https://arxiv.org/abs/2107.13571 close this message Donate to arXiv Please join the Simons Foundation and our generous member organizations in supporting arXiv during our giving campaign September 23-27. 100% of your contribution will fund improvements and new initiatives to benefit arXiv's global scientific community. DONATE [secure site, no need to create account] Skip to main content Cornell University We gratefully acknowledge support from the Simons Foundation and member institutions. arXiv.org > quant-ph > arXiv:2107.13571 [ ] Help | Advanced Search [All fields ] Search arXiv Cornell University Logo [ ] GO quick links * Login * Help Pages * About Quantum Physics arXiv:2107.13571 (quant-ph) [Submitted on 28 Jul 2021] Title:Observation of Time-Crystalline Eigenstate Order on a Quantum Processor Authors:Xiao Mi, Matteo Ippoliti, Chris Quintana, Amy Greene, Zijun Chen, Jonathan Gross, Frank Arute, Kunal Arya, Juan Atalaya, Ryan Babbush, Joseph C. Bardin, Joao Basso, Andreas Bengtsson, Alexander Bilmes, Alexandre Bourassa, Leon Brill, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Benjamin Chiaro, Roberto Collins, William Courtney, Dripto Debroy, Sean Demura , Alan R. Derk, Andrew Dunsworth, Daniel Eppens, Catherine Erickson, Edward Farhi, Austin G. Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Matthew P. Harrigan, Sean D. Harrington, Jeremy Hilton, Alan Ho, Sabrina Hong, Trent Huang, Ashley Huff, William J. Huggins, L. B. Ioffe, Sergei V. Isakov, Justin Iveland, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Tanuj Khattar, Seon Kim, Alexei Kitaev , Paul V. Klimov, Alexander N. Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Joonho Lee, Kenny Lee, Aditya Locharla, Erik Lucero, Orion Martin, Jarrod R. McClean, Trevor McCourt, Matt McEwen, Kevin C. Miao, Masoud Mohseni, Shirin Montazeri, Wojciech Mruczkiewicz, Ofer Naaman, Matthew Neeley, Charles Neill, Michael Newman, Murphy Yuezhen Niu, Thomas E. O\' Brien, Alex Opremcak, Eric Ostby, Balint Pato, Andre Petukhov, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vladimir Shvarts, Yuan Su, Doug Strain, Marco Szalay, Matthew D. Trevithick, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Adam Zalcman, Hartmut Neven, Sergio Boixo, Vadim Smelyanskiy, Anthony Megrant, Julian Kelly, Yu Chen , S. L. Sondhi, Roderich Moessner, Kostyantyn Kechedzhi, Vedika Khemani, Pedram Roushan et al. (5 additional authors not shown) You must enable JavaScript to view entire author list. Download PDF Abstract: Quantum many-body systems display rich phase structure in their low-temperature equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC). Concretely, dynamical phases can be defined in periodically driven many-body localized systems via the concept of eigenstate order. In eigenstate-ordered phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, wherein few select states can mask typical behavior. Here we implement a continuous family of tunable CPHASE gates on an array of superconducting qubits to experimentally observe an eigenstate-ordered DTC. We demonstrate the characteristic spatiotemporal response of a DTC for generic initial states. Our work employs a time-reversal protocol that discriminates external decoherence from intrinsic thermalization, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. In addition, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors. Comments: See attached pdf for Supplementary Information Quantum Physics (quant-ph); Disordered Systems and Neural Subjects: Networks (cond-mat.dis-nn); Statistical Mechanics (cond-mat.stat-mech); Strongly Correlated Electrons (cond-mat.str-el) Cite as: arXiv:2107.13571 [quant-ph] (or arXiv:2107.13571v1 [quant-ph] for this version) Submission history From: Xiao Mi [view email] [v1] Wed, 28 Jul 2021 18:00:03 UTC (2,869 KB) Full-text links: Download: * PDF * Other formats (license) Current browse context: quant-ph < prev | next > new | recent | 2107 Change to browse by: cond-mat cond-mat.dis-nn cond-mat.stat-mech cond-mat.str-el References & Citations * INSPIRE HEP * NASA ADS * Google Scholar * Semantic Scholar 1 blog link (what is this?) a export bibtex citation Loading... Bibtex formatted citation x [loading... ] Data provided by: Bookmark BibSonomy logo Mendeley logo Reddit logo ScienceWISE logo (*) Bibliographic Tools Bibliographic and Citation Tools [ ] Bibliographic Explorer Toggle Bibliographic Explorer (What is the Explorer?) [ ] Litmaps Toggle Litmaps (What is Litmaps?) ( ) Code & Data Code and Data Associated with this Article [ ] arXiv Links to Code Toggle arXiv Links to Code & Data (What is Links to Code & Data?) ( ) Related Papers Recommenders and Search Tools [ ] Connected Papers Toggle Connected Papers (What is Connected Papers?) [ ] Core recommender toggle CORE Recommender (What is CORE?) ( ) About arXivLabs arXivLabs: experimental projects with community collaborators arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website. Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them. Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs and how to get involved. Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?) * About * Help * Click here to contact arXiv Contact * Click here to subscribe Subscribe * Copyright * Privacy Policy * Web Accessibility Assistance * arXiv Operational Status Get status notifications via email or slack