless of the level of complexity you choose, you should at the very least 
have a list of goals in mind when you decide to write a computer program. 
Some programmers may balk at the idea of strict requirements, preferring to 
shoot from the hip and develop their programs with no clear goals in mind. 
There is a special word that describes those types of computer programmers: 
unemployed. 

Design 
After you've laid down the requirements of an application, the design 
work begins. Although design is probably the most important part of devel­
opment, we're not covering it in this book. Plenty of books on the market deal 



CHAPTER 2 • PROGRAMMING'S BIG PICTURE 23 

with design methodologies; we don't need to reinvent that wheel. For the pur­
pose of Macintosh programming, I recommend Apple's Human Interface 
Guidelines, available through the Apple Developer Connection Web site at 
http://www.apple.com/ developer. 

An application design includes many aspects, not just the visual ones. 
Although the user interface-that is, your program's windows, dialog boxes, 
and menu items-is quite often the thing that beginning programmers think 
of when they think of design, it is far from the only thing. Other aspects of an 
application's design include 

+ Source code design. Your source code should be thought through­
that is, designed-before you start writing your program. You should 
document the ways your source code addresses the various require­
ments. Additionally, you should consider how the various parts of the 
application's source code will interact. 

+ Data design. If your program reads and writes any data, you should 
design the layout of these data files before writing any code. Heavily 
data dependant applications require very extensive data design. 

+ Testing-process design. Think about how to best test your program. 
How your user interacts with your application via the user interface will 
help you determine how to test your application. 

These aren't the only aspects of application design, just a few to give you an 
idea of the things that you should count on doing. 

As with the development of the application requirements, the application 
design can be as formal or informal as is needed. Just make sure that you spend 
some time thinking about your design before writing the program source code. 

Programming 
Finally, you get to the fun stuff. The programming phase is where you actually 
write the source code that controls what the program does and how it does it. 

The process of programming, however, often called coding, involves more than 
simply typing source code. Programmers, or developers, as they are often 
referred to, are responsible for testing their work as they go along. This testing 
is not meant to provide a complete overview of the system and all its func­
tionality-just the parts of the program on which the developer is working at 



24 PART I •GETTING YOUR FEET WET 

any given time. As the developer finishes any given unit of code, he or she 
needs to test it to ensure that it works properly. This type of testing is referred 
to as unit testing. 

There is no hard and fast definition of a unit. It can be as small as one line of 
source code, or it can be made of multiple sections of source code, all of which 
are responsible for a single application feature. That said, unit testing is some­
thing that should be done often. The more often you unit test, the fewer 
changes you are testing. This means that your individual unit tests will go 
faster and you'll be less likely to miss something. 

Testing and Debugging 
After programming comes testing and debugging; this is when you get a 
chance to be really hard on your application. You need to test every aspect of 
your program. Make sure it does everything it's supposed to do, and does it 
correctly. Try to crash your application before you set it loose in the world and 
someone else figures out how to crash it for you. 

In relatively small projects, you may decide to complete all your programming 
before testing and debugging. In larger projects, however, you should break 
your work down into multiple milestones and perform complete testing and 
debugging of all features included in each milestone. Just as with unit testing, 
the more often you test and debug, the less likely you are to miss something. 

Debugging, in case you've never heard of it before, is where you correct the mis­
takes you've found. If you didn't find any mistakes, then you didn't look hard 
enough. If there's one rule about programming, it's that there's always one more 
bug. In large applications, such as operating systems and office-productivity 
tools, the number of bugs is often in the thousands-and these applications are 
released to the public with these bugs still in them! Fortunately, most have been 
identified and can be easily fixed. 

Implementation 
After you've identified all the bugs, determined those that can and will be 
repaired, repaired the bugs, and re-tested the application, you're ready to go on 
to the next stage of the development process: implementation. 



CHAPTER 2 • PROGRAMMING'S BIG PIGTlJR·E 

You might be writing an application for friends or co-workers. Alternatively, 
you might plan to sell your application as a retail product, or to distribute it 
directly to the public on the Internet. Regardless of your intentions, the 
process of making your application available for use is referred to as a release. 

Various methods of release include 

• Retail 

• Shareware 

• Freeware 

• Open source 

Releasing a Retail Product 
A retail product is the standard store-shelf, packaged-delivery option that is 
usually associated with larger commercial software packages. A lot goes into 
the commercial release of a retail product-more than we can go into here. 
Suffice it to say that the bygone days of a single developer writing and releas­
ing a retail software package are long gone. 

Releasing a Shareware Product 
Sometime back in the 1980s, the majority of computer development was 
moved to large software manufacturers. Because this made it harder for smaller 
software companies to get noticed, they did something radical: They gave their 
software away-well, almost. The idea was that you could get the software 
free of charge, and pay for it after you'd had a chance to try it out and decide 
whether you liked it. You could also share the software with your friends and 
co-workers, hence the name shareware. 

The concept is still around, and is stronger than ever. Most new software com­
panies offer shareware versions of their applications. Some shareware either 
limits the features, or the amount of times it can be used, until the user decides 
to pay for a full-feature version. This type of product is sometimes jokingly 
referred to as Heroinware, because, like a drug dealer, the software company 
gives you a little free of charge just to get you hooked, and charges you from 
then on. 



Figure 2.3 
Tech Tool, from 

Micromat Systems, 
is an example of a 

free application. 

PART I• GETTING YOUR FEET WET 

Releasing Freeware 

You also have the option of not charging for the use of your software at all. 
Simply give it away. Sounds like a great idea if you're a computer user, but a 
stupid idea if you're a software developer, right? Maybe not. A lot of software, 
such as TechTool (shown in Figure 2.3), is released as freeware. Some is 
released simply to give the product some exposure, or to gain fame for the 
developer. Even commercial software manufacturers have begun releasing 
their software as freeware; Internet browsers, word processors, and various 
other applications are simply given away, in hopes that users will want to buy 
other commercial products offered by the company. 

Releasing an Open-Source Program 

In a variation of the freeware concept, some developers have decided to forgo 
all potential economic gain by giving away not only their applications, but also 
their source code. The idea is to allow other developers to look at the code and 
propose ideas for making your product better. 

Why would people want to help other developers make their products better? 
Because those people are probably also users of those developers' products. So 
think of open source as a big programming commune, where everyone works 
together for the good of the application, making a stronger product for the 
future . 

TechTaal® 
r 1 .... rwF"AO::~~~~ NJ A 

HI'~-.~~ N/ A 

1 [DESKTOP 
REBL&Dl~ I 

rPRAM 

1. ZAP l~I 
[ AENALYZEI I 
[ FLOPCLEAN I I 

@2000 MtCROMAT JNC: 

HARDWARE I OOEN~ONS I.~ GENERAL I 
NET'WORK I PRINT INFO I SAVE INFO I 

_!!!!...J RE~STER I PERSONALIZE!~ 



CHAPTER 2 • PROGRAMMING'S BIG PICTURE 27 

Shades of communism aside, open-source products are making tremendous 
inroads. Operating systems (think Linux), Internet browsers, and word 
processors are only some of the products that are being released as open-source 
products. 

Support 
After you've released your software, it is inevitable that the people who use it 
will have questions about it. Use of your software, no matter how well it's doc­
umented, and no matter how well it's been debugged, will always prove to be 
problematic to some user somewhere. For this reason, regardless of your 
release and marketing plan, you should plan for product support. 

Assuming that you plan to develop shareware or freeware applications, putting 
your e-mail or Web address in your software's documentation will go a long 
way toward handling support issues, enabling people who use your software to 
contact you. 

If you plan to release your product in retail channels, then e-mail and Web 
support might be enough. Even so, you should plan to offer telephone support 
of some kind, whether it's a long-distance or toll-free phone number. You 
might even want to consider on-site support of your product if it is a particu­
larly complex application. 

Finally, plan on keeping a record of all of your support calls and e-mails. They 
will help you target those areas of your business that have caused problems in 
the past. Keeping a database of everyone who has contacted you is a good idea. 
You can send e-mails to all these users when a new version of your software is 
released, or when you need help testing a beta version of your software in the 
future. 

Sprecken sie REALbasic 1 
Or, "Do you speak REALbasic?" for those not familiar with German. 

Programming, coding, developing, or whatever else you want to call it is the 
process by which you instruct the computer to do what you want it to 
do. Unfortunately, the computers of Star Trek, which can be programmed via 



.. PART l•GETTING YOURFEEfWEt· 

£t~n.~~~. ·.... . ... ··.· . 
.• ;. e~tt;~. • . . . . .· •.. ·. . .. on·.l<rl 

~t;;~if~~~-~~r~~ . ~··• · Cd 
;,:,ry 

~ t~$t.e.r.• : ; · ' ·•: ... : ··· ·· · •> .''·· · '<.• • 
f,~~\, '{~J'<cc:·· ;,;,;' ~·'."'~-.. , ' , ,·',, t{\· -~ o;· '~ ,\"l (• ',: ;;:·/'•' 

;,i ~:·;~::·~'-'<., ~j·oo.{·,, • • ,. ,:,'<;'~>":· ,: :7 
:;: ,~;:x.< : i~.~< ':, -~.0,•" /, ><:.;·) 'e:~~~·1v;~:.5;·:, 

simple spoken commands, are light years in the future. You must be able to 
speak to computers in languages that they understand, and sadly, English is 
not one of them. 

Throughout the history of computers, countless languages have been used to 
write computer programs. So many languages have been used that no one 



Review 

CHAPTER 2 • PROGRAMMING'S BIG PICTURE 29 

programmer could claim to be proficient in them all. With names like RPG, 
ALGOL, PASCAL, BASIC, FORTRAN, LISP, C, C++, ASSEMBLE, 
COBOL, DIBOL, DBL, and ACTOR, computer languages vary almost as 
much as spoken languages. 

Like spoken languages, each programming language can have different 
dialects. Since its creation, BASIC has spawned perhaps the most dialects of 
any computer-programming language, including GWBASIC, BASIC-A, 
QUICK BASIC, BUSINESS BASIC, Visual Basic, and REALbasic, to name 
a few. So although you may "speak" a particular computer language, keep in 
mind that there may be other versions of that language that vary slightly from 
the one you know. 

At the very least, computer-programming languages do have the equivalents 
of verbs and nouns. They have to know what to do, and what to do it to. Addi­
tionally, all computer languages can handle conditional statements-that is, 
they can instruct the computer to do a certain thing only if a specific condi­
tion is met. The one thing that computer languages lack is a conversational 
aspect. You wouldn't want to communicate person-to-person using computer­
programming languages. They are very command oriented. Computer lan­
guages are best used when issuing commands that must be obeyed without 
question. 

This chapter covers the "the meaning of programming," or how computer pro­
grams are simply lists of instructions that tell a computer what tasks to per­
form. We discussed the various stages of computer development, including 
requirements (these determine what your application will do and how it will 
do it), design (this determines what your application and its source code will 
look like), programming (where you actually write the source code for your 
application), testing and debugging (where you find and correct any mistakes 
that you made in programming), implementation (this refers to the delivery of 
your completed program), and support (this involves keeping your customers 
happy by addressing any problems they might have with your program). 
Finally, we discussed how programming languages are both similar to and dif­
ferent from spoken languages. 





• From the source: programming code 

• The GUI: why Mac programming can seem a little 
tougher 

• Resources: how pictures and icons are connected 



32 PART I• GETTING YOUR FEET WET 

I n the previous chapters you got a taste for programming in general. Now it's 
time to explore a bit of the early days of programming and operating sys­

tems, and to show what makes programming on a Macintosh different from 
programming on other operating systems. 

From the Source: Programming Code 
Computers aren't very smart or very conversational. Human languages are way 
beyond a computer's comprehension, and will be for many years to come 
despite recent advances. And, no, shouting at your computer when it gets 
screwy never really helps. 

Yes, I know, you're saying, "But I can buy software that lets me talk to my com­
puter!" That's true, but the voice-recognition software had to be created by a 
programmer using programming code, or simply code. 

In the Beginning 
A computer's native language really consists of binary numbers-ones and 
zeros. These binary numbers act like a light switch. Flip it up, the light goes 
on; flip it down, the light goes off. Likewise, binary numbers act as a series of 
on and off electronic pulses that the computer's hardware understands as "yes" 
and "no," respectively. Send the correct binary instructions to a computer com­
ponent (usually the processor, which is the eyes, ears, heart, and brain of a 
computer) and the computer starts work on a particular task. 

In the earliest days of computing, scientists sent instructions to computers 
using programming languages that weren't much different from strings of 
numbers like 1010111010. Each computer was built by hand-you couldn't run 
down to a store to buy one. Additionally, each computer required you to com­
municate with it in a specific manner-usually not involving a keyboard. 
Switches, buttons, and punch cards were common in early computers, used to 
start programs and enter data needed by the program to complete its work. 
Disks, such as floppy disks, hard disks, and CD-ROMs, didn't exist. 

Early computers used vacuum tubes, large switch devices that could start or 
stop the flow of electrons through it so that binary signals could be sent. But 
vacuum tubes generated a lot of heat, used a lot of power, and were slow. 
Because of the size of these tubes, early computers occupied entire rooms­
sometimes even entire floors. 



CHAPTER 3 • THEPARTS OF A MAC PROGRAM 

Not surprisingly, programming with one of those early computers was slow, 
and, because of the limitations of vacuum tube-based computers, it took hours 
for the computer to spit out the results gleaned by the program. If scientists 
entered the program or data incorrectly, the computer's data would be wrong, 
or the program might abort before it completed, resulting in hours of repro­
gramming the computer and awaiting the results. 

Oh, and did I mention that displays like your VGA monitor didn't exist, 
either? Scientists had to view their works in progress by using a few lights on 
a panel. The results of a program were usually just a series of numbers or a few 
words on a printed page. As computer technology advanced in the 1960s and 
1970s, early video displays appeared, making it easier to enter and display 
computer information. Even so, computer data still appeared as dull numbers 
and letters on a video display or piece of paper. 

•m0,:·=»:..:"":#WX>'=~'""'~~~~~.:~»l!.'Wo~=="'====_,, --~;;;;;~ ;::;r;,:;;;;· ;;c;;;;;;:::========I 
:'.;::~::+tta::P~NhRlel!h=CiFGDIU---
1:::;·:~':''':~~---·:··:·~~~::=~==~::::=:,::::=:"._=·=· =~-"-·----· =··,,·=-·-----~-~-_:: 
•···· t.n. ·the.··.ear.IY..:1~~fl§t:-t.t.m~:1it:Wi§e:merr•tr:Qn:r8"f-&I::c;t~~ted.:'Jb:at:c:;gr:::.~::~ •• ~ 

Jai,iJ .. ·001Jmetli'U!~;~g,[ii1:iii9~§:~ol11P .Q.eioine<;t·to f:orm:~·=;i9r:f'pt-:~wii~fi«·· .. 
with no mpving part§;:-:-a solid-state device. These scientists took a 
chunk of one $ubstaHce, then mashed a smaller chunk of a second 
substance in ih~ .~iddle of the first. Next, they_ placed a wire in the 
center ofthe se¢6nd substance, and placed one wire on each side of 
the first substance. When the scientists applied an electrical charge 
to the wire connected to the second substance, electricity_ could flow 
from one end of the other two wires, through the first compound, to 
the other. Thus, the scientists created the first transistor. 

Transistors wereJrerysmall because they required the use of only a 
small amounf~f'the substances, called semiconductors. 
Semiconductor6,aterlals were also in plentiful supply because the 
primary ingredient, silicon, can be refined from ordinary sand. With · 
the development of the semiconductor, electrical circuits could be 
miniaturized,-enabling computers to shrink in size. 



34 PART I •GETTING YOUR FEET WET 

From Interpreting Systems 
to Operating Systems 
The first personal computers of the late 1970s could be programmed to dis­
play text, and to draw simple lines and shapes on a screen, and perhaps to 
spin around a little. Still, telling the computer what to do required you to 
type in many lines of computer-programming code. Early personal comput­
ers didn't come with an operating system like the Mac OS or Windows, but 
only with hardware designed to translate, or interpret, programming code a 
user would enter into the keyboard. Although the first personal computers 
were much, much smaller than their 1940s counterparts, they didn't work 
very differently. 

Early Personal Computers Get Smarter 
Radio Shack's TRS-80, the first mass-produced, commercially sold personal 
computer, included built-in software that understood the computer-program­
ming language known as BASIC. Based on a more-complex programming 
language used on the larger university and scientific computers, BASIC was 
designed for novice computer users to create computer programs. Combined 
with a cassette tape player, a slow but efficient way to store a completed pro­
gram, TRS-80 users could load or save their work. 

BASIC was a start, but it didn't lend itself to being very versatile. Most impor­
tantly, BASIC couldn't talk very well to the computer hardware or to things 
attached to the computer, making it difficult to make the computer more 
autonomous-that is, more able to perform tasks without continuous 
supervision. 

IBM, an office-products company, took its turn at making a personal com­
puter, but aimed it at both the home and office. Instead of installing a BASIC 
interpreter and requiring users to type in computer code, IBM took some 
lessons from the large university computers running a promising operating 
system known as UNIX, and developed an operating system for their PC. 

IBM's PC-DOS and other new operating systems helped establish the 
computer-software industry, where programmers become producers of software 
for others to buy and use. Still, the simple flashing prompt was quite daunting 
to people who didn't really know what to type in to make their programs work. 



CHAPTER 3 •THE PARTS OF A MAC PROGRAM 35 

Do It with Pictures 
At a research division of Xerox, the company that makes office photocopiers, 
some computer whizzes were toying with the idea of creating a new operating 
system that presented itself much differently from PC-DOS. Each element of 
the operating system with which people would interact was represented with 
a picture. Floppy disks (a recent invention) and directories appeared as a rep­
resentation called an icon. The contents of the disk could be viewed in a list­
ing in a frame called, appropriately enough, a window. Moving or selecting 
icons and windows on the screen called for the use of a mouse, an unusual 
device at the time, which moved a cursor anywhere on the screen. To instruct 
the computer to perform a command on a selected item, an object called a 
menu could be opened with the cursor to display a list of options. 

It was a very intriguing experiment for the few that saw this prototype oper­
ating system. Of these few people were two with whom you're probably famil­
iar: Steve Jobs and Bill Gates. After the visit, Jobs took the idea back to Apple 
Computer to consider. Gates thought the idea was novel, but not significant, 
probably owing to his programming experience. As history would later prove, 
Jobs had a greater vision of what computers could do, and so licensed Xerox's 
concepts to build his first attempt at a personal computer with a graphical user 
interface, or GUI. 

Jobs' vision, manifested in a personal computer called Lisa, was promising but 
cost a ridiculous $10,000. Worse, like Bill Gates, others did not view machines 
with a graphic interface as serious computer systems. Apple stopped produc­
tion and later buried hundreds of unsold Lisas in an unknown landfill. Back at 
the drawing board, Apple simplified and refined the GUI concept and built a 
new, much smaller box. In January, 1984, the Macintosh was born. 

The GUI: Why Mac Programming 
Can Seem a Little Tougher 

Apple encountered many of the pitfalls and challenges of a complex operating 
system like the original Mac OS (then, it was known simply as system software 
or the System). The first challenge was to allow software developers to gener­
ate applications without having to create code for the graphics as well as the 
program itself 



PART I •GETTING YOUR FEET WET 

Creating all the graphic code as well as the program's code would be so time­
consuming that developers would be very uneasy about developing Macintosh 
applications, or perhaps discouraged altogether. Even if a programmer cared to 
write the necessary code that displayed the windows, buttons, and icons on the 
screen, it was impossible for the graphic interface to look or work the same 
from one application to the next 

Apple solved this programming challenge by creating the programming needed 
for all the graphic elements and installing it permanently in each Macintosh as 
read-only programming. These program parts could be called up by a developer's 
application to create a window, menu, dialog boxes, alert, and so on with the rel­
ative simplicity of the old BASIC command for subroutines. Apple named this 
collection of graphic interface tools the Toolbox. (We'll discuss the Toolbox and 
how it is transformed in Mac OS X in Chapter 19, "The Carbon Environment.") 

Despite the Toolbox and other aids, programming on the Macintosh was more 
complex than creating a simple DOS application, and still a bit more complex 
than creating a Microsoft Windows application because of Apple's require­
ments in any Macintosh design. 

For instance, on a Macintosh, a programmer must design an interface for any 
application with which the user must interact. That sounds obvious, but con­
sider the many applications made in DOS that didn't show you much more 
than a blinking cursor until you pressed a button on the keyboard. Because the 
Mac OS stresses ease of use and simplicity, developers must adhere to Apple's 
requirements so that users aren't confused by the appearance and functioning 
of, say, the Open dialog box in one application versus another. 

Because graphic elements such as menus and windows are added to practically 
every facet of a Macintosh program, it takes a bit more time to check not only 
the program code, but the interface elements themselves, for errors. 

Resources: How Pictures 
and Icons Are Connected 

In DOS, every data file or application is formatted more or less the same. The 
only difference in DOS programming may be in whether the file contains exe­
cutable code-that is, programming that comprises an application on the 
computer that would start up when called. 



CHAPTER 3 •THE PARTS OF A MAC PROGRAM 37 

:::~~¥:if--~~~:;;?:~:~:~~~:::::::=~=·· 
··:·::::::t.:~;,,. ... .;,..;;:;::;;rog···r:a01'.:;.:iesi~fliJ;....~~;;;r.'tFo·r· harm'~~H~·~-=~ 

~,~,c,,,.\.(."",W .. V..WA"',*.Jl'kf!t,M~,,.,\.~""¥-d"i'!':'. .. ,,.,., · .,, ,, . ~ ,\4 _. ,,"' \. ~,. ,,,,,,,.·~ ... -.~~.·H~~¥.'-11"''""'"~'~ ''"'·· -"·'' , .. .. ,, ""', ... ~ ~~,,,,.,,,•,1 .. t!Jllfjl,_.~\V""''*~"""'""'""''""'"''* 

oce~r:Jn:1i'iiQ1.fl'~F~i;Tfi>utei.is applic~t1<in§'()f:~9Rirnt!o9·system:•M~oi'.<>f::Y,~Ji:mii:~: 
remember the "Melissa" and "I Love You" computer viruses of 2000. These 
viruses were designed to infect users of Microsoft Office applications. That is, 
Microsoft Office for Windows. 

Macintosh users have a version of Office that's compatible with Office 97 for 
Windows documents, but these viruses didn't affect the users of the Mac OS. One 
reason Mac users kept typing along without much concern involves how Office . 
98 Macintosh Edition was designed, or not d~signed as the case may be. The. 
Windows version of Office contains sofiware thatr,uns Yisual Basic applicati()J1S ·. 
that,. in the, rig~~ ,hands,. give Office for Winctow~:applications and .documents' · 
extra features .. Microsoft, however, left a few loopholes in their use of Visual. 
Basic aswell as their Word and Excel macro languages. When infected docu.:. 
ments (or, in the case of the "I Love You" virus, file attachments) were opened, 
very nasty things happened that clogged e-mail servers around the world. 

Macintosh versions of Microsoft applications have very limited support for Visual 
Basic applications, so most VB applications simply don't operate-especially not 
in the Mac version of Microsoft Outlook for Exchange Servers, where the "I L.ove 
You" virus presented its payload to millions of users. Likewise, most Word macro 
viruses a.re written with Windows file directory structures in mind because the .· 
virus makers aren't familiar with ordon'1.eareab0ut creating a.Mac vers.ion bf·f 

' •' ' ' ' •', •' ; • •"•,"<';J;o'/ 

their virus. 

There are about 20,000 viruses that infect Intel PC hardware. Because there are 
fewer Macintosh developers, there are, per capita, even fewer Mac virus makers. 
Because of the complexity and rules involved in a Macintosh application, there 
are only about 60 viruses that can affect Mac OS 9. 

That doesn't mean, however, that Macintosh users can't be carriers of viruse~. Be . 
sure not to send documents that are infected to PC users. Remember that.M~c' :~;: < 
OS X is a comp,etely new operating system based in BSD, which has its shat~.~{ 
viruses as wel}Jhatcould be mutat~dinto SQ1?1J~thing nasty. ;';<:3 '.*' 
And pl~ase, U~,e, yC)ur blossoming pr~~~ammih~ powers for good, not fo;·e~ff~:,::. :,•' 

' (;)' : .. ~;,' '; '~'"' 



38 

Review 

PART I •GETTING YOUR FEET WET 

A Macintosh file is actually composed of two parts known as forks. The data 
fork contains either document data or executable code. The resource fork con­
tains information about the document as it relates to the Mac OS-essen­
tially, the icons, menus, windows, and other graphic pieces found in a Mac 
application. 

The great thing about resources for non-programmers is how easy they make 
it to change, or hack, parts of a document or even an application. For instance, 
suppose you love your favorite word-processing application so much that 
you want to add a new menu signifying your love. Using Apple's free resource­
editing tool, ResEdit, you could add a new menu that did nothing more than 
show itself on your word processor's menu bar. Or you could change the 
colors of various menu commands to make things livelier. 

While ResEdit is still a great development tool, there are additional tools you'll 
discover in Macintosh development that change the old rules about resources. 
Mac OS 9 applications rewritten for Mac OS X begin to separate the resources 
from the data of a file to conform more to the UNIX and Windows methods 
of data distribution. By the time you develop an application designed for use 
only in Mac OS X, resources and data are completely separate. 

You'll want to use resources with care and determination so that your applica­
tion works as you expect. Resources work much like REALbasic and other 
programming environments in the sense that they are called on as objects in 
an application. To simplify, resources are "plugged in'' to your application as 
modules; that's not much different in effect from true object-oriented pro­
gramming such as in REALbasic. 

As you'll learn in Chapter 19, "The Carbon Environment," Apple revised the 
list of resources available in the original Mac OS so that developers like your­
self can modify their applications to take advantage of Mac OS X, the next­
generation operating system. 

This chapter introduces the parts that make up a Macintosh application. In 
the next chapter, we'll introduce you to REALbasic commands, the instruc­
tions that make up an application that interacts with itself, the computer, 
and you. 



Under Your 
€ommand 

In 'This Chapter 

• What commands do 

• Trying out some REALbasic commands 

• Good documentation makes happy programmers 



PART I• GETTING YOUR FEET WET 

T he previous chapters introduced you to the REALbasic application, and 
even showed you how to create a simple application. Even though the 

program didn't do very much, it did introduce you to the some of the features 
of REALbasic. We also talked about some of the abstract concepts of pro­
gramming and application development. In this chapter, we'll get into some 
of the more specific features of programming and how the source code is 
organized. 

What Commands Do 
As was mentioned in previous chapters, the source code of a program is the 
text portion of a project that includes all the instructions that tell your program 
how to behave. The source code is arranged in lines, just like any other text 
document. A program's source code is executed from the top down. If you've 
ever cooked anything by following a recipe, then you should already be famil­
iar with this concept. The recipe is a list of instructions, which must be per­
formed in a certain order, just like a computer program. 

The instructions in a computer program are referred to as commands. Most 
commands are single, simple instructions. Commands usually do one thing 
and one thing only. 

Suppose for the purposes of example that you have children, and that your 
children are programmable just like computers (oh, how I've wished). Say they 
have their own programming language, which we'll call KidTalk, that looks 
pretty much like English. If you wanted to write a K.idTalk program called 
BedTime, the source code for the program might look something like this: 

Wash Hands 
Brush Teeth 
Put on Pajamas 
Go to Bed 
Go to Sleep 

From here, your K.id-o-Matic should compile your K.idTalk instructions into 
usable steps that it can understand and implement. Realizing that my kid was 
late for bed, I hastily executed the BedTime application. Figure 4.1 shows that 
it appears to be a successful test, but perhaps we should add a clean the room 
instruction next time. 



Figure 4.1 
Computers don't 

respond to yelling, 
and neither do 

kids. But, the right 
commands 

in the proper 
sequence can make 

for a quiet night. 

CHAPTER 4 •UNDER YOUR COMMAND 



PART I •GETTING YOUR FEETWET 

Realistically, children can't be programmed, and the commands above are 
pretty complex. But you get the idea. The point is, this example is a list of sim­
ple instructions, which are performed from the top down. After the last task is 
completed, the program stops. Computer programs perform in pretty much 
the same way. 

Trying out Some REALbasic Commands 
In REALbasic, the commands aren't quite as similar to English as the KidTalk 
example, but the same concepts apply. One line of source code contains at 
most one command, as in the following: 

MsgBox "This is a pretty useless message.• 
MsgBox "This is too, but it gets the idea across." 
Beep 

To understand the source code above, you need to know that MsgBox is a 
REALbasic command that instructs your program to display a "message box" 
dialog box containing the text you specify. The MsgBox command waits for the 
user to click the OK button and then removes the dialog box. The code above 
displays one message box and waits for you to click on OK. It then displays 
another message box, waits for you to click 0 K, and then plays the default sys­
tem alert sound. As before, you can see that the commands are performed from 
the top down, one after the other, until the last command has completed. 

You probably noticed that the MsgBox command is a two-part command. The 
first part is the MsgBox command, and the second part is the text that you want 
to appear in the message box. The second part is referred to as a parameter. 
Almost all commands have at least one parameter. Some commands have mul­
tiple parameters and some have optional parameters. 

Parameters allow commands to perform almost the exact same task every time 
while altering one aspect of their behavior. Computer programs would be infi­
nitely complex if every task had to have its own unique source code to perform 
each operation. Commands and parameters reduce the level of complexity by 
doing one task, in many different ways, simply by altering the parameters. By 
altering the parameters, as we did with the two different uses ofMsgBox above, 
you can alter the behavior without having to create all new code. 

Some computer languages are very liberal with the format of commands and 
their parameters, allowing commands and their parameters to be on separate 



CHAPTER 4 •UNDER YOUR COMMAND 43 

lines. Some computer languages also allow multiple commands in one line of 
code. However, in REALbasic, a command and its parameters must reside in 
the same line of code. For example, the following source code will generate an 
error if you attempt to run it in REALbasic: 

MsgBox 
"This is a program that won't run" 

Likewise, the following source code, with more than one command on a line, 
will generate an error, because REALbasic only allows one command per line: 

MsgBox "One" MsgBox "TWO" MsgBox "THREE!" 

Although commands and parameters offer a lot to computer language, they 
can't do everything. Using just commands and parameters, your programs can't 
alter their behavior in reaction to changes in conditions. Programs wouldn't 
have the capability to efficiently perform the same task multiple times if all you 
had to work with were commands and their parameters. We'll discuss the ways 
in which programs can become more flexible in the next few chapters. 

Good Documentation 
Makes Happy Programmers 

Before we get much deeper into more programming concepts, we should 
touch on documentation. One important thing to remember when writing any 
program is that the source code can be confusing, as you can tell from the sim­
ple examples above. Source code can be hard to understand for developers who 
haven't worked during all stages of the project, and even to developers who are 
returning to a project they haven't worked on for a long time. To reduce con­
fusion, it is essential that you maintain good source-code documentation. 

In this section we'll discuss some of the various methods of source-code doc­
umentation and the benefits of some methods over others. 

The Myth of 
Self-Documenting Code 
If you talk to developers long enough, one of them is bound to mention some­
thing called self-documenting code. Usually they refer to it jokingly, but some 
actually believe in the practice and use it religiously. 



PART I• GETTING YOUR FEET WET 

The concept of self-documenting code is simple enough: If you write your 
source code properly, then anyone can simply read the code and tell what it 
does. It's a noble concept, but in practice source code, no matter how "self­
documenting" it is, is never easy to read. 

Self documenting-code advocates will argue that all source-code modules 
should be as simple and compact as is feasible to reduce complexity and con­
fusion. Of course, every piece of paper in a filing cabinet is simple and 
compact, but you wouldn't want to read every single word on every single page 
just to find the part you want. Documents are organized in a filing cabinet in 
folders, and the documents themselves often contain headings and explanatory 
text to help the reader find what he is looking for. So why shouldn't source 
code be treated the same way? 

When you start talking about projects with hundreds, thousands, or even hun­
dreds of thousands of lines of source code, the idea of self-documenting code 
becomes absurd. Forcing a developer to search through the multitudes of 
source-code files and modules squanders their talents. They should be pro­
gramming, not trying to figure out your code. 

As bad as it sounds, the concept of self-documenting code does have one ben­
efit: It requires that the developer write code that is easy to understand. A lofty 
goal, but not impossible. 

Documentation Repositories 
Because we've all but given up on the idea of self-documenting code, we need 
to come up with an alternative. One way to document your source code is to 
create a separate document, in the word processor of your choice, detailing 
each source-code file and module, and what all of the various parts do. 

After all your source code has been documented, you then place all your 
source-code documentation in one simple-to-find location so that you can ref­
erence it in the future. 

This documentation repository becomes one of the most important assets of 
your business, and must be maintained and protected at all cost. Several tools 
on the market provide centralized document repositories, which maintain ver­
sion histories of the documents and provide simple methods of backing up 
your documents so that their safety is ensured. 



A third-party tool is 

an application, or 

tool, that a 

developer 

purchases to 

perform functions 

not included within 

the application­

development tool. 

These tools could 

include code 

beautifiers, which 

clean up your 

source code; 

documentation 

tools; design tools; 

paint programs, 

and so on. 

CHAPTER 4 •UNDER YOUR COMMAND 45 

This "Fort Knox" approach has problems of its own. First, it forces you, and 
any future developers, to switch between the word processor or paper docu­
ments and the application-development tools to reference source code to its 
documentation. This approach either requires the manual maintenance of your 
documentation repository or the purchase of third-party tools to maintain 
your repository. These third-party tools can be expensive and unwieldy_ 
Remember, too, that the less-expensive documentation-repository tools have 
fewer features and may not be a robust when it comes to maintaining the 
integrity of your documentation. 

The Promise of lnline 
Documentation 
Fortunately, almost every programming language allows for inline source-code 
comments-documentation embedded within the source code itself This 
allows the developer to place notes, annotations, explanations, or full-length 
novels right in the source code itself Future developers, or the original devel­
oper years later, will appreciate the convenience of seeing the explanations of 
what the source code does right there along with the source code itself 

This practice makes the maintenance of source code a lot easier, but lengthens 
the initial development time. The "there wasn't enough time to document the 
code" argument is the most often quoted reason for not using inline docu­
mentation. It's a poor excuse for making someone else's job harder, though. 

The easiest way to force yourself to do inline documentation is to do it before 
you write the code. As soon as you create a new source code module, docu­
ment what this module will do, what its purpose is, and the steps it takes to 
achieve this. Then go back and add the source code around and between the 
documentation. 

lnline Documentation and REALbasic 
In REALbasic, inline documentation is referred to as comments. The REAL­
basic development tool ignores any comments in your source code. These lines 
are skipped during compilation and execution. When you compile your source 
code, the comments aren't included in the executable application. As far as 
REALbasic is concerned, it's as though these comments don't even exist. But, 
they're of great use to the developer. 



46 

TIP 

PART I• GETTING YOUR FEET WET 

Back in the "good old days" of BASIC programming, the only way to intro­
duce a comment in the source code was to use to the REM (short for "remark") 
keyword. Here's an example: 

10 REM This is a stupid, useless, and annoying program! 
20 PRINT "Hello World! "; 
30 GOTO 20 

REALbasic allows for multiple methods of commenting source code. For the 
most part, these different methods are used to make life easier on developers 
who have worked in other programming languages. REALbasic comments are 
marked using any of the following methods: 

• REM The classic BASIC language REM keyword 

• ' The classic BASIC language REM shortcut single-apostrophe 
comment delimiter 

• I I The C language-style double-slash single-line comment delimiter 

Because I started my development career as a BASIC programmer, I tend to 
use the apostrophe comment delimiter. One good reason to use this comment 
delimiter is that the REALbasic Comment Lines menu item uses this format 
as well. That said, a lot of people prefer the double-slash single-line comment 
delimiter. Use whatever is easiest for you. 

··::::::'.J'a::usettfe::Bclttttaslt:':eamml!.m:une~:-ctrmlnatr<t':open:ttre::E:clirme:n~::=::.:~ 

::::~:~r;a··~eiect'itii::~.gliim:~nr:erni~Ji~m;::rti'Q~r,;:g~ififu'.'.ii~tr~ii~!iii?;iJ'Q:'.i~ii;:::;:~::::: 
'.selected' a'sifi'ijf~=~~s!~~h~ ~ofnrl"i·~nt·~~Iirn'l!!~;!¥:·&·~~e<f~ttn~::9~~1~;:;::: 
ning of the cur'tehtlifleof code. lfmlJltiplelifies:·otcode are selected;'a' :::· 
single-apostrophe comment delimiter is placed at the beginning of each 
selected line of text. This is often referred to as commenting out lines of 
code, because the source code has been turned into a comment. This is 
a quick way to remove source code without actually deleting it (in case 
you change your mind later). 

Whatever commenting method you choose, remember that everything to the 
right of the comment delimiter is ignored, as in the following lines: 

'This entire line is a comment 
MsgBox "Test" 'This portion of this line is a comment 



CHAPTER 4 •UNDER YOUR COMMAND 

The One and Only 
Documentation Solution 

47 

The one and only solution to the source code-documentation issue is to do 
whatever works best for you. For almost everyone, this is going to be a combi­
nation of any or all of the methods mentioned above. Each method has its 
problems and benefits: 

+ Self-documenting code requires that developers be somewhat psychic, 
knowing where to go to find the documentation they need. It's talked 
about more often than it's actually used. However, it does enforce clean, 
easy-to-understand source code. 

+ Source code repositories cause maintenance hassles and disassociate the 
documentation from the code. On the other hand they do provide a 
single source of information that can be effectively browsed without 
previous knowledge of the source code. 

+ Inline documentation, like self-documenting code, requires pre­
knowledge of the source code, but allows for concise annotations that 
can be quickly referenced. Pre-commenting your code can be an 
effective method of improving development efficiency. 

By using a combination of these methods you can reap the benefits of each 
while reducing the problems inherent in them. Remember, use what works best 
for you with the tools and resources you have available. You might choose to 
simply create a project overview document and include source-code comments. 
As long as this satisfies your documentation needs, it's sufficient. Never do more 
work than is needed to maintain your project. Wasted effort is wasted time. 

Documentation Standards 
Whatever documentation method or combination of methods you choose, it's 
a good idea to set some standards for what the documentation will look like. 
I'm not going to preach any one standard here; there are plenty of books on 
the market already for that. Find a standard you like, or make one up, and stick 
to it. Having all your documentation in one format means that every docu­
ment is instantly recognizable and easy to use. 

I know, this may sound obvious, but you'd be surprised how many developers 
balk at the idea of documentation standards. Developers are a unique breed, very 
bohemian and free thinking. The idea of being told how to do their job often 



48 

Review 

PART I •GETTING YOUR FEET WET 

drives them to distraction. But, when handled properly, documentation stan­
dards actually can save precious time due to reduction of misunderstandings. 

Coding standards fall into this category as well. Many different coding stan­
dards exist and are documented in numerous books, journals, and papers. 
REALbasic does a pretty good job organizing the source code for you, so I 
won't go into coding standards here. About the only thing you have control of 
are things like variable, method, and class names (more on these later).Just like 
with your documentation, you should strive to make your source code have a 
similar look and feel. 

Trust me, documentation and coding standards make the maintenance of an 
application much easier down the road. The extra effort put forth at the begin­
ning of a project is an investment in time saved later on. 

This chapter covers commands and parameters. Commands are simply the 
instructions that the computer program follows when it's running. Commands 
can have parameters, which can alter their behavior and allow for variations of 
their use. Commands and their parameters must reside on the same line; only 
one command is allowed per line. 

This chapter also discusses the importance of source code documentation, 
which I can't stress enough. Good documentation equates to reduced effort in 
the future. Maintaining and modifying existing programs is a difficult task 
under the best of circumstances; poorly written or nonexistent documentation 
can make it even more painful. Do yourself a favor and learn to document your 
code. You'll be glad you did. You can self-document your code, add inline code 
comments, and use documentation repositories. REALbasic allows for inline 
source code documentation. 

Documentation and coding standards can help reduce confusion and simplify 
your documentation practices. Coding and documentation standards can be 
almost as important as the documentation itsel£ But don't get so bogged down 
in standards that your work doesn't progress. It's important to remember that 
it's a balancing act between productivity now and productivity later. If you get 
buried in the standards and never actually get any work done, you'll never real­
ize the future productivity benefit, because your project will have no future. 



----~• Keeping track with variables 

-----• Common types of variables 

-----• Declaring variables 

----~• Operations and variables 

------:• Constants are constant 



50 PART I• GETTING YOUR FEET WET 

T he last chapter introduced the concept of commands and parameters. A 
command is a single instruction for your program to perform, and parame­

ters are used by the commands to alter the behavior of the command. Like we 
said, commands and their parameters provide some flexibility, but not enough. 

In this chapter, we'll be discussing one way to add flexibility to your programs. 
When an application is running it needs to vary it's behavior based on changes 
in its environment. In order to do this a program needs to be able to keep track 
of values that can change. This is done using variables. 

Keeping Track with Variables 

Figure 5.1 
Variables are like 

delivery boxes for 
mail and the like. 
Only one type of 

item is allowed in 
each container, 

and their contents 
can change. 

If you've taken a high-school algebra class, then you're probably familiar with 
variables. In algebra, variables are the letters X, Y, Z, and so on, for which you 
seem to spend all year solving. If you've never had the pleasure of dragging 
yourself through algebra, then this will be your first introduction to variables. 

In computer languages, variables are used to store values, numbers, or text, 
which can change, or vary (hence the name variables), in response to different 
situations. The variable itself is merely a label that is used to reference the value. 
When you declare a variable you're telling your application to set aside a por­
tion of the computer's memory, which will be used to store some sort of value. 
The variable name is a label, which you use to reference that memory. Think 
of the variable's name like the address on a mailbox as shown in Figure 5.1. 



CHAPTER 5 •VARIABLES, OPERATIONS, AND CONSTANTS 51 

The fact that the values can vary allows your program's behavior to vary in 
response to those situations and conditions. 

The contents of variables can be compared to each other, and they can be oper­
ated on with math operations. You can add, subtract, multiply and divide using 
the contents of the variables. A variable's contents can be written to disk for 
later retrieval. The contents of variables can be displayed onscreen or used to 
control the display of other items onscreen. Variables allow your programs to 
do just about everything they need to do. 

Common Types of Variables 
Variables can contain, or reference, many types of information-just about any 
type of information you'd want to keep track 0£ Some of the variable types 
that are supported in REALbasic are 

• Integer. Used for whole numbers (O, 1, 2, and so on). Either positive or 
negative values can be stored in integer variables. The valid range of 
integer variables is -2,147,483,648 to 2147483647. 

• Single. Used for single-precision floating-point real numbers (for 
example, 3. 141592653). Single-precision variables can contain 
numbers accurate up to nine decimal places. 

• Double. Used for double-precision floating-point real numbers (for 
example, 3. 141592653589793). Double-precision variables are 
accurate up to 15 decimal places. 

• Boolean. Used for true/false (Boolean logic) values. 

• String. Used to store text values. 

• Variant. A variable that can contain numbers, text, or other types of 
values. 

Declaring Variables 
To use a variable in your program, you must first define the variable so 
that REALbasic knows what type of variable it is. You declare variables in 



52 PART I• GETTING YOUR FEET WET 

REALbasic by using the Dim statement (short for dimension). Some examples 
of variable declarations are 

Dim nAge, nWeight AS Integer 
named nAge and nWeight 

Dim dSalary AS Double 
named dSalary 

Dim strName AS String 
named strName 

'Declare two integer variables .,. 

' Declare a double variable .,. 

' Declare a string variable .,. 

Another method of declaring variables allows you to declare arrays of variables 
so that your variables can store lists of values. When declaring variable arrays, 
you define the name, dimension, and the type of the array. Some examples of 
array declarations are 

Dim nDaysPerMonth (11) AS Integer 'Declare an array of 12 integers ... 
named nDaysPerMonth 

Dim strWeekDayNames (6) AS String 'Declare an array of 7 string .,. 
variables named strWeekDayNames 

Dim nAninteger(O) AS Integer 'Declare an array of 1 integer .,. 
variable named nAninteger 

Dim intEggs Cl, 5) AS Integer 'A two-dimensional integer array .,. 
(2 rows 6 columns-like an egg carton) 

Something you probably noticed about the examples above is that the array 
size is always one smaller than the number of values it can store. This is 
because the first element of the array is always numbered 0. So, in the exam­
ple above, the elements in the nDaysPerMonth per month array are numbered 0 
through 11 for a total of twelve. So, if you want to declare an array of one value, 
you define an array size of 0 (like in the nAnlnteger example above). Coinci­
dentally, you can choose to forgo the use of the array size when you are defin­
ing an array that has a dimension of one. REALbasic defaults variable 
declarations with no array size to a dimension of one. So, all the first examples 
could be written to define the dimension of the array as O, but you don't need 
to; REALbasic assumes that the dimension is 0. 

You can also Dim an empty array in REALbasic by using a size of-1. Doing 
so lets REALbasic know that you want to create an array of unknown size. 
You'd do this in those cases in which you don't know what size you want an 
array to be, until the application is running. You can then re-dimension the 



CHAPTER 5 •VARIABLES, OPERATIONS, AND CONSTANTS 53 

TIP 

array, using the Red i m keyword, once you know what size the array should be. 
For example 

Dim nMonthDays(-1) AS Integer 'Declare an array of an unspecified • 
number of integers named nMonthDays 

If (nMonthNumber = 2) Then 
Elseif (nMonthNumber) 
End If 

Dim strName AS String ' Declare a string variable named strName 

J'1xt1:1l!l~:n5tmin£Lit!all!!,!i!l'l!«::,:~:::::,: 
,4s,a· . roii'ammin'''.tecnil"·~·tte:.re~errefft:o'a&'.'f:leverse:'.Ru'n''aPfan:·· : · 

0•••=/,,,,,,,,,,,,J? ... ,,.-,"·"'"'''jJ, ''"''''l!!,,.,,,'"'·'' ,_,, ... , .. ····' n.• •··.·. ,,. , .,,.JJ.%.,,,_., . ._,, 
::.::NOtation~ Hu~µanan NotationI~.a practice used by some programmers 

that helps remind them of a variable's type without requiring them to 
track down th~ ~~riable declaration. You'll s.ee variables using thi.s. type 
of.notatiqn.all/~hroughqµtthisf)ook. Use of.tl'lisJype of notation.is .not 
necessary; it's simply a rnethodto make your life easier. 

All this variable declaration is well and good, but variables are of little use if 
you don't know how to store and retrieve values in variables. That's what we're 
going to look at next. 

Assigning Values to Variables 
Variables contain values, and the values in variables can be assigned, modified, 
or operated on using many different operators. The assignment operator, =, is 
used to store a value in a variable. 

One thing to keep in mind is that the assignment operator, along with other 
operators, works only with similar data types-so, for example, text data can't 
be stored in an integer variable. The one exception to this rule is a variant 
variable, which is the multiple personality-disorder variable of REALbasic. 



54 PART I• GETTING YOUR FEET WET 

Variant variables can act like any other variable type. 

Some examples of valid, and invalid, variable assignments are 

Dim nAge AS Integer 
Dim dSalary AS Double 
Dim strName AS String 
nAge = 34 ' OK--an integer value 
dSalary = 25350.50 
strName = "Jeff" 
nAge = "forty" 
strName = nAge 

' OK--a real number (a.k.a. floating-point) value 
' OK--a string value 
' Wrong-not an integer value 
' Wrong--these variables are different types 

All variables are assigned initial default values when they are declared with the 
Dim statement. Numbers (integers, singles, and doubles) are assigned a default 
value of 0. The initial default value for Strings is an empty string (that is, '"'). 
Boolean variables are assigned a default value offal se. 

Back to variant variables: They are variables that can contain just about any 
data type and can, in some cases, convert their data from one type to another. 
One example of this is in the code below; where a variant is assigned values of 
many data types. These data types are displayed using the MsgBox command, 
which only accepts a string as its argument. 

Dim varJustAboutAnything As Variant 
Dim bTrueFalse As Boolean 

varJustAboutAnything = 42 ' Assign a numeric value to your• 
variable 

MsgBox varJustAboutAnything ' It will be displayed as a string 

varJustAboutAnything = "Text" 
MsgBox varJustAboutAnything 

varJustAboutAnything = 1.23 
MsgBox varJustAboutAnything 

varJustAboutAnything = bBoolean 
MsgBox varJustAboutAnything 



CHAPTER 5 •VARIABLES, OPERATIONS, AND CONSTANTS 55 

Operations and Variables 
We mentioned that there are many operators that can be used along with vari­
ables. Some of the more common operators are 

+ The addition operator(+). Used to add two numbers together. 

+ The subtraction operator(-). Used to subtract one number from 
another. 

+ The multiplication operator(*). Used to multiply two numbers. 

+ The :floating-point division operator{/). Used to divide one number by 
another. 

+ The integer division operator(\). Used to divide one number by 
another while truncating the result to only the integer portion of the 
number. 

+ The equivalence operator{=). Used to determine whether the values of 
two expressions are equal to each other. Not to be confused with the 
assignment operator(=), which assigns a value to a variable. 

+ The less-than operator ( <). Used to determine whether the value of 
one expression is smaller than the value of another. 

+ The less-than-or-equal-to operator{<=). Used to determine whether 
the value of one expression is smaller than or equal to the value of 
another. 

+ The greater-than operator ( > ). Used to determine whether the value of 
one expression is larger than the value of another. 

+ The greater-than-or-equal-to operator(>=). Used to determine 
whether the value of one expression is larger than or equal to the value 
of another. 

The following source code demonstrates the use of these operators: 

Dim dNumberl, dNumber2, dNumber3 As Double 
Dim bResult As Boolean 
dNumberl = 9 
dNumber2 = 4 

dNumber3 = dNumberl + dNumber2 
(9 + 4) 

'dNumber3 contains a value of 13 -. 



56 PART I• GETTING YOUR FEET WET 

dNumber3 = dNumberl - dNumber2 
(9 - 4) 

dNumber3 = dNumberl * dNumber2 
(9 * 4) 

dNumber3 = dNumberl I dNumber2 
2.25 (9 I 4) 
dNumber3 = dNumberl \ dNumber2 
(9 \ 4) 

bResult = dNumberl < dNumber2 
(9 is not less than 4) 

'dNumber3 contains a value of 5 • 

'dNumber3 contains a value of 36 • 

'dNumber3 contains a value of • 

'dNumber3 contains a value of 2 • 

'bResult contains "false" • 

bResult = dNumberl <= dNumber2 'bResult contains "false" • 
(9 is not less than or equal to 4) 
bResult = dNumberl > dNumber2 'bResult contains "true" • 
(9 is greater than 4) 
bResult = dNumberl >= dNumber2 'bResult contains "true" • 
(9 is greater than or equal to 4) 

There are other operators, but we'll discuss them in later chapters as needed. 

Constants Are Constant 
In writing programs, you may occasionally want to store something in a vari­
able, but never change the value while your program is running. Your applica­
tion's name, or something similar, is a value that will never change during the 
time your program is running. (That said, you might want to change this value 
before you compile your application.) 

You're probably thinking that a variable whose values don't vary seems like a 
contradiction-and you're right, it is. To store values that don't, and can't, 
change you don't want to use a variable. You'll want to use a constant. 

To declare a constant, you give the constant a name and assign it a value. For 
example: 

Const nTheCurrentYear = 2001 
Const strTheProgramName = "Hello World" 



CHAPTER 5 •VARIABLES, OPERATIONS, AND CONSTANTS 57 

You can think of a constant as a nickname, or synonym, for the value you have 
assigned to it. Remember, constants aren't variables, so you can't change their 
values. If you try to change the value of a constant, the REALbasic compiler 
will generate an error. For example, the following source code will generate an 
error at runtime: 

Const nTheCurrentYear 2001 

nTheCurrentYear = 2002 

REALbasic defines a few constants for use in your programs, as described in 
Table 5.1. 

TABLE 5.1 REALBASIC CONSTANTS 

Constant Type 

DebugBuild Boolean 

TargetMacOS Boolean 

Target68K Boolean 

TargetPPC Boolean 

TargetCarbon Boolean 

TargetWin32 Boolean 

RBVersion Double 

RB Ve rs i onStri ng String 

Description 

Returns true if your application was launched with the 
Debug item on the Run menu, versus running as a compiled 
application. Handy if you want to display debugging messages 
while testing your application. 

Returns true if your application has been compiled to run on 
a Macintosh. 

Returns true if your application is compiled to run as 
Motorola 68000 machine code. 

Returns true if your application is compiled to run as 
PowerPC machine code. 

Returns true if your application is compiled to run as a 
Carbon application. 

Returns true if your application was compiled to run on a 
Windows computer. 

Returns the major and minor version numbers, as a double­
precision floating-point value, of the REALbasic compiler with 
which you created your application. 

Returns the major and minor version numbers, as a string 
value, of the REALbasic compiler with which you created your 
application. 



58 PART I• GETTING YOUR FEET WET 

As you can see, the REALbasic-provided constants can tell you a lot about the 
operating environment in which your application is running. Chapter 22, 
"Porting Applications to Microsoft Windows," talks a bit about how you can 
use these Boolean constants in creating an application for Microsoft Windows 
as well as for the Mac OS. 

Where to Use Variables and Constants 

Review 

Variables and constants can be used anywhere in a program where a command 
parameter is needed or as the parameters of any operation. For example: 

const strTheApplicationName = "Hello World" 
msgBox "The • + strTheApplicationName + • now does useless math!" 

A good general rule is to use variables if you know a value is going to change 
while your program is running. Use constants if you use the same value, in 
many places, but you don't expect the value to ever change while your applica­
tion is running. Constants are also well used in situations in which values 
change for different versions of your applications, like the program name or 
the program version number. 

Another use of constants is to give a meaningful name to an otherwise mean­
ingless value. For example, you might realize that the value 3.14159 is the 
mathematical value of PI, but other developers may not. Creating a constant 
with the name PI and a value of 3.14159 allows you to use this constant 
throughout your source code, and you don't have to remember what the value 
of PI actually is. 

As time goes on and you get more experience writing your own programs it 
will become quite obvious to you when and where you should use variables and 
constants. 

In this chapter, we went over variables and how they can be used to keep track 
of various values. We talked about some of the various variable types common 
to REALbasic and other software development tools, went over the integer, 
single, double, Boolean, and string variable types, and touched on the variant 
data type, which can act as any of these types of data. 



CHAPTER 5 •VARIABLES, OPERATIONS, AND CONSTANTS 59 

We talked about declaring variables with the Dim statement, and went over 
how both variables and arrays of variables are declared. All arrays are zero 
based, so arrays are numbered from 0 to n-1, where n is the number of elements 
you want to set the array size to. It's no big deal if you declare your arrays too 
large; you're just using up memory that you don't need to. 

We then went into some detail about the more common operators that can be 
used to modify and inspect the contents of variables. We talked about the most 
often-used math operators(+,-,*, I, and\) and the comparison operators(=, 
<, <=, >, and >=). 

We then talked about constants, which are like variables whose values don't 
vary. In a sense, they can be thought of as non-variable variables. Constants are 
best used for values that never change, are used in multiple places in your 
application, or might change from one version of your application to the next. 
You should never attempt to use a constant if its value is going to change while 
your application is running. Doing so will cause an error in REALbasic and 
your application won't run. 

Last but not least, we talked about how variables can be used as the parame­
ters of commands and operations. Variables have to be used in order to be 
appreciated, so, if you haven't already, go back to the "Hello World" applica­
tion from Chapter 1, "Getting Acquainted with REALbasic," and start play­
ing around a bit with some of the sample code. We think you'll get an 
understanding of how essential variables are in no time. 





Making Your 
Program Flow 

• What is flow control and why is it important? 

• The If/Then/Else If/Else/End If keywords 

• The Select/Case keywords 

• The For/Next keywords 



62 PART I• GETTING YOUR FEET WET 

I n the previous two chapters, we talked about commands and variables, not­
ing that commands are the instructions that the program follows when it's 

doing its thing, and variables are used to store values, which vary, during the 
runtime of the program. The program can use these values as parameters to 
commands and can respond to the values of the variables to behave in differ­
ent ways. What we didn't get into was how a program responds to the variables 
in order to behave differently. We cover that here and in Chapter 7, "And Still 
More on Program Flow." 

What Is Flow Control 
and Why Is It Important? 

Although a program is running, it needs to respond to various conditions that 
change during its runtime. If a program consisted merely of a set of instruc­
tions, one after the other, but had no ability to respond to changes in the envi­
ronment, it would be a very poor program. 

Flow control is the capability of a program to respond to different values in 
variables and take different routes depending on those values. Think of it like 
a series of branching irrigation channels carrying water. The flow of water into 
each branch is controlled by blocks that are moved to stop the water flowing 
into one branch and allow it to flow into another. Coincidentally, the various 
sections of code, which are executed during flow control, are referred to as 
branches. At every branch, the program decides on which path it will take. 

Alternatively, you could think of these branches as being like branches in a 
stream. Just as you can travel by raft down only one branch of a stream at the 
same time, your programs can only execute one branch of code at a time. 

To better show you visually how flow control works, we'll use a classic pro­
gramming tool: the flowchart (see Figure 6.1). Basically, computer instructions 
(shown as parallelograms) travel from top to bottom. To stop the flow so that 
a decision can be made, add a diamond shape to allow the program to respond 
to Boolean (yes/no) questions, the answers to which will redirect the flow 
path. Simple, right? Good. 

There are many methods for achieving flow control. A program can choose to 
execute one of many branches of code based on the contents of a variable. It 
can execute the same code over and over again until a variable has changed to 



Figure 6.1 
A flowchart is a 

diagram of a 
program's ... 

um ... flow! This 
is a good tool to 

use to avoid simple 
program-design 

mistakes. 

CHAPTER 6 •MAKING YOUR PROGRAM FLOW 

! 
Create 

AP? Window 

NO 

r 

63 

a specific value or while it remains as a previous value. Programs can even skip 
entire sections of code using flow control. 

To put it simply, flow control is not only the most important part of program­
ming, it is the essence of programming. Every program you've used has within 
it some amount of flow control. 

It should come as no surprise to learn that some programs have very poor flow 
control. We won't point to any single software manufacturer, even though 
there are plenty of them with problems. Instead, we'll quote an example from 
nature (nature can't get a lawyer to sue us). 

There is a species of spider that, like the trap-door spider, makes its burrow 
underground; rather than springing on its prey, however, it hunts in the open, 
and then brings its spoils back to its lair to feed. This type of spider has been 
"programmed" by evolution to follow a certain set of steps when it's hunting. 



Figure6.2 
ucometo my 
Parlour ... ,n 

computer style. 

. PA RT I •.GETT I NB VO UR '.fEET WET 

If its instructions were drawn in a flowchart, the spider's "program" would look 
like the one in Figure 6.2. 

This program is simple enough, but it has its problems. Although there is 
some implied flow control, the "Ensure lair is safe" step implies that if it's not 
safe, it needs to be made safe-a major flaw in the spider's program. It can't 
adapt to changes in its variables, the environment, which alter the way the pro­
gram should behave. 

-i 

- . 



Figure6.3 
Because the spider 

can't adapt to the 
change, it will go 
back through the 

flow over and over 
until it starves. 

Let's introduce a variable to the spider's program with which it is unprepared 
to cope. The variable you'll be introducing is a particularly inquisitive and, per­
haps, somewhat cruel individual. Make him a young boy or a research scien­
tist-they're both about as nasty when it comes to experimentation with bugs. 
This individual waits for the spider to enter its lair the second time, after drag­
ging its prey to the entrance of the lair. If the individual moves the prey back 
to its first location, a few inches from the lair, the spider will repeat the previ­
ous steps. It will continuously move the prey to the entrance, check the lair, 
and return to do this again, again, and again. This can, if the experimenting 
individual is fiendish enough and so chooses, continue until the spider literally 
falls over dead from exhaustion and starvation. As you can see in Figure 6.3, 

~!:t~~~i'i~ 
i 



PART I• GETTING YOUR FEET WET 

the spider simply can't adapt its programming to handle this new situation. 
There is no variable, condition, or flow control to handle this possibility. 

Is that cool or what? Nature and evolution have conspired to create in this 
unfortunate creature a program that provides endless hours of enjoyment for 
demented little boys and scientists everywhere. It's like the very first video 
game, nature's own version of Doom. Nature is a bad programmer. It takes 
thousands of generations to effect changes in its programs and remove bugs 
from its code (Bugs! Get it?). Even Microsoft works faster than this. 

A good developer can't afford to wait for his programs to drop dead to correct 
flow-control problems. A good developer needs to be prepared for all possible 
conditions (except for devious research scientists and cruel little boys) and 
their programs should handle them appropriately. Flow control is a necessity; 
complete and comprehensive flow control is what differentiates the good pro­
grams from the bad ones. 

The If/Then/Else If/Else/End If Keywords 
The If, Then, Else If, Else, and End If keywords are used to inspect a variable's 
value and respond by executing specific source code depending on that value. 
The simplest form of the use of these keywords is the If/Then/End If usage. 
Using this form, the program can check for some specific condition-for 
example, a variable's value-and perform a specific task. The If portion is the 
condition being checked; the Then portion marks the beginning of the task to 
perform; and the End If marks its end. The flowchart shown in Figure 6.4 
shows an example. 

This is no different from what you do in a normal day-to-day decision­
making process using, for example, the English-language conditional state­
ment, "If you are out of milk, then go to the store and buy more milk." This 
process could be written in pseudo code as 

Dim bWeAreOutOfMilk II Some variable which contains "true" if-. 
you are out of milk 
If (bWeAreOutOfMilk) Then 

GoBuyMilk II Go to the store and buy more milk 
End if 



Figure 6.4 
And you thought 

you just had to 
drive to the store. 

CHAPTER 6 •MAKING YOUR PROGRAM FLOW 

Goto 
store, buy 

mnk 

!_______. 
(stOp.J 

67 

The second form oflf statements contains an Else statement. The Else state­
ment is used in conjunction with the If/Then statement. It allows your pro­
gram to perform a specific task when the condition in the If/Then statement 
is not true. The flowchart in Figure 6.5 contains an example of this statement 
in action. 



Figure 6.5 
With an Else 

decision, you can 
make the flow 

more effective. 

( Start ) 

! 
Create 
Variable 

"Out of Milk" 

Check 
content of 

'Out of Milk" 

Goto 
store, buy 

milk 

! 
( Stop ) 

Pour milk 
in glass 

Drink & 
enjoy (perhaps 
with a cookie) 

Again, no different from what you do in a normal day-to-day, albeit not life­
altering, decision-making process. This process could be written in pseudo 
code as 

If (bWeAreOutOfM il k) Then II Check to see if you are out of milk 
GoBuyMilk II Go t o the store and buy more mi lk 

El se 
PourAndEnjoy II Pour a gl as s of milk and enj oy 

End If 



CHAPTER 6 •MAKING YOUR PROGRAM FLOW 

One important thing to remember is that If/Then/End If blocks of code are 
self-contained and don't relate to other blocks. For example, the following 
code checks two separate conditions. The code for each condition will be exe­
cuted regardless of the other condition. 

If (SomeConditionisTrue) Then 
II Perform some specific task 

End If 
If (SomeOtherConditionis True) Then 

II Perform some OTHER specific task (regardless of the first.,. 
condition) 

End If 

If/Then/End If blocks of code can be nested, or inserted within each other. In 
the following example, the second block of code is nested, or embedded, 
within the first block of code, meaning that the second condition won't even 
be evaluated unless the first is true. 

If (SomeConditionisTrue) Then 
II Perform some specific task 
If (SomeOtherConditionis True ) Then 

II Perform some OTHER specific task (only if BOTH conditions.,. 
are true) 

End If 
End If 

In the preceding pseudo code, the first task will be performed only if the first 
condition is true. The second task will be performed only if both the first and 
second conditions are true. 

Code blocks can be nested in the Else statements, as in the following pseudo 
code: 

If (SomeConditionisTrue) Then 
II Perform some specific task 

Else 
II Perform some OTHER task 
If (SomeOtherConditionisTrue) Then 

II Perform yet ANOTHER specific task (only if the first.,. 
condition is false and the second is true) 

End If 
End If 



70 PART I •GETTING YOUR FEET WET 

In this example, the second task will be executed only if the first condition is 
false. The third task will be executed only if the first condition is false and the 
second is true. If the second task wasn't needed and excluded, the code would 
look something like this: 

If (SomeConditionlsTrue) Then 
II Perform some specific task 

Else 
If (SomeOtherConditionlsTrue) Then 

II Perform some OTHER task (only if the first condition is -. 
false and the second is true) 

End If 
End If 

The result of this is that the second task will only be performed if the first con­
dition is false and the second is true. 

The use of this form of nested code is so common that most programming 
languages have a special statement to handle them. Rather than nesting the 
second If/Then/End If block of code, you can use the Else If statement. Else 
If allows the developer to check multiple conditions within a single group. It's 
best if the conditions are related in some sense, but they need not be. Each 
condition is checked from top to bottom; if any particular condition is true, its 
code is executed and execution continues after the End If statement. For 
example: 

If (SomeConditionlsTrue) Then 
II Perform some specific task (but none of the others) 

Elseif (SomeOtherConditionlsTrue) Then 
II The first condition wasn't true, but the second is 
II Perform some other specific task (but none of the others) 

Elseif (YetAnotherConditionlsTrue) Then 
II The first two conditions weren't true, but the third one is 
II Perform yet another specific task (but none of the others) 

Else 
II None of the conditions above were true 
II Perform a fourth specific task (but none of the others) 

End If 

II Execution continues from this point after one of the tasks -. 
above has completed 



Figure 6.6 
Planning your day 

as a villain might be 
more effective with 

proper checks to 
end the world or 
the jobs of your 

useless minions. 

CHAPTER 6 •MAKING YOUR PROGRAM FLOW 

The If/Else If/Else usage may seem pretty complicated, but it really isn't. 
Again, there are mundane examples of this type of decision making in your 
every day lives, as shown in the flowchart in Figure 6.6. 

Baskin glow 
QI. saJislaction 
and total wo~d 
·····~on 



72 

TIP 

PART I• GETTING YOUR FEET WET 

Okay, so maybe the flowchart in Figure 6.6 is not a mundane example, but you 
get the idea. The addition of Else If allows you to check multiple conditions 
and have your program behave accordingly in response to one of these condi­
tions being true. Used in a REALbasic program the If, Then, Else If, Else and 
End If statements would look something like the following 

Dim nValue As Integer II nValue contains 0 for now 
nValue = 12 II nValue now contains a value of twelve 

If (nValue < 12) Then II check to see if nValue is LESS THAN.,. 
twelve 

msgBox ("The nValue variable contains a value less than twelve.") 
Elseif (nValue > 12) Then II check to see if nValue is GREATER.,. 
THAN twelve 

msgBox ("The nValue variable contains a value greater than .,. 
twelve.") 
Else II nValue is neither GREATER THAN or LESS THAN twelve 

msgBox ("The nValue variable must contain a value of twelve.") 
End If 

,.-::tn:tt1:i:r:eni1rpttrs:littmle:vm~~str~m:a:c:o:mm:ttr 
'=""""""-''-''';;.~~-~~,_,,,._·='"""'~"''''-=-=,,,,..~~~-=,,,...~*"--~""~===='"""""'""~-· -·-=-· -

·::=wDmtmm::bgi:ag;~tm~~d:io::ttm:ff~J§~11~:)tlmlll:tam:i1t'DR:t:rm~.~:::::::=·, 
:.·:::•siiryJ~78~~~ii~l~)~~~f.i~!:fi~o~l!ff:i2~f!i~l:Sfl9ua~fi~i:~~~~::~n(t:~~;::;:;~EI~···:::::::: 

·requiretlle:useofparentnesrs.·ar:o:u:na:ccfhditions:···11:you·~rE!plann1n9··b11···.··.··:: 

picking upother programming lang1,1ages, you mightyvant to get in the 

habit of doiqg,tbis. Besides, .itg9~s make your code a !9t ee1sier to read. 

The Select/Case Keywords 
We just talked about using the Else If keyword instead of nesting a second 
block of conditional code in another Else block of code. Using Else If reduces 
your code complexity and provides a shortcut when you are writing the source 
code. The Select/Case keywords can also be used as a shortcut of sorts. If you 
are writing multiple If, Else If, and Else blocks of code, which are all checking 



CHAPTER 6 •MAKING YOUR PROGRAM FLOW 

the contents of a single variable, you can use the Select/Case keywords instead. 
For example, in the following code, multiple Else If statements are used to 
check for multiple values for the n Value variable: 

Dim nValue As Integer 
nValue = 2 
If (nValue = 1) Then 

II nValue contains 0 for now 
II nValue now contains a value of two 

msgBox ("The nValue variable contains a value of one.") 
Elseif (nValue = 2) Then 

msgBox ("The nValue variable contains a value of two.") 
Elseif (nValue = 3) Then 

msgBox ("The nValue variable contains a value of three.") 
Else 

msgBox ("The nValue variable contains something other than 1, 2 • 

or 3.") 
End If 

This code can be simplified using Select/Case syntax, which enables you to 
compare the n Value variable, multiple times, to various values without all the 
redundant Else If code. The preceding code could be re-written as 

Dim nValue As Integer II nValue contains 0 for now 
nValue = 2 II nValue now contains a value of two 
Select Case (nValue) 
Case 1 

msgBox ("The nValue variable contains a value of one.") 
Case 2 

msgBox ("The nValue variable contains a value of two.") 
Case 3 

msgBox ("The nValue variable contains a value of three.") 
Else 

msgBox ("The nValue variable contains something other than 1. 2 .. 
or 3. ") 

End Select 

Not only does the code above look nicer, it will actually perform better than 
the multiple Else If version with the same functionality. The difference in per­
formance is pretty small, but in a program with lots of these kinds of opera­
tions, it begins to add up. 



PART I •GETTING YOUR FEET WET 

One important thing to remember when using the Select/Case keywords is 
that they are limited to checking for integer and string equality. For example, 
there is no method for using a Select/Case statement to check whether the 
value of a variable is less than or greater than a specific value. 

The For/Next Keywords 
In the previous two sections, we discussed program flow control that is based 
on conditional branching. A choice is made between two or more branches of 
code based on the condition of the variable being evaluated. Although these 
conditional branching types of flow control are all well and good, they don't 
provide the other major type of flow control, which is looping. 

Looping is when a computer program performs the same operations over and 
over again. Now uncontrolled looping-when a program gets stuck in a loop 
and can't stop-is bad ... very bad. Infinite loops can either crash an applica­
tion or make it appear that the application has locked up. Flow control using 
looping, however, enables the developer to perform code in loops, without the 
risk of infinite loops. 

The first type of looping is achieved with a For/Next statement. Using a 
For/Next statement, the developer can repeatedly perform a specific set of 
tasks, while the program increments or decrements the value of a counter vari­
able. There are two forms of the For/Next statement, the first of which looks 
like this: 

For Counter = StartValue To EndValue Step StepValue 
II Perform some specific task (maybe using the Counter variable-. 
in the task) 

Next 

At the beginning of the first form of the For/Next loop, the Counter variable, 
which must be an integer, is assigned the initial value of the Sta rt Value para­
meter. The task within the For/Next loop is executed at least once and the 
Counter variable is incremented by the value of the Step Val u e parameter. If the 
new value of the Counter variable is less than or equal to the value of the End­
Va l ue parameter, then the task within the For/Next loop is repeated. The task 
within the For/Next loop will continue to be executed until the value of the 
Counter variable is greater than the EndVal ue parameter. 



Figure 6.7 
You can't eat just 
one, but you will 

for now. 

CHAPTER 6 •MAKING YOUR PROGRAM FLOW 75 

The second form of the For/Next loop looks like this: 

For Counter = StartValue Downto EndValue Step StepValue 

II Perform some specific task (maybe using the Counter variable-. 
in the task) 

Next 

The second form of the For/Next loop works just as the first, except that the 
Counter variable decrements by the value of the Step Value parameter at the 
end of each loop rather than being incremented. The loop terminates when the 
value of the Counter variable is less than the value of the End Value parameter. 

It's not as difficult as it looks. Everyone performs tasks like this every day of 
their lives. Whenever you repeatedly perform the same task a certain number 
of times, you are in one sense executing a For/Next loop in your head. For 
example, say you have a dozen chocolate-chip cookies to go with that milk 
from the previous examples, and you've decided to sit down and eat them one 
at a time. Your flowchart would look like the one in Figure 6.7. 

• ;:i:i~gin 
·c(;;OICieCourit 
· "ait2 

r 
Flow continues 



76 PART I• GETTING YOUR FEET WET 

See? Nothing to it. Like we said above, you don't need the Step parameter if 
you're incrementing by one, which is the default Step value. For example, this 
REALbasic code is just like the pseudo code above, but it leaves out the Step 
parameter: 

Dim nValue As Integer 
For nValue = 1 To 12 II note, no step specified (a step of one is-. 
assumed) 

msgBox ("Eat cookie number•+ str(nValue) + "!") 
Next 
msgBox ("There is no cookie number • + str(nValue) + "!") II note-. 
that nValue is now 13 

A good example of the second form of the For/Next loop would be 

DIM nValue As Integer 
For nValue = 5 Downto 1 II Note the use of down to 

msgBox (str(nValue)) 
Next 
msgBox ("BLASTOFF!") 

Like we said before, infinite loops are very, very bad, and you have to watch 
out for them. Doing something like what is done in the sample code that fol­
lows could be very bad for the users of your software: 

Dim nCounter, nStepValue As Integer 
nStepValue = 0 II Warning, something stupid is about to happen 
For nCounter = 1 To 2 Step nStepValue 

msgBox ("This (" + str(nCounter) + ") will get very boring and -. 
very annoying very quickly!") 
Next 
msgBox ("You'll never see this message!") 

Because you've told the program to add 0 to the initial value of 1 until it is 
greater than or equal to 2, you've created an infinite loop. No matter how many 
times you add 0 to 1, you're never going to get an answer of2, so this loop will 
continue running forever. 

Something else you need to watch out for is the ending value of a For/Next 
loop changing during the processing of the loop. This could create an infinite 
loop as well. For example, the following REALbasic code would appear to be 



Review 

CHAPTER 6 •MAKING YOUR PROGRAM FLOW 77 

valid at first, but closer inspection of the code within the For/Next loop will 
show that it also is an infinite loop: 

Dim nValuel As integer 
Dim nValue2 As integer 
nValue2 = 2 
For nValuel = 1 To nValue2 II would appear to be counting from -. 
1 to 2 

msgBox ("Performing task 11 + str(nValuel) + 11 of 11 +-. 
str(nValue2)) 

nValue2 = nValue2 + 1 
2. etc. 

II WHOA! Now you're counting to 3 not-. 

Next 11 wi 11 be task "l of 2". "2 of 3", "3 of 4", etc .• -. 
etc. , etc. 

As you can see, For/Next loops give a developer many ways to handle loops in 
their application. However, they don't provide all the answers. Sometimes you 
want to loop based on something other than an incremented or decremented 
counter. There are types of looping to handle these situations as well, which 
you will learn about in the next chapter. 

Flow control is so important in computer programming and software devel­
opment. Without flow control, no conditional branching or repetitive task can 
be performed in computer software-at least not easily. 

The If/Then/Else If/Else/End If keywords are used to create conditional 
branches in your source code, which will be executed if the condition you are 
checking for evaluates as true. A simple If/End If block allows you to include 
or exclude the execution of certain code when the specified conditions are met. 
If/Else blocks let you choose one of two paths through your code, based on the 
conditions being checked. Last, but definitely not least, the use of multiple 
Else If statements allows you to check multiple conditions and take the appro­
priate primrose path through the garden of your source code. 

The Select/Case form of flow control can be used in place of If /Then/ 
Else If/Else/End If blocks of code if an integer variable is being compared to 



78 PART I •GETTING YOUR FEET WET 

specific values in all the conditions being tested. Using Select/Case blocks not 
only makes your code look nicer, it may actually improve the performance of 
your application. Plus, you will impress all your programmer friends with your 
knowledge of REALbasic programming. 

The For/Next loop is best used when the developer needs his program to per­
form a specific task a fixed number of times, based on a counter that is either 
being incremented or decremented. Tasks that process a known quantity of 
items are a perfect fit for For/Next loops. 



• The While/Wend keywords 
~ 

• The Do/Until keywords 

• The Goto and Exit keywords 



80 PART I• GETTING YOUR FEET WET 

There are even more ways to control the path of your code so your appli­
cation responds properly to input. So, without further ado, let's pick up 

where we left off with flow control keywords. 

The While/Wend Keywords 
The While/Wend loop is the first variant of non-counter based loops. Unlike 
For/Next loops, While/Wend loops don't initialize a variable to a specific 
value. Also, While/Wend loops don't automatically increment or decrement a 
counter variable the way For/Next loops do. The condition being checked in 
the While/Wend loop is completely under the control of the developer, unlike 
with the For/Next loop, which can only compare ending values to the counter 
values. 

The form that While/Wend loops take is 

While (SomeConditionlsTrue) 
II Perform Some Task 

Wend 

As you can see, the condition is checked first, before the task within the loop 
is performed. This too is different from the For/Next loop, which checks the 
condition after the task within the loop has been performed at least one time. 
The code in the While/Wend loop may not be performed even a single time 
if the condition is initially false. 

You can also see that the While/Wend loop is a simpler form of looping than 
the For/Next loop. Though the While/Wend statement is less complex, you'll 
actually be doing more work coding because the While/Wend loop is a more 
basic form of loop. But don't despair; the While/Wend loop is not difficult to 
understand and use. It's similar to looping that you perform in everyday tasks. 
The following pseudo code shows how simple it is to understand these types 
of loops, with a particularly gluttonous example: 

While (There Are Still Chips in the Bag) 
one! 

II Eat Another Potato Chip 
Wend 

II You can't eat just • 

Quite often, While/Wend loops are used to perform complex tasks similar to 
those performed by For/Next loops, but without relying on the automatic 



CHAPTER 7 •AND STILL l\liQ.RE.QN PR.ClGRAM·FLO\l\f 81 

incrementing of the For/Next loop. In the following code, you can see an 
example of a value that doesn't change on a regular basis like those in a 
For/Next loop: 

Dim nValuel, nValue2 As Integer 
nValuel = 1 
nValue2 = 3 
While (nValue2 > 0) II do the following as long as nValue 2 is -. 
greater than 0 

nValuel = nValuel + 1 
If (nValuel > 4) Then 

nValue2 = nValue2 - 1 
MsgBox ("nValuel is • + str(nValuel) + • nValue2 is • +-. 
str(nValue2)) 

Else 
MsgBox ("Wait for it ... nValuel is just"+ str(nValuel)) 

End If 
Wend 
MsgBox ("All done. nValuel is II + str(nValuel) + R nValue2 is n + .. 
str(nValue2)) 

As you can see, the logic in a While/Wend loop can be a lot more complex 
than the logic in a For/Next loop. In addition to the relative complexity, 
While/Wend loops give the developer much more control over the conditions 
being checked. The only thing the developer doesn't control is when the con­
dition is checked; it's always checked at the beginning of the While/Wend 
loop. For more control of when the condition is checked, you'll have to use the 
Do/Until loop. 

The Do/Until Keywords 
Unlike While/Wend loops, which run as long as the conditions being tested 
remain true, Do/Until loops are used to execute a specific set of tasks while the 
condition being tested remains false. 

There are two major forms of Do loops. In the first major form, the condition 
is checked at the beginning of the Do loop. If the condition is true, then the 
entire block is skipped and execution of the program resumes after the Do 
loop's block of code: 



82 PART I• GETTING YOUR FEET WET 

Do Until (SomeConditionisTrue) 
II Perform some task as long as SomeConditionisFa7se 

Loop 

A good psuedo-code example of the first form of Do loop would be 

Do Until (There Are No More Chips in the Bag) 
eat just one! 

II Eat Another Potato Chip 
Loop 

II You can't • 

This is pretty much the same as the psuedo-code used in the While/W'end 
example, except for the condition being checked. In the While/W'end loop, 
you are eating chips "while there are still chips in the bag." You continue per­
forming the action while the condition is true. In the Do/Until loop, you are 
eating chips "until there are no more chips in the bag." You continue to per­
form the action until the condition is true. To make it simple, just remember 
that Until is the opposite of While. In order to get the two loops to perform 
identically, you need to reverse your logic. 

So the first major form of a Do/Until loop is just like a While/W'end loop with 
reversed logic. In the second major form of a Do/Until loop, the condition is 
checked at the end of the loop. If the condition being tested evaluates to false, 
the loop will run again. The result of this is that the tasks within the loop will 
be performed at least once regardless of the condition being tested-sort of like 
a For/Next loop. The second major form of the Do loop looks like this: 

Do 
II Perform some task, at least once 

Loop Until (SomeConditionisTrue) II Repeat if• 
SomeConditionisFa7se 

The only real difference between this form and the one preceding it is that in 
this form, the condition is checked at the end of the loop. This form of the 
Do/Until loop should be used only if you want to perform the task in the loop 
at least one time, regardless of the condition being checked. Use the first form 
of the Do/Until loop if you want to check the condition before performing the 
task within the loop. 

There is a less-used form of Do/Until that uses an Until at both the beginning 
and end of the loop, allowing for both an initial conditional test and another 
conditional test at the end of the loop. 



CHAPTER 7 •AND STILL MORE ON PROGRAM FLOW 83 

Here's an example: 

Do Until (SomeConditionlsTrue) 
II Task to perform if SomeConditionlsFalse 

Loop Until ( SomeOtherCondi ti on! s True) I I Repeat if • 
SomeOtherConditionlsFalse 

Although this might seem confusing, it's a powerful variant of the loop, 
enabling you to test for one condition at the beginning of the loop and a com­
pletely different condition at the end of the loop. A great day-to-day example 
of this would be 

II A typical Sunday afternoon program 
Do Until (The Entire Lawn Has Been Mowed) 

II Mow An Unmowed Strip Of The Lawn 
Loop Until (The Football Game Has Started) II Mow the lawn until 
the game starts 
II Now would be a good time for those potato chip loops! 

In this example, the "program" will first check whether the entire lawn has 
been mowed. If not, it will mow a strip of the lawn. After mowing one strip, 
the program will check whether the football game has started; if not, the loop 
will be processed again. The program alternates between checking the condi­
tion of "the entire lawn being mowed" at the beginning of the loop and check­
ing the state of"the game starting" at the end of the loop. This ensures that at 
least one strip of the lawn gets mowed, while only missing at most a couple of 
minutes of the pre-game show. 

Here's a REALbasic example of this type of Do/Until loop: 

Dim nVall, nVal2 As Integer 
nVall = 1 
nVal2 = 1 
Do Until (nVall = 10) 

nVall = nVall + 1 
nVal2 = nVal2 + 2 
MsgBox ("nVall is " + str(nVall) + " and nVal2 is " + str(nVal2)) 

Loop Until (nVal2 > 10) 

Step through the preceding sample code in your mind, and try to figure out 
which condition will cause the loop to terminate. Then go ahead and add the 



PART I• GETTING YOUR FElf.WET 

code to the Hello World application from Chapter 1, "Getting Acquainted 
with REALbasic," and see whether you were right. 

Last, and least used, is another form of the Do loop, which doesn't use an Until 
condition at the beginning or at the end of the loop. The result of this is an 
intentional infinite loop: 

Do 
II perform some task for ever and ever 

Loop 

Don't bother creating sample code for a loop like this; you'll see enough mis­
takes that look like this without doing it on purpose. As we said before, infi­
nite loops such as this one can be very bad, but there are ways to terminate 
them-even though they're frowned upon. We'll discuss methods for break­
ing out of infinite loops in the next section. 

The Goto and Exit Keywords 
As expressed in previous sections, infinite loops can create a huge problem. In 
most cases, good programming practices will help you avoid infinite loops. 
That said, it may sometimes seem impossible to terminate infinite loops. 
Developers often "code themselves into a corner," writing code in which get­
ting out of a loop at the correct time is almost impossible. In these cases, 
REALbasic provides two statements to break out of loops (or, in the case of 
the second statement, to create an all-too-easy-to-abuse kind ofloop). 

The Exit Statement 
The Exit statement is used to terminate a loop prematurely by jumping to the 
code immediately following the loop. Upon execution of the Exit statement, 
the program will exit the loop and continue to the point after the Next in a 
For/Next loop, the Wend in a While/Wend loop, or the Loop in a Do/Until 
loop as if the loop had completed naturally. 

In the following example, the Exit statement is used to terminate this poorly 
coded loop: 

Dim nVall, nVal2, nVal3 As Integer 
nVal2 = 1 



CHAPTER 7 •AND STILL MORE ON PROGRAM FLOW 85 

NOTE 

nVal3 = 2 
For nVall = 1 To nVal3 // stupid loop 

nVal2 = nVal2 + 1 
If (nVal2 > 10000) Then //sanity check ... 

Exit // break out of this loop after waiting too long 
End If 
nVal3 = nVal3 + 1 // the loop above is stupid because of this 

Next 

Of course, the use of Exit wouldn't be necessary if you wrote the code prop­
erly in the first place. For the most part, you should do your best to use the 
standard forms of looping and avoid the use of Exit completely. 

i:;, • one:w1ttfJ::tse:t>t£Xi'Cor@ftt:b:e:nL"M:tW:ci;ifl';t:trm1ra::to:()li:clWng::Itexze10'.fE:~::: 
F'~''''''''~~~·=·=····"•'••··~···-·=''"~'"'''=·~=·=''''=•'N''''='"'"''''''''•'·'M"''''''''''''''''''''''''''''-·-·-·-··-· --
l:::,.;;j'llfll!1:i;ing·,:q~b.Y.99Ing1~.§Q;.tt:rm;::ttm:ll~xi:Jp~r;::g,i:i:n:J:~~J::'fgr;l!m;tl!m:1'.9JJlli::.:·:.;=::::::: 

:::::::!<:l.f:\:~:¥Vl!iaµt,~~~m'i:t~;\¥~1~'.for·tneinfo·. occur' naturally~:'tms:~~!t]Fi'~t;:::::::::: 
. ·: ·can·arsa:·15e··osea-·to c'&use·a:t6dp. to perform fewer iterationsthan:normal · ···· 
'" ... . ' '' ' ' . . . ' 

so that it can be tested with less difficulty. 

The Goto Statement 
Three words best describe the Goto statement: Evil, Evil, EVIL! But seriously, 
like the Exit statement, the Goto statement allows for control to be passed to 
another location in the program. Unlike the Exit statement, however, which 
simply jumps to the end of the current loop, the programmer can determine 
what location to jump to with the Goto statement. The problem is that 
because the developer chooses where the program is going, it makes future 
maintenance very difficult. If you use a lot of Goto statements in your code, 
things can get very confusing very fast. 

You specify the location in the program that the Goto statement should jump 
to with a label. In REALbasic, a label is simply a line of code that 

+ Ends with a colon 

+ Does not contain any spaces 

+ Contains only letters and numbers 



86 

• Starts with a letter, not a number 

• Starts at the beginning of the line 

Listed below are some examples of valid, and invalid, REALbasic labels: 

II The following lines contain valid labels 
ThisisAValidLabel: 
Labell: 
YetAnotherLabel: 

II The following lines contain invalid labels 
lLabelWhichisBad: II Can't begin a label with a number 
Another Bad Label: II Labels can't contain spaces 
WhatAmI!Thinking?: II Labels can't contain punctuation 

Quite simply, a REALbasic Goto statement takes the following form: 

Goto SomeVa7idlabe7Name 

They are so insidiously easy to use, Goto statements tempt even the best pro­
grammer. But don't be tempted by the Dark Side. Even though the path 
offered by Goto is quicker and easier, forever will you be tricked into using 
them. It's a slippery slope down which you do not want to tread. 

As we said before, the Goto statement allows you, using a label as a parame­
ter, to jump to any location in the code-backward or forward. When jump­
ing backward in the code, you are usually instructing the program to repeat 
some part of the code. This is similar to the control that you get using any of 
the more proper forms of flow control via looping. That there are already other 
looping statements that can perform this type of loop, is one reason that the 
use of the Goto statement is considered a bad programming practice. Using a 
Goto is the lazy way out of thinking about proper loop structure. One very bad 
example of this usage of the Goto statement would be 

Dim nVal As Integer 
Stupid Idea: 
For nVal = 1 To 20 

If (nVal > 10) Then 
Goto Stupididea 

End If 
Next 
MsgBox ("You'll never get here") 



CHAPTER 7 •AND STILL MORE ON PROGRAM FLOW 87 

As you can see, the developer chose to jump out of a For/Next loop using a 
Goto statement even though the location to which he is jumping is right 
before the loop in question. The developer has intentionally created an infinite 
loop. If the reason for doing this is valid, then the developer should have used 
one of the more accepted looping statements-a Do/Until loop, perhaps-as 
in this example: 

Dim nVal As Integer 
Dim bHellFrozenOver As Boolean 
bHellFrozenOver = False 
Do 

For nVal = 1 To 20 
If (nVal > 10) Then 

Exit 
End If 

Next 
Loop Until (bHellFrozenOver) 
MsgBox ("You'll never get here") 

The point of this code is that the same effect is achieved: The loop never stops 
executing, but without the use of a Goto statement. In this code, you can see 
that we used an Exit statement to drop out of the For/Next loop. The use of 
the Exit statement is slightly more acceptable than the use of a Goto state­
ment. Try to remember it this way: It is less rude to show someone the exit 
than it is to tell him where to go. 

The following code is another, perhaps slightly better, example of the use of 
Goto statement: 

Dim nVal As Integer 
For nVal = 1 To 20 

If (nVal > 10) Then 
Goto PrematureExit 

End If 
Next 
PrematureExit: 
MsgBox ("Decided you didn't like the rest of the FOR loop?") 

At least this code doesn't create an infinite loop, but again, the same effect 
could be achieved by using the Exit statement rather than the Goto, which 
would eliminate the need for the PrematureExi t label. 



88 

Review 

PART I• GETTING YOUR FEET WET 

Some programmers consider the use of Exit and Goto statements inappropri­
ate and just plain lazy. Some consider the use of a Goto statement even worse, 
bordering on banal and downright evil. It is best to use other methods of flow 
control before resorting to Exit and Goto. Try to figure out a way to restructure 
your code, like we did in the "Frozen Over" example, before giving in to the 
temptation to use one of these less-structured methods. You should use Exit 
and Goto only as a last resort or, as we said before, during development and 
debugging to make these tasks easier. It's okay to use shortcuts like these in a 
work in progress; just remove them before anyone else has to look at your code. 

While/Wend loops are quite different from For/Next loops. They don't 
directly rely on counter variables, and the loop's condition is checked at the 
beginning of the loop. A While/Wend loop might not even execute at all if the 
condition being checked is initially false, unlike a For/Next loop, which always 
executes at least once. While/Wend loops give you much more control over 
looping in your source code. 

Do/Until loops terminate when the condition being tested evaluates as false. 
The conditions of a Do/Until loop can be tested at the start of the loop, the 
end of the loop, both the start and end of the loop, or not at all. The use of 
Do/Until loops gives you even more control over the flow of your source code. 

The use of Exit and Goto should be avoided at all costs ... unless there's no 
way around it. The Exit keyword, which is slightly more acceptable than Goto, 
allows you to prematurely exit any of the looping forms of flow control. Exit 
is usually used to handle unexpected situations, or during development and 
debugging to make life easier for the beleaguered developer. 

The use of the Goto statement is enough to get you killed in some places and 
is best avoided, if at all possible. Using Goto, you force your program to jump 
to a specific location in the source code, which is specified by a label. It's a very 
powerful way to get things done, but it can make reading your code trouble­
some at best. This increases the difficulty of maintenance and debugging for 
other developers, causing them to make statements that would imply that your 
parents weren't married and that you should go do physically impossible things 
to yourself. Take my word for it: Don't use Goto statements if you can at all 
avoid it. You'll live a lot longer and keep more of your friends as well. 



• What are subroutines and functions? 

• Subroutine and function declarations 

• Parameters and return values 

• Recursion, recursion, recursion ... 



90 PART I• GETTING YOUR FEET WET 

I n the previous chapters, you learned about commands, variables, constants, 
and flow control. Although it would be possible to write a program using 

only these concepts, there are better ways. If you were to write a program of 
even moderate complexity from the top down, including all the steps that the 
program needs to perform, the looping would get very complex-so complex 
that you would eventually need to resort to Goto statements just to make 
things work (never a good idea). You might even have to duplicate code. 

What you need is a way to reduce code complexity and remove the need for 
redundant code. Fortunately, just about every language, including REALbasic, 
has ways to do this: subroutines and functions. 

What Are Subroutines and Functions? 
Subroutines and functions serve multiple purposes. They help simplify source 
code by grouping all the code for a specific task in one module. This makes the 
source code easier to read, because the code can be viewed in small, manage­
able chunks. For example, assume that you're a parent, and that you've given 
your children a set ofinstructions to perform each night before they go to bed. 
These bedtime instructions are only a small part of all the instructions that 
your children perform all day, but it makes sense to group them together, 
because they are related tasks. So, in pseudo code, you would create a subrou­
tine for these tasks along these lines: 

Sub GetReadyForBed (ChildName) 
Wash face 
Brush teeth 
Brush hair 
If CChildName is Neil) then 

Clean braces 
Insert retainer 

End if 
Wash hands 
Change into pajamas 
Get into bed 
Go to sleep 

End Sub 



CHAPTER 8 •SUBROUTINES, FUNCTIONS, AND RECURSION 91 

As you can see, all the bedtime tasks have been organized into a single 
GetReadyForBed subroutine. If the programmer wants to know which tasks 
apply to getting ready for bed, all he needs to do is look at the code in this sub­
routine. There's no need to go digging through hundreds of lines of code just 
to find the ones that apply to bedtime tasks. Remember, subroutines provide a 
nice organizational tool by allowing you to create smaller modules of source 
code with related tasks grouped together. These subroutines are simply por­
tions of routines that are related in some way. 

Subroutines and functions provide one other benefit: They allow for code 
reusability. In the GetReadyForBed example, you'll notice that Chi 1 dName fol­
lows the GetReadyForBed subroutine declaration. This is a parameter of the 
GetReadyForBed subroutine. We'll talk more about parameters later; for now, 
you just need to know that the program using this subroutine can specify for 
which child the subroutine is currently running. So, in our bedtime subroutine, 
we've allowed the code to be used by any number of children with a special 
exception for Neil, because he has braces and needs to perform tasks that other 
children wouldn't need to perform. We could have created a completely dif­
ferent bedtime subroutine for Neil, which includes all the tasks performed by 
the other children plus the tasks associated with dealing with his braces, but 
that would have created redundant code in our program. This way, we can 
share the code and use it for multiple purposes. 

It can be assumed that the GetReadyForBed subroutine above is part of a larger 
program, which uses this subroutine to perform a specific set of tasks. When 
a program uses a subroutine or a function, it is said to be "executing a subrou­
tine" or "making a function call." After the subroutine or function has finished 
performing its task, control is returned to the point in the program where the 
subroutine or function was called. So, our pseudo program would probably call 
the GetReadyForBed subroutine somewhere between a Di nnerTime subroutine 
and a HaveANi ghtmareAndWakeUpYourParents subroutine. 

You may be wondering, what's the difference between subroutines and func­
tions? They both seem to provide the same capabilities. Well, for the most 
part, you're correct. There is no difference-with one exception. Subroutines 
perform their tasks and return to the calling code without any communication 
back to the calling code. They provide no feedback as to what they did, 
whether they were successful, or whether any further actions should be taken. 



92 PART I •GETTING YOUR FEET WET 

This is like issuing a command to your program along the lines of "go do 
something and return back here when you're finished." Subroutines are used 
when the calling program either doesn't care what happens in the subroutine, 
or can determine this on its own. 

Functions, on the other hand, perform their tasks and return a value to the 
calling code. Functions in computer programming are kind of like those x = 
yx2 functions in math. The y in the formula is a parameter; the yx2 is the task 
performed by the function; and the xis the return value of the function. Using 
a function in programming is like asking your program to perform some task 
that will determine the answer to some question, and return here, with the 
answer, when it's done. 

So subroutines do their thing with no response to the calling program, while 
functions communicate the result of the tasks they've performed to the calling 
program. If the GetReadyForBed example was a function instead of a subrou­
tine, it might look something like this: 

Function GetReadyForBed (ChildName) as SomeVariableType 
Dim Result as SomeVariableType 
Wash face 
Brush teeth 
Brush hair 
If (ChildName is Neil) then 

Clean braces 
Insert retainer 

End if 
Wash hands 
Change into pajamas 
Get into bed 
If (Child is thirsty or wants some attention) then 

Result = Child asked for a glass of water 
Else 

Go to sleep 
Result = Child went to bed quietly 

End If 
Return Result 

End Sub 



CHAPTER 8 •SUBROUTINES, FUNCTIONS, AND RECURSION 93 

In this example, the function can tell the calling program whether the child 
went quietly to bed, or is pulling the old "I want a glass of water" trick to stay 
awake a few more minutes. The calling program can then take the appropri­
ate action based on the return value of the function-something like 

Select Case (GetReadyForBed (ChildName)) 
Case Child asked for a glass of water 

II Grumble under your breath and be a good parent 
Case Child went to bed quietly 

II Breathe a sigh of relief and enjoy a quiet night 
Else 

II Something must be wrong, go find out what it is 
End Select 

So you see, functions and subroutines provide code reusability and make your 
code easier to read-and therefore easier to maintain. Both perform a specific 
set of tasks and return to the calling program when those tasks are complete. 
When control is returned to the calling program from a function call, the 
result of the function is returned to the calling program, allowing the calling 
program to behave accordingly. 

Subroutine and Function 
Declarations 

In REALbasic, you create subroutines and functions by opening the File menu 
and selecting the New Method option. Regardless of what type of develop­
ment is being done, and for that matter the language being used, subroutine 
and function declarations look about the same. 

In REALbasic, subroutine and function declarations take the form of 

Sub SubroutineName (OptionalParameter As VariableType, •.. ) 

Function FunctionName (Optional Parameter As VariableType ..• ) As 
ReturnVariableType 

As you can see, subroutine and function declarations are nearly identical, other 
than the fact that functions are declared to be a certain variable type. This 
is required to allow the function to return a value like we talked about in the 



PART l• GETTING YOIJffFEET WET 

previous examples. Here's an example of the declaration of a typical subrou­
tine, the MsgBox subroutine: 

Sub MsgBox (message As String) 

"What's this?" you ask, "I thought MsgBox was a command!" Well, MsgBox is a 
command, but interestingly enough, most of the REALbasic commands are 
just predefined functions and subroutines written by the REALbasic develop­
ers for your use. Like a library of books, written by other authors for you to 
read and use for your own purposes, these prewritten functions and subrou­
tines are grouped into libraries for your use. Not only can you use the standard 
library of built-in REALbasic subroutines and functions; you can download 
other libraries, written by other REALbasic developers, for your use. 

Check out the Bodies 
on These Subroutines 

The code that comprises a subroutine or function is referred to as its body. 
A subroutine and function body contains variable declarations, which must 
precede any other code, code comments, and the statements, commands, 
flow control, subroutine, and function calls that perform all the tasks for 
which the function or subroutine is responsible. About the only thing you 
can't include in the body of a function or subroutine is another subroutine or 
function declaration. The end of a function body is marked with an End 
Function statement. The end of a subroutine body is marked with an End Sub 
statement. The following two examples represent valid subroutine and func­
tion bodies: 

Sub AddTwoNumbers (nValuel As Integer, nValue2 As Integer) 
Dim nTheResult As Integer II Variable declaration(s) must 
Dim strResult As String II come before other source code 

II Specific tasks to perform 
nTheResult = nValuel + nValue2 
strResult = StrCnTheResult) 

II Display the result 



CHAPTER 8 •SUBROUTINES, FUNCTIONS, AND RECURSION 

msgBox "And the answer is - " + strResult 
End Sub 

95 

Function AddStringValues (strTextl as String, strText2 As String) -.. 
As String 

Dim nCalculatedValue As Integer 
must 

Dim strReturnValue As String 
source code 

II Variable declaration(s)-.. 

II come before other-.. 

II Get the value of each string and add the values together 
nCalculatedValue = Val(strTextl) + Val(strText2) 

II Convert the value back to a string 
strReturnValue = Str(nCalculatedValue) 

II Value returned must be the same variable type as the-.. 
function 
Return strReturnValue 

End Function 

Parameters and Return Values 
With subroutine and function declarations, you specify zero or more parame­
ters. A parameter is simply a variable declaration representing a value that is 
passed to the subroutine or function. A comma separates each parameter dec­
laration. When you call your subroutines or functions, you specify either con­
stants or variables to be passed as their parameters. For example, to call the 
AddTwoNumbers subroutine, above you might use code like the following: 

Dim nValue As Integer 
nValue = 1 
AddTwoNumbers(nValue, 2) 

This code declares a variable of type integer called nVa l ue, stores a value of 1 
in this variable, and calls the AddTwoNumbers subroutine, which should display 
a message box containing the result. 



96 

CAUTION 

PART I •GETTING YOUR FEET WET 

·::::WD:en:Jie1!tating::a:1U11lition;~etu:must:spe1!i~:a;te10.r:n:.;;ft.atali:'llatrabte:~~e:::::: 

:::~t~'liii~:tQ!i~if9il:i=llA~1i~i't~:iiiJ~:irtf~:\tQii2ti"vi?ia·t~l1~~Imiir:ttfi~.t!i7~t9:ii~~;~:~ 
•:::;:::~T~Q!:'.!fl:~t:'~~n:it.l"e~uf:~::~·v~li:J~:;in:~~~~~~i~;•tunotlo~~~!l~~~§fl!t•"01ur~:'~ .. · 
. " a.:vame.ar.e :subroUtl'ties: :rMre'.sno:.ww around it. FuMfi.ans returt1· val;, 

ues! .subroutines dqn't. 

When you call a function, not only do you specify the parameters that are 
passed to the function, you also need to be able to accept the return value by 
either storing it in another variable or by passing it to another subroutine, 
function, or REALbasic command. For example, to call the Add St ri ngVa 1 ues 
function above, you might do something like this: 

Dim strValue As String 
strValue = "1234" 
MsgBox AddStringValuesC"4321", strValue) 

This code starts by declaring a string type variable, st r Va 1 u e, and then assigns 
"1234" to this variable. The code then calls the AddTwoNumbers function, which 
converts the string parameters to numbers, adds them together, and returns 
the sum as a string. The return value from the AddStringVal ues function, like 
we said, a string, is passed to the MsgBox subroutine, which displays it on the 
screen. 

Recursion, Recursion, Recursion ... 
One thing you have to watch out for when using functions or subroutines is 
recursion. The Smart-Alecky Programmer's Dictionary definition of recursion is 
"recursion noun. See recursion''. Okay, seriously, recursion is a very bad thing 
that occurs when a subroutine or function calls itself or calls another subrou­
tine or function that in turn calls the first subroutine or function. Doing this 
can cause your program to enter an infinite loop. 

In most cases, you want to avoid recursion like the plague. Uncontrolled recur­
sion can cause your programs to go off to Never-Never Land while they per­
form the same operations over and over again. Various unpredictable things 
can happen when recursion occurs: your program might appear to be locked 



CHAPTER 8 •SUBROUTINES, FUNCTIONS, AND RECURSION 97 

up, your program could crash, or in extreme cases, your computer could crash 
(not very likely, but it happens). If you're the daring sort, try using the follow­
ing function in a REALbasic program sometime: 

Function VeryBadldea CnValue As Integer) As Integer 

Dim nReturnValue As Integer 

nReturnValue = VeryBadldea(nValue + 1) 

return nReturnValue 

End Function 

Better yet, don't use this code. We'll just explain what will happen: 

1. When the function is called, it declares an integer variable named 
nReturnVal ue. 

2. The function then attempts to calculate a new value for nReturnVal ue 

by calling itself with a parameter of n Va 1 ue + 1. 

3. The function again declares an integer variable named nReturnVa 1 ue 

and attempts to calculate a new value for nReturnVa 1 ue by calling itself 
with a parameter of nVa 1 ue + 1. 

4. The function again declares an integer variable named nReturnVa 1 ue 

and attempts to calculate a new value for nReturnVa 1 ue by calling itself 
with a parameter of nVa 1 ue + 1. 

5. The function again declares an integer-you get the idea. This 
happens again and again until something bad happens. If you're lucky 
REALbasic will generate an Unhandled Stack Overflow Exception 
error and terminate your application, but as we said before, less­
pleasant things could happen as well. 

Still not convinced that recursion is all that bad? Think back to the GetReady­

ForBed function example. Imagine what would happen if you put a call to 
GetReadyForBed right in the middle of the GetReadyForBed function. You 
would end up causing your poor children to be forever washing their hands 
and brushing their teeth without ever actually getting to sleep. Not something 
a good parent or programmer would ever want to do. 

On the other hand, you should be aware that recursion isn't always nasty and 
evil. In the hands of an advanced programmer, recursion is a very powerful 
tool. Some really cool things, beyond the scope of this book, can be achieved 
with recursive programming. But like any powerful tool, its use is best left to 
those that completely understand it. 



98 PART I• GETTING YOUR FEET WET 

:Whm~lmii~iii:Si~~d~~:~~ii!o03Ei=iafmg:::w,·-~ 
::::iQ!Ji[B,fy~ifjjii~:irJii~rxi<i~e.thit!i~i~~t1s.edJfi~·st~9:~.·to.9v~~ . 

. ; ~flow•.:B:ut Justi,what. is a stap~, anc;t why .is it so bad when· it over~ 
flows? 

1ifJust;~bbut~~eiy programming la~guagethat supports the idea of 

J Jum::ti.9Qs al')°' $UbrO\.ltines uses st~:cks to, pass the parameters tp the 
;~fff;f~netiiiis·anti;esubr6'l.ltines~Srmp1y:put, the stack,is an a'tea of mem-
.·; ory th~t has.been set asideto pa$svariables to and from functions 

. i~. and subrouti Files. 
·t".~\,,/,. . ··:,'.·'<" .• ,,,,,.':_',;" 

... ··Suppose you. have three subroutines in a.program, with the follow­

.;;;fng dJilaratJ~ns: 
~·;'--, , , . '· ''. ;" ' . '' .. ,. ~' 

<~t"'Sub SomeSullJ.,CnVa,1~~1 As.}nteg~r;) 
s~mesJll2'cnVal~:et * 2r · 

:i' .End s~e . :/ . . . · .. • 
';~2•$ub S~mt;!Sub.~{(nVa,~Qe2 As;:;;:Intege.r'') 

SomeSub3(nValue2 + 4) 

"'~/Jnc:J 1 ~J:l.b . ;;;;: . 
·Sub SpineSub3 (nValue3 As Integer) 

:,_,', 

,t:;· End ~~1~p~1~;~1~e v~{Jue i$ • +.,~:Y~.nY~lu~3) 

·1kHerEt~now tile stackworks:sup~~~e youicall SomeSubl With a para-
.• meter of 8. Although the program is in the body of SomeSubl, the 

.:1~~:~tac~·~<mtain~ a val.u.@of 8.~s so(ffJl. as the.program call$ SomeSllb2, 
·;:,the stjck win::contain.values of 16 and 8. As soori·as SomeSub3 i~ 

..••. ;~;calledphe stack wiHQontail')valu~~of 20, 16and8; It's called a f!tack 

. ~·~because as each function ls:called,:1he parameters for the curr~ntly 
. executing fu~ction are "stacked" on top of the previous parameters. 

'.~~;As pa~arnete~s are a.ddec:I t~ the st~Q.k, the~. are said to be ''pushed" 
·· onto the stac~. · ·· · · · · 



CHAPTER 8 •SUBROUTINES, FUNCTIONS, AND RECURSION ···99 

Review 

To complete.the :exami:>c!;e. at:>oveJiVhen So!lleSub3. l'la.~ finisl'lf;!g its 
task~·~nd ret~rns control to Som~Sub2, the.~tack ~i11 once again con~ 
tain values of 16 and 8. After control returns to SomeSubl, the stack 

will contain a •. A.fter control returns from ~omeSubl ~() vvhere;.you 
called the function, th~;stack will again be empty. When patameters 

are removed from the st~ck, they are said to be "popped" from the 

stac~ 

Because the stack is located in memory, it is by definition of limited 

size •. If you c;;~U. ene>ugtt,;;functior;is or subroutines .fre>rn within other .· ,• 
.. ·:: Y: ·:.,.;. . ; ··•:•ct:r.··· · ... ··<:•.•.... · ... •:\ : . . . • .• ... :• • . '> . . . : :/v•· 

funct,ons or subrout1h~s, you can cause.the stack.to fill up and over-

flow. At that point, your program can no longer OJ>erate properly 

.because it h.asxun out,()(stack. 5p.ace. •., < ? '' i"»; • •'• : "'·t~·"'·' ~>"·' >,o; 

Recursively calling a .fllnction or subroutine can have the same 

effect, because values will keep being pushed onto the stac~ without 

ever being popped offaf it. 

Functions and subroutines provide two valuable features for programmers. 
They allow you to organize related tasks into small chunks of manageable 
code, simplifying development and debugging. More importantly, functions 
and subroutines also allow for code reusability. Code that is used repeatedly 
throughout an application can be moved to functions and subroutines, reduc­
ing the redundant source code, which makes for a smaller overall application. 

Functions and subroutines share similar definitions. Both allow for declara­
tions of parameters, which are variables, which contain the values that are 
passed to the function or subroutine. Functions, unlike subroutines, can return 
a value to the calling code. A function's return type can be any of the valid 
REALbasic variable types. 



PART I• GETTING YOUR ,ff ET WET 

The bodies of functions and subroutines are where all the work is performed. 
You can do just about anything in a subroutine or function body that you can 
do in any other source code, except declare another function or subroutine. You 
should also avoid functions and subroutines that call themselves. Doing so is 
known as recursion. 

For the most part, you want to avoid recursion like six-week-old leftovers in 
the back of your refrigerator. Unless you have a very good reason to use recur­
sion, be on the lookout for it and try to avoid it in everything you write. Some 
pretty advanced programming algorithms (just a fancy word for formulas), 
however, actually rely on recursion to work. Data encryption and sorting algo­
rithms are all examples of advanced programming techniques that use recur­
sion to achieve their goals. Although these advanced methods are beyond the 
scope of this book, you should keep them in mind as potential valid uses of 
recursion. Just remember that uncontrolled recursion is bad, but recursion, 
when used wisely, can help you perform some pretty nifty tricks. 



-----• Understanding classes and objects 

---• 1\vo halves of an object: properties and methods 

~-~==• Encapsulation, inheritance, and Polymorphism 

---• Events and handlers in REALbasic 



102 PART I• GETTING YOUR FEET WET 

T he last chapter talked about how subroutines and functions can be used 
to simplify code and reduce redundant code. Subroutines and functions, 

however, are just the tip of the structured-programming iceberg. To improve 
upon the concepts of functions and subroutines, developers rely on object­
oriented programming. 

A complete tutorial of object-oriented programming is beyond the scope of 
this book, but by the end of this chapter, you should at least be familiar enough 
with its concepts to effectively use them within your REALbasic applications. 
This is, after all, meant to be a beginner's guide to programming, and some 
object-oriented programming concepts can get pretty advanced. 

Understanding Classes and Objects 
In object-oriented programming variables, subroutines and functions are 
grouped into related sections of code referred to as objects. It's a simple con­
cept; but with it, many powerful things can be done. 

For example, think of a Swiss Army knife, which is actually the equivalent of 
many tools-a corkscrew, a knife (or knives), a screwdriver, tweezers, a tooth­
pick, and so on-combined in one simple, easy-to-use package. Not only does 
grouping these tools make them more compact, it also makes them easier to 
keep track 0£ The objects of object-oriented programming are sort of like the 
Swiss Army knives of the programming world: they group tools into a single 
package. 

In other languages, you actually define the class definition in source code. For 
example, the following is an example of a simple class definition in C++: 

class Employee { 
public: 

CString strName; 
CString strAddress; 
double dSalary; 
CDate dateHired; 
int nVacationDays; 

II Employee name property stored in a string 
II Employee's home address property 

int nAvailableVacation; 
property 

11 Annual salary property 
II Hire date property 
I I Tota 1 vacation property 
II Vacation days available for use i.. 



CHAPTER 9 •OBJECT-ORIENTED PROGRAMMING 

Figure 9.1 
Creating a new 

class definition in 
REALbasic. 

RaisePay (int nPercentincrease); // Method to raise pay by -. 
whole percentages 
} ; 

In REALbasic, you don't have to go through the process of defining classes 
like this. You simply open the File menu and select New Class to create a new 
class. When you do so, the new class is added to the Project window and the 
properties of the class are displayed in the Properties window, as shown in Fig­
ure 9.1. The Name property is obviously the name of the class. (We'll talk later 
about the Super property and how you add properties and methods to your 
new classes later in this chapter.) 

The Terminology 
Before we get too far into a discussion of object-oriented programming, let's 
talk a bit about terminology. In discussions of object-oriented programming, 
you will hear objects referred to in two different ways: as classes and as 
instances. The source code and properties that define an object's behavior is 
referred to as a class. It's just the definition of an object. A class by itself is use­
less unless you do something with it. 

An instance is the object as it exists for use in your application. When you want 
to use a class in your application, you create an instance of that object. Creat­
ing an instance of an object is a two-part process. First, you define a variable 
of the class type. This creates a pointer to an instance of the specified object. 
So far you've encountered variable types that are each used to hold a value of 
a particular type, such as an Integer that holds an integral (whole) number and 
a String that holds a number of characters. Now you meet a very different 

0 ~Untitled~ E!l 8 
!;;ii Window ! 

fY Menu I nterfec .. 
l!i5J l!llllll!llll Super <none> 



104 

Figure9~2 
The REAt:basiC 

object-instantiation 
process 

PART I• GETTING YOUR FEET WET 

variable type-the pointer. A pointer is a type of variable that doesn't hold a 
value per se, such as an integer or a string, but rather holds the address of a 
memory location. That is, rather than actually holding a value, a variable that's 
a pointer is used to tell the program where to look in memory for a value. 
Granted, that sounds like tricky stuff, and it is, but rest assured it's an impor­
tant way of handling some programming tasks. By default, this pointer con­
tains a value of NIL, which means that the pointer doesn't point to anything 
at all: 

DIM oSomeObject AS SomeKindOfClass // oSomeObject contains a nil -. 
pointer to a SomeKindOfClass object 

To create the actual instance of the object, you have to do the second part, 
which usually involves allocating the memory for the instance of the object. 
This is done using the new statement: 

oSomeObject =new SomeKindOfClass // allocate the memory for this-. 
object 

What actually happens in this code example is that an amount of memory 
large enough to contain a Some Ki ndOfCl ass instance is allocated and the 
oSomeObj ect variable is assigned a pointer to the allocated memory. From this 
point on in your code, the oSomeObj ect variable is an instance of a Some Kind­
OfCl ass object. This process is illustrated in Figure 9.2. 



CHAPTER 9 •OBJECT-ORIENTED PROGRAMMING 

Properties and Methods: 
The Two Halves of an Object 

Figure9.3 
Creating a Sal a ry 

property in 
REALbasic. 

Figure 9.4 
Creating a Hi re 

Date property in 
REALbasic. 

Figure 9.5 

When designing a class, the developer must keep two things in mind: state 
and functionality. 

First and foremost, classes maintain their own state. That is, a class contains 
all the information about itsel£ The state of a class is maintained in variables, 
referred to as properties. For example, an object of the class Employee might 
contain properties such as Salary, Hire Date, Vacation Earned, and so on. 
These class properties are defined just like any other variables. Because these 
variables are members of a class, they are sometimes referred to as member 
variables. 

In REALbasic, you add properties to a class by opening the File menu and 
selecting the New Property item. Figures 9.3, 9.4, and 9.5 show a few exam­
ples of properties being added to a class in REALbasic. 

Declaration; 

D Prtvate 

DVlstble 

I dSalary As Double 

Creating an Earned · Declaration: 
Vacation property 

in REALbasic. · OPiiv:ate 
l:Jvislble 



After you've added properties to a REALbasic class, you can view them in the 
class edit window. To view the class edit window, you can either double-click 
the class name, in the REALbasic project window, or select the class name and 
press Option+ Tab. To view the properties in a class, you can either double­
click the Properties item in the class edit window or click the disclosure trian­
gle of the Properties item, as shown in Figure 9.6. 

The benefit of class properties is that all the code that has to deal with these 
properties is contained within the class as well. A class can contain functions 
and subroutines, referred to as methods, which are used to perform specific 
tasks related to the class in question. The nice thing about this is that only the 
class needs to know anything about its properties. For example, suppose the 
Employee class discussed previously has a RaisePay method, which allows the 
calling code to raise an employee's pay by a specified percent. The Sal a ry 
property could be defined as an integer, a double, or a string, and the Raise­
Pay method could handle changing the employee's salary. The calling code 
doesn't have to know, or even care, about the type of variable that Sal a r y is, 
and yet it's instructions are carried out as intended. 

Encapsulation 

Figure 9.6 
The properties of 

the Employee class 

Classes, by definition, group properties and methods so that they can work 
together to perform the class's tasks as efficiently as possible. As a matter of 
fact, the actual inner workings of the class are completely unknown to all other 
parts of the application of which the class is a part. 

Untitled 

~Window! 
fiiii Menu 

~Employee 

tJ -
1 I> f)J Event• 

I> ~ Menu Hendler. 

I> Ill Methods 

1 I> j) New Event. 

v ll liD!l'!mJl!!l 
~ date Hi red As Date 

iIDlJ dSelary A• Double 



CHAPTER 9 •OBJECT-ORIENTED PROGRAMMING 107 

Think of it this way: When you put a key in your car's ignition and turn it to 
start the car, lots of complicated things happen, but you don't really care about 
the details. You just want to see the expected result of your action: The car 
starts. This is the same type of thing that can occur within a class in object­
oriented programming. Some portion of the application asks a class to perform 
a task. It does so without boring the other parts of the application with the 
tedious details. It also will perform these tasks without any additional inter­
vention. It won't even ask the other parts of the application to keep track of 
the properties associated with its actions. 

The grouping of properties and methods into a package that hides its inner 
workings from other parts of an application is referred to as encapsulation. As 
we said before, the definition of the classes, groups, properties, and methods 
so that they can function in concert. Encapsulation is a very important con­
cept in object-oriented programming. 

Inheritance 
Another powerful feature of object-oriented programming is that a class defi­
nition can be based on other class definitions. As classes are derived from other 
classes, they are said to inherit the properties of the parent class. Think ofinher­
itance in a family tree: You inherited traits from you father, your father from 
your grandfather, and so on. The same is true in object-oriented inheritance. 

For example, assume you created the following class (we'll use an English­
language variation of the C++ class definition here, just to make things easier 
to understand): 

class Grandfather 
public: 

Go Fi sh i n g ( ) : 
Pl ay Pi an o ( ) : 

private: 
MakeWoodCarvings (); 

In this class definition, two of the tasks that the class can perform, Go Fishing 
and Pl ayPi ano, are assumed to be skills that will be passed on to descen­
dents of this class. As such, they are marked as public. The other task, 



108 PART I •GETTING YOUR FEET WET 

MakeWoodCarvings, will not be passed on to descendent classes, so they are 
marked as private. This means that if you create a new class based on this class, 
it will inherit the capability to Go Fishing and to Pl ayPi ano, but not the capa­
bility to MakeWoodCarvings. 

In the following example, the new class has the capability to perform the first 
two tasks, Go Fishing and Pl ayPi ano, by default. It inherits these tasks simply 
because the parent class has these capabilities. It can't, however, Ma keWood -
Carvings because the parent class labeled this task as private-it never shared 
this capability with its descendent class {after all, we all need to keep some 
things to ourselves). The new class also has the capability to perform a new 
task, CookChi 1 i. 

class Father : Grandfather{ 
public: 

CookChili (); 

As we said, this class can Go Fishing, Pl ayPi ano and CookChil i, but not Make­
WoodCarvi ngs. You could then define another class, based on the first two, 
using the following definition: 

class Son : Father{ 
public: 

BuildTreehouse (); 
PlayDrums (); 

private: 
PickOnSiblings (); 

So, this class would inherit the capability to CookChi 1 i, Go Fishing, and 
Pl ayPi ano but not the capability to Ma keWoodCa rvi ngs (ah, the lost talents of 
days gone by). This class also adds new capabilities, specifically the capability 
to Bui 1 dTreehouse, Pl ayDrums, and Pi ckOnSi b 1 i ngs. The capability to perform 
the first two tasks would, by default, be passed on to any descendents of this 
class, but the last (very bad behavior indeed) would not be passed on. Figure 9. 7 
demonstrates the process of inheritance. 

When it comes to inheritance, object-oriented classes mimic the passing down 
of information from one generation of a family to another. Each class inherits 



CHAPTER 9 •OBJECT-ORIENTED PROGRAMMING 109 

Figure 9.7 
Inheritance of tasks 

t 

the public methods and properties of the class from which it is derived. 
Because of the resemblance to family trees, the classes from which these 
descendent classes are derived are often referred to as parent classes, and the 
descendent classes are referred to as child classes. 

Keep in mind that just as with family trees, some things aren't passed from one 
generation to the next. Classes that don't wish to share their functionality with 
their children mark these items as private. 

Inheritance in REALbasic 
When you create a new class definition in REALbasic and want to derive your 
class from another class, all you need to do is specify a class to be the super 
class of the current class, as shown in Figure 9.8. As classes are derived from 
previous classes, they tend to get smaller and smaller and do more specific 
things. Keeping that in mind may help you to remember that the parent of 
your class is its super class-it's superior to your derived class. 



110 

Figure 9.8 
Creating a derived 

class in REALbasic. 

PART I• GETTING YOUR FEET WET 

EJ ~Untitled :___::: 1!:!18 
g) Window I 

iiiil Menu 

~ GrendFether 
Pr~~f'tle~"m!i4!U• 1!l ~l!Ilm ID 

Name Fether 
lnterfeces Gl 
Super GnrndFether .... 

. . 
" 

Polymorphism 
Probably the most powerful capability of object-oriented programming is 
known as polymorphism. Literally meaning many farms, polymorphism is the 
capability to have multiple classes, all derived from the same super class, which 
can all be used in place of the super class. For example, suppose you had a super 
class called Rugrat from which you derived a son and daughter class. Any­
where in your application where a Rug rat class pointer is required, you can use 
a son or daughter class pointer instead. 

Additionally, the derived classes can replace the default behavior of the super 
class's method by overriding the method in each derived class. For example, in 
the Rugrat class mentioned previously, you define the default behavior of the 
Cl eanYourRoom method. In all the classes derived from the Rug rat class, you 
would define behavior specific to that class. Your program could use any of the 
Rugrat-derived classes (thinking that they were actually Rugrat classes) and 
the proper actions of that derived class will occur, instead of the base class. 
This process is shown in Figure 9. 9. 

So the Rug rat class contains one set of instructions for the Cl eanYourRoom 

behavior, while the son and daughter classes contain their own unique instruc­
tions for cleaning their rooms. One of the benefits of polymorphism is that 
your application can call members of these classes without really knowing 
what the type of class is. Say you have some code, somewhere in your program, 
that defines a son or daughter object and calls a subroutine, passing either of 
those objects as a parameter: 



CHAPTER 9 •OBJECT-ORIENTED PROGRAMMING 111 

Figure9.9 
Two derived classes 

in which the 
behavior of one of 

the super class's 
methods has 

been overridden. 

t 

Dim chWhichKid As Rugrat 
If (bTodayisMonday) Then 

chWhichKid new Son 
Else 

chWhichKid = new Daughter 
End If 
MakeChildCleanTheirRoom (chWhichKid) 

The subroutine being called, MakeChi 1 dCl eanThei rRoom, would have the fol­
lowing definition: 

Sub MakeChildCleanTheirRoom (Rugrat chOneOfTheKids) 
ChOneOfTheKids.CleanYourRoom 

End·• Sub 

The subroutine accepts a pointer to a Rug rat class as a parameter. Even though 
you passed a son or daughter class to the subroutine, the code still works 
because the son and daughter classes are derived from the Rug rat class. As you 
saw in the preceding class definitions, the daughter class didn't override the 
Cl eanYourRoom method. So, if a daughter class is passed to the MakeChil d­
Cl eanThei rRoom subroutine, the Rug rat class's Cl eanYourRoom method 
will be called. If a son class is passed to the subroutine, then the son class's 
Cl eanYourRoom method will be called. 



112 PART I• GETTING YOUR FEET WET 

Polymorphism can be difficult to grasp, so don't sweat it too much if you don't 
get the concept right away. Just remember that classes can be derived from 
other classes, known as super classes, and that the derived classes can override 
the methods of the super classes. Anything past that starts to get into advanced 
programming techniques, which are beyond the scope of this book. 

REALbasic Events and Handlers 
When you are running just about any application, on almost any computer 
operating system, events occur of which the application needs to be made 
aware. These events could include such things as the user moving or clicking 
the mouse, the computer clock ticking off another second, or any other count­
less numbers of other things that are happening. In the good old days before 
object-oriented programming, developers had to write huge chunks of code 
just to see when specific events occurred and act accordingly: 

If CbTheUserClickedTheMouseButton) Then 
II Do whatever we need to do when the user clicks the mouse-. 
button 

Else If CbTheUserMovedTheMouse) Then 
II Do whatever we need to do when the user moves the mouse 

Else If CbTheUserMovedTheMouseWhileTheButtonWasDown) Then 
II Do whatever we need to do when the user click drags the-. 
mouse 

Else If CbTheTimerClickedOffAnotherSecond) Then 
II Do whatever we need to do when the timer clicked off another-. 
second 

Else If ( ... ) 

II _etc, etc, etc 
End If 

Handling events in this way is sort of like picking up the phone every five sec­
onds, just to see if someone has called you. It would be much better to have 
the equivalent of the bell on the phone so that you know when to pick it up, 
rather than constantly checking. Well, you do. The phone is your application 
and the bell is the event handler. 

Event handlers are pre-existing methods of a class, which, by default, don't 
contain any code. Depending on the type of class, there are event handlers for 



.. CHAPTER 9 •OBJECT-ORIENTED PROGRAMMING 113 

mouse clicks, timer ticks, and all kinds of other things to which your applica­
tions must be able to respond to. 

Let's go back to the classes we were talking about before, the Rugrat classes, 
and add an Adult class that works with the Rugrat class. One of the tasks that 
the Adult class must perform is ComfortinjuredRugrat. In a traditional appli­
cation, the Adult class would probably have to keep checking the Rug rat class 
to see if it had been injured: 

Sub CheckRugratForinjury (chSomeChild As Rugrat) 
If (chSomeChild.bisinjured) Then 

II Do whatever we need to do to comfort the injured Rugrat 
End If 

End Sub 

This would be an inefficient and tedious procedure. The Adult class would 
regularly be asking the Rug rat class if it had been injured: ''.Are you hurt? Are 
you hurt yet? How 'bout now? Still not hurt?" With events, the Adult can 
respond to the Rug rat class only when it needs attention. The operating sys­
tem could send a Rugratinjured event to the Adult class. All that would need 
to be done would be to add the code to handle this event. Not so coinciden­
tally, the subroutine that handles an event is referred to as an event handler: 

Sub Rugratinjured CchSomeChild As Rugrat) 
II Do whatever we need to do to comfort the injured Rugrat 

End Sub 

So, as you can see, not only does using event handlers remove a lot of useless 
wasteful checking to determine whether an event has occurred, it also simpli­
fies the code because all the code that checks for the events is not needed. 

To add an event handler in REALbasic, as shown in Figure 9.10, all you need 
to do is 

1. Select a class in the Project window. 

2. Open the class editor for the class in question by pressing Option+ Tab. 

3. Double-click on the Events item, or click the Events disclosure icon. 

4. Click the event to which you'd like the class to respond. 

5. Add the appropriate code for the event in the Code Editor window. 

Adding event handlers is something you'll be doing a heck of a lot 0£ Most of 
your time programming in REALbasic, as well as other object-oriented 



114 @ 

Figure 9.10 
The event handler 

for a window's 
MouseDown event, 
which is sent to a 

window class when 
the user clicks the 

mouse button 
within the borders 

of the window 

Review 

PART I• GETTING YOUR FEET WET 

Untitled 

E;il Windolifl 

i!iii Menu 

I> ... Controls 

v ~ Events 
li.l Open 

li.l Close 

~ CancelClose 

li.l KeyDolifn 

~ MouseMove 

l%,l MouseEnter 

li.l MouseExit 

li.l Paint 

lil IDl!IDlllil 
li.l MouseDrag 

Function MouseDown(X As Int eger, Y As Int eger) As Boolean 

End Funct ion 

languages, is spent writing event handlers. Even all the new classes you create 
could be considered to serve the needs of the event handlers, so we guess you 
could say it's all about event handlers. 

Because you'll be using them all the time, you might want to explore some of 
the events that are sent to various REALbasic classes. Refer to some of the 
various class definitions, the Window class for example, in the REALbasic 
Language Reference (included on the CD-ROM) for some examples of 

events. 

A class is a collection of related functions, subroutines, and variables. The 
functions and subroutines are referred to as methods because they are the meth­
ods by which the class completes its tasks. The variables are referred to as prop­

erties because they contain the values that define the state of the class. 

A class is just source code. An object is just a variable that has been defined as 
a specific type of class. An instance of the object exists only after the memory 
for that object has been allocated and assigned to the variable. 

The three main concepts of object-oriented programming are encapsulation, 
inheritance, and polymorphism. Encapsulation means that all the properties 
and methods of a class are contained within the class definition and that no 



CHAPTER 9 •OBJECT-ORIENTED PROGRAMMING 115 

other source code needs to be aware of the contents of the class. Inheritance is 
the capability to derive one class from another in which the derived class 
inherits the methods of the super class. Polymorphism is the capability to use 
derived classes in place of the super class without the application having 
knowledge of whether the derived class overrides the functionality of the 
super class. 

REALbasic, along with other object-oriented programming languages, sets 
aside certain predefined class methods that are called in response to system 
events. These methods are referred to as event handlers. Most of the coding 
work that is done in developing a REALbasic application is coding the event 
handlers or code to support the event handlers. 

The concepts of object-oriented programming are simple enough by them­
selves, but from these simple acorn-like concepts a mighty oak of stable, 
simple-to-use applications can grow. Understanding classes, objects, methods, 
properties, and events is one of the essential keys to becoming a great REAL­
basic developer. 



--~-----~----------------







Making 
My Paint 

• Introduction to the tutorial 

• Creating the new project 

• Adding the main window 



120 PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

In the previous chapters you familiarized yourself with REALbasic, created a 
very simple application, and learned some of the concepts of programming. 

You've probably been itching to get down and dirty and actually work on a 
functional application. 

Everything you've done up to now has laid the groundwork for what you'll be 
working on from now on. By now you should have a fairly decent under­
standing of the main parts of the REALbasic application and should under­
stand the simpler concepts of programming. 

Now you're ready to move on to bigger and better things. 

Introduction to the Tutorial 
In the next few chapters you'll be guided step by step in the process of creat­
ing a complete application using REALbasic. The subject that has been cho­
sen for this tutorial is a type of application with which almost everyone is 
familiar: a paint program. After all, one of the first things most Mac users do 
after setting up their new computer is play with a paint program-or at least 
that was the case in the old days. So it makes some sense that the first full­
blown application you're going to create is a paint program. 

In each chapter of this tutorial, you'll progress deeper into the process of devel­
oping an application. In this chapter you'll begin by creating a new REALbasic 
project and creating the main application window. In the ensuing chapters, you'll 
add drawing controls; file open and save controls; and cut, copy, and paste fea­
tures. You'll then move on to more advanced topics such as tool and color palettes. 

Creating the New Project 
The first thing you'll need to do to start on this tutorial is to launch REAL­
basic. Locate the REALbasic program icon and double click it. After launch­
ing REALbasic, you should be presented with the REALbasic design 
environment, shown in Figure 10.1. 

Just to refresh your memory, the parts of the REALbasic design environment 
are the 

• Project window 

• Tools window 



Figure 10.1 
The REALbasic 

design environment 

CHAPTER 10 • MAKING MY PAINT 

-.!.~-.~~""""" 
frame 0 - Dxtmfi -::• 
He3Bacl<Color O 
Bed£olor 

llll3 Backdrop None 
Tl tie Untitled 
Vlsl b h~ [if 
fullScr.en D 
HenuBerVislble {i3 
Cl~Box Q 
Grovlcon O 
Zoomleon O 
BalloonHelp GI 
M&cProclD 

• Colors window 

• Properties window 

• Window Editor 

Adding the Main Window 
You should notice right away that REALbasic has created an untitled project 
for you, containing just a window and a menu object in the Project window. 
The window object is named Windowl by default. The first thing we are going 
to do is to customize this default window object to meet our needs. To change 
the default settings for Windowl do the following: 

1. In the Project window, click on the Windowl object so that its 
properties are displayed in REALbasic's Properties window as shown 
in Figure 10.2. 

2. In the Properties window, change the name ofWindowl to 
PaintWindow, and press Return. The name of the window should 
change from Windowl to PaintWindow in REALbasic's Project 
window as well. 



122 

Figure 10.2 
The PaintWindow 

properties 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

Plecoment 
Width 
Hel9ht 
HlnWldth 
Hlntfel9ht 
HaxWldth 
-Height 

Freme 
HoolleclcColor 
BeclcColor 

O - OOfault 
300 
300 
64 
64 ' 
32000 
32000 

Beckdrop None 
Title Untitled 
Vlelble Bl 
Full5creen 1!J 
HenuBorVlelble Iii!' 
CloeeBox Iii!' 
Grow Icon llif 
Zoom Icon El 
Bolloonttolp Id 
HecProclD 

3. Click on the HasBackColor property to enable it. This changes the 
background color of Paint Window to the default color, which is white. 

4. Click on the Growlcon property to enable it. This will allow the user to 
resize the PaintWindow object. 

Adding the Paint Canvas 
PaintWindow by itself is incapable of acting as a paint canvas. PaintWindow is 
just a container for other controls. Fortunately there is already a REALbasic con­
trol capable of acting as a paint canvas. Coincidentally, it's called the Canvas con­
trol. Like other controls, you can add the Canvas control, shown in Figure 10.3, 
by dragging it from the Tools window to the window in the Window Editor. 

To add a Canvas control to PaintWindow, do the following: 

1. If Paint Window is not open in the Window Editor, double click on 
PaintWindow in the Project window to open it in the Window Editor. 



TIP 

Figure 10.3 
The Canvas control 

in the Tools window 

CHAPTER 10 •MAKING MY PAINT 

2. Click on the Canvas tool in the Tools window and then drag it onto 
PaintWindow and drop it anywhere. REALbasic names the Canvas 
control that you just added Canvasl by default. You'll need to change 
the name and some other default properties of the Canvas control. 

3. If the Canvas control, Canvasl, is not currently selected, click on it so 
that its properties are displayed in the Properties window. 

4. In the Properties window, change the name of the Canvas control from 
Canvasl to PaintCanvas and press the Tab key. 

You're now going to be changing the position and size of the canvas control so 
that it fills the entire PaintWindow window: 

1. Under the Position section of the Properties window, change the Left 
value to -1 and press the Tab key. Notice that the PaintCanvas control 
has moved all the way to the left-hand side of PaintWindow. 

Since you used the Tab key in step 1, the Top value should be selected in 
the PaintCanvas Properties window. It is easier to use the tab key to 
change multiple properties than to use the Return key and the mouse to 
select each property. 

2. Change the Top value in the PaintCanvas Properties window to -1, 
and press the Tab button. Again, notice how the PaintCanvas control 
has moved to the top of Paint Window. The PaintCanvas should now 
look something like the one shown in Figure 10.4. 

3. Drag the lower-right resizing handle (the black square in the lower­
right corner of the PaintCanvas control) so that it lines up with the 



124 

Figure 10.4 
The PaintCanvas 
control moved to 

its new location 

Figure 10.5 
The resized 

PaintCanvas control 

PART- 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

@ Untitled ' 

PaintWindow's Grow Window control (the rectangular control with 
the three diagonal lines in the bottom right hand corner of the 
window). After you've dragged the resizing handle to the proper 
location, the PaintWindow Window Editor should appear as seen in 
Figure 10.5. 

, ... ,,.,.,."' Untitled '·······---·-·- ········ ·~'" l:!fa 



TIP 

CHAPTER 10 •MAKING MY PAINT 125 

Wi<'ll*'*"'M~"'~M-<>?,w:o~"*""""'i"*'"'~·i™Mi::e:1>t\>"~~~.,hW%"=~w~~~:w,:~':1:em:"',,;w,,~1!8%1'\<~M&.'t~:~;w~1&;~M'1';;~~~~~...-"-""''~'*' 

=~~~«OOW:\il-;:JX\';<;.'!lmAA<1,;;;;'»ili<c.~~'<"""'>&;;;,;;,,_~;,'"""~~=-· ·-· -· -· "=<~;;""';;·c;;·~~'~''"':'®<=~"'~'"d~'!i>i,'W&.'!l:;;y,o~\;;,w"W''~\;;nc;-~~~-./JM,.IS';t:u:~;(;_:,=.~«@ 

Testing Your Work 
By now you're probably curious to see what your application does. Truthfully, 
right now it doesn't do a lot. But because you're probably going to want to see 
for yourself, here's what you'll need to do. 

Saving Your Work in Progress 
You should always save your changes before you decide to test your REALba­
sic application. Even though it's not likely, sometimes errors in your applica­
tion can cause REALbasic to crash. If this happens, any of your changes will 
be lost. This can be very frustrating when you've done a lot of work since you 
last saved your project. 

Even though your paint application is very simple at this point, you should get 
into the habit of at least saving your work every time you test it. The general 
rule is save twice as often as you think you should. 

One nice feature of version 3, and greater, of REALbasic is its built in crash 
protection. Each time you run your program, REALbasic saves a copy of your 
project so that, in the case of a crash, you can restore your work the next time 
you launch REALbasic. Even though this feature works flawlessly, you should 
still get into the habit of saving your work in progress. If you move to another 
development tool that doesn't have nice auto-save features like this, you'll be 
glad you got into the habit ahead of time. 

To save your REALbasic project, open the File menu and select the Save com­
mand, or press Command+S. Save your project with the filename My Paint­
Step 1. The title of the Project window will be updated to My Paint - Step 1. 



126 

TIP 

Review 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

Now would be a good time to talk about organizational skills. Many 

application developers prefer to organize their projects. You may find 

that creating a REALbasic Projects folder, containing folders for each 

project you're working on, may help you keep things organized. For 

example, create a REALbasic Projects folder somewhere where you'll be 

able to find it again (in the REALbasic folder, or your Documents folder). 

Then create a My Paint folder and save all of the My Paint projects with-

in this folder. It may seem like a lot of extra work right now, but later, 

when you've got a dozen irons in the programming fire, you'll really 

appreciate the extra organization. 

Testing Your Application 
To run your new application, do the following: 

1. Open the Debug menu and choose 
Run, or press Command+R. 

2. Play around with your application. 
Admittedly, there's not much here to do 
yet. Trust me, things will get more 
interesting in the next chapter. 

3. After you've exhausted yourself playing 
around with your very limited 
application, open the File menu and 
select Qyit, or press Command+Q 

When you choose the Run item 

from the Debug menu or press 

Command+R to test your 

application, REALbasic switches 

to the runtime environment. The 

runtime environment, 

sometimes referred to as 

debugging mode, is where you 

can test and debug your 

application. When you choose 

the Quit item from the File menu 

or press Command+O to quit 

'"";;::~:~~~.:::~~·:_ 

In this chapter you've learned how to launch REALbasic and create a simple 
project. You've also learned how to rename and change the properties of your 
application's main document window. You learned how to rename and change a 
control's properties and how to position controls on your application's main doc­
ument window. In addition, you were shown how to save and test your project. 



• Adding a freehand drawing tool 

• Understanding the Code Editor window 

• Adding the drawing code 

• Handling window drawing 



128 PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

In the previous chapter, you created a simple shell for your paint application. 
In this chapter, you'll begin to add some simple drawing tools to your pro­

gram. You'll be adding, enabling, and selecting menu items. And, joy of joys, 
you'll actually be writing some source code for the simple drawing tools. 

Adding a Freehand Drawing Tool 

Figure 11~1 
The REALbasic 

Code Editor window 

OK, first things first, you want to see your application do something, so here 
we go. The first thing you're going to add to your application is a freehand 
drawing tool. This will be a tool that will draw on the PaintCanvas when the 
user clicks and drags the mouse. 

To begin, launch REALbasic and open the My Paint - Step 1 project by click­
ing on the My Paint - Step 1 project icon in the Finder. If REALbasic is 
already running, you can open the File menu and choose Open to locate and 
open the project. 

Using the Code Editor Window 
You'll need to open the Code Editor window by selecting the PaintWindow 
object in the Project window and pressing the Option+ Tab key combination. 
The Code Editor window should appear, as shown in Figure 11.1. 



CHAPTER 11 •ADDING SIMPLE DRAWING COMMANDS 129 

The Code Editor window contains two panes. The left pane, called the 
Browser pane, contains a list of all of the objects that are contained within the 
window being edited. These objects fall into one of the following categories: 

• Controls. These include any controls that you created by dragging 
them from the Tools window to your document window. 

• Events. These include any application events to which the window is 
capable of responding. Events are messages generated by the system 
whenever the user does something to which your application window 
needs to respond. For example, a MouseDown event will be sent to 
your application window whenever the user clicks the mouse while the 
cursor is within the boundaries of the window. 

• Menu handlers. These are specific events that are sent to your applica­
tion window whenever a certain menu item is selected. Your application 
window can respond to any menu item by adding a menu handler for 
said menu item. For example, you would add a menu handler for Open, 
Save, or Save As menu items to respond to the users file requests. 

• Methods. These are source-code routines that you add to an 
application window to perform a custom task. For the most part you'll 
be adding methods to increase source code re-usability and readability. 
Methods are also referred to as member fanctions because they are 
functions that are members of a specific window class. 

• Properties. Like the properties in the REALbasic Properties window, 
properties in the Code Editor are used to keep track of specific values 
that relate to the window's state. As is the case with methods, 
properties are custom values that the developer has decided are needed. 
Properties are often referred to as member variables because they are 
variables that are members of a specific window class. 

The right pane of the Code Editor window, called the Editor pane, is where 
source code for menu handlers and methods is edited. The gray area between 
the Browser pane and the Editor pane is a resizing column divider. Click and 
drag this left or right to resize the Browser pane. 

Adding the Drawing Code 
The freehand drawing tool is supposed to function as follows: When the user 
clicks and drags the mouse, the application should draw a line that follows 
the path of the mouse as it's being dragged. To do this, you'll need your 



Figure 11.2 
The New Property 

dialog box 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

application to respond to the MouseDown and MouseDrag events. But before 
you can properly handle these events, you'll need to add a couple of properties 
to the PaintWindow class. 

Adding the Property Declarations 
The properties you'll be adding to the PaintWindow class will be used to track 
the last-known mouse location. When your application receives the Mouse­
Drag event, it will be able to draw a line from the current mouse location to 
the last known location of the mouse. It will then update the values of the last­
known mouse location so that the next MouseDrag event can draw the next 
connecting line, and so on. 

To add the last mouse location properties to the PaintWindow class, do the 
following: 

1. Open the Edit menu and select the New Property command, or press 
Option+Command+P to open the New Property dialog box, shown in 
Figure 11.2. 

2. Type the following in the Declaration field of the New Property dialog 
box: 

nlastX As Integer 

3. Press Return or click on the OK button to close the New Property 
dialog box. 

4. Repeat steps 1through3, but this time add the following property 
declaration: 

nlastY As Integer 

To view the properties that were just added, expand the Properties item in the 
Code Editor Browser pane by either clicking on the triangle next to the Prop­
erties icon, or double clicking on the Properties item. The new properties 
should appear under the Properties item, as shown in Figure 11.3. 



CHAPTER 11 •ADDING SIMPLE DRAWING COMMANDS 

Figure 11.3 
The new mouse­

tracking properties 

tl iiiiii§I Code Editor (Palntwindow) - :J§!8 
t>~Controls 
~ f;J Event• 

~ ~ Menu Handler. I! 

! ~lit Method• 

v fl Properties 
11 [!fJ nLestX As Integer 

lifl nLastY As Integer 

Ila 
I• 

1-:;:-1 !-:;:-
~ . 

dB El l!1 i:!l J_<l_• ~ -- -

Adding the Event Handlers 
Now that the properties you need have been added, you can work on the event 
handlers. Remember, events are sent to each window when something hap­
pens about which the particular window needs to be informed. In this case, 
you're interested in the MouseDown and MouseDrag events, because those 
events are what will be used to make your freehand drawing tool. 

THE MOUSEDOWN EVENT HANDLER 

The MouseDown event handler will be used for two purposes. The event han­
dler will set the nla stX and nlastY properties to their initial value, and will also 
enable all other mouse events-something you need to do in order to handle 



Figure 11.4 
The Code Editor 
window for the 

PaintWindow 
PaintCanvas 

MouseDown event 

PAR'T 11 e DEVELOPING YOUR FIRST MAC PROGRAM 

the MouseDrag event later. To add an event handler for the MouseDown 
event, do the following: 

1. Expand the Controls item in the Code Editor Browser pane by either 
clicking on the triangle next to the Controls icon, or double clicking on 
the Controls item. 

2. Expand the PaintCanvas item, as you did above, and select the 
MouseDown event in the Browser. 

3. In the Code Editor window, for the MouseDown event, type the 
following: 

nlastX = X 
nlastY = Y 
return true 

4. Returning true for the MouseDown event allows your program to 
respond to the MouseDrag and MouseUp events. The Code Editor 
window will now appear as shown in Figure 11.4. 

THE DRAGFREEHAND METHOD 

The MouseDrag event handler will handle the actual drawing for your free­
hand drawing tool, along with almost all of the other drawing tools. You could 
add all of the code for the drawing tools in the MouseDrag event handler, but 

Control a 
v ~ PalntC811¥88 

lil Paint 

lil lllllllillDllrl 
lil MouseDrav 
fil MouseUp 
lil MouseMow 
fil MouaeEntar 
lil MouaeExlt 
fil Open 

filer ... 
fil DropObJect 

• fjEventa 
• .,_ Mon.u Handlara • 'Mel-l> ti Prepertlea 

Function MauseDown(X As Integer, Y As Integer) As Boolean 
nLastX = x 
nLastY= Y 
return trual 

End Function 



CHAPl"ER 11 •ADDING SIMPLE DRAWING COMMANDS 

Figure 11 .5 
The New Method 

dia log box 

this would get rather messy once all the drawing tools had been added. So, 
rather than write ugly, hard-to-read code, you're going to create a method, or 
member function, for each drawing tool. 

The freehand drawing tool method will contain the code needed for perform­
ing freehand drawing. It will do this by comparing the last known- mouse 
location properties to the current mouse location. If the values are different, it 
will draw a line between the two points. It will then copy the current mouse 
location values to the last known-mouse location properties, so that the next 
call to this method can repeat the process. 

To add the freehand drawing tool method, do the following: 

1. Open the Edit menu and select the New Method command, or press 
Option+Command+M to open the New Method dialog box as shown 
in Figure 11.5. 

2. Type the following in the Method Name field of the New Method 
dialog box: 

DragFreeHand 

3. Type the following in the Parameters field of the New Method dialog 
box: 

X As Integer, Y As Integer 

4. Leave the new method's return type blank, because this subroutine will 
not need to return any value. 

5. Press Return or click on the OK button to close the New Method 
dialog box. The Code Editor window will appear as shown in 
Figure 11.6. 

-·New Method ;::: 

Method name: 

Parameters: 

Return Type: 

D Prlvnte 

Cancel. j II OK ij 



Figure 11.6 
The new 

DragFreeHand 
method in the Code 

Editor window 

Figure 11.7 
The Code Editor 
window for the 
DragFreeHand 

method 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

~ " Controls 
I> f}iJ Event> 

I> ~ Menu Hendlers 

"" ll Methods 
~!M@IMI 

I> Li Properties 

-· ====' Code Editor (Palntwlndow) -------· ·-·· ···· 

Sub DragFreeHand(X As Integer, Y As Integer) 

End Sub 

6. In the Code Editor window, for the DragFreeHand method, type the 
following: 

P. 

If ((n la stX <> X) or (n la stY <> Y)) then 
PaintCanvas .Graphics.ForeColor = RGB(0,0,0) 
PaintCanvas.Graphics.Drawline(nlastX, nla stY, X, Y) 

nla stX X 
nlastY = Y 

End if 

The Code Editor window will now appear as shown in Figure 11. 7. 

- ·Code Editor (Pa-lntwlndow) ' ~.-"' ' •Ell3 

1>¥controls Sub DragFreeHand(X As Integer, Y As Integer) 

I> f,lJ Events If ((nLastX <> X) or (nLast Y <> Y)) then 

~ ~ Menu Handlers 
PaintCanvas.Graphics.ForeC olor - RGB(O,O,O) 

v [!}. Methods 
PaintCanvas.Graphics .DrawLlne(nLastX, nLastY, X, Y) 
nLastX = X 

Ill tmmml!Jll!I nLastY = Y 
I> Ll Properties End if 

End Sub 

1::1 

I- I-
~ I~ 

[Ell CJ lt3 Ii] I IT• ~ 



CHAPTER 11 •ADDING SIMPLE DRAWING COMMANDS 

Figure 11.8 
The Code Editor 
window for the 

PaintWindow, 
PaintCanvas, 

MouseDrag event 

THE MOUSEDRAG EVENT HANDLER 

Finally, you're ready to enable the MouseDrag event handler so that it can 
draw a freehand line. All you need to do is add a call to the DragFreeHand 
method, passing the necessary parameters to the method. To add an event 
handler for the MouseDrag event, do the following: 

1. Select the Controls, PaintCanvas, MouseDrag event in the Code 
Editor Browser pane. 

2. In the Code Editor, for the MouseDrag event, type the following: 

DragFreeHand(X, Y) 

The Code Editor window will now appear as shown in Figure 11.8. 

Testing the Freehand Tool 
Now would be a good time to test the freehand drawing tool that you've just 
added. Don't forget to save your work. 

To run the application, open the Debug menu and select the Run command 
or press Command+ R to start the REALbasic runtime environment. If there 
is anything wrong with your code, REALbasic will display an error message 
indicating what is wrong. The Code Editor window, containing the offend­
ing source code, will be opened, and the cursor will be positioned near your 
mistakes. 

••• 
v Ii] PaintCanvas 

~Paint 
~ HouseDovo 

~ lm!l!!liml 
~ MouoeUp 

~ MoussMove 

~ MouseEnter 

ei, MouseExit 

~Open 
~c1 ... 
~ DropObject 

• f:1) Events 

• 1J'll, Menu Harullers 
~ Ill Hethods 
~ Cil Properties 

Sub MouseDrag(X As Integer, Y As Integer) 
DragFreeHand(X, Y) 

End Sub 



TIP 

Figure 11.9 
The application with 

a crude drawing 

_ sometimestne REALbasic error messages can seem:a~bit hardto uJJ'.cter,,_ 

stand to the novice programmer. Don't sweat it. Just go back over tlltS= 
section of the tutorial and check your spacing and spelli ng. Once you've 

found the error and corrected it, try running the application again. 

Experiment with the freehand drawing tool for a while. Click and drag the 
mouse cursor within the application's window. You should see something sim­
ilar to Figure 11. 9. 

When you're done testing the application, Open the File menu and select the 
<21iit command or press Command+Q to return to the REALbasic design 
environment. 

Handling Window Drawing 
You may have noticed that the tutorial application window doesn't redraw if 
you resize it, or if another window is placed over the application window and 
then moved away. This is because the paint canvas on which you are drawing 
does not maintain the picture in memory so that it can be redrawn. What you 
need to do is program the application to draw the picture in two places: on 
screen and in memory. When the window is redrawn, you can copy the picture 
in memory to the screen and refresh the window's contents. 

ed ·- ·--··-·· ·- =·713 



CHAPTER 11 •ADDING SIMPLE DRAWING COMMANDS 137 

Adding the Picture Buffer Property 
To store a copy of the picture in memory, you'll add a Picture property to the 
PaintWindow class. You'll be painting to both the PaintCanvas control and 
the Picture property so that the same drawing is being updated on screen and 
in memory. Whenever the window needs to be repainted, the program will 
copy the contents of the Picture property to the PaintCanvas control to update 
the on-screen image. 

To add the Picture property, do the following: 

1. If the Code Editor window is not open, select the PaintWindow object 
in the Project window and press the Option+ Tab key combination to 
open the Code Editor window. 

2. Open the Edit menu and select the New Property menu item or press 
Option+Command+P to open the New Property dialog box. 

3. Type the following in the Declaration field of the New Property dialog 
box: 

picBuffer As Picture 

4. Press Return or click on the OK button to close the New Property 
dialog box. 

Creating the Picture Buffer Property 
Before you can use the new Picture Buffer property, picBuffer, you need to cre­
ate an instance of picBuffer. The REALbasic command that creates picture 
objects is NewPi cture. The parameters passed to the NewPicture command 
specify the width, height, and number of colors of the picture object. 

You only want to create the new picture object once, for every window that is 
opened. The trick is figuring out where to create the picture object so that it is 
created only when a new window is opened. Fortunately there is already an 
event that perfectly suits this purpose. The Window class's Open event is 
called every time a new window is about to be opened. Any code added in this 
event handler will be called every time a new window is being opened. 

To add the code to create the Picture Buffer property, do the following: 

1. Expand the Events item in the Code Editor Browser pane by either 
clicking on the triangle next to the Events icon, or double clicking on 
the Events item. 



Figure 11.10 
The Code Editor 
window for the 

PaintWindow, 
Open event 

2. Select the Open event in the Browser pane. 

3. In the Code Editor window, for the Open event, type the following: 

dim nColorDepth as integer 
nColorDepth Screen(O).Depth 
picBuffer = NewPicture (640, 480, nCo l orDepth) 

In this code, you used the Screen ( 0). Depth method to determine the number 
of colors supported by the current monitor. You then use this value to deter­
mine the number of colors supported in the pi cBuffer picture object. The 
Code Editor window will now appear as shown in Figure 11.10. 

Drawing in the picBuffer Object 
To ensure that the in-memory copy of the window contents is the same of the 
on-screen copy, the application has to draw to the in-memory copy as well as 
the on-screen copy. To program the application to do this, add the following 
code in the PaintWindow, DragFreeHand method, after the current Drawl i ne 
command: 

if (picBuffer <>ni l ) then 
picBuffer.Graphics.ForeCo l or = RGB(0,0,0) 
picBuffer.Graphics . Drawline(nlastX, nlastY, X, Y) 

end if 

This code first ensures that a valid pi cBuffer exists before attempting to access 
it. It then sets the foreground color and draws a line in pi cBuffer's memory. 

IQ.- """""" Code Editor (Palntwlndow) 08 
r> ~Controls ,, Sub Open() 

v f;> Events dim nColorDepth as integer 

IU in nColorDepth = Screen(O) .Depth 
I €1 Close pie Buffer - NewPicture (640, 480, nColorDepth) 

mi CancelClose End Sub 
€1 Key°""'n 

I~ €1 MouseMove 

~ MouseEnter I! 
€1 MouoeExlt Ii ml 

I €1 P•lnt 

€1 Mou"'Do"n Ii l1J. MouoeDreg 

€1 MouoeUp ~I €1 EnebleMenulterm 

l1J. Re> ized 

€1 Moved f=1 ~ €1 Drop(Jbjeot ~ I~ 

, [E!IEJ ~:JEtl I'I• ~ 



CHAPTER 11 •ADDING SIMPLE DRAWING COMMANDS 

Figure 11.11 
The Code Editor 
window for the 

Pai ntWi ndow, 
DragFreeHand 

method 

0 ···m•:·····"·""""'''''' _·····•······o•·······•·=: 

'>~controls 
t> 1'J Events 

~ ~ Menu Handler3 

v llJ. Methods 

ml "'l!.tZ!l.iUmll!l-· ""'• - · - · .... , ... , 

t> Ll Properties 

·:··""'' Code Editor (Palntwlndow) ·::··················--···· ·········-··········-·· ····· 08 

l lli 

Sub DragFreeHand( X As Integer , Y As Integer) 
If ((nLastX <> X) or (nlastY <> Y)) then 

PalntCanvas .Graphics.ForeCalor = RGB(O,O,O) 
PaintCanvas .Graphics.Drawllne(nlastX, nlastY, X, Y) 

if (picBuffer <> nil) t hen 
picBuffer.Graphics.FareColor = RGB(0,0,0) 
picBuffer.Graphics.Drawline(nLastX, nlastY, X, Y) 

end if 

nLastX = x 
nLastY = Y 

End if 
End Sub 

After adding the above code, the PaintWindow, DragFreeHand method 
should appear as shown in Figure 11.11. 

Refreshing PaintCanvas Using the picBuffer Object 
The only thing left to do is to update the contents of the on-screen window 
contents whenever the contents need to be redrawn. The Paint event is called 
whenever a window, or any of its controls, needs to be repainted. All you have 
to do is add the following code in the PaintWindow, Controls, PaintCanvas, 
Paint event: 

if (picBuffer <>nil) then 
g.drawpicture picBuffer. 0, 0 

end if 

After you add this code, the PaintWindow, PaintCanvas, Paint event should 
appear as shown in Figure 11.12. 

Testing Your Changes 
Now that you've added the code for the window refresh, you should save your 
work and test the code changes. If you run into any problems, simply review 
this section of the tutorial and double-check your work. 

While testing the application, draw something in the Paint window. Then make 
sure that when you move the Paint window around, it is updated properly. 



Figure 11.12 
The Code Editor 
window for the 

PaintWindow, 
PaintCanvas, 

Paint event 

Review 

rg Code Editor (Palntwlndow) ---- i!l:Jl3 
v- '11Controls Sub Paint(g As Graphics) 

l v ~ Pat ntCanves if (picBuffer <> nil) then 

~ lilllml 
g.drawpicture plcBuf t er , O, o 

end if 
~ MouseDovn End Sub 
~ MouseDrag 

~ MouseUp 

~ Mou,.Move 

I 
~ Mou3eEnter 

la MouseExit 11;1 

I 

~Open 
~Cl ose 
~ OropObject 

I> ti) Events 

I> !ii) Menu H•ndlers 

I I> 1i1 Methods 

! 
I> C!l, Properties 1-:.;:1 1-;;:1 

l-;-1 ~I 
IW El ~ [fl J_~• ~ 

Resize the Paint window to ensure that the entire picture redraws. Also try mov­
ing other application windows over the Paint window. When you move them 
away, the Paint window should update. 

Don't forget to open the File menu and select the Qyit menu item or press 
Command+Qto return to the REALbasic design environment after you've 
finished testing the application. 

In this chapter, you learned how to enable the Code Editor window and the 
basics of navigating within that window. You learned about the Code Editor 
Browser and the text-editing sections of the Code Editor window. You also 
learned how to add event handlers, methods, and properties using the Code 
Editor window. 

In addition, you learned a bit about when various event handlers are called and 
how you add code to handle the events. You also created a dynamic object, the 
picBuffer picture object, using the new command. 

You should be fairly comfortable navigating the various sections of the Code 
Editor window by now, so getting around in future chapters of this tutorial 
should be a lot easier. 



• Adding menu items to select the drawing tools 

• Adding a Line Draw tool and updating the Free Hand 
-- drawing tool 

• Adding two Rectangle and two Oval drawing tools 

• Adding a Draw Shape tool 



142 PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

In previous chapters, you created a paint application and added a simple free­
hand drawing tool. In this chapter, you'll add menu items to enable users to 

select from multiple drawing tools, and the code to handle these new tools. 

Adding Menu Items for the 
Selection of Drawing Tools 

The first thing you're going to do is add the menus for the new tools you'll be 
adding: a Line Draw tool, two Rectangle drawing tools, two Oval drawing 
tools, and a Draw Shape tool. You'll also add a menu selection for the freehand 
drawing tool you created in the last chapter. 

Understanding the 
Application Menu Window 
In REALbasic, you add menus to your project using the Application Menu 
window. With this tool, you can add menu items, submenus, and menu sepa­
rators (the horizontal lines in Mac OS 8 and 9, and the blank spaces in Mac 
OS X, that separate menu groups). You can define the menu item names, and 
choose command-key shortcuts for the menu items. Additionally, you can 
assign Balloon Help and Disabled Balloon Help text, which pops up when the 
user has enabled the Macintosh help balloons. The Disabled Balloon Help text 
is displayed when the user hovers over the menu item and it is disabled. 

To add your new menu items, do the following: 

1. Open the Project window (open REALbasic's Window menu and 
select the Project command, or press Command+O). 

2. Double-click the Menu object. 

3. The Application Menu window, shown in Figure 12.1, appears. Click 
on the blank menu item. The Properties window displays the menu­
item properties. 

4. Change the Text property to Tools and press Return. The menu item 
that was formerly blank is now labeled Tools, as shown in Figure 12.2. 

5. Click on the blank menu item, in the Tools menu. The blank menu 
item is the dotted line rectangle right under the Tools menu. 



CHAPTER 12 •ADDING MORE DRAWING COMMANDS 

Figure 12.1 
The REALbasic 

Application Menu 
window 

Figure 12.2 
The Application 

Menu window 
with the Tools 

menu added 

TIP 

The Properties window displays the properties for this menu item. As 
you can see, there are more options for menu items than menus. 

6. Change the Text property to Free Hand and press Return. You'll notice 
that REALbasic automatically changes the Name property to 
ToolsFreeHand for you. 

7. Repeat steps 1-6, adding new menu items with the following names 
(Figure 12.3 shows the Tools menu with all the items added): 

• Line Draw • Filled Rectangle 

• Draw Shape • Oval 

• Rectangle • Filled Oval 

-If you click on a menu item.and Begin typjng, the ~operties window 

automatically switches~tothe Text property. You can also use the cursor 

keys to switch between menu items. Both of these shortcuts can save 

you valuable microseconds when you are entering lots of menu items. 



Figure 12.3 
The Application 

Menu window with 
all of the Tools 

menu items added 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

Enabling the Menu Items 
If you run/debug the paint app now (go ahead, we'll wait for you), you'll notice 
that the menu items you just added are disabled. When a REALbasic appli­
cation creates a window, the EnableMenuitems event for that window is 
called. This event, not surprisingly, is used to enable menu items. The reason 
each window type has its own EnableMenuitems event is to support the var­
ious valid menu items that different window types might have. 

If you create an application class in your project, discussed in later chapters, 
you also have the ability to enable menu items application wide, meaning that 
any menu items enabled in the application class will be enabled throughout the 
entire application. 

To enable all your new menu items, follow these steps: 

1. Click on the Paint window in the Project window. 

2. Press Option+ Tab to display the Code Editor window. 

3. Expand the Events item (click its disclosure triangle or double-click 
Events). 

4. Select the EnableMenultems event in the Code Editor window, and 
enter the following source code (Figure 12.4 shows the results of the 
entries): 

ToolsFreeHand.Enable 
ToolslineDraw .En ab l e 
Too l sDrawShape.Enable 
Too l sRectang le.Enable 
ToolsFilledRectangle.Enable 
ToolsOval . Enable 
ToolsFilledOval . Enable 



· - - Figure 12.4 
The Code Editor 
window for the 

EnableMenultems 
event 

12 •ADDING MORE DRAWING COMMANDS 

Q Open 

~Close 
~ CencelClose 

~ KeyDovn 

m.l MouseMove 

~ Mouse.Enter 

~ MouseExit 

~ Pelnt 

ml MouseDown 

Q MouseDre9 

~ MouseUp 

~1m3ei;m1mm 
Q R" ized 
Q Moved 

~ DropObject 

~Activate 
ml, Deactivate 

!). ~ Menu Hendler> 

I> Ill Methods 

I> fl Properties 

Sub EnableMenultems() 
T oolsF ree Hand.En able 
ToolslineDraw.Enable 
ToolsDrawShape.Enable 
ToolsRectangle.Enable 
ToolsFilledRectangle.Enable 
ToolsOval.Enable 
ToolsFilledOval.Enable 

End Sub 

Now when you run the app (go ahead, it's cool!), you'll notice the menu items 
are all enabled. Note that you didn't have to enable the Tools menu. This hap­
pens "automagically" when any of the Tools submenu items are enabled. 

Adding Properties 
for the New Tools 
Before you get started on the actual code for the new t~ols, there are a few 
properties that you should add. The menus are supposed to function as fol­
lows: When the user chooses a tool's menu item, a checkmark is supposed to 
appear next to it. The checkmark should remain enabled until the user selects 
a new tool. To facilitate this, you're going to need to maintain the currently 
selected tool as a property. 

You're also going to add a couple other properties at this time, which you'll cre­
ate now, but won't be using until later. 

Here's what to do: 

1. Open the Edit menu and select the New Property menu item (or press 
Option +Command+ P). 

2. Enter nCurrentTool As Integer as the new property. 



.PART 11• DEVELOPINGYOUFfFIRST MAC PROGRAM 

3. Repeat steps 1and2, entering rgblineColor As Color and 
r g b Fil 1 Co 1 or As Co 1 o r, which will be used for color-selection tools 
that you'll add later (put them in place now to decrease coding time 
later). 

Updating the Menu Selections 
Now that you have the property you need to track the currently selected tool, 
you're going to add a method that places the checkmark next to the appropri­
ate menu item. Here's how: 

1. Open the Edit menu and select the New Method menu item (or press 
Option+Command+ M). 

2. Enter SetMenuSel ecti on as the new method name. 

3. Enter nTool As Integer as the new method parameters. 

4. Leave the return value blank. 

5. Click OK and enter the following source code in the 
SetMenuSelection Code Editor window, as shown in Figure 12.5: 

nCurrentTool = nTool 
ToolsFreeHand.Checked = CnCurrentTool = 1) 

ToolslineDraw.Checked = CnCurrentTool = 2) 
ToolsDrawShape.Checked = CnCurrentTool = 3) 
ToolsRectangle.Checked = CnCurrentTool = 4) 
ToolsFilledRectangle.Checked = CnCurrentTool 5) 
ToolsOval .Checked = CnCurrentTool = 6) 
ToolsFilledOval.Checked = CnCurrentTool 7) 

The SetMenuSelection does a few things. First, it saves the contents of the 
nTool parameter in the nCurrentTool property. You could have let the calling 
function change the contents of the nCurrentTool property, but doing so 
would violate the object-oriented encapsulation (see Chapter 9 , "Object 
Oriented Programming") of the nCurrentTool property. If you ever 
changed nCurrentTool, and/or how it's used, then every piece of code that 
uses nCurrentTool would have to be changed. So, by passing the new value 
for nCurrentTool into this function, you've centralized the code for what 
nCurrentTool is used for and any future changes will only have to be done in 
this function. Cool huh? 



CHAPTER 12 •ADDING MORE DRAWING COMMANDS 147 

Figure 12.5 
The Code Editor 
window for the 

SetMenuSelection 
method 

Controls 
~ p Events 

~ 'te Menu Handlers 
,.. Ill Methods 

ml Drll\lFrooHand 

~ •Htlti1MllMH!tft 
~ lj!. Properties 

Sub SetMenuSelection(nTaol As Integer) 
nCurrentTool = nTool 
TaalsFreeHand.Checked = (nCurrentTaal = 1) 
TaalsllneDraw.Checked = (nCurrentTool = 2) 
ToalsDrawShape.Checked = (nCurrentTaal = 3) 
TaalsRectangle.Checked = (nCurrentTaal = 4) 
TaalsFilledRectangle.Checked = (nCurrentTaal = S) 
TaalsOval.Checked = (nCurrentTaal = 6) 
TaalsFilledOval.Checked = (nCurrentTaal = 7) 

End Sub 

The SetMenuSelection method then enables and disables the checkmark for 
each menu item as is appropriate based on the value of nCurrentTool. It does 
this by using a coding shortcut. You could have enabled and disabled each 
menu item with code similar to the following: 

If (nCurrentTool = 1) then 
ToolsFreeHand.Checked true 

Else 
ToolsFreeHand.Checked 

End if 

false 

But that's a heck of a lot of code, just to set one Boolean (true/false) value. A 
more efficient method would be to remove the redundant code, making it look 
something like this: 

Dim bFreeHandChecked As Boolean 
bFreeHandChecked = (nCurrentTool = 1) 

ToolsFreeHand.Checked = bFreeHandChecked 

This code works because the Equivalence operator ( =) returns a Boolean value 
that indicates whether the values being compared are equal to each other. Even 
so, this code is inefficient, because it declares a variable that is used only once. 
Variables should be declared only if you are using them two or more times. It's 
all about reducing code redundancy. 



Figure 12.6 
The Code Editor 
window for the 

Open event 

You can simplify the code to remove the bFreeHandChecked variable completely 
and just store the result of the nCurrentTool comparison directly in the 
Too l sFreeHand. Checked property, as was done in the original SetMenuSelection 
method's code: 

ToolsFreeHand.Checked = (nCurrentToo l = 1) 

Some developers might find this confusing at first; the use of the Assignment 
operator on the same line as an Equivalence operator may be what's confusing 
them. Just remember that an Equivalence operator returns a Boolean value, 
which can be stored in any Boolean variable. 

Initializing the New Properties 
Don't run the application this time. It doesn't do anything new yet. You've still 
got a couple things to do before you'll notice any new functionality. First, you'll 
need to initialize the new properties so that they'll be ready when needed. 
Here's how: 

1. Expand the Events item (click its disclosure triangle or double-click 
Events). 

2. Select the Open event, and add the following to the code, as shown in 
Figure 12.6: 

rgblineColor = RGB(O, 0, 0) 
rgbFi ll Co l or = RGB(O, 0, 0) 
SetMenuSelection 1 

13]- ·· . .. - - ·-·ii!iJ Code Editor (PaintWlndoW) ·. 

!~Coot,ols Sub Open() 

f)) Events dim nColorDepth as integer 
nColorOepth - Screen{O).Depth 

.. -- ··Eiii= 

~llm 
~ Clooe 

plcButfer - NewPictuni (640, 480, nCotorOepth) 

~ CencelCI~ rgbllneColor - RGB( O, o, O) 
~ KeyDwn rgbFlllColor • RGB(O, 0, O) 

~ Mo .... Move SetMenuSelectton 1 

~ MouseEnter 
End Sub 

~ MoineExit 1'1 6l, Peint 

~ "'""°"'" l:WI a Mou3CDreQ 

~Mo"'"' 
~ Eneblet1eaultems 

~ R~lzed 

~I • ~ Moved 
~ DropObject 

H ~ Activate 

Q De8etiv11te 
~ h Menu Handlers 

-"'-
t=i 

llH'.l!B Hl 

~,,..~ ~~e 

. 
y 

41~ ~ 



CHAPTER 12 •ADDING MORE DRAWING COMMANDS 149 

Figure 12.7 
The REALbasic New 

Menu Handler 
dialog box 

Figure 12.8 . 
The Code Editor 
window for the 
ToolsFreeHand 
menu handler 

If you run the application now, you'll notice that the Free Hand menu item is 
now enabled by default. 

Selecting Tools with the Menus 
Now you're going to add the code that enables the checkmark on each menu 
item as it is selected. To do this, you must add menu handlers for each of the 
new menu items you added. To add each menu handler, follow these steps: 

1. Open the Edit menu and select the New Menu Handler command (or 
press Option+Command+H). 

2. Select ToolsFreeHand from Menu Item list. The New Menu Handler 
dialog box, shown in Figure 12.7, will open. 

3. Click OK to display the Code Editor window for the ToolsFreeHand 
menu handler. 

4. Enter the following in the Code Editor window for the ToolsFreeHand 
menu handler, as shown in Figure 12.8: 

SetMenuSelection 1 

''·' . ' * 
'~! ~lj!~~~:;; nTool~Frajjlta11d . r~ E 
lt .... : .;·E.}~\;·•··1···;. (; .·~!nc.~1·:lU.: .. DK·J··· 

~Controls Function Action As Boolean 

~ ~£venb I' SetMenuSelectlon 1 

v ~ Meno Handlers 
End Function 

I 
Q iiftdldAlldftll 

~Ill --~ ll Propertlea 

l'I 

.'.!! 

. r. 
!-; 

·•·•···.·•· . .:.' ..ill.• 



150 PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

5. Repeat steps 1-3 for the following menus: 

Menu Name Code to Add in the Menu 
Handler's Code Editor Window 

ToolslineDraw SetMenuSelection 2 

ToolsDrawShape SetMenuSelection 3 

ToolsRectangle SetMenuSelection 4 

ToolsFilledRectangle SetMenuSelection 5 

ToolsOval SetMenuSelection 6 

ToolsFilledOval SetMenuSelection 7 

If you run the application now (come on, do it!) you'll notice that all the Tools 
menu items will be updated when you select them. The checkmark will be dis­
played next to the menu item that you select. The checkmark will be removed 
from the last selected menu item when a new one is selected. The drawing 
commands obviously don't work, however, because no code has been added for 
each of the drawing commands. 

Adding a Line Draw Tool and 
Updating the Free Hand Drawing Tool 

Now that you've added all the code to properly update the menu items' check­
marks, you can start working on some of the drawing tools. First you're going 
to work on the new Line Draw tool. Here's how the Line Draw tool works: 

1. The user clicks and holds down the mouse button, causing the Line 
Draw tool to anchor the first end of the line at the location of the 
mouse click. 

2. The user drags the mouse. As she does so, a line will be drawn between 
the anchored end and the current mouse location. 

3. The user releases the mouse button, causing the other end of the line to 
be anchored to the current mouse location. 

You're also going to be updating the Free Hand drawing tool. The current Free 
Hand drawing tool source code assumes it's the only drawing tool available. 
You're going to change it so that it fits into the new code design. 



CHAPTER 12 •ADDING MORE DRAWING COMMANDS 151 

Adding the DragRefresh Method 
The first method you're going to add is the DragRefresh method, which will 
be responsible for refreshing the background of the Paint window when a 
drawing tool is being dragged across it. 

To create the DragRefresh method, do the following: 

1. Open the Edit menu and select the New Method menu item (or press 
Option+Command+ M). 

2. Enter DragRefresh as the new method name. 

3. Enter Xl As Integer. Y1 As Integer, X2 As Integer, Y2 As 
Integer as the new method parameters. 

4. Leave the return value blank. 

5. Click OK and enter the following source code in the DragRefresh 
Code Editor window, as shown in Figure 12. 9. 

Dim X, Y, nWidth. nHeight As Integer 
If (Xl < X2) then 

X Xl 
Else 

X X2 
End If 

If (Yl < Y2) then 
y = Y1 

Else 
Y = Y2 

End If 
nWidth = Abs(X2 - Xl) + 1 
nHeight = Abs(Y2 - Yl) + 1 

PaintCanvas.RefreshRect(X, Y, nWidth, nHeight) 

Reread the code you just entered. Here's how it works: 

1. First, the DragRefresh method declares four variables that are used to 
locate the top-left coordinates of the area being refreshed. Because the 
Pai ntCanvas. RefreshRect function doesn't allow for negative heights 
and widths, the DragRefresh method must determine which X coordi­
nate, Xl or X2, and which Y coordinate is to be used as the upper-left 
coordinate. That's what the first two If statements do. 



Figure 12.9 
The Code Editor 
window for the 

Drag Refresh 
method 

a - ··'"'" l'.JiiiiG.Gili Code Edltor (PaintWindow) !i!!ii!efi r tt £&LLl£2 !1l8 

~~Ca•trols Sub OragRefresh(Xl As Integer, Yl As Integer, X2 As Integer, Y2 As Integer) 

~ jP Evenb Olm X, Y, nWldth, nHelght As Integer 

~ h Menu Hendler• 
1r (X l < X2) then 

X • X1 
v [l Metboda Else 

~ DngFreeHand X • X2 

~llllll!lll!J'.I End If 

~ SetMe nuSelectlon It (V1 < V2) then 

(> fl Properties 
v-v1 

Else 
v-v2 

End It 
nWldth - Abs(X2 - X 1) + 1 
nHelght • Abs(Y2 - Y1) + 1 
PaintCanvas.RefreshRect(X, Y, nWldth, nHelght) 

End Sub 

~ ':I . f;-1 
m EJ [ij ''.~ •• rq,; 

2. The DragRefresh method then calculates the width and height of the 
refreshed rectangle before calling the Pai n t Canvas . Refresh Rec t 

function. 

In essence the DragRefresh method determines the proper X and Y coordi­
nates, along with the proper width and height values, and then refreshes the 
rectangle as needed. 

Adding New End Point Properties 
The project already includes two properties used to hold the last-known 
mouse location: nlastX and nlastY. For line drawing, two other mouse loca­
tion properties are needed. When a line is drawn the nlastX and nlastY 

properties will hold the location of the first mouse click (the start of the line), 
and the two new properties will hold the location of the point at which the 
mouse was released (the end of the line). These new properties, n LastEndX and 
n Las tEndY, will also be used in the drawing of other shapes, such as rectangles. 

Here's how to add these properties: 

1. Open the Edit menu and select the New Property command, or press 
Option+Command+P to open the New Property dialog box. 

2. Type the following in the Declaration field of the New Property dialog 
box: 

nlastEndX As Integer 



CHAPTER 12 •ADDING MORE,QRAWING COMMANDS 

3. Press Return or click on the OK button to close the New Property 
dialog box. 

4. Repeat steps 1 through 3, but this time add the following property 
declaration: 

nlastEndY As Integer 

You'll see that these properties are used in a few methods, starting next with 
the DragLineDraw method that refreshes the window. 

Adding the 
DraglineDraw Method 
Now you're going to add a DragLineDraw method that will refresh the rec­
tangular area of the line being drawn, set the proper line color, and then draw 
a line between the anchored line end and the current mouse position. After all 
of this, it will update the LastEndX and LastEndY values so that they can be 
compared to the mouse position the next time the DragLineDraw method is 
called. If the current mouse position hasn't changed since the last time 
DragLineDraw was called, then nothing happens. This helps prevent flicker­
ing during redraws. 

Follow these steps to add the DragLineDraw method: 

1. Open the Edit menu and select the New Method command (or press 
Option+Command+ M). 

2. Enter Dragl i neDraw as the new method name. 

3. Enter X As Integer, Y As Integer as the new method parameters. 

4. Leave the return value blank. 

5. Click OK and enter the following source code in the DragLineDraw 
Code Editor window, as shown in Figure 12.10: 

If ((X <> nlastEndX) or CY <> nlastEndY)) Then 
DragRefresh(nlastX, nlastY, nLastEndX, nlastEndY) 
PaintCanvas.Graphics.ForeColor = rgbLineColor 
PaintCanvas.Graphics.Drawline(nlastX, nlastY, X, Y) 
nlastEndX = X 
nlastEndY = Y 

End If 



Figure 12.10 
The Code Editor 
window for the 
DraglineDraw 

method 

~~Controls 
~ f)) Events 

i L\ h Menu Hendlen 

I v ~Methods 
I ~ Dre9FreeHend 

I Ill llmlll11!iltZtl 
I ~ DnoRefnsh 

~ SetMenuSelectlon 

~ Cl Properties 

Sub OraglineDraw(X As Integer, Y As Integer) 
If ((X <> nlastEndX) or {Y <> nlastEndY)) Then 

DragRefresh(nlastX, nlas tY, nlastEndX, nLastEndY) 
PaintCanvas.Graphics.ForeColor .. rgblineColor 
PaintCanvas.Graphics.DrawLine(nlastX, nlastY, X, Y} 
nlastEmiX"" X 
nlastEndY = Y 

End If 
End Sub 

Adding the EndlineDraw Method 
As we said before, use of the Line Draw tool is completed when the user 
releases the mouse button. The EndLineDraw method does this by drawing a 
line between the two anchor points. The line is drawn in the pi cBuffer so that 
during future refreshing, the line will be maintained. 

To add the EndLineDraw method, do the following: 

1. Open the Edit menu and select the New Method command (or press 
Option+Command+M). 

2. Enter Endl i neDraw as the new method name. 

3. Leave the parameters and return value blank. 

4. Click OK and enter the following source code in the EndLineDraw 
Code Editor window, as shown in Figure 12.11: 

If (picBuffer <>nil) then 
pi cBuffer.Graphics.ForeColor = rgblineCo l or 
pi cBuffer.Graphics. Draw l ine(nlastX. nlastY, nl astEndX, • 

nlastEndY) 
End If 

This code first checks to make sure th.at pi cBuffer was successfully created. It 
then sets the proper line color and draws a line in pi cBuffer . 



CHAPTER 12 •ADDING MORE DRAWING COMMANDS 155 

Figure 12.11 
The Code Editor 
window for the 

EndLineDraw 
method 

Eve ob 
~ lie 11eoo Handlera 

v 1ll 11ethods 
~ DrauFreeHand 

Gl DraoliueDraw 
la DrauRefreah 

Ill lllllilllllliDI 
~ SetHen11Selectlon 

• CTI, Properu .. 

Sub EndlineDraw() 
If (plc8uffer <> nll) then 

pii:::Buffer.Graphlcs.ForeColor = rgblineColor 
pic8uffer.Graphlcs.Drawllne(nlastx, nLastY, nLastEnd~. nLastEndY) 

End If 
End Sub 

Changing the MouseDrag 
PaintCanvas Event 
There's no point in testing the code at this point. You won't see any results yet, 
but you're getting there. First you need to change PaintCanvas's MouseDrag 
event so that it can either work with the Free Hand drawing tool or the Line 
Draw tool. 

To update PaintCanvas's MouseDrag event, do the following: 

1. Expand the Controls item (click its disclosure triangle or double-click 
Controls). 

2. Expand the PaintCanvas item (click its disclosure triangle or double­
click PaintCanvas). 

3. Select the MouseDrag event and change the MouseDrag source code 
to the following, as shown in Figure 12.12: 

Select Case (nCurrentTool) 
Case 1 

DragFreeHand(X, Y) 
Case 2 

DragLineDraw(X, Y) 
End Select 

This code represents the first time you've used the Select/Case keywords. As 
we mentioned in Chapter 6 "Making Your Program Flow," the Select/Case 



156 

Figure 12.12 
The Code Editor 
window for the 

MouseDrag event 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

v ~ Controls 
v ~ Paiotcaavu 

11.1 Palot 
l1i Ho ... o. ... 
l1i IIl!lll!llm 
l1i Mo""'UP 
l1i Mo.,.Move 
ll MoU$8Enter 
@1 MouseExit 
Q Open 

11.lc1ose 
l1i Oropllbject 

~ tJ) Eveot• 
t> '&\a HcnU Handlers 

~ Ill Method• 
~ !:a Propertl .. 

Sub MouseOrag(X As Integer, Y As Integer) 
Select Case (nCurrentTool) 
Case 1 

DragFreeHand(X, Y) 
Case 2 

DragllneDraw(X, Y) 
End Select 

End Sub 

keywords allow you to execute various sections of code similar to multiple 
If/Else If/Else/End If statements. The MouseDrag code now calls the 
DragFreeHand method if the Free Hand item is selected from the Tools menu 
and the DragLineDraw method if the Line Draw menu item is selected from 
the Tools menu. 

Changing the MouseUp 
PaintCanvas Event 
Last but not least, the MouseUp event needs to be updated just like the 
MouseDrag event was. You're going to need to call the EndLineDraw method 
if LineDraw menu item is selected from the ToolS menu. There's no need to 
do anything for the Free Hand drawing tool. 

All you need to do to update the code is to select the MouseUp event (it's 
listed right by the MouseDrag event under the PaintCanvas item) and enter 
the following source code, as shown in Figure 12.13: 

Select Case (nCurrentTool) 
Case 2 

EndlineDraw 
End Select 

Now, finally you can run the application and see the fruits of your labor. If 
you run the application now, you'll notice that the Line Draw tool works cor­
rectly. The Free Hand drawing tool should still work as well. If either of the 



CHAPTER 12 •ADDING MORE DRAWING COMMANDS 157 

Figure 12.13 
The Code Editor 
window for the 
MouseUp event 

v ~ Control& 
• ~ PalntCanvaa 

Ill Paint 
1ll 11o ... 0own 

Ii!. 11o ... on111 

lil.lllllllll!lllll 
Ill Mo"'8Move 
Ill MouseEnter 
Ill MouoeExlt 
fil. Open 

1llc1 ... 
ill DropObject 

~ !)> Eveota 

~ h Heou Hondlcra 

~ Ill t1otl>od• 
~ Cil Properti .. 

~,,......,,..--..,.,, 

Sub MouseUp(X As Integer, Y As Integer) 
Select Case (nCurrentTool) 
Case 2 

EndllneDraw 
End Select 

End Sub 

tools works incorrectly, don't be too concerned. Simply recheck your code and 
try again. 

Adding Rectangle 
and Oval Drawing Tools 

The Rectangle and Oval tools work in similar fashion. You use both by click­
ing and dragging to determine the shape and size of the object being drawn. 
Both have optional filled-in versions, and both require new ToolDrag, 
ToolEnd, MouseDrag, and MouseUp methods. 

Here's how these tools work: 

1. The user clicks and holds down the mouse button, causing the 
Rectangle or Oval tool to anchor the first corner of the shape at the 
location of the mouse click. 

2. The user drags the mouse. As she does so, a rectangle or oval will be 
drawn between the anchored corner and the current mouse location. If 
the user has selected the filled version of one of these tools, the area is 
filled in with the selected fill color. 

3. The user releases the mouse button, causing the other corner of the 
shape to be anchored to the current mouse location. 

Even though they operate the same way, the code is different enough to work 
on these tools separately. 



158 PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

Adding the DragRectangle and 
DragOval Methods 
First, you must add the DragRectangle and DragOval methods. Both of these 
methods first refresh the area being drawn, and then check whether the user 
selected the filled-in versions of either the Rectangle or the Oval tool. If so, 
the object is first drawn as a filled shape. The proper line color is selected, and 
the shape outline is drawn. Last of all, the LastEndX and LastEndY values are 
updated so that they can be compared to the mouse position the next time the 
DragRectangle or DragOval method is called. DragRectangle and DragOval 
do nothing if the mouse hasn't changed location since the last time these 
methods were called. 

Follow these steps to add the DragRectangle method: 

1. Open the Edit menu and select the New Method command (or press 
Option+Command+ M). 

2. Enter DragRectangl e as the new method name. 

3. Enter X As Integer, Y As Integer, bFi 11 As Boal ean as the new 

method parameters. 

4. Leave the return value blank. 

5. Click OK and enter the following source code in the DragRectangle 
Code Editor window: 

If ((X <> nLastEndX) or (Y <> nlastEndY)) Then 
DragRefresh(nlastX, nlastY, nlastEndX, nlastEndY) 
If (bFill) Then 

PaintCanvas.Graphics.ForeColor = rgbFillColor 
PaintCanvas.Graphics.FillRect(nlastX, nLastY, X-nLastX. • 
Y-nLastY) 

End If 
PaintCanvas.Graphics.ForeColor = rgblineColor 
PaintCanvas.Graphics.DrawRect(nlastX, nlastY, X-nlastX, Y-nlastY) 
nlastEndX = X 
nlastEndY = Y 

End If 

Follow these steps to add the DragOval method: 

1. Open the Edit menu and select the New Method command (or press 
Option+Command+ M). 



CHAPTER 12 •ADDING MORE DRAWING COMMANDS 

2. Enter DragOval as the new method name. 

3. Enter X As Integer, Y As Integer, bFill As Boolean as the new 
method parameters. 

4. Leave the return value blank. 

5. Click OK and enter the following source code in the DragOval Code 
Editor window: 

If CCX <> nlastEndX) or CY <> nlastEndY)) Then 
DragRefresh(nlastX, nlastY, nlastEndX, nlastEndY) 
If ( bFi 11) Then 

PaintCanvas.Graphics.ForeColor = rgbFillColor 
PaintCanvas.Graphics.FillOval(nlastX, nlastY, X-nLastX, .,. 
Y-nLastY) 

End If 
PaintCanvas.Graphics.ForeColor = rgblineColor 
PaintCanvas.Graphics.DrawOval(nLastX, nLastY, X-nlastX, .,. 

Y-nlastY) 
nlastEndX = X 
n LastEndY = Y 

End If 

When we discussed the DragRefresh code earlier in this chapter, we men­
tioned that the RefreshRect method doesn't support negative height and width 
values. You therefore needed to choose the proper corner for the X and Y coor­
dinates and calculate the appropriate height and width. You would think that 
the Fi 11 Re ct, DrawRect, Fi 11Ova1 and DrawOva 1 functions would work the 
same way, but both of these functions use the X and Y coordinates of the 
upper-left and lower-right corners of the shape to specify the region of the 
shape being drawn. Therefore, the proper coordinates don't need to be chosen 
and the height and width are not calculated either. 

Adding the EndRectangle 
and EndOval Methods 
As was explained previously, use of the Rectangle and Oval tools (and their 
filled-in versions) is completed when the user releases the mouse button. If the 
user chose the filled versions of these tools, the EndRectangle and EndOval 
methods fill in the shape, using the proper fill color, in pi cBuffer. Last, the 
methods draw the shape outline, using the proper line color, in pi cBuffer. 



160 PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

Recall that pi cBuffer is updated so that future screen refreshes will display the 
proper graphic. 

To create the EndRectangle method, do the following: 

1. Open the Edit menu and select the New Method command (or press 
Option+Command+ M). 

2. Enter EndRectangl e as the new method name. 

3. Enter b Fi 11 As Boo 1 ea n as the new method parameters. 

4. Leave the return value blank. 

5. Click OK and enter the following source code in the EndRectangle 
Code Editor window: 

If (picBuffer <>nil) then 
If (bFill) Then 

picBuffer.Graphics.ForeColor = rgbFillColor 
picBuffer.Graphics.FillRect(nlastX, nLastY, -. 

nlastEndX-nlastX, nlastEndY-nlastY) 
End If 
picBuffer.Graphics.ForeColor = rgblineColor 
picBuffer.Graphics.DrawRect(nlastX, nlastY, .,. 

nlastEndX-nlastX, nlastEndY-nlastY) 

End If 

You create the EndOval method by following these steps: 

1. Open the Edit menu and select the New Method command (or press 
Option+Command+ M). 

2. Enter EndOval as the new method name. 

3. Enter bFil 1 As Boolean as the new method parameters. 

4. Leave the return value blank. 

5. Click OK and enter the following source code in the EndOval Code 
Editor window: 

If (picBuffer <>nil) then 
If (bFill) Then 

picBuffer.Graphics.ForeColor = rgbFillColor 
picBuffer.Graphics.FillOval(nlastX, nlastY, -. 

nlastEndX-nlastX, nlastEndY-nLastY) 
End If 



CHAPTER 12 •ADDING MORE DRAWING COMMANDS 

picBuffer.Graphics.ForeColor = rgblineColor 
picBuffer.Graphics.DrawOval(nlastX, nlastY,-. 

nlastEndX-nlastX, nlastEndY-nlastY) 
End If 

161 

Now that you've added the code for the tools, all you need to do is call these 
methods where appropriate. 

Changing the MouseDrag 
PaintCanvas Event 
As with the Line Draw tool, the Rectangle and Oval tools' "drag" methods need 
to be called from the MouseDrag event. To do this, you'll be adding cases to the 
select statement. Follow these steps to call these methods where appropriate: 

1. Expand the Controls item (click its disclosure triangle or double-click 
Controls). 

2. Expand the PaintCanvas item (click its disclosure triangle or double­
click PaintCanvas). 

3. Select the MouseDrag event and add the following to the end of the 
Select Case statement in the MouseDrag source code: 

Case 4 
DragRectangle(X, Y, false) 

Case 5 
DragRectangle(X, Y, true) 

Case 6 
DragOval(X, Y. false) 

Case 7 
DragOval (X, Y, true) 

Each of the Drag methods is called with the bFi 11 parameter set to either 
false or true, to handle the fact that the Rectangle and Oval drawing tools 
can be used in filled or unfilled mode. 

Changing the MouseUp 
PaintCanvas Event 

... Last of all, the Mouse Up event needs to be changed to call the proper End 
drawing tool methods. As with the MouseDrag event, the Select statement of 



1e2· PART· 11 •DEVELOPING Y.QUR FIRST MAC PROGRAM 

the MouseUp event needs to be extended to include calls to the proper End 
tool method. To add the new cases to the select statement, select the Mouse Up 
event (located right by the MouseDrag event under the PaintCanvas item) and 
enter the following source code: 

Case 4 
EndRectangle(false) 

Case 5 
EndRectangle(true) 

Case 6 
EndOval(false) 

Case 7 
EndOval(true) 

If you run the application now, you'll notice that both of the Rectangle and 
Oval drawing tools function properly. Go ahead and run the app, and try the 
new tools by selecting each one, clicking and dragging in the drawing window, 
and releasing the mouse button once the shape is the size you want it. Make 
sure you move the drawing window around on the screen and resize it to test 
the DragRefresh function to insure that it's working properly. 

Adding a Draw Shape Tool 
The Draw Shape tool is a bit different from the other tools you've worked on. 
They all follow the click-drag-release method of operation. The Draw Shape 
tool, however, works like this: 

1. The user clicks and releases the mouse button, locking one end of a 
line-drawing tool. The system "remembers" this location for future 
reference. 

2. The user moves the mouse; the application draws a line from the 
locked end of the line to the current mouse position. 

3. The user clicks and releases the mouse button again, locking the other 
end of the line, which is then committed to the paint canvas. A new 
line is started, with its end locked at the same location as the end of the 
first line. 

4. The user can then move the mouse to a new location and repeatedly 
single-click, drawing one line attached to the end of the previous line. 



CHAPTER 12 •ADDING MORE DRAWING COMMANDS 163 

5. When the user wants to stop the shape-drawing process, she double­
clicks the mouse. At this point, the system draws a line from the end of 
the last line drawn to the beginning of the first line. 

So, as you can see, this tool is just a bit more complicated. 

Adding Properties 
for the New Tools 
First you're going to add some new properties that will be used to track the 
location of the mouse click that started the process. You're also going to add a 
property to save the time that the mouse button was released. This will be used 
to calculate the difference between the time of current mouse click and the last 
time the mouse was released. This helps you to determine whether a double­
click occurred. 

Now, let's add those properties: 

1. Open the Edit menu and select the New Property command (or press 
Option+Command+ P). 

2. Enter the following new properties: 

bDrawingShape As Boolean 
nShapeStartX As Integer 
nShapeStartY As Integer 
dMouseUpTime As Double 

Now that you've got these new properties in place, you're going to need to 
modify three events to make the new tool work: MouseUp, MouseMove, and 
MouseDown. 

Changing the MouseUp 
PaintCanvas Event 
The only thing new thing that the MouseUp event has to do is keep track of 
the last time the mouse button was released. The Microseconds function 
returns the number of microseconds since the computer was lasted started up. 
By calculating the difference between two Microseconds return values, the 
application can determine the duration between two events-in your case, the 
MouseUp event and the MouseDown event. 



164 

Figure 12.14 
The Code Editor 
window for the 
MouseUp event 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

Here's how to change the MouseUp event: 

1. Expand the Controls item (click its disclosure triangle or double-click 
Controls). 

2. Expand the PaintCanvas item (click its disclosure triangle or double­
click PaintCanvas). 

3. Select the MouseUp event and add the following to the top of 
MouseUp source code, as shown in Figure 12.14: 

dMouseUpTime = Microseconds 

Changing the MouseMove 
PaintCanvas Event 
The MouseMove event only has to draw a line from the last anchor point of 
the current mouse position. Fortunately for us, the line drawing can be accom­
plished through the use of the existing DragLineDraw method, so you won't 
need to do a lot to satisfy the needs of the MouseMove event. 

Here's what you need to do: 

1. Expand the Controls item (click its disclosure triangle or double-click 
Controls). 

2. Expand the PaintCanvas item (click its disclosure triangle or double­
click PaintCanvas). 

••• 
v ~ Palntcanva 

ill Paint 
@i l'fouscDovo 
Ill Ho ....... 

Ill lmmll!m 
Iii Ho-Hove 
@I. Moll$0fntcr 

Ill"""""'" ill Open 

Ill er"' 
Ill DropObject 

~ f)l Evonto 
t 1;Jb 11eoq Handlers 

~ill Hot-
~ I! Proportloo 

Sub McuseUp(X As Integer, Y As Integer) 
dMouseUpTlme = Microseconds 
Select Case (nCurrentTool) 
Case 2 

EndlineDraw 
Case 4 

EndRectangle( false} 
Case 5 

EndRectangle(true) 
Case 6 

EndOva1(false) 
Case 7 

EndOval(true) 
End Select 

Enll Sub 



CHAPT.ER 12 •ADDING MORE DRAWING COMMANDS 

Figure 12.15 
The Code Editor 
window for the 

MouseMove event 

v~Caatro ls 
v ~ Pal DtC.11vas 

~ Palat 
~ MeuseDovn 

~ MouseDng 

~ HouseUp 

~immmm 
~ l"kluseEnler 

~ MouseExlt 

~Open 
~ Clo>e 

~ Dn>pllbject 

1> IP Eveat' 
I> h Mena Handlers 

I> Ill Methods 

I> 0 Properties 

Sub MouseM01te(X As Integer, Y As Integer) 
If ((nCurrentTool - 3) and (bDraW1ngsnape)) Then 

DragllneDraw(X , Y) 
End tr 

End Sub 

3. Select the MouseMove event and enter the following source code, as 
shown in Figure 12.15: 

if ((nCurrentTool = 3) and (bDrawingShape)) Then 

DraglineDraw(X, Y) 

End If 

The MouseMove event code only calls the DragLineDraw method if the 
Draw Shape tool is selected, which you can determine by checking whether 
nCurrentTool is equal to a value of 3. Also, the bDrawi ngShape Boolean vari­
able must contain a value of true. If both of these conditions are satisfied, then 
the line can be drawn. 

The reason you use the MouseMove event, rather than the MouseDrag event 
as with the other tools, is that the requirements of the tool don't call for click­
drag-release functionality. The Draw Shape tool draws the line while the 
mouse cursor is moving, not while it's being dragged. 

Changing the MouseDown 
PaintCanvas Event 
The real powerhouse of the Draw Shape tool is the MouseDown event, which 
is responsible for 

• Recording the mouse click that starts a new shape-drawing process and 
saving this value. 



166 

Backward 

compatibility 

refers to the 

capability of an 

application to 

work with an 

older version of 

the application. 

·You might have 

heard the term 

used to refer to 

the capability of a 

word-processing 

application to 

open files from a 

previous version 

of the app. The 

term backward 

compatibility can 

also be used in 

reference to 

sections of your 

code. 

Figure 12,16 
The Code Editor 
window for the 

MouseDown event 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

+ Completing a specific line segment when the user single-clicks the 
mouse after shape drawing has been started. 

+ Drawing a line from the end of the last line segment to the beginning 
of the first line segment when the user double-clicks the mouse. 

To do all these things, almost all of the code in the MouseDown event has to 
be replaced. Don't forget, though, that the MouseDown event is also used for 
the previously created drawing tools. So any new code must be backward com­
patible with the other functions. 

Follow these steps to modify the MouseDown function to add the shape­
drawing functionality: 

1. Expand the Controls item (click its disclosure triangle or double-click 
Controls). 

2. Expand the PaintCanvas item (click its disclosure triangle or double­
click PaintCanvas). 

3. Select the MouseDown event and change the entire MouseDown 
source code to the following, as shown in Figure 12.16: 

If (nCurrentTool = 3) Then 
If (bOrawingShape) Then 

If ((Microseconds - dMouseUpTime) < 400000) Then 
DraglineOraw(nShapeStartX. nShapeStartY) 
bDrawingShape = false 

trola 
v ~ Polntcanvn 

ill Po••• 
QllllllllllllllB a ....... .... 
a ...... u, 
a ...... ..... 
~ MouseEnter a .... ,,.Exn 
Q Opon 
a er,.. 
Ill OropCbject 

• £!J Events 
Do h l'fepa Handlers 

•Ill ... ·-~ illL Proportlss 

Functlan MouseDown(X As Integer, Y As Integer) As Boolean 
If (nCurrentTool"" 9) Then 

If (bDrawtngShape) Then 
If ((Microseconds - dMouseUpTlme) < 400000) Then 

OragllneDraw(nShapeStartX, nShapeStartY) 
bDrawingShape = false 

End If 
EndllneDraw 

Else 
nShapeStartX ... X 
nShapeStartY ~ Y 
bDrawingShape ... true 

End If 
End 1f 
nLastX"" X 
nLastY"" Y 
Return true 

End Function 

( . 



CHAPTER 12 •ADDING MORE DRAWING COMMANDS 

End If 
EndlineDraw 

Else 
nShapeStartX X 
nShapeStartY Y 
bDrawingShape = true 

End If 
End If 
nlastX X 
nlastY Y 
Return true 

The new code for the MouseDown event does the following: 

+ If the Draw Shape tool is selected ( n Curren tT o o l = 3), and a shape 
is currently being drawn ( bDrawi ngShape ), the time since the last 
MouseUp event is calculated to determine whether a double-click has 
occurred. If the user double-clicked, then a line is drawn to the 
coordinates where the shape-drawing command was started. Whether 
the user clicked or double-clicked, the MouseDown event code calls 
the EndLineDraw method to complete the current line segment. 

+ If the Draw Shape tool is selected and a shape is not currently being 
drawn, the EndLineDraw method records the location of the mouse 
click, which is used to close the shape when the user double-clicks. It 
also sets the bDrawi ngShape Boolean variable to true, so that future 
mouse clicks will be handled as above. 

+ The coordinates of the last mouse click are recorded and the 
MouseDown event handler returns true, indicating that the application 
is handling the MouseDown event. Alert programmers will realize that 
this last step is the same as the original MouseDown event handler. So, 
the original tools should function with no modifications. 

Whew! You just gotta love those coding marathon sessions. Anyway, now 
would be a great time to save and test the project. Test the new Draw Shape 
tool. Select the tool, and then single-click in the Paint window to start the 
Draw Shape tool. Move the mouse-don't click and drag-to another loca­
tion. A line should be drawn between the first click location and the current 
mouse location. When you single-click again, a new line should begin at the 
end of the first line. 



168 

Review 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

Repeat the steps above, clicking the mouse and moving to a new location, a 
few times, and then double-click the mouse. A line should be drawn from the 
end of the last line to the beginning of the first line. 

Test it a few more times, resizing and moving the window to ensure that the 
DragRefresh functions are working properly. If everything is properly coded, 
then it should be working without a hitch. If you're having problems, double­
check your work, fix any problems, and try again. 

By now you should have a pretty good feel for events, methods, and variables. 
You've added some of each and should be comfortable with these concepts. 

When working on your own projects in the future, you will find that you rely on 
the REALbasic Language Reference. All the events you've worked with are 
documented in the Language Reference. Now might be a good time to take a 
look at some of the objects and events you've used so far. Open the REALbasic 
Window menu and select Language Reference (or press Command+O) to dis­
play the Language Reference window. 

Browse a bit in the Language Reference. To search for information about the 
canvas, type canvas in the edit field, and click the Search button; then read up 
on the object you've been working with for the last few chapters. 

If you're so inclined, browse around a bit more and see what you can pick up. 
Don't be discouraged if you don't understand a lot of what you're reading for 
now. Understanding will come in time. For now, just get a feel for the layout 
of the reference. 

In later chapters, you'll be adding file operations (such as Save and Open), 
clipboard operations {such as Cut, Edit, and Paste) and some color and line­
width selection tools. Purely for exercise, try to find some information about 
these subjects in the Language Reference. The practice will do you good. 



• The new menu Items 

• Closing and creating windows 

~--• Opening an existing file 

-~-• Printing your pictures 





CHAPTER 13 •FILE OPERATIONS 171 

TABLE 13.1 FILE MENU OPERATIONS 

Menu Item 

New 

Open 

Close 

Save 

Save As 

Page Setup 

Print 

Behavior 

The menu handler for the New menu item creates a new Paint window, 
allowing the user to work in more than one window at a time. The New 
menu item should be available whether or not a Paint window is open. 

The menu handler for the Open menu item enables the user to select and 
open a previously saved My Paint file using a standard File Open dialog box. 
The Open menu item should be available whether or not a Paint window is 
open. 

The menu handler for the Close menu item allows the user to close the 
currently active Paint window. The Close menu item should only be available 
only if one or more Paint windows is open. 

The menu handler for the Save menu item enables the user to save the 
contents of the currently selected Paint window. If the contents of the Paint 
window have never before been saved, a standard File Save dialog box must 
be displayed, allowing the user to specify a filename. If the contents have 
already been saved at least once, then selecting the Save menu item simply 
updates the saved file to reflect the changes made to that file since the last 
time it was saved. The Save menu item should be available only if one or 
more Paint windows is open. 

The menu handler for the Save As menu item enables the user to save the 
contents of the currently selected Paint window. Unlike the Save menu 
handler, the Save As menu handler will always display the standard Save 
File dialog box, allowing the user to change the name of the file before it is 
saved. The Save As menu item should be available only if one or more Paint 
windows is open. 

The menu handler for the Page Setup menu item enables the user to change 
the printer settings for the currently selected Paint window. The Page Setup 
menu item should be available only if one or more Paint windows is open. 

The menu handler for the Print menu item enables the user to print the 
contents of the currently selected Paint window. The Print menu item should 
be available only if one or more Paint windows is open. 

Adding menu items to the Paint window won't do you any good; they'll all be 
disabled when the Paint windows are closed. The New and Open menu items 
need to be available even when there are no open Paint windows. If you can't 
put the menu items and menu handlers in the Paint Window class, however, 
you have to put them somewhere else-but where? 



Figure 13.2 
The new theApp 

class in the Project 
window and its 

associated 
Properties window 

Application-Wide Menu Items 
What you need is another class that remains instantiated for the entire life of 
the application. That means that if the application is running, this object 
should exist-unlike the Paint Window object for which an instance exists 
only when at least one Paint window is open on the screen. 

You need to create a new class and then change its Super property (its class 
type) to Application. Creating a class of Super type Application ensures that 
the instance of that class will always exist when the application is running. 
Here's how to create that class: 

1. Open the Project window (open REALbasic's Window menu and 
select Project, or press Command+O). 

2. Open the REALbasic File menu and select New Class. REALbasic 
will add a new class to the Project window, with a class name of Classl . 

3. The new class, Classl, should already be selected, but if it's not, click it 
to select it and change the following items in the Properties window: 

• Change the Name property to theApp. 

• Change the Super property to Application. 

The Project window and Properties window should appear as shown m 
Figure 13.2. 

rr~ My Paint• Step 4 ~ E!J 8 
' PalntWindo'w 

Iii Menu 

I ~ illlllll!I 
Interfaces 
Super Appl icotlon 

... 



NOTE 

CHAPTER 13 •FILE OPERATIONS 173 

Today's Menu Items Are ... 
Now that you've created the new Application class, in which the My Paint 
application's File/New and File/Open menu handlers will reside, all that is left 
to do for now is to create the menu items. (You'll create the menu handlers 
later, some in the Paint Window class and some in the Application class.) 

To create the new menu items, do the following: 

1. Open the Project window (open REALbasic's Window menu and 
select Project, or press Command+O). 

2. Double-click the Menu object. The Application Menu window 
appears. 

3. Click on the File menu item to open it to see the results. 

4. Click on the blank menu item and type New. Notice that when you 
begin typing, the cursor moves to the Text field of the Properties 
window. 

5. Tab down to the Command Key field of the Properties window and 
change its value to N. This will enable the user to select the File/New 
menu item by pressing the Command+N key combination when the 
My Paint application is running. 

6. Repeat steps 3, 4, and 5 for the following menu items: 

• Create an Open ... menu item with a CommandKey property of 0. 

• Create a Close menu item with a CommandKey property of W. 

• Create a Save menu item with a CommandKey property of S. 

• Create a Save As ... menu item with a blank CommandKey 
property. 

• Create a Page Setup ... menu item with a blank CommandKey 
property. 

• Create a Print ... menu item with a CommandKey property of P. 



174 

Figure 13.3 
The REALbasic 

Application Menu 
window with the 

new File menu 
items arranged in 

their proper order. 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

• Click on the blank menu item, type a dash (-), and press the Return 
or Enter key. This will create a menu separator (the horizontal line 
that you often see in menus, which is used to group together related 
menu items). 

• Again, click on the blank menu item, type a dash (-), and press the 
Return or Enter key to create another menu separator. 

7. One by one, click on each of the new menu items and drag them up or 
down the menu to position them in the following order: 

• New 

• Open .. . 

• Close 

• Save 

• Save As . .. 

• Menu separator 

• Page Setup . . . 

• Print .. . 

• Menu separator 

• Qyit 

After you've rearranged the menu items they should appear as shown m 
Figure 13.3. 

Now that you've created all the new menu items, you probably want to see 
what they look like. Save your project and run the My Paint application as is. 
You'll see the new menu items in the File menu, but none of them are acti­
vated. We'll take care of that next. 



NOTE 

CHAPTER 13 •FILE OPERATIONS 

Enabling the New Menu Items 
To enable the various menu items, you add code to the EnableMenultems 
event-but which one? If you have already dug around in the Application 
class, you probably noticed that there is an EnableMenultems event in that 
class as well as the one in the PaintWindow class. 

Remember when we mentioned that some menu items (Close, Save, Save As, 
and Print) should be enabled only when a Paint window is open, while others 
(New and Open) should always be enabled? This comes into play here. You'll 
enable the first four menu items in PaintWindow's EnableMenultems event, 
and the other two in Application's EnableMenultems event, like so: 

1. Click on the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window. 

3. Expand the Events item (click its disclosure triangle or double-click 
Events). 

4. Select the EnableMenultems event and add the following source code 
to the end of the event's code, as shown in Figure 13.4: 

FileSave.Enabled = bPictureHasChanged 
FileSaveAs.Enable 
FileClose.Enable 
FilePageSetup.Enable 
FilePrint.Enable 

5. Click on the Application class in the Project window. 

6. Press Option+ Tab to display the Code Editor window. 

7. Expand the Events item (click its disclosure triangle or double-click 
Events). 

8. Select the EnableMenultems event and enter the following source 
code, as shown in Figure 13.5: 

Fil eNew. Enable 
Fil eOpen. Enable 



176 

Figure 13.4 
The Code Editor 
window for the 

PaintWindow class's 
EnableMenultems 

event 

Figure 13.5 
The Code Editor 
window for the 

Application class's 
EnableMenultems 

event 

""' • "' "< COde Editor (PalntwlndoW) i¥8fulii 

EJ ' 

Controla 

Events 

Ill Open 

Ill c1.,. 
lil CflncelClose 

ill KeyDo~n 
IU MouseMove 

[il MouseEnter 

lil MouseExlt 

Ill !'tint 
'U Mo~eDwn 
Ill 11o.,,.or09 
ill MouoeUp 

~ 111mmm;tmn1tmjtj 
ill Resized 
ill Moved 
Ill DropObjeot 

v I)) Events 

Ill Open 

IU Close 

~ 1m~mitmH!1nm 
~ Ne'w'Document 

Ill OpenDocument 

~ HendleAppleEvent 
IU Activete 

1§1, Deectivete 

I> ~ Menu Hendler> 

I> Ill Methods 

!> ~New Events 
I> ll Properties 

~ Cl ct!<:~tl 

Sub EnableMenultems(} 
TaalsFreeHand.Enable 
TaalsllneDraw.Enabte 
T oolsDrawshape.Enable 
T oclsRectangle.Enable 
T ootsFllledRectangle.Enable 
Tootsoval .Enable 

.,e ToolsFilledOvaf.Enable 

1rr1 

11 

f:;:1 
I~ 

FileSave.Enabled = bPlctureHasChanged 
FileSaveAs.Enable 
FUeClose.Enable 
FileOpen.Enable 
FilePageSetup.Enable 
FllePrint.Enable 

End Sub 

-
= theApp .. ,,,.~ 

Sub EnableMenultems() 
FlleNew.Enable 
FlleOpen.Enable 

End Sub 

!l!i!l9 

~ 
~ 

J~I~ * 

You probably noticed in the first section of the preceding code that the 
File/Save menu item is enabled based on the value contained in the bPi cture 

Ha sC hanged property. You'll need to add this property to the PaintWindow 
class: 

1. Click on the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window. 

3. Open the Edit menu and select the New Property command (or press 
Option +Command+ P). 

4. In the New Property dialog box, enter bPi ctureHasChanged As Boolean 

as the new property, as shown in Figure 13.6. 

5. Click the OK button to close the New Property dialog box and save 
the new property. 



Figure 13.6 
The New Property 

dialog box with the 
bPictureHas 

Changed property 
definition 

Figure 13.7 
The Code Editor 
window for the 

MouseDrag event 

CHAPTER 13 •FILE OPERATIONS 177 

• i6;r1ar~tlonl I bPlctu;~H~~Chan-ged\~ B~alean 
;: OPl'lvdte · · •· • ; · · · 

[JVt5,lble 
OK f 

You don't need to initialize the value of the bPi ctureHasChanged property. 
Recall that Boolean variables are automatically given an initial value offal se, 
which just so happens to be the value to which you want it to be initially set. 
Having a value of false will cause the Save menu item to be disabled by 
default each time a new PaintWindow class is created. 

That said, you will need to change the value of bPi ctureHasChanged when the 
contents of the PaintWindow window have changed: 

1. Expand the Controls item (click its disclosure triangle or double-click 
Controls). 

2. Expand the PaintCanvas item (click its disclosure triangle or double­
click PaintCanvas). 

3. Select the MouseDrag event. 

4. And add the following source code to the end of the MouseDrag 
event's source code, as shown in Figure 13.7: 

bPictureHasChanged = ((nCurrentTool > 0) and (nCurrentTool < 8)) 

~Controls 
v ~ PelntCenvn 

Ill Paint 
Ill ttouaoDovo 

illlllllllllllDlll 
Ill ttouaoUp 

~ MauseMove 

fi\ MouseEnter 
Ill MouseExlt 
Jll Open 
Ill Close 
Ill DropObJect 

~ fl' Events 
~ 'ffe Menu Handlers 
~ ll! 11otbodo 

~ Cil Properties 

I 1 

alll\WfQl\oW>"~~~";~-··. · 
Sub MouseDrag(a: As Integer, Y As Integer) 

Select Case (rCurrentToal) 
Case 1 

DragFreeHand(X, Y) 
Case 2 

OragllneDraw(X. Y) 
Case 4 

DragRectangle(X. Y, false) 
Cases 

DragRectangle(X, Y, true) 
Case 6 

Dragoval(X, Y, false) 
Case 7 

Oragoval(X, Y, true) 
End Select 

bPictureHasChanged ... ((nCurrentTool > O) ancl (nCurrentTool < B)) 
End Sub 



PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

Go ahead and save your work and run the My Paint application to make sure 
all the menu items are enabled (except for the Save menu item, which should 
be disabled until you actually change something in the Paint window). If 
something isn't working correctly, go back and check your work and try again. 

Closing and Creating Windows 

Figure 13.8 
The Code Editor 
window for the 

incredibly simp le 
FileClose menu 

handler 

Closing windows (with the File/Close menu item) and creating new windows 
(with the File/New menu item) are related tasks, so let's tackle them together. 
The code for closing windows is absurdly simple so we'll do that first, just to 
get it out of the way. After completing the last task, the Code Editor for the 
Paint Window should still be open. If it's not, click on the Paint Window class 
in the Project window and press Option+ Tab. Now do the following: 

1. Open the Edit menu and select the New Menu Handler command (or 
press Option+Command+H). 

2. Select FileClose from the Menu Item list and click OK. 

3. Enter the following in the Code Editor window for the FileClose menu 
handler, as shown in Figure 13.8: 

Cl ose 

All that happens with the FileClose menu handler, for now, is that the 
PaintWindow class Close method is called. From there, the PaintWindow class 
takes over. You'll add to this function later, but this is all it needs to do for now. 

The code for creating a new window is only a little more complicated than 
the code for closing windows. You added the code for closing windows in 

g -· - Code Editor (Palntwlndow) ~13 
t> ~Contnls Function Action As Boolean 

~ fi) Eveab I: lase 

'Q"· ~ Menu Handlen End Function 

Ill lillmm 
~ ToolsDraYShape 

~ Tools Fl I ledOval 

{il ToolsfilledRectangle 
11: ~ ToolsFreeHand 

{il ToolslineDrav 

Ill ToobOval 

[il ToolsRectangle 

~ lll Methods l:;;I H ~ (l Properties ~ 8 
Im E'.l]i[Etr i ili I~~ 



Figure 13~9 
The Code Editor 
window for the 

Application class's 
FileNew menu 

handler 

CHAPTER 13 •FILE OPERATIONS 179 

the Paint Window class, because the Close menu handler is needed only when 
a window is open. You add the code for creating new windows in the Appli­
cation class, because you need to be able to create new windows even if no 
other windows are open. To add the code for creating new windows, do the 
following: 

1. Click on the Application class in the Project window. 

2. Press Option+ Tab to display the Code Editor window. 

3. Open the Edit menu and select the New Menu Handler command (or 
press Option+Command+ H). 

4. Select FileNew from the Menu Item list and click OK. 

5. Enter the following in the Code Editor window for the FileNew menu 
handler, as shown in Figure 13.9: 

Dim w As PaintWindow 
w = New PaintWindow 

Even though the preceding code looks simple, what happens behind the 
scenes is what really matters: 

• The first statement defines a new variable, which is a reference to a 
PaintWindow object. When the variable is defined, it has an initial 
value of nil, meaning that the variable is not yet pointing to an instance 
of the PaintWindow class. 

• The second statement creates a new instance of the PaintWindow 
object and saves a reference to the object in the variable that was 
defined in the first statement. 

• E""oto 
•htteaallaadlen1 

ei. llllllllll 
• ll Methods 
• f'NwEventa 
• II Propertl,. 

Function Action As Boolean 
Dim w As Palntwtndow 
w ~ New Palntwtndow 

End Function 

•• 



PART 11 •DEVELOPING .'(QffR FfRST MAC PROGRAM 

When the new instance of the PaintWindow object is created, its Open event 
handler is called automatically and the window is displayed. These two simple 
lines do so much work! 

Go ahead and save your work and test the changes you just made. Run the My 
Paint application. You should be able to create new windows by using the 
File/New menu item or by pressing Command+N. (Don't create too many 
windows, or the app will run out of memory. Just create one or two and then 
close them.) You should be able to close windows by using the File/Close 
menu, by clicking the window's Close button to the left of the title bar, or by 
pressing Command+ W. 

If you ever have problems debugging a REALbasic application due to mem­
ory constraints in an operating system other than Mac OS X, you can always 
increase the memory allocated to the REALbasic application. To do so, follow 
these steps: 

1. Locate the REALbasic application icon and click it. 

2. Open the File menu, select Get Info, and choose the Memory 
command, or press Command+ I and select Memory from the Show 
pop-up menu. 

3. Increase the value of the Preferred Size field (see Figure 13.10) until 
the REALbasic application has enough memory to debug your code. 

Figure 13.10 
The REALbasic Info J&I . 
window's memory 

settings 



CHAPTER 13 •FILE OPERATIONS 181 

Saving to a File 

Figure 13.11 
The File Types 

dialog box 

All these modifications do a fat lot of good if you still can't save your paintings 
to disk. To do so, you'll need to add the code to the FileSave menu handler 
which will save the contents of the picBuffer property to a file. You'll also need 
to add code to the FileSaveAs menu handler to allow the user of the applica­
tion to save the file with a new name. 

Adding Supported File Types 
Before you do anything, you must first add the supported file types to your 
REALbasic application. File types help the Finder determine what kind of 
document is in use in the Mac OS and which application should be used to 
open it. On a Windows PC, this function is normally handled using the file 
extension at the end of the file's name, such as .doc for a Microsoft Word doc­
ument, or .jpg for a JPEG graphic file. In the Mac OS, file type information 
is stored in the file's resource fork. 

My Paint can open, modify, and save files in PICT, the graphic file format 
supported directly by Mac OS 9. You're probably familiar with it; PICT files 
are created when you take a picture of the Mac OS screen using Com­
mand+Shift+3. We'll need to add PICT to the list of file types supported by 
your app. Do the following: 

1. Open the Edit menu and select the File Types command. The File 
Types dialog box, shown in Figure 13.11, opens. 



182 

Figure 13.12 
The Add File Type 

dialog box with 
the new file-type 

definition 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

Name: I image/x-plct I [II 
it~c c.-e.atpr; t tt~t . r ~c Type: I PICT I 
'~~slon:. ··'j.~;~~;:·~ic;.pct. . ·• , . ( 

· [Juocunient le~~:~ (Dl 

2. Click the Add button to open the Add File Type dialog box. 

3. Choose image/pict from the Name drop-down list, as shown in Figure 
13.12. 

4. Click the OK button to close the Add File Type dialog box. 

5. Click the OK button to close the File Types dialog box and to save the 
new file type. 

The Filename Property 
Ready to add that code yet? Hold on. Before you add the code to save to a file, 
you need to add a property to the PaintWindow class that will contain the file­
name and location. This property will be used by the FileSave menu handler 
to determine whether the document has been saved, and to set the default file­
name during a Save As operation. This will become more clear to you when 
you see how the code works. 

First, let's add that property: 

1. Click on the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window. 

3. Open the Edit menu and select the New Property command {or press 
Option+Command+ P). 

4. EnterfiPaintDocument as Folderitemasthenewproperty,asshown 
in Figure 13.13. 

5. Click the OK button to close the New Property dialog box and save 
the new property. 



Figure 13.13 
The New Property 

dialog box with the 
fiPaintDocument 

property definition 

~ I New Property~ §I 

Declaration: I llPalntDocument as Folderltem 

ID Private 

OVislble 
H J cancel OK 

The FileSave Menu Handler 
Now that you've taken care of the filename property, you can create the File­
Save menu handler. It's not very complicated code, so just go ahead and cre­
ate it now; we'll explain how it works after you've coded the handler. Follow 
these steps to create the FileSave menu handler: 

1. Click on the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window. 

3. Open the Edit menu and select the New Menu Handler command (or 
press Option +Command+ H) . 

4. Select FileSave from the Menu Item list and click OK. 

5. Enter the following in the Code Editor window for the FileSave menu 
handler, as shown in Figure 13.14: 

dim fiSavelocation as Folderitem 

if (fiPaintDocument =nil) then 
f iSavelocation = GetSaveFolderitem ("image/pict", self.Title) 
if (fiSavelocation <> nil) then 

self.Title = fiSavelocation.Name 
fiPaintDocument = fiSavelocation 

End if 
End if 

if (fiPaintDocument <> nil) then 
fiPaintDocument.SaveAsPicture picBuffer 
bPictureHasChanged =false 

End if 



184 

TIP 

Figure 13.14 
The Code Editor 
window for the 
FileSave menu 

handler 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

: In the previous code you '.11 notice parenthesis () aroun2_:!!;ie-conditions in 

the If/Then statements. While these parenthesis are not.needed in 

REALbasic programming, they do serve to make the code easier to read. 

Other languages, like C and C++, do require the use of parenthesis. So as 

to not get into religious programming debates about the merits of using 

or not using parenthesis, let it be said that some programmers prefer to 

use them, and others do not. Choose whichever method you're most com­

fortable with . Whichever method you choose, try to be consistent. 

Consistent coding, above all, will make your code much easier to read. 

~!Controls 
~ §J Event. 

v ltG Menu Handlus 

~ Fi leClose 

~ lmEl!m 
Q Fl leSeveAs 

~ ToolsDraYSh1pe 

~ Toolsfi lledOvel 

~ ToolsfilledRectantle 
fa ToolsfreeHend 

~ ToolslineDrev 

~ ToolsOvel 

~ ToolsRectengle 

~ Ill Method• 

- .-E!Jl3 
Function Action As Boolean 

dim fiSavelocation as Falderltem 

if (fiPaintDocument =nil) then 
fiSa velocat ion = GetSaveFolderltem (•image/ p1ct•, self.Title) 
if (f iSaveLocat ion <> nil} then 

self .Title = fiSavelocation.Name 
f iPaintDocument ... fiSavelocatlon 

End if 
End if 

if {fiPaintDocument <> nll) then 
fiPaintOocument.SaveAsPlcture pic:Buffer 
bPic:tureHasChanged - false 

End if 
End F'unc:t!an 

This code first creates a new Folderltem object, fi Savelocati on, to be used 
later. If the document has never before been saved (that is, if the fi Pai ntDoc ­
ument object is nil), then a standard File Save dialog box is displayed. When 
the File Save dialog box is closed, the file save location is copied to the fi Save­
Loca ti on object and, as long as the user doesn't cancel the save, the PaintWin­
dow's title is updated and the file save location is copied to the 
fiPaintDocument property. 

Last, but definitely not least, the fi Pai ntDocument property is checked to see 
if it's nil. If it's not nil, it's because it wasn't nil when the menu handler started, 
or because it was changed when the File Save dialog box was displayed. In 
either case, the contents of the pi cBuffer property are saved to the file loca­
tion specified by the fi Pai ntDocument property. The bPi ctureHasChanged 
property is then set to a value offal se, so that the app knows the file has not 
changed since the last time it was saved. 



Simple huh? Well, don't sweat it too much if you don't get it. Now would be a 
good time to save your work and test the app. Go ahead and do so before we 
move on. 

The FileSaveAs Menu Handler 
Did all of your changes above work? If so, good. If not, double-check your 
code and try again. Hopefully you've got the hang of what's going on. If so, 
you can probably predict what the FileSaveAs menu handler is going to look 
like. Make sure that the Code Editor for the PaintWindow is open (click on 
the PaintWindow class in the Project window and press Option+Tab) and 
then follow these steps to create the FileSaveAs menu handler: 

1. Open the Edit menu and select the New Menu Handler command (or 
press Option+Command+ H). 

2. Select FileSaveAs from the list and click OK. 

3. Enter the following in the Code Editor window for the FileSaveAs 
menu handler, as shown in Figure 13.15: 

dim fiSaveLocation as Folderltem 

fiSavelocation = GetSaveFolderltem ("image/pict", self.Title) 
if (fiSavelocation <>nil) then 

Title = fiSavelocation.Name 
fiPaintDocument = fiSavelocation 

fiPaintDocument.SaveAsPicture picBuffer 
bPictureHasChanged = false 

End if 

This code is almost identical to that of the FileSave menu handler, except that 
the original filename isn't checked first to determine if the File Save dialog box 
should be displayed. The File Save dialog box is always displayed so that the 
user can save the current file with a different filename. 

Go ahead and save the REALbasic project and test the File/Save As modifi­
cations that you just made. You should be able to save your painting with the 
File/Save and the File/Save As menu items. When you use the File/Save 
menu item, you should be prompted for the filename only the first time the 
file is saved. You should be prompted for the filename every time you use 
the File/Save As menu item. 



Figure 13.15 
The Code Editor 
window for the 

FileSaveAs menu 
handler 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

············--···;;;;5§;ji··-············· -·· '····-~ code Editor (PalntWlndow) .,- --""~---~---------------~ @l j;!! 

Controls Function Action As Boolean 

Events 

v ~ Menu Headlen 

~ FlleClose 
~ flleStve 

li!IDl!l!lll!l!!i! !;! 
~ ToolsDrevSltepe 

~ ToolsfllledOYal 

ra ToolsfllledRecten9le 
~ ToolsFreeHend 

~ ToolsllneDrev 
la ToolsOval 

~ ToolsRectangle 

~ ill Hethod• 

El liH~l 

dim flSavelocatlon as Folderltem 

tiSavelocation = GetSaveFolderltem ( •image/pl ct~. selr.Tltle) 
if (f iSa velocation <> nil) then 

Title = fiSavelocation.Name 
fiPaintDocument = fiSavelocation 

fiPaintDocument.SaveAsPicture picBuffer 
bPictureHasChanged = false 

End if 
End Function 

Now that all that file-saving stuffis behind you, let's move on to the File/Open 
menu item so that you can retrieve the documents you've been saving. 

Opening an Existing File 
The process of opening an existing file is simple enough: Prompt the user for 
a filename and location, and open the file. The code to do so is pretty simple, 
but keep in mind that the user should be able to open a file, regardless of 
whether a Paint window is open. Do the following: 

1. Click on the Application class in the Project window. 

2. Press Option+ Tab to display the Code Editor window. 

3. Open the Edit menu and select the New Menu Handler command (or 
press Option +Command+ H). 

4. Select FileOpen from the Menu Item list and click OK. 

5. Enter the following in the Code Editor window for the FileOpen 
menu handler, as shown in Figure 13.16: 

Dim fiOpenDocument as Folderitem 
Dim pwNewWindow as PaintWindow 
fiOpenDocument = GetOpenFolderitem ("image/pict"l 
If (fiOpenDocument <>n il) then 

pwNewWindow = new PaintWindow 
pwNewWindow.picBuffer = fiOpenDocument.OpenAsPicture 
pwNewWindow.Title = fiOpenDocument.Name 

End if 



Figure 13.16 
The Code Editor 
window for the 
FileOpen menu 

handler 

CHAPTER 13 •FILE OPERATIONS 

ram···-~ . ---· .. ,,.,-·-··-·· 

"'"" 
[ ~~ Events 
v 'frG Henu Handlers 

~ FlleNev 

Ill IDll!ilm 
~ Ill Method• 

~ f,&l Nev Evenlo 

I> 0 PropertJes 

Function Action As Boolean 
Dim fiOpenOocument as Folder ltem 
Dim pwNeWVYindow as PaintWindow 
flOpenDoc:ument - GetOpenFolderltem ( 11 lmage/ pi 
If ( fiOpenDocument <> nil) t hen 

pwNev.W'indow - new PalntWlndow 
pwNe.....Wlndow.plcBut fer - f lOpenDocument.Ope 
pwNe....window.Tltte - flOpenDocument.Name 

End if 
End Function 

This code simply prompts the user for an existing document to open. If the 
user chooses one, a new PaintWindow object is created, the contents of the 
specified file are copied into it, and the new Paint window's title is updated. 

Like always, save your work and try out the code. 

Printing Your Pictures 
Printing a document is a bit more complicated than the rest of the file opera­
tions. First off, you have to allow for the user to choose a specific page setup 
for each document he or she prints. 

Adding the PageSetup Property 
When the user opens the File menu and chooses the Page Setup command, 
their page-setup selections must be saved for use when the File/Print menu 
item is chosen. The property you'll add here is used to save these page-setup 
properties. Do the following: 

1. Click on the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window. 

3. Open the Edit menu and select the New Property command (or press 
Option+Command+ P). 

4. Enter strPageSetup as String as the new property, as shown in 
Figure 13.17. 



188 

Figure 13.17 
The New Property 

dialog box with the 
strPageSetup As 
String property 

definition 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

Declaration: 

D Private 

OVislble 

New Property 

I s trPageSetup As String 

I Cancel I [\lilo!I _OK_,.,,J 

5. Click the OK button to close the New Property dialog box and save 
the new property. 

Adding the PageSetup 
Menu Handler 
Now that the page-setup property exists, you'll need to create the Page Setup 
menu handler. With the Code Editor for the PaintWindow open, here's what 
to do: 

1. Open the Edit menu and select the New Menu Handler command (or 
press Option +Command+ H). 

2. Select FilePageSetup from the Menu Item list. 

3. Enter the following in the Code Editor window for the FilePageSetup 
menu handler, as shown in Figure 13.18: 

Dim psPrinterSetup As PrinterSetup 

psPrinterSetup = new PrinterSetup 
if (strPageSetup <> "") then 

psPrinterSetup.SetupString = strPageSetup 
End if 
if (psPrinterSetup.PageSetupDialog l then 

strPageSetup = psPrinterSetup.SetupString 
End if 

The PageSetup menu handler first creates a new Pri nterSetup object. If a pre­
vious printer setup has already been specified, then this value, strPageSetup, is 
copied to the instance of the PrinterSetup object's SetupString property. 

The menu handler then displays the Page Setup dialog box . If the user clicks 
the OK button, then the new page-setup preferences are copied to the 
strPageSetup dialog, so that they can be used later by the Print menu handler. 



Figure 13.18 
The Code Editor 
window for the 
FilePageSetup 
menu handler 

CHAPT.ER 13 •FILE OPERATIONS @ 189 

.o · ~- _ .... ·- - ~·<;EE!;- - ~ Code Editor (PalntWlndoW)~~ ------- - '"'"'- ~Ji'! 
~~Controls Function Action As Boolean 
I> ft} Events l~1 Dim psPrinterSetup As PrinterSetup 

v ~ Menu Hendlers 

~ FlleClose 
psPrinterSetup - new PrlnterSetup 

I 
If (s trPageSetup <> ••) then 

Iii llil!liliMl!l!I psPrinterSetup.SetupString • strPageSetup 
~ FlleSave l~k End If 

I ia FtleSaveAs If (psPrlnterSetup.PageSetupDlalog) t hen 

I ~ ToolsDravSbape li j)i 
strPageSetup - psPrinterSetup.SetupStrlng 

End If 
~ TeolsfilfedOval End Function 
~ ToolsfllledRectangle Ii la ToolsfreeHand 

~ ToolslheDn1v 
~ Tool sOVel 

~ 
l:;:i 

~ TeolsRectangle ~ 
m~ &iHJ T<T•fj 

Adding the Print Menu Handler 
Now that you've set down the building blocks, you're ready to add the actual 

Print menu handler. While still working in the PaintWindow Code Editor, 

follow these instructions: 

1. Open the Edit menu and select the New Menu Handler command (or 

press Option+Command+H). 

2. Select FilePrint from the list. 

3. Enter the following in the Code Editor window for the FilePrint menu 

handler, as shown in Figure 13.19: 

Dim grPrinter As Graphics 
Dim psPrinterSetup As PrinterSetup 

psPrinterSetup = new PrinterSetup 
if (strPageSetup <> "") then 

psPrinterSetup.SetupString = strPageSetup 
grPrinter OpenPrinterDialog(psPrinterSetup) 

else 
grPrinter 

end if 
OpenPrinterDialog() 

if (grPri nter <> ni 1) then 
grPrinter.DrawPicture picBuffer, 18, 18 
grPrinter.NextPage 

end if 

The Print menu handler builds upon all the previous work to create the abil­
ity to print your documents. It begins by defining Graphics and Pri nterSetup 



Figure 13.19 
The Code Editor 
window for the 
FilePrint menu 

handler 

Review 

ontrols 
~ f;J Events 

v ~ Menu Hendlon 

~ FlleClue 
tl fllePeteSetup 

~ llll!llmll 
~ FlleSave 

~ FlleSaveAs 
~ ToolsDnvSbepe 

~ Toolsfl lledOval 

~ ToolsfllledAectongle 

~ ToolsfreeHend 

~ ToolsllneDrav 
~ ToolsOval 

l!~H:J l!H!l 

.. 

Function Action As Boolean 
Olm grPrinter As Graphics 
Dim psPrinterSetup As PrinterSetup 

psPrlnterSetup .. new PrlnterSetup 
11 (strPageSetup <> 1111

} Then 
psPrinterSetup.SetupString = strPageSetup 
grPrinter - OpenPrlnterO ialog(psPrlnterSetup) 

Else 
gr?rinter""' OpenPrinterDialog() 

End 1r 
If (grPrinter <> nil) Then 

grPrinter.OrawPicture plc8uffer, 1 B, 1 B 
End If 

End Function 

objects, which are used later in the menu handler. The menu handler creates 
an instance of a Pri nterSetup object; if a previous page-setup string, strPage­
Setup, exists, it copies the previous setup values to the current printer setup. It 
then creates the instance of the grPri nter graphics object, using the current 
printer setup values. If a previous printer setup wasn't selected by the user, an 
instance of the grPri nter graphics object is created, using the default printer 
setup values. 

If either method of creating the instance of the grPri nter graphics object suc­
ceeds, then the contents pi cBuffer will be drawn to the grPri nter graphics 
object. 

Now would be a good time to save that work, as always, and test your modifi­
cations. Make sure everything works, and double-check your work if you have 
any problems. 

In this chapter you learned how to add menu items that are smart enough to 
appear and disable themselves as needed so users won't be confused as they 
open, save, and print their work. These are common to virtually every Macin­
tosh application so return to this chapter again as you build your own applica­
tions to refresh your memory. 

Some developers have created variations on "Save As," such as "Save a Copy." 
You may find your app may have a need for such a command if you want to 
ensure that a user's document will not be changed accidentally or should you 
want to provide other file management options. Just remember: In a Macin­
tosh application, less is more. Don't overdo the features of your application. 



• The paste feature --
• The copy feature 



192 

Figure 14.1 
A simple 

representation of 
the clipboard 

operation 

, PART fl• DEVELOPING YOUR 'FIRST MAC PROGRAM 

Your little paint program is coming along quite well. You have controls for 
different drawing tools, and can even save, open, and print files. 

Although what you have is a perfectly serviceable application, there is one 
important common feature that you need to consider: editing. 

Almost all editing programs, whether they allow the user to edit text or graph­
ics, have the capability to copy, cut, and paste information to and from the 
clipboard. The clipboard, in case you're not aware, is a portion of the computer's 
memory that has been set aside to allow programs to copy information to other 
locations within the same document, multiple documents within the same 
application, or documents within multiple applications. Figure 14.1 illustrates 
the use of the clipboard. 

I Document 2 I 

.................. 

L .................... J 

Information pasted into the clipboard from Application One, 
Document 1 can be pasted back into Application One, 
Document 1 or into Application One, Document 2 and 

even into the Application Two Document. 

Clipboard 



CHAPTER 14 •EDITING OPERATIONS 193 

Working with the Clipboard 
Any type of data can be copied and pasted to and from the clipboard, but the 
two most common types are text and graphics. REALbasic allows access to the 
clipboard using the clipboard class, shown here: 

Dim c as Clipboard 
c = new Clipboard 

When an instance of a clipboard object is created, the application can then call 
members of this class to perform various operations related to the clipboard. 
For example, to copy text to the clipboard, you'd do something like the 
following: 

Dim c as Clipboard 
c = new Clipboard 
If (c <> nil) Then // the memory for the class might not have,,. 
been available 

c.text = "All your base are belong to us." 
c.close //you have to close the clipboard, or an error will occur 

End If 

This code first attempts to create an instance of the clipboard class and makes 
sure it was created successfully. If the clipboard object was created, then the 
value of the clipboard's text property is set to the string specified. The clip­
board is then closed. Closing the clipboard actually copies the data from the 
clipboard class to the actual system clipboard. If you don't close the clipboard 
within the method or event handler in which the clipboard object was instan­
tiated, an error will occur. 

If you want to check for data in the clipboard, and copy the data to a variable 
within your application, you'd do something like this: 

Dim c as Clipboard 
Dim str as String 
c =new Clipboard 
If (c <>nil) Then //the memory for the class might not have,,. 
been available 

If (c.TextAvailable) Then 
str = c.text 



194 

Figl!re 14.2 
The standard Edit 

menu items 

End If 
c.c l ose II you have to close the clipboard, or an error will• 
occur 

End If 

As you can see, copying data to and from the clipboard in REALbasic is rela­
tively easy. The REALbasic clipboard class also provides methods for copying 
picture data as well. Using the PictureAvailable and Picture properties allows 
the application to copy pictures to and from the clipboard just as easily as text. 

The Edit Menu Items 
Fortunately, you don't really need to do anything when it comes to the Edit 
menu items, which are shown in Figure 14.2. The REALbasic project editor 
already includes all the standard menus needed to perform all the basic edit­
ing functions. You might want to double-check the menu items, however, just 
to be sure that they're still there, in case you accidentally deleted one or two 
of them. 

If any of the Edit menu items is missing, or out of order, correct the problem 
now before moving on. To edit the menu items, double-click the Menu icon on 
the REALbasic Project window. From there, just drag and drop property set­
tings. If the Properties window isn't visible, enable it by opening the Window 
menu and selecting Show Properties, or by pressing Command+Option+2. 



CHAPTER 14 •EDITING OPERATIONS 195 

The New Source Code 
The code you'll be adding for the menu items needs to support the Edit menu 
items: Copy, Clear, Cut (which is just a copy followed by a clear), and Paste. 
Adding an Undo option is something we'll leave for you to figure out on your 
own. 

You'll also add a new control to the Paint window, which will be used to han­
dle pasting a picture into the window. Adding a control will enable you to drag 
the pasted-in picture around before the application copies it to the Paint win­
dow. You'll be adding event handlers to the new control to allow for the drag­
ging feature to work. 

As far as changes to the PaintWindow class itself, you'll be enabling the Edit 
menu items, adding methods for selecting areas of the paint window, copying 
to the clipboard, clearing a portion of the picture, and pasting from the clip­
board. You'll also be modifying some existing methods and event handlers. 
Lastly, you'll be adding the menu handlers for the Edit menu items. 

Before you get started, open the Step 4 version of the My Paint REALbasic 
project, and save it as Step 5 before moving on. 

The New Properties 
First, add some properties to the PaintWindow class, which will be used by 
the new methods, menu handlers, and event handlers that you'll be adding to 
the PaintWindow class. 

To add the menu items, select PaintWindow in the Project window, and press 
Option+ Tab to display the Code Editor window. Then open the Edit menu 
and select the New Property item, or press Command+Option+P to add each 
of the new properties described in Table 14.1. Figure 14.3 shows the resulting 
Code Editor window. 



196 @ PART 11 • DEVELOPING YOUR FIRST MAC PROGRAM 

TABLE 14.1 THE NEW PROPERTIES FOR THE EDIT FUNCTIONS 

Property Definition Description 

nPa steDragla st X As Integer Used during the paste functions while dragging the pasted 
image. This, along with the nPastDraglastY property, will 
be used as the location where the pasted-in image should 
be dropped. 

nPasteDragla stY As Integer 

nlastMouse X As Integer 

Also used during the paste dragging functions. 

Used to keep track of the last mouse position, so that you 
know where to begin pasting the image in the clipboard. 

nla stMou seY As Integer 

bSe lectionAvailable As Bool ea n 

Used along with the nla stMo useX property. 

This property will contain a value of true when the user 
has selected an area of the picture using the selection tool. 

Figure 14.3 
Look at all the 

properties! The five 
new properties have 

added to the ever 
growing list of 

properties for the 
PaintWindow class. 

I ~ '!l Control$ 
I> f;J Evenb 

I> h Menu Handlers 

I>~ H etltods 

V l!J,. Properties 

@ft bDr8'w'inqSllllpe As Booletin 

lib bPictureHasCha09ed As Boolean 

@fJ bSelectionAvalleble As Boolean 

@a dMoU$eUpTlme A:1 Double 

la flPaintDocument as folderltem 
lifJ nCurrentTool As Integer 
lfC nLll3tEOOXAs lnteqer 

lfO nLastEndY As lnteqer 

d£I nlastMou~>: As lnte11er 

dfl nlastMousoY As Integer 

dfJnlutXAs lnteqer 

dC nlastY As Integer 

lf!I nPeateDraglestXA3 lnteqer 
lifl nPasteDroc;iLastvAslnteqer 

df:I nShepeStertX As Integer 

db nShapeStertv lb Integer 

~plcBufferAsPlcture 
G@ri;ibflllColorA!IColor 

Gi!J robli neColorAs Color 

lifd $lf"Psge5etup As Str l09 

The Paste Feature 
We briefly mentioned that you'd need to add a new control to handle the capa­
bility to drag the pasted-in pictures around on the Paint window before copy­
ing the pasted-in data to the Paint window. This new control, called 
PasteCanvas, will act as the repository of the data that is pasted in. 



NOTE 

Figure 14.4 
The new paint­
canvas control 

being dragged onto 
the PaintWindow 

Window Editor. 

CHAPTER 14 •EDITING OPERATIONS 

Adding the PasteCanvas Control 
To add the PasteCanvas control, do the following: 

1. If the REALbasic project Window isn't visible, open it by opening the 
Window menu and selecting the Project item, or by pressing 
Command+O (numeral zero). 

2. Double-click the PaintWindow class to display the window editor. 

3. Drag a paint-canvas control (the control that has a picture of a blue 
sky on it) from the Tools palette to the Paint window, as shown in 
Figure 14.4. 

You can put the paint-canvas control anvwhere on the Paint window you 
like; its size and position doesn't matter because it will be resized and 
moved depending on what's being pasted. 

4. Change the name of the control to PasteCanvas and disable the 
Visible property. Figure 14.5 shows the properties of the PasteCanvas 
control. 

0 
Nome 
Super 

J>n lti8a 
Placeme nt 
Width 
Helohl 
Mi nWidth 
MlnHel9ht 
MaxWldth 

Bolloonlielp 
MacProclO 

PalntWlndov 
Applet 

O ·Defau lt 
297 
297 
64 
64 
32000 



198 

Figure 14.5 
The properties of 
the PasteCanvas 

control ~ ~ D 
::m ~ lil 
~ ~ @Kl 
"@>~~ 
l:IJ Ea ~ 

".i or=--
• m 
~-1·~-

.:t:.. • ~;;;;;;;;;;;;;;;;;;~~~~II 

The PasteCanvas Event Handlers 
Whenever a picture is pasted into the My Paint application, it will first be 
copied into the PasteCanvas control. That way, the user will be able to drag the 
picture around to position it where she wants it to be. That means you must 
add the code for the event handlers that allow the PaintCanvas window to be 
dragged around. To do so, follow these steps: 

1. If it is not already selected, click on the PasteCanvas control to select it. 

2. Press Option+ Tab to display the Code Editor window for the 
PasteCanvas control. 

3. Click on the MouseDown event and enter the following code, as 
shown in Figure 14.6: 

nPasteDragLastX = X 
nPasteDraglastY = Y 
return true // Enabl es the MouseDrag event 

4. Click on the MouseDrag event and enter the following code, as shown 
in Figure 14.7: 

PasteCanvas.Left = PasteCanvas.Left - (nPasteDraglastX-Xl 
PasteCanvas.Top = PasteCanvas.Top - (nPasteDraglastY-Y) 
nlastMouseX PasteCanvas.Left + X 
nlastMouseY = PasteCanvas.Top + Y 



Figure 14.6 
The code for the 

PasteCanvas 
control's 

Mouse Down 
event 

Figure 14.7 
The code for the 

PasteCanvas 
control's 

MouseDrag event 

CHAPTER 14 •EDITING OPERATIONS 

v Controls 
!>- ~ PelatCHYH 

, v ~ PH tec .. vu 
Q Point 
(ii lm!lllliB 
Q 11o ... o,... 
Q MouooUp 
Q 11o ... 11ov& 

€l House Enter 
~ MoU$0Exlt 

Q o,.n 
Q CI03e 
€1 OropObject 

Ev111ts 

:I~ llW.,!o~trols 
• ~ PelotC•nvH 
v ~ Pu teCenves 

€l Paint 

~ MouseDovn 

Ill lil!l!mim 
Ill Mo"""' 
lU MounMove 
~ HouseE nter 

Ill Mo"""'" 
Q o,.n 
(ii Close 

el DropObject 

~ J' Eveats 

-.;;::;;;., Code Editor (PalntWlndow) !!!§::;-----~-··· ~ E!ij3 

Function Mouseoown(X As Integer. Y As Integer) As Boolean 
nPasteDragLastX - X 
nPas teDraglastY - Y 
return true 

End Function 

a !Jl!_~ I Code Edltor(Pnlntwlndow) ~~ -!!!!!!!!!l!lt.~ , m - - E!JB 
Sub Mou seDrag(X As Integer, Y As Integer) 

PasteCanvas.Lef t - PasteCanvas.Lef t - (nPasteOrc glastX- X) 
PasteCanvas.Top • Pas teCanvas.Top - (nPasteOraglas tY-Y) 
nlast Mou seX - Pastecanvas.lett + X 
nlastMouseY • Pastecanvas.Top + 'v1 

End Sub 

The Edit/Paste Menu Handler 
As we said above, the Edit/Paste menu handler doesn't actually paste an image 
from the clipboard into the PaintCanvas. Instead, it pastes the image from the 
clipboard into another control, the PasteCanvas control, and makes the con­
trol visible so the user can drag the pasted image around before actually past­
ing it to the PaintCanvas control. 

To make this possible, you'll need to add code that will first check whether 
there is an image available in the clipboard. If an image is available on the clip­
board, the size, location, and content of the PasteCanvas control will be 
changed to match that of the clipboard before making the control visible. 

To add the new Edit/Paste menu handler, do the following: 

1. Click the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window for the 
PaintWindow class. 



Figure 14.8 
The code for the 

PaintWindow/ 
EditPaste menu 

handler 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

3. Open the Edit menu and select the New Menu Handler item, or press 
Command+Option+ H . 

4. Select the EditPaste item from the drop-down list, and click OK. 

5. Enter the following code in the Code Editor window for the EditPaste 
menu handler (see Figure 14.8): 

dim c as clipboard 
c =new Clipboard 
if (c.pictureavailable) then 

if (PasteCanva s .Vi sible) then 
PasteFromClipboard 

End if 
PasteCanvas .Left = nlastMouseX 
Pa steCanva s .Top = nla stMou seY 
Pa steCanva s .Width = c. pi cture.Widt h+2 
Pa steCanvas.Height = c.picture .Height+2 
PasteCanvas .Backdrop = NewPicture (c.picture.Widt h+2 , i.. 

c.picture .Hei gh t +2, Screen (O) .Depth ) 
Pa steCanvas.Backdrop.Graphics .ForeColor RGB(l9 2, 192, 19 2) 
PasteCanvas. Bac kdrop.Graphi cs .DrawRect 0, 0, i.. 

c.picture .Width+l, c.picture.Height+l 
Pa steCanvas .Backdrop.Graphics .DrawPicture c .pictu re, 1, 1 
PasteCanva s .Visible = true 
SetMenuSelection (9) 

end if 
c.cl os e 

Evenb 

v ?'to Menu Handlers 

~ rmmm:m 
~ fl leClue 

~ FllePe,.S.tu 

fil fllePrlnt 
~ FlleSave i 
~ f l leS.veAs 

~ Teol sDrws 
~ Too la f i lle 

~ Tools fllledR 

~ ToelsFreeKll 

~ Toels llaeDr 

~ THlsOval 

~ Toels Recteno .. 
l> flt Methods 

Function Action As Boolean 
dim c as clipboard 
c - new Clipboard 
If (c.plctureavallabl e) t hen 

If (PasteCanvas.Vlslble) then 
PasteFromCl lpboard 

End if 
Past eCanvas.Left • nlastMouseX 
PasteCanvas.Top • nLastMouseY 
PasteCanvas.Width • c.pic ture.Width+2 
Past eCanvas.Helght • c.pfcture.Helght+2 
PasteCanvas.Backdr op 2 NewPJcture (c.plc ture .Width+2, c.pfcture.Height+Z, Screen(O).Depth) 
PasteCanvas.Backdrop.Graphlcs.ForeColor - RGB( 192, 192, 192) 
PasteCanvas.Backdrop .Graphics.DrawRect 0, O, c.pJcture .Wldth+ 1, c.plc ture.Helght+ 1 
PasteCanvas.Backdrop.Graphlcs.DrawPlctu re c.prcture, I, 1 
Paste Canvas.Vlslble • true 
SetMenuSelectlon (9 ) 

end if 
c. clo se 

End Func t ion 



Figure 14.9 
The code for 

thePaintWindow/ 
PasteFromClipboard 

method 

CHAPTER 14 •EDITING OPERATIONS 

The PasteFromClipboard Method 
It is in the PasteFromClipboard method that the clipboard image is actually 

copied from the PasteCanvas control to the PaintCanvas control. To add the 

code for this method, do the following: 

1. Click the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window for the 

PaintWindow class. 

3. Open the Edit menu and select the New Method item, or press 

Command+Option+M. 

4. Enter PasteFromCl i pboard as the new method name, and click the OK 

button. 

5. Enter the following code in the Code Editor window for the 

PasteFromClipboard method, as shown in Figure 14.9: 

dim nPasteX,nPasteY,nPasteW,nPasteH as integer 

PasteCanvas.Vi s ible = false 

nPasteX 

nPasteY 

nPasteW 

nPasteH 

PasteCanvas.Left+l 

PasteCanvas.Top+l 

PasteCanvas.Width-2 

PasteCanvas.Height-2 

picBuffer.Graphics.DrawPicture Pa steCanvas.Bac kdrop, .,. 

nPasteX, nPasteY. nPasteW , nPasteH, 1, 1, nPasteW, nPasteH 

PaintCanvas.refreshRect(O, 0, paintCanvas.width, .,. 

paintCanvas.height) 

~ycontrol s 
I> fl> Evnts 
~ '1'o Menu Hudlen 

v [l HeUocb 

~ Dretfr .. HHd 

~ Dn11LlneDnv 

~ DretOV1I 

la or.,Rect.agle 

~ Dr91Aefresll 

~ EndllneDrev 
(il EadOvel 

fa EDCIR"tu9 le 

~ lll!!ll!lll!l!l!!llll\l!!!l!I~ 
ij), SetMeaUSelectlon 

I> (l Prapertles 

Sub PasteFromClipboard() 
dim nPasteX,nPasteY,nPasteW,nPasteH as lntegar 
PasteCanva s.Visible - false 
nPasteX- PasteCanvas.Left+1 
nPasteY - PasteCanvas.Top+ l 
nPasteW .. PasteCanvas.Width-2 
nPasteH - PasteCanvas.Helght-2 
plcBufter.Graphlcs.DrawPicture PasteCanvas.Backdrop, nPasteX, nPasteY, nPasteW, nPas 
PalntCanvas.refreshRect( O, 0, palntCanvas.width, pa lntCanvas.height ) 

End Sub 

iii 



PART 11 • DE,VELOPING YOUH FIRST MAC PROGRAM 

The PaintCanvas Paste Events 
To actually paste information into the picture, the application has to handle 
three events: 

+ It must keep track of the last-known mouse position so that it knows 
where to paste into the picture. 

+ It must have a handler for the mouse-click event (in the PaintCanvas 
control outside of the PasteCanvas control) to know when to actually 
copy the data to the picture. 

+ It needs to be able to enable the Edit menu items as necessary. 

Keeping Track of the Last-Known Mouse Position 
So that it knows where the user is going to attempt to paste, your application 
must keep track of the last-known position of the mouse. This will allow the 
program to paste the image into the picture right where the mouse is when the 
user presses the Command+V shortcut for paste. All you need to do is add 
code to the PaintWindow class's MouseMove event handler: 

1. Click the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window for the 
PaintWindow class. 

3. Expand the Controls item and the PaintCanvas item. 

4. Click on the Controls/PaintCanvas/MouseMove event. 

5. Add the following code, as shown in Figure 14.10: 

nlastMouseX = X 
nlastMouseY = Y 

Copying the Pasted Data to the Picture 
When the user clicks outside the PasteCanvas control that was being dragged 
around, the application knows it's time to copy the contents of the PasteCanvas 
control to the PaintCanvas control. So that your program can handle this oper­
ation, you must add the code to call the PasteFromClipboard method in the 
PaintCanvas/MouseDown event. To do so, click on the Controls/PaintCanvas/ 
MouseDown event and insert the following code above the last End If: 



Figure 14.10 
The code for the 

PaintWindow/ 
PaintCanvas/Mouse 

Move event 

Figure 14. 11 
The code for the 

PaintWindow/ 
PaintCanvas/ 

MouseDown event 

CHAP:TER 14 •EDITING OPERATIONS 

else if (nCurrentTool = 8) then 
paintCanvas .refreshRect(O, 0, paintCanvas.width, • 
paintCanvas.height) 

elseif (nCurrentTool 
Pa steFromClipboard 
nCurrentTool = 8 

9) then 

After you add this code, the code for the PaintWindow/PaintCanvas/Mouse­
Down event handler will look like the code in Figure 14.11. 

·- ., 

llv ~~ontrol s 
v ~ Pai ntCenves 

Iii Paint 
IU NounDovn 

~ HouaeDrag 

(U HouseUp 

lil lm!l:'lmm 
~ MouseEnter 

IJ MouseExlt 

Iii Open 

~Close 
IJ OropObject 

~ ~ PesteCenves 

~ /;) Events 
f> ttG Menu Handlen1 

~ llJ. Method• 
~ (j Properties 

m~ ~I 

v '1:t Controls 
v ~ P•IDlC•nvas 

~ P•lat 

~ lm!llliD 
la M.useOrag 

~ tt.useUp 

~ ttouseHove 

~ MouseEnter 
~ MouseExlt 

Iii Open 

~ c1 ... 
~ DropObject 
~ PHleCenvH 

~Paint 
~ HeuseDoYn 

~ Ho useDrag 

~ "'"""' ~ ,,,..,.....,. 
Q t101"f:Enter 

~ "'""Exit 

""' Code Editor (Palntwlndow) ~ rner 

I ~ 

r. r. 

ll'l 

Sub MouseMove(X As Integer, Y As Integer) 
if ((nCurrentTool - 3) and (bDrawingShape)) Then 

DraglineDraw(X. Y) 
End If 
nLastMouseX ... X 
nLastMouseY- Yj 

End Sub 

..l<,.l• 

Function MouseOown(X As Integer, Y As Integer) As Boolean 
It (nCurrentTool • 3) Then 

1r (bDrawlngShape) Then 
Ir ((Micros econds - dMouseUpTlme) < 400000) Then 

Ora g L lneDraw< nS hape S tartX, nS hap e S tartY) 
bOrawlngShape • f:;ilse 

Enc:! If 
EndlineDraw 

Else 
nShapeStartX - X 
nShapeStartY - Y 
bOrawingShape"" true 

End If 
elseif (nCurrentTaol • 8) then 

I 

r.: 
t;: 

palntCanvas.refreshRect(O, C, palntCanvas.width, paintCanvas.helght) 
elseif (nCurrentTool • 9} then 

PasteFromCllpboard 
nCurrentTcol • B 

end if 

nlastx - X. 
nLastY • Yj 
Return true 

End Function 



Figure 14.12 
The new code for 
the PaintWindow 

EnableMenultems 
event 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

Enabling the Menu Items 

Now it's time to add the code to enable all the menu items. More importantly, 
you'll be enabling the Paste menu item, so that you can test it after the rest of 
its coding is complete. The Edit/Paste menu item is enabled only if there is 
picture data available in the clipboard, which is what the PictureAvailable 
check in the following code is for. Do the following: 

1. Click the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window for the 
PaintWindow class. 

3. Expand the Events item and click on the EnableMenultems event and 
enter the following code at the top of the EnableMenultems source 
code, as shown in Figure 14.12: 

dim c as Clipboard 

EditClear.Enabled = bSelectionAvailable 
EditCopy.Enabled = bSelectionAvailable 
EditCut.Enabled = bSelectionAvailable 

c = new Clipboard 
EditPaste.Enabled c.PictureAvailable 

0 JEJ±'EE l!o'~-· ·----g Code Editor (PaintWlndow) ~ · -· ...... -··-====; QI 8 

I 1> ~Co•trols 
v f)j Event. 

~ Open 
~ Clooe 

~ CencelClose 

~KoyDwn 
~Mouse~ 
~MouseEnter 
ra Mouae Exit 
~Pelnt 
€1 MouseDwn 

~ 11o ... o,., I'' 
€i Mouse:Up 

~ 1mam;m•M 

~""'"" ~ Moved 

~ OropObject 

~ Actlvete 
~ Oeactlvete 

I> h MO H HH dlen 

I> fl Methods t:;i 
I> 0 P,-opertles 

Sub EnableMenul tems() 
dim c as Clipboar d 

EditClear .Enabled - bSelection Avallable 
EdltC opy.Enabled - bSelec t lonAvallable 
EditCut.Enabled - bSelectionAvailable 

c - new Clipboard 
EdltPaste.Enabled • c.PlctureAvallable 

ToolsFreeHand.Enable 
ToolsllneDraw.Enable 
Tools Draws hap e .Enable 
Toc lsRectangle.Enable 
ToolsFllledRec t angJe.Enable 
ToolsOval.Enable 
T co Is F II le dOval. Enable 

FUeSave.Enabled - bPlctureHasChanged 
FlleSaveAs.Enable 
FlleClcse.Enable 
FlleOpen.Enable 
FllePageSetup.Enable 
FllePr1nt .Enable 

Enll Sub 



CHAPTER 14 •EDITING OPERATIONS 205 

Testing the Paste Function 
All the coding for pasting into the My Paint program is complete, so you 
should now be able to save and test your changes. If you have access to some 
other paint program, then copy a portion of a picture to the clipboard in the 
other program, and try to paste it into the My Paint application. If you don't 
have another paint program, you'll have to test the Paste functions after you 
write the Copy functions in the My Paint tutorial. 

The Copy Feature 
The Paste feature has been coded, and should be working correctly (assuming, 
of course, that you were able to test and debug it). Now it's time to code the 
Copy feature. 

Before users of your program can copy to the clipboard, you'll need to add a 
few things. First and foremost, you need to add a Selection tool, which the 
user can use to select an area of the screen to be copied. You'll then need to 
add the code for the Edit/Copy menu handler. 

The Selection Tool 
The Selection tool is simply a drawing tool that draws a rectangle around the 
area that the user wants to select for copying (or cutting) to the clipboard. In 
most drawing and painting programs, the Selection tool draws an animated line 
of dashes, usually called a marquee but otherwise known as "marching ants," 
around the selected area. Although it's possible to code for marching ants in 
REALbasic, it tends to get a bit complicated, so instead, you'll add code that 
enables users to draw a gray rectangle around the selection rectangle. 

The addition of the Selection tool, as with all other tools you've added, is 
accomplished in four parts: 

1. Creating the menu item 

2. Adding the code to enable the new menu item 

3. Adding the code to add a checkmark to the active Tools menu item 

4. Creating the menu handler for the new menu item 



206 

Figure 14.13 
The new menu 

item for the 
Selection tool 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

Creating the Selection Tool Menu Item 
The first thing you need to do is add the new Selection Tool menu item to the 
My Paint application's Tools menu. You should be fairly familiar with this 
process by now, but if not, here's a refresher for you: 

1. Double-click the Menu icon on the REALbasic Project window. 

2. Select the Tools menu in the Application Menu window. 

3. Add a Selection Tool entry in the last slot of the Tools menu, as shown 
in Figure 14.13. 

Enabling the New Menu Item 
The new menu item can't be used until it's enabled. To enable it, use the 
EnableMenultems event handler: 

1. Click the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window for the 
PaintWindow class. 

3. Expand the Events item and click on the EnableMenultems event. 

4. Enter the following code below the source-code lines that enable the 
other Tools menu items, as shown in Figure 14.14: 

Tool sSe l ectionTool. Enable 



Figure 14.14 
The new 

PaintWindow/ 
EnableMenultems 

event handler after 
the addition of the 

code to enable 
the Selection Tool 

menu item 

Control$ 

Event3 

~Open 
~Cl°" 
~ CancelCloso 

~ Key"°"'n 
~ Mo ""Nov' 
la Mo11$8Enter 
~ NouseExlt 
~Point 
~ ,.,,..,._, 
~ MouseOn19 
~ MouseUp 

~ 1anm;rmumm 
t\ Re~lzed 
~ Mo"" 
~ DropObject 

fl Activete 
~Deactivate 

~ ?toi Menu Hutdlen 

~it Motheds 

14 •EDITING OPERATIONS 

Sub EnableMenultems() 
dim c as Clipboard 

EdltClear.Enabled • bSelectlonAvailable 
EdltCopy.Enabled = bSelectlonAvallable 
EdltCut.Enabled = bSelectlonAvallable 

c - new Clipboard 
EditPaste.Enabled - c.PlctureAvailable 

T oolsF ree Hand.Enable 
'e ToolsllneDraw.Enable 

T oolsDrawShape.Enable 
T oolsRectangle.Enable 
Tool sFitl edRec tangle .En able 
Tool sOval.Enable 
Tool sFilledOval.Enable 
ToalsSelectlonT col.Enable 

FlleSave.Enabled = bPictureHasChanged 
FileSaveAs.Enable 
FlleClose.Enable 
FileOpen.Enable 
FllePageSetup.Enable 
FilePrint.Enable 

End Sub 

Updating the New Menu Item 
Your Tools menu has a checkmark beside the last selected tool to make it 
obvious to the user which tool is currently in use. You'll need to modify the 
SetMenuSelection method to allow for the new Selection Tool menu item that 
you just added: 

1. Click the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window for the 
PaintWindow class. 

3. Expand the Methods item of the Code Editor window. 

4. Select the SetMenuSelection method from the list. 

5. Enter the following code before the Pai n t Canvas . Refresh line of code 
in the SetMenuSelection method, as shown in Figure 14.15: 

ToolsSelectionTool .Checked= ((nCurrentTool= 8) or-. 
(nCurrentTool= 9)) 

bSelectionAvailable 
Enab l eMenu Items 

false 



208 

Figure 14.15 
The code for the 

SetMenuSelection 
method after the 

addition of the Copy 
and Paste features 

tJ ·---· ...... . 

~ ~Control$ 
~ f)) Ev.nu 

l> l'rii t1eauHendlers 

v 61 Hethods 

~ DngfneHand 

~ DragllneDrev 
~ DregOvel 

~ DragRechntle 
~ DragRefresh 

~ DravSelectlon 

Q EndllneDnv 
~ EndOval 

~ EndRectaagle 
~ PestefromCllpboud 

Qiifi11;!!tHM)mftiti1 
I> 0. Properties 

Sub SetMenuSelectlon(nTool As Integer ) 
nCurrentToot - nTool 
ToolsFreeHand.Checked - (nCurrentTool • 1) 
ToolsUneDraw.Checked = (nCurrentTool • 2) 
ToolsDraWShape.Checked .. (nCurrentTool - 3) 
ToolsRectangle.Checked • (nCurrentTool • 4) 
ToolsFllledRectangle.Checked • (nCurrentTool • 5} 
Tool sOval.Checked - (nCurrentTool .. 6) 
ToolsFill edOval.Checked - (nCurrentTool - 7) 
ToolsSelect lonTool.Checked - ((nCurrentTool.,, 8) or (nCurren:Tool = 9)) 

bSelectlonAvallable - false 
EnableMenultems 

PalntCanvas.Rerresh 
End Sub 

You might be wondering why, in the preceding code, you're setting the check­
mark on the Selection Tool menu item if the nCurrentTool variable contains a 
value of 8 or 9. If you recall, the Paste code you entered earlier uses a value of 
9 when you're in the middle of a paste operation. Because there is really no tool 
for this operation per se, you'll mark the Selection Tool as the current tool 
when a paste operation is in progress. 

Also notice that you're setting the bSel ecti onAvai l able property to a value of 
false every time a Tools menu selection changes. This is so that the selection 
goes away, and the Edit menu items are disabled, if the selected tool changes. 

The Selection Tool Menu Handler 
Finally you can add the code to the Selection tool's menu handler so that the 
Selection tool is activated when the menu item is selected. It's a one-liner, so 
without further ado: 

1. Click on the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window for the 
PaintWindow class. 

3. Open the Edit menu and select the New Menu Handler item, or press 
Command+Option+ H . 

4. Select the ToolsSelectionTool item from the drop-down list, and 
click OK. 



Figure 14.16 
The code for the 

ToolsSelectionTool 
menu handler 

CHAPTER 14 • EDITING OPERATIONS 

Menu Handle n 

ill EdltCopy 

ill EdltPa•le 

r;a fileCloae 

~ f l lePageSetup 

Ill FllePrlnl 

~ fileSave 
Ill FlleSovoAs 

~ ToolsDnvShape 

~ Tool s filledOvel 
~ Tool.sfilledRectangl ' 

~ ToolsfreeHand ~ 
~ Tools li aeDnv 
€l ToolsOval 

~ ToolsRectangle 

~ •liffl§O-ftltitilfti!jjtifiii ... 

Function Action As Boolean 
SetMenuSelect lon 8 

End Function 

•I> ~ 

5. Enter the following code in the ToolsSelectionTool menu handler, as 
shown in Figure 14.16: 

SetMenuSelection 8 

Adding the DragSelection Method 
Now that the Selection tool menu stuff is done, you can move on to the guts 
of the code. The first thing you're going to tackle is the method for drawing 
the selection rectangle in the PaintWindow. This code, not surprisingly, looks 
a lot like the DragRectangle code, which is used for drawing a rectangle with 
the Rectangle tool. After all, both do the same type of thing: They draw a rec­
tangle. The major differences are that the color, pen height, pen width, and 
background of the rectangle are hard-coded to a specific value. Let's go ahead 
and create the method, and you'll see what we mean: 

1. Click the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window for the 
PaintWindow class. 

3. Open the Edit menu and select the New Method item, or press 
Command+Option+ M. 

4. Enter DragSel ecti on as the new method name. 

5. Enter X As Integer, Y As Integer as the parameters. 



Figure 14.17 
The code for the 

new DragSelection 
method 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

~Events 
~ ?rt1 Hoau Hoodlen 

v la f1etheds 

~ CepyToC llpboerd 

~ Dn9FreeHud 
~ DngllneDrev 

lij_ DragOv•I 

~ Dra9Rect11l9le 

~ DragRefreah 

~ limlmmlll 
Si £ndllneDrav 

~ EndOval 
~ EndRectngle 

~ PastefrosnCllpklrd 

~ SetMenaSelectlon ~ 
! ~ 0 Properties ~ 

Sub DragSelec tlon(X As Integer, Y As Integer) 
if ((nLas tEndX <> X) or (nlastEndY <> Y)) then 

bSelectlonAvallable - ((nlastX <> X) and (nlastY <> Y)} 
EnableMenultems 
DragRerresh nlastX, nLastY, nlastEndX, nLastEmfY 
PalntCanvas.Graphlcs .ForeColor - RGB (1 92, l92, 192) 
PalntC anvas.Graphics.PenWidth • I 
PalntCanvas.Graphlcs.PenHeight - 1 
Pa lntCanvas.Graphlcs.d,..awRect nLastX, nlastY, X - nLastX, 'I - nLastY 
nLastEndX - X 
nLastEndY - Y 

end if 
End Sub 

f::;- i 

EJEJ~ ~ :El!I~ 

6. Leave the return type blank and click 0 K. 

7. Enter the following code in the DragSelection method, as shown in 
Figure 14.17: 

if ((nlastEndX <> X) or (nlastEndY <> Y)) then 
bSelectionAvailable 
EnableMenuitems 

((nlastX <> X) and Cn la stY <> Y)) 

DragRefresh nlastX, nlastY, nlastEndX, nlastEndY 
PaintCanvas.Graphics . ForeColor = RGB (192,192,192) 
PaintCanvas.Graphics.PenWidth = 1 
PaintCanvas.Graphics.PenHeight = 1 
PaintCanvas.Graphics.drawRect nlastX, nla stY, X - nlastX, • 
Y - nLastY 
nLastEndX X 
nlastEndY Y 

end if 

The MouseDrag Event 
Handler Changes 
Just as with the other tools, you'll need to modify the PaintCanvas/Mouse­
Drag event handler so that it calls the appropriate drag method depending on 
the currently selected tool-in this case, the DragSelection method: 

1. Click the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window for the 
PaintWindow class. 



Figure 14.18 
The code for the 

MouseDrag event 
handler, after 

adding the case for 
DragSelection 

CHAPTER 14 •EDITING OPERATIONS 

v Cootrala 
.... Ill PelntCo .... 

fil Point 
fil ttouaeDovn 
fillllllllll!lllll 
fil11i>uaeUp 
filttouaellove 
fil Mo ... Eoter 
fil Mo ... Exll 
fil ... . 
filc1 ... 
fil DropObjocl 

~ 111-.... 
~ j)Events 
~ ~ tt:ona He~loro 
~(lttotllnde 

Propertloa 

Sub MouseDrag(X As Integer, Y As Integer) 
Select Case (nCurrantTool) 
Case l 

DragFraeHand(X, Y) 
Case 2 

DragllneDraw(X, Y) 
Case 4 

DragRectangle(X, Y, false) 
Case 5 

DragRectangle(X, Y, true) 
Case 6 

Dragoval(X, V, false) 
Case 7 

Dragoval(X, v, true) 
case B 

DragSelectlon(x, y) 
End Select 

bPlctureHasChanged ~ ((nCurrentTool > O) and (nCurrentTool < B)) 
End Sub 

3. Expand the Controls and PaintCanvas items in the Code Editor 
window. 

'211 

4. Select the MouseDrag event handler and insert the following code 
above the End Select line of code, as shown in Figure 14.18: 

case 8 
DragSelection(x, y) 

The CopyToClipboard Method 
You're almost there, almost ready to actually add the EditCopy menu handler, 
but not quite. You need to create a method that will be used to copy data from 
the PaintCanvas, based on the current selection rectangle, to the clipboard. 
You could just put the following code in the EditCopy menu handler, but 
because you want to be able to reuse the code elsewhere, you'll create a new 
method instead: 

1. Click the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window for the 
PaintWindow class. 

3. Open the Edit menu and select the New Method item, or press 
Command+Option+ M. 

4. Enter CopyToCl i pboard as the new method name, and click the OK 
button. 

5. Enter the following code in the CopyToClipboard method, as shown in 
Figure 14.19: 



Figure 14.19 
The code for 

the new 
CopyToClipboard 

method 

PAR:Y: 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

l~cootnl• 
I> p Eventa 

I> Ito Heau Htndlen 

v lil MetltOds 

a ............ '1i!ilill12ml"·--'""· 
~ DrqfreeHH4 

~ OraglilaeDnv 

~ DratOv•I 
~ DratRect.atle 
~ Dr-.. RefrHb 

[§J. Dra9Select1en 
~ EndllneDnv 

la EDdOv•I 

~ EndRec:tengle 

~ PastefromtllpboU"d r-~t j 
~ SetHeuSelec:tlon 

I> Q. Properties 

ode Edttpr (Palntwlndow) %WW H 1, 

Sub CopyToCllpboard() 
dim c As Clipboard 
dim p as Picture 
dim x l, x2 , yl , y2, nWldth, nHelght as Integer 

It (nlastX < nLastEnCIX) then 
xl - nlastx 
x.2 .. nLastEnd:X 

else 
x1 - nLastEnelX 
x2 .. nLastx 

end If 

if (nlastY < nlastEndY) then 
y1 .. nLastY 
y2 .. nlas tEndY 

alse 
yl - nlastEndY 
y2 .. nLastY 

ondif 

nWidth • x2-.x 1+1 
nHelght -y2-y1+ 1 

p • NewPlcture (nWldth, nHelght, Screen(O).Depth) 

"'' '"!!'Ill El 

p.Graphlcs .DrawPlcture PicBufter, 0, 0 , nWidth, nHeight, x l , y l , nWidth, nHelght 
c • new Cllpboard 
c.Plcture • p 
c.close 

bSelectlonAvallable .. false 
EnableMenultems 
OragRefresh x 1, y1, x2, y2 

End Sub 

dim c As Cl ipboard 

dim p as Picture 

dim xl, x2, yl, y2, nWi dth, nHei ght as integer 

if (nLastX < nLastEndX) then 

xl n Las tX 

x2 nLastEndX 

else 

xl nLastEndX 

x2 n Las tX 

end if 

if (nLastY < nLastEndY) then 

yl nLastY 

y2 nLastEndY 

else 

yl nLastEndY 

y2 nLastY 

end if 

nWidth x2-x l+l 



CHAPTER 14 •EDITING OPERATIONS 213 

nHeight = y2-yl+l 

p = NewPicture (nWidth, nHeight, Screen(O).Depth) 
p.Graphics.DrawPicture PicBuffer, 0, 0, nWidth, nHeight, -. 

xl, yl, nWidth, nHeight 
c = new Clipboard 
c.Picture = p 
c.close 

bSelectionAvailable = false 
EnableMenultems 
DragRefresh xl, yl, x2, y2 

This code looks pretty complex, but it really isn't. It starts by defining a few 
variables, the most important of which is the clipboard variable. It then figures 
out what the proper upper-left and lower-right corners of the rectangle should 
be, and calculates the width and height based on these values. The contents of 
the Pi cBuffer are copied to a new picture, based on all these calculated values. 
The contents of the new picture are then placed in the clipboard. At this point, 
the Edit menu item status is refreshed and the selection rectangle is removed 
from the screen. 

The New EditCopy Menu Handler 
Now that all the behind-the-scenes work is done, you can add the EditCopy 
menu handler. The code for this menu handler is amazingly simple, because 
all the work is being done in other methods: 

1. Click on the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window for the 
PaintWindow class. 

3. Open the Edit menu and select the New Menu Handler item, or press 
Command+Option+ H. 

4. Select the EditCopy item from the Menu Item drop-down list, and 
click OK. 

5. Enter the following code in the EditCopy menu handler, as shown in 
Figure 14.20: 

CopyToClipboard 



214 @ 

Figure 14.20 
The deceptive ly 

simple code for t he 
EditCopy menu 

handler 

PART 11 • DEVELOPING YOUR FIRST MAC PROGRAM 

ll!ZI - - Code Editor (Palntwlndow) --
~---- ~ 

Jll!11!3 
~~Controls Function Ac tion As Boolean 

~ f;J Evonb I'll CopyToClipboard 

v ~ Henu Handlers I~ 
End Function 

I ill. lmin I"" I 

Ill EditPnto I ~-~ FileClose 

ml FitePegeSetup 
~ FilePl"int I': r.: 
~ flleSave ~ 

le\! El l!Htl ] <J• ii:i 

The code for the menu handler might be simple-one line and no parame­
ters - but what happens behind the scenes is where the complexity comes in. 
All the supporting methods and properties used by this simple menu handler 
are fairly complex, but when broken into smaller chunks, they become much 
more manageable. 

The Clear and Cut Features 
The last two Edit menu items you'll be working on are the Clear and Cut 
items; both are similar in function. The Clear menu item clears the area of the 
window selected with the Selection tool. The Cut menu item does the same 
thing, after copying the contents of the selected rectangle to the clipboard. 

The New ClearSelection Method 
The ClearSelection method is used when the user chooses the Edit/ 
Clear menu item, and is also used by the Edit/Cut menu item. By creating 
a ClearSelection method rather than putting this code in the EditClear menu 
handler, you can take advantage of code reusability. Here's how it's done: 

1. Click the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window for the 
PaintWindow class. 

3. Open the Edit menu and select the New Method item, or press 
Command+Option+M. 

4. Enter Cl ea rSe l ect ion as the new method name, and click the OK 
button. 



Figure 14.21 
The code for the 

new ClearSelection 
method, which will 
shortly make your 
life much simpler 

CHAPTER 14 •EDITING OPERATIONS 

~Controls C.Ode Edttor (PaintWlndow) &&i!ili~~1uHli!ilib ~~~(ill.llill!,,,,,, .. ,,,;g QJ9 
Sub Cl earSelectl on() 

I> f;J Events ptcBuffer.Graphlcs .ForeCclor - RGB(2SS, 255, 255} 

t.· h Hen Hendlers 
plcButrer.Graphlcs.FillRect nLastX, nlastY, nlastEndX-nlastX, nlastEndY-nlastV 

v [!l Hotbeds 
bSelectlonAva llable .. false 
EnableMenultems 

la MtllffjffllAlll!fti 
. .., Dr agRefresh nlastX, nLastY, nlastEndX, nlastEndY 

~ CopyToCllpboerd End Sub 

ia Dr•9freeHud 

Im ~ DragllnoDnv 

~ 0,...0Yll 

la DrqAectangle 

tl DngRefnsh 

~ DregSeleetlu 

Q ED4llMDrw 

~ 
f-€1 ERdOve l ~ 

B El ~ l'!l l"<T• 1:;,; 

5. Enter the following code in the ClearSelection method, as shown in 
Figure 14.21: 

picBuffer.Graphics.ForeColor = RGB(255, 255, 255) 
picBuffer.Graphics . Fi ll Rect nlast X, nlastY, .,. 

nlastEnd X- nlastX, nlastEndY-nlastY 
bSelectionAvailab l e = false 
Ena bl eMenuitems 
DragRefresh nlastX, nl astY, nlastEndX, nl astEndY 

The EditClear Menu Handler 
As we said earlier, the EditClear menu handler will use the code in the 
ClearSelection method; as a result, the code for this menu handler is amaz­
ingly simple. All it needs to do is clear the selected area of the Paint window 
using the ClearSelection method: 

1. Click on the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window for the 
PaintWindow class. 

3. Open the Edit menu and select the New Menu Handler item, or press 
Command+Option+ H . 

4. Select the EditClear item from the Menu Item drop-down list, and 
click OK. 

5. Enter the following code in the EditClear menu handler, as shown in 
Figure 14.22: 

ClearSelection 



216 

Figure 14.22 
The deceptively 

simple code for the 
EditClear menu 

handler 

Figure 14.23 
The even-more 

deceptively simple 
code for the EditCut 

menu handler 

PART 11 • DEVELOPING YOUR FIRST MAC PROGRAM 

p - - -==--a Code Editor (PalntWindow) :-- --- - -- 0j! 

~ , ~:~lrol• Function Action As Boolean 

I> Events ~ii ClearSelectlon 

v ~ Menu Handlers I'-' End Function 

l\l l!llmm 
~&I m I 

l\l EdllCopy 

' l\l EditPaste 

l\l fll eClooe f;;: t-;;1 
Jli_ flle P!!Jl!'Sel !!J!_ r;- r.-1 

!!I El ltl E!l -1 '1' ~ 

The EditCut Menu Handler 
Just like the EditClear menu handler, the EditCut menu handler uses pre­
existing code, so the actual menu-handler code is also very simple. All it needs 
to do is copy the selection to the clipboard and then clear the selected area of 
the Paint window: 

1. Click on the PaintWindow class in the Project window. 

2. Press Option+ Tab to display the Code Editor window for the 
PaintWindow class. 

3. Open the Edit menu and select the New Menu Handler item, or press 
Command+Option+ H. 

4. Select the EditCut item from the Menu Item drop-down list, and click 
OK. 

5. Enter the following code in the EditCut menu handler, as shown in 
Figure 14.23: 

CopyToClipboard 
ClearSelection 

Function Action As Boolean 
CopyToCllpboard 
ClearSe lectlon 

End Function 



Review 

CHAPTER 14 •EDITING OPERATIONS 217 

The last two code examples aptly demonstrate the power of code reusability. It 
is possible to write code that is very readable, but that at the same time does a 
lot of work. You should always keep in mind, however, that code reusability 
comes at the expense of performance. Don't overuse code reusability just for 
the sake of simplifying code. If the code you're writing has performance con­
siderations, you may want to avoid, or at least keep to a minimum, the amount 
of reusable code you write. 

What started out sounding fairly simple-copying data to and from the clip­
board-turned into quite a task! Sometimes, what sounds like a simple pro­
gramming task may in fact balloon into a much more complicated one. Always 
consider the user-interface elements and the structure of your program when 
assessing the difficulty of a task. What seems like a simple change might 
require you to work with many parts of your program. You can save time by 
sitting down in advance and figuring out how you're going to achieve any goal, 
rather than just jumping in and doing the coding. 

After reading the chapter, you should be comfortable adding new controls to 
a window and hiding them in response to conditions in your program. You 
could do this with buttons, text, and just about every other window control as 
well. Controls in windows don't have to be static items; they can respond to 
and change based on the conditions of your application. 

You began by learning about the clipboard functions, and about how data is 
moved to and from the clipboard, concentrating on the functions for copying 
text to and from the clipboard. You then learned about the Paste feature, start­
ing with the PasteCanvas control. You added code for pasting from the clip­
board into the control, and then copying the data from the control to the 
window. 

For the Copy feature, you added a new menu item and the methods used 
by the new tool, and modified its menu handlers and event handlers. Lastly, 
you added the code to copy the data from the clipboard to the PaintCanvas 
control. 



218 PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

Finally, you coded the Clear and Cut functionality. The Clear feature required 
new coding, but you created the Cut feature by combining the Clear and Copy 
features, enabling you to reuse code. Although code reusability can be a great 
thing, it can negatively affect program performance. 



~~==• Creating tool palette icons 

=--~• Creating a tool palette window 

=-~==---'• Mapping the tools to the menu items 

• Creating the tool cursors 

-~=='""'• Using the appropriate cursors 



PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

T his chapter discusses how one goes about creating a tool palette, which is 
a window that contains icons for the program's drawing tools. We'll also 

talk briefly about using custom cursors in your application (for example, you 
might want to have a different cursor for each drawing tool in the application). 

We'll lighten up on the tutorial stuff from now on. You should be fairly com­
fortable with using REALbasic by now, so consider the sections that follow to 
be exercises for you. If you want to attempt to add these features on your own, 
feel free to do so. 

A lot of the material in this chapter relies on the ability to create and edit 
resource files . If you're working on pre-Mac OS X applications, you'll want to 
download and learn how to use a tool like Apple's ResEdit or Mathemaes­
thetics' Resourcer application. You can download any tools you'll need at the 
Apple Developers Connection Tools Web site (http://developer.apple. 
com/tools). We aren't going to get into how to use these tools; you'll find 
plenty of documentation about these tools on the Apple Developers Connec­
tion site. 

Creating Tool Palette Icons 

NOTE 

When you create tool palette icons, you'll add them to a resource file created 
using one of the tools we talked about in the preceding section. After you've 
created your icons, save the resource file, naming it Resource, and place it in the 
same folder as your REALbasic application. 

The file must be named Resources so that you can drag and drop it into the 
REALbasic project window. For example, suppose you've created a resource 
file in ResEdit with four icons (which, by the way, are created via ResEdit's 
Resource/Create New Resource menu item, shown below in the "cicns" win­
dow). It would look something like the one in Figure 15.1. 

selected, !!.S well as Tconsthat represent each button a~r it has be~ 
selected. You'll want to do t his for all of your tool palette buttons. - -



Figure 15.1 
Four icons defined 

in a ResEdit 
resource file. 

CHAPTER 15 •TOOL PALETTES AND CURSORS 

cicn 

Now that you've created a resource file, all you need to do is drag it into the 
REALbasic Project window of your application, as shown in Figure 15 .2, and 
voila! You'll be able to use the icons in your REALbasic application. 

Creating a Tool Palette Window 

Figure 15.2 
The resource file in 

the REALbasic 
project 

If you've ever used a Macintosh drawing or painting program, you're familiar 
with tool palettes. As a matter of fact, REALbasic itself contains a tool palette. 
As mentioned before, tool palettes are those windows with the thin title bars 
that contain icons used to select the various application tools. A typical tool 
palette window is shown in Figure 15.3. To create a tool palette window in 
REALbasic, do the following: 

1. Open the File menu and select the New Window item. 

2. Change the window name to Tool Palette. 

(J ' Rf.Al.Dasie ProJect,J It!~ 
Lf w1nc1w 1 

ii Me nu 
lj /hl,illV/1-'e~ 

~ 
I~ 



Figure 15.3 
A typical tool 

palette window 

Figure 15.4 
A blank tool palette 
window created in 

REALbasic 

3. Change the window frame to J - Floating Window. This enables you to 
create a window with a narrow title bar, like you normally see in palette 
windows. 

4. Add one 32 x 32 image-well control to the tool palette window for 
each tool that you want to add. 

Figure 15.4 shows a blank tool palette window created in REALbasic. 

Oieloo 

Plecement o - Def•ult ... 
Width 64 
Helo ht 192 
MlnWidth 64 
MlnHeioht 64 
MexWldth 32000 
MaxHeiQht 32000 

1reace 
Frame 3 - f loating Windw "" 
HasBackColor liit 
BacKColor 
Backdrop None 
Tiiie Untitled 
Vl~ib l e Ga 
fullScreen El 
MenuBerVi, lble liit 
CI03eBox liit 
Gro'w'lcon D 
Zoomlcon D 
Bet loon He! p ~: 
Mec:Proc!D 



CHAPTER 15 •TOOL PALETTES AND CURSORS 223 

Mapping the Tools to the Menu Items 
Simply creating a window, dropping some controls on it, and setting the con­
tents of those controls to some icons isn't enough to make them work the same 
as your Tools menu items. You'll need to add MouseDown event handlers to 
each of the image-well controls to change the icon to the selected tool icon, 
and then call the PaintWindow.SetMenuSel ecti on method to choose the appro­
priate tool. You could do this in each image-well control's MouseDown 
method, but it would be better to create a few new methods, which would be 
called from each MouseDown event: 

Sub SetToolicon (iwimageWell As ImageWell. nBaseicon As Integer, .,. 
bSelected As Boolean) 

' Set the contents of an image-we 11 contra l to one of two icons 
Dim nicon As Integer 
If (bSelected) Then 

nicon nBaseicon + 1 
Else 

nicon nBaseicon 
End If 
iwimageWell .image= app.ResourceFork.Getcicn(nicon) 

End Sub 

Sub SetToolSelection(nTool As Integer) 
' Set each tool icon, depending on what the currently selected .,. 

tool is 
SetToolicon(ImageWelll, 128, nTool 1) 
SetToolicon(ImageWell2, 130, nTool 2) 
SetToolicon(ImageWell3, 132, nTool 3) 
SetToolicon(ImageWell4, 134, nTool = 4) 
SetToolicon(ImageWell5, 136, nTool 5) 
SetToolicon(ImageWell6, 138, nTool = 6) 
SetToolicon(ImageWell7, 140, nTool = 7) 

SetToolicon(ImageWell8, 142, nTool = 8) 
'PaintWindow.SetMenuSelection(nTool) me. image = .. 

app.ResourceFork.Getcicn(129) 
PaintWindow.SetMenuSelection(6) 

End Sub 



Function MouseDown(X As Integer, Y As Integer) As Boolean 
' Si nee this image-we ll control was cl i eked, change the tool • 
selection 

SetToo lSelection (1) 

End Sub 

After making all these modifications, you want to change the original menu han­
dlers of the PaintWindow class to use the new Tool Pa lette. SetTool Selection 
method so that you can select tools by selecting the menu items or by selecting 
the icons in the tool palette. When running, the new tool palette will look sim­
ilar to the one shown in Figure 15.5 (but, obviously, with more icons). 

Creating the Tool Cursors 
If you've used other drawing programs before, you're no doubt aware that 
when you select different drawing tools, the mouse cursor changes to reflect 
the selected tool. Just as with the icons you created earlier, you'll create your 
cursors in your Resource file, using the appropriate resource editor for your 
operating system. You create cursors by adding CURS resources to the 
resource file, like the ones shown in Figure 15.6. 

Using the Appropriate Cursors 

Figure 15.5 
A tool palette 

window taking 
shape in REALbasic. 

To swap to the appropriate cursor, you use the PaintWindow.SetMenuSelection 
method to change the active cursor. If you create a new cursor for each tool, with 
resource IDs beginning at 128, then all you need to do is add the following line 
of code to the SetMenuSelection method: 

PaintCanvas.MouseCursor = app . ResourceFork.GetCursor(l27+nTool) 



Figure 15.6 
A few cursors 

defined in a ResEdit 
resource file 

The PaintWindow 
window, with the 
free-hand pencil 

mouse cursor 

CHAPTER 15 •TOOL PALETTES AND CURSORS 

Resources 

~ ~I f 
cicn CURS 

~ + -:-
128 129 130 

This sets the mouse cursor for the PaintCanvas control to the specified cursor 
in the Resource file. If you remember, each tool is specified as tool number 1, 

tool number 2, tool number 3, and so on. These tool values are added to 127, 

giving values of 128, 129, 130, and so on, which are the values of the CURS 
resources you'll be using. 

In Figure 15.7, the cursor is displayed as the free-hand pencil cursor. If you 
drag the mouse cursor off the canvas, as shown in Figure 15 .8, it reverts to the 
standard arrow cursor. 

Figure 15.8 m.~~~~~~lJ~n~tit~le~d~~~~~I 
The PaintWindow 
window, with the 
standard mouse 

cursor 



Review 

PART 11 • DEVELOPING YOUR FIRST MAC PROGRAM 

Although creating resource files might seem like a bit of a pain, it's really not 
all that bad. You can create icon (CICN), cursor (CURS), and even picture 
(PICT) and sound (SND) resources within ResEdit, or the resource-editing 
tool of your choice, and easily use them in your REALbasic application. Refer 
to your resource-editing application for the instructions on how to create 
resources. 

If you want to learn more about using resources in a REALbasic application, 
refer to Chapter 8 in the REALbasic Developers Guide, included on the CD­
ROM. The section titled "Working with Macintosh Resources" will give you 
all the information you need on using cursor, icon, picture, and sound 
resources in your apps, along with other custom resources. 

This chapter is intended only to point you in the right direction to add these 
new features to your application. We can't give you all the answers and source 
code this time. The implementation of these features is left as an exercise for 
you. If you get stuck, refer to the REALbasic Developers Guide and Language 
Reference documents included in the Open Me For REALbasic folder on the 
CD-ROM that comes with this book. 

By the way, don't get overly hung up on the "right way" to write your new code. 
There are countless ways to write program code, all of which will yield the 
same results. It's like walking through a forest with many paths. Each path 
might have different advantages and pitfalls, but all lead to your goal, the other 
side of the forest. Different designs may have benefits of performance, appli­
cation size, ease of use, and features. The design choices you make should be 
based on your level of experience and the features you most value for your 
application. 



• Adding color selection tools 

• Adding line-width selection tools 

• The About box: patting yourself on the back 



228 PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

A bout the only things left to wrap up in the tutorial section of this book 
are some of the finishing touches of the application. As with just about 

any other project, there are always some features that you'd classify as not nec­
essary, but nice to have-in other words, fluff. That said, fluff can be the dif­
ference between a mediocre product and one that's, well, still mediocre, but 
that looks better. 

Seriously though, touchy-feely features often sell a product. If you had the 
choice between two applications with the exact same "useful" features, but one 
of them threw in some additional "purely-for-fun" features, you'd probably pick 
the one with the additional features, even if they weren't something you were 
looking for. 

Don't get me wrong. Fluff isn't what you should be concentrating on when 
designing a product. Always work on the features that you deem necessary first, 
and then work on the fluff later. Fluff is like dessert-you don't have it until 
you've eaten your main course. The same goes for your applications. You've got 
to worry about the meat of your apps before worrying about the frills. 

Along the same lines as fluff is "feature creep." Qyite often, developers add 
features to a product just because designing and implementing those features 
is fun for the developer. Whether something is feature creep, or as some put 
it, "creature feep," is sometimes hard to judge. This is why, quite often, a lot of 
software-development companies leave decisions about features to someone 
other than the software developers. Sometimes marketing is best suited to 
make feature decisions. 

Conversely, don't assume that just because something is fun to develop, it's fea­
ture creep. If the feature you're adding has any measurable benefit to the user 
of the application and doesn't severely affect your development schedule, then 
by all means add the feature. It's good to get into the practice of honestly ask­
ing yourself whether the feature is absolutely necessary, or whether you are 
adding it just because it would be fun/neat/cool to work on. If you can objec­
tively state that you're adding features based on their merits, then they pass the 
test and should be included in your application's feature set. 

Adding Color-Selection Tools 
So maybe being able to paint and draw in color isn't quite a fluff feature. Of 
course, you could argue that your application is just a sketching program in 



Figure 16.1 
The Color 

Selection menu 

Figure 16.2 
The menu items in 
the Color Selection 

submenu 

CHAPTER 16 •FINISHING TOUCHES 

which the only tools available to the artist are pencils. In reality, however, just 
about everyone expects a paint program to support color. 

Adding and Enabling 
the New Menu Items 
First, you need to add the Color Selection menu as a submenu of the Tools 
menu. To do so, simply select the blank item in the Tools menu, change the 
menu's Name property to Color Selection, and enable the SubMenu property, as 
shown in Figure 16.1. 

Next, add the menu items for the Color Selection submenu, just as you would 
with any normal menu, so that they look like those in Figure 16.2. 

You need to add the menu handlers for these new menus to enable users to 
select the line or fill color, but before you do, you should add a method. That's 
because the code for the menu handlers is almost identical. By adding a 
new method, you can reduce redundant code. Besides, you'll be using the 
SetColorSelection method again later, so it's worth the effort. Add a new 
method named SetCo lo rSe l ect ion to the Paint Window, giving it a parameter 

~ File Edit Tools ~ 
free Hand 
UneDraw 
Draw Shape 
Rectangle 
Filled Rectangle 
oval 
Fiiied OVal 
Selection Tool 

ID 
11-::-..:..::..::....=::.:.:..,...:.::;:"'""'~"------,...----1111 Name CotorSelectlonFlllColor 

line Draw 
Draw Shape 
Rectangle 
Fiiied Rectangle 
OVal 
FliledOVal 
Selectlon Tool 

Index 

fill Color 
D 
0 
D 

D 



230 

NOTE 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

of bisFi 11 Col or As Boal ean. Your new SetColorSelection method code 
should look something like this: 

Sub SetColorSelection (bisFillColor As Boolean) 
Dim rbgSelectedColor As Color 
Dim strSelectionPrompt As String 

strSelectionPrompt = "Select the • 

If (bisFillColor) Then 
rbgSelectedColor = rgbFillColor 
strSelectionPrompt = strSelectionPrompt +"fill color.• 

Else 
rbgSelectedColor = rgblineColor 
strSelectionPrompt = strSelectionPrompt +"line color." 

End If 

if CSelectColor(rbgSelectedColor, strSelectionPrompt)) then 
If (bisFillColor) Then 

rgbFillColor = rbgSelectedColor 
Else 

rgblineColor = rbgSelectedColor 
End If 

End If 
End Sub 

:3ddsu.t 1212g~biiiil~ a11d:fitlwtp1, N~im:r.:::::. 
:~,~~~t:'~'te~~~~~~:~~,:~,~~=::·. 
,::,0~~have.~dea:lo change~1tofl6edtawJtlg1'1.inc't10ns S'lL:thaf,tfiey::suppoiF·.·· •· ... 
-··;a·'iiie-aa;1·11iYiC>' ·c:11;n9~k the"iiflea~nCif.ff<:C>iOl-6.'8v t'tiin'11'1~ta1le8<rs-ncr··· · .... ·· 

design(og in this ~pabilif:y, VPU savt:;d yourselfJots ofworl<. If you ever 
,''.'.':;~~\~-,·.,·.·,,'.:'~,':<:_~· .. ~.~·:''.··": ' .. ~f-i:5:'<_ .. '<f~V\·, '·)P:'.:::· .. ;~;'.:~ .. '.:. :<'.::~:;·· .,'.:~J~:,· ·,~.,.>{\'."'.· ?-;;,:_,\ ,··.>'.·.:· .. ~:·;::'.·' 
suspect that sorrie'valuc:[(lif<e our Urie- and fill-color values) may need to 
~~· ch~~ged .. !~ th~·tytur~the,~:,cOf1~}der .• IJ1al<in,g.~1tlat .• ~Iue ;~proB.erty .qf 
your class, rather than using the value dit~ctly i.ti youf: c<>de. This way· 

ypu carj:,~afl!Jt.ch~~~i:f~~11n~{~ven~Jl~w f()r. th~~s~~~!r> ch~nge ~r .wi~~: 
minima.I. effort on ttie paft of the developer. · · '·· ·. 

.. . ' . . ', '; >·:'i,~' ··:"'" 

··~f-r·.~" "i> ;'!'. ,, -~::£i:~·, 



Figure 16.3 
The CMYK Picker 

dia log box 

Figure 16.4 
The Crayon Picker 

dialog box 

The Se l ectCo lo r function is used in REALbasic to select a color and return it 
as one of the parameters of the function. The Se l ect Co l o r function returns 
true or false, depending on whether the user clicks the OK or Cancel but­
tons on the Color Picker dialogs. The function supports all the color-selection 
methods available to the operations system. If your Macintosh is like 
mine, you can use the CMYK, Crayon, HLS, HSV, HTML, or RGB color­
selection tools that you see in Figures 16.3-16.8. The nice thing is that you can 
use any of these cool color-selection tools in your applications without having 
to write a stitch of code for them. They're part of the Mac OS and every appli­
cation gets to use them. 

[ijJ 
Crayon Picker 

fil 
HLSPlcker 

HSYPlckl'r 

Select the line color. 

New: 

fyan: 
, 25 LI"-so 1s-i0o 

Magenta: ~ LI"-
0 2S so 7S 100 

Yellow: t!: LI"-
o 2s--so--1s--rao 

Black: ~ so 75 100 ~% 

Select the line color. 

tance1 I 11 - 1lK I 

Original: . 

New: IJllJ, 
Name: 
Soapstone .. ish 



Figure 16.5 
The HLS Picker 

dialog box 

Figure 16.6 
The HSV Picker 

dialog box 

Figure 16.7 
The HTML Picker 

dialog box 

Figure 16.8 
The RGB Picker 

dialog box 

~ 
CMVK Picker 

[U 
Cr•yon Plcbr 

• !i.Hlol<"1 

[] 
HSVPk.ktr 

~ 
CMYK Picktr 

[U 
Cnyon Picker 

~ 
H.S Picker 

[Li ri 
HLS Plcktr 

~) 1 

Lil 
HSV Picker 

• ~ 
~ ~ 

ROB Picker . 

l'*l 
HLSPlcktr h 

[] If 

HSVPici<tr 

Iii! 
~ D 

HTM- Pickff'" 

·~ l!Ps~ . 

Selectthe line color. 
Original:-

120• •o• 
New: • 100• o• 

Hue Angle: LI. 
Saturation: LI '" 

0 50=r=;; lightness: @],. 

~II OK 

Select the line color. 
Original: -

New: • 100• o• 

Hue Angle: LI" 
Saturation: LI '" 

-~ Value: @] % 
0 so 100 

I . Cancel I OK ] 

Select the line color. 
Original:-

New: 

R: oo~~"~~u~~9r-c~ ~ 
G: ~ ~ Oil 33 u .. cc Ff 

6: oo~~-33~~u~~~----c~ ~ 
Iii! Snap to Web color ITTML: l•cccccc I 

I, _ Cancel I I! OK I 

Selectthe line color. 
Original: -

New: 

-= @]% Red: 
0---20 50 75 IOO 

Green: 
0 25 so w= 100 

@]% 

61ue: @:] "!. 
.r---;, so 75 IOO 

I Cancel I [[ OK I 



TIP 

CHAPTER 16 •FINISHING TOUCHES 

You can now add the menu handlers for those new color-selection menu 
items. Because you added a method previously to do the actual color-selection 
itself, the code for the menu handlers will be extremely simple. For the Fill 
Color menu item add a new ColorSelectionFillColor menu handler for the 
PaintWindow. Here's what the code for the Fill Color menu item looks like: 

Function Action as Boolean 
' The ColorSelectionFillColor Menu Handler 
SetColorSelection(true) 

End Function 

For the Line Color menu item add a new ColorSelectionlineColor menu 
handler for the PaintWindow. And here's the code for the Line Color menu 
item: 

Function Action as Boolean 
' The ColorSelectionlineColor Menu Handler 
SetColorSelection(false) 

End Function 

Don't forget that you have to add code to enable the new menu items. Add the 
following code to the EnableMenuitems event handler of the PaintWindow 
and you should be able to test the changes: 

ToolsColorSelection.Enable 
ColorSelectionFillColor.Enable 
ColorSelectionlineColor.Enable 

Go ahead and compile and then test the MyPaint application. You should be 
able to select any color for the line or fill color and use any of the drawing tools 
with those colors. If you find that you have any problems with the drawing 
tools using the correct color, double-check the Drag ... method for that draw­
ing tool to make sure it's using the rgbFi 11 Col or and rgbFi 11 Col or properties 
correctly. 



234 PART 11 •DEVELOPING YOU.FfFIRST MAC PROGRAM 

Adding Color-Selection 
Tools to the Tool Palette 
Before you start adding the controls to handle color selection via the tool 
palette, you'll need to add some properties to the application class to track 
which PaintWindow window is active, so that the tool palette displays the 
proper colors for the active PaintWindow window. 

Keeping Track of the Active PaintWindow 
First you need to add the following properties to the Application class 
(theApp): 

ActivePaintWindow As PaintWindow 
wToolPalette As ToolPalette 

Then, in the Application class's Open event handler, add the following code 
to create the ToolPalette window: 

wToolPalette = New ToolPalette 

At this point, you need to add the following code to the PaintWindow's Acti­
vate event handler, which will set the Application class's ActivePaintWindow 
property whenever a new PaintWindow is created or when the user swaps 
Paint Windows: 

app.ActivePaintWindow = me 
app.wToolPalette.UpdateColors(rgblineColor, rgbFillColor) 

We'll explain what the UpdateColors function does in just a bit; just go ahead 
and code it for now. Also, you'll want to add the same function-call code to the 
Pai ntWi ndow. Set Co 1 or Selection method so that the colors are updated when­
ever the user chooses a new color: 

app.wToolPalette.UpdateColors(rgbLineColor. rgbFillColor) 

Go ahead and add the following code to the PaintWindow's Close event han­
dler, which will clear the Application class's Acti vePai ntWi ndow property 
whenever a PaintWindow is closed: 

app.ActivePaintWindow = nil 

The addition of this code will help you later to prevent an error when attempt­
ing to change the selected colors if no windows are open. 



Figure 16.9 
The Tool Palette 

dialog with the 
Canvas controls 

added 

CHAPT ER 16 •FINISHING TOUCHES 

The Actual Tool Palette Work 
Like always, you'll add some properties before you do any code work. First, 
add the following properties to the ToolPalette dialog class, which will be used 
to store the line and fill colors for the last-selected PaintWindow: 

• rgbCurrentFillColor As Color 

• rgbCurrentlineColor As Color 

To add the Color Selection tool to the tool palette, you simply add two Can­
vas controls to the ToolPalette dialog window: one shaped like a line, and one 
shaped like a box. These tools will correspond to the Line Color and Fill Color 
menu items. Your Tool Palette window might look something like the one 
shown in Figure 16.9 when you finish. 

Now that you've added the Canvas controls, you'll want them to show the 
actual color selections. You can do this by changing the Paint event handler for 
these controls to include a Fi 11 Rect call. For the Line Color Selection Canvas 
control, double-click on the control itself, then enter the code in the Paint 
event handler so that that handler looks like this: 

Sub Paint (g as Graphics) 
g.ForeColor = rgbCurrentlineColor 
g.FillRect(O,O,Width,Height) 

End Sub 

LlneColorCanv&3 

Cenvas .... 
5 
132 
38 
8 
0 
0 
0 
0 

Ii!' 
c;:;J 
r.g 
Ii:! 

Ii!' 
None .... . 
Ii!' 

. 



236 PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

The Fill Color Selection canvas control's Paint event handler would look 
something like this: 

Sub Paint (g as Graphics) 
g.ForeColor = rgbCurrentFillColor 
g.FillRect(O,O,Width,Height) 

End Sub 

Now you'll need to add code to the MouseDown event handlers for these two 
Canvas controls. The FillColorCanvas control's MouseDown event handler 
code should be 

If (app.ActivePaintWindow <>nil) Then 
app.ActivePaintWindow.SetColorSelection(true) 

End If 
And the LineColorCanvas control's MouseDown event handler should be 
If (app.ActivePaintWindow <>nil) Then 

app.ActivePaintWindow.SetColorSelection(false) 
End If 

This code calls the SetColorSelection method of the currently active 
PaintWindow (if there is a currently active paint window). When the user 
clicks these color-selection controls on the paint canvas, the SetColorSelection 
method for the proper PaintWindow is called, displaying the proper Color 
Selection dialog. 

Remember that mysterious UpdateColors method we mentioned earlier? 
You're going to add this to the ToolPalette dialog class now. This is where you 
magically tie together the PaintWindow and the ToolPalette windows. This 
method takes two colors, the fill color and line color, as parameters. The val­
ues in these parameters are stored in the ToolPalette properties that you added 
when you started all this ToolPalette work. Lastly, the UpdateColors method 
forces the ToolPalette's Fill Color Selection and Line Color Selection canvas 
controls to update. Here's what the ToolPalette's UpdateColors method looks 
like: 

Sub UpdateColors(rgblineColor As Color, rgbFillColor As Color) 
rgbCurrentlineColor = rgblineColor 
rgbCurrentFillColor = rgbFillColor 
LineColorCanvas.Refresh 
FillColorCanvas.Refresh 

End Sub 



CHAPTER 16 •FINISHING TOUCHES 237 

That may seem like a lot of work, but it's worth the effort. You should now be 
able to click on the color-selection controls on your tool palette and bring up 
the Color Selection dialogs. Also, when the color selection changes, be it via 
clicking on the control in the tool palette or selecting the menu item, the color 
of the respective control in the tool palette should be updated. Finally, you 
should be able open more than one PaintWindow and change the fill and line 
color in each window independent of the other windows. Swapping between 
all the windows should change the colors in the ToolPalette dialog window 
when you change from one window to the other. 

Adding Line-Width Selection Tools 
You could argue that the capability to select the width of the drawing tool's 
line is not a necessary feature, but, as we said before, most users expect a paint 
application to have this feature. We'll show you how to add it here. 

Adding and Enabling 
the New Menu Items 
As with the color-selection tools, you must add menu items and tool-palette 
controls for line-width selection. You are, however, going to do something a 
little different for the menu items: you'll be adding the menu items to the 
menu dynamically. 

When we talk about adding menu items "dynamically," we mean that you're not 
going to predefine the menu items. Instead, you'll add them to the menu when 
the application runs. They're dynamic in the sense that they aren't defined stat­
ically as a menu-item definition in the REALbasic application's project. 

Still, you need to define something in the REALbasic project to let it know that 
you're going to be adding items to the menu dynamically. You do this by 
adding an indexed menu item to the menu that contains the dynamic menu 
items. 

For example, add a Line Width submenu to the Tools menu as you did earlier 
for the color-selection tools. Then, as the first and only item of the submenu, 
add an indexed menu item by adding a Points menu item as a marker and 
then entering an index property of 0 in the menu item's Properties window (see 
Figure 16.10). 



238 

Figure 16.10 
The new Line Width 

submenu 

PART 11 •DEVELOPING YOUR FIRST MAC PROGRAM 

iinciitton Menu 

ltaltc 
Underline 
BelloonHelp 
Dl3ebl!x!BolloonH!I 

CommandKey 
SubMenu El 

You'll need to add the dynamic menu items at this point, so change the Appli­
cation class's Open event handler so that it looks like the following: 

Sub Open() 
Dim i As Integer 
Dim m As Menultem 

wToolPalette =New ToolPalette 

LineWidthPoints(O).Text = "1 Point" 
For i = 1 To 7 

m = New LineWidthPoints 
m.Text = str(i+ll + " Points" 

Next 
End Sub 

The cool thing is that you only need to add one menu handler for all the 
menus you just added. Because the menus are indexed, your one menu handler 
will be used for all these menus. You add menu handlers for indexed menus 
the same way as for other menus: by opening REALbasic's Edit menu and 
selecting the New Menu Handler item. Almost identical menu-handler code 
will be added to your project window, the only difference being that an Index 
parameter has been added. You'll use this parameter to determine which of the 
dynamically created menus was actually chosen. 

For example, say you add the LineWidthPoints menu handler to your appli­
cation. All you need to do to respond to the various menus being clicked is to 



CHAPTER 16 •FINISHING TOUCHES 239 

create a menu handler for the LineWidthPoints menu that looks like the 
following: 

Sub Action(Index As Integer) As Boolean 
' The LineWidthPoints Menu Handler 
nlineWidthindex = Index - 1 

End Sub 

That's it! Because all you're doing is changing the line width, you don't have 
much other than that to do. 

Adding an Other ... Menu 
You might also want to add an Other ... menu item to the end of the menu 
items above. You'd change the code that creates the menu items to include the 
following line at the end of the subroutine: 

m = new LineWidthPoints 
m.Text ="Other ... " 

We leave it to you to implement handling the Other ... menu item, if you so 
choose. Here's a hint: Create a new dialog window containing a single-line 
text-edit control, which allows the user to type in the value to use. When the 
user selects the Other ... menu item (index 9), you'll want to display the dia­
log and use the value typed in as the line width. It's really not too terribly dif­
ficult, give it a shot. Look through the examples in the REALbasic Developers 
Guide and see if you can figure it out. If not, don't be too concerned; just move 
on to the next step and come back to it later. Maybe you'll have an epiphany 
in the meantime. 

Adding a Line-Width Selection 
to the Tool Palette 
There are many ways that you could enable the user to choose the line width 
via the tool palette. We're going to discuss a fairly simple method of doing so: 
adding a single-line text-edit control to the Tool Palette dialog, which will 
enable the user to simply type the line width that she wants to use. (Sound 
familiar?) After you add the text-edit control, the Tool Palette dialog window 
should look something like the one shown in Figure 16.11. 



240 @ 

Figure 16.11 
The Tool Palette 
dialog with the 

Line Width control 
added 

PART 11 • DEVELOPING YOUR FIRST MAC PROGRAM 

oellt , ma 
- / Aa 
O DD 
----·-·---

D l!!!H?I 
• ~ D 

flII ~ID 
~ ~@ 

"il"!llill!Q 

All that's left to do is to update the line width using the contents of the selec­
tion tool. You can do this in the text-edit control's TextUpdate event handler. 
Simply modify the ToolPalette.EditFieldl.TextUpdate event handler to look 
like the following: 

Sub TextChange 
app .ActivePaintWindow.nlineWidthindex 

End Sub 
val(me.Text) 

You might want to change the LineWidthPoints menu handler at this point, 
so that it looks like this: 

Sub Action(Index As Integer) As Boolean 
' The LineWidthPoints Menu Handler 
nlineWidthindex = Index - 1 
app .wToolPalette . EditFieldl.Text 

End Sub 
str(Index+l) 

This change will update the contents of the tool palette's line-width text-edit 
control so that when the user chooses a line width using the menu, the tool 
palette will be updated to show the new line width. 



CHAPTER 16 •FINISHING TOUCHES 241 

'1:,\""""~"'~"""~-~""w~,,-.,~,~~'~113:\' • ~~y--,;~,\~~,,~ ~~ 

~:'.::'.m~b::grttfltt:n>~.QJ:tt:mm!tmb:m'~1ct:ZJ§mh~"_;:::. 
:·:;=lf~~~t~~n=:tn~E>!:!~~s~~if::y~~eaf!:liiu~<;~~~~·:=:. 

NOTE 
them .work;· 

The About Box: Patting 
Yourself on the Back 

NOTE 

If you've used your Macintosh for any length of time, you've probably noticed 
that just about every application adds at least one menu item to the Macin­
tosh's Apple menu-at the very least, an About menu item. 

~.::rl:m..~~C:l!l::trl:mmtl!ttlnDDlmllll:l:imtm:tm:!~:mnl:nm:llMttmE===I 

·:··:~:tuiii'J~:nQtifii:~t~:iiinii:i:~~ii1i:Wiiumi~~Ut~~~­
::.::~v~~~iJ;!'~t!~:r~~w~~i<>~~!:~.0ttt·m~tJ'.'..=. 
···'item .1s:::(i'sua11v locatecr.in ·.tttf!.HefP meno;~wt»canv the:tast :irem.::w:t11e:::.: 

menu, after a menu sepa'rator:fo~a~e'you'som;;c>rr~: REALbasfc' auto­
qiaticall:y placesJIJe At;>out,:P,Jeri,u,iterq)n t!Je, Help menu otyour· 
Windows version of the application 

When the user selects the About menu item, the program usually responds by 
displaying a dialog box (most developers call it the ''About box") containing 
information. Contents of the About box might include information about the 
application and the company that created it, as well as trademarks, copyrights, 
patent numbers, company contact information (e-mail addresses or URLs), 
the company or product logo, and so on. 

There is no standard for what an application's About box should look like. 
Some are simple dialog boxes, with a single OK button, that contain only the 
product name and copyright information, as shown in Figure 16.12. You can 
create About boxes such as these simply by using the MsgBox function to dis­
play the desired effect. Other About boxes, like the one shown in Figure 16.13, 



242 

Figure 16.12 
A simple 

About box 

Figure 16.13 
A more-complex 

About box 

PART 11 • DEVELOPING YOUR FIRST MAC PROGRAM 

MyPalnt Tutorial Application 
copyright e 2001 

in:::!:J 

REALbas1c®3 
© 1997-2001 ~ • .!!JS 

PROFESSIONAL EDITION 

PMS 220, 3300 Btt C1vts Road, Suitt 650, Austin, TX 78746-(~ 12) 263-1233 
All rights rntrved. R£Albuio is a r t 9isttred tradMnM"k ofR£Al Softwart , lno. 

By : Cortis CIM'k, Joe Strout and 'w'itliam 'l'u. Bastd on original works by Andr•w Barry. 

Contributors: David Gro9ono, Jason P1rsley, Ot-0ff Pff"lman, Lorin Rivers 
Mlkt Balley, D•vid Brandt, Damon Law 

Strltll Numlwr : Ul.EUxxxxx-xxxxxxxx-xxxxxxxxx-xxxxxxxxxxx 

include bitmaps, icons, logos, or other information, like a scrolling list of cred­
its, which requires the design of a new window with multiple controls. 

Regardless of how complicated you want to be, you should always include an 
About box in your application. At the very least, include an About menu item 
under the Apple menu, enable it, and add a menu handler in your Application 
class. Then, add a MsgBox function call in the menu handler-something like 
this: 

Function Action As Boolean 

' AppleAboutMyPaint Menu Handler 
MsgBox "MyPaint Tutorial Application"+chr(13)+"Copyright, © 2001" 

End Function 

This way, you've at least claimed a copyright on your product, and people can 
check the date to see how old your application is. By the way, the ch r ( 13) in 
the preceding code adds a line feed to the text so that the MsgBox displays two 
lines of text in the About box. Also note that if you're using Mac OS X, the 
About menu item will appear under the Application menu rather than under 
the Apple menu. 



Review 

CHAPTER 16 •FINISHING TOUCHES 243 

Adding these two simple features actually involved a lot of code, even though 
they weren't really necessary to the application. You may find that certain fea­
tures don't merit the effort involved in adding them. Use your best judgment 
to determine how much effort is acceptable for adding a specific feature. 

Even though this part of the tutorial might have seemed a bit painful, you 
learned about some important things: SubMenu items, the SelectColor dialog, 
how to create dynamic menus, and how to effectively use and change proper­
ties in one window from another window. All are important skills that you'll 
probably use in more than one application that you create in the future. 

Finishing touches such as the ones discussed in this chapter often add just the 
right amount of polish to your apps, which can distinguish your tools from 
others. Remember, though, that you can't get bogged down fiddling around 
with the cosmetics of your program. If you are always cleaning it up, adding 
touchy-feely features, and working in new cute ideas, then you'll never release 
your program. A program that no one ever sees, no matter how nice it looks 
or what cute features it has, won't ever make a dime. Eventually, you have to 
stop programming and release it already! 

On the other hand, an application that is feature complete but lacks a suffi­
cient amount of spit and polish probably won't be purchased; it will sit on the 
shelf unnoticed. Knowing when enough is enough can be a tough decision, 
and one that will take experience to nail down. A good marketing person can 
make this decision a little easier ifhe has a better understanding of your poten­
tial customers than you do. 

Designing, developing, and marketing your application isn't an exact science. 
As with all artistic endeavors, you'll get better at it as you gain more experi­
ence. Don't let the fear of making mistakes keep you from proceeding. Sure, 
mistakes can be both emotionally and financially painful, but making mistakes 
can be the best way to learn. 









Enter the 
World of Aqua 

----• In the beginning 

• Aqua is more than a pretty face 

~~:• A quickie tour of Mac OS X features 

• Apple interface guidelines 



248 PART 111 •THE AGE OF MAC OS X 

What makes a Macintosh a Macintosh is the simplicity of its graphical 
interface. Despite the improvements that Microsoft Windows has 

brought to PCs, the Mac OS has led in the ease-of-use department. Others in 
the computing industry have complained of the rather ancient speed and per­
formance of the original Mac OS, but few will deny the success of the Mac 
OS interface. 

It's important that you get acquainted with the successor to Mac OS 9 
because, eventually, your applications must run on it. We thought it important 
to give you a digest on the new operating system so you won't have to go out 
and buy another book for now. As a programmer, you'll need to know more 
about the new operating system under the hood. 

In the Beginning ... 
Mac OS Xis the latest generation of an evolving operating system developed 
by NeXT Computer, the company Steve Jobs created after his expulsion from 
Apple in 1987 as Chairman. 

The very advanced NeXT Cube computer used NEXTSTEP, yet another 
UNIX-derived operating system. After NeXT stopped further production of 
the Cubes, NEXTSTEP continued to grow and change under the new name 
of OpenStep, Mac OS X's grandfather. 

Apple, struggling to make a revised version of the Mac OS, purchased NeXT 
in 1996 in hopes of adapting the OpenStep technologies to a new Mac OS. 
Apple's first attempt, the Rhapsody project, essentially adapted most of Open­
Step's features and programming schemes outright. This did not please Mac 
OS developers because Rhapsody would force them to spend too much time 
and energy in rewriting applications designed for the original Mac OS. Worse, 
Apple told the developers that they could only use Objective C, a version of 
the somewhat scary C programming language. Most developers (until REAL­
basic developers take over the world, that is) use C++ as their development 
language. 

Rhapsody was renamed as Mac OS X Server 1.0, a powerful, but still compli­
cated server OS. But Apple still had to take the lessons learned from Rhap­
sody, OpenStep, and irate developers and form something useful to replace 
Mac OS 8. 



CHAPTER 17 •ENTER THE WORLD OF AQUA 249 

::.:~~ii~~::~·~==:::::-===:~ 
.=::£iii:i~i~.liiitmiirn~miitJJr.t~ibui1ii ...... ,-·=·~$·····~· 
:::~~i'a1~V8r~i'iiiiii:~eff'.ai;if5ower~i'ersron'~§;~tar,·aeipI~~a'.· 

grass-roots effort onthe Web in support of an lntel~compatible 

yersi.on~ ~~pie has l'.l9t announced any pl~ns for Mac OS X for Intel, 
. . Apple ha$,howeve~. teleased tbe core operating sv~em of Mac OS 

· X as open--source s9ftware known as Darwin. If you're interested in 
·· .• '.helping. the. Darwil'l·~~oject move toward a Mac OS X-like experi­
>/;~hce on~thel' com~p~E,tr..hardwttre, visit Apple's offiGial Darw#fWeb 
· · ~ite at http://WWW.d~twin.org. ·. · .. 

Apple went back to the drawing board and fashioned portions of OpenStep 
and Rhapsody's technologies so that developers could rewrite only a portion of 
their original Mac OS applications to make them work in a new Mac OS. They 
also created the necessary programming tools to develop applications designed 
especially for the new operating system. Developers were again given Objective 
C as one development environment, but were also given Java, an impressive 
programming language created by Sun Microsystems.Java gave developers new 
directions, as Java code can be created once and then recompiled (converted from 
program code to an application for another computer) for any other computer 
that can use Java. That means you could write a Cocoa application for Mac OS 
X using Java, then port the code to Windows or Linux and have the applica­
tion run on these operating systems with very little modification. 

We'll talk more about Cocoa and Java in Chapter 20, "The Cocoa 
Environment." 

Aqua is More than a Pretty Face 
All versions of UNIX use an application called a window manager. And, 
almost all members of the UNIX family use X Windows for their window 
manager. As you can guess, a window manager provides the mechanics neces­
sary to draw a basic graphical interface on a computer display. 



Figure 17.1 
Mac OS X's Aqua 

interface is created 
through a series of 

technologies 
collectively known 

as "Quartz." 

X Windows provides a very simple interface called twm, and it's not a very 
pretty sight. Fortunately, X Windows is highly flexible and allows other inter­
faces to be grafted to it. Linux, the UNIX clone that's popular in the 
open-source operating system arena, offers two very popular graphical shells 
for X Windows: KDE and GNOME. Other versions of UNIX used for 
graphics professionals, such as IRIX from Silicon Graphics, have their own 
graphical shell. 

View (and Print) Different 
Apple, never being a company to follow the status quo, chose something else 
for the Mac OS X window manager. (See Figure 17.1.) They decided on com­
bining three technologies to make a stunning new interface environment 
called Quartz. 

Like X Windows, Apple divided their Qyartz plan into two components: the 
window manager and the graphical shell library. The Core Graphics Server, as 
Mac OS X's window manager is called, handles events and manages services 
from the operating system and the graphical shell. 

1J 
l11trmuConnec1 

(l ~ 
DoclcEx1ru Grapt11cCon~rttrUS 

t: '~ 
l111etr1cthplor~r 

pju< 
/or){ 



CHAPTER 17 •ENTER THE WORLD OF AQUA 251 

The Core Graphics Rendering component of 01iartz was given the task of pro­
viding the tools needed to make the 2D elements on a display. For this, Apple 
would employ three additional graphic libraries. 

The first element wasn't hard for Apple to consider. OpenStep enjoyed a 
rather revolutionary graphic engine named Display PostScript. It's an Adobe 
technology that allows extremely accurate reproductions of text and graphics 
on a printed page. Display PostScript simply reversed that process and gave 
OpenStep a smooth, detailed interface. 

For the second element, Apple looked to an improved kind of Display Post­
Script. The answer was another Adobe technology: Portable Document For­
mat, or PDF. You've used this technology in Adobe Acrobat Reader to view 
documents that can be read on any computer with an app that can open PDF 
files. Like a PostScript-printed page, PDF gives you a what-you-see-is-what­
you-get experience whether you print or view the document. 

The PDF engine in 01iartz not only provides the precision display that Post­
Script generation creates, but also gives a bonus for Mac OS X in the form of 
a new printing system. The Mac OS print system supports PDF as a native 
element of the operating system where all applications (except those in the 
Classic environment) can save their document information as PDF documents 
when possible. The print system supports PostScript printers as well as inkjets 
and other non-PostScript printers, and handles print previews for all Carbon 
and Cocoa applications. The Classic environment isn't supported, however; 
Mac OS 9 must use its LaserWriter or other printer drivers. 

OpenGL, the third element of the Core Graphics Rendering component, was 
a no-brainer for Apple. When it comes to 3D graphics such as modeling or 
monsters you'd find in the latest realistic computer games such as 01iake 3, 
Apple's continued support of OpenGL was critical to present and future appli­
cations available on other systems that don't depend on proprietary graphic 
APis such as Microsoft DirectX. 

The fourth element of Apple's graphics technology plan was 01iickTime, 
Apple's popular multimedia software used for creating and viewing video, ani­
mation, music, and the like. 

Much of what you would use from 01iartz, as a beginning REALbasic devel­
oper, is transparent to you since REALbasic provides you with all the neces­
sary interface tools built in Mac OS X. 



252 PART 111 •THE AGE OF MAC OS X 

A Quickie Tour of Mac OS X 
Interface Features 

When a traditional Mac OS user views Aqua for the first time, they are typi­
cally enchanted and confused at the same time. The Mac OS X interface is 
familiar but has many new features that users must adapt to, and developers 
must learn to utilize in a Carbon or Cocoa application. There are many books 
on learning Mac OS X available right now, so we won't get into a detailed 
analysis on all the features-just the differences you should remember when 
creating an app that will work in Mac OS 9 as well as Mac OS X. 

Windows, the Finder, and the Dock 
For the most part, the Mac OS X desktop isn't extremely different from pre­
vious Mac OS versions, but it returns to the desolation of the first Mac OS of 
1984. The Finder remains a separate application, and its distinction from the 
desktop is more apparent in Mac OS X. 

Finder windows can only be moved by their title bar, unlike in Mac OS 8 and 
later. Finder window contents can be shown in three different configurations: 
icon view, list view, and the browser view (see Figure 17.2). The three buttons 
on the left of the title bar are, from left to right, close, minimize, and maxi­
mize. A toolbar containing various Finder settings can be shown in a Finder 
window and can be toggled on and off by the clear button on the right side of 
the title bar. 

The WindowShade feature has been replaced by the minimize effect, which 
moves the window in a dramatic "genie" effect from the desktop to the right 
side of the Dock. With this change, pop-up windows in the Mac OS are a 
thing of the past. 

The Dock combines the functions of application switching with a launcher. 
Application icons can be dragged to the left side of the border where the Dock 
makes an alias of the application for launching. The right side of the Dock 
holds document windows from these applications. The Dock's appearance can 
be dynamically different from user to user by changing the Dock's size and 
icon magnification settings from the Apple Menu's Dock settings. Officially, 
Apple does not allow the Dock to be moved from its bottom center location 
in Mac OS X version 10.0.3, however, third-party utilities can reactivate these 



Figure 17.2 
The Mac OS X 

desktop in action. 
Note the Dock 

location, the Trash 
icon, and the 

relative size of icons 
in the Finder 

window. Items are 
being shown in the 
new Browser view. 

CHAPTER 1 7 • ENTER THE WORLD OF AQUA 

~ulook 
, f,J A.ppll'S<ript 
f ~1) Calculator 
. 4"Chts~ 

\D Clo<lt 
ti Dockhtril~ 
Q GraphkConvtrlu tJS 
fi1m:a;eC1opturt 

I 
~.t1 lf'Ul'll'ltl Cor11\kt 
[.1 1r11ernttUplorer 
ii;b fTuuts 
llMail 

. !JomnlWeb 

dormant features, allowing the Dock to float on any edge of the screen. Ver­
sion 10.1 of Mac OS X removes the stationary limitation of the Dock. The 
Trash resides in the Dock and cannot be moved to the desktop. 

The Finder's preferences are changed from the Preferences command under 
the Application menu when the Finder is the active application. Finder Pref­
erences allow you to change the desktop picture (no Mac OS 9 appearance 
themes are directly supported in Mac OS X) and change a couple of additional 
settings. With these preferences, it is possible for a user to hide any mounted 
disks from the desktop. If the user also hides the Dock, running applications, 
and closes all Finder windows, there will be a Mac OS X desktop with 
absolutely nothing on it but the menu bar. (Figure 17.3) Keep this in mind as 
you develop and document applications that make assumptions about a user's 
desktop appearance. 

Menu Changes 
When developing for REALbasic, most of the menu changes are transparent to 
you when you compile your project as a Mac OS X/Carbon application. Keep in 
mind, however, key changes in application and Finder menus in Mac OS X. 



254 

Figure 17.3 
The Mac OS X 

desktop, with the 
Dock hidden, the 

Show Disks on 
desktop setting 

turned off, and no 
Finder windows 

open, is a very 
unusual sight. 

PART 111 •THE AGE OF MAC OS X 

The Application menu is located immediately right of the Apple menu. This 
menu should be the location of your application's Preferences command, if you 
happen to have any preferences available to the user. The Application menu no 
longer handles switching between applications; that's now the job of the Dock. 
(See the following section, "The Dock'' for more information.) 

The Apple menu in Mac OS X combines the commands of the Special menu 
in Mac OS 9 with some features available from the old Apple Menu Options 
control panel. Recent Items shows recently opened documents and applica­
tions (but not servers). The Restart, Sleep, and Shut Down commands now 
reside here in addition to several new commands, including Force O!iit, and 
Logout. Unlike Mac OS 9, the contents of Mac OS X's Apple menu cannot 
be modified directly by users. 

Same Stuff, Different Places 
Mac OS 9 allowed users and developers to place all kinds of things in practi­
cally any location. In Mac OS X, this is not allowed to prevent unwanted and 
potentially disastrous changes to Mac OS X's system files or other user's data. 



Figure 17.4 
The Home folder is 
a Mac OS X user's 

storage spot for 
their documents. 

All applications 
are stored in the 

Applications 
folder and are 

ava ilable to all. 

CHAPTER 17 • ENTER THE WORLD OF AQUA 

Following the UNIX tradition of separate documents and workspaces, each 
Mac OS X user has a login and password which allows them access to their 
Home folder. The Home folder name is based on a condensed version, or short 
name, of their full name created when the computer administrator (the owner) 
creates their login account. Each account stores different Finder, Dock, desk­
top picture, and system settings. 

Each Home folder has a built-in set of folders as illustrated in Figure 17.4. 
Users can add additional folders here and in subfolders. This feature can be 
advantageous to developers who develop only Mac OS X applications since 
the Mac OS provides a consistent location for user documents. 

As in other forms of UNIX, Mac OS X is very strict about access to folders 
without proper authorization. Keep in mind that your applications can only 
change what the user's permission level allows them to change. For instance, 
each user has a Library folder, which works much like the Preferences folder 
in the Mac OS 9 System Folder. The Library/Preferences folder is user­
customizable, as is the user's Library/Fonts folder. However, Mac OS X also 
has a Library folder that's restricted in most cases, and other user accounts and 
their folders cannot be altered without administrative privileges. 

• trf " Duk top Ubr~ry 

UI ( " 

t9 
Mo11its l'itturl!S 

Cl 
Public: Situ 



PART 111 •THE AGE OF MAC OS X 

System extensions as used in Mac OS 9 no longer exist. Your applications in 
Mac OS X are self-sufficient entities that don't leech off any common system 
files, for the most part. Preferences that were adjusted by Mac OS 9's control 
panels are now available through the System Preferences application from the 
Apple menu. As with files, applications and users must have administrator priv­
ileges to change some preference settings, such as network and startup disk set­
tings. If you happen to be porting an older REALbasic application that might 
have created Mac OS 9 extensions and control panels, you will have to integrate 
that functionality directly into the application or seek another alternative. 

Apple Interface Guidelines 
Ever look at a typical application from the Microsoft Office suite? It's filled 
with all sorts of controls and menus. To us, Microsoft Word seems more like 
the cockpit of the Space Shuttle than a word processor. We wanted a computer 
program, not a space program! 

Why do many computer users prefer the Macintosh interface and applications 
over those found in Microsoft Windows? The answer is obvious: simplicity 
and ease of use. Since 1984, when the Mac OS was created (it was known sim­
ply as the System back then), Apple has taken the time to refine the Mac OS 
so that it remains aesthetically appealing and easy to understand. Apple feels 
that keeping programmers to a set of guidelines in Macintosh programming 
keeps a level of consistency from application to application. 

There's at least two Mac OS conventions we're sure you've noticed. In fact, so 
has Microsoft. Figure 17.5 shows you both of them in a single shot. 

The File and Edit menus appear in practically every Macintosh application. 
Actually, they also appear in practically every Windows application as well. 
These menus are the cornerstone of Mac OS interface consistency. When 
commands are consistently easy to find, computer users can get their work 
done faster. 

It's also easier to describe and document a well-designed Mac application once 
it's finished. Menus and buttons appear in logical locations. Labels use simple 
language with as little jargon as possible. In short, because of its design, a typ­
ical Macintosh application doesn't get in the user's way. 



Figure 17.5 
The File menu, and 
Edit menu, with its 

Cut, Copy and Paste 
commands, are 

always where you 
expect to find them 

in almost every 
application. 

CHAPTER 17 •ENTER THE WORLD OF AQUA 

If you're considering the idea of selling your finished application, you should 
remember that there are plenty of Macintosh users out there that love a great 
application. O!iite a few of those users are also critics that won't hesitate to tear 
you and your application design apart if it fails to be logical, consistent, or 
understandable. Oh yeah-Mac users will certainly berate you for making a 
buggy app, too. It pays to do your homework in design. 

Apple has extensive documentation on human interface design, which are 
available free from Apple Developer Connection on the Web at http://devel­
oper.apple.com. (Remember that you need to register on the site to have access 
to these and all other documentation. Registration for online access is free.) 
Let's highlight some of Apple's interface guidelines. 

Rule 1: Stick to Metaphors 
in Your Application 
Apple describes Aqua as a human interface, not a computer interface. That 
makes sense. After all, does a computer really need buttons, windows, a mouse 



258 PART 111 •THE AGE OF MAC OS X 

and keyboard to work? Not really. All of these items are devices intended to 
make it as easy as it can be for people to communicate with the computer and 
get something useful from the experience. 

A good way for computers to communicate its elements to a human is through 
the use of metaphors. The best Macintosh application is a perfect metaphor for 
a physical object that works in much the same way. Look at the Calculator 
application in Mac OS 9. It looks and works like, well, a calculator! Can't make 
things any simpler than that, we think. 

The most visible metaphor of the Mac OS is the desktop. This was a powerful 
comparison as offices have been around for years, complete with a place to 
place your paperwork, folders to store your papers, objects to use to create 
more paperwork, and a place to dispose of unneeded materials. 

To complete the visual metaphor, Apple uses icons to represent the items you 
manipulate in the Mac OS. The best icons look like the object or function they 
would be in real life, if most developers could help it. 

Over the years, the Apple desktop metaphor became strained. Dozens of 
improvements by third-parties and adjustments by Apple were made to the 
Mac OS to improve a thing here and there. In the 1990s, Apple began adjust­
ing the Mac OS to appear more like Microsoft Windows so that Windows 
users who make the move to a Macintosh would feel more comfortable. In the 
end of the original Mac OS development, starting with Mac OS 9, the com­
plication of the desktop became readily apparent to Apple. 

Mac OS X returns to the simplicity of the first Macintosh interfaces to make 
it easier for users to understand their desktop once more. Aqua's introduction 
raised much praise and criticism from the media and Apple's faithful. But 
Aqua is really a blast to the past. Our computers have become so complicated 
that it seems to take more time for an application to explain how it works than 
a user will actually spend using the application. In case you've never realized it, 
Figure 17 .6 shows you what System 6.0, the Mac OS of 1988, looks like. Even 
if you've never used this older Mac OS yourself, we bet that you could use this 
version without any training. The Mac OS desktop, uncluttered in System 6.0, 
and uncluttered in Mac OS X with Aqua, works like your bicycle: you'll never 
forget how to ride it. 



Figure 17.6 
System 6.0 was, for 

many Mac OS 
users, their first 

bicycle. Mac OS X 
is merely a flashier 

bicycle with extra 
horsepower and 

better paint. 

CHAPTER 17 • ENTER THE WORLD OF AQUA 

s File Edit Uiew Special 

!!§0 HardDriue 

3 items 

l1J o 
System Folder Games 

Utilities 

Rule 2: Keep a Logical Design 
with Aesthetic Consistency 

259 

Nothing ticked off more Macintosh users about Mac OS X Public Beta than 
the disappearance of the Apple menu. The Apple menu of Mac OS 9 was a 
highly customizable way to configure the Mac OS and launch applications. 
Without this simple menu, many Mac OS X Public Beta users suddenly found 
it very difficult to maneuver about. 

Apple eventually returned an Apple menu to Mac OS X, although it is not 
customizable as its Mac OS 9 predecessor. Apple managed to maintain its goal 
of simplifying the Mac OS but also realized that moving such a powerful tool 
that has been available since the beginning of the Mac OS was tantamount to 
changing around the controls of a car. 

As you create and evolve your application, remember Apple's lessons from 
Mac OS X. Think of a logical or aesthetically pleasing design for your appli­
cation's menus and components. Then, stick to it. If your program is useful to 



260 PART 111 •THE AGE OF MAC OS X 

others, eventually your customers will become accustomed to where things are 
and how things work. This is particularly true of menus, not only in location, 
but also in their content. 

The most horrific example of bad design in Macintosh history came in 1995 
when Microsoft updated the Word for Macintosh word processor from ver­
sion 5 to 6. Essentially, Word 6 was a very un-optimized and buggy port of 
the Windows version of the application. Worse, Word 6's menus were filled 
with illogically placed commands, most of which were in a completely differ­
ent location from Word 5. Worst of all, Microsoft managed to make Word a 
rather ugly application. The interface conventions from Windows {such as 
they are) did not port well at all to the Macintosh, resulting in overlapping 
interface elements, difficult to read text, and other problems. 

You can guess what happened. So many users complained to Microsoft {some 
demanding their money back) that the company was forced to write a filter 
that allowed Word 5 users to open the otherwise-unreadable Word 6 files. 

A positive example of good menu maintenance falls again to the Mac OS, in 
this case, the Finder. Over the past 17 years, Apple has added only two menus: 
the application menu in System 7, and the Window menu in the Mac OS 9.1 
update for later Mac OS X compatibility once a user installed the new oper­
ating system. Some of these menu's contents changed slightly to meet the 
times. We bet you barely noticed. Hopefully, any future menu changes you 
offer in your updates of your application will go just as unnoticed until needed. 

Rule 3: Forgive Mistakes 
and Allow Reversal 
One thing that many Windows applications seem to do is punish a user for a 
mistake in a command selection. We're sure that's not intentional, but it shows 
the distinction between Microsoft and Apple interface guidelines. 

If you're like most Macintosh users, you like to play with your new applications 
before you put them to use. In the case of games, you literally play with them. 
In any case, the last thing you want to do is accidentally change a setting in the 
application that completely rearranges the work you spent hours creating. 

Exploration is a crucial component to learning a new tool and determining 
how it meets your needs. One of the most powerful commands in a Macintosh 



CHAPTER 17 •ENTER THE WORLD OF AQUA '261 

application is Undo. As you know, the Undo command will reverse the last 
action you performed in an application. Some programs, such as the well­
written Microsoft Word 2001 for Macintosh, will undo a series of actions. 

As you create your application, provide your users the ability to reverse their 
selections or options. Undo options provide users some comfort in knowing 
that their actions are not completely etched in stone. Whenever possible, alert 
the users using message boxes when they are about to perform an action that 
cannot be undone. 

Be careful of overdoing this guideline, however. Microsoft Word allows 
repeated undos by using temporary files containing the present changes. Worse, 
with its "Allow Fast Saves" feature enabled, a document is not fully saved until 
you quit the application. In an application crash or if the user has poor docu­
ment management, data could be lost. Be sure that your application reasonably 
ensures the user's data or provides warnings or notes to inform the user. 

Rule 4: Use Dialogs Wisely 
Language plays a proper role as well in your application. Emotionally charged 
words or computer jargon appear in the worst applications by far. Your job is 
to help simplify information while keeping your app's visual appeal. 

Informing or instructing the user to make changes to documents or to your 
application as a whole must be clear and concise without being overly techni­
cal. Apple also wanted to eliminate the practical hijacking of a computer when 
error or open/save messages appeared on the screen. Mac OS X has refined 
their concept of message windows that appear to inform or direct a user to a 
particular course of action. These windows are known collectively as dialogs. 

There are actually three kinds of dialogs in Mac OS X. The first type are doc­
ument modal dialogs, also known as sheets (see Figure 17.7), which swish out 
from the bottom of a document title bar when a user performs an action that 
requires a decision to be made. Similar to its Classic counterpart, document 
modals prevent further changes to the document and require the user to han­
dle an action in regards to the entire document. For instance, attempting to 
close a document window in a Mac OS X application brings up a familiar "Do 
you want to save changes" sheet at the top of the document window, but unlike 
original Mac OS applications, you can ignore the message indefinitely while 
opening other applications, documents and the like. 



262 

Figure 17.7 
Sheets hold alert or 
dialog boxes in Mac 

OS X applications, 
both shown here. 

They're moda l on ly 
to the document 

window, so you can 
move to other 

windows or 
applications. 

PART 111 •THE AGE OF MAC OS X 

Clo st 

~ Dovo.i,..1ntto nw dun11ut0thl1 doWm.nt bt"f0tt 
~ d1a"'11l 

( ¥Dora'tSave J ( Cal'ICtl ) ~ , j\ 
, ____________ __,_ ~.J!!~--~~~~~~---···--

0'6 Untltled2.nf 

iJt.t.b-its 
(i Muslc 
il;I Ptnu1u 
~ Publlc 

/L'1 Si1u 

Remember, sheets are a feature of a Carbonized application running natively in 
Mac OS X. Applications running in Classic still use the old-style dialogs and 
will still prevent a user from switching to another Classic application, but the 
user can still switch to or launch other Mac OS X applications. 

Open and Save dialogs also appear as sheets that drop from a document win­
dow. Normally these windows are minimized to show only the most pertinent 
information: the name of the saved file, the location where the file will be 
saved, and the appropriate Save and Cancel buttons. 

The second type of dialog, an application modal dialog, prevents further use of 
an application until an action is chosen. Application modal dialogs commonly 
appear as alerts, floating windows which immediately ask a user for a critical 
decision. In Mac OS 9, users routinely encounter Save alerts that appear when 
a user attempts to close a document window before they have saved their work 
with the Save command. Figure 17.8 shows a typical one from Microsoft 
Word running in Mac OS 9. 

We have two problems with alerts in Mac OS 9. The first problem is that 
Microsoft applications display alerts with generally useless error information, 
such as "Error in writing file to disk." Such a message is not only uninforma­
tive, but typically causes a user to, well, freak out because they can't understand 



Figure 17.8 
Closing a document 

window in Word 
2001 shows you 
this alert, which 

prevents further use 
of the application 
until a decision is 
chosen from the 

alert. 

CHAPTER 17 •ENTER THE WORLD OF AQUA 

a fh £-dill '1ow !nun FonnGI '°"l TDOls Tdst11 ~ WOl1( Help 

~ !.HHi1' ei;>..'1\ "'fll @v> ..,.,,,.·ii.· :.?.!O.!L..:i!;i!1 c;.;c::::EJi ll) • 

~------· 

, ......... --·--, ......... .. ,..._ __ _ 
. ...,.:.~-::?~§==--"=:=-~ 

--w-.. -·I C-• 
.. ... __ .. ____ ,.._,. . 

......... ~-.. -·,- · ..... _______ ... _,.. 
,...., .... ____ _,_ ... 

··-- .. ----~--.-.. 
·.~1 

' . , ... , - 1 Ill j ... 11 " 

what the application is telling them. Most Macintosh applications will report 
the problem and also suggest a course of action to fix the problem. Windows 
applications can do this as well; the problem is not the code but the docu­
mentation that developers write within the application. That means, in short, 
that alerts in your app should explain what is going on, why it might be occur­
ring, and how to fix the issue. 

The second problem was that alerts in Mac OS 9 would also stop the user 
from doing any other action with the computer until the alert box was dis­
missed. System modal behavior such as this is discouraged in Mac OS X. Alerts 
in Mac OS X applications allow users to move from application to application 
while the alert remains "attached" to the application's view. 

Apple encourages the generous use of white space around your alert informa­
tion to minimize clutter. You can also place more explanatory text in a smaller 
font below the primary message. Apple encourages developers to use your 
application's icon in most alerts. In rare instances where a serious problem may 
occur in an application, Apple advises that you use the Caution icon in place 
of the application's icon in an alert. 

The third type of dialog is the modeless dialog. Generally, a modeless dialog 
is a smaller window, complete with minimize, zoom, and close controls on a 



264 

Review 

PART 111 •THE AGE OF MAC OS X 

tiny title bar. In applications, modeless dialogs work great as preference win­
dows where a user can change settings or select tools on the fly in an applica­
tion. REALbasic's Property window is an example of a modeless dialog. 

Because Mac OS X is such a new operating system, Apple is routinely 
revising its documentation and adding improvements and new programming 
tools. Keep up by connecting to Apple Developer Connection on the Web at 
http://developer.apple.com and visiting the documentation section. Search for 
"Human Interface Guidelines." REALbasic 3.2 is also relatively new to the 
scene in Mac OS X development and Aqua compatibility, so be sure to read 
its documentation for tips and vital information on meshing your Carbon pro­
jects properly in Mac OS X. 



• Windows and the great compatibility problem ---
• You can't play vinyl records in your compact disc player 

• The 16-bit egg and the 32-bit chicken 



266 PART 111 •THE AGE OF MAC OS X 

M aking a new operating system is a monumental task. Making a new 
operating system that allows full compatibility with older programs is 

even tougher. Both Microsoft and Apple have had their share of headaches 
here. 

Windows 95 and the Great 
Compatibility Problem 

In 1994, Microsoft was midway through developing Windows 95, its next­
generation PC operating system. Windows 95 promised fast performance and 
a level of crash-proof behavior unlike any other operating system made for 
home and business users. 

To do that, Microsoft had a programming challenge to overcome. Windows 
3.1, the previous version, was merely an interface over an old operating system, 
MS-DOS. For its time, MS-DOS was reliable, but nothing like the Mac OS 
that used a graphical interface-icons, buttons, windows, and so on. Windows 
3.1 simply draped some windows and icons over MS-DOS but added no 
improvements. 

MS-DOS was a 16-bit operating system. Bits are elements of a computer pro­
gram or memory. The more bits that a computer can manipulate, the more 
realistic and powerful the computer and the applications become. Remember 
the old computer video games of the 1970s? The edges of the pictures on the 
game screen were really jaggy, with few colors. Compare that with 32-bit 
games like ~ake 3 Arena with dramatically realistic shapes and colors. 

Being only a 16-bit operating system meant that the MS-DOS programs 
made for it weren't as versatile, suffered from instability, and couldn't take 
advantage of advanced operating-system features. MS-DOS was designed to 
use only 640KB (that's kilobytes, or about 1000 bytes) of memory. Today's 
computers require 64MB (megabytes) or more of RAM to operate. 

Also, MS-DOS and Windows 3.1 couldn't handle the larger hard-disk drives 
that began to appear in the market. Although there were a few utilities here 
and there in the computing world that could help MS-DOS over one of its 
many limitations, Microsoft knew that Windows 3.1 was limited until it could 
be modernized. 



CHAPTER 18 •THE CLASSIC ENVIRONMENT 

You Can't Play Vinyl Records 
in Your Compact-Disc Player 
A challenge to making a new computer and its operating system is designing 
the computer in such a way that it can run programs used on a previous com­
puter or operating system. 

Remember the original Nintendo computer game console? It used square, flat 
game cartridges for its games. When Nintendo introduced the Super Nin­
tendo game console, game players were dismayed to find that their game car­
tridges wouldn't work in the more advanced Super Nintendo's game system. A 
few years later, Nintendo completely skirted the compatibility issue again by 
making Super Nintendo cartridges incompatible with the Nintendo 64 game 
console. 

Compare this to Sony Corporation's original PlayStation game console. 
Games for this machine were stored on CD-RO Ms much like the 
CD-ROMs used in computers. Recently, Sony introduced the PlayStation 2 
(or PS2), a game console with many advancements over its predecessor. Since 
CD-ROM drives use the same disk sizes as DVD-ROM drives (which the 
PlayStation 2 uses), Sony's PS2 accepts old PlayStation games in addition to 
PS2 games. 

In the mid-1980s, the compact disc appeared and changed the way we listened 
to music forever. The machines you needed to play them replaced the turnta­
bles for vinyl records and albums. The record industry skirted the compatibil­
ity issue here as well, because trying to make vinyl albums (which played music 
from an analog, or non-digital format) work in a digital compact disc player 
was more trouble than it was worth. Luckily for the recording industry, the 
quality and advantages of audio CDs over vinyl made it worthwhile to buy 
new, somewhat expensive CD music players. 

The 16-Bit Egg and 
the 32-Bit Chicken 
Microsoft couldn't skirt the compatibility problem. Many homes and busi­
nesses relied on the MS-DOS programs they used in Windows 3.1; that 
meant Microsoft had to design Windows 95 in such a way that MS-DOS 
could operate as part of Windows 95 without affecting Windows 95's speed 



268 PART 111 •THE AGE OF MAC OS X 

and reliability. Even so, a chicken-and-egg problem was hatched. Many MS­
DOS programs made long before Windows 95 would not be able to handle 
the existence of Windows 95. 

When Windows 95 arrived in August 1995, it was praised for its new appear­
ance and greater stability. Many users of MS-DOS programs, however, soon 
found problems with the new operating system. Sometimes, running MS­
DOS programs would make Windows 95 slower. In a few cases, the MS-DOS 
program would not run at all. 

Microsoft tacitly admitted that, in order for Windows 95 to meet its shipping 
deadline, and to ensure that the new operating system as a whole would 
function, it had to cut a few corners. Basically, Windows 95's version of 
MS-DOS was still fairly integrated within the new 32-bit parts of Windows 
95 itself. Since the new version of MS-DOS wasn't really walled off in the 
way Microsoft preferred it, Windows 95's stability and speed did suffer for a 
time. 

It wasn't until Windows Millennium Edition (Windows Me) arrived in 2000 
that the last parts of MS-DOS were removed in an attempt to improve speed 
and performance in the consumer version of Windows. Sadly, however, no vis­
ible performance increases ever came from the consumer Windows client. Per­
haps Windows XP, an upcoming version based primarily on the refined 
Windows NT code, will prove itself as a compatibility winner. 

Apple's Turn 
Apple had enough operating system-project failures by the mid-1990s to 
make people in the computing community worry that Apple would never cre­
ate another operating system. When Apple bought Steve Job's NeXT com­
puter company in 1996 and took in its OpenStep operating-system 
technologies, it was a breath of fresh air. Work soon began on another possi­
ble successor to the original Mac OS, code-named Rhapsody. 

In Open Step, Apple found a strong system kernel (the heart of an operating 
system) that could keep up with many computing tasks at once. Apple decided 
that one of these tasks could be to run programs designed for the original Mac 
OS while the operating system performed its business. 



CHAPTER 18 •THE CLASSIC ENVIRONMENT 269 

It's Virtually Simple 
Apple decided that the best way to get the original Mac OS to work with 
Rhapsody was to wall off the old operating system from the new. The plan 
would still allow the old operating system full access to the hardware as if the 
original Mac OS was the only thing running. This programming principle is 
known as a virtual machine. A virtual machine would run at near-native com­
puter speeds. If the virtual machine was designed well, few people could tell it 
from a computer running the original OS single-handedly. 

Apple first created its virtual machine for the Rhapsody project, which was 
later named Mac OS X Server 1.0. The "Blue Box," as Apple called its original 
Mac OS compatibility environment, ran a version of Mac OS 8. The Blue Box 
wasn't without its faults and limitations, but it successfully kept to its business 
without affecting Mac OS X Server. 

The Blue Box Goes Classic 
Rhapsody/Mac OS X Server wasn't a big hit for programmers. New programs 
designed for the new OS had to be written using Objective-C, a version of the 
C programming language that few people knew. In addition, Mac OS develop­
ers practically had to rewrite existing programs so they could run in Rhapsody. 

As a result, few developers wrote much Mac OS X Server 1.0 software. It 
would take too much time and energy. So Apple spun off Rhapsody to form 
the Mac OS X Server project, then proceeded to take some of the lessons 
learned to build yet another new OpenStep-inspired OS. 

As the pieces of Mac OS X came together, the original Mac OS-compatibility 
issue came up again. The Rhapsody Blue Box would be needed once more, with 
a few refinements, and a name change: the Classic environment. 

Installing Mac OS X for Classic 
During the end of Mac OS X's completion, Apple realized that, as with the 
PowerPC chip transition in the early 1990's, few applications would be avail­
able on Mac OS X's release that would run natively in Mac OS X. With each 
copy of Mac OS X, you receive a copy of Mac OS 9.1 to install on your com­
puter to run traditionally, or as the basis of Classic. 



270 @ PART 111 • THE AGE OF MAC OS X 

Virtual Machines Versus Emula tion 
A virtual machine works almost as quickly as an operating system running in full con-~ 
trol of the computer's hardware. Virtual machines send the same instructions to a com­

puter processor in the same format as the dominant operating system. When Mac OS X 

is running, the Classic environment allows the Mac OS 9 installation to behave as if it is 

the only operating system in place, and allows the user to interact with OS 9 on almost 

all levels. Most importantly, Classic runs at near-normal speeds since it sends the same 

kind of processor instructions as Mac OS X would to the computer processor. No trans­

lation or conversion of instructions from a virtual machine is needed. 

Emulation simulates hardware and some software elements of a computer. For exam­

ple, Connectix's Virtual PC works as a Macintosh application that simulates the hard­

ware and system responses of an actual Pentium-style PC (see Figure 18.1 ), complete 

with sound card, network card, processor, and video card. Virtual PC is slower than a 

virtual machine or an actual PC because it must take the Pentium processor instructions 

created in the simulated PC and Windows environment and convert them into some­

thing that a Macintosh's PowerPC processor can understand. Likewise, Virtual PC must 

translate instructions from the PowerPC processor back into Pentium instructions for the 

emulation to complete its work. 

Figure 18.1 
Virtual PC running 

on a Macintosh. 
Yes, it's always a 

weird sight to see 
Windows running 

on a Macintosh. 
Thank goodness 

you can turn it off. 



CHAPTER 18 •THE CLASSIC ENVIRONMENT 211 ·. 

Emulators almost always have some performance hit. From our experience, Virtual PC 
J . • 

.is aboutthree times slower than the Macintosh it runs on. O~ a 500MHz Power Ma~ G4, 
Virtual PC ~orks ar6und166MBz wh,en r~rining qtd~ PC applit~tions, gi~~ or tak!f{s(itne 

. programs' that havelots of sound or gr~phics. Remember th'atemulato;s such as Virtual 
PC have programming that sin;iulates a graphics car~ and sound card, .too. With a really 

(;omple"rfl,pplicatic;>~·~J.Jch as:,~ame, so,r:qany ~~J;l~;Of Vfr:t~f;i~~ ar~ f!~~slatin,g~flthe. 
·whole application begins to slow downpfamatically: . . . . ·''/ 

.·./·Not allecy)ulator applications t:iave issu~~1however •. Because today's com~utersa.~ 

:·.~~muchf'~~e,r'thane~r.IJer ~n~s,~!~~re,,,~.··· •. ~Y;ll!~~onsc;>lt?1;~~1p com~~t~~e~llr: ··~ 
.:· availabhfl~r Macintoshes and·PCs that .. ·· .•. y oldcptnputer gatnes such as'· Pac•Marfat · . 

· ~:'/the sainfi~peed and.quality as the orig(ij''I~ The ti~tl;t part in ti\:aking ttlese emula;tprais 
,·.r·· .. !"n.g, ,,.7;,,·P:t~· '<·· '.1iTn ; ;• . c;,,, ... ··. '· Jl'f'/ "'.\' We;>·'''· . •. ; : 

,:;·.,, 

Apple recommends that you install Mac OS 9.1 before installing Mac OS X. 
You must use Mac OS 9.1 or later if you intend to run applications in Mac OS 
X that aren't designed with Mac OS X in mind. Earlier versions of the Mac 
OS will not be accepted as a Classic environment. You can use the Mac OS 
9.1 installer CD to update your hard disk if you are using Mac OS 9.0.4 or 
earlier. 

Mac OS 9.1 will rearrange previously created Mac OS folders found at the 
root of your hard disk to make it compatible with Mac OS X's folder struc­
ture. If you have Mac OS 9.1 installed on a separate partition, this is only a 
minor nuisance. If you install Mac OS X in the same location as Mac OS 9.1, 
the Mac OS X installation moves the entire Mac OS 9.1 disk installation into 
its own folder on the disk. We've read more than our share of reports on prob­
lems with Mac OS X and 9 installations on a single volume. We recommend 
installing Mac OS 9 and X on separate partitions, as shown in Figure 18.2. 

Classic remains a virtual machine in Mac OS X. When you start up any appli­
cation designed for Mac OS 9 and earlier, Mac OS X will activate the Classic 
environment. When you start up Classic for the first time, Mac OS X asks you 
if it can add a few new components inside Mac OS 9's System Folder to make 



272 PART 111 •THE AGE OF MAC OS X 

Figure 18.2 
It's a good idea to 
have two separate 

hard disks or divide 
a single hard disk 
into two or more 

partitions for Mac 
OS X installation. 

Here, my 
installation of Mac 

OS X resides on the 
drive partition 
named Tycho. 

D 
mach.sym 

-. . 
Dewloper 

D 
mad! 

D 
mach_kemel 

~$~~~1~'C~~ll11v.:$,~~i::::~:·:;:;· 
•Pro·fiaf>1y::eeiit:::tor:1nsta•11ati:on:::;::::::·.: 
The Public Beta of Mac OS X made more radical changes to a 
single-disk installation on one of our computers. After a time, a 
problem occurred on the Mac OS 9 side that prevented the comput­

er from starting up in Mac OS 9. Because the installation was com­

bined, there wasn't much of a choice other than to reformat the 

drive and reinstall Mac OS 9 and Mac OS X-this time on separate 
partitions. Yep, it was pretty painful. It helps to be a certified Apple 

Service Technician in these moments. 

In the PC world, one of us met a similar fate on a Windows 3.1 PC 
upgraded to Windows 95, which recommended updating the C drive 

where Windows 3.1 existed. Even after Windows 95. was removed 
and the C drive downgraded to Windows 3.1, the PC never seemed 

quite the same. 

Because the release version of Mac OS X is such a radically differ­
ent operating system, it's probably best to install it to a separate 
hard disk or partition. But no matter how you install Mac OS X, the 
Macintosh hardware still recognizes that there are two operating 
systems through Open Firmware-the boot software in the logic 
board, unlike Windows 95, which completely assumed control of a 
PC, leaving previous operating systems that were installed dormant. 



CHAPTER 18 •THE CLASSIC ENVIRONMENT 

it work in the Classic environment, as shown in Figure 18.3. On startup, a tem­
porary window, normally closed, appears. Open it, and you see the old face of 
Mac OS starting up in a window that's basically a monitor window within the 
monitor. Everything operates in the same way as when Mac OS 9 works alone, 
right down to the icons for extensions appearing as they load into Classic. 

Once startup is complete, the Classic startup window disappears, and 
moments later, your Classic application appears. The wild thing about Classic 
is that Mac OS 9's menus, buttons, and windows are active when you are using 
a Classic application, as shown in Figure 18.4. When you switch to the Mac 
OS X desktop, document windows in Classic move to the foreground, but the 
Mac OS X menu bar returns. 

What Classic Means to Developers 

Figure 18.3 
When you double­

click a program 
written for the 

original Mac OS, 
the Classic 

environment turns 
on. Mac OS X 

requires you to add 
a few new parts to 
make your Mac OS 

9 installation also 
work as a virtual 
machine to start 

applications in 
Classic. 

The age of Mac OS X means that the original Mac OS lifetime is coming to 
an end, although not in the near future. Any useful applications available today 
will eventually have to be ported to (that is, converted to a form useable within) 

Some Oaulc~speclfk resources need to IHI 
~ded to or updaled In your System folder on 
Leela. Then chan9es should not affect your 
ability to UH )'<)Ur System Folder with native 
MacOS9. 



274 

Figure 18.4 
Mac OS Classic 

programs use their 
old windows 

and menus, but 
portions of the 

Aqua interface do 
show through. 

PART 111 •THE AGE OF MAC OS X 

Mac OS X. Being able to run programs in Classic slows the clock a little so 
developers have time to make the switch, but that clock is ticking away. 

Classic keeps alive many of the programs designed for Mac OS 9 and earlier. 
But there are some limits to what Classic can do. 

Bug-for-Bug Compatible 
with Mac OS 9 
First, the Classic environment is a sealed-off environment from Mac OS X. 
Programs running in Classic run inside an area that works and acts just like 
the original Mac OS. As you might guess, that means applications that crash 
in Mac OS 9 will crash in Classic as shown in Figure 18.5. 

Classic applications, however, or Classic itself, shouldn't cause Mac OS X to 
crash. If the Classic environment hangs, a Mac OS X user can simply force­
quit the Classic environment as they would any other Mac OS X application 
that stopped working properly. You can then restart Classic without restarting 
MacOSX. 



Figure 18.5 
Whoops! 

Fortunately, crashes 
that happen in 

Classic don't affect 
Mac OS X. 

CHAPTER 18 •THE CLASSIC ENVIRONMENT 

Classic Applications 
Use Mac OS 9 Only 

@ 275 

Applications designed for Mac OS 9 aren't written to take advantage of the new 
features in Mac OS X. All Classic applications are isolated from Mac OS X. 
That means OS 9 applications offer no pre-emptive multitasking, no advanced 
memory management, or any other Mac OS X buzzword you can think of 

To use Mac OS X features with an application, the programmer must make 
adjustments to the program in a process Apple calls Carbonizing (more about 
this in the next chapter). 

No Direct Hardware Access 
In the early days of computer programming, many hardware features weren't 
as easily accessible to a developer because the operating system didn't provide 
a practical way to use the new components. Fortunately, some savvy program­
mers learned to use their programs to directly talk to the hardware parts they 
needed for their work. 



276 PART 111 •THE AGE OF MAC OS X 

. :~B~Lbasic:3.2 Unctuded.:<rn thenaak's:eD;ROM)::u.ttestgn~dta:crs~ ·· · ··· 

a,t~ appl.ic,jitionsthat wor.~ for any;Mac Q~yersi~J1,$ince7.a.1. To 
ijlijke·ap~)icatioll~thatWork in ti~~h Ma~i;)s9;1:~aHd Matos x,'vou 
n~ed a Power Macintosh that qll~Ufies to run Mac OS X, and 
REALbasic.3.2 'fOr Carbort.applic~t~ns. · . . ) ••.. . . • :•.:< . . >'. .• . . . . ( ·. ... '1"\f<" 

To create an appllcation that works on any Maci.ntosh running Mac 

Q~ 7 .6,1. Qr later, .• ~elect t~~ '.'Maqj9tosh".:Q.Ption ~the t()p of the 
Build Ap.plication window. If theipplicatlon is int~nded f~r Power 

Macs only, you .can uncheck the 68K cod~. checkl:)ox under "Include" 
i n'the; Mac OS Application Settings secti8n: · t· · · 

To create an application designed for Mac OS 9.x and Mac OS X, 
select the "Mac OS X/Carbon" build selection. When you select 
this, all options to change what code to include are greyed out­
only PowerPC code is us.ed in a c.arbon application, 

If you choose to port your application to Windows, see Chapter 23 
first for helpful information. When you're ready tq build the applica­
tion, check the Windows build option at the top of the Bl.did 
Application window. 

As more advanced operating systems such as the Mac OS and Windows 
appeared and evolved, direct access to computer hardware caused many prob­
lems, particularly if one application improperly used a hardware component 
while another properly written program became confused because it could use 
the hardware at the same time. Such conflicts usually cause the original Mac 
OS to hang or crash. 

The whole idea of an operating system is to manage what applications can use 
on the computer without crashes or poor system performance. With that in 
mind, Mac OS X is designed to ignore any attempts by Classic applications to 
directly communicate with hardware such as CD-ROM burners, video cards, 



CHA.PTER 18 •THE CLASSIC ENVIRONMENT 277 

and the like. Many software companies have announced forthcoming releases of 
applications that can use hardware in the manner Apple dictates in Mac OS X. 

What Classic Can and Can't Do 
Using Classic has a few advantages and several pitfalls, at least as of the Pub­
lic Beta. Hopefully, many of these issues will have workarounds in the official 
release of Mac OS X by the time you read this. 

Personally, we're hoping that the companies and people who created the appli­
cations that have problems in Classic will just Carbonize their applications to 
run natively in Mac OS X and save all of us the trouble of dealing with Clas­
sic's shortcomings. 

• Classic cannot mount Windows NT file server volumes. This is a bit 
bizarre because Apple T a1k still survives in Classic. To confirm this on a 
Macintosh running Mac OS X with Classic active, open the Chooser. 
You'll see Apple Talk NT servers in the Chooser, and can log into any of 
them provided that your Mac OS 9 System Folder has a Microsoft 
networking information file, a user authentication module, installed. When 
you try to access the mounted volume from Mac OS X (remember, the 
Classic side doesn't have a desktop where volume icons appear) you 
realize that there aren't any volumes on the Mac OS X desktop. Whoops. 

• Classic can't save to PDF format without help. If your Classic/Mac OS 
9 installation has the full Adobe Acrobat application installed, you can 
create Portable Document Format documents (OK, it's redundant, but 
I didn't name the thing). PDF documents are based on Adobe's high­
quality PostScript technology with two major advantages. First, PDFs 
retain the high-quality graphics and font styles from the original 
document. Second, a PDF document made on a PC can be read on a 
Macintosh without any adjustments. Mac OS X includes Quartz, a 
graphics engine based on PDF technology. Qyartz runs the Aqua 
interface, providing the rich details and colors on that interface. Qyartz 
also allows any Mac OS X application to print graphics or text as PDF 
documents. Because the original Mac OS running in the Classic 
environment wasn't designed with PDF technology built-in, Classic 
applications can't create PDFs without Acrobat. 



278 

Review 

PART 111 •THE AGE OF MAC OS X 

+ Classic uses only Mac OS 9's printing and page-preview support. 
Classic applications use the same LaserWriter and inkjet printer 
support as found in Mac OS 9, but Classic doesn't get any further 
benefits from Mac OS X's presence. In Mac OS X, print previews are 
actually PDF documents. 

+ Classic is the only place where non-Power Macintosh applications will 
operate. If you have to use a really, really old Macintosh application 
designed expressly for Macintosh II family computers, Classic is your 
only avenue. Mac OS X can't run original Mac OS applications, and 
certainly not 68K code designed originally for Qyadras and other older 
Macintoshes, without Classic. The only condition to running old 
applications in Classic is that the application was initially compatible 
with Mac OS 9. 

+ TCP-IP has limits in Classic. Certain features ofTCP/IP, such as 
access to AppleShare IP servers, don't work if you select servers from 
the Chooser in Classic. You need to use Mac OS X's Connect To 
Server command in the Finder's Go menu to handle these connections. 

Classic is a great Apple solution for running otherwise incompatible Mac OS 
software in Mac OS X. Classic has frustrated some users who have become 
used to a particular way of performing tasks in the original Mac OS, but this 
problem should subside as more applications are carbonized to work only with 
Mac OS X's interface and abilities. You should write and build any REALbasic 
applications with Mac OS X in mind. 



--=• A few small repairs 

• Carbon: good for your programming diet 

-- • Carbonized applications can use Aqua 

• How REALbasic uses Carbon 



280 PART 111 •THE AGE OF MAC OS X 

When Apple announced the Rhapsody project, programmers' hopes for a 
powerful new operating system were finally realized. Then, the other 

shoe dropped. Rhapsody required developers to spend days or weeks rewriting 
their existing Mac OS programs, and they had to do it using Objective-C, a 
variant of the C programming language that few programmers knew. Most 
programmers preferred C++, a different variant. 

After shoving the Rhapsody project to the side as a consideration for the new 
Mac OS replacement, Apple realized then that they had to figure out another 
way for existing developers to port their old programs to the new Mac OS X 
without causing a lot of pain. Further, Apple had to allow the ported programs 
to take advantage of most of Mac OS X's features. 

It's Tool lime 
While developing the first version of the Mac OS in 1983, Apple realized that 
it would be terrible for programmers to write the code needed to draw win­
dows, buttons, and icons to the desktop. Even if the programmers could do that 
much work, it's likely that each element of the Mac OS interface would look 
and work differently because no single programmer would write things the 
same way as another. (Some of us would say that the applications would be as 
cluttered and ugly as the Windows interface, but that's another argument!) 

For this reason, Apple provided a set of application programming interfaces, or 
APis, which were, essentially, canned Mac OS programming for every graph­
ical element that a programmer could use in a Macintosh application. Instead 
of having to write a section of code that said, "draw a window using this pro­
cedure," a developer would only need to write in the name of the subroutine 
used for drawing a window. 

Apple gave a nickname to this collection of programming subroutines: the 
Toolbox. 

A Few Small Repairs 
The Mac OS original Toolbox became cluttered with obsolete and redundant 
subroutines over the 15 years of the original Mac OS. The Toolbox was still 



CHAPTER 19 •THE CARBON ENVIRONMENT 

~'~~'ll' ,,,,¢,_,~~ """''"""""""""'~""""'" •$;.(t,,; ~ ~·"""""""""~""'~=,=·""'-·-"~"'.,_,,., •. ~ ~" -•''" 

'''''''l*'S"','.'.'.~A' '•t'".'.'l .... ':'a"",','.N' '8,'''m' '''9'' :n .~ .. (·" ll -· ~- -~ .. ~.,,.,M; - ' ~ , , 
''~ "J><<t<< "'" .,,.,~~ >'i<'>~''O'\'<'>o...,,,":"n«:~~ c-,,_.p "'¥~-~.;;·V;;;.•. -~ -~,,,,.,,..,,,,,,,,., .• , <''< ">Y•·' ••'" , ' 

, \/VfiyJIJ,e narof},Qc:ir~91'.Jl, Steve Jqbs, during ,c:r Macworld Expo 
keyn{)te ~p~ech, saJ~ \Nith a ,sirliie that evervthing g9od evolves 
from it. 

281 

The Joke, in case it flew right over you, is that tiumans and other life 
forms are based on the element carbon, and that life evolved from 
thoseca,rbon building blocks. 

versatile, but was bogged down with code from discontinued versions of the 
now-ancient original Mac OS architecture. 

Apple had to allow original Mac OS applications to work with their new Mac 
OS X operating system. To do this, Apple realized that, both Mac OS X and 
Mac OS 9 could use a refined version of the Toolbox APis. That way, moving 
a Mac OS 9 application to Mac OS X would take much less time to do. 

Apple essentially threw out many old and obsolete Toolbox APis, then added 
and modified others. About 70 percent of the original Toolbox routines were 
left. Most of the things that were chucked were Toolbox routines for 68000-
type processors used in the old Macintosh II family and Qyadra systems. The 
result was a new set of APis for use in Mac OS X programming. Apple retired 
the name Toolbox for its API set and christened the new set Carbon. 

Carbon: Good for 
Your Programming Diet 

Carbon APis allow you to design programs you create to work in original Mac 
OS or Mac OS X. When you convert a Mac OS 9 application to also work in 
Mac OS X using the Carbon APis, you've Carbonized it. A Carbonized appli­
cation running in Mac OS 9.1 and later will take the windows, menus, and 
button appearances of the original Mac OS. 



282 PART 111 •THE AGE OF MAC OS X 

To use Carbonized applications, Mac OS 9.1 and later must have a system 
extension, CarbonLib, installed in the System Folder. CarbonLib adds the new 
routines necessary for Carbonized applications to operate properly. 

If history has told us anything, it's this: Software development forces addi­
tional hardware and software upgrades. In other words, as a Mac OS devel­
oper, it's a good idea for you not to bet on the idea that Carbon applications 
for Mac OS X will be supported in anything earlier than Mac OS 8.6. Write 
for Mac OS 9 and Mac OS X. 

Keep an eye out on the Apple Developer Connection Web site at 
http://www.apple.com/developer. Once you sign up for a free membership, 
you'll have access to many software development kits (also known as SDKs) 
and development tools. The downloadable Carbon SDK contains the latest 
developmental version. Most importantly, Apple will indicate what original 
Mac OS version is supported in later versions of CarbonLib. 

The SDKs deal primarily with CIC++ programming techniques, but the 
information can be useful with some issues in REALbasic programming. 

Carbonized Applications Can Use Aqua 
Applications designed with Carbon APis take on the interface styles of Mac 
OS 9 when running in that environment as shown in Figure 19.1. You don't 
get any Mac OS X benefits from a Carbonized application running in Mac OS 
9, except perhaps the likelihood that it may have better stability than an appli­
cation created with the original Toolbox. Know why? 

The original Toolbox APls included many obsolete routines not designed with 
Power Macintosh systems or Mac OS 8 and 9, such as routines for Macintosh 
Qyadras, Macintosh II systems, and other computers without PowerPC 
processors. Those routines, if activated by mistake on PowerPC systems, can 
cause odd behavior or crashes. So a Carbonized application has all-PowerPC 
routines that aren't as likely to destabilize Mac OS 9. 

When you double-click a Carbonized application in Mac OS X, it operates 
within the Mac OS X environment, not in the Classic environment, as shown 
in Figure 19.2. A Carbonized application inherits the Aqua look and feel, 
from the windows to the warm pulsating buttons. It's not necessary for Mac 
OS 9 to be installed to run any Carbonized application with Mac OS X. 



Figure 19.1 
REALbasic 3.2 

running in 
Mac OS 9. 

Figure 19.2 
REALbasic 3.0 

running in Mac OS 
X. Windows and 

buttons use Aqua's 
interface features. 

CHAPTER 19 • THE CARBON ENVIRONMENT 

....... ....... 
~~3?000 

Mu:Heighc. 12000 

FrmwO·~wrd..T 

Hu~c~o 
k).(l)\cr. 

lukdfOll. ~ 
Thie: Un'..hled 

Vlslble ~ 

Men:=w:~ 
°""""!!! 
Gl'OllOOln: B 
-o 

0 

283 



284 PART 111 •THE AGE OF MAC OS X 

According to Apple, Carbonized applications also take advantage of most of 
Mac OS X's special capabilities, including the following: 

+ Improved stability 

+ Improved responsiveness 

+ Better resource management 

Improved System Stability 
In the original Mac OS, programs and the memory they reside in when oper­
ating weren't separated by much more than a few bytes of empty RAM. The 
original Mac OS also used a memory design that didn't allow applications to 
take as little or as much RAM as they needed. When an application crashed, 
the Mac OS couldn't recombine the unused RAM so that other applications 
could use it. 

Worse, the Mac OS usually had no idea that the memory is unused. So, if you 
continued to do work in the Mac OS after an application had crashed, the 
Mac OS got confused quickly. When the Mac OS attempted to use the 
"unused" RAM, boom. It crashed. This is why Apple sternly recommended 
that you restart your Mac after a program quits unexpectedly. 

In Mac OS X, however, each program has its own memory space. The techni­
cal term for this is protected memory, in case you're interested. If the program 
quits or crashes, Mac OS Xis designed to recover gracefully without crashing; 
this occurs through the use of a force quit, as shown in Figure 19.3. After a 
force quit, you need not restart Mac OS X, and you should be able to restart 
the crashed program and return to work (provided, of course, that there's not 
something really wrong that caused the app to crash in the first place). 

Improved Speed and 
Responsiveness 
The original Mac OS was a marvel in its heyday, but it's never been a speed 
demon. That's because the way the original Mac OS allowed programs to 
share time with the processor-called cooperative multitasking-wasn't very 
efficient. 



Figure 19.3 
Applications that 

aren't running 
properly or at all 
can be force quit 

in Mac OS X. 

CHAPTER 19 •THE CARBON ENVIRONMENT 

Imagine you're a Mac OS program, trying to tell the PowerPC processor to 
handle a task. Now imagine you're one of several Mac OS programs, all ask­
ing for time with the processor as well. In cooperative multitasking, the 
processor would ask other applications to give up their time so that the proces­
sor could tend to the needs of one program. From there, the processor would 
look to the next program in line and handle its needs while temporarily ignor­
ing the other applications' needs. If that particular Mac OS app hung or 
crashed during its time with the processor, the processor couldn't switch to 
other apps, and your Mac was frozen. 

Here's one way you can watch the pitfalls of cooperative multitasking. Start up 
your Macintosh, then run a ~ickTime movie and click on any menu on the 
menu bar. Notice that the movie no longer plays while the menu is open? 
That's cooperative multitasking. The Mac OS cannot play the movie and han­
dle your menu selections at the same time. Once you select a menu command 
and release the mouse button, however, the movie resumes play. 

Try the same trick in Mac OS X. Notice how the movie keeps playing while 
you select any menu command? That's preemptive multitasking. It controls the 



286 PART 111 •THE AGE OF MAC OS X 

computer's functions to meet all needs asked of it, allowing all applications to 
use the processor and other computer components equally, for the most part. 
As a result, the computer feels smoother and programs feel agile even when 
there are many applications in use. 

Carbonized applications should generally benefit from at least the stability 
gains of Mac OS X, but may likely have greatly improved performance. How­
ever, Mac OS X 10.0 arrived with a Carbonized version of Internet Explorer 
5.1, a preview release, as Microsoft called it. We feel that this applications is a 
good example of what not to do when porting an application to Carbon. Of 
course we allow for the fact that this is a Microsoft application (you can read 
in the words buggy and bloated), but there are so many fundamental problems 
in this application that we can't list them all. 

To make the point: a buggy program is a buggy program, Carbonized or not. 
Mac OS X did not promise to make your whites brighter, bring peace to the 
world, or make poorly written software operate cleanly. It's up to developers 
like yourself to ensure that your Carbon apps work properly. 

Apple initially claimed early on during Mac OS X development that Cocoa 
applications would benefit best in Mac OS X. Today, Apple appears to have 
improved overall operating system performance sufficiently to claim that Car­
bon and Cocoa apps work equally well. Writing an application using the 
Cocoa frameworks is a labor of love, but usually just a labor. We'll touch on 
Cocoa applications a bit in Chapter 20, "The Cocoa Environment." 

Better Resource Management 
To allocate more RAM to a Mac application today, you have to open the appli­
cation's Get Info window and change the number of bytes of RAM assigned 
by the program's maker. But many programmers tend to overestimate the 
actual amount of memory a program needs. Or, when a program misbehaves, 
some people simply allocate more memory in hopes of bringing things back in 
order. As a result, programs running under the original Mac OS become a bit 
greedy. Your computer hasn't sufficient resources to do what it's asked to do. 

Carbonized applications in Mac OS X are assigned as little or as much mem­
ory and other resources as it requires. Precious RAM and other energies aren't 
wasted. 



CHAPTER 19 •THE CARBON ENVIRONMENT 287 

Carbon APis are, by Apple's design, a convenient and fast way to develop new 
Mac OS X applications. By using Carbon, you'll take advantage of the current 
methods and tools to develop original Mac OS programs so your learning 
curve is less steep. 

How REALbasic Uses Carbon 

Figure 19.4 
REALbasic 3.2's 

Build Application 
window has three 

options for building 
your Macintosh 

application. Most of 
the time, Mac OS 

X/Carbon will work 
for your needs. 

There are actually several versions of REALbasic 3.2 included on the CD­
ROM in this book. All of them function identically in terms of developing. 
However, the 68K version of REALbasic cannot create applications for Car­
bon or PowerPC. Do note that any Power Mac can create Carbon apps with 
REALbasic 3.2, however, only Power Macintosh systems capable of running 
Mac OS X can test the results in that operating system. 

REALbasic 3.2 takes full advantage of the Carbon APis as you develop. 
When it comes to developing for Mac OS 9.1 and X, you can't find an easier 
to use programming tool. 

When you're ready to build your application, all that's necessary to Carbonize 
it is to choose the Mac OS X/Carbon option in the Build Application win­
dow, shown in Figure 19.4. 

-.~OS~~:-~~:----~---~ 
·iilme:. l§'::UttleW1ndcw 1.0 I ·°'···~. --~---., 

[EJ~:..~~u (ijP~iffcCodo • + ·~; ~::;;.,:==-,,-m 
... rrlt:,;J~::::~ 

r· .. Windows AppJk.ltion Settings<: ~::,.~-:···;~ .;'. ....... ::.;~~ 

j Name: IAppName.exe 

l e~.~cumantlntc.~~~-:\.' 
1 Caption: Mr' Appi1cation 
l '----"7""~·~-~-~..,.,,,,~ .. -·-· 
l,_ ~· .. ---.--,..;..,;.,_~"" _ ...... ._, '' • ~~;,.,~M-~~~;~;·~·t~c:.-E;~~*i~t;tt~--'•'-',•e·< ,.,< 



Review 

Figure 19.5 
MyLittleWindow, a 

Carbonized Mac OS 
X application. 

PA R T 111 •THE AGE OF MAC OS X 

Using REALbasic over other programming environments offers you a huge 
advantage. For the most part, Carbonizing an application doesn't require you 
to change your processes for building a project. Figure 19.5 shows a basic Car­
bonized application running under Mac OS X. However, you should pay 
attention to the interface differences between Mac OS 9 and Mac OS X. 
Apple Developer Connection offers comprehensive interface guidelines for 
Aqua. These guidelines may undergo some final tweaking by Apple as Mac 
OS X becomes a finished product, so be sure to drop in and download the lat­
est information. See also Chapter 17, "Enter the World of Aqua." 

Thanks to the abilities found in REALbasic 3.2, creating Carbonized applica­
tions can't be much easier. However, sloppy coding will not magically work 
when Carbonized. Remember that building a Carbon application allows you 
to use it on Mac OS 9.x as well as Mac OS X. Carbon apps should run better 
in Mac OS X due to its better multitasking and memory protection features. 



The Cocoa 
Environment 

• Have some hot Cocoa 

• Java: it's not just for Web pages anymore 

• What you need to begin Cocoa development 

• For more information 



PART 111 •THE AGE OF MAC OS X 

A fter listening to developers, Apple decided that the Rhapsody program­
ming strategy would work over time once programmers obtained the 

proper tools. In the meantime, Apple applied the Carbon API approach to 
immediately bring original Mac OS apps to Mac OS X as soon as possible. 

Although Carbonized apps work great in Mac OS X, the best application may 
be a native Mac OS X application that works only in Mac OS X and takes full 
advantage of the features of the new operating system. 

In Rhapsody, the native APis were known as the "Yellow Box." Today, in Mac 
OS X, you'll know them as Cocoa. 

Have Some Hot Cocoa 
Cocoa is an advanced set of programming frameworks for developing native 
Mac OS X applications. Frameworks are application-programming interfaces 
that replace Carbon and previous Mac OS programming interfaces. With this, 
you would design a new application that can run natively in Mac OS X. 

Cocoa (implemented by Apple in Objective-C) projects can make use of exist­
ing C and C++ libraries, and can even use Java routines. Yes, that Java-the 
same programming language that adds so many features and enhancements to 
Web sites, among other things. 



CHAPTER 20 •THE COCOA ENVIRONMENT 

Java: It's Not Just for 
Web Pages Anymore 
Java was introduced in 1994 by Sun Microsystems. Back in 1991, Sun began 
a project to develop a way to make software for many kinds of household elec­
tronics such as TVs and VCRs. Imagine a smart toaster that makes the bread 
and bakes it, too! The whole idea behind the various implementations of the 
Oak Project {as it was known then) was to make an efficient way to program 
many kinds of consumer-electronic products, including computers. 

Java works by separating the idea that a computer's programming must be 
natively created, or compiled, for the computer on which it would run. For 
example, say that you were writing a new word-processing application. You 
want the application to work on both Macintosh and Microsoft Windows 
operating systems. 

If you're not using REALbasic to write your Macintosh application (that is, 
you're using Code Warrior or some other IDE), your first (or, to be more accu­
rate, second or third) challenge after writing an application is to compile aver­
sion of the code to work on Intel-compatible systems. After the bugs were 
removed and additional Windows conventions added, hopefully, you would 
have two versions of the same application. 

Because we're so pleasantly used to REALbasic, we oversimplified our exam­
ple. Unfortunately, very few development tools or procedures are around to 
help you with cross-platform development. REALbasic's abilities are among 
these few exceptions. To make a cross-platform application, your IDE has to 
be able to compile the application code into instructions that the computer's 
processor can understand. That's not an easy task when you're dealing with 
such diverse chips as Intel's Pentium and the PowerPC processors used in 
IBM mainframes and Apple Macintoshes. 

So Sun changed the paradigm of traditional computer programming. As we've 
said, normally the process of compiling the code for an application is proces­
sor dependent because the IDE's compiler you use is designed to create appli­
cation code only for one kind of processor. So, Sun thought, why not simulate 
the computer hardware using another specialized application for Java on each 



292 PART 111 •THE AGE OF MAC OS X 

computer platform? This way, in theory, the unique parts of Java's operation 
that require an understanding of the unique abilities of a particular computer 
is built in each application that simulates a Java computer. This kind of appli­
cation is called a virtual machine. 

Once you slam out some Java code, it needs to be converted to a file that can 
run on those virtual machines. Sun's answer to that dilemma (because you still 
can't run Intel instructions through a PowerPC or other chip without help) 
was to create a compiled form of Java that runs through the virtual machines 
on any platform. When you compile Java code from your computer, you cre­
ate a bytecode file. Run the bytecode through your Java virtual machine, and out 
comes the completed Java application, running happily and doing its job. Well, 
thatwastheidea,anyw-ay; 

When Sun introduced Java, most of the newest programs available came in the 
form of applets, tiny Java applications that were called up within a Web page 
using a Web browser that could run Java code through a virtual machine built 
in the browser. For the most part, most of us have only had this kind of expo­
sure to Java. Most of us probably haven't seen Hot]ava, an experimental Web 
browser developed by Sun that could run Java applets. Later on, however, a 
tiny Internet startup company named Netscape modified its Web browser to 
run Java applets, and the Java craze took off. 

For a time, hundreds ofWeb sites happily announced their use of Java applets. 
However, most sites presented rather simple and mostly useless applets that 
served more as novelties and programming examples than anything else. I 
mean, you could only appreciate Java clocks and tic-tac-toe games so much. 

Another problem introduced itself that re-ignited the computer­
software/platform-compatibility issues. When Java first arrived on the scene 
for personal computers, it seemed more equal for some computers than others. 
Although a Java software development kit for Windows was available almost 
immediately, it was some time before versions for the Mac OS appeared. 
Worse, there appeared to be glaring incompatibility issues that hobbled or 
crippled Java functionality under the Mac OS, version 7.5 at that time. 

The biggest issue involved Java's maturity. Although showing a lot of 
promise, Java was a rich programming language that required a lot of horse­
power from both operating system and computer hardware. Because of this, 
running Java outside of a Web browser wasn't consistent between most com-



CHAPTER 20 •THE COCOA ENVIRONMENT 293 

puter platforms. Windows Java tended to run as much as twice as fast as the 
Mac OS implementation. 

It wasn't until version 1.1 or so of Java that greater features and stability 
appeared for the Mac OS. Available for Mac OS 7.6.1, Macintosh Runtime 
for Java, or MRJ for short, included a stronger Java virtual machine that other 
applications on your Macintosh could use for running Java applications. In 
fact, you probably use MRJ and don't know it; Internet Explorer for Macin­
tosh, the Web browser from Microsoft, allows you to use the MRJ for running 
Java applets in that browser. 

Today, with the hype subsided, Java's still mostly on Web pages, used for those 
many clocks, forms, and some online applications. But Apple has led the fore­
front in adapting Java as a major player in Mac OS X by providing tools you 
can use to develop large, complex Mac OS X applications with Java. No other 
operating system to date has so fully integrated Java as part of its development. 

Sun, as we told you earlier, created Java from elements of C and C++. Their 
Web site contains a comprehensive assortment of information on learning and 
using Java that you can try out. Visit the official Java home page at 
http://java.sun.com for information on Java development, as well as compre­
hensive tutorials for many computer platforms, including the one probably 
closest to your mind, the Mac OS. 

About Objective-C 
Objective-C first came to light as part of NeXT's OpenStep operating sys­
tem. Objective-C code is a cross between C and Smalltalk, an object-oriented 
programming language of the 1980s. Objective-C is fully compatible with 
conventional C programming environments, so if you or a friend happened to 
have some source code to a C-based application you were doodling with, you 
could port it to Objective-C and Mac OS X with little trouble. 

If you're familiar with C or C++, you can adapt your code to Objective-C so it 
can operate as a native Mac OS X application. Objective-C, as the name 
implies, is a subset of C that adds object-oriented programming compatibility 
to th~ programming language. While it's beyond the scope of this book to 
teach you how to program with Objective-C, there are some resources avail­
able from the Internet and elsewhere that you can study for more information. 



294 PART 111 •THE AGE OF MAC OS X 

Swarm.org (http://www.swarm.org/resources-objc.html) is a great starting 
place for more Objective-C information. An Objective-C information page 
compiled by Steve Dekorte (http://www.dekorte.com/Objective-C/) has more 
links on the language. 

What You Need to 
Begin Cocoa Development 

A caution or two: Eventually, Apple would like every developer to program 
using the Cocoa environment, and better sooner than later. Keep in mind that 
programming in Objective-C, C++, or Java isn't the easiest thing in the world. 

We hope you learn all you need to know about object-oriented programming 
concepts in our book as a stepping stone to Cocoa development. This chapter 
is intended to introduce you to Cocoa programming and the available tools, 
but isn't a comprehensive guide in any way. (You did want to keep your first 
steps in Mac OS programming easy, right?) We won't be going too deep, but 
will give you a taste of what you can explore later as you venture deeper into 
Mac OS programming. 

The best thing about Cocoa development is that Apple provides you with all 
the tools you need to create the programming elements as well as the graphic 
interface elements for the time it takes you to download them from their Web 
site. 

Or, better yet, why download the tools when you can get them free when you 
buy your copy of Mac OS X? That's right-one of the three CD-ROMs 
included in your Mac OS X purchase contains all the developer software you 
require to build Carbon or Cocoa applications. Although practically all other 
members of the UNIX family include their tools as integral applications when 
the operating system is installed, Apple thought it best to keep the tools sep­
arate. Nevertheless, Apple upholds the UNIX family tradition of providing the 
needed software to build more applications. 

Once you install the tools, your next step should be to subscribe free to Apple 
Developer Connection, Apple's official Web home for Mac OS development, 
shown in Figure 20.1. The free subscription allows you access to any down­
loadable tool or documentation. Apple Developer Central is located on the 
Web at http://developer.apple.com. 



Figure 20.1 
The Apple 
Developer 

Connection can 
provide you 

with a plethora of 
Mac OS X 

information and 
software. 

CHAPTER 20 •THE COCOA ENVIRONMENT 

Explorer Fii• Edit Vi•w Go Favorites Tgol ~ Window 

806 @ ~ppl• - Developer 

Apple Developer Connection 

Glveyour ~ 
tradeshow r ~ 
pre;enre r /;;\ 
maximtun '~ 1 
bang for 
the 6ock. DP I 

I ii AjO Ct Membership Tec:hnla.I Business Log tn She Map ·- ___ . -·-··· -·----; Search AOC 

Partner I{~y~~2P With Apple 

MIHtlborV!lp Technk:al 

MuOSXS<edng MlC. OS X Reso.rtH 
ff~cty Ask~ ~()all Get1111gSt~nd 

IA-Ydop«Pr~;t Ooo.rn<nullon 

Project Builder and 
Interface Builder 

Build 
A Stmng Busine.' 

6u$ilnass 

M.1C05XM(W'21:ioo 

,t.pple'sB.JsinessCa.u: 

~Servkt:s a OiKCU'\ts 

Apple provides two powerful programming tools you can use immediately to 
create a Cocoa application. The first is, appropriately named, Project Builder, 
and is shown in Figure 20.2. 

When you open Project Builder and create a new project, the New Project 
window asks you to select a project type. As you can see in Figure 20.3, Pro­
ject Builder can design Objective-C and Java applications for any variety of 
Mac OS. It can even create Carbon applications, which, as you know now, 
allow you to support older Mac OS 9 systems. 

Where Project Builder helps you create an application, it doesn't provide the 
graphical elements for the Aqua interface. Logically, that's where Interface 
Builder comes in. Its name, in typical Apple style, describes what it does 
precisely. 

Interface Builder serves as, you guessed it, the graphic interface construction 
kit for a program. This program, shown in Figure 20.4, might seem a bit 
familiar to you. In what we felt was a sincere bit of imitation as flattery, Inter­
face Builder also works much like REALbasic in terms of accessing interface 



Figure 20.2 
Project Builder is 
designed so you 

can slam out 
great Macintosh 

code for Cocoa as 
well as Carbon 

applications. 

Figure 20.3 
Starting a new 
Project Builder 

project. 

PART 111 •THE AGE OF MAC OS X 

rr.;Jt~1 Builder Fil• Edit Format Find Project Build D•bug SCM Window H•lp J 

(Cl) Slmpl1Te•t CAppllcatlon> h1 
G:_ Groups & Flle.s 

4 • ~ Slmplt.Text.c ; 14 II 0 
; • 

v~SimpleText Fl le: :Su1pleText .c 

~ Cif Headers 
v tl Sources 

~ AboutBox.c 
[i;') Cllpboard.c 
~ Movleflle .c 
ii;') PICTFll•.c 

Cmtams: 
!.hlpplrq 

S111pleText - a siDPle ckicu9ent edltlnQ ~\\cotton f or 

wtth systell softwore. 

Version : :Su1pleText 1.4 or toti!r 

Written by : TED .. TOii {iowdy 

!>Al "' Dove Lyons ~ SlmpleText.c 
~ TextFUe.c 
!£1 NavigatlonServicesSup 
~ TextDrag.c 

Copvr\~t : Cl 1993-1998 bf ;.wte Coaputer . Inc . , all rl\jlt.s. 

v 0 Images and Sounds 
!ai.SimpleText.icns 
~SlmpleText.tiff 
~ SlmpleTe.xtDoc.tiff 

~ l"' Resources 
~ CJ Supporting Files 
~ Cl External Frameworks an 

reserved . 

Wri ters : 

I' 

ORI : 

Other Contact : 

Tec~f'IC;lo;)V : 

(dq:i) Dove Polo$d":ek 
(ee$) Eric Sehl~! 
(teO) Ta. Dow;:Jv 
('~r) C.reo Pobblns 
(TD) Tm Oowdv 

format find Pr<!)ect Build 

Empty Project 
vApplication 

Carbon Application 
Carbon Application (Nib Based) 
Cocoa Application 
Cocoa Document-based Application 
Cocoa-Java Document-based Application 
Java Application 

vBundle 
Carbon Bundle 
CFPlugln Bundle 
Cocoa Bundle 

Too DoWy 

Naclntosh Groph!cs Group 



Figure 20.4 
Interface Builder 

adds the necessary 
Aqua finishes for a 

native Mac OS X 
project. 

CHAPTER 20 •THE COCOA ENVIRONMENT 

Fr!e's OWntr First 'lespon... MalnMenu Window 

I .C!!E) tnformatlon~ I Text (it!mr--t?J 

I 
Message Text ,..----

-~:;)~- Fieldl:~ 
I Field2: 

1 

CJ Switch Box---, 
1 

I ~ ::::: [] 0 0 [ ______ _!I 
.. 

and control elements from floating palettes. From there, however, the similar­
ities start to disappear. For the most part, this is an application specifically 
designed to integrate your code with the Aqua GUI. Interface Builder not only 
provides the visual controls needed for any interface, but also aids you with 
making your project conform to Apple's interface standards as you develop it. 

For More Information 
Java and other programming languages that Project Builder and Interface 
Builder support are a bit above the curve of what we're trying to teach you in 
this book. There are plenty of books on C, C++, and Java that will be of help 
to you to develop in Cocoa as you gain more experience in object-oriented 
programming with REALbasic. 

We've found several great resources on the Internet for Java and Objective-C 
information. The best ones are from Apple itself, in the form of tutorials for 
creating an Objective-C and a Java application using Project Builder and 



298 

Review 

PART Ill• THEAGE OF MAC OS X 

Interface Builder. You'll find them at http://developer.apple.com/techpubs/ 
macosx/Cocoa/CocoaTopics.html. One important reason we can't get into 
these great applications here is that they're still in beta form. The features of 
these applications may change sufficiently in the final release. 

We can't emphasize enough that it's not necessary for you to absolutely know 
how to create Objective-C or Java applications anytime soon. However, it's 
important for you to know where Mac OS X may eventually go, particularly 
as the tools to create native OS X applications improve and hopefully simplify 
a little. Should you start the plunge, stick with Apple's free tools since Apple 
itself will be happy to provide you with plenty of support to generate as many 
applications for Mac OS X as you can pump out. 



In :this Chapter 

• Forward to the past: the command line 

• She sells C shells by the C shore 

• The Terminal application 

• A summary of useful Terminal commands 



300 PART 111 •THE AGE OF MAC OS X 

The innards of the classic Mac OS were pretty complex in its heyday. Com­
pared to modern operating systems, however, the original Mac OS had 

many weaknesses that had to be addressed for it to keep in step with other 
advanced operating systems such as Windows NT/2000 and UNIX. One lim­
itation of the classic Mac OS was that it didn't offer users much in the way of 
choices when it came to telling the computer not just what to do, but how to 
do it. In other words, a graphical interface was designed to reduce your choices 
and so reduce your operating system's relative power or efficiency. Despite the 
advantages of graphical interfaces, the most powerful way to direct a computer 
in its fundamental tasks of file management, systems control, and user man­
agement, is a command-line interface. 

Forward to the Past: The Command Line 
The BSD/Mach kernel fusion that forms the underpinnings of Mac OS X 
brings something brand new to the graphical world of the Mac OS: a native 
command-line interface, or CLI. As many of you know, the original Mac OS 
was among the first personal-computer operating systems without a CLI. To 
move documents from one disk to another, you moved icons on the screen that 
represented files to and from windows that represented the contents of a disk 
or folder. 

The greatest advantage of a graphic interface is that commands sent to the 
computer are greatly simplified. Suppose you have stored a text file, 
MYWORK.TXT, in an MS-DOS subdirectory named C:\MYDIR\ 
MYFILES, and that you need to copy MYWORK.TXf to a subdirectory on 
a floppy drive named A:\BACKUP\MYFILES. To copy the file from the C 
drive to the A drive, you would need to type in the following command at the 
MS-DOS prompt: 

COPY C:\MYDIR\MYFILES\MYWORK.TXT A:\BACKUP\MYFILES 

As some of you who've used MS-DOS can remember, this command will fail if 
any of the characters within it are mistyped. Worse, there are at least two other 
ways to complete this command. For instance, you could use the command: 

D \MYDIR\MYFILES 
COPY MYWORK.TXT A:\BACKUP\MYFILES 



CHAPTER 21 •UNIX: A SHELL SURROUNDING A TASTY KERNEL 301 

or perhaps this command: 

A: 
CD \BACKUP\MYFILES 
COPY C:\MYDIR\MYFILES\MYWORK.TXT 

Life's stimulating enough without having to practically learn a new language 
just to operate a computer, don't you think? It's no wonder that the Mac OS 
and, later, Microsoft Windows, became the preferred way for most computer 
users to interact with their applications and data. Still, a command-line inter­
face is inherently more powerful because of the complex ways you can adjust 
your instructions. 

Graphical user interfaces like the one used by Mac OS were oft referred to by 
CLI enthusiasts by this disparaging acronym: WIMP (windows, icons, menus, 
and pointers). Although the simplicity of Gills had its advantages, a com­
mand-line interface allowed faster access to the power of an operating system. 
As you can guess, however, using a command line has a much steeper learning 
curve. There are hundreds of commands available in some UNIX versions, and 
Mac OS X, underneath that beautiful Aqua exterior, is no different. 

She Sells C Shells by the C Shore 
One advantage of using UNIX is that there are many command interpreters 
available. A command interpreter is a program that translates the commands 
you type into instructions upon which the operating system can act. In con­
versation, UNIX-savvy individuals simply call them shells. 

To most Macintosh users, shells are foreign entities. If you've used the old 
Apple security/interface called At Ease, however, you've already used a type of 
shell. Shells provide flexibility in the operating system by allowing the user to 
modify the complexity of input and output from the computer. Graphical 
shells like At Ease were designed to reduce the options available to you to run 
the computer or change its settings. In short, Macintosh "shells" simplified the 
Mac OS even further, giving extra security from, for instance, crazed, file­
trashing youngsters. Or, you use Mac shells to simplify things beyond what 
you can do in the Finder. 



302 PART 111 •THE AGE OF MAC OS X 

There are many UNIX shells out there, although a few aren't free and can't be 
distributed. About four of them are pretty common and can be found on most 
UNIX versions. The second most-popular command shell is the terminal­
based C shell, or tsch. (We haven't found a pronunciation that sounds quite 
right, although we once heard a Linux guy pronounce it "tee-cee-shell.") The 
tsch shell is a variation of the C shell, the most popular shell. The tsch shell 
happens to be the default shell when you install your copy of Mac OS X. 

In the case of UNIX, a shell interprets the barely English-like instructions 
from a command-line prompt into binary instructions that the computer ker­
nel reads and executes. 

Many typical UNIX and Linux users mix and match the convenience of a 
graphical interface with a command-line interface using a graphical-interface 
generator and interpreter known as X Windows. X Windows interacts with the 
kernel and whatever graphical interface you choose to use. That probably 
sounds weird to you if you're a Mac user-unless you've used the shareware 
program Kaleidoscope, which patches Mac OS 9's interface with snazzy win­
dow and button changes. The one important difference is that most Linux and 
UNIX graphical shells don't make your life easier. These GUis simply tend to 
be graphical representations of the gazillion possible commands you would 
encounter from a typical command-line shell. KDE and GNOME are popu­
lar examples of graphical shells used with X Windows. 

If you're thinking that Aqua is a shell of sorts, you're right. Aqua is a graphi­
cal interface like KDE and GNOME. The similarity continues in that the X 
Windows and Qyartz display engines provide the necessary resources for 
KDE or Aqua, respectively, to display, send, and receive instructions from the 
kernel. The main difference-and this is an important one that makes a Mac 
the easiest computer to use-is that most X Windows interfaces maintain a 
similar complexity as the command-line shells they supplement. Yes, that's 
right, supplement, not replace. Mac OS X's interface is designed to fully control 
the UNIX underpinnings without having to use a terminal window or other 
non-Mac OS component. 

Like all other forms of UNIX, however, you could strip the interface (Aqua) 
and the window manager (Qyartz) away and still have a useful (but dry as a 
martini) operating system. Figure 21.1 shows the onion that is Mac OS X 
from an interface standpoint. Even without Qyartz and Aqua, you can still 
happily operate Mac OS X's innards from a command line. 



CHAPTER 21 •UNIX: A SHELL SURROUNDING A TASTY KERNEL 303 

Figure 21.1 
Aqua is a graphical 

shell over the 
Quartz graphics 

engine, which 
communicates with 

the Mac OS X heart. 

With so many shells comes the number of commands available in each one. 
Nobody can remember all those commands, but fortunately, some shells have 
similar commands to each other (such as tsch, which is derived from csh). 
Because the C shell is by far the most popular shell in the UNIX world, most 
of the commands you may run into later may work fine in Terminal, the com­
mand line application included in Mac OS X. 

Keep in mind that shells aren't the actual operating system. A shell is merely 
one way of sending instructions to components that the operating system con­
trols. That's why the Aqua interface has as much basic control over the com­
puter as a typical shell, but can't compare to the complexity and detail of 
instructions you can give the computer from a command line. Command-line 
interfaces are known more for complicating the process of using your com­
puter-but in a good way. 

Most importantly, keep in mind that UNIX itself understands only one thing: 
the binary information that a command interpreter (be it terminal shell or 
graphic interface shell like X Windows or Aqua) translates from mouse clicks 
or phrases you type. Because a typical UNIX kernel is extremely flexible, 



304 PART Ill• THE AGE OF MAC OS X 

the more complex the command interpreter used, the more dynamic your 
computer can be. 

Before we get into how powerful UNIX's command-line interfaces can be, 
perhaps you should get acquainted with Terminal, the Mac OS X application 
that allows you access to the UNIX command line. 

The Terminal Application 

. .. Figu,re 21 ... 2 
It's new! It's bland! 

It's Terminal! 
There's not much 

to it, but it's a 
powerful way to 
use Mac OS X's 

hidden powerful 
features. 

You'll find the Terminal application in the Applications folder, inside the Util­
ities folder. Double-click the Terminal application, and you'll be greeted with 
the window shown in Figure 21.2. 

If you've used a computer terminal, MS-DOS, or older online services like 
CompuServe before 1996 or so, Terminal will seem a bit familiar. It's nothing 
more than a text interface in which you enter UNIX commands at the com­
mand prompt. 

But why use Terminal? Aside from the sheer geek chic of using a command 
line in the Mac OS, you'll need Terminal if you want to recompile an applica­
tion that's compatible with Mac OS X's BSD UNIX heart for use on your 
computer. 

[loca\host:-] biffll \s 
Desktop Doculllents Library Movies 
[loca\host:-J biffll I 

Music Pictures Public Sites 



CHAPTER 21 •UNIX: A SHELl SURROUNDING A TASTY KERNEL 305 

figure 21.~ 
This prompt 

indicates the name 
you gave the 

computer when 
you installed Mac 

OS X. The pwd 
command can tell 
you exactly where 

you are. 

Prompts, Lists, and Permissions 
One thing that's cool about shells is how much direct power and information 
is available from just a few keystrokes. Now, we know the Macintosh argument 
about this: "But the mouse makes using a computer so easy." Easy, yes. Pow­
erful? It depends on what you're doing. Are you drawing something complex 
and colorful with layers and gradients and all that other graphic mumbo­
jumbo? Okay, then, a mouse is better. Are you trying to copy many different 
files from many different locations to another spot on your computer? Or are 
you attempting to install software you've found that requires you to launch an 
applicatiol). that doesn't have a graphical interface? Ah, that's the beauty of 
working with the command line. 

The only hard part of using a command line, especially with shells, is the sheer 
number of commands and their variations that are possible. Let's look at a few 
tsch commands and let you explore a new world. If you happen to have Mac 
OS X installed on your computer, just locate Terminal in Applications/Utili­
ties and launch it. For those of you who don't have Mac OS X installed yet, 
just follow along with the screenshots. 

When you start up Terminal, all that greets you is a single window with a 
prompt, as shown in Figure 21.3. (It was nice of Apple to make the format as 
black text on a white background. That makes it easier to see and less harsh on 
the eyes if you have to stare at it for a while.) 

[locolhost:-J biffll pwd 
l\Jserslbiff 
[locolhost:-J lriffll I 

····---· 



306 PART 111 •THE AGE OF MAC OS X 

The hardest part about using a command line is the fact that the commands 
available to you usually depend on where you are. Well, that is, not where you 
are (computers care little about your geography), but the directory to which 
your shell is pointing. The prompt itself tells you where you are when you open 
Terminal. By default, Terminal places you in your own user directory. You'll see 
your directory name represented as your login short name. The default name 
of a Mac OS X computer (from a UNIX point of view in terms of network­
ing, not AppleTalk) is localhost. Unless you changed the name during Setup 
Assistant (like we did), that's what you'll see in your prompt. 

To find out what working directory you're using at any time, type in pwd. (This 
command stands for "present working directory." Don't confuse this with other 
UNIX commands that allow you to change your login password.) 

Let's try a simple command. Type 1 s at the command prompt, and press 
Return. The Terminal will list all directories and files available from a folder. 

Like the MS-DOS command named dir, the ls command lists the contents 
of a directory. Typing in ls by itself shows the contents of your current direc­
tory. By default, Terminal points to your home folder for the login you're 
usmg. 

When you or someone who administers your Mac OS X system creates a new 
user, a folder is created in the Users folder on the Mac OS X hard drive. Each 
user folder contains the following folders: Desktop, Documents, Library, 
Movies, Music, Public, and Sites. Many of these folders work like their old 
Mac OS 9 counterparts and are essentially places to store your stuff. 

In the case of Mac OS X programming, you can take advantage of the fact that 
all users have this basic folder structure. You can use this information to build 
your applications to search, add, or remove items from these folders-with the 

'.~~~gfii~mliif•it:::~im~~~~~~~~~: 
·········A··Cirrecfo/YTs"a]O'citfon?w6=e~e ··tffes ·a·o·<:r awffcatfoniiii:i1c:>ri:d:::y(l~::;::::. 

may know them by ci :simpler name: fQlder.:When vv~mepjforj'.direti~·:· 
tory or subdirectory, just think "folder" or "subfolder." And yes, the 
term "directory" came from the UNIX world; 



CHAPTER 21 •UNIX: A SHELL SURROUNDING A TASTY KERNEL 307 

proper system administrative access, of course. Mac OS X's UNIX security 
requires Administrator access for changing or accessing the most critical sys­
tem functions. In some cases, your application or the user who installs your 
application may require superuser access, or root access to the computer. Gen­
erally, you shouldn't need to use root, and it's a good practice to keep from 
changing files in Mac OS X that you aren't meant to change. 

One thing you should note is that Mac OS X's ls command does not show cer­
tain files and directories; this is for the sake of security and simplification. To 
show every item in a directory, you could type in 11 , the command for a long 
list. This shows files in a table (see Figure 21.4). 

Notice that 11 gives you far more information about the directory's contents 
than the simple ls command, including hidden system files such as the ones 
with periods at the beginning of their names. Some of the more useful infor­
mation involves the permissions for each folder or directory. 

--~ii~~~~~:j;:;;:;::::::::.::::~:_;:;:~:;:::·· 
""'M,,...,.-,~,._""~"""·A=~<*W~mx"''~'°'-'''"''-=~"'""'%~""'''''''"''~';\''lrni"""""o'<.?t>,'.!0~@>j>;;,MM><-'""'""'°'~~"-'""~=~wcm"Pl*-."<"!;J;«~~<>·:.t'N98'1JW&<.~7"! "'"'"""'*"~=''"~'WX1~~"«<·'<M·%fe'M ''~~-""''f-$0,~,·&e, 

o;;,e,•'>'-.ooVMt\',4Y'-,,,,,~~" ···~~'"'""C~;c'>c~'."""'••'·' '"~,=~~~--.<- .. ,~.-.,,,.~!M:OC;f'/~~"'~~~"''""'""'v~~"'-"""'""""'"'~""M',!'<>&,,-.-<1f.-<"~'"''o"':!>:'-~""""'' ,,,~-~,-'l-%·''~~,,~~"'''"'"'~,--~~~---N'M'AO'<~z ,,w,,_.,v,-,,,,,,,,"' ""'- ,,,,,,,4-,..,_,,~ '"' 

...... 1n~~J1·c:itti~r::~\t~fx1~roni:iiiiiiiim9:i!~fiooi·:10·~1~fi19Jiiut1i~:tti ·· 

.• • ·• • '1rC>9i''···~dmi'nisfrai9r·a~~ijt:l:Hi ifleone·vqu; a$:i11~·~amputer'ownec 
and administrator,. would be .asked to create on setup of your com­
puter. The root is the superuser. A person with root privileges can 
make changes to .all files of the computer. If you're not savvy in 
UNIX administration, this could be a bad thing. 

Apple, knowing how users of the classic Mac OS love to tweak 
things in their System Folder, disabled th.e root account in Mac OS 
X. This is a good thing. Change the wrong thing in OS X, and your 
computer turns into a paperweight. 

If you really need.root access-:for example, to insti;ill a piece of 
' , • , •• " ' ' • ' ., , " ' ' ")''. • • • ? , ' • : • ~' 

software-you can open the Netlnfo Manager application in th~ 
Applications/Utilities folder. From the Domain menu, chopse 
Security, and then Enable Root User. You'll need to be an adminis­
trator of the computer tl:rmake this change. 



308 

Figure21.4 
Use the II command 
to list all directories 

and files available 
from a folder. This 

view is more like 
the MS-DOS dir 

command. 

PART 111 •THE AGE OF MAC OS X 

JlOO .. 
[locolhost:-] biffll n 
total 8 
drwxr-xr-x 12 biff staff 364 Apr 3 Z1:49 • 
drwxr-xr-x 6 root wheel 168 Apr 3 Z1:48 .• 
• ,...r--r-- 1 biff staff 3 Nov 14 13:39 .CfUserTextEncoding 
drwx------ Z biff staff Z64 Apr 3 Z1:49 • Trash 
drwx------ 3 biff staff Z64 Feb Z8 l2:Z9 Deslct<>p 
drwx------ 4 biff staff 9Z Apr 3 zz:ea Documents 
drwx------ 16 b\ff staff 51111 Apr 3 Z1:48 Library 
drwx------ Z biff staff Z64 Nov 15 17:14 Movies 
drwx------ Z biff staff Z64 Nov 15 17:14 !Ute 
drwx------ Z biff staff Z64 Nov 15 17:14 Pictures 
drwxr-xr-x 3 biff staff Z64 Nov 15 17:89 Public 
drwxr-xr-x 4 b\ff staff Z64 Feb 13 19:31 Sites 
[loca111ost:-J bifB I 

Permissions in Mac OS X work much like the privileges you could place on a 
folder in Mac OS 9, except you can place restrictions on individual files in Mac 
OS X, whereas sharing permissions were only for folders and disks, not files, 
in Mac OS 9. 

First, let's get some terminology down. When you create a file in Mac OS X, 
it assigns your account name to the file as the owner of the file. As owner of 
the file, you can read the file, change (or write to) the file, or execute the file 
(if the file is an application). 

Files can also be available to groups. A group consists of a list, maintained by 
Mac OS X, of users who have identical permissions for particular items. As 
with owners, groups also have read, write, and execute permissions for files. 
Most applications and files are assigned to one or more groups so that mem­
bers of those groups can share the applications and files, and work on them 
collectively. 

Lastly, there are files and directories, where everyone shares access. In the 
UNIX universe, files and directories that everyone can use are given world 

perm1ss1ons. 

So, what do owner, group, and world permissions have to do with the funny 
code to the left of each file and directory name? Let's break it down. 

The first character simply indicates whether an item is a file or a directory. If 
there's a d, it's a directory. If there's a hyphen (-), it's a file. 



CHAPTER 21 •UNIX: A SHELL SURROUNDING A TASTY KERNEL 309 

Next are three groups of letters, each with a series of characters: r (read), w 
(write), and/or x (execute). These permissions work similarly to the ones you're 
used to in Mac OS 9 and earlier. The first group ofletters indicates owner per­
missions. For example, if you're logged in with your account, as the owner of 
your Public folder, you have full access to look in, change the contents of, or 
open any item in that folder. 

The second group ofletters indicates group permissions. Unlike in Mac OS 9, 
Apple hasn't yet provided a defined way to create groups for users, but Mac OS 
X comes with a few built-in groups. For now, note that "staff" is a general 
group where users with Admin and User privileges reside. A root administra­
tor has permissions in the "wheel" group. 

World permissions, the third set of three letters, are generally set to read-only 
access or no access at all for most files, since a typical UNIX installation 
(including Mac OS X) tries to keep inquisitive minds out of places and files 
that don't belong to them. This permission is equivalent to using the "Every­
one" privilege in Mac OS 9 File Sharing. Items that you place in the Public 
folder for file sharing on a network might have certain World permissions for 
users to read and launch the files in the folder. 

To remember which permissions are which, try assigning a number to each 
letter in each permission. Break down the permission letters into its three 
groups (ignore the first character that shows a file or directory designation). 
Next, assign a 4 to each r, a 2 to each wand a 1 to each x. Now look again at 
Figure 21.4. It shows the permissions normally given by Mac OS X to a Pub­
lic folder for any user. Assign the necessary numbers for the owner, group, and 
world permission letters, then add the three numbers in each group together. 
In this case, the owner has rwx permissions, or 7; the group permissions are 
rw, or 5; and the world permissions are rw, or 5. For this reason, this type of 
permission is referred to as "755" access-the owner of the directory can do 
anything he or she wants, while groups and all others can see that the 
directory exists and can open anything in it, but can't change or delete items 
from it. 

Any files you happen to come by with 700 access (the owner has rwx permis­
sions, but the group and world have no permissions at all) are for a superuser, 
or root access only. Generally, that includes all Mac OS X system software 
components. Don't mess with these. 



310 

Figure21.5 
Changing 

directories doesn't 
show an obvious 

result until you view 
the changed 

information within 
the prompt. 

PART Ill •THE AGE OF MAC OS X 

A Few Basics in Terminal 
Let's move about from directory to directory. Right now, because you just 
opened Terminal, you should be pointed in your home directory. In the Ter­
minal window, type the following and press Return. 

cd •• 

You'll see a screen like the one shown in Figure 21.5. 

Congratulations. You just moved yourself to the Users directory. This com­
mand, cd, is short for "change directory." The two periods tell the shell to go 
backward one directory level. Type ls, and you'll see all the various home fold­
ers for any other users of your Macintosh. 

Now, time to move back to your home directory. Type cd homefo 7 der and press 
Return, where homefo7der represents your home folder's short name (hint: it's 
the last part of your Terminal prompt's name). 

Ta-da. You're back in your home folder. 

Notice something about the folder's name: it's typed in all capitals, even 
though the folder name is actually lowercase. Those of you familiar with other 
versions of UNIX may think, "Hey! They didn't type the folder name in the 
proper case!" That's right, we didn't. In practically all other UNIX versions and 
clones, Applications, applications, and APPUCATIONS are three different file 
or directory names. Not so in Mac OS X. We entered applications as the direc-

[localhost:•] biffl! cd , • 
(localhost:/Usel'S] lri.ff5 cd BlFF 
[localhost:-] lrlffl! I 

I 



CHAPTER 21 •UNIX: A SHELL SURROUNDING A TASTY KERNEL 311 

CAUTION 

NOTE 

tory path, and Terminal dutifully moved us to Applications. Apple decided to 
change this UNIX convention to match the classic Mac OS convention . 

. ::;:;;:AttliO,Ugti:m'.CiMilqJ:a:l:!~c::QS:X:~au:ltt:tm:::a::br!mm:Wittatrle'''"-~-··~ 
"-''""<'~-""',o~,;,e0w-<>,o >«mffS>."C~.~,,~~~~"-'"~' """'-'~' ,.,_,,~,.~~~~" '"''"''=M«1<,~'>.,.~0U~-,,,.;>,V<'~'"'""'i'"'~'*~""'°"'"$""-%Cf"#~''"'~~M<<<««"\'<0;,"""'"W'»' '« ~*;",~"~"'""M'fW_,mR'o#'Y:"°'~""""'""'""'"""',;;w""""'-."r="'-'>':<. 

:·::::::~h~.og~1::Y!nt··~h!7Y!d:r~mm~:m:tbi~::wll11m::ggrti'.!'.l:!:l~tl!:tr2,{~i:r~~~::::::::::;: 
··.· •:·!ions.:~~~~c os:x0r.:wne,~~r.e!t!J'.liJ:~ac·o~:xai?Pli.~~~!F~!~!!~~;~u:·: .. :;:~ 

··can port to. otherUNIX''operatlng~sYsterns: Most other::versiBnso!'UNtX · ·:·1 
must receive its directory and file names precisely, or your applications 
or commands will get treated poorly. 

If you wanted to jump to any directory, you could type in the full directory 
path. Alternatively, if, for example, you wanted to go the Applications folder 
from your home folder, you can simply type the following and press Return: 

cd /Applications 

Probably the most useful command for UNIX newbies is man. No, not "man" 
as in "man and woman," but the command that's short for "manual." (In case 
you haven't noticed, the UNIX world not only loves making obscure abbrevi­
ations, but ones that seem to have very little basis in the English language or 
is part of some geek humor.) All versions of UNIX have built-in help available 
through a terminal window. To access it, you simply type man and the com­
mand about which you want more information, as in the following: 

man top 

After typing this command, you'll see the text of the manual page for the top 
command, as shown in Figure 21.6. Most of the pages are based on BSD 
UNIX commands and usually show "BSD Experimental" and the date the 
man page was last updated. But, as with any UNIX version, some man pages 
you'll see are clearly revised for your benefit. 



312 

Figure 21.6 
This last page 

from the man top 
command shows 
at the bottom of 
the page that it 

was updated just 
for you, the Mac 

OS X user. 

PART Ill• THE AGE OF rvl't~C OS X 

ll5GS.Jl(VD the numller of lllQCh messages received by the process , 
BSOSYSCALL the numller of BSD system cans - by the process, 
MACHSYSCALL the numller of MACH syste111 cans - by the process. 
CSWITCH the numller of context switches to tilts process, 

The top COlllllOftd also displays some global state in the ftrst few lines of 
output, including load averages, cpu utilization and idleness, process 
and thread counts and """""Y b....,.._,. for shared librories and process­
es. The top ~ is SIGWINCH sawy, so adjusting your wtndow gecmetry 
may change the ..-r of processes and...,.,.,. of colunns disployed. Typ­
ing a •q• win cause top to exit 1-diotely. Typing any other c:harocter 
wtn cause top to tnnediotely update it's disploy. 

SAMPLE USAGE 
top -u -ss 20 

top win sort the processes occording to cpu usage, updote the output ot 
S second intervols, and lilllit the di.splay to the top 28 processes. 

SEE ALSO 
WLStot(l) 

Mac OS X 
[loca111ost :-J bi ff'i! B 

Septelllber 38, 1999 

A Summary of Useful 
Terminal Commands 

NOTE 

So as not to bore you with more text screens than you {or the publisher) would 
care to see, we've compiled a list, shown in Table 21.1, of some of the more 
useful commands in Terminal. You can use these commands to speed up your 
work or to access information not easily seen through the Finder. Just remem­
ber that Mac OS X, like all good members of the UNIX family, evolves con­
stantly, so commands will appear and change over time. Be sure to use the man 
command for more information on how these commands can be adjusted to 
serve you. 

l:::Jatm:llatilt:C?mlml~ 

~Dto!-QJ;!r:fmm~t12"xt·w-mimg~ntn:im:r:m~:=1 
'.~~'.:j~~ft~F~~·~!~~~~~~iE!i~:~-.. 
· ::UNI~~ t~~.~!i~~:~~~~en.OS ~~!'ta~!.~()~!~ beinonth~:~7;~V:~:Y~!t::mo:t.:.:· 



CHAPTER 21 •UNIX: A SHELL SURROUNDING A TASTY KERNEL 313 

TABLE 21.1 GOOD COMMANDS TO KNOW IN TERMINAL 

Command 

Is 

II 

man command 

whereis 

find arguments 

cp file file 

mv file file 

top 

open filename 

kill process ID 

zip filename 

unzip filename 

mkdir directory 

rm filename 

rmdir directory 

pwd 

Review 

What It Does in Mac OS X 

Displays a list of the contents of the current directory. 

Displays a detailed list of a directory's contents. 

Displays a manual page for command. 

A quickie search for files in a few nearby directories. 

Can extensively search by many, many different variables. For instance, 
the command find I -name apache -print would locate all instances of 
"Apache" in all directories. 

Copies files from one location to another. 

Moves files from one location to another. 

Shows all processes running in Mac OS X. (You can see the same 
information with the Process Manager application. This is just cooler.) 

Opens a file or application. 

Force-quits an application. The process ID is the number next to each 
process listed by the top command or in the Process Manager application. 

Compresses ZIP archive files made on a Windows PC (Vay! a ZIP 
command that's finally built-in!). 

Decompresses ZIP archive files made on a Windows PC. 

Creates a new directory. 

Removes a file. 

Removes a directory. 

Shows your present working directory. 

We've only scratched the surface of Mac OS X's powerful BSD interior. Pro­
gramming while using Mac OS X as your operating system offer abilities not 
possible in Mac OS 9, such as shell scripting (like MS-DOS batch files) con­
taining commands to execute in Mac OS X automatically when you launch an 
application. For now, you can relish at the ability to rename files all at once, or 
perform other tasks that seem to take forever under a graphical interface. 









Rorting 
Applications to 
Microsoft Windows 

In :rbis Chapter 

• Start with a Macintosh application 

• Handling path names 

• Watch out for conventions 

• Compile only the code required for the ported application 

• Porting Visual Basic code 
--== 



318 PART IV• ADVANCED THINGS TO DO 

W e bet you're feeling pretty happy after completing your first useful Mac­
intosh application. There's no feeling better than that cosmic power of 

creation, right? Hey, ask any new dad. 

That said, although your new Macintosh application is a sparkling gem, there's 
the matter of simple exposure. Sure, there are lots of Macintosh users out 
there, but why keep a good application just to yourself and other Mac afi­
cionados? REALbasic enables you, with the selection of a single option, to 
build a version of your application that runs in Microsoft Windows. That's a 
great feeling, and, depending on what you build, it could be a profitable feel­
ing, too. 

To get the most out of your creation, you can add some REALbasic code that 
optimizes the application to perform efficiently on a particular platform. In 
addition, you'll need to adjust your code for Mac OS features that aren't imme­
diately available or allowed in a Microsoft Windows version of your completed 
applications. 

Start with a Macintosh Application 
Your first REALbasic applications probably won't require extensive modifica­
tions just to make them work under Windows. The parts you have to worry 
about involve the different ways that Windows users operate their applications 
as compared to Macintosh users, as well as special Macintosh-only code you 
should isolate so that only specific code will be coII1piled for the particular 
platform you're using. 

Our first words of advice involve when to build your Windows version. It's a 
good idea to build your application first for Macintosh only. After you're sat­
isfied that the application works well under the Mac OS, you can revisit your 
project, save a version of it, and then add the modifications to make it work 
satisfactorily under Microsoft Windows. 

Handling Path Names 
One thing to watch out for during modifications are path names. A path is an 
address of sorts for a particular folder or file on a hard drive or network vol­
ume. A path works much like a street address; the difference is that although 



CHAPTER 22 •PORTING APPLICATIONS TO MICROSOFT WINDOWS 319 

a street address begins with the item you want to find and the area surround­
ing it outward, a path begins with the surrounding area and works its way 
inward. If we were to write a street address in the way that paths are written, 
it would look like this: 

MN\Metropolis\Broadway\5120 

On a Macintosh, hard-disk names are whatever you want them to be, up to 32 
characters. (That's Classic Mac OS, as in Mac OS 9. Your mileage may vary 
with Mac OS X, which plans support for many more characters using the Uni­
code standard.) In Windows, the various hard drives and volumes are not 
assigned names; they are assigned letters. Typically, a Windows system with a 
single floppy drive (how quaint), a single hard drive, and a CD-ROM drive 
will have volumes named A, C, and D, respectively (B is skipped, but would be 
used if the system had a second floppy-disk drive). 

These letter assignments aren't set in stone, however. The CD-ROM drive let­
ter might be different if the hard drive has multiple partitions. For example, 
Windows normally assigns drive letters after A and B to each hard drive or 
partition it detects. So if Windows finds three hard-drive partitions, it names 
them C, D, and E, and the CD-ROM drive is assigned F. The CD-ROM 

The .use. of dtive: lettln:s::instead ofszblunm: names .il:t:Winttt1Ws::t1::a.w. "-" •. 
holdover from an old, ~Id operating system n.amedJCPM;J'll gi~e 
100 quatloos to anyorie::who remernbersthis OS fd$il. B~tter;~i'!l!t/";}f; ' 
I'll give 1,000 quatloos to anyone who g~ts rny joke aboufuqu~f~ ·• 

'· . '< .. · <'".· : ·., ' :··.·.: ',,/ .. ::<,,,, >~·· .... :.:·~.!!\<:<,'· 

loos.,, (If you don't'; turri in your computer-geek cara-yciy do~!t' 
: ·.·~'. >· •• • -:. , 

watch enough TV; particularly science fiction I) 

In CPM, drives were labeled as numbers: 0, 1, and so on. IBM ijor­
rowed this i.dea from CP,M, but changed the nlimbet~ t9 l~rijq: 
make it simple-well, ~~ simple as it could be until~e rn.~unt}6at 
27th hard drive. .::· '/ ·•''it · 



CAUTION 

PART IV• ADVANCED THINGS TO DO 

drive letter could still be D with the other hard-drive partitions named E and 
F. Fun, huh? No wonder Windows users are always losing files. 

Path names in Mac OS and Windows are separated by various characters, 
which delineate a component (drive, directory, or file). The Mac OS, which 
rarely uses path names because of the simplicity of getting around, separates 
its items by colons, like this: 

Macintosh HD:Applications:Classic Arcade Games:Tron 

In Windows, a backslash is used to separate drives, folders {also called directo­
ries), and files. For example, a Microsoft Word application is typically available 
at 

C:\Program Files\Microsoft Office\winword.exe 

To confuse things even more, Windows uses a different method of specifying 
where an item is on a network server. Two backslashes are added before the 
network volume's name, like so: 

\\Computer Name\Shared Directory Name\Directory Name\Another 
Directory Name\File Name 

Here's an example: 

\\jeffserver\backup drive\embarrassing\babypictures.jpg 

REALbasic's Folderltem class (in combination with other tools for cross­
platform development, which we'll cover shortly) is the key to handling paths 
and the items within them. 

Watch out for Conventions 
There are other internal differences and conventions you need to keep in mind 
if you choose to make your REALbasic application in Macintosh and Win­
dows versions. 



CHAPTER 22 •PORTING APPLICATIONS TO MICROSOFT WINDOWS 

Window, Window, 
Who's Got the Window? 

321 

One significant difference between Windows and Macintosh applications 
involves documents displayed by an application. Take Microsoft Word, for 
instance. When you open that application on a Macintosh, there's the menu 
bar at the top of the screen, the Word toolbars, and a document window. Now 
view the same application in Microsoft Windows. The application resides in a 
window itself, floating on the desktop. Document windows float inside the 
application's window. The menu bar rests at the top of the application window. 
Odd, to say the least. 

This format is what REALbasic calls a multiple document interface. The appli­
cation window is also known as a.frame. In REALbasic 2.1.2, the completed 
Windows application's frame size can't be changed, so you'll need to ensure 
that the application works under larger or smaller screen resolutions, or that 
the user can see the content of your application's window. If you don't choose 
the multiple document interface option in the Build Application window, then 
your Windows application will be compiled with a single document interface. 
That is, your app has a single window, and any content within adjusts to the 
window. You should test out your builds of applications with both options to 
see which configuration is most appropriate. 

Take Note of OS-Specific 
Folder Items 
Both the Mac OS and Microsoft Windows have common areas you can take 
advantage of when developing your application for cross-platform use. 

Table 22.1 contains the REALbasic functions you can use for getting to key 
Mac OS system folders, Finder folder items, or their Microsoft Windows 
counterparts. Make a note of the ones that you can't use in Microsoft 
Windows (ControlPanelsFolder, ShutDownltemsFolder, StartupltemsFolder, 
and TrashFolder). In all cases, you should use TargetWin32 or TargetMacOS 
to determine what code should be used. We'll talk about the Target 
constants in the following section, "Compile Only The Code Required for the 
Application." 



PART, IV• ADVANCED THINGS TO DO 

TABLE 22.1 SPECIAL FUNCTIONS FOR ACCESSING 
SPECIAL LOCATIONS IN MAC OS AND MICROSOFT WINDOWS 

Function What It Does in Mac OS 

AppleMenuFolder Accesses the Apple Menu 
Items folder 

ControlPanelsFolder Accesses the Control Panels 
folder 

DesktopFolder Accesses items in the Desktop 
Folder (that is, items on the 
desktop) 

ExtensionsFolder Accesses the Extensions folder 

FontsFolder Accesses the Fonts folder 

PreferencesFolder Accesses the Preferences folder 

ShutDownltemsFolder Accesses the Shutdown Items 

StartupltemsFolder Accesses the Startup Items 

SystemFolder Accesses the Mac OS System 
folder 

TemporaryFolder Accesses the invisible 
Temporary Items folder in 
Mac OS. 

TrashFolder Accesses the Trash folder 

What It Does in Windows 

Accesses the Programs folder in 
the Start Menu folder 

Returns Nil (not available for 
Windows) 

Accesses the Desktop folder 

Accesses the Windows\System 
folder 

Accesses the Windows\Fonts folder 

Accesses the Windows folder 

Returns Nil (not available for 
Windows)folder 

Returns Nil (not available for 
Windows) folder 

Accesses the Windows\System 
Folder 

Accesses the Windows\Temp 
folder 

Returns Nil (not available for 
Windows) 

Adding Hot Keys for Windows 
Not to get into the whole Windows-versus-Macintosh thing, but there's a dis­
tinct philosophical difference in navigation between the operating systems. 
When the Mac OS was created, the mouse was chosen as the primary way to 
initiate commands and manipulate stuff, period. A few keyboard shortcuts 
(also known as accelerators in REALbasic or hot keys in other circles) were avail­
able to help users avoid unnecessary repetition, such as the Clipboard com­
mands: Cut (Command+X), Copy (Command+C), Paste (Command+ V), and 
sometimes Select All (Command+ A). 



CHAPTER 22 •PORTING APPLICATIONS TO MICROSOFT WINDOWS 

Figure 22.1 
In Windows, 

keyboard shortcuts, 
or accelerators 

(like the ones in 
Notepad's menus), 

make for less 
mousing about. 

In Microsoft Windows, however, things get a little more complicated. Win­
dows has never fully shaken its roots in MS-DOS, where its command-line 
interface brought confusion-not to mention tears of frustration-to many 
users. The first commercially successful version, Windows 3.1, included key­
board shortcuts for most commands in the Program Manager (the desktop­
manager application, which is similar to the Macintosh Finder), and for most 
applications as well. In fact, there are so many keyboard shortcuts in Windows 
that it's possible to operate it almost completely without a mouse. Figure 22.1 
shows a simple Windows application, Notepad. Virtually every command in 
every menu has a keyboard shortcut. 

Most of us who've sampled the Mac OS took a liking to the simplicity created 
by using the mouse for practically everything. In fact, the Mac OS's hardware 
and applications are designed so that having a mouse is virtually mandatory; 
you can't be very productive on a Macintosh without one. The mouse makes 
the Mac easier to use than any other operating system. But because the Mac 
OS is so mouse dependent, there are rarely more than two ways of performing 
any command from the Finder level. 

In REALbasic, keyboard shortcuts are handled differently with Mac OS than 
with Windows. In Mac OS, you can add keyboard shortcuts through a menu­
item property, but in Windows you can add keyboard shortcuts for both 
menus and menu-item properties. If you are developing an application, you 
can add the underlined shortcuts for the Windows version of that application 

: fpli>el 



Figure 22.2 
In your application, 

create a new 
module, then add a 

new constant for 
each keyboard 

shortcut. 

PART IV• ADVANCED THINGS TO DO 

through the use of modules, which can store a constant that adds the shortcut 
in a Windows version of your application. To do this, you create a new con­
stant in a module in your application. Here's how: 

1. Select the project window, and choose New Module from the File 
menu. 

2. With the newly created module window open, choose New Constant 
from the Edit menu. 

3 In the Value field of the New Constant window, type the name of the 
menu item for the Macintosh side of the application. 

3. Click the Add button in the New Constant window to bring up a new 
dialog for entering a different constant value. 

4. Choose Windows from the Platform selection. 

5. In the Value field, type the menu item name. It should be identical to 
the corresponding Macintosh command, but with an added ampersand 
(&)character immediately before the letter in the command name that 
should have the shortcut underline (see Figure 22.2). 

Another way to add certain constants in captions for buttons and tab controls 
is simply by adding an ampersand before the letter you want to set as the key­
board shortcut. To a Macintosh application, the ampersand is invisible. To a 
Windows application, the letter following the ampersand will have a keyboard 
shortcut, making it easier for Windows users to move about using the Tab key, 
which moves the button focus from one keyboard shortcut to another. To actu­
ally show an ampersand, place two ampersand characters. 

~~, u~~~ .. '---,~~~---~----'J 
Tyoe: c.:I S.::.:lrin:::o ______ ____ _....,l il 

V•lue: ~~Fo_nt_···----------~J 
Pletform Lanoutge Velue 

)!LlldaW.i.=:.l>•f~~· ~·-""-"\a.folllli•~~- ~~~~~~1 1 

~EclltCGnstaitValu4i~ 

Platform: I Wiii401o1t ;:lf~j 

Lanquece: l0eteu1t n l 

lllfiii1••• ::;:::;JI 
IO.nt!IJC!:l 



CHAPTER 22 •PORTING APPLICATIONS TO MICROSOFT WINDOWS 

Compile Only the Code Required 
for the Ported Application 

325 

There may be Windows-specific or Mac-specific items you need to access, or 
code that you'd rather not include in your app if it's not needed, which could 
cause the whole app to misbehave or halt. For instance, a problem you might 
encounter is in testing the application during debugging as you're running the 
app in the runtime environment. Goodness knows you don't want any code 
you've added for Microsoft Windows-specific events to attempt to activate 
while running there. So, you'll need to isolate platform-specific code by iden­
tifying the code that's running in the application. 

REALbasic code should make a distinction between Power Macintosh sys­
tems with PowerPC processors and older Macintosh systems using 68000-
style processors, like Macintosh II and Qyadra computers. There's always a 
chance that someone who gets your application will run it on older hardware. 
When you build your application, the Build Application window gives you the 
option of compiling for Mac 68K or Mac PPC. Although an app designed for 
68K will run (slowly) on a Power Mac, the reverse isn't true-a PPC app won't 
run at all on most 68K systems. 

Rather than use the rather generic TargetMacOS flag, try using the TargetPPC, 
TargetCarbon or Target68K constants instead to weed out unneeded or unde­
sirable code when you compile. 

There are six constants you can use to prevent compilation of unneeded code: 

• TargetWin32 

• TargetCarbon 

• TargetMacOS 

• TargetPPC 

• Target68K 

• DebugBuild 

All of these target flags are Boolean constants that allow you to isolate code 
not needed for a specific build of your application for a specific platform. Of 
these, the one you might use the most is the DebugBuild constant. This flag 
is useful when preventing snippets of code from running while in the runtime 



326 PART IV• ADVANCED THINGS TO DO 

environment during debugging. If you're making an iiber-app that runs on 
everything, the DebugBuild flag can be a godsend by preventing the non-Mac 
OS code from killing a test run. 

The TargetWin32 constant, to give a quick example, assigns a Boolean result 
to any variable you assign to it. Suppose you've created a variable named 
checkTarget. You could use the following to indicate code that should or 
shouldn't be included in the application built for Microsoft Windows: 

checkTarget=TargetWin32 

The variable would return true or false in response to the check. The other 
flags do the same thing but, logically, respond to the presence of the platform 
it detects. 

The target flags are most useful with the #lf/#Else/#Endlf statement. It works 
much like the conventional If statement, but allows you to isolate the code 
after the #If statement if the platform check was true. If the platform check 
from the Target constant is false, the code after #Else will be compiled into the 
built application. 

Suppose your application creates documents that allow the user to save her 
work. (What a concept, huh?) On the Macintosh, you've instructed the appli­
cation to open a Save dialog box and provide a default name for the document, 
Untitled. In Microsoft Windows, you need to ensure that a file extension is 
added to the default file name. You could use the #If statement in combina­
tion with the TargetMacOS {or TargetPPC or TargetCarbon, if the app you 
created is meant for PowerPC systems running Mac OS 9.1 or Mac OS X) 
like this: 

#If TargetMacOS then 
Dim workfile As Folderltem 
Dim unsavedFile as TextOutputStream 
workfile=GetSaveFolderltem ("","Untitled") 
// ... more file saving code ... 

#Else 
//Windows-specific instructions for the file save 

#End If 

You should use #If not only for Macintosh-specific instructions and unique 
features not available on Microsoft Windows (such as Appl~Events, Apple­
Script and Toolbox items), but also for Windows-specific calls to features 



CHAPTER 22 •PORTING APPLICATIONS TO MICROSOFT WINDOWS 327 

available only in Windows that could make your cross-platform application 
stronger when run on that platform. 

Porting Visual Basic Code 
If you happen to have written an application in Visual Basic (or know some­
one who wants to give you free code), an integrated programming environ­
ment for Microsoft Windows, you can import those applications into 
REALbasic and create a Macintosh version. This isn't a completely perfect 
port-there are a few incompatibilities, but some can be repaired rather 
quickly. REALbasic automatically re-creates all the VB controls, event han­
dlers, and methods from the imported code. 

A quick and dirty way to import Visual Basic form files (files with the .frm file 
extension) is to drag and drop the .frm files in a Project window of a new 
REALbasic project. However, this process leaves much to be desired in terms 
of locating and correcting the syntactically different or incompatible code in a 
Visual Basic form. 

A better way to start the import process is to use a utility included with 
REALbasic called VBC!eaner. This utility examines and modifies the various 
classes, forms, and projects in your VB code and prepares them so that import­
ing them into a REALbasic application is less time consuming. Processed VB 
class files are saved as VB forms and not classes, however, so you'll need to 
import those classes manually into REALbasic later. 

··· 1reviewed.J1~refw~s.deif9n0djo corr~~tP9.~~ to V!!iir[wlI6 .·····"·", ... ·*··. 
REALbasic 1;0. AlthoughBEALbasic 2.and later may~accePtmo1:1t 
commands from itsprevj.ous incarnat;,()n, tl;tere are certain to have 
been a few C.tiangesin Rf;.ALbasic syn,tax. Don't po~ code and 
assume that you need to correct onlythe VB issues-you may ..... ,,,.,, • 
REALbasic 1.x.:to-2.x or-3.x issues, to'c>l 



328 

TIP 

Figure 22.3 
FreeVBCode is one 
of many Web sites 

with loads of 
code samples. Of 

course, they're 
Greek to you until 

you get REALbasic 
to import them. 

PART IV• ADVANCED THINGS TO DO 

The great news about cleaning up your code from a Visual Basic import is that 
REALbasic and Visual Basic share the old BASIC language as an ancestor. 
Also, both IDEs are modern, object-oriented programming environments. 
Best of all to you, there are plenty of sites to visit for VB code that you can port 
to create a Macintosh version of the application. (This is where you cheer the 
crowd of Microsoft Visual Basic developers for their work!) It didn't take us 
long to find some free VB code snippets on the Internet. One place was 
http://www.freevbcode.com/, shown in Figure 22.3, where we found samples 
for just about any application or task (for Microsoft Windows, of course) . 

All the sample code you find here will be compressea in tfle ZIP archive 
format, which means you'll need Stufflt Expander 5.5 or greater to prop­
erly extract the file's contents. Mac OS 9 and recent versions include a 

copy of Stufflt Expander 5.5, but you can download the latest version 

from Aladdin Systems at http://www.aladdinsys.com. 

As a simple example, we downloaded the free source code for a Visual Basic 
application called Graphic Browser, made by a group called LazersDesign. The 

[] &HE 

Al»ut_ Vkual B.ult 
x. j. ffi§ 

sean:h Abouter-"-2 
JS&i$Mi§i!tft!J!!Nf·ii&hlWWW&iliJffii!i 

t) 

II> 

f 
l 
I 

.. 

rm 1111 :il 

-W11komo to Fr-VbCodo .Com, t ha placo on tt·.- Wob for tho li!ghoct quality, fr1111 v.c..,;;il b.uic eodo. 
Cul'Tently, there ore 1191 code c>Qmplcs .1nd '3 rticles on lhs site. New code;, •dded every day. 

Every month, FrceVBCode .c:om :el~cts the deieioper who ,._.bmits th:! t>s:ist s;qds; 91.nw!es H the 
pcyc!opcr gf 1ho Month. Tke "'inner rec:e:vu 11 web pa;e on our site, .-.d brc priz11s· Print i>review.oex 
by W Djamgnd Sgftw§Co e'ld V&CodeUbrer1 by~. To be coruidered (or thi' reco9"1i tion, 
:11bmh a c odp u•rml<; t o ln. The curnm de11elope:r afth• month i1 Elnd Rosenh eim. 

ASP H"IML and XML 

~~,~~~ 

~·=:J.i=~~ 
D<.rtesa:x!Malh 

-"'=·=~-

Click here If you 

If you 
broke It, 

Jie.m..&lillll!l 
Aa.nauu?au -, 



CHAPTER 22 •PORTING APPLICATIONS TO MICROSOFT WINDOWS 

NOTE 

NOTE 

code files, once decompressed, are essentially text files readable by any text edi­
tor or word processor. 

After installing VBCleaner from the REALbasic CD and downloading the 
Graphic Browser code, it was time to let the Little App That Could do its 
work: 

1. First, we opened the folder containing the VB code and identified the 
VB project file. Typically, VB project file names have the Windows file 
extension .VBP, which stands for (obviously enough) Visual Basic 
Project. 

J=w•-----.~~,,_=~~"~iNR'-~~\~-~~~uco"""°~-· ------~·~""""~=m~~, 
~L-Y!\ttatto:wr~.c:tmg::r§"Jen'J:~~"··,,&_, 

• - --:AA~-~~,,;~~~~:~~~~~-~-~~:::;_;:;~ 
,=-::m;,T.lbm§!!mnu:::t9l'll1ifier•~:.Mi:1tn>~mtWimt11~ltt:ttll~::m:ttlc:::''"''. 
~::::::0u::ar&::w&i~;,l!Ae:Jll87~s~<Wn1Cf1::1s::net:i11e::s0m&:as·'.Mac-15s::::::::::'.:::·: 

•oo'oo'o"'l:'o 0 ''''~'"'''~'•=oo/,c,o·•c~o· >e,o '.···•~''''~=''·"'=co'''''·'"···•.,,., o % ,,,,,,,,XoCorn.00%cWcooo'°''''' > ,''·'" o.c· .. ,, >'> .,,,,,,,,,,,,,<•,•o•oo •o 

··:: .extei'isiOns::trI-.an¥)Ra.yris:seiratatea by_ tne:.fue riame-:wttfr a.period: :F.11es::,, ... 
with .EXE as_ their extension are Windows applications. A file with a .DC)C 
extension isprobably a Microsoft Word document. (We say "probablY" 

becciu$~ fi!,e extensions •are a bitarbitrary a11d s~rtietillles Win(J~V\ls lllis­
takenlyl.1.ses the wrong application to open a, particular file. Keep thls+in 
mind vvi-l~n you create windowsversions of yoor~pplications.l 

2. Next, we opened VBCleaner's File menu and clicked the Open 
command. 

3. We selected the file Bmpbrowser.vbp. 

4. VBCleaner's default settings exhaustingly detailed each step of the 
process, starting with a confirmation asking whether the file we 
selected was really the one we wanted to process (see Figure 22.4). 



Figure 22.4 
VBCleaner is very 
hard at work. The 

VB code we 
downloaded 
doesn't look 

particularly special. 
Note the Windows 
file extensions on 

each file. 

PART IV• ADVANCED THINGS TO DO 

5. After each file we processed (involving yet more confirmation dialog 
boxes), a summary window appeared that detailed what was found and 
modified in each file . 

The upside to this blitzkrieg of windows is that you can save or print each 
summary for later review. For example, you might find a change that wasn't as 
useful or clear as it should be. Or there might have been a bug in the original 
code that VBCleaner changed from annoying to outright nasty. 

VBCleaner doesn't alter the original code files; rather, it creates a new copy and 
deposits it without ceremony on your Desktop by default. In the version of 
VBCleaner we used (2.0), we couldn't change the default folder for some reason, 
so perhaps you can color-code your Desktop icons one color using the Finder's 
Label command (you do this by selecting the files, Ctrl+clicking one of them, 
and choosing a color from the Label menu context). When VBCleaner's fin­
ished, the files it processes will be on your Desktop in a different color, and you 
can move the files into a new folder somewhere on your computer. 

With the files processed, the next logical step would be to go through the sum­
mary reports and begin the process of correcting code that VBCleaner can't 
modify- and that's exactly what you should do. But, being us, we wanted to 
see how well the VB code was translated. We fired up REALbasic, opened the 



CHAPTER 22 •PORTING APPLICATIONS TO MICROSOFT WINDOWS 

Figure 22.5 
Although the 

Graphic Browser 
interface isn't much 

to look at and needs 
a lot of additional 
work, remember 

that this was 
orig inally designed 

for use only on 
Microsoft Windows. 

lon..1 

I ~ 

lf.....,Plcturo l 

File menu and selected the Import command, and selected the .VBP project 
file . Figure 22.5 shows the promising result. REALbasic dutifully displayed a 
section of the ported application's interface, but not much else. To add the 
remaining code, you'll need to cut and paste the snippets of code into the 
appropriate parts of your project. The great thing is that, thanks to VBCleaner, 
most of the code is already properly formatted in the correct syntax. 

The next stages of porting are among the hardest. It may feel harder since it's 
difficult at this point for us to anticipate what code you will encounter in the 
wild that warrants a port. This is where your growing programming experience 
must pay off in identifying what you see. Try running the code to spot the 
errors first. You'll definitely see quite a few problems. To begin, watch for 
things such as 

• Variable names that attempt to define the variable's type using the "%" 

and "$" characters, which stand for string and integer variables. 

• Code relating to the opening of files. Windows file and folder name 
structure handles this a bit differently. 

• Any kind of code that appears to be related to ActiveX and Visual 
Basic Scripting. These items aren't supported in the Mac OS or 
REALbasic since they utilize quite a few APls from Microsoft that the 
company reserves for use only in Microsoft Windows applications. 

A program such as this is probably fairly easy to re-construct from here on a 
Macintosh because of its graphical nature. The real challenges for you come 
when you try to port larger, complex applications. Fortunately for you, you can 
use many online resources to help-one you should jump to right away is 
the Visual Basic/REALbasic Rosetta Stone at http://kode-fu.com/rosetta/ 



Figure 22.6 
The VB/REALbasic 

Rosetta Stone Web 
site should be 

useful for correct ing 
errors in translat ion 

t hat VBCleaner 
doesn't catch. 

Review 

PART IV• AD VANCED THINGS TO DO 

REALBasic/Visual Basic 
Rosetta Stone 

The VB-to-RB porting reference 

Wrlttan lllld mlll ntaln • d ( ofter a long hhnus} by lD FrV ciev l l e 

Lart upd11t ed Thur:i;day1 May 25, 2000. 
NeKt Updat e: lhll~day, :June 1, :zooo. 

Nicer g ,.aphh:5 to follow . 

Li.l! m1my >l.EAl.8CS$it; loiln, lhis ~ite imin1s lo btl 11 resoun::e fur the REAL81uh: 1m:1c;r•nmin1J c1;1111ru<11ity. lhlilt! lheiJe 
siteS', il d01;1S so wltn • <llffttrllnt dp~ruach: throu!/1 compoirlson with i t s Windows col.lntarpan, Microsoft vlwal scislc. 
i n tllls ne, you·u nrid reaturn orvhua1 isaslc and ther 11.EAUaslc counterparts l!sted 1ogeth1r. Where one lan~age 
hn a reature tnai the other doesn·1, a wo!karouro ls proVlcled i f one eldns. 

The mora obvicus PUl'JIOH! of lhi1 si1e is to be 111 nisource for prog!ammers wbo ;are portir.g applications from Visual 
Basic to RfALBui:. Whilil the slant of this site s to••nb "EALSasic (i: t:einQ the newer ranguaoe wrth fewer 
app'icatOns written u1in1;1 it ), there's no reason vou can't use this site as a resource for oorting applications •ritten 
in REAL&asc to Visual Sak. To oidd more depth, th1 occasional comparison to ;:ither i:i-o;irarm1ino roriouaoes such as 
CIC++, J-'1 11a, Python. PP.fl, Pascal and UnaD is usecl. This Stte takes to h~art tha hP.ief th~t vrn1 can !A<1m a lot 
abo<Jt yollf' o._..n langu.1g11 by studyir,g other l•n!lwages. 

T!'!e le!!s obvioin (and pouibly more impor1ant) purpo50 of thrs site t, to be a sovrce of programmr.9 tac:hnique' for 
REAL.Basic that h•v• bel!'n 1dapted from tec1Tliques for Visual Baso: . This site a;tempts tQ addrous "M..::: 
pro9r1'rnmer's hurtb1eal;, • whkh is be~t U~i:ribtlcl it' th•t hQ!rible fl!~tny you gtit whw1 vou go to~ buol.~tur" an.J 
c.:orrpare ltle seh1ct1on of Visual a;,si:: bool.s to il.EAt.easlc buuk11. It 15 .i ~OJI or :hli site Lo 1u11p you 1a1.e ;,idv;,nt.irwe 
or the weal th or \.1sua! &aStc resources and il<lapt them for you1 own 1..-se all a !\EAU!aslc progownmer. to lhls end, t 
pLi'll'\ to cite. mater1a1 ttom my own library ot visual easlc booi-1 and magazines as wel as tom Web sites and of 
cou;n, my own 8l(perier.c11 ~ someone wtro codes n vs for rood, s~e:ter and J.itgerm11ls1er. 

8etllt'een wori.:" coinmitments and the re ular ut fun distractions of real ~fe I havai't had much of a charce to 

lll8 

(see Figure 22.6). This site contains information about differences between 
certain commands in Visual Basic and its REALbasic counterpart, if one 
exists. 

Should your taste in porting VB applications become unquenchable, we sug­
gest that you drop in on your local bookstore and find a few books on VB to 
get a bit more familiar with it. REALbasic and Visual Basic make for good 
counterparts and a powerful alternative to the conventional C++ programmers. 

REALbasic and Visual Basic have a few common roots that can make it a 
worthwhile experience to port useful Windows applications for Macintosh 
users. The double-whammy in porting with REALbasic is that applications 
can also be Carbonized for Mac OS X as well. 

Porting applications is among the hardest programming tasks. This process 
will take time for you to learn the nuances of the source code, and rearrange 
the components in REALbasic to make a good fit. In addition to online Web 
resources, take advantage of REALbasic's mailing lists. Don't feel afraid to 
write other developers for more information on their code. 



• Let's C what develops 

• Macintosh C+ + development 

• The Apple Developer Connection Web site 



334 PART IV• ADVANCED THINGS TO DO 

The great thing about using REALbasic to create Macintosh (and Win­
dows) applications is how easy REALbasic is to use compared to other 

application-programming environments. The challenging thing is that the 
majority of source code and programming tools are based on the most popu­
lar programming languages, some of which can be a bit of a challenge for 
beginning and intermediate programmers. 

Although REALbasic is a very powerful development tool, keep in mind that 
other advanced programming and development tools usually have more fea­
tures and are more versatile in certain situations. Try as you might, you'll be 
hard pressed to use just one programming tool to write all the types of appli­
cations and programs you might ever want. Some tools are more suited for 
specific tasks than others. As you gain more experience with programming and 
development, you're probably going to run into these other languages and 
development tools. 

Let's C What Develops 
The C programming language, like the UNIX operating system, was created 
at Bell Labs in the early 1970s. To discuss the history of C, you have to dis­
cuss the history of UNIX. In a way, they both created each other. 

In the Beginning ... 
Way back in 1969, hippies, long hair, incense, and peppermints weren't the 
only thing people were thinking about. Although some were tuning in, turn­
ing on, and dropping out, Ken Thompson (no relation to the co-author of this 
book) was working on a computer-programming research project for Bell Labs 
in Murray Hill, New Jersey. He was developing computer programs that 
would be used to write other applications. (Talk about your chicken-and-egg 
problems, this guy was writing software to write software.) Ken's work was 
related to a project that Bell Labs had been working on in conjunction with 
MIT and General Electric. The Big Three were working on the development 
of the Multiplexed Information and Computing Service, or, for those who 
didn't want to deal with that tongue twister, the MULTICS operating system. 
Bell Labs decided to drop out of the MULTICS project and develop their own 
operating system. 



CHAPTER 23 •A WORD ABOUT ADVANCED PROGRAMMING 335 

The name UNIX 

was a 

backhanded play 

on words. 

Because a single 

group was 

developing UNIX, 

instead of the 

previous three 

that were 

developing 

MULTICS, they 

decided to drop 

the MULTI, 

meaning "many," 

and replace it 

with UNI, 

meaning "one." 

The CS was 

replaced with X­

probably because 

it looked cooler. 

Not long after Ken started working on his research, Dennis Ritchie stepped in 
to assist. The two of them transmogrified Ken's initial work into an operating 
system, which was the seed of the operating system that would eventually 
become UNIX. 

Writing the Programs 
to Write UNIX 
One of the main goals of the UNIX development project was to write the 
operating system in a high-level language instead of in machine language. Writ­
ing in machine language usually means that your programs won't work on 
multiple computer platforms, and the creators of UNIX wanted to be able to 
use the operating system they were developing on all types of computers. 
Using a higher-level language, one that looks more like English, would allow 
them to compile the source code for multiple computing platforms with very 
few changes. This is probably the very first use of the term cross-platform com­
patibility, a term near and dear to the hearts of Macintosh users, who have to 
work in a world dominated by PCs. 

A high-level computer language, among other things, is based closer to an 
English syntax, making it easier for humans to create and debug their pro­
gramming work. C++, BASIC, and FORTRAN are examples of high-level 
languages. On the other hand, machine language is generally a complex string 
of either binary or hexadecimal numbers. Binary is sometimes (but not often) 
called base 2; hexadecimal counts up to 16 numbers, so additional "numbers" 
in base 16 are represented by the letters A through F. 

For example, we know the number of fingers on both (human) hands is nor­
mally represented in decimal (base 10) as the number 10. In binary, there are 
only two numbers, 0 and 1, as opposed to base 10, which has 0, 1, 2, 3, 4, 5, 6, 
7, 8, and 9. So, to represent the number of fingers on your hand in binary nota­
tion, you would have to see the decimal number 10 as 2 + 2 + 2 + 2 +2. Then, 
knowing that 2 in decimal notation is 10 in binary, you add things up, remem­
bering to carry your "1" for each time you count to 10 base 2, or 10. Without 
belaboring this further, 1010 is the binary notation for decimal 10. Confusing? 
Now try writing decimal 20 in hexadecimal notation. (We'll let you figure this 
one out yoursel£) 



336 PART IV• ADVANCED THINGS TO DO 

Although you're certain to have to learn how to count and translate numbers 
from binary or hexadecimal as part of some computer class, we suggest that 
you grab your sibling's or child's math book to see why coding a computer in 
this way is far more trouble than it's worth today. 

In order to write UNIX in a high-level language, the folks at Bell Labs had 
two choices: they could use an existing language or write their own. They 
chose the latter, because there really wasn't a cross-platform language available 
at the time. They began working with a computer-programming language that 
was written by Ken Thompson; this language was based on Martin Richard's 
BCPL. The name Ken gave his computer-programming language was B. 
Dennis Ritchie improved upon Thompson's language, adding features that 
became necessary as the UNIX project progressed. Dennis, in a brilliant flash 
of insight, decided on the name C for his improved version of Ken's B pro­
gramming language. 

UNIX, C and Beyond 
In 1973, the fruits of the labors of Ken Thompson, Dennis Ritchie, and many 
other unsung programming heroes at Bell Labs were released to colleges and 
universities worldwide. UNIX became so popular that a mere six years later, 
UNIX Version 7 was released, which was written almost entirely in C, remov­
ing parts of the OS that were, of necessity, still written in machine language. 

The first versions of C were available only with UNIX installations. C was 
included with UNIX so that programmers and developers could expand the 
capabilities of UNIX using the same language in which UNIX itself was writ­
ten. Because C was such a powerful language, allowing the programmer to 
work very closely with the computer hardware and operating system, it wasn't 
long before non-UNIX programmers started clamoring for their very own ver­
sion ofC. 

With the advent of personal computers in the early 1980s, it wasn't long before 
home-computer users could become fledgling computer programmers. 
Although most beginning programmers didn't opt for C as their language of 
choice, the software companies, which wrote the programs used by home­
computer users, demanded it. Soon, countless versions of C were available for 
microcomputers, and C development caught on like wildfire. 



CHAPTER 23 •A WORD ABOUT ADVANCED PROGRAMMING 337 

An Object-Oriented Revolution 
About the same time that C was gaining a foothold in the personal-computer 
market, a change was occurring in the computer-programming community. 
Previously, most computer programming followed the standard structured 
methodology, in which the programmer decided on the tasks that the program 
must perform and wrote many separate routines to perform those tasks. This 
is often referred to as top-down programming because, for the most part, you 
can read the source code from the first line to the last, top to bottom, and glean 
from it an understanding of the tasks performed. 

A bunch of wildcat, think-outside-the-box, do-things-differently kinds of 
programmers decided that there must be a better way. They wanted their code 
to be organized into chunks of functions, all of which operated on specific 
tasks or areas of the applications they were developing. Not only would this 
make it easier to locate specific code, but these chunks of related code, which 
they referred to as objects, could be used in more than one application, sup­
porting code reuse and thus reducing duplication of effort. 

Surprisingly, this object-centric view of programming, called object-oriented 
programming, wasn't really such a new idea. Even though most object-oriented 
languages didn't come into existence until the 1980s, the concepts of object­
oriented programming had been around for quite some time. Some of the first 
object-oriented languages pre-date the existence of C itself. 

Not wanting to give up the low-level hardware and operating-system control 
of C, developers began working on their very own object-oriented version of 
C, known as C++. C++ can be thought of as a bigger, better version of C. It 
can do everything C can, plus a whole lot more. 

The Once and Future King 
Sure, there may be a few Java and Visual Basic holdouts in the development 
world, and of course, we REALbasic developers count, too. But C and its vari­
ant languages are still the dominant force in the programming world, and 
many tools are based on it. When new languages are developed, their syntax is 
often compared to C, and the more C-like they are, the more popular they 
seem to become. 



338 PART IV• ADVANCED THINGS TO DO 

Although other languages have gained in popularity, good old C, and its more 
feature-rich descendant C++, are going to be around for a long time. It's worth 
a bit of your time to become familiar with the de facto standard of C and C++ 
programming on the Macintosh platform, Metrowerks Code Warrior. 

Macintosh C++ Development 
Those not-too-faint-of-heart developers who wish to jump into C or C++ 
development have a quite few options to choose from. As with most software, 
there are both commercial and shareware tools for C and C++ development. 
The commercial versions usually offer more features, but they're pricier, and 
the features you gain might not make up for the difference in price. Commer­
cial versions usually have better support, but shareware versions often make up 
for this with online support forums or discussion groups where you can con­
verse with other users about the development tool you have chosen. Whether 
you choose to use a shareware or commercial package is up to you. It's really 
about what you're most comfortable with and your budget. 

If your budget is a major issue, then first, thanks for setting aside a small por­
tion of your budget on this book. Second, there's another option that should 
be attractive to you. Unlike other computer platforms, there are actually some 
free C and C++ compilers available for Macintosh development-yet another 
reason why owning a Macintosh is so cool! 

Metrowerks CodeWarrior 
When it comes to Macintosh C++ development, Metrowerks CodeWarrior 
stands head and shoulders above the competition. Founded in 1985, 
Metrowerks makes many development tools for many platforms. Not only 
does Metrowerks have a Macintosh C++ compiler, it also has compilers for 
Windows, Solaris, and Linux, not to mention Java compilers and tools for 
Nintendo, PlayStation, and PlayStation2 development. It even has tools for 
developing software for the Palm handheld organizer. But enough of that, 
what we're interested in is their C++ development tool, Code Warrior. 

Examined on a large scale, Code Warrior, along with most other development 
tools, is a lot like REALbasic. It has a Project window, a Code Editor window, 
tools to edit user interface elements, and so on (see Figure 23.1). 



CHAPTER 23 • A WORD ABOUT ADVANCED PROGRAMMING 339 

Figure 23.1 
Metrowerks 

CodeWarrior's 
integrated 

development 
environment 

'9 'fl Cl Souro;;--- 0 ., I) SimpleAlfft.cp 0 
V 'fl Cl Resources 0 ., a s~~A:~ti.~r.~ ,, . ,,. 
v 'fl Cl ANSI llbr;iirlu 0 0 .. ID MSl C.PPC.Lib 0 .. llllHSlC .. PPC.Lib 0 .. !II MSl SlOUX.PPC.Lib 0 
v 'fl Cl H • c LibnrlH 0 .. II MSl Rl.ritirMPPC.Lib 0 ., Ba:lntt rf.actlib 0 .. BIM•thlib 0 

8 file,,. 

. s 
s 
s 
s 
s 
s 
s 
s 
s 
s 
s 
s 

SiinpleA lert : :SimpleA lel"t(} 
( 

lnith;1l i:;i:e(); 

void Simp l eAlert :: Jnl ti o t I ze{) 
( 

lni tGrof(&qcl . thePort}; 
1nitFonts(); 
lnl UHnda.s( ); 
lnltMenus(); 
TElnit(); 
lnl tOiologs(ni I); 
lnl tcUl"SOl"(} j 

void Sl11pleA\ert: :Run() 
( 

HoteAlert(kAlertlO, NULL}; 

void lllQin(void) 
( 

Sl•pleAte.-t theApp l ic:otlon ; 

theAppl ic:otion .Run( ); 

Lirw 40 Col 1 I Iii 

Metrowerks offers a Learning Edition version of Code Warrior, which can do 
darned near everything that the commercial version of Code Warrior can do. 
The only real limitation of the Code Warrior Learning Edition is that you can't 
use it to develop applications that are released to other users. 

The benefit of using the Learning Edition (besides being cheaper than the 
full-blown version of Code Warrior) is that it gives you a chance to try out an 
advanced Macintosh programming tool without shelling out a large chunk of 
money. If you decide that Code Warrior is the way you want to go, you can 
always upgrade to the full-blown commercial version. Metrowerks will even 
give you a discount on the full version to help make up for the cost of the 
Learning Edition. 

Although the Code Warrior path to enlightenment is cheap, there are cheaper 
ways to go. How does free sound? 

Macintosh Programmers' 
Workshop (MPW) 
Free you say? Yep, that's right. Like any good computer hardware company, 
Apple wants third-party developers to build applications for its platform-so 
much so that Apple is willing to give away the tools to develop applications for 



Figure 23.2 
The Macintosh 
Programmers' 

Workshop 

PART I V• ADVANCED THINGS TO DO 

•Inc lude <Typn.h> 
•Inc l ude <MeMory.h) 

Hortoo:Oevelopment:MP'W-GM:MPW:Worksheet 

•include <Qulckdrow .h> 
•include <Fonts .h> 
•inc l ude <Events.h> 
•inc l ude <J1en1,.15 ,h) 
•lnc: l ude <l..llndoon" . h > 
•Inc l ude <Tex tEd ! t .h> 
•Include <Dialogs .M> 
•inc l ude <SouOO .h> 
•inc:tude <ToolUtl ls.h> 
•inc lude <Proces:su.h> 

/* Corn;tDnt:J. */ 
•defil"NI 6o l li.lidth 120 
•define &:. I !Height 120 
•define BobSlze 8 /• Siu of text in eoch ba ! I •/ 

/* G\obols "'"/ 
Red 11 indRe<:t; 

/* lhf! qd glot.of hos been re1110~d fra. the I lbrorielll •/ 
QDCl loba ts qd; 

/•f-'Y'<lt'ot~"'/ 
vo id tnl t loltze(vold) ; 
void NPIBo l l(vof d); 

/• 
- Main bodl,I of proQram SI l l\,IBol ls 
•/ 
void eoi n(void) 
( 

lni tiolizt( }; 

do ( 
NHBol t {); 

} while {IBu ttonO} ; 

Apple products. One major development tool offered by Apple is the Macin­
tosh Programmers' Workshop, or MPW, shown in Figure 23.2. 

You can download MPW from the developers section of the Apple Web site 
if you'd like to check it out, but be prepared for your brain to hurt. The first 
thing you'll notice is that the only real tool that exists in the MPW is a text 
editor. You use the text editor to edit your source code, to edit the project def­
inition files, and to build your application. It's only about one step above a 
UNIX, or MS-DOS, command-line editor and code compiler. 

There's an old saying about anything that's free: You get what you pay for. 
Although it's possible to develop applications using the Macintosh Program­
mers' Workshop it's not something to attempt unless you've got a lot of time 
and patience. Developing applications using the Programmers' Workshop isn't 
impossible, but it can be painful. Don't get us wrong: we're sure there are 
developers out there who are big fans of the MPW, and can do great things 
with it - we're just not them. 

We recommend that anyone who finds modern Macintosh application devel­
opment to be difficult should download the MPW. You'll gain a whole new 
level of appreciation for the other development tools. 



CHAPTER 23 • A WORD ABOUT ADVANCED PROGRAMMING 

Project Builder and Mac OS X 
When it comes to developing applications for Mac OS X, one of the best­
known tools is Apple's Project Builder, shown in Figure 23.3. Using Project 
Builder, you can build applications for OS X in one of many development 
environments. With Project Builder, you can create applications using Carbon 
and Cocoa, which are written in C, C++, Objective C, and Java. 

Project Builder sounds like a great tool for developing Mac OS X applica­
tions-but you're probably wondering how much it costs and where you can 
get it. Well, good news! Every Mac OS X box comes with the Developer Tools 
for Mac OS X 10.0 CD. That's right, it's free! Everyone who buys Mac OS X 
gets a copy of the Developer Tools CD! Not only does the Developer Tools 
CD include Project Builder, it also includes other development, design, and 
debugging tools, all of which integrate with Project Builder to provide you 
with everything you need to build OS X applications. 

So if Project Builder is so great, why is this book about REALbasic instead of 
Project Builder? Well, Project Builder, like all advanced development tools, 
can be very hard for beginning and intermediate programmers to wrap their 
brains around. It's not that REALbasic is less powerful than these advanced 

Figure ?3-~ _ >=-'~­
Project Builder and 

Mac OS X 

. 
• "'t'JPl<>dum 
•tt~o~·w••r.r 



NOTE 

PART IV• ADVANCED THINGS TO DO 

tools, it's just a lot easier to pick up and start using. Plenty of applications writ­
ten in REALbasic compete with applications written using more-advanced 
tools. 

The Apple Developer 
Connection Web Site 

Apple Computer, being the clever hardware and software company that it is, 
is well aware of the fact that developers are the lifeblood of its survival. With­
out third-party developers to write the applications, utilities, productivity 
tools, and games that computer users demand, the very survival of Apple 
would be threatened. Apple is simply not capable of developing all the various 
applications that people who use its hardware and software require. 

For this reason, Apple provides resources for the would-be software developer 
to get him on his way. The Apple Developer Connection Web site, shown in 
Figure 23.4, is the gathering place for all sorts of Macintosh software devel­
opers. You'll find resources there for C, C++, Java, Cocoa, FORTRAN, Lisp, 
and REALbasic. You'll also find information on integrated development envi­
ronments, code editors, debugging tools, and various application frameworks. 

The Apple Developer Connection Web site is divided into three main areas 
specializing in the various needs of the dedicated developer: 

+ The Partners Program 

+ Technology and development resources 

+ Business and marketing information 



CHAPTER 23 •A WORD ABOUT ADVANCED PROGRAMMING 

Figure 23.4 
The Apple 
Developer 

Connection 
Web site 

Apple Developer Connection 

, 
1wwoc 

Build Your Brand 
Download the new 
"Built for Mac OS X" 

='@ 
ti .A DfCl Members.hip Techn1Ca1 Business L;g1~""'"s1teMap search AOC 

Partner Develo Build 

Grab Your Partner: 
The Partners Program 
The first and foremost of the ADC areas is the Partners Program area, shown 
in Figure 23.5. In this area, you have access to the online version of the ADC 
newsletter and can get information about various ADC programs and prod­
ucts. You can also visit technical-support areas and the Macintosh Product 
Guide, which can provide much-needed information and assistance regarding 
the thousands of existing Macintosh products. 

One of the nicest features of the ADC Partners area of the Web site is that it 
offers you the ability to join various Apple Developer Connection programs, 
geared toward both large and small development shops. There are various lev­
els of membership: 

+ The online program 

+ The student program 

+ The select program 

+ The premier program 



344 

Figure 23.5 
The Apple 
Developer 

Connection Partners 
Program section 

/·- ·· ..... ·····--····-·········-
Program Information 
@CProinroBentlbfpdfl 

~ 
~ 
PrerrierPromern 

~ 
~ 
studentGiftMembmhfns 

Resources I Benefits 
~ 
,AOCMembuPlscounts -~ BipinenApo!.GM 

Partnerwith Apple 
, 

" WWDC 
V\i'.rt:M.tJe Devebpers Cmfererce 2'.D1 ~ 

~ 
frequmltyAA;edOue!tlprp 
H!WJt«eDbco\tjfronn 
SoftweSee!lr!qProQl!!JI 

~ 
&~e°&!1~P!'r"c~~,1Tn1oc) Member3 mey do'wnloed the Mac OS x Public Bete 
Developer tools from the Dov•load Softvere erea of the ADC Member Site . AOC 

_ ____ ,., ~;t~':t~c~~ys:~Cb'.'.""'OO~rs receive Hee OS X Public Bete end the Beta Developer Tools 

We ere very e&ger to tiear about the epptlcatlnns you create for Mac OS X. Once your Hae 

The Online Program 
When you join the free ADC online program, you can download various free 
development tools and receive weekly updates via the Apple Developers Con­
nection newsletter. Just about anyone who is considering becoming even a 
part-time author of Macintosh shareware-or if you're just interested in 
learning about Mac programming-should consider joining the online pro­
gram. You can't beat the price. 

The Student Program 
Another notable membership program is the student program. For a small 
annual fee, you get all the benefits of the online program, plus discounts on 
select third-party tools and conferences. This level is geared toward college 
students, so most of the benefits are geared toward discount programs. A stu­
dent developer can more than make up the cost of membership with the var­
ious discounts she receives. So think of this as a coupon book that will pay for 
itself after the first few purchases. 

The Select Program 
The select program gives semi-professional developers the most bang for their 
buck. At this level, you receive the benefits associated with the online and stu-



CHAPTER 23 •A WORD ABOUT ADVANCED PROGRAMMING 345 

c~:At the·:s:lnHile'lio<f~$t\ifI~nHei~1~, ioiflt:ave th~~!;)Pifqo:~J::~aafiiiih!i:;:~·~:::: 
ADC Developer Mailing·f~ature, a]~;::mo11th subscdf'tiqriofPQi:~h~F 
contain updates on Macintosh technical and marketi.ng information. 

Yqu'll .also get at least. onee.dition oftt)e Develope.r.CD Series} which 
includes the following: 

• System software. This includes the latest versions of Macintosh 
Operating System software, including foreign-language ver­
sions. Having access to the foreign-languag~Versions of th.e OS 
will allow you to develop versions. of your applications for other 
countries. 

• Mac OS Software.Development Kits. These a.r:edevelopmentkits 
that allow you to develop tools that work with .the various> · 
Maciritosh operci~thg sy~tems and applicatiorl~. You'll get all the 
systern software, programming interfaces, libr,ar:ies, sample 

code, and technical documentation you need to develop applica­
tions, that work with Quicklime; AppleScript, and the like. 

_,'o,,' <';, ' ',' ' ,'"•,'; 

• Tool Chest. This include~ de~elripment tools, oiilities, samP:le ·. 
source code, and documentation. 

• Reference Library. This contains a complete set of the. core 
Apple, developmeritdocumentatipnseries, aocf1incl.uc:lestb~1;•i·. 
Maciatosn Hilrr'litri Interlace Gµitf.~'lines, Inside 'Macintosh; ;o'' .· · 

Dev~foper Tech Notes, and Develop Magazine-all on CD. 

dent programs. In addition, you get monthly updates of system software, 
development tools, and technical documentation-all part of the ADC 
Developer Mailing option, which is included in with the select program. As a 
member of the select program, you'll become part of the Mac Seeding pro­
gram, which allows developers to get pre-release versions of Macintosh appli­
cation and system software. You'll also get two free non-warranty 
technical-support calls, allowing you to get help straight from the horse's 
mouth without having to pay the cost normally associated with calls made on 
non-warranty products. 



Figure 23.6. 
The Apple 
Developer 

Connection 
Technology section 

The Premier Program 
The ADC Premier program, costing $3,500, is the end-all, be-all level of 
ADC membership. At this level, you get everything the previous levels get, 
plus the ADC premier mailing. You also get free access to various Apple con­
ferences, eight tech-support calls, software discounts, and more. This is the 
level of membership that the serious commercial application developer should 
consider purchasing. You get access to more information and discounts than at 
any other level. It's the priciest level of membership, but the benefits make it 
worthwhile. 

Development Resources 
The second most useful of the ADC areas is the Technology and Develop­
ment Resources section, shown in Figure 23.6. 

The Technology and Development Resources section is where you can go to 
get information on various Apple developer products. You can download 
Apple development tools, such as the Macintosh Programmer's Workshop and 
Project Builder. You can even download sample code and technical documen­
tation to help you learn more about Macintosh software development. 

I r=· 1 Store ITool• I !Cards I QulckTlme I Support I MacOSX l 
:~HotNtWs Han:twart · Sottw.rc:=-Madr4~ Ed'uatton Crutll.'f--::::::-~lflf~~~ Whm!to~ ~ 

T echnologtes -. 
""" ~ 
h!l<2l1Jllti 
llY<!<lin! 
~ s­~ 
~ 
~ 

ADC Resources -~ -~ lill!!ll!!Jdll 
~ 
Sdtwel!cf!lHJq 
~ 
I e#!pWJdC!!DppHbly 

WI> 

j. St~Aoc] 

Develop Great Products 

fl WWDC 

Carltonlib 1 3d9 spa::: 
Theletest prerelea3eversJonof tf'leC.rbonllb 1.3SDK for1'111c0Sisno'e'evai lableto 
all ADC Members. This SOK provldas ell the flies needed to becJln C.rbon development. 
Cerbonllb 1.3d9 sapportt Mic OS B.6 end greeter. (Mar 19 200 1 I 

Cul!onllb I 2 5 GH S QK 
The C.rbonllb 1.2.5 SOK for Mic OS is flO'w' eveileble to ell develope r3. This SOK 
~~n ail the flln needed to beqlnCerbondo'Ve l o pment.Cerbonll~~3 Moc 



CHAPTER 23 •A WORD ABOUT ADVANCED PROGRAMMING 

Figure 23. 7. 
The Apple 
Developer 

Connection 
Business and 

Marketing section 

The Getting Started section is extremely valuable for the beginning to inter­
mediate developer who wants to learn how to use the various Apple develop­
ment tools. In this section, you'll find step-by-step tutorials and sample code 
to lead you through creating applications in Carbon, Cocoa, and Java. 

Grow Your Business: The 
Business and Marketing Section 
The last of the ADC areas is the Business and Marketing section, shown in 
Figure 23. 7. 

This under-appreciated section of the Apple Developer Connection Web site 
will come in particularly handy when you decide to turn your small program­
ming company into a larger professional company. You'll find resources in this 
area to help you understand Apple's various market advantages in consumer, 
education, creativity, and small-business markets. You'll learn how to best tar­
get your applications for each of these markets to improve your chances of 
delivering a successful product. 

As an Apple user, you're aware-or will be shortly-of others' resistance to 
using Macintosh products. The documentation in this area will help you 

• TATOJCl Membtnhlp TKhnlcal Business Log In Slte Map Search AOC 

-;,;:::::;'~~~ m, Build a Strong Business -C9!!!petiM.t.rtypnl'Q' 

~ 

Core Markets 
~ -~ -MemberServk::es& 
Discount Opportmltles -... --RegionaJ Information -~ w.. 

""" 

It's tool time! 
lmpooam info !Dr ADC Premier and 
Sela.i: members on obmining Mac OS X 
Nilic Bee Developer Tools: 

I 

AOC Pnm!er Hetnber Olres.t Hall Pngn• 
oon·tmluthlsexcellentopportunityto11ttproductlnformetlondl rectlylntothehands 
ofa hl9hly ect lve end quelifled Macint°'h oudience. A unique benefit of ADC Premier 
Membershi p, Premier developers my rent Apple's Pover Mee G3/G4, IHoc, 
Pover Bool: G3, ond IBool: cuttomer lis t for~ In an upeomfflQ direct met I campaign . 

Gulde to .Jaean for Mac intosh Deyelopen 



348 

Review 

PART IV• ADVANCED THINGS TO DO 

convince these Nervous Nellies that not only is the Macintosh a stable, safe, 
and affordable computing platform, it's just plain more fun than using IBM­
compatible PCs. You can check into various market-research studies published 
by Apple and read various Apple business cases to help you strengthen your 
arguments when trying to convince that reluctant business owner that Apple 
(and your applications) is the best way to go. 

Advanced programming is something that can be achieved with just about any 
Macintosh development tools. Although the choice of tool is based more on 
preference than on anything else, you might want to talk to other developers 
to help you decide on the best avenue for you. The Apple Developer Connec­
tion is going to be your best first resource for finding information on Macin­
tosh application development tools. 





W e admit, albeit proudly, that REALbasic is an underdog IDE com­
pared to Code Warrior and other IDEs that use C++ and other pop­

ular programming languages and tools for Macintosh development. We 
know most developers out there prefer C++ or have been trained that way. 
For REALbasic, like the Macintosh itself, being an underdog has its advan­
tages. You should know that underdogs like poodles are listed among dogs 
that bite the most. 

There is a strong following of REALbasic developers who make their 
knowledge and tools available over the Internet. You'll find everything from 
tutorials to freeware to sample code, and lots of people willing to help you. 

REAL Software: The Official 
Home of REALbasic 
http://www.realbasic.com 

REAL Software, if you've been sleeping or studying this book through 
osmosis, is the creator of REALbasic. At REAL Software's Web site, 
shown in Figure A.1, you'll find the latest Standard and Professional ver­
sions, helpful tools, and tutorials. You can buy a copy online, if you like. 
There's contact information for technical support, and links to other 



Figure A.1 
The official home of 

REALbasic, from 
REAL Software 

APPENDIX A• REALbasic RESOURCES 

1:53:46 PM ~ lnt.met ~plorer 

REAL Software, Inc. 
~~ 

HOME PRODUCTS PURCHASE SUPPORT ABOUT US 

II~ Announcing the Cubies, REAL Software' s own awards for excellence! 
... We want to recognize the contribut ions our users have made to the industry by recognizing the excellence of I what they have produced with REALbasic . The contest opens now, ,and closes December 15, 2000. REAL Software 
iF will announce the final ists the follow ing weel.: and the winners in each cateoory at MacWorld San Francisco. 
ti <ro2m> 

~ REALbasicfl_ 2.1.2 Now Available! -- New Version! 
J Buy now re:cejve fre:e upgrade to REALbasjc 31 

I 

REAL Software announced on November 13, 2000 that any purchase 
of or upgrade to~ occurrino on or after November 1, 2000 
will be eligible for a free upgrade when~ ships. 

NL~own!oad o Free Demo 

Existing Customers u Get the Latest Vers ion 

~or .QQ.rm!.Q.ad anv REAl Software item and try it 
out for 30 days free ! 

REALbasic is powerful and easy to use. You can build anything from 
prototypes to complete professional quality applications for both Macs 
and Windows. Whether you are a hobbyist, a professional 
proQrammer, or someone who needs to build a proQram for a specific 
task quickly and easily, REALbasic is the tool for you! 

REAL basic 
the award-winning, visual, 
object-oriented BASIC 
developme nt environment for 
Macintosh. 

REALbasic-oriented sites. Geoff Perlman and his crew have sweated long and 
hard to bring you one of the best-if not the easiest- programming environ­
ments available for both classic Mac OS and Mac OS X development. 

The REAL basic CD (of which we've provided a copy in the REALbasic folder 
on this book's CD) includes many applications created with REALbasic, 
including the electronic versions of the tutorial, developer's guide, and lan­
guage reference. You can download the latest versions of these guides here. 

REAL Software loves to expose developers to new alpha and beta versions of 
REALbasic so they can refine the features for a new general release. Remem­
ber that alpha and beta versions of REALbasic may have bugs and shouldn't 
be used for full-scale development. Use them at your own risk. 

REALgurus 
http://www.realgurus.com 

If there's any RB support site you should visit often, it's REALgurus, shown 
in Figure A.2. It offers a message board, a massive collection of tutorials, sam­
ple code, and much more. 



FigureA.2 
REALgurus is rich 

with tutorials. 

'41 me Edit View Go Favoril• • Tools WlndoW Help 9:55:01 PM ;{ lntemet EXplorwr 

J;li"~---~ 'lill'" .,., i,\iif~ Wl4all>Tutoo1Gls~~ TJ!J\%\iili'illU!f!iC:.:-:-.lii!llll eJ .. 
~· News I Tutorials I Resour ces I REAL basic Monthly 1 Contact Us 
II~ 

• 
REALbasics 

I BAS!Cs 

1. Starting 

2. Mac Stuff 

3. Interfaces 

4. Graphics 

5.Files 

Important Note 

Revised June 29 200J 

~~~Yt~;~Cr:~~~~oo~~saf~~;;:~r~e~~roe~1~~s~~~fchou 
w ith the author (there will be a ~nk at Nie bottom of
each page) or with the webmaster. Help us make
these tutorials perfect!

T utorial 1: Your First REAL basic Program

This qu ick and easy tutorial introduces REAI..basic's
user interface and ge ts you up and running quickly.

Tutorial 2: Your First Real Mac Program

This tutorial covers w riting a Mac p rogram w ith
menus, multiple documen t w indows, w hich loads and
saves, and can have file s dropped on it in Finder. It
even gets around to handling undoJ

REALGoodies
http://www.geocities.com/Silicon Valley/Station/7130/home.html

The REALGoodies site provides a few projects that you can peruse to further
your understanding of REALbasic programming. Kevin Mullins, the Web­
master, also has a part of a game written in REALbasic that uses many tech­
niques you could use in your own game.

REALbasic Monthly
http://www.nd.edu/ Njvanderk/rbm/

The Webmaster and author of REALbasic Monthly decided to stop new pub­
lications not long ago, but left the site, shown in Figure A.3, available for
developers to find some inventive resources on programming. Perhaps some­
one out there (maybe even you) can get REM back on its feet.

Figure A.3
RBM is no longer

published regularly,
but its information

is still available and
informative.

APPENDIX A• REALbasic RESOURCES

'ii. File Edit View Go kworftes Toots WindoW Hetp

t1~·&-illl#W$~ .TfF '*$1~~@RB/l\onthlyStcrtfn9Point @ @*.;.;; ,

lat Update: Sf'J..39)
i Current Inue: l Augu~ 23, 1999

REALbasic Monthly
Current ~sue Compllatlons Older Issues Contact Us

Welcome to REALbasic Monthly, the premierREALbasic magazine!

Announcements

The August issue of RB M is now out! The cover story is onAPJ access, and CanvasPaint is reviewed.
It also has a continuation of last month':s caver on ApplcSaipt and a database artide designed to be
simpler than the April Caver.

Well, there's some sad news: The nett issue ofRBM will be the last. Cu.abng each issue has started to
take up far too much time, and virtually no one has bem v.ri..lling to actually write (I don't count saying
you'll write and not doing anything as writing). I'll have more on this in my editorial, but the desdsion
is fi nal .

Sony about the delay on the June issue. For RB M's first anniverS3fY, I gave myself some time off. I'll
put up a notice v.hcn the next issue is about ready to come out

Surprised by the new layout? It's something I've had in the works for a v.ihile. The main advantage is
that it's simpler to add mirching and various subpages to (vAlich. I've done) . Also though, it has a nicer
fed. than the prcvous setup. and 1t also loads faster. because I've split the issues into their volumes (1
and 2). Older issues appear on a seperate page. Feedback is certainly appreciated though. so e·mail me
your thoughts

Issues

Einhugur Software
http://www.einhugur.com/

353

REALbasic's power can be extended through plug-ins, and Einhugur Soft­
ware offers members and visitors samples of complex REALbasic plug-ins and
classes for many project ideas. If you plan on developing Windows applica­
tions in addition to Macintosh, this site, shown in Figure A.4, offers items that
can make your project shine.

REALnews
http://www.swssoftware.com/realnews/

As a Macintosh technician, I regularly visit a handful of Macintosh news sites
on the Web. Two sites, Macintouch (http://www.macintouch.com) and Mac­
Fixlt (http://www.macfixit.com) offer everything I need to know in daily
happenings in the Apple world. REALnews, shown in Figure A.5, reminds
me of these sites-it's one of the best programming news sites I've found,

Figure A.4
Einhugur Software

sells some software,
but is also a

comprehensive
REALbasic

resource site.

Figure A.5
Next to REAL

Software's site,
REALnews is the

place to go for the
latest news in the
REALbasi'c world.

PART V •APPENDIXES

Freedawnloads

New 25. Oct 2000 New

EnglneManager 2.0

Guestbook
Mmogd>oonl

Flmlbleplugln driveu tcypla eoglneplugln for
~~~~~~~basic plugin that law1ches 

, Multiplalform (PPC, 68k Corllon and xll6). 
Supporting all platfonns u vety important to us, so 
in version 2.0 we added support for Carbon, Win3'.l 

0110010 and fixed the 681< plug. 
• New engines: Both of the Crypto !'Jlgines that ship witl1 the 

E.ngincManager have beo1 rewritten ta rupport E.ngineManger '.land 
all of the Target platfonns. A third engine has bc01 added, \Wich is 
Endian safe Blowf'uh engine \Very good m Cross platform apps). 

REALbasic Related 
links: 

BEALsoftware Home Page 
(The Folks tl'lat make this 
wtiole community possible!) 

SaarchWare Solutions 
(Sponsors of REALnews) 

REALbasJc-NUG 
(Home of the REALbaslc 
Malting list f AQ) 

BEALbas!!: Ma!l!OQ l !st 

M.l!OOl 
(A fully searchable archive 
or REAlbaS!c Malllng list 

November 27. 2000 *54 p.m... t:.."tr 

Squlrrel Software's~ haS again been updated, lidding 
various neW abilltles and optimizations. 

pEVacager Plugin 1 O Is a freeware REALbastc plugln providing 
vocoder funct!onallty in REALbaslc. 

Andrew Barry has pasted a new-version of~ his 
PaoNerPC assembler plugln for R£Albaslc_.. and PpCPl9!19!Jembler, 
a REALbaslc plugJn that allows dlsassembllng of PowerPC 
Instructions. 

Aaron Bratcher nas posted the REALbasli; class cgmgonents of 
his db Tools database reporting tool as a sepa r ate, free 
download. 

Benjamin' Schneider's OTAydioP!ayer has been updated to 
Version 1.~e1 adding a variBty of new methods and fu~ctlons 

and an essential resource to keep up on REALbasic news. You can also send 
announcements to this site when you finish your big projects, telling people 
where they can find them on your Web site. 



Figure A.6 
Find some great 

shareware tools at 
Zegsoft. 

APPENDIX A• REALbasic RESOURCES ®~ 355 

Zegsoft 
http://zegsoft.tripod.com/realbasic.html 

Thinking of making the next great desktop-publishing or word-processing 
program? Perhaps you should visit Zegsoft, whose shareware ruler class and 
printing plug-in might be useful in your development. Best of all, Zegsoft 
claims that its plug-ins work in Windows applications, too. The Zegsoft site 
is shown in Figure A.6. 

The REALbasic Mailing List 
http://www.realsoftware.com/ support.html 

REAL Software provides several mailing lists to which you can subscribe and 
contribute your tips and get help on using REALbasic. All five mailing lists 
are available as they are posted or in a single-message digest version. I've been 
pleasantly peppered with the digests each day, and each contains at least one 
useful tidbit. Also available from this page is a link to archives of each mailing 
list. A Sherlock plug-in is available for users of Mac OS 8.6 and later to search 
the archives quickly . 

.i File Edit View Go FOll'Orttes Tools WlndOW Help 10:11:20PM 1 Af lntctmetetplorer 
:Cl c"ff.1iiP!!~# ............... TlliP1N11FlfM¥11M)~· ... -..... h .. "1if1pjiiif&ITM!@ Zttqsoft~ : ... ~lii:fih~ .. ~' ,''"drtil#iiITi¥#F~ gj 

! IM•••"'"'iili••A1.1>os;i'J REALbasic Classes and Plugins 
Home llfWS Zeg~G!.1ptu r.s ,17 nou mrrulahle 1 llmrember 2000 

.... 
II• Plugins: 

~ 

I Classes: 

~ 

J Pwchase: 

/ 
l:im'.i1.l1!ll( 

! Download: 

~ 

~•Auler 1.0 ($15)isasatofdasses tiat youiJaddalsats olnJer.;;n:f 

~ 
REALSaslc pqed:"r&alY- Rufef su ports scaling 

ald 0111e · as oonioloverhqti, 
_., =:i.:x1e~1on.a1':tscan 30.Moren-
lsavaltablB !mm_ cryouc:andownoadltciec:tytornmy~. 

I 
Articles : 

~ 

4 ,, .. 
fa;stcounttrby!..lnt:ExcMcJge 



TIP 

Figure A.7 
Besides being a 

good porting 
reference, this 
site also has a 

humorous 
domain name. 

PART V • APPENDIXES 

Please~yisit the REALbasic suppoi:tsiteJor ctH:npJete inforrrfation .on ~the:=­

focus of each listand how to subscribe vi-a e-~;;;a il. 

The REALbasicNisual Basic 
Rosetta Stone 
http://kode-fu.com/rosetta/ 

Each time I type this URL, I think of that scene in the The M atrix in which 
Keanu Reeves's character downloads martial-arts training into his brain and 
announces, with awe, "I know kung-fu." My mind conjures up an image of a 
developer in martial-arts training robes at a computer. 

If you happen to use Visual Basic or know of others who use that Windows-only 
IDE, you may find yourself with questions on the differences and compatibility 
between it and REALbasic. This Web site, shown in Figure A.7, provides infor­
mation on many function and control uses available in Visual Basic, and how to 
adapt them to work in REALbasic. If you happen to know of a Visual Basic 
developer who's seriously considering making a Mac app, toss her a trial version 
of REALbasic and point her to this site. You'll be glad you did. 

REALBasic/Visual Basic 
Rosetta Stone 

The VB-to-RB porting •efe•ence 

Written and maintained (after a long hiatus ) by Joey deVilla 

Last updated Thursday, May 25, 2000. 
Next updat e: Thursday, June 1, 2000. 

Nicer gra phics to follow. 

Uke many REALBasic sites, this site aims to be a resource for the REALBasic 
proQramming community, Unlik'e these sites, it does so with a different approach: 
through comparison with its Windows counterpart, Microsoft Visual Basic. ln this site, 
you'll find features of Visual Basic and their REALSasic counterparts listed together. 
Where one language has a feature that the other doesn't, a workaround is provided if 
one exists. 

The more obvious purpose of this site is to be a resource for programmers who are 
porting applications from Visual Basic to REALBasic . While the slant of this site is 
towards REALSasic (it being the newer language with fewer applications written using 
it), there's no reason you can't use this site as a resource for porting applications 
written in REALBasic to Visual Basic. To add more depth, the occasional comparison to 
other prooramming languages such as C/C++, Java, Python, Perl, Pascal and Lini;;io is 
used. This site takes to heart the belief that you can !earn a lot about your own 
lani;;iuage by studying other languages. 



T he Beginning Mac Programming CD-ROM contains a trial version of 
REALbasic and other tools you need to get started with Macintosh 

application development. 

System Requirements 
To use our CD-ROM, your computer should meet the following minimum 
requirements: 

• It must have a CD-ROM drive. 

• It must run Mac OS 7.6.1 or later. 

• It must have a hard disk with 6.5MB of free space. 

Although REALbasic itself has pretty relaxed requirements, do note that, 
in order to benefit and create decent Macintosh applications within your 
lifetime (given that speed isn't the first thing you think about with a Mac­
intosh 01iadra), you really should use a Power Mac-any Power Mac. Note 
also that non-Power Macintosh versions of REALbasic cannot create 
Power Macintosh versions of REALbasic apps, although you can create 
non-Power Mac apps on a Power Mac. 



358 PART V •APPENDIXES 

Navigating the CD-ROM 
The starting place for the CD-ROM when you open it for the first time is the 
License Agreement document, which greets you with (surprise!) a license agree­
ment. Although we're sure you've seen these time and time again, be sure to note 
what you can and can't do with this CD-ROM and the software it contains. 

Next, you can visit the How to Use this CD-ROM file, which is a duplicate of 
this appendix, but may contain last-minute information that came too late to 
be added to the book-bound version. 

REALbasic 3.2 

REALbasic is an integrated programming environment-that is, an applica­
tion that creates other applications. The folder Open Me far REALbasic 3 con­
tains the same software and accessories available from the REALbasic trial 
CD and REAL Software's Web site. 

To install REALbasic and its support folders, documentation, and third-party 
applications on any Power Mac or 68K Macintosh computer running Mac OS 
7.6.1 or later {but not Mac OS X), do the following: 

1. Open the folder named Open Me far REALbasic 3. 

2. Drag the REALbasic 3.2 folder to your Applications folder on your hard 
disk. 

To install only the REALbasic application that's designed for your computer, 
follow the steps to install the REALbasic application and accessories as 
described above, then do the following: 

1. Open the folder named Open Me far REALbasic 3. 

2. Open the folder named Other Versions. 

3. If you use a 68K Macintosh, open the 68K folder, and drag the 
REALbasic application from that folder into the REALbasic 3 folder on 
your hard disk. When prompted whether you want to replace the 
existing copy of REALbasic, click OK. 

4. If you use a Power Macintosh, open the PowerPC folder, and drag the 
REALbasic application from that folder into the REALbasic 3 folder on 
your hard disk. When prompted whether you want to replace the 
existing copy of REALbasic, click OK. 



APPENDIX B •HOW TO USE THE CD-ROM 359 

If you're a Power Macintosh user who wants to develop Carbon applications, 
you should install the REALbasic Carbon application for Mac OS 9. 

1. Open the folder named Open Me far REALbasic 3. 

2. Open the folder named Other Versions. 

3. Open the Mac OS 9/Carbon folder and drag the REALbasic application 
from that folder into the REALbasic 3 folder on your hard disk. When 
prompted whether you want to replace the existing copy of 
REALbasic, click 0 K. 

Mac OS X users can use a Carbonized version stored in a Disk Copy for Mac 
OS X image. To install REALbasic in Mac OS X: 

1. Open the folder named Open Me far REALbasic 3. 

2. Open the folder named Other Versions. 

3. Open the Mac OS X Disk Image folder. 

4. Double-click the REALbasic3.2.dmg image file. (If the file fails to 
open, launch Disk Copy (located in Applications/Utilities on your Mac 
OS X hard drive) and drag the image to the Disk Copy window. A 
virtual disk of REALbasic will appear on your desktop. 

5. In your Applications folder, create a new folder named "REALbasic". 

6. Open the REALbasic disk image and drag all its contents into the 
REALbasic folder in your Applications folder. 

In addition, the Open Me for REALbasic 3 folder contains links to REAL 
Software's tutorials and lots of sample code and third-party applications to 
help further inspire you. To read the documentation, you need the Adobe 
Acrobat Reader application. An HTML page containing a link for this appli­
cation is included in the Open Me for REALbasic 3 folder. 

It's a Trial Version Until You Pay for It 

The copy of REALbasic you install will work as a trial version of the Standard 
version for 30 days until you register it. In trial mode, applications you create 
will work for only a few minutes, and an annoying message will appear when 
you launch any application you created from the trial version. Certain other 
database features and Windows development options are limited, as well. 

To get rid of the messages and the time-out of the application, just drop by 
REAL Software and kindly plunk down some change to purchase a license 



PART V •APPENDIXES 

code. This code will activate the copy you install as a Standard or Professional 
version, depending on how much you paid. Go ahead. You'll be glad you did. 

Sample Projects from the Book 

Some chapters of the book describe REALbasic programming processes and 
projects you will create as you learn how to develop applications and use 
REALbasic tools. Included in the CD-ROM are those very same projects in 
the My Paint-Sample Project folder. Simply open the projects or access the code 
as you need. 

How Did We Make the Picture 
in the CD-ROM Window? 
A few of you may notice that we created a picture of the book's cover within 
the window of the CD-ROM. Great trick, but how did we do it? Answer: a 
freeware application called Iconizer Pro. This application breaks any graphic 
into icons that form a picture in a Finder window as a mosaic. 

After you make your first application, you can use Iconizer Pro to create a great 
folder arrangement where your application and support materials are stored. 
And yes, folder pictures made in Iconizer Pro work in both Mac OS 9 and 
Mac OS X, provided that you show things in Icon view (now that's obvious, 
right?). 

Iconizer Pro is available for download from many locations on the Web. 
Although it is free, be sure to register the application with the author so that 
pictures you create with it don't show "unregistered" on each icon's informa­
tion (from the Get Info window). 



A 
About menu item, 241-242 

accelerators for Windows, 322-325 

Acrobat Reader, Adobe, 251 

ActivePaintWindow property, 234 

ActiveX code, 331 

ACTOR,29 

addition operator ( + ), 55 

Administrator access, 307 

Adobe 

Acrobat Reader, 251 

Display PostScript, 251 

Aladdin Systems, 328 

alerts, 262-263 

ALGOL,29 

Allow Fast Saves feature, 261 

alpha releases, 28 

APis (application programming interfaces), 280. 
See also Carbon environment 

Appearance property, 13 

Apple Computers. See also Apple Developer Connection 
Web site; Macintosh computers; ResEdit 

Human Interface Guidelines, 23, 345 

interface systems, 256-257 

Apple Developer Connection Web site, 23, 220, 257, 
282,294-295 

areas of, 342-343 

Business and Marketing section, 347-348 

mailing option, 345 

online program, 344 

Partners Program area, 343-344 

premier program, 346 

select program, 344-345 

student program, 344 

Technology and Development Resources section, 
346-347 

AppleEvents, 326 

Apple menu, 259-260 

in Mac OS X, 254 

AppleMenuFolder, 322 

AppleScript, 326 

AppleShare IP servers, 278 

AppleTalk, 277 

applets, 292 

Application class, 173 

color-selection tools, adding, 234 

Application menu 

EnableMenultems event for, 175-178 

Mac OS X changes, 254 

new items, creating, 173-174 

window, 142-144, 174 

application modal dialogs, 262-263 

application-wide menu items, 172 

Aqua interface, 250 

Carbonized application using, 282-284 

description of, 257-258 

O!tartz running, 277 

as shell, 302, 303 



362 INDEX 

arrays of variables, declaring, 52 

ASSEMBLE, 29 

assignment operator(=), 53-54, 55, 148 

AtEase,301 

AT&T solid-state devices, 33 

auto-complete feature, 16 

B 
background colors, changing, 12 

backward compatibility, 166 

Balloon Help text, 142 

BASIC,4-5,29,328,335 

TRS-80 Radio Shack, 34 

BASIC-A,29 

BCPL, 336 

Bell Labs, 334, 336 

beta releases, 28 

binary system, 32, 335 

bits, 266 

B language, 336 

body of subroutine, 94-95 

Boolean variables, 51 

default values, 54 

branches, 62 

Browser pane, Code Editor window, 129 

BSD/Mach kernal fusion, 300 

BSD UNIX commands, 311 

Build Application window, 16-17, 276, 325 

BUSINESS BASIC, 29 

bytecode files, 292 

c 
Calculator application, 258 

canvas control, 122-125 

position and size, changing, 123-124 

Carbon environment, 251, 275, 279-288 

Aqua, applications using, 282-284 

dialogs, 262 

preemptive multitasking, 285-286 

RAMin,286-287 

REALbasic using, 287-288 

system stability in, 284 

using Carbonized applications, 281-282 

CarbonLib system extension, 282 

CD-ROMs 

contents of, 4-7 

Microsoft Windows, 319 

Sony PlayStation, 267 

child classes, 109 

CICN resources, 226 

Clanguage,334-335,336-337 

Cocoa projects using, 290 

C++language,4,5,29,248,335,337-342 

class definition in, 102 

Cocoa projects using, 290 

CodeWarrior, Metrowerks and, 338-339 

classes, 102-103 

child classes, 109 

defined, 103 

encapsulation, 106-107,107 

event handlers, 112-114 

inheritance, 107-110 

member variables, 105 

methods, 106 

parent classes, 109 

polymorphism, 110-112 

properties of, 105-106 

Classic environment, 251, 265-267 

advantages/disadvantages of, 277-278 

crashes in, 274-275 

dialogs, 262 

installing Mac OS X for, 270-273 



older Macintoshes, 278 

running applications in, 274 

significance of, 273-277 

Clear menu 

ClearSelection method, 214-215 

EditClear menu handler, 215-216 

ClearSelection method, 214-215 

CLI (command-line interface), 300-301 

in Terminal application, 305-309 

clipboard, 192 

copying text to, 193 

CopyToClipboard method, 211-213 

PasteFromClipboard method, 201 

working with, 193-194 

Close menu item, 171 

closingwindows, 178-180 

CMYK color-selection tool, 231 

COBOL,29 

Cocoa environment, 249, 251, 289-298 

Interface Builder, 295-297 

Mac OS X and, 286 

Project Builder, 295-297 

requirements for developing in, 294-297 

Code Editor window, 15, 128-129 

for DragRefresh method, 152 

for EnableMenultems event, 145, 176 

for EndLineDraw method, 155 

for FileClose menu handler, 178 

for FileNew menu handler, 179 

for FileOpen menu item, 187 

for FilePageSetup menu handler, 189 

for FilePrint menu handler, 190 

for FileSave menu handler, 184 

for FileSaveAs menu handler, 186 

for MouseDown event, 166 

for MouseDrag event, 156, 177 

for MouseMove event, 165 

INDEX 

for MouseUp event, 157, 164 

for Open event, 148 

quit command, 16 

for refreshing backgrounds, 154 

forToolsFreeHand menu handler, 149 

CodeWarrior, Metrowerks, 338-339 

coding,23-24,48 

Color Picker options, 12-13 

colors 

background colors, changing, 12 

Color Picker options, 12-13 

Color Selection menu, 229-233 

color-selection tools, 228-237 

fill values, 230 

ColorSelectionFillColor menu handler, 233 

ColorSelectionLineColor menu handler, 233 

Color Selection menu, 229-233 

color-selection tools, 228-237 

Colors window, 8, 121 

command interpreters, 301-304 

commands,40-42,50 

examples of, 42-43 

in shells, 303 

commenting out, 46 

Comment Lines command, 46 

compact disks, 267 

compiling. See also recompiling code 

ported application, code for, 325-326 

CompuServe, 304 

computer viruses, 37 

Connectix's Virtual PC, 270 

constants, 56-58 

adding, 324-325 

363 

compilation of unneeded code, preventing, 325 

declaring, 56-57 

list of, 57 

use of, 58 



364 INDEX 

ControlPanelsFolder, 322 

controls in Code Editor window, 129 

cooperative multitasking, 284-285 

Copy feature, 205-214. See also Selection tool 

copyrightinformation,242 

CopyToClipboard method, 211-213 

Core Graphics Rendering, Qyartz, 251 

Core Graphics Server, Qyartz, 250 

Counter variable in For/Next loop, 74, 75 

cp file file command, 313 

CPM drives, 319 

Crayon color-selection tool, 231 

cross-platform compatibility, 335 

cursors, 224-225 

CURS resources, 224-226 

D 
data design, 23 

data forks, 38 

DBL, 29 

DebugBuild,325-326 

debugging, 16-17,24,126 

alpha releases and, 28 

beta releases and, 28 

Exit statement in, 85 

memory constraints and, 180 

Debug menu, 16-17 

declarations 

constants, 56-57 

functions, 93-94 

subroutines, 93-94 

variables, 51-53 

default settings, changing, 121-122 

defining requirements, 22 

Dekorte, Steve, 293-294 

designing program, 22-23 

Desktop, 258 

VBCleaner files on, 330 

DesktopFolder, 306, 322 

developers, 23-24 

Developer Tech Notes, 345 

Develop Magazine, 345 

dialogs, 261-264 

DIBOL,29 

Dim statement, 52-53 

dir command, 306 

directories, 35, 306 

changing, 310 

Disabled Balloon Help text, 142 

Display PostScript, 251 

The Dock, 252-253 

docklings, 9 

documentation, 43-44 

combining methods of, 47 

on human interface design, 257 

inline documentation, 45-46 

repositories, 44-45 

standards for, 47-48 

document modal dialogs, 261-262 

Documents folder, 306 

Do loops, 81, 84 

DOS. See also MS-DOS 

programming for, 36 

double variables, 51 

default values, 54 

Do/Untilloops, 81-84 

Goto statements and, 87 

REALbasic example of, 83 

DragFreeHand method, 133-134 

DragLineDraw method, 153-154 

MouseMove event calling, 165 

DragOval method, adding, 158-159 



DragRectangle method, 158 

DragRefresh method, 151-152 

DragSelection method, 209-210 

MouseDrag event handler, 210-211 

drawing tools. See also Line Draw tool 

freehand tool, adding, 127-140 

Draw Shape tool, 162-168 

MouseDown event for, 165-168 

MouseMove event for, 164-165 

MouseUp event for, 163-164 

properties, adding, 163 

drive letters, 319-320 

DVD-ROMs, 267 

dynamic menu items, 237 

E 
early computers, 32-33 

Edit/Clear menu item, 214-215 

EditCopy menu handler, 213-214 

editing. See clipboard; Edit menu 

Edit menu, 194, 256-257 

properties, adding, 195-196 

source code for, 195- 196 

Editor pane, Code Editor window, 129 

Edit/Paste menu handler, 199-200 

Edit Value window, 13-14 

ellipsis ( ... ) in Open menu item, 173 

Else If statement, 70-71 

Else statements, 67-69 

nesting code blocks in, 69-70 

empty arrays, 52-53 

emulation, 270-271 

EnableMenultems event, 144-145 

for Application Menu, 175-178 

for Paste feature, 204 

for Selection tool, 206-207 

INDEX 

EnableMenultems event handler, 233 

Enable Root User, 307 

encapsulation, 106-107 

End Function statement, 94- 95 

EndLineDraw method, 154-155 

EndOval method, 159-161 

end point properties, adding, 152-153 

EndRectangle method, 159-161 

End Sub statement, 94-95 

EndValue parameter in For/Next loop, 74, 75 

equivalence operator(=), 55, 148 

error messages, 136 

in Mac OS X, 261-264 

event handlers, 112-114. See also specific event handlers 

for MouseDown event, 131-132 

for MouseDrag event, 135 

PasteCanvas control, 198-200 

events, 112-114. See also specific events 

in Code Editor window, 129 

existing file, opening, 186-187 

Exit statement, 84-85 

ExtensionsFolder, 322 

F 
FileClose menu handler, 178 

file extensions, 181 

to default file names, 326 

in Microsoft Windows, 329 

File menu, 256-257 

operations, 170-171 

Filename property, 182 

FileNew menu handler, 179 

File/New menu item, 180 

FileOpen menu item, 186-187 

FilePageSetup menu handler, 188-189 

FilePrint menu handler, 189-190 



366 

files 

groups of, 308-309 

in Mac OS X, 308 

types of, 181 

INDEX 

FileSave menu handler, 183-185 

Filename property with, 182 

FileSaveAs menu handler, 185-186 

File Types dialog box, 181-182 

Fill Color menu, 233 

Fill Color Selection Canvas control, 236 

find arguments command, 313 

The Finder, 252-253, 260 

floating-point division operator(/), 55 

floppy disks, 35 

flowcharts, 62, 63 

flow control, 62-66, 7 4 

folders 

Home folder, 255, 310 

Mac OS X access, 255 

organizing projects in, 126 

permissions, 307-308 

FontsFolder, 322 

Force Quit command, 254 

forks of file, 38 

For/Next loop, 7 4-77 

ending value of, 76-77 

While/Wend loop compared, 80-81 

F()RTRA.N',4,29,335 

frames, 321 

freehand drawing tool 

adding, 127-140 

method, adding, 133-134 

testing, 135-136 

updating, 150-157 

freehand pencil cursor, 225 

freeware, releasing, 25 

.frm file extension, 327 

functions, 90-93 

declarations, 93-94 

libraries of, 94 

G 

in object-oriented programming, 102 

parameters for, 95-96 

recursions, 96-97 

return-values with, 96 

stacks, 98-99 

subroutines compared, 91-92 

Gates, Bill, 35 

General Electric, 334 

Get Info window for RAM information, 286 

GN()ME, 250, 302 

Goto statements, 85-88 

labels with, 85-86 

Graphic Browser, 328-329, 331 

greater-than operator(>), 55 

greater-than-or-equal-to operator(>=), 55 

groups of files, 308-309 

Grow Window, 124 

grPrinter graphics option, 190 

GUI (graphical user interface), 35, 301 

creating code for, 35-36 

GWBASIC,29 

H 
handlers. See event handlers; menu handlers 

hard drives, 319-320 

hardware in Mac ()S X, 275-277 

HasBackColor check box, 12 

height properties, 12 

Hello World application, 10 

high-level language, 335-336 



Home folder, 255, 310 

HotJava, 292 

hot keys for Windows, 322-325 

HSL color-selection tool, 231, 232 

HSV color-selection tool, 231, 232 

HTML color-selection tool, 231, 232 

Hungarian Notation, 53, 131 

I 
IBM,319 

UNIX,34 

icons, 35, 258 

tool-palette icons, 220-221 

Trash icon, 253 

IDE, 302 

lf/Else/Endlf statement, 66-72 

target flags with, 326-327 

If/Then/Else statement, 66-72 

If/Then/End statement, 68 

If/Then statement, 184 

I Love You virus, 37 

implementation of program, 24-27 

infinite loops, 74, 76 

Goto statements creating, 87 

recursions, 96-97 

Info window for memory settings, 180 

inheritance, 107-110 

in REALbasic, 109-110 

initializing new properties, 148-149 

inline documentation, 45-46, 47 

Inside Macintosh, 345 

installing 

Classic environment, Mac OS X for, 270-273 

REALbasic, 7 

instances, 103 

integer division operator(\), 55 

integer variables, 51 

default values, 54 

Intel 

Rhapsody, compatible version of, 249 

viruses in PC hardware, 37 

Interface Builder, Cocoa environment, 295-297 

Internet Explorer in Mac OS X, 286 

interpreting systems, 34 

IRIX, 250 

J 
Java,249,291-293 

Cocoa projects using, 290 

Macintosh Runtime for Java (MRJ), 293 

resources on, 297-298 

Jobs,Steve,35,248,268,281 

JPEG files, 181 

K 
Kaleidoscope, 302 

KDE, 250 

resources for, 302 

keyboard shortcuts, 322-325 

kill process ID command, 313 

L 
labels, 13-14 

examples of REALbasic labels, 86 

with Goto statement, 85-86 

Language Reference document, 226 

last-known mouse position 

for PaintCanvas control, 202 

properties, adding, 130 

launching REALbasic, 10, 120 



.INDEX 

LazersDesign's Graphic Browser, 328-329, 331 

less-than operator ( < ), 55 

less-than-or-equal-to operator ( <= ), 55 

libraries 

of functions, 94 

of subroutines, 94 

Libraryfolder,255, 306 

Line Color menu, 233 

Line Color Selection Canvas control, 235 

Line Draw tool 

adding, 150-157 

DragLineDraw method, adding, 153-154 

EndLineDraw method, adding, 154-155 

end point properties, adding, 152-153 

MouseDrag event with, 155-156 

MouseUp event with, 156-157 

line fill values, 230 

LineWidthPoints menu handler, 238-239, 240 

line-width selection tools, 237-241 

Other ... menu, adding, 239 

Tool palette, adding to, 239-241 

Line Width submenu, 237-238 

Linux 

code, 249 

as open-source product, 27 

shells, 302 

X Windows and, 250 

Lisa computer, 35 

LISP,29 

llcommand,307-308,313 

Logoutcommand,254 

looping, 74. See also For/Next loop; infinite loops 

Do/Until loops, 81-84 

Exit statement, 84-85 

While/Wendloop,80-81 

ls command, 306-307, 313 

M 
machine language, 335 

Macintosh computers. See also Mac OS 9; Mac OS X 

birth of, 35 

Macintosh II computers, 278 

MacOS,35 

Office 98 Macintosh Edition, 37 

older Macs, programming for, 6-7 

Macintosh Human Interface Guidelines, 23, 345 

Macintosh Programmers' Workshop (MPW), 339-340 

Macintosh Runtime for Java (MRJ), 293 

Mac OS 9. See also Classic environment 

installation issues, 272 

virtual machines, 270 

Mac OS X, 248-249. See also Classic environment· 
' Cocoa environment 

Apple menu, 259-260 

error messages, 261-264 

hardware features, 275-277 

Home folder access, 255 

interface features, 252-256 

Java and, 293 

memory space, 284 

menu changes, 253-254 

ownership of files, 308 

PDF (Portable Document Format) support, 251 

porting applications to, 273-274 

preemptiye multitasking, 285-286 

Project Builder, 341-342 
I 

Public B~ta of, 272 
I 

special locations, functions for accessing, 322 

UNIX applications, porting, 311 

user folder, 306-307 

Mac OS X Server project, 269 

man (manual) command, 311, 313 

marquee, 205 



Mathemaesthetics' Resourcer application, 220 

Melissa virus, 37 

membervariables, 105 

memory 

debugging and, 180 

in Mac OS X, 284 

RAM (Random Access Memory), 286-287 

Memory command, 180 

menu handlers 

in Code Editor window, 129 

Edit/Paste menu handler, 199-200 

for Selection tool, 208-209 

menus, 35 

adding, 142-145 

Application Menu window, 142-144 

application-wide menu items, 172 

dynamic menu items, 23 7 

enabling menu items, 144-145 

file menu operations, 170-171 

initializing new properties, 148-149 

Mac OS X changes, 253-254 

properties for tools, adding, 145-146 

tools, selecting, 149-150 

updating selections, 146-148 

methods, 106 

in Code Editor window, 129 

encapsulation, 107 

freehand drawing tool method, 133-134 

Metrowerks Code Warrior, 338-339 

Micromat Systems' Tech Tool, 26 

Microseconds function, 163 

Microsoft Windows, 36 

command areas with Mac OS, 321 

compiling code for ported application, 325-326 

data distribution methods, 38 

desktop, 258 

documents, displaying, 321 

INDEX 

hot keys, adding, 322-325 

menus in, 256 

network servers, items on, 320 

path names, 318-320 

porting applications to, 317-332 

special locations, functions for accessing, 322 

viruses, 37 

Visual Basic code, porting, 327-332 

Microsoft Windows 3.1, 266, 267-268 

Microsoft Windows 95, 266-268, 267-268 

Microsoft Windows Millennium Edition (Windows 
ME), 268 

Microsoft Windows NT, 268, 300 

Classic environment and, 277 

Microsoft Windows XP, 268 

Microsoft Word, 256 

for Macintosh 6, 260 

Undo command, 261 

MIT,334 

mkdir command, 313 

modal windows, 12 

modeless dialogs, 263-264 

modules, 324 

mouse, 35. See also last-known mouse position 

usefulness of, 305 

MouseDown event, 114, 130 

for Canvas controls, 236 

for Draw Shape tool, 165-168 

event handlers for, 131-132 

for PasteCanvas control, 202-203 

for tool-palette window, 223-224 

MouseDrag event 

for DragSelection method, 210-211 

event handler, 135 

with Freehand tool, 130 

with Line Draw tool, 155-156 

with Rectangle/Oval drawing tools, 161 



, INDEX 

MouseMove event 

for Draw Shape tool, 164-165 

for PaintCanvas control, 202, 203 

MouseUp event 

for Draw Shape tool, 163-164 

with Line Draw tool, 156-157 

with Rectangle/Oval drawing tools, 161-162 

Movies folder, 306 

MS-DOS, 266, 267-268 

copying files in, 300-301 

MsgBox function, 42-43 

for About menu item, 241-242 

MULTICS (Multiplexed Information and Computing 
Service), 334 

multiple document interface, 321 

multiplication operator (*), 55 

Music folder, 306 

mv file file command, 313 

My Paint menu, 170 

N 
Name property, 10 

nesting 

Else statements, 69-70 

If/Then/End code, 68 

Netlnfo Manager application, 307 

New menu event, 171 

New Menu Handler command, 149-150 

New Method dialog box, 133 

NewPicture command, 137 

New Property command, 152 

New Property dialog box, 177 

with fiPaintDocument property definition, 183 

for Page Setup, 188 

new windows, creating, 178-180 

NeX.'f Computer, 248, 268 

NEXTSTEP, 248 

NIL value, 104 

Nintendo, 267 

Notepad, 323 

0 
Oak Project, Sun Microsystems, 291 

Objective-C, 248-249, 280 

for Mac OS X applications, 293-294 

resources on, 297-298 

object-oriented programming, 101-115, 337 

encapsulation, 106-107 

events, 112-114 

handlers, 112-114 

inheritance, 107-110 

polymorphism, 110-112 

terminology of, 103-104 

objects, 102-103 

instance of, 103 

memory, allocating, 104 

Office 98 Macintosh Edition, 37 

older Macs, programming for, 6-7 

open command, 313 

Open event, 137 

Code Editor window for, 148 

Open Firmware, 272 

OpenGL, 251 

Open Me for REALbasic folder, 226 

Open menu item, 171 

ellipsis ( ... ) in, 173 

Open/Save dialog box, 12 

open-source program, releasing, 26-27 



OpenStep, 248, 251, 268 

operators with variables, 55-56 

Other ... menu, 239 

Oval drawing tool. See Rectangle/Oval drawing tools 

owner permissions, 309 

p 
Pac-Man, 271 

Page Setup, 171 

menu handler, adding, 188-189 

property, adding, 187-188 

PaintCanvas control, 202 

PaintWindow, 122 

PaintCanvas, Paint event, 139 

parameters, 42-43, 50 

with functions, 95-96 

stacks and, 99 

with subroutines, 95-96 

parent classes, 109 

parentheses(), use of, 72, 84 

PASCAL,29 

PasteCanvas control, 196-205 

copying pasted data to picture, 202-203 

Edit/Paste menu handler, 199-200 

event handlers, 198-200 

PasteFromClipboard method, 201 

properties of, 198 

Paste feature, 196-205 

Edit/Paste menu handler, 199-200 

enabling menu items, 204 

PasteFromClipboard method, 201 

testing Paste function, 205 

PasteFromClipboard method, 201 

path names, 318-320 

INDEX 

PC-DOS, 34, 35 

PDF (Portable Document Format), 251 

Classic environment and, 277 

pentium processors, 270 

permissions, 307-308 

owner permissions, 309 

world permissions, 309 

Pl, value of, 58 

picBuffer, 138-139, 154 

EndRectangle/EndOval methods, 159-160 

refreshing window contents, 139 

PICT files, 181, 226 

Picture property, 137 

pointers, defined, 103-104 

Points menu, 237-239 

polymorphism, 110-112 

porting, 273-274 

371 

Microsoft Windows, applications to, 317-332 

UNIX applications to Mac OS X, 311 

Position header, 13 

PostScript, 251 

Power Macintosh G3 systems, 6, 7 

preemptive multitasking, 285-286 

PreferencesFolder, 255, 322 

printing. See also Page Setup 

in Classic environment, 278 

grPrinter graphics option, 190 

with Mac OS X, 251 

Print menu handler, adding, 189-190 

Print menu handler, 189-190 

Print menu item, 171 

private beta releasees, 28 

product support, 27 

Professional REALbasic, 5 

Program Manager, 323 



Project Builder, 295-297, 341-342 

Project window, 8, 9, 120 

properties 

of class, 105-106 

in Code Editor window, 129 

for Draw Shape tool, 163 

for edit functions, 196 

encapsulation, 107 

initializing new properties, 148-149 

last mouse location properties, adding, 130 

tools, adding properties for, 14 5-146 

Tools palette, adding to, 235-237 

Properties window, 9, 10, 121 

example of, 11 

protected memory, 284 

public beta releasees, 28 

Public folder, 306 

PushButton control, 14, 15 

pwd (present working directory) command, 306, 313 

Q 
O!Iadra systems, 7 

Quake 3 Arena, 266 

O!lartz,250-251,277 

KDE, resources for, 302 

QUICK BASIC, 29 

QuickTime, 251 

quit command, 16 

Quit menu item, 174, 175 

R 
Radio ShackTRS-80, 5, 34 

RAM (Random Access Memory), 286-287 

ReadMe file, 6 

REALbasic, 4 

CD-ROM, contents of, 4-7 

comments, 45-46 

evolution of, 5 

inheritance in, 109-110 

installing, 7 

REALbasic Developers Guide document, 226 

REAL Software, 5 

Recent Items feature, 254 

recompiling code, 249 

Terminal application for, 304 

Rectangle/Oval drawing tools, 157-162 

DragOval method, adding, 158-159 

DragRectangle method, adding, 158-159 

EndRectangle/EndOval methods, 159-161 

MouseDrag event with, 161 

MouseUp event with, 161-162 

recursion, 96-97 

Redim keyword, 53 

refreshing background 

DragLineDraw method, 153-154 

DragRefresh method, 151-152 

refreshing backgrounds, 139 

REM keyword, 46 

repositories for documentation, 44-45 

requirements, defining, 22 

ResEdit, 38, 220 

cursors defined in, 224-225 

icons defined in, 220-221 

resizing handle, moving, 125 

resource forks, 38 

Restart command, 254 

retail product, releasing, 25 

return-values with functions, 96 

Reverse Hungarian Notation, 53 

RGB color-selection tool, 231, 232 



Rhapsody project, 248, 249, 268, 280 

virtual machine for, 269 

Richard, Martin, 336 

Ritchie, Dennis, 335 

rm command, 313 

rmdir command, 313 

root administrator account, 307 

Rosetta Stone, 331-332 

RPG, 29 

Run command, 135-136 

Run item, 126 

runtime environment, 126 

s 
Save alerts, 262 

Save As menu item, 171 

FileSaveAs menu handler, 185-186 

Save menu item, 171 

saving 

to file, 181-186 

with FileSave menu handler, 183-185 

work in progress, 125-126 

Select/Case keywords, 72-74 

SelectColor function, 231 

Selection tool, 205-209 

DragSelection method, 209-210 

enabling menu item, 206-207 

menu handler, adding, 208-209 

menu item, adding, 206 

SetMenuSelection method for, 207-208 

self-documel).ting code, 43-44, 47 

semiconductors, 33 

SetColorSelection method, 229-230 

for Canvas controls, 236 

INDEX 

SetMenuSelection method, 146-148 

for Selection tool, 207-208 

Setup Assistant, 306 

700 access files, 309 

shape drawing. See Draw Shape tool 

shareware product, releasing, 25 

sheets, 261-262 

shells, 301-304 

commands in, 303 

Shut Down command, 254 

ShutDownltemsFolder, 322 

silicon, 33 

Silicon Graphics' IRIX, 250 

simple applications, 9-18 

single variables, 51 

Sites folder, 306 

Sleep command, 254 

SND resources, 226 

solid-state devices, 33 

Sony PlayStation, 26 7 

source code. See also documentation 

commenting, 45-46 

design, 23 

Edit menu items, support for, 195-196 

open-source programs, 26-27 

for operators, 55-56 

self-documenting code, 43-44, 47 

top down execution, 40 

Special menu, 254 

stacks, 98-99 

Standard REALbasic, 5 

standards 

coding standards, 48 

documentation standards, 48 

StartupltemsFolder, 322 



374 INDEX 

StartValue parameter, 74 

Static Text control, 13 

Step parameter, 76 

Step Value parameter, 74, 75 

string variables, 51 

default values, 54 

Stuftlt Expander 5.5, 328 

subroutines, 90-93 

body of, 94-95 

declarations,93-94 

functions compared, 91-92 

libraries of, 94 

in object-oriented programming, 102 

parameters for, 95-96 

polymorphism and, 111-112 

recursions, 96-97 

stacks, 98-99 

subtraction operator(-), 55 

Sun Microsystems, 249. See also Java 

support system, 26 

Swarm.org, 293-294 

System 6.0, 258-259 

system extensions, 256 

SystemFolder, 322 

system modal behavior, 263 

system requirements, 6 

system software, 35 

T 
Tab key 

with auto-complete feature, 16 

multiple properties, changing, 123 

TargetCarbon, 325 

target flags, 325-326 

Targetl\.1ac()S,321,325,326 

TargetPPC, 325 

Target68K, 325 

TargetVVin32,321,325,326 

TCP/IP in Classic environment, 278 

TechTool, 25 

TemporaryFolder, 322 

Terminal application, 304-312 

basics of, 310-312 

CU (command-line interface) in, 305-309 

commands, summary of, 312-313 

prompt, 305-306 

terminal-based C shell, 302 

testing 

changes in application, 139-140 

designing process, 23 

freehand drawing tool, 135-136 

new applications, 126 

Paste function, 205 

saving work before, 125 

unit testing, 24 

TextAlign property, 13 

Text property, 143 

third-party tools, 45 

Thompson, Ken, 334-335, 336 

3D graphics, 251 

tips 

Comment Lines command, 46 

error messages, 136 

folders, organizing projects in, 126 

Hungarian Notation, 53 

operating systems, differences in, 10 

organizing projects in folders, 126 

parentheses(), using, 72, 184 

resizing handle, moving, 125 

Reverse Hungarian Notation, 53 

Stufilt Expander 5.5, 328 



Tab key, using, 123 

Text property, 143 

Toolbox, 9,36,280-281,281 

If statement with, 326 

ToolPalette dialog, 235 

with Line Width control, 239-240 

UpdateColors method with, 236-237 

tools. See also specific tools 

menus, selecting with, 149-150 

properties, adding, 145-146 

ToolsDrawShape menu handler, 150 

ToolsFilledOval menu handler, 150 

ToolsFilledRectangle menu handler, 150 

ToolsFreeHand menu handler, 149-150 

ToolsLineDraw menu handler, 150 

ToolsOval menu handler, 150 

Tools palette. See also Tools window 

Canvas controls, adding, 235 

color-selection tools, adding, 234-237 

icons, 220-221 

line-width selection tools, adding, 239-241 

properties, adding, 235-237 

Selection tool menu item, adding, 296 

ToolsRectangle menu handler, 150 

ToolsSelection Tool menu handler, 208-209 

Tools window, 8, 120, 221-222 

cursors, creating, 224-225 

MouseDown event for, 223-224 

top command, 313 

top-down programming, 337 

transistors, 33 

TrashFolder, 322 

Trash icon, 253 

TRS-80 Radio Shack, 5, 34 

tsch shell, 302 

twm interface, 250 

INDEX 

u 
Undo command, 260-261 

Unhandled Stack Overflow Exception, 97, 98-99 

UNIX, 34, 299-313 

C language and, 334-335 

command interpreters for, 301-304 

data distribution methods, 38 

meaning of name, 335 

porting applications to Mac OS X, 311 

scrolling in, 311 

X Windows, 249-250 

unzip command, 313 

UpdateColors method, 234, 236 

updating 

freehand drawing tool, 150-157 

menu selections, 146-148 

uptime command, 312 

user authentication module, 277 

user directories, 306 

Users folder, 306 

v 
vacuum tubes, 32 

variables, 50-56 

arrays of, 52 

assigning values to, 53-54 

data types of, 51 

declaring, 51-53 

default values, 54 

naming, 131 

in object-oriented programming, 102 

operators with, 55-56 

Reverse Hungarian Notation, 53 

use of, 58 



variant variables, 51 

assigning values, 54 

VBCleaner, 327, 329-330 

video displays, 33 

virtual machines, 269 

emulation vs., 270-271 

Java and, 292 

viruses, 37 

Visual Basic, 29 

free code, 328 

Microsoft Windows, porting code to, 327-332 

Rosetta Stone, 331-332 

Scripting code, 331 

viruses and, 37 

w 
Web sites. See also Apple Developer Connection Web 

site 

Dekorte, Steve, 294 

Developer Connection Web site, 282 

Java 

applets, 292 

resources for, 297-298 

Objective-C information, 294 

Objective-C resources, 297-298 

product support, 27 

REAL Software, 5 

Rosetta Stone, 331-332 

Swarm.org, 293-294 

whereis command, 313 

While/VVendloop,80-81 

width properties, 12 

WIMP (windows, icons, menus, and pointers), 301 

Window Editor, 9, 121 

changes, displaying, 12 

for new project, 11 

window managers, 249-250 

windows,35 

closing windows, 178-180 

new windows, creating, 178-180 

in REALbasic, 8-9 

tool-palette window, creating, 221-222 

WmdowShade feature, 252 

world permissions, 309 

x 
Xerox,35 

XWindows, 249-250, 302 

z 
.zip archive, code in, 328 

zip command, 313 



License Agreement/Notice of Limited Warranty 

By opening the sealed disk container in this book, you agree to the following terms and conditions. If, 
upon reading the following license agreement and notice of limited warranty, you cannot agree to the 
terms and conditions set forth, return the unused book with unopened disk to the place where you 
purchased it for a refund. 

License: 
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disk. You 
are licensed to copy the software onto a single computer for use by a single concurrent user and to a 
backup disk. You may not reproduce, make copies, or distribute copies or rent or lease the software in 
whole or in part, except with written permission of the copyright holder(s). You may transfer the 
enclosed disk only together with this license, and only if you destroy all other copies of the software 
and the transferee agrees to the terms of the license. You may not decompile, reverse assemble, or 
reverse engineer the software. 

Notice of Limited Warranty: 
The enclosed disk is warranted by Premier Press, Inc. to be free of physical defects in materials and 
workmanship for a period of sixty (60) days from end user's purchase of the book/disk combination. 
During the sixty-day term of the limited warranty, Premier Press, Inc. will provide a replacement disk 
upon the return of a defective disk. 

Limited Liability: 
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST ENTIRELY 
OF REPLACEMENT OF THE DEFECTIVE DISK. IN NO EVENT SHALL PREMIER PRESS, INC. OR 
THE AUTHORS BE LIABLE FOR ANY OTHER DAMAGES, INCLUDING LOSS OR CORRUPTION 
OF DATA, CHANGES IN THE FUNCTIONAL CHARACTERISTICS OF THE HARDWARE OR OPER­
ATING SYSTEM, DELETERIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPE­
CIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF PREMIER 
PRESS, INC. AND/OR THE AUTHOR HAVE PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILI­
TY OF SUCH DAMAGES EXISTS. 

Disclaimer of Warranties: 
PREMIER PRESS, INC. AND THE AUTHORS SPECIFICALLY DISCLAIM ANY AND ALL OTHER 
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILI­
TY, SUITABILITY TO A PARTICULAR TASK OR PURPOSE, OR FREEDOM FROM ERRORS. SOME 
STATES DO NOT ALLOW FOR EXCLUSION OF IMPLIED WARRANTIES OR LIMITATION OF INCI­
DENTAL OR CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS MAY NOT APPLY TO YOU. 

Other: 
This Agreement is governed by the laws of the State of California without regard to choice of law prin­
ciples. The United Convention of Contracts for the International Sale of Goods is specifically dis­
claimed. This Agreement constitutes the entire agreement between you and Premier Press, Inc. 
regarding use of the software. 



--=------
-~ ---=='=' 

Beginning fylac_ 
.. ~---"':11.Progr-ammmg 

Premier Prns 
www.premierpressbooks.com 

- -------



• 
Build Your First Mac Prograrr 
C ongrats! You've found your one-stop guide to programming for Mac® OS!_ Even if you have zero prograrr 

ming know-how, you'll be up to speed in no time as you progress from Macintosh programri1ing basics t< 
building your first application using REAlbasic~ Along the way, you'll learn the ins and outs of Object Oriente< 
programming, Classic, Carbon, and Cocoa! 

Use this book to make Mac applications! 

• Get acquainted with REALbasic 
• Learn the parts of a Mac program 

• Understand variables and constants 
• Develop and build your first Mac program 

• Work with editing features and 
add final touches to your program 

• Learn about Mac OS X programming 
• Explore advanced programming for Mac OS 

What's on the CD? 
30-day trial copy of REALbasic 3 

from REAL Software 

Sample project from the book 

As a tech support specialist, Kevin Spencer has been explaining difficult topics lo people for years. He is an avid Macintosh fan and know;; the Mac inside and out. lie is a 
frequent contributor lo various Macintosh publ.ications. Kevin lives in lncli<mapolis with his wife and two children. 

Working as a software developer since 1985. Jeff Thompson has written applications in various languages such as BASIC, Z-80 Assembler. 6502 Assembler, DBL, som 
Assembler, C, and C++. Jeff worked with and developed applications on various platforms from the good old days of the TRS-80, Apple II , DEC minicomputers. IBM PC's, a111 
the Macintosh Plus all the way up to today's latest Pentium PC's and Macintosh PowerPC systems. He's currently employed by Cl'l Data Solutions as Senior Systems Analyst 
and Technical Lead on one of the highl'Sl rated Billing Analysis software applications in the count1y. Jeff currently resides in Indianapolis with his wife and two children. 

Premier 

B 
P r e s s 

Premier Press 
www.premierpressbooks.com 

User Level: Beginning/Intermediate 
Category: Operating Systems 
U.S. $39.99 Can. $59.95 U.K. £29.99 

ISE'N 1-931841-00-4 

0 8203 9 54100 6 9 7 8 1931 8 41009 53999 




