https://arxiv.org/abs/2103.05623 close this message Donate to arXiv Please join the Simons Foundation and our generous member organizations in supporting arXiv during our giving campaign September 23-27. 100% of your contribution will fund improvements and new initiatives to benefit arXiv's global scientific community. DONATE [secure site, no need to create account] Skip to main content Cornell University We gratefully acknowledge support from the Simons Foundation and member institutions. arXiv.org > physics > arXiv:2103.05623 [ ] Help | Advanced Search [All fields ] Search arXiv Cornell University Logo [ ] GO quick links * Login * Help Pages * About Physics > Physics and Society arXiv:2103.05623 (physics) [Submitted on 9 Mar 2021] Title:The Physics of Financial Networks Authors:Marco Bardoscia, Paolo Barucca, Stefano Battiston, Fabio Caccioli, Giulio Cimini, Diego Garlaschelli, Fabio Saracco, Tiziano Squartini, Guido Caldarelli Download PDF Abstract: The field of Financial Networks is a paramount example of the novel applications of Statistical Physics that have made possible by the present data revolution. As the total value of the global financial market has vastly outgrown the value of the real economy, financial institutions on this planet have created a web of interactions whose size and topology calls for a quantitative analysis by means of Complex Networks. Financial Networks are not only a playground for the use of basic tools of statistical physics as ensemble representation and entropy maximization; rather, their particular dynamics and evolution triggered theoretical advancements as the definition of DebtRank to measure the impact and diffusion of shocks in the whole systems. In this review we present the state of the art in this field, starting from the different definitions of financial networks (based either on loans, on assets ownership, on contracts involving several parties -- such as credit default swaps, to multiplex representation when firms are introduced in the game and a link with real economy is drawn) and then discussing the various dynamics of financial contagion as well as applications in financial network inference and validation. We believe that this analysis is particularly timely since financial stability as well as recent innovations in climate finance, once properly analysed and understood in terms of complex network theory, can play a pivotal role in the transformation of our society towards a more sustainable world. Comments: version submitted to Nature Reviews Physics Physics and Society (physics.soc-ph); Statistical Mechanics Subjects: (cond-mat.stat-mech); Social and Information Networks (cs.SI); Risk Management (q-fin.RM) Cite as: arXiv:2103.05623 [physics.soc-ph] (or arXiv:2103.05623v1 [physics.soc-ph] for this version) Submission history From: Giulio Cimini [view email] [v1] Tue, 9 Mar 2021 18:52:57 UTC (1,670 KB) Full-text links: Download: * PDF * Other formats (license) Current browse context: physics.soc-ph < prev | next > new | recent | 2103 Change to browse by: cond-mat cond-mat.stat-mech cs cs.SI physics q-fin q-fin.RM References & Citations * NASA ADS * Google Scholar * Semantic Scholar a export bibtex citation Loading... Bibtex formatted citation x [loading... ] Data provided by: Bookmark BibSonomy logo Mendeley logo Reddit logo ScienceWISE logo (*) Bibliographic Tools Bibliographic and Citation Tools [ ] Bibliographic Explorer Toggle Bibliographic Explorer (What is the Explorer?) ( ) Code & Data Code and Data Associated with this Article [ ] arXiv Links to Code Toggle arXiv Links to Code & Data (What is Links to Code & Data?) ( ) Related Papers Recommenders and Search Tools [ ] Connected Papers Toggle Connected Papers (What is Connected Papers?) [ ] Core recommender toggle CORE Recommender (What is CORE?) ( ) About arXivLabs arXivLabs: experimental projects with community collaborators arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website. Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them. Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs and how to get involved. Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?) * About * Help * Click here to contact arXiv Contact * Click here to subscribe Subscribe * Copyright * Privacy Policy * Web Accessibility Assistance * arXiv Operational Status Get status notifications via email or slack