https://arxiv.org/abs/2403.09611 Skip to main content Cornell University We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate arxiv logo > cs > arXiv:2403.09611 [ ] Help | Advanced Search [All fields ] Search arXiv logo Cornell University Logo [ ] GO quick links * Login * Help Pages * About Computer Science > Computer Vision and Pattern Recognition arXiv:2403.09611 (cs) [Submitted on 14 Mar 2024] Title:MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training Authors:Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp Dufter, Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers, Anton Belyi, Haotian Zhang, Karanjeet Singh, Doug Kang, Hongyu He, Max Schwarzer, Tom Gunter, Xiang Kong, Aonan Zhang, Jianyu Wang, Chong Wang, Nan Du, Tao Lei, Sam Wiseman, Mark Lee, Zirui Wang, Ruoming Pang, Peter Grasch, Alexander Toshev, Yinfei Yang Download a PDF of the paper titled MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training, by Brandon McKinzie and 29 other authors Download PDF Abstract:In this work, we discuss building performant Multimodal Large Language Models (MLLMs). In particular, we study the importance of various architecture components and data choices. Through careful and comprehensive ablations of the image encoder, the vision language connector, and various pre-training data choices, we identified several crucial design lessons. For example, we demonstrate that for large-scale multimodal pre-training using a careful mix of image-caption, interleaved image-text, and text-only data is crucial for achieving state-of-the-art (SOTA) few-shot results across multiple benchmarks, compared to other published pre-training results. Further, we show that the image encoder together with image resolution and the image token count has substantial impact, while the vision-language connector design is of comparatively negligible importance. By scaling up the presented recipe, we build MM1, a family of multimodal models up to 30B parameters, consisting of both dense models and mixture-of-experts (MoE) variants, that are SOTA in pre-training metrics and achieve competitive performance after supervised fine-tuning on a range of established multimodal benchmarks. Thanks to large-scale pre-training, MM1 enjoys appealing properties such as enhanced in-context learning, and multi-image reasoning, enabling few-shot chain-of-thought prompting. Subjects: Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL); Machine Learning (cs.LG) Cite as: arXiv:2403.09611 [cs.CV] (or arXiv:2403.09611v1 [cs.CV] for this version) https://doi.org/10.48550/arXiv.2403.09611 Focus to learn more arXiv-issued DOI via DataCite Submission history From: Zhe Gan [view email] [v1] Thu, 14 Mar 2024 17:51:32 UTC (14,464 KB) Full-text links: Access Paper: Download a PDF of the paper titled MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training, by Brandon McKinzie and 29 other authors * Download PDF * TeX Source * Other Formats view license Current browse context: cs.CV < prev | next > new | recent | 2403 Change to browse by: cs cs.CL cs.LG References & Citations * NASA ADS * Google Scholar * Semantic Scholar a export BibTeX citation Loading... BibTeX formatted citation x [loading... ] Data provided by: Bookmark BibSonomy logo Reddit logo (*) Bibliographic Tools Bibliographic and Citation Tools [ ] Bibliographic Explorer Toggle Bibliographic Explorer (What is the Explorer?) [ ] Litmaps Toggle Litmaps (What is Litmaps?) [ ] scite.ai Toggle scite Smart Citations (What are Smart Citations?) ( ) Code, Data, Media Code, Data and Media Associated with this Article [ ] Links to Code Toggle CatalyzeX Code Finder for Papers (What is CatalyzeX?) [ ] DagsHub Toggle DagsHub (What is DagsHub?) [ ] GotitPub Toggle Gotit.pub (What is GotitPub?) [ ] Links to Code Toggle Papers with Code (What is Papers with Code?) [ ] ScienceCast Toggle ScienceCast (What is ScienceCast?) ( ) Demos Demos [ ] Replicate Toggle Replicate (What is Replicate?) [ ] Spaces Toggle Hugging Face Spaces (What is Spaces?) [ ] Spaces Toggle TXYZ.AI (What is TXYZ.AI?) ( ) Related Papers Recommenders and Search Tools [ ] Link to Influence Flower Influence Flower (What are Influence Flowers?) [ ] Connected Papers Toggle Connected Papers (What is Connected Papers?) [ ] Core recommender toggle CORE Recommender (What is CORE?) * Author * Venue * Institution * Topic ( ) About arXivLabs arXivLabs: experimental projects with community collaborators arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website. Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them. Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs. Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?) * About * Help * Click here to contact arXiv Contact * Click here to subscribe Subscribe * Copyright * Privacy Policy * Web Accessibility Assistance * arXiv Operational Status Get status notifications via email or slack