https://stemformulas.com/formulas/ |Skip to main content stemformulas stemformulas * formulas * tags * about * suggest * formulas Click on any formula to visit its page for more details. Boltzmann Entropy $$S=k_B\ln\Omega$$ De Moivre's Theorem $$\small \cos x+ i \sin x)^n=\cos(nx)+i\sin(nx)$$ Bayes' Theorem $$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$ Conditional Probability $$P(E|F) = \frac{P(E \cap F)}{P(F)}$$ Gaussian/Normal Distribution $$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\ mu}{\sigma}\right)^2}$$ Curl $$\scriptsize \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\\\ \frac{\partial}{\partial x} & \frac{\ partial}{\partial y} & \frac{\partial}{\partial z} \\\\ F_x & F_y & F_z \end{vmatrix}$$ Divergence $$\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\ partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$ Gradient $$\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\ partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \ mathbf{k}$$ Matrix Multiplication $$\scriptsize \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin {pmatrix} w & x \\ y & z \end{pmatrix} = \begin{pmatrix} aw + by & ax + bz \\ cw + dy & cx + dz \end{pmatrix}$$ Quadric Surfaces $$\\ {x^2 \over a^2} + {y^2 \over b^2} + {z^2 \over c^2} = 1$$ Equation of a Plane $$ax + by + cz = d$$ Equation of a Sphere $$\small R^2 = (x-x_0)^2 + (y-y_0)^2 + (z - z_0)^2$$ Fourier + Inverse Fourier Transform $$X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt$$ Modulus of Resilience $$U_r = \int_{0}^{\epsilon_Y}\sigma\mathop{d\epsilon} \approx \frac{\ sigma_{YS}^2}{2E}$$ Modulus of Rigidity/Shear Modulus $$G = \frac{\tau}{\gamma}$$ Modulus of Toughness $$U_t = \int_{0}^{\epsilon_f}\sigma\mathop{d\epsilon}$$ Poisson's Ratio $$\nu = - \frac{\epsilon_x}{\epsilon_z} = -\frac{\epsilon_y}{\ epsilon_z}$$ Resistance in a straight conductor $$R = \frac{\rho l}{A}$$ Thermal expansion $$\Delta L = L_0 \alpha \Delta T$$ Arithmetic Gradients $$\scriptsize P = A \left[\frac{(1+i)^n-1}{i(1+i)^n}\right] + G \left [\frac{(1+i)^n-in-1}{i^2(1+i)^n}\right]$$ Equivalent Uniform Annual Cost $$A = P \left[\frac{i(1 + i)^n}{(1 + i)^n - 1}\right]$$ Present and Future Value $$F = P(1 + i)^n$$ Light Wavelength and Frequency Relationship $$c = \lambda f$$ Photon Energy $$E = hf$$ Feynmann's Trick For Exponential Integrals $$\int_0^{\infty} x^n e^{-tx} dx = \frac{n!}{t^{n+1}}$$ Finite and Infinite Geometric Series $$S_n = \frac{a(1-r^n)}{1-r}$$ Convolution $$(f*g)(t)=\int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$$ Shockley Diode Model $$I = I_S \cdot (e^{\frac{V_D}{nV_T}} - 1)$$ Schrodinger's Equation $$\scriptsize i\hbar\frac{\partial}{\partial t}\Psi(x,t) = \left[-\ frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x,t)\right]\Psi (x,t)$$ L'Hopital's Rule $$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g' (x)}$$ * 1 * 2 * 3 * - [ ]