https://fungrim.org/ The Mathematical Functions Grimoire Fungrim logo Welcome! The Mathematical Functions Grimoire (Fungrim) is an open source library of formulas and data for special functions. Fungrim currently consists of 457 symbols (named mathematical objects), 3130 entries (definitions, formulas, tables, plots), and 82 topics (listings of entries). This is one example entry: 9ee8bc Details z [?](s)=2(2p)s-1sin[?] [?](ps2)G [?](1-s)z [?](1-s)\zeta\!\left(s\right) = 2 {\left(2 \pi\right)}^{s - 1} \sin\!\left(\frac{\pi s}{2}\right) \ Gamma\!\left(1 - s\right) \zeta\!\left(1 - s\right)z(s)=2(2p)s-1sin(2 ps )G(1-s)z(1-s) Assumptions:s[?]C and[?] s[?]Z>=0s \in \mathbb{C} \;\mathbin{\operatorname {and}}\; s \notin \mathbb{Z}_{\ge 0}s[?]Cands[?]/ Z>=0 Alternative assumptions:s[?]C[[x]] and[?] s[?]Z>=0s \in \mathbb{C}[[x]] \; \mathbin{\operatorname{and}}\; s \notin \mathbb{Z}_{\ge 0}s[?]C[[x]]and s[?]/ Z>=0 TeX: \zeta\!\left(s\right) = 2 {\left(2 \pi\right)}^{s - 1} \sin\!\left(\frac{\pi s}{2}\right) \Gamma\!\left(1 - s\right) \zeta\!\left(1 - s\right) s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; s \notin \mathbb{Z}_{\ge 0} s \in \mathbb{C}[[x]] \;\mathbin{\operatorname{and}}\; s \notin \mathbb{Z}_{\ge 0} Definitions: Fungrim symbol Notation Short description RiemannZeta z [?](s)\zeta\!\left(s\ Riemann zeta function right)z(s) Pow ab{a}^{b}ab Power Pi p\pip The constant pi (3.14...) Sin sin[?](z)\sin(z)sin(z) Sine Gamma G(z)\Gamma(z)G(z) Gamma function CC C\mathbb{C}C Complex numbers ZZGreaterEqual Z>=n\mathbb{Z}_{\ge n}Z>=n Integers greater than or equal to n PowerSeries K[[x]]K[[x]]K[[x]] Formal power series Source code for this entry: Entry(ID("9ee8bc"), Formula(Equal(RiemannZeta(s), Mul(Mul(Mul(Mul(2, Pow(Mul(2, Pi), Sub(s, 1))), Sin(Div(Mul(Pi, s), 2))), Gamma(Sub(1, s))), RiemannZeta(Sub(1, s))))), Variables(s), Assumptions(And(Element(s, CC), NotElement(s, ZZGreaterEqual(0))), And(Element(s, PowerSeries(CC, SerX)), NotElement(s, ZZGreaterEqual(0))))) The Fungrim website provides a permanent ID and URL for each entry, symbol or topic. Click "Details" to show an expanded view of an entry, or click the ID (9ee8bc) to show the expanded view on its own page. All data in Fungrim is represented in semantic form designed to be usable by computer algebra software. Browse by topic * All topics in alphabetical order * Fundamentals + Symbolic expressions + Elementary logic and set theory + Numbers and infinities + Operators + Complex plane * Constants + Pi + Imaginary unit + Euler's constant + Golden ratio + Catalan's constant * Elementary functions + Complex parts + Exponential function + Natural logarithm + Square roots + Powers + Sine + Inverse tangent + Sinc function + Lambert W-function * Combinatorial and integer functions + Integer sequences + Greatest common divisor + Totient function + Factorials and binomial coefficients + Fibonacci numbers + Prime numbers + Partition function + Bernoulli numbers and polynomials + Stirling numbers + Bell numbers + Landau's function * Gamma function + Gamma function + Digamma function + Beta function + Barnes G-function * Hypergeometric functions + Gauss hypergeometric function + Confluent hypergeometric functions + Error functions + Airy functions + Bessel functions + Coulomb wave functions * Orthogonal polynomials + Legendre polynomials + Chebyshev polynomials * Zeta and L-functions + Riemann zeta function + Riemann hypothesis + Hurwitz zeta function + Stieltjes constants + Dirichlet characters + Dirichlet L-functions + Multiple zeta values * Modular and elliptic functions + Modular transformations + Jacobi theta functions + Dedekind eta function + Modular j-invariant + Modular lambda function + Eisenstein series + Weierstrass elliptic functions * Elliptic integrals + Arithmetic-geometric mean + Legendre elliptic integrals + Carlson symmetric elliptic integrals * Tables of sums, products, integrals... + Definite integrals * Numerical analysis + General analytic functions + Gaussian quadrature Recommended topic (relatively complete) Browse by symbol * Table of defined symbols (247 total entries) Browse real numbers (Ordner) * Ordner: index of real numbers Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub. 2021-03-15 19:12:00.328586 UTC