https://www.science.org/content/blog-post/things-i-won-t-work-azidoazide-azides-more-or-less Advertisement * * news * careers * commentary * Journals * Covid-19 Science Science * * * Log in * Become A Member [science] science [sciadv] science advances [sciimmunol] science immunology [scirobotics] science robotics [signaling] science signaling [stm] science translational medicine [spj-cover] science partner journals Quick Search anywhere Enter Search Term[ ] Quick Search in Journals Enter Search Term[ ] Quick Search in Journals Enter Search Term[ ] Quick Search in Journals Enter Search Term[ ] Quick Search in Journals Enter Search Term[ ] Quick Search in Journals Enter Search Term[ ] Quick Search in Journals Enter Search Term[ ] Searching: Anywhere AnywhereScienceScience AdvancesScience ImmunologyScience Robotics Science SignalingScience Translational Medicine Advanced Search Search Trending Terms: * covid-19 * climate * monkeypox * abortion * perovskite Log In Become A Member Quick Search anywhere Enter Search Term[ ] science.org * Custom publishing * collections * videos * podcasts * blogs * visualizations * prizes and awards * authors & reviewers * librarians * advertisers * about * help * * * * * * AAAS Logo * Terms of Service * Privacy Policy * Accessibility * Commentary Home * Opinion * Analysis * Blogs GET OUR E-ALERTS HomeCommentaryBlogsIn the PipelineThings I Won't Work With: Azidoazide Azides, More Or Less Back To In the Pipeline * In the Pipeline * Things I Won't Work With Things I Won't Work With: Azidoazide Azides, More Or Less * 9 Jan 2013 * By Derek Lowe * 2 min read * Comments Share: * Twitter * Linked In * Facebook * Reddit * Wechat * Email When we last checked in with the Klapotke lab at Munich, it was to highlight their accomplishments in the field of nitrotetrazole oxides. Never forget, the biggest accomplishment in such work is not blowing out the lab windows. We're talking high-nitrogen compounds here (a specialty of Klapotke's group), and the question is not whether such things are going to be explosive hazards. (That's been settled by their empirical formulas, which generally look like typographical errors). The question is whether you're going to be able to get a long enough look at the material before it realizes its dream of turning into an expanding cloud of hot nitrogen gas. It's time for another dispatch from the land of spiderweb-cracked blast shields and "Oh well, I never liked that fume hood, anyway". Today we have a fine compound from this line of work, part of a series derived from N-amino azidotetrazole. The reasonable response to that statement is "Now hold it right there", because most chemists will take one look at that name and start making get-it-away-from-me gestures. I'm one of them. To me, that structure is a flashing red warning sign on a dead-end road, but then, I suffer from a lack of vision in these matters. But remember, N-amino azidotetrazole (I can't even type that name without wincing) is the starting material for the work I'm talking about today. It's a base camp, familiar territory, merely a jumping-off point in the quest for still more energetic compounds. The most alarming of them has two carbons, fourteen nitrogens, and no hydrogens at all, a formula that even Klapotke himself, who clearly has refined sensibilities when it comes to hellishly unstable chemicals, calls "exciting". Trust me, you don't want to be around when someone who works with azidotetrazoles comes across something "exciting". alt text goes here It's a beast, all right. The compound is wildly, ridiculously endothermic, with a heat of formation of 357 kcal/mole, all of which energy is ready to come right back out at the first provocation (see below). To add to the fun, the X-ray crystal structure shows some rather strange bond distances, which indicate that there's a lot of charge separation - the azides are somewhat positive, and the tetrazole ring somewhat negative, which is a further sign that the whole thing is trembling on the verge of not existing at all. And if you are minded to make some yourself, then you are on the verge of not existing at all, either. Both the initial communication and the follow-up publication go out of their way to emphasize that the compound just cannot be handled: Due to their behavior during the process of synthesis, it was obvious that the sensitivities (of these compounds) will be not less than extreme. . . The sensitivity of C2N14 is beyond our capabilities of measurement. The smallest possible loadings in shock and friction tests led to explosive decomposition. . . Yep, below the detection limits of a lab that specializes in the nastiest, most energetic stuff they can think up. When you read through both papers, you find that the group was lucky to get whatever data they could - the X-ray crystal structure, for example, must have come as a huge relief, because it meant that they didn't have to ever see a crystal again. The compound exploded in solution, it exploded on any attempts to touch or move the solid, and (most interestingly) it exploded when they were trying to get an infrared spectrum of it. The papers mention several detonations inside the Raman spectrometer as soon as the laser source was turned on, which must have helped the time pass more quickly. This shows a really commendable level of persistence, when you think about it - I don't know about you, but one exploding spectrometer is generally enough to make recognize a motion to adjourn for the day. But these folks are a different breed. They ended up having to use a much weaker light source, and consequently got a rather ugly Raman spectrum even after a lot of scanning, but if you think you can get better data, then step right up. No, only tiny amounts of this stuff have ever been made, or ever will be. If this is its last appearance in the chemical literature, I won't be surprised. There are no conceivable uses for it - well, other than blowing up Raman spectrometers, which is a small market - and the number of research groups who would even contemplate a resynthesis can probably be counted on one well-armored hand. About the author Derek Lowe Derek Lowe emailTwitter Derek Lowe, an Arkansan by birth, got his BA from Hendrix College and his PhD in organic chemistry from Duke before spending time in Germany on a Humboldt Fellowship on his post-doc. He's worked for several major pharmaceutical companies since 1989 on drug discovery projects against schizophrenia, Alzheimer's, diabetes, osteoporosis and other diseases. --------------------------------------------------------------------- Comments Please enable JavaScript to view the comments powered by Disqus. IN THE PIPELINE Derek Lowe's commentary on drug discovery and the pharma industry. An editorially independent blog, all content is Derek's own, and he does not in any way speak for his employer. Advertisement YOU MAY ALSO LIKE 25 Jul 2022By * Derek Lowe Faked Beta-Amyloid Data. What Does It Mean? 11 May 2022By * Derek Lowe Paxlovid, Personally 12 Aug 2022By * Derek Lowe Cancer in the Cold 29 Jul 2022By * Derek Lowe Faked Crystallography View More Advertisement Categories Things I Won't Work With ARCHIVES Select Year: [2020] [January ] View Posts Related Jobs Advertisement RecommendedClose 14 Jul 2008By * Derek Lowe Things I Won't Work With: Cyanogen Azide 10 Oct 2014By * Derek Lowe Things I Won't Work With: Peroxide Peroxides 11 Nov 2011By * Derek Lowe Things I Won't Work With: Hexanitrohexaazaisowurtzitane 25 Feb 2011By * Derek Lowe Things I Won't Work With: Chlorine Azide Skip slideshow Follow Us * * * * * * * NEWS * All News * ScienceInsider * News Features * Subscribe to News from Science * News from Science FAQ * About News from Science * CAREERS * Careers Articles * Find Jobs * Employer Profiles * COMMENTARY * Opinion * Analysis * Blogs * JOURNALS * Science * Science Advances * Science Immunology * Science Robotics * Science Signaling * Science Translational Medicine * Science Partner Journals * AUTHORS & REVIEWERS * Information for Authors * Information for Reviewers * LIBRARIANS * Manage Your Institutional Subscription * Library Admin Portal * Request a Quote * Librarian FAQs * ADVERTISERS * Advertising Kits * Custom Publishing Info * Post a Job * RELATED SITES * AAAS.org * AAAS Communities * EurekAlert! * Science in the Classroom * ABOUT US * Leadership * Work at AAAS * Prizes and Awards * HELP * FAQs * Access and Subscriptions * Order a Single Issue * Reprints and Permissions * TOC Alerts and RSS Feeds * Contact Us Follow Us * * * * * * AAAS logo (c) 2022 American Association for the Advancement of Science. All rights reserved. AAAS is a partner of HINARI, AGORA, OARE, CHORUS, CLOCKSS, CrossRef and COUNTER. back to top * Terms of Service * Privacy Policy * Accessibility