https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/ Skip to main content * Biz & IT * Tech * Science * Policy * Cars * Gaming & Culture * Store * Forums Subscribe [ ] Close Navigate * Store * Subscribe * Videos * Features * Reviews * RSS Feeds * Mobile Site * About Ars * Staff Directory * Contact Us * Advertise with Ars * Reprints Filter by topic * Biz & IT * Tech * Science * Policy * Cars * Gaming & Culture * Store * Forums Settings Front page layout Grid List Site theme Black on white White on black Sign in Comment activity Sign up or login to join the discussions! [ ] [ ] [Submit] [ ] Stay logged in | Having trouble? Sign up to comment and more Sign up BREAKING KEYS -- Researcher uses 379-year-old algorithm to crack crypto keys found in the wild It takes only a second to crack the handful of weak keys. Are there more out there? Dan Goodin - Mar 14, 2022 9:31 pm UTC Stylized illustration of key. Enlarge Getty Images reader comments 106 with 60 posters participating, including story author Share this story * Share on Facebook * Share on Twitter * Share on Reddit Cryptographic keys generated with older software now owned by technology company Rambus are weak enough to be broken instantly using commodity hardware, a researcher reported on Monday. This revelation is part of an investigation that also uncovered a handful of weak keys in the wild. The software comes from a basic version of the SafeZone Crypto Libraries, which were developed by a company called Inside Secure and acquired by Rambus as part of its 2019 acquisition of Verimatrix, a Rambus representative said. That version was deprecated prior to the acquisition and is distinct from a FIPS-certified version that the company now sells under the Rambus FIPS Security Toolkit brand. Mind your Ps and Qs Researcher Hanno Bock said that the vulnerable SafeZone library doesn't sufficiently randomize the two prime numbers it used to generate RSA keys. (These keys can be used to secure Web traffic, shells, and other online connections.) Instead, after the SafeZone tool selects one prime number, it chooses a prime in close proximity as the second one needed to form the key. "The problem is that both primes are too similar," Bock said in an interview. "So the difference between the two primes is really small." The SafeZone vulnerability is tracked as CVE-2022-26320. Cryptographers have long known that RSA keys that are generated with primes that are too close together can be trivially broken with Fermat's factorization method. French mathematician Pierre de Fermat first described this method in 1643. Fermat's algorithm was based on the fact that any odd number can be expressed as the difference between two squares. When the factors are near the root of the number, they can be calculated easily and quickly. The method isn't feasible when factors are truly random and hence far apart. Advertisement The security of RSA keys depends on the difficulty of factoring a key's large composite number (usually denoted as N) to derive its two factors (usually denoted as P and Q). When P and Q are known publicly, the key they make up is broken, meaning anyone can decrypt data protected by the key or use the key to authenticate messages. So far, Bock has identified only a handful of keys in the wild that are vulnerable to the factorization attack. Some of the keys are from printers from two manufacturers, Canon and Fujifilm (originally branded as Fuji Xerox).Printer users can use the keys to generate a Certificate Signing Request. The creation date for the all the weak keys was 2020 or later. The weak Canon keys are tracked as CVE-2022-26351. Bock also found four vulnerable PGP keys, typically used to encrypt email, on SKS PGP key servers. A user ID tied to the keys implied they were created for testing, so he doesn't believe they're in active use. Bock said he believes all the keys he found were generated using software or methods not connected to the SafeZone library. If true, other software that generates keys might be easily broken using the Fermat algorithm. It's plausible that the keys were generated manually, "possibly by people aware of this attack creating test data," Bock said. The researcher found the keys by searching through billions of public keys that he had access to. He also looked at keys that were shared with him by other researchers and keys that were available through certificate transparency programs. Page: 1 2 Next - reader comments 106 with 60 posters participating, including story author Share this story * Share on Facebook * Share on Twitter * Share on Reddit Dan Goodin Dan is the Security Editor at Ars Technica, which he joined in 2012 after working for The Register, the Associated Press, Bloomberg News, and other publications. Email dan.goodin@arstechnica.com // Twitter @dangoodin001 Advertisement You must login or create an account to comment. Channel Ars Technica - Previous story Next story - Related Stories Today on Ars * Store * Subscribe * About Us * RSS Feeds * View Mobile Site * Contact Us * Staff * Advertise with us * Reprints Newsletter Signup Join the Ars Orbital Transmission mailing list to get weekly updates delivered to your inbox. Sign me up - CNMN Collection WIRED Media Group (c) 2022 Conde Nast. All rights reserved. Use of and/or registration on any portion of this site constitutes acceptance of our User Agreement (updated 1/1/20) and Privacy Policy and Cookie Statement (updated 1/1 /20) and Ars Technica Addendum (effective 8/21/2018). Ars may earn compensation on sales from links on this site. Read our affiliate link policy. Your California Privacy Rights | Do Not Sell My Personal Information The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Conde Nast. Ad Choices