https://www.wired.com/story/how-underground-fiber-optics-spy-on-humans-moving-above/ Skip to main content Open Navigation Menu To revist this article, visit My Profile, then View saved stories. Close Alert WIRED How Underground Fiber Optics Spy on Humans Moving Above * Backchannel * Business * Culture * Gear * Ideas * Science * Security More To revist this article, visit My Profile, then View saved stories. Close Alert Sign In Search * Backchannel * Business * Culture * Gear * Ideas * Science * Security link banner logo * How to Get a Vaccine Appointment * Best Face Masks * Covid-19 FAQ * Newsletter * Latest News Matt Simon Science 06.28.2021 12:00 PM How Underground Fiber Optics Spy on Humans Moving Above Vibrations from cars and pedestrians create unique signals in cables. Now scientists have used the trick to show how Covid-19 brought life to a halt. * * * * To revist this article, visit My Profile, then View saved stories . fibersPhotograph: Lawrence Manning/Getty Images * * * * To revist this article, visit My Profile, then View saved stories . When last spring's lockdown quieted the Penn State campus and surrounding town of State College, a jury-rigged instrument was "listening." A team of researchers from the university had tapped into an underground telecom fiber optic cable, which runs two and half miles across campus, and turned it into a kind of scientific surveillance device. By shining a laser through the fiber optics, the scientists could detect vibrations from above ground thanks to the way the cable ever so slightly deformed. As a car rolled across the subterranean cable or a person walked by, the ground would transmit their unique seismic signature. So without visually surveilling the surface, the scientists could paint a detailed portrait of how a once-bustling community ground to a halt, and slowly came back to life as the lockdown eased. They could tell, for instance, that foot traffic on campus almost disappeared in April following the onset of lockdown, and stayed gone through June. But after initially declining, vehicle traffic began picking up. "You can see people walking is still very minimal compared to the normal days, but the vehicle traffic actually is back to almost normal," says Penn State seismologist Tieyuan Zhu, lead author on a new paper describing the work in the journal The Seismic Record. "This fiber optic cable actually can distinguish such a subtle signal." More specifically, it's the frequency in the signal. A human footstep generates vibrations with frequencies between 1 and 5 hertz, while car traffic is more like 40 or 50 hertz. Vibrations from construction machinery jump up past 100 hertz. Fiber optic cables work by perfectly trapping pulses of light and transporting them vast distances as signals. But when a car or person passes overhead, the vibrations introduce a disturbance, or imperfection: a tiny amount of that light scatters back to the source . Because the speed of light is a known quantity, the Penn State researchers could shine a laser through a single fiber optic strand and measure vibrations at different lengths of the cable by calculating the time it took the scattered light to travel. The technique is known in geoscience as distributed acoustic sensing, or DAS. A traditional seismograph, which registers shaking with the physical movement of its internal parts, only measures activity at one location on Earth. But using this technique, the scientists could sample over 2,000 spots along the 2.5 miles of cable--one every 6 and a half feet--giving them a superfine resolution of activity above ground. They did this between March 2020, when lockdown set in, and June 2020, when businesses in State College had begun reopening. Just from those vibrational signals, DAS could show that on the western side of campus, where a new parking garage was under development, there was no industrial activity in April as construction halted. In June, the researchers not only detected the vibrations from the restarted machinery, but could actually pick out the construction vehicles, which hummed along at a lower frequency. Still, they noted, by this time pedestrian activity on campus had barely recovered, even though some pandemic restrictions had eased. DAS could be a powerful tool to track people's movement: Instead of sifting through cell phone location data, researchers could instead tap into fiber optic cables to track the passage of pedestrians and cars. But the technology can't exactly identify a car or person. "You can say if it's a car, or if it's a truck, or it's a bike. But you cannot say, 'Oh, this is a Nissan Sentra, 2019,'" says Stanford University geophysicist Ariel Lellouch, who uses DAS but wasn't involved in this study but did peer-review it. "Anonymity of DAS is one of the biggest benefits, actually." Even if you wanted to track a person as they traveled through a city, they'd have to be continuously walking along the cable you're monitoring. As soon as they'd veer off-course, you'd lose their seismic signal. "Roughly speaking, if you have a fiber and someone is walking along that fiber--let's say it's in the desert--and that's the only person that's walking, yes, you can track," says Lellouch. "But you cannot attribute it to a specific person." Basically, if you want to track an individual at a distance, you'd be way better off with binoculars or their cell data. Lately, the use of DAS is booming across the sciences, thanks to "dark fiber." As the internet grew in the 1990s, telecom companies began laying down a whole lot of fiber optic cable. The cable itself is relatively cheap compared to the labor it takes to dig the holes to lay it, so, in anticipation of the web boom, companies planted more than they needed. Today, much of that fiber is still unused, or "dark," available for scientists to rent out for experiments. Its availability depends on the location, though. "So maybe downtown New York, between the stock exchange and New Jersey, there's a lot of contention for that fiber," says Rice University geophysicist Jonathan Ajo-Franklin, who wasn't involved in this new paper but is an associate editor at the journal publishing it. But, he adds, "going across rural Nevada on a long-haul route, maybe there's extra that you can make use of." Unlike traditional seismometers, this cable is inexpensive and doesn't require a source of power. With DAS, you just need an "interrogator" device that fires the laser and receives the data coming through the fibers. "So it's really a great opportunity if you want to acquire this closely spaced data to make measurements of earthquakes or surface waves or urban mobility," Ajo-Franklin says. For instance, Ajo-Franklin once used a 17-mile stretch of dark fiber near Sacramento to record 7 months of earthquakes, large and small. Civil engineers are already using DAS to study soil deformation, and biologists are even using offshore fiber optic cables to listen in on whales. (Sound propagates as a vibration, after all.) "It's just really exploding in terms of the applications," says Ajo-Franklin. "People are embedding fibers in glaciers and dragging them behind boats in the free water column to make temperature measurements. It's really kind of an amazing set of technologies." So the next time you're out for a stroll, stop to appreciate the science that may be humming along under your feet. Or, if you're feeling puckish, jump up and down really hard. --------------------------------------------------------------------- More Great WIRED Stories * The latest on tech, science, and more: Get our newsletters! * The battle between the lithium mine and the wildflower * No, Covid-19 vaccines won't make you magnetic. Here's why * DuckDuckGo's quest to prove online privacy is possible * A new wave of dating apps takes cues from TikTok and Gen Z * Your favorite mobile apps that can also run in a web browser * [?] Explore AI like never before with our new database * WIRED Games: Get the latest tips, reviews, and more * [?] Want the best tools to get healthy? Check out our Gear team's picks for the best fitness trackers, running gear (including shoes and socks), and best headphones [matt_simon] Matt Simon is a science journalist at WIRED, where he covers biology, robotics, cannabis, and the environment. He's also the author of Plight of the Living Dead: What Real-Life Zombies Reveal About Our World--And Ourselves, and The Wasp That Brainwashed the Caterpillar, which won an Alex Award. Staff Writer * Featured Video Dr. Seema Yasmin Debunks Coronavirus Myths Epidemic expert Dr. Seema Yasmin helps debunk some common medical myths surrounding Covid-19. Will drinking water flush the virus out? Can you take ibuprofen? Will garlic prevent infection? Can you hold your breath to test if you have coronavirus? TopicsphysicsCOVID-19 WIRED WIRED is where tomorrow is realized. It is the essential source of information and ideas that make sense of a world in constant transformation. The WIRED conversation illuminates how technology is changing every aspect of our lives--from culture to business, science to design. The breakthroughs and innovations that we uncover lead to new ways of thinking, new connections, and new industries. * * * * * * More From WIRED * Subscribe * Newsletters * FAQ * Wired Staff * Press Center Contact * Advertise * Contact Us * Customer Care * Send a tip securely to WIRED * Jobs * RSS * Site Map * Accessibility Help * Conde Nast Store * Conde Nast Spotlight * Do Not Sell My Personal Info (c) 2021 Conde Nast. All rights reserved. Use of this site constitutes acceptance of our User Agreement and Privacy Policy and Cookie Statement and Your California Privacy Rights. Wired may earn a portion of sales from products that are purchased through our site as part of our Affiliate Partnerships with retailers. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Conde Nast. Ad Choices