https://ericmitchell.ai/detectgpt/ DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature Eric Mitchell Yoonho Lee Alexander (Sasha) Khazatsky Christopher D. Manning Chelsea Finn Stanford University Abstract The fluency and factual knowledge of large language models (LLMs) heightens the need for corresponding systems to detect whether a piece of text is machine-written. For example, students may use LLMs to complete written assignments, leaving instructors unable to accurately assess student learning. In this paper, we first demonstrate that text sampled from an LLM tends to occupy negative curvature regions of the model's log probability function. Leveraging this observation, we then define a new curvature-based criterion for judging if a passage is generated from a given LLM. This approach, which we call DetectGPT, does not require training a separate classifier, collecting a dataset of real or generated passages, or explicitly watermarking generated text. It uses only log probabilities computed by the model of interest and random perturbations of the passage from another generic pre-trained language model (e.g, T5). We find DetectGPT is more discriminative than existing zero-shot methods for model sample detection, notably improving detection of fake news articles generated by 20B parameter GPT-NeoX from 0.81 AUROC for the strongest zero-shot baseline to 0.95 AUROC for DetectGPT. TL;DR: We introduce DetectGPT, a method that detects samples from pre-trained LLMs using the local curvature of the model's log probability function. Code, data, and more coming soon! This website is adapted from this website, which was adapted from this website, which was in turn adapted from this website. Feel free to use this website as a template for your own projects by referencing this!