https://news.mit.edu/2023/desalination-system-could-produce-freshwater-cheaper-0927 Skip to content | Massachusetts Institute of Technology MIT Top Menu| * Education * Research * Innovation * Admissions + Aid * Campus Life * News * Alumni * About MIT * More | Search MIT Search websites, locations, and people [ ] See More Results Suggestions or feedback? MIT News | Massachusetts Institute of Technology Subscribe to MIT News newsletter Browse Enter keywords to search for news articles: [ ] Submit Browse By Topics View All - Explore: * Machine learning * Social justice * Startups * Black holes * Classes and programs Departments View All - Explore: * Aeronautics and Astronautics * Brain and Cognitive Sciences * Architecture * Political Science * Mechanical Engineering Centers, Labs, & Programs View All - Explore: * Abdul Latif Jameel Poverty Action Lab (J-PAL) * Picower Institute for Learning and Memory * Media Lab * Lincoln Laboratory Schools * School of Architecture + Planning * School of Engineering * School of Humanities, Arts, and Social Sciences * Sloan School of Management * School of Science * MIT Schwarzman College of Computing View all news coverage of MIT in the media - Listen to audio content from MIT News - Subscribe to MIT newsletter - Close Breadcrumb 1. MIT News 2. Desalination system could produce freshwater that is cheaper than tap water Desalination system could produce freshwater that is cheaper than tap water MIT engineers and collaborators developed a solar-powered device that avoids salt-clogging issues of other designs. Jennifer Chu | MIT News Publication Date: September 27, 2023 Press Inquiries Press Contact: Abby Abazorius Email: abbya@mit.edu Phone: 617-253-2709 MIT News Office Media Download A desalinization prototype, a clear rectangular box with water, tubes and a square spring, setup in the lab | Download Image Caption: A tilted ten-stage prototype is located into a "boat-like" reservoir. Credits: Credit: Jintong Gao and Zhenyuan Xu A desalinization prototype setup, a clear rectangular box with waters, tubes, and square spring surrounded by a larger rectangular box, outside in the sun. | Download Image Caption: Outdoor test of the prototype under natural sunlight Credits: Credit: Jintong Gao and Zhenyuan Xu *Terms of Use: Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license. You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT." Close A desalinization prototype, a clear rectangular box with water, tubes and a square spring, setup in the lab Caption: A tilted ten-stage prototype is located into a "boat-like" reservoir. Credits: Credit: Jintong Gao and Zhenyuan Xu A desalinization prototype setup, a clear rectangular box with waters, tubes, and square spring surrounded by a larger rectangular box, outside in the sun Caption: Outdoor test of the prototype under natural sunlight Credits: Credit: Jintong Gao and Zhenyuan Xu Previous image Next image Engineers at MIT and in China are aiming to turn seawater into drinking water with a completely passive device that is inspired by the ocean, and powered by the sun. In a paper appearing today in the journal Joule, the team outlines the design for a new solar desalination system that takes in saltwater and heats it with natural sunlight. The configuration of the device allows water to circulate in swirling eddies, in a manner similar to the much larger "thermohaline" circulation of the ocean. This circulation, combined with the sun's heat, drives water to evaporate, leaving salt behind. The resulting water vapor can then be condensed and collected as pure, drinkable water. In the meantime, the leftover salt continues to circulate through and out of the device, rather than accumulating and clogging the system. The new system has a higher water-production rate and a higher salt-rejection rate than all other passive solar desalination concepts currently being tested. The researchers estimate that if the system is scaled up to the size of a small suitcase, it could produce about 4 to 6 liters of drinking water per hour and last several years before requiring replacement parts. At this scale and performance, the system could produce drinking water at a rate and price that is cheaper than tap water. "For the first time, it is possible for water, produced by sunlight, to be even cheaper than tap water," says Lenan Zhang, a research scientist in MIT's Device Research Laboratory. The team envisions a scaled-up device could passively produce enough drinking water to meet the daily requirements of a small family. The system could also supply off-grid, coastal communities where seawater is easily accessible. Zhang's study co-authors include MIT graduate student Yang Zhong and Evelyn Wang, the Ford Professor of Engineering, along with Jintong Gao, Jinfang You, Zhanyu Ye, Ruzhu Wang, and Zhenyuan Xu of Shanghai Jiao Tong University in China. A powerful convection The team's new system improves on their previous design -- a similar concept of multiple layers, called stages. Each stage contained an evaporator and a condenser that used heat from the sun to passively separate salt from incoming water. That design, which the team tested on the roof of an MIT building, efficiently converted the sun's energy to evaporate water, which was then condensed into drinkable water. But the salt that was left over quickly accumulated as crystals that clogged the system after a few days. In a real-world setting, a user would have to place stages on a frequent basis, which would significantly increase the system's overall cost. In a follow-up effort, they devised a solution with a similar layered configuration, this time with an added feature that helped to circulate the incoming water as well as any leftover salt. While this design prevented salt from settling and accumulating on the device, it desalinated water at a relatively low rate. In the latest iteration, the team believes it has landed on a design that achieves both a high water-production rate, and high salt rejection, meaning that the system can quickly and reliably produce drinking water for an extended period. The key to their new design is a combination of their two previous concepts: a multistage system of evaporators and condensers, that is also configured to boost the circulation of water -- and salt -- within each stage. "We introduce now an even more powerful convection, that is similar to what we typically see in the ocean, at kilometer-long scales," Xu says. The small circulations generated in the team's new system is similar to the "thermohaline" convection in the ocean -- a phenomenon that drives the movement of water around the world, based on differences in sea temperature ("thermo") and salinity ("haline"). "When seawater is exposed to air, sunlight drives water to evaporate. Once water leaves the surface, salt remains. And the higher the salt concentration, the denser the liquid, and this heavier water wants to flow downward," Zhang explains. "By mimicking this kilometer-wide phenomena in small box, we can take advantage of this feature to reject salt." Tapping out The heart of the team's new design is a single stage that resembles a thin box, topped with a dark material that efficiently absorbs the heat of the sun. Inside, the box is separated into a top and bottom section. Water can flow through the top half, where the ceiling is lined with an evaporator layer that uses the sun's heat to warm up and evaporate any water in direct contact. The water vapor is then funneled to the bottom half of the box, where a condensing layer air-cools the vapor into salt-free, drinkable liquid. The researchers set the entire box at a tilt within a larger, empty vessel, then attached a tube from the top half of the box down through the bottom of the vessel, and floated the vessel in saltwater. In this configuration, water can naturally push up through the tube and into the box, where the tilt of the box, combined with the thermal energy from the sun, induces the water to swirl as it flows through. The small eddies help to bring water in contact with the upper evaporating layer while keeping salt circulating, rather than settling and clogging. The team built several prototypes, with one, three, and 10 stages, and tested their performance in water of varying salinity, including natural seawater and water that was seven times saltier. From these tests, the researchers calculated that if each stage were scaled up to a square meter, it would produce up to 5 liters of drinking water per hour, and that the system could desalinate water without accumulating salt for several years. Given this extended lifetime, and the fact that the system is entirely passive, requiring no electricity to run, the team estimates that the overall cost of running the system would be cheaper than what it costs to produce tap water in the United States. "We show that this device is capable of achieving a long lifetime," Zhong says. "That means that, for the first time, it is possible for drinking water produced by sunlight to be cheaper than tap water. This opens up the possibility for solar desalination to address real-world problems." "This is a very innovative approach that effectively mitigates key challenges in the field of desalination," says Guihua Yu, who develops sustainable water and energy storage systems at the University of Texas at Austin, and was not involved in the research. "The design is particularly beneficial for regions struggling with high-salinity water. Its modular design makes it highly suitable for household water production, allowing for scalability and adaptability to meet individual needs." Funding for the research at Shanghai Jiao Tong University was supported by the Natural Science Foundation of China. Share this news article on: * X * Facebook * LinkedIn * Reddit * Print Related Links * Evelyn Wang * Lenan Zhang * Yang Zhong * Device Research Lab * Department of Mechanical Engineering * School of Engineering Related Topics * Climate * Desalination * Water * Mechanical engineering * Research * Sustainability * Energy * School of Engineering Related Articles This rooftop photo shows two scales, each holding thick square devices covered in foil. The blue sky is reflected on the foil, and the devices are attached to wires. The left device has a circular indention with white material on top. Passive cooling system could benefit off-grid locations desalination diagram Solar-powered system offers a route to inexpensive desalination prototype of water harvesting system Solar-powered system extracts drinkable water from "dry" air Tests on an MIT building rooftop showed that a simple proof-of-concept desalination device could produce clean, drinkable water at a rate equivalent to more than 1.5 gallons per hour for each square meter of solar collecting area. Simple, solar-powered water desalination Previous item Next item More MIT News Close-up photo of a quantum repeater module mounted on a gold-plated copper assembly and connected to green printed circuit boards, with optical fibers routed up. Quantum repeaters use defects in diamond to interconnect quantum systems This technology for storing and transmitting quantum information over lossy links could provide the foundation for scalable quantum networking. Read full story - Actors in purple and pink light on a theater set with mirrored walls Re-imagining the opera of the future The iconic sci-fi opera "VALIS," first composed by Professor Tod Machover in 1987, reboots at MIT for a new generation. Read full story - Nine portrait photos arranged in two rows MIT welcomes nine MLK Visiting Professors and Scholars for 2023-24 Martin Luther King Jr. Visiting Professors and Scholars will enhance and enrich the MIT community through engagement with students and faculty. Read full story - Photo of a power plant with two smokestacks in a desert area on a partly cloudy day Improving US air quality, equitably Study finds climate policy alone cannot meaningfully reduce racial/ economic disparities in air pollution exposure. Read full story - Conceptual image of an open box that has sparks flying out on a black background. The lid of the box resembles that of a laptop computer screen. From physics to generative AI: An AI model for advanced pattern generation Inspired by physics, a new generative model PFGM++ outperforms diffusion models in image generation. Read full story - Stylized webpage screens, in pink, green, and blue, contain sentences. In large text, the central webpage says, "They are special people whom of which make special music together." Another says, "Oh, that's me whom which you're looking for." Have you heard about the "whom of which" trend? An MIT student and linguistics professor spot an emerging English phrase and examine what it tells us about syntax -- but questions remain. Read full story - * More news on MIT News homepage - More about MIT News at Massachusetts Institute of Technology This website is managed by the MIT News Office, part of the Institute Office of Communications. News by Schools/College: * School of Architecture and Planning * School of Engineering * School of Humanities, Arts, and Social Sciences * MIT Sloan School of Management * School of Science * MIT Schwarzman College of Computing Resources: * About the MIT News Office * MIT News Press Center * Terms of Use * Press Inquiries * Filming Guidelines * RSS Feeds Tools: * Subscribe to MIT Daily/Weekly * Subscribe to press releases * Submit campus news * Guidelines for campus news contributors Massachusetts Institute of Technology MIT Top Level Links: * Education * Research * Innovation * Admissions + Aid * Campus Life * News * Alumni * About MIT * Join us in building a better world. Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA Recommended Links: * Visit * Map (opens in new window) * Events (opens in new window) * People (opens in new window) * Careers (opens in new window) * Contact * Privacy * Accessibility * + Social Media Hub + MIT on X + MIT on Facebook + MIT on YouTube + MIT on Instagram