https://slimsaas.com/blog/django-scaling-performance/ Startup Kit * Home * Features * Pricing * FAQ * Contact * Login slim - saas - kit * Home * Features * Pricing * FAQ * Contact * Login Theme * light * dark * cupcake * bumblebee * emerald * corporate * synthwave * retro * cyberpunk * valentine * halloween * garden * forest * aqua * lofi * pastel * fantasy * wireframe * black * luxury * dracula * cmyk * autumn * business * acid * lemonade * night * coffee * winter The Practical Guide to Scaling Django By Andrew on 11/10/2024 The Practical Guide to Scaling Django Most Django scaling guides focus on theoretical maximums. But real scaling isn't about handling hypothetical millions of users - it's about systematically eliminating bottlenecks as you grow. Here's how to do it right, based on patterns that work in production. Django is the framework of choice for many of the largest web applications (e.g. Instagram, Pinterest, etc.). But it's not hard to get bogged down by common pitfalls. First, Know Your Actual Bottlenecks Before diving into solutions, understand that Django performance usually hits these bottlenecks in order: 1. Database queries 2. Template rendering 3. Python processing 4. Cache misses 5. File I/O 6. Network latency Don't optimize what isn't slowing you down. Here's how to tackle each when they become real problems: Database Optimization 1. Query Optimization # Bad: N+1 queries for user in Users.objects.all(): print(user.profile.bio) # One query per user # Good: Single query with select_related users = User.objects.select_related('profile').all() for user in users: print(user.profile.bio) # No additional queries 2. Database Indexing class Order(models.Model): user = models.ForeignKey(User) created_at = models.DateTimeField(auto_now_add=True) status = models.CharField(max_length=20) class Meta: indexes = [ models.Index(fields=['created_at', 'status']), models.Index(fields=['user', 'status']), ] 3. Queryset Optimization # Bad: Loading entire objects users = User.objects.all() # Good: Only loading needed fields users = User.objects.values('id', 'email') # Better: Using iterator() for large querysets for user in User.objects.iterator(): process_user(user) Caching 1. View-Level Caching from django.views.decorators.cache import cache_page @cache_page(60 * 15) # Cache for 15 minutes def product_list(request): products = Product.objects.all() return render(request, 'products/list.html', {'products': products}) 2. Template Fragment Caching {% load cache %} {% cache 500 sidebar request.user.id %} {% for item in expensive_query %} {{ item }} {% endfor %} {% endcache %} 3. Low-Level Cache API from django.core.cache import cache def get_expensive_result(user_id): cache_key = f'expensive_result_{user_id}' result = cache.get(cache_key) if result is None: result = expensive_computation(user_id) cache.set(cache_key, result, timeout=3600) return result Async: When You Need Concurrent Connections # views.py async def async_view(request): async with aiohttp.ClientSession() as session: async with session.get('http://api.example.com/data') as response: data = await response.json() return JsonResponse(data) # urls.py path('async-data/', async_view) Background Tasks: Don't Block the Request-Response Cycle from django.core.mail import send_mail from celery import shared_task @shared_task def send_welcome_email(user_id): user = User.objects.get(id=user_id) send_mail( 'Welcome!', 'Thanks for joining.', 'from@example.com', [user.email], ) # In your view def signup(request): user = User.objects.create_user(...) send_welcome_email.delay(user.id) return redirect('home') Load Balancing: When Single Server Isn't Enough # settings.py for multiple servers DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'mydb', 'HOST': 'primary.database.host', 'CONN_MAX_AGE': 60, }, 'read_replica': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'mydb', 'HOST': 'replica.database.host', 'CONN_MAX_AGE': 60, } } Media Files: Move to CDN Early # settings.py DEFAULT_FILE_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage' STATICFILES_STORAGE = 'storages.backends.s3boto3.S3StaticStorage' AWS_ACCESS_KEY_ID = 'your-access-key' AWS_SECRET_ACCESS_KEY = 'your-secret-key' AWS_STORAGE_BUCKET_NAME = 'your-bucket-name' AWS_S3_CUSTOM_DOMAIN = f'{AWS_STORAGE_BUCKET_NAME}.s3.amazonaws.com' Real-World Scaling Checkpoints At 100 Requests/Second * Implement basic caching * Add database indexes * Move static files to CDN At 1,000 Requests/Second * Add read replicas * Implement fragment caching * Move to managed Redis/Memcached At 10,000 Requests/Second * Shard databases * Implement service-level caching * Consider microservices for heavy operations The Scaling Checklist Before adding complexity, verify you've done these: # Optimized database queries (select_related, prefetch_related) # Added proper database indexes # Implemented view and template caching # Moved static/media files to CDN # Set up monitoring and alerting # Configured connection pooling # Implemented background tasks for heavy operations # Added read replicas for heavy read loads # Set up proper logging and error tracking Remember: Django can handle more load than most people think when properly optimized. Start simple, measure everything, and scale what actually needs scaling. The best scaling strategy isn't adding more resources - it's eliminating waste in your existing ones. Build Faster Terms of Service Privacy Policy License Sitemap Copyright (c) 2024 - All rights reserved by Detroit Computing, LLC