trees.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       trees.c (44070B)
       ---
            1 /* trees.c -- output deflated data using Huffman coding
            2  * Copyright (C) 1995-2005 Jean-loup Gailly
            3  * For conditions of distribution and use, see copyright notice in zlib.h
            4  */
            5 
            6 /*
            7  *  ALGORITHM
            8  *
            9  *      The "deflation" process uses several Huffman trees. The more
           10  *      common source values are represented by shorter bit sequences.
           11  *
           12  *      Each code tree is stored in a compressed form which is itself
           13  * a Huffman encoding of the lengths of all the code strings (in
           14  * ascending order by source values).  The actual code strings are
           15  * reconstructed from the lengths in the inflate process, as described
           16  * in the deflate specification.
           17  *
           18  *  REFERENCES
           19  *
           20  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
           21  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
           22  *
           23  *      Storer, James A.
           24  *          Data Compression:  Methods and Theory, pp. 49-50.
           25  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
           26  *
           27  *      Sedgewick, R.
           28  *          Algorithms, p290.
           29  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
           30  */
           31 
           32 /* @(#) $Id: trees.c 1925 2005-10-06 19:32:02Z baford $ */
           33 
           34 /* #define GEN_TREES_H */
           35 
           36 #include "deflate.h"
           37 
           38 #ifdef DEBUG
           39 #  include <ctype.h>
           40 #endif
           41 
           42 /* ===========================================================================
           43  * Constants
           44  */
           45 
           46 #define MAX_BL_BITS 7
           47 /* Bit length codes must not exceed MAX_BL_BITS bits */
           48 
           49 #define END_BLOCK 256
           50 /* end of block literal code */
           51 
           52 #define REP_3_6      16
           53 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
           54 
           55 #define REPZ_3_10    17
           56 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
           57 
           58 #define REPZ_11_138  18
           59 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
           60 
           61 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
           62    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
           63 
           64 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
           65    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
           66 
           67 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
           68    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
           69 
           70 local const uch bl_order[BL_CODES]
           71    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
           72 /* The lengths of the bit length codes are sent in order of decreasing
           73  * probability, to avoid transmitting the lengths for unused bit length codes.
           74  */
           75 
           76 #define Buf_size (8 * 2*sizeof(char))
           77 /* Number of bits used within bi_buf. (bi_buf might be implemented on
           78  * more than 16 bits on some systems.)
           79  */
           80 
           81 /* ===========================================================================
           82  * Local data. These are initialized only once.
           83  */
           84 
           85 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
           86 
           87 #if defined(GEN_TREES_H) || !defined(STDC)
           88 /* non ANSI compilers may not accept trees.h */
           89 
           90 local ct_data static_ltree[L_CODES+2];
           91 /* The static literal tree. Since the bit lengths are imposed, there is no
           92  * need for the L_CODES extra codes used during heap construction. However
           93  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
           94  * below).
           95  */
           96 
           97 local ct_data static_dtree[D_CODES];
           98 /* The static distance tree. (Actually a trivial tree since all codes use
           99  * 5 bits.)
          100  */
          101 
          102 uch _dist_code[DIST_CODE_LEN];
          103 /* Distance codes. The first 256 values correspond to the distances
          104  * 3 .. 258, the last 256 values correspond to the top 8 bits of
          105  * the 15 bit distances.
          106  */
          107 
          108 uch _length_code[MAX_MATCH-MIN_MATCH+1];
          109 /* length code for each normalized match length (0 == MIN_MATCH) */
          110 
          111 local int base_length[LENGTH_CODES];
          112 /* First normalized length for each code (0 = MIN_MATCH) */
          113 
          114 local int base_dist[D_CODES];
          115 /* First normalized distance for each code (0 = distance of 1) */
          116 
          117 #else
          118 #  include "trees.h"
          119 #endif /* GEN_TREES_H */
          120 
          121 struct static_tree_desc_s {
          122     const ct_data *static_tree;  /* static tree or NULL */
          123     const intf *extra_bits;      /* extra bits for each code or NULL */
          124     int     extra_base;          /* base index for extra_bits */
          125     int     elems;               /* max number of elements in the tree */
          126     int     max_length;          /* max bit length for the codes */
          127 };
          128 
          129 local static_tree_desc  static_l_desc =
          130 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
          131 
          132 local static_tree_desc  static_d_desc =
          133 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
          134 
          135 local static_tree_desc  static_bl_desc =
          136 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
          137 
          138 /* ===========================================================================
          139  * Local (static) routines in this file.
          140  */
          141 
          142 local void tr_static_init OF((void));
          143 local void init_block     OF((deflate_state *s));
          144 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
          145 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
          146 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
          147 local void build_tree     OF((deflate_state *s, tree_desc *desc));
          148 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
          149 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
          150 local int  build_bl_tree  OF((deflate_state *s));
          151 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
          152                               int blcodes));
          153 local void compress_block OF((deflate_state *s, ct_data *ltree,
          154                               ct_data *dtree));
          155 local void set_data_type  OF((deflate_state *s));
          156 local unsigned bi_reverse OF((unsigned value, int length));
          157 local void bi_windup      OF((deflate_state *s));
          158 local void bi_flush       OF((deflate_state *s));
          159 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
          160                               int header));
          161 
          162 #ifdef GEN_TREES_H
          163 local void gen_trees_header OF((void));
          164 #endif
          165 
          166 #ifndef DEBUG
          167 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
          168    /* Send a code of the given tree. c and tree must not have side effects */
          169 
          170 #else /* DEBUG */
          171 #  define send_code(s, c, tree) \
          172      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
          173        send_bits(s, tree[c].Code, tree[c].Len); }
          174 #endif
          175 
          176 /* ===========================================================================
          177  * Output a short LSB first on the stream.
          178  * IN assertion: there is enough room in pendingBuf.
          179  */
          180 #define put_short(s, w) { \
          181     put_byte(s, (uch)((w) & 0xff)); \
          182     put_byte(s, (uch)((ush)(w) >> 8)); \
          183 }
          184 
          185 /* ===========================================================================
          186  * Send a value on a given number of bits.
          187  * IN assertion: length <= 16 and value fits in length bits.
          188  */
          189 #ifdef DEBUG
          190 local void send_bits      OF((deflate_state *s, int value, int length));
          191 
          192 local void send_bits(s, value, length)
          193     deflate_state *s;
          194     int value;  /* value to send */
          195     int length; /* number of bits */
          196 {
          197     Tracevv((stderr," l %2d v %4x ", length, value));
          198     Assert(length > 0 && length <= 15, "invalid length");
          199     s->bits_sent += (ulg)length;
          200 
          201     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
          202      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
          203      * unused bits in value.
          204      */
          205     if (s->bi_valid > (int)Buf_size - length) {
          206         s->bi_buf |= (value << s->bi_valid);
          207         put_short(s, s->bi_buf);
          208         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
          209         s->bi_valid += length - Buf_size;
          210     } else {
          211         s->bi_buf |= value << s->bi_valid;
          212         s->bi_valid += length;
          213     }
          214 }
          215 #else /* !DEBUG */
          216 
          217 #define send_bits(s, value, length) \
          218 { int len = length;\
          219   if (s->bi_valid > (int)Buf_size - len) {\
          220     int val = value;\
          221     s->bi_buf |= (val << s->bi_valid);\
          222     put_short(s, s->bi_buf);\
          223     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
          224     s->bi_valid += len - Buf_size;\
          225   } else {\
          226     s->bi_buf |= (value) << s->bi_valid;\
          227     s->bi_valid += len;\
          228   }\
          229 }
          230 #endif /* DEBUG */
          231 
          232 
          233 /* the arguments must not have side effects */
          234 
          235 /* ===========================================================================
          236  * Initialize the various 'constant' tables.
          237  */
          238 local void tr_static_init()
          239 {
          240 #if defined(GEN_TREES_H) || !defined(STDC)
          241     static int static_init_done = 0;
          242     int n;        /* iterates over tree elements */
          243     int bits;     /* bit counter */
          244     int length;   /* length value */
          245     int code;     /* code value */
          246     int dist;     /* distance index */
          247     ush bl_count[MAX_BITS+1];
          248     /* number of codes at each bit length for an optimal tree */
          249 
          250     if (static_init_done) return;
          251 
          252     /* For some embedded targets, global variables are not initialized: */
          253     static_l_desc.static_tree = static_ltree;
          254     static_l_desc.extra_bits = extra_lbits;
          255     static_d_desc.static_tree = static_dtree;
          256     static_d_desc.extra_bits = extra_dbits;
          257     static_bl_desc.extra_bits = extra_blbits;
          258 
          259     /* Initialize the mapping length (0..255) -> length code (0..28) */
          260     length = 0;
          261     for (code = 0; code < LENGTH_CODES-1; code++) {
          262         base_length[code] = length;
          263         for (n = 0; n < (1<<extra_lbits[code]); n++) {
          264             _length_code[length++] = (uch)code;
          265         }
          266     }
          267     Assert (length == 256, "tr_static_init: length != 256");
          268     /* Note that the length 255 (match length 258) can be represented
          269      * in two different ways: code 284 + 5 bits or code 285, so we
          270      * overwrite length_code[255] to use the best encoding:
          271      */
          272     _length_code[length-1] = (uch)code;
          273 
          274     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
          275     dist = 0;
          276     for (code = 0 ; code < 16; code++) {
          277         base_dist[code] = dist;
          278         for (n = 0; n < (1<<extra_dbits[code]); n++) {
          279             _dist_code[dist++] = (uch)code;
          280         }
          281     }
          282     Assert (dist == 256, "tr_static_init: dist != 256");
          283     dist >>= 7; /* from now on, all distances are divided by 128 */
          284     for ( ; code < D_CODES; code++) {
          285         base_dist[code] = dist << 7;
          286         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
          287             _dist_code[256 + dist++] = (uch)code;
          288         }
          289     }
          290     Assert (dist == 256, "tr_static_init: 256+dist != 512");
          291 
          292     /* Construct the codes of the static literal tree */
          293     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
          294     n = 0;
          295     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
          296     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
          297     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
          298     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
          299     /* Codes 286 and 287 do not exist, but we must include them in the
          300      * tree construction to get a canonical Huffman tree (longest code
          301      * all ones)
          302      */
          303     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
          304 
          305     /* The static distance tree is trivial: */
          306     for (n = 0; n < D_CODES; n++) {
          307         static_dtree[n].Len = 5;
          308         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
          309     }
          310     static_init_done = 1;
          311 
          312 #  ifdef GEN_TREES_H
          313     gen_trees_header();
          314 #  endif
          315 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
          316 }
          317 
          318 /* ===========================================================================
          319  * Genererate the file trees.h describing the static trees.
          320  */
          321 #ifdef GEN_TREES_H
          322 #  ifndef DEBUG
          323 #    include <stdio.h>
          324 #  endif
          325 
          326 #  define SEPARATOR(i, last, width) \
          327       ((i) == (last)? "\n};\n\n" :    \
          328        ((i) % (width) == (width)-1 ? ",\n" : ", "))
          329 
          330 void gen_trees_header()
          331 {
          332     FILE *header = fopen("trees.h", "w");
          333     int i;
          334 
          335     Assert (header != NULL, "Can't open trees.h");
          336     fprintf(header,
          337             "/* header created automatically with -DGEN_TREES_H */\n\n");
          338 
          339     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
          340     for (i = 0; i < L_CODES+2; i++) {
          341         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
          342                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
          343     }
          344 
          345     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
          346     for (i = 0; i < D_CODES; i++) {
          347         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
          348                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
          349     }
          350 
          351     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
          352     for (i = 0; i < DIST_CODE_LEN; i++) {
          353         fprintf(header, "%2u%s", _dist_code[i],
          354                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
          355     }
          356 
          357     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
          358     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
          359         fprintf(header, "%2u%s", _length_code[i],
          360                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
          361     }
          362 
          363     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
          364     for (i = 0; i < LENGTH_CODES; i++) {
          365         fprintf(header, "%1u%s", base_length[i],
          366                 SEPARATOR(i, LENGTH_CODES-1, 20));
          367     }
          368 
          369     fprintf(header, "local const int base_dist[D_CODES] = {\n");
          370     for (i = 0; i < D_CODES; i++) {
          371         fprintf(header, "%5u%s", base_dist[i],
          372                 SEPARATOR(i, D_CODES-1, 10));
          373     }
          374 
          375     fclose(header);
          376 }
          377 #endif /* GEN_TREES_H */
          378 
          379 /* ===========================================================================
          380  * Initialize the tree data structures for a new zlib stream.
          381  */
          382 void _tr_init(s)
          383     deflate_state *s;
          384 {
          385     tr_static_init();
          386 
          387     s->l_desc.dyn_tree = s->dyn_ltree;
          388     s->l_desc.stat_desc = &static_l_desc;
          389 
          390     s->d_desc.dyn_tree = s->dyn_dtree;
          391     s->d_desc.stat_desc = &static_d_desc;
          392 
          393     s->bl_desc.dyn_tree = s->bl_tree;
          394     s->bl_desc.stat_desc = &static_bl_desc;
          395 
          396     s->bi_buf = 0;
          397     s->bi_valid = 0;
          398     s->last_eob_len = 8; /* enough lookahead for inflate */
          399 #ifdef DEBUG
          400     s->compressed_len = 0L;
          401     s->bits_sent = 0L;
          402 #endif
          403 
          404     /* Initialize the first block of the first file: */
          405     init_block(s);
          406 }
          407 
          408 /* ===========================================================================
          409  * Initialize a new block.
          410  */
          411 local void init_block(s)
          412     deflate_state *s;
          413 {
          414     int n; /* iterates over tree elements */
          415 
          416     /* Initialize the trees. */
          417     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
          418     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
          419     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
          420 
          421     s->dyn_ltree[END_BLOCK].Freq = 1;
          422     s->opt_len = s->static_len = 0L;
          423     s->last_lit = s->matches = 0;
          424 }
          425 
          426 #define SMALLEST 1
          427 /* Index within the heap array of least frequent node in the Huffman tree */
          428 
          429 
          430 /* ===========================================================================
          431  * Remove the smallest element from the heap and recreate the heap with
          432  * one less element. Updates heap and heap_len.
          433  */
          434 #define pqremove(s, tree, top) \
          435 {\
          436     top = s->heap[SMALLEST]; \
          437     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
          438     pqdownheap(s, tree, SMALLEST); \
          439 }
          440 
          441 /* ===========================================================================
          442  * Compares to subtrees, using the tree depth as tie breaker when
          443  * the subtrees have equal frequency. This minimizes the worst case length.
          444  */
          445 #define smaller(tree, n, m, depth) \
          446    (tree[n].Freq < tree[m].Freq || \
          447    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
          448 
          449 /* ===========================================================================
          450  * Restore the heap property by moving down the tree starting at node k,
          451  * exchanging a node with the smallest of its two sons if necessary, stopping
          452  * when the heap property is re-established (each father smaller than its
          453  * two sons).
          454  */
          455 local void pqdownheap(s, tree, k)
          456     deflate_state *s;
          457     ct_data *tree;  /* the tree to restore */
          458     int k;               /* node to move down */
          459 {
          460     int v = s->heap[k];
          461     int j = k << 1;  /* left son of k */
          462     while (j <= s->heap_len) {
          463         /* Set j to the smallest of the two sons: */
          464         if (j < s->heap_len &&
          465             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
          466             j++;
          467         }
          468         /* Exit if v is smaller than both sons */
          469         if (smaller(tree, v, s->heap[j], s->depth)) break;
          470 
          471         /* Exchange v with the smallest son */
          472         s->heap[k] = s->heap[j];  k = j;
          473 
          474         /* And continue down the tree, setting j to the left son of k */
          475         j <<= 1;
          476     }
          477     s->heap[k] = v;
          478 }
          479 
          480 /* ===========================================================================
          481  * Compute the optimal bit lengths for a tree and update the total bit length
          482  * for the current block.
          483  * IN assertion: the fields freq and dad are set, heap[heap_max] and
          484  *    above are the tree nodes sorted by increasing frequency.
          485  * OUT assertions: the field len is set to the optimal bit length, the
          486  *     array bl_count contains the frequencies for each bit length.
          487  *     The length opt_len is updated; static_len is also updated if stree is
          488  *     not null.
          489  */
          490 local void gen_bitlen(s, desc)
          491     deflate_state *s;
          492     tree_desc *desc;    /* the tree descriptor */
          493 {
          494     ct_data *tree        = desc->dyn_tree;
          495     int max_code         = desc->max_code;
          496     const ct_data *stree = desc->stat_desc->static_tree;
          497     const intf *extra    = desc->stat_desc->extra_bits;
          498     int base             = desc->stat_desc->extra_base;
          499     int max_length       = desc->stat_desc->max_length;
          500     int h;              /* heap index */
          501     int n, m;           /* iterate over the tree elements */
          502     int bits;           /* bit length */
          503     int xbits;          /* extra bits */
          504     ush f;              /* frequency */
          505     int overflow = 0;   /* number of elements with bit length too large */
          506 
          507     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
          508 
          509     /* In a first pass, compute the optimal bit lengths (which may
          510      * overflow in the case of the bit length tree).
          511      */
          512     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
          513 
          514     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
          515         n = s->heap[h];
          516         bits = tree[tree[n].Dad].Len + 1;
          517         if (bits > max_length) bits = max_length, overflow++;
          518         tree[n].Len = (ush)bits;
          519         /* We overwrite tree[n].Dad which is no longer needed */
          520 
          521         if (n > max_code) continue; /* not a leaf node */
          522 
          523         s->bl_count[bits]++;
          524         xbits = 0;
          525         if (n >= base) xbits = extra[n-base];
          526         f = tree[n].Freq;
          527         s->opt_len += (ulg)f * (bits + xbits);
          528         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
          529     }
          530     if (overflow == 0) return;
          531 
          532     Trace((stderr,"\nbit length overflow\n"));
          533     /* This happens for example on obj2 and pic of the Calgary corpus */
          534 
          535     /* Find the first bit length which could increase: */
          536     do {
          537         bits = max_length-1;
          538         while (s->bl_count[bits] == 0) bits--;
          539         s->bl_count[bits]--;      /* move one leaf down the tree */
          540         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
          541         s->bl_count[max_length]--;
          542         /* The brother of the overflow item also moves one step up,
          543          * but this does not affect bl_count[max_length]
          544          */
          545         overflow -= 2;
          546     } while (overflow > 0);
          547 
          548     /* Now recompute all bit lengths, scanning in increasing frequency.
          549      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
          550      * lengths instead of fixing only the wrong ones. This idea is taken
          551      * from 'ar' written by Haruhiko Okumura.)
          552      */
          553     for (bits = max_length; bits != 0; bits--) {
          554         n = s->bl_count[bits];
          555         while (n != 0) {
          556             m = s->heap[--h];
          557             if (m > max_code) continue;
          558             if ((unsigned) tree[m].Len != (unsigned) bits) {
          559                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
          560                 s->opt_len += ((long)bits - (long)tree[m].Len)
          561                               *(long)tree[m].Freq;
          562                 tree[m].Len = (ush)bits;
          563             }
          564             n--;
          565         }
          566     }
          567 }
          568 
          569 /* ===========================================================================
          570  * Generate the codes for a given tree and bit counts (which need not be
          571  * optimal).
          572  * IN assertion: the array bl_count contains the bit length statistics for
          573  * the given tree and the field len is set for all tree elements.
          574  * OUT assertion: the field code is set for all tree elements of non
          575  *     zero code length.
          576  */
          577 local void gen_codes (tree, max_code, bl_count)
          578     ct_data *tree;             /* the tree to decorate */
          579     int max_code;              /* largest code with non zero frequency */
          580     ushf *bl_count;            /* number of codes at each bit length */
          581 {
          582     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
          583     ush code = 0;              /* running code value */
          584     int bits;                  /* bit index */
          585     int n;                     /* code index */
          586 
          587     /* The distribution counts are first used to generate the code values
          588      * without bit reversal.
          589      */
          590     for (bits = 1; bits <= MAX_BITS; bits++) {
          591         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
          592     }
          593     /* Check that the bit counts in bl_count are consistent. The last code
          594      * must be all ones.
          595      */
          596     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
          597             "inconsistent bit counts");
          598     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
          599 
          600     for (n = 0;  n <= max_code; n++) {
          601         int len = tree[n].Len;
          602         if (len == 0) continue;
          603         /* Now reverse the bits */
          604         tree[n].Code = bi_reverse(next_code[len]++, len);
          605 
          606         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
          607              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
          608     }
          609 }
          610 
          611 /* ===========================================================================
          612  * Construct one Huffman tree and assigns the code bit strings and lengths.
          613  * Update the total bit length for the current block.
          614  * IN assertion: the field freq is set for all tree elements.
          615  * OUT assertions: the fields len and code are set to the optimal bit length
          616  *     and corresponding code. The length opt_len is updated; static_len is
          617  *     also updated if stree is not null. The field max_code is set.
          618  */
          619 local void build_tree(s, desc)
          620     deflate_state *s;
          621     tree_desc *desc; /* the tree descriptor */
          622 {
          623     ct_data *tree         = desc->dyn_tree;
          624     const ct_data *stree  = desc->stat_desc->static_tree;
          625     int elems             = desc->stat_desc->elems;
          626     int n, m;          /* iterate over heap elements */
          627     int max_code = -1; /* largest code with non zero frequency */
          628     int node;          /* new node being created */
          629 
          630     /* Construct the initial heap, with least frequent element in
          631      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
          632      * heap[0] is not used.
          633      */
          634     s->heap_len = 0, s->heap_max = HEAP_SIZE;
          635 
          636     for (n = 0; n < elems; n++) {
          637         if (tree[n].Freq != 0) {
          638             s->heap[++(s->heap_len)] = max_code = n;
          639             s->depth[n] = 0;
          640         } else {
          641             tree[n].Len = 0;
          642         }
          643     }
          644 
          645     /* The pkzip format requires that at least one distance code exists,
          646      * and that at least one bit should be sent even if there is only one
          647      * possible code. So to avoid special checks later on we force at least
          648      * two codes of non zero frequency.
          649      */
          650     while (s->heap_len < 2) {
          651         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
          652         tree[node].Freq = 1;
          653         s->depth[node] = 0;
          654         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
          655         /* node is 0 or 1 so it does not have extra bits */
          656     }
          657     desc->max_code = max_code;
          658 
          659     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
          660      * establish sub-heaps of increasing lengths:
          661      */
          662     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
          663 
          664     /* Construct the Huffman tree by repeatedly combining the least two
          665      * frequent nodes.
          666      */
          667     node = elems;              /* next internal node of the tree */
          668     do {
          669         pqremove(s, tree, n);  /* n = node of least frequency */
          670         m = s->heap[SMALLEST]; /* m = node of next least frequency */
          671 
          672         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
          673         s->heap[--(s->heap_max)] = m;
          674 
          675         /* Create a new node father of n and m */
          676         tree[node].Freq = tree[n].Freq + tree[m].Freq;
          677         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
          678                                 s->depth[n] : s->depth[m]) + 1);
          679         tree[n].Dad = tree[m].Dad = (ush)node;
          680 #ifdef DUMP_BL_TREE
          681         if (tree == s->bl_tree) {
          682             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
          683                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
          684         }
          685 #endif
          686         /* and insert the new node in the heap */
          687         s->heap[SMALLEST] = node++;
          688         pqdownheap(s, tree, SMALLEST);
          689 
          690     } while (s->heap_len >= 2);
          691 
          692     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
          693 
          694     /* At this point, the fields freq and dad are set. We can now
          695      * generate the bit lengths.
          696      */
          697     gen_bitlen(s, (tree_desc *)desc);
          698 
          699     /* The field len is now set, we can generate the bit codes */
          700     gen_codes ((ct_data *)tree, max_code, s->bl_count);
          701 }
          702 
          703 /* ===========================================================================
          704  * Scan a literal or distance tree to determine the frequencies of the codes
          705  * in the bit length tree.
          706  */
          707 local void scan_tree (s, tree, max_code)
          708     deflate_state *s;
          709     ct_data *tree;   /* the tree to be scanned */
          710     int max_code;    /* and its largest code of non zero frequency */
          711 {
          712     int n;                     /* iterates over all tree elements */
          713     int prevlen = -1;          /* last emitted length */
          714     int curlen;                /* length of current code */
          715     int nextlen = tree[0].Len; /* length of next code */
          716     int count = 0;             /* repeat count of the current code */
          717     int max_count = 7;         /* max repeat count */
          718     int min_count = 4;         /* min repeat count */
          719 
          720     if (nextlen == 0) max_count = 138, min_count = 3;
          721     tree[max_code+1].Len = (ush)0xffff; /* guard */
          722 
          723     for (n = 0; n <= max_code; n++) {
          724         curlen = nextlen; nextlen = tree[n+1].Len;
          725         if (++count < max_count && curlen == nextlen) {
          726             continue;
          727         } else if (count < min_count) {
          728             s->bl_tree[curlen].Freq += count;
          729         } else if (curlen != 0) {
          730             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
          731             s->bl_tree[REP_3_6].Freq++;
          732         } else if (count <= 10) {
          733             s->bl_tree[REPZ_3_10].Freq++;
          734         } else {
          735             s->bl_tree[REPZ_11_138].Freq++;
          736         }
          737         count = 0; prevlen = curlen;
          738         if (nextlen == 0) {
          739             max_count = 138, min_count = 3;
          740         } else if (curlen == nextlen) {
          741             max_count = 6, min_count = 3;
          742         } else {
          743             max_count = 7, min_count = 4;
          744         }
          745     }
          746 }
          747 
          748 /* ===========================================================================
          749  * Send a literal or distance tree in compressed form, using the codes in
          750  * bl_tree.
          751  */
          752 local void send_tree (s, tree, max_code)
          753     deflate_state *s;
          754     ct_data *tree; /* the tree to be scanned */
          755     int max_code;       /* and its largest code of non zero frequency */
          756 {
          757     int n;                     /* iterates over all tree elements */
          758     int prevlen = -1;          /* last emitted length */
          759     int curlen;                /* length of current code */
          760     int nextlen = tree[0].Len; /* length of next code */
          761     int count = 0;             /* repeat count of the current code */
          762     int max_count = 7;         /* max repeat count */
          763     int min_count = 4;         /* min repeat count */
          764 
          765     /* tree[max_code+1].Len = -1; */  /* guard already set */
          766     if (nextlen == 0) max_count = 138, min_count = 3;
          767 
          768     for (n = 0; n <= max_code; n++) {
          769         curlen = nextlen; nextlen = tree[n+1].Len;
          770         if (++count < max_count && curlen == nextlen) {
          771             continue;
          772         } else if (count < min_count) {
          773             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
          774 
          775         } else if (curlen != 0) {
          776             if (curlen != prevlen) {
          777                 send_code(s, curlen, s->bl_tree); count--;
          778             }
          779             Assert(count >= 3 && count <= 6, " 3_6?");
          780             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
          781 
          782         } else if (count <= 10) {
          783             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
          784 
          785         } else {
          786             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
          787         }
          788         count = 0; prevlen = curlen;
          789         if (nextlen == 0) {
          790             max_count = 138, min_count = 3;
          791         } else if (curlen == nextlen) {
          792             max_count = 6, min_count = 3;
          793         } else {
          794             max_count = 7, min_count = 4;
          795         }
          796     }
          797 }
          798 
          799 /* ===========================================================================
          800  * Construct the Huffman tree for the bit lengths and return the index in
          801  * bl_order of the last bit length code to send.
          802  */
          803 local int build_bl_tree(s)
          804     deflate_state *s;
          805 {
          806     int max_blindex;  /* index of last bit length code of non zero freq */
          807 
          808     /* Determine the bit length frequencies for literal and distance trees */
          809     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
          810     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
          811 
          812     /* Build the bit length tree: */
          813     build_tree(s, (tree_desc *)(&(s->bl_desc)));
          814     /* opt_len now includes the length of the tree representations, except
          815      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
          816      */
          817 
          818     /* Determine the number of bit length codes to send. The pkzip format
          819      * requires that at least 4 bit length codes be sent. (appnote.txt says
          820      * 3 but the actual value used is 4.)
          821      */
          822     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
          823         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
          824     }
          825     /* Update opt_len to include the bit length tree and counts */
          826     s->opt_len += 3*(max_blindex+1) + 5+5+4;
          827     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
          828             s->opt_len, s->static_len));
          829 
          830     return max_blindex;
          831 }
          832 
          833 /* ===========================================================================
          834  * Send the header for a block using dynamic Huffman trees: the counts, the
          835  * lengths of the bit length codes, the literal tree and the distance tree.
          836  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
          837  */
          838 local void send_all_trees(s, lcodes, dcodes, blcodes)
          839     deflate_state *s;
          840     int lcodes, dcodes, blcodes; /* number of codes for each tree */
          841 {
          842     int rank;                    /* index in bl_order */
          843 
          844     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
          845     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
          846             "too many codes");
          847     Tracev((stderr, "\nbl counts: "));
          848     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
          849     send_bits(s, dcodes-1,   5);
          850     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
          851     for (rank = 0; rank < blcodes; rank++) {
          852         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
          853         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
          854     }
          855     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
          856 
          857     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
          858     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
          859 
          860     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
          861     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
          862 }
          863 
          864 /* ===========================================================================
          865  * Send a stored block
          866  */
          867 void _tr_stored_block(s, buf, stored_len, eof)
          868     deflate_state *s;
          869     charf *buf;       /* input block */
          870     ulg stored_len;   /* length of input block */
          871     int eof;          /* true if this is the last block for a file */
          872 {
          873     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
          874 #ifdef DEBUG
          875     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
          876     s->compressed_len += (stored_len + 4) << 3;
          877 #endif
          878     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
          879 }
          880 
          881 /* ===========================================================================
          882  * Send one empty static block to give enough lookahead for inflate.
          883  * This takes 10 bits, of which 7 may remain in the bit buffer.
          884  * The current inflate code requires 9 bits of lookahead. If the
          885  * last two codes for the previous block (real code plus EOB) were coded
          886  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
          887  * the last real code. In this case we send two empty static blocks instead
          888  * of one. (There are no problems if the previous block is stored or fixed.)
          889  * To simplify the code, we assume the worst case of last real code encoded
          890  * on one bit only.
          891  */
          892 void _tr_align(s)
          893     deflate_state *s;
          894 {
          895     send_bits(s, STATIC_TREES<<1, 3);
          896     send_code(s, END_BLOCK, static_ltree);
          897 #ifdef DEBUG
          898     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
          899 #endif
          900     bi_flush(s);
          901     /* Of the 10 bits for the empty block, we have already sent
          902      * (10 - bi_valid) bits. The lookahead for the last real code (before
          903      * the EOB of the previous block) was thus at least one plus the length
          904      * of the EOB plus what we have just sent of the empty static block.
          905      */
          906     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
          907         send_bits(s, STATIC_TREES<<1, 3);
          908         send_code(s, END_BLOCK, static_ltree);
          909 #ifdef DEBUG
          910         s->compressed_len += 10L;
          911 #endif
          912         bi_flush(s);
          913     }
          914     s->last_eob_len = 7;
          915 }
          916 
          917 /* ===========================================================================
          918  * Determine the best encoding for the current block: dynamic trees, static
          919  * trees or store, and output the encoded block to the zip file.
          920  */
          921 void _tr_flush_block(s, buf, stored_len, eof)
          922     deflate_state *s;
          923     charf *buf;       /* input block, or NULL if too old */
          924     ulg stored_len;   /* length of input block */
          925     int eof;          /* true if this is the last block for a file */
          926 {
          927     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
          928     int max_blindex = 0;  /* index of last bit length code of non zero freq */
          929 
          930     /* Build the Huffman trees unless a stored block is forced */
          931     if (s->level > 0) {
          932 
          933         /* Check if the file is binary or text */
          934         if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
          935             set_data_type(s);
          936 
          937         /* Construct the literal and distance trees */
          938         build_tree(s, (tree_desc *)(&(s->l_desc)));
          939         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
          940                 s->static_len));
          941 
          942         build_tree(s, (tree_desc *)(&(s->d_desc)));
          943         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
          944                 s->static_len));
          945         /* At this point, opt_len and static_len are the total bit lengths of
          946          * the compressed block data, excluding the tree representations.
          947          */
          948 
          949         /* Build the bit length tree for the above two trees, and get the index
          950          * in bl_order of the last bit length code to send.
          951          */
          952         max_blindex = build_bl_tree(s);
          953 
          954         /* Determine the best encoding. Compute the block lengths in bytes. */
          955         opt_lenb = (s->opt_len+3+7)>>3;
          956         static_lenb = (s->static_len+3+7)>>3;
          957 
          958         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
          959                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
          960                 s->last_lit));
          961 
          962         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
          963 
          964     } else {
          965         Assert(buf != (char*)0, "lost buf");
          966         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
          967     }
          968 
          969 #ifdef FORCE_STORED
          970     if (buf != (char*)0) { /* force stored block */
          971 #else
          972     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
          973                        /* 4: two words for the lengths */
          974 #endif
          975         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
          976          * Otherwise we can't have processed more than WSIZE input bytes since
          977          * the last block flush, because compression would have been
          978          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
          979          * transform a block into a stored block.
          980          */
          981         _tr_stored_block(s, buf, stored_len, eof);
          982 
          983 #ifdef FORCE_STATIC
          984     } else if (static_lenb >= 0) { /* force static trees */
          985 #else
          986     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
          987 #endif
          988         send_bits(s, (STATIC_TREES<<1)+eof, 3);
          989         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
          990 #ifdef DEBUG
          991         s->compressed_len += 3 + s->static_len;
          992 #endif
          993     } else {
          994         send_bits(s, (DYN_TREES<<1)+eof, 3);
          995         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
          996                        max_blindex+1);
          997         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
          998 #ifdef DEBUG
          999         s->compressed_len += 3 + s->opt_len;
         1000 #endif
         1001     }
         1002     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
         1003     /* The above check is made mod 2^32, for files larger than 512 MB
         1004      * and uLong implemented on 32 bits.
         1005      */
         1006     init_block(s);
         1007 
         1008     if (eof) {
         1009         bi_windup(s);
         1010 #ifdef DEBUG
         1011         s->compressed_len += 7;  /* align on byte boundary */
         1012 #endif
         1013     }
         1014     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
         1015            s->compressed_len-7*eof));
         1016 }
         1017 
         1018 /* ===========================================================================
         1019  * Save the match info and tally the frequency counts. Return true if
         1020  * the current block must be flushed.
         1021  */
         1022 int _tr_tally (s, dist, lc)
         1023     deflate_state *s;
         1024     unsigned dist;  /* distance of matched string */
         1025     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
         1026 {
         1027     s->d_buf[s->last_lit] = (ush)dist;
         1028     s->l_buf[s->last_lit++] = (uch)lc;
         1029     if (dist == 0) {
         1030         /* lc is the unmatched char */
         1031         s->dyn_ltree[lc].Freq++;
         1032     } else {
         1033         s->matches++;
         1034         /* Here, lc is the match length - MIN_MATCH */
         1035         dist--;             /* dist = match distance - 1 */
         1036         Assert((ush)dist < (ush)MAX_DIST(s) &&
         1037                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
         1038                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
         1039 
         1040         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
         1041         s->dyn_dtree[d_code(dist)].Freq++;
         1042     }
         1043 
         1044 #ifdef TRUNCATE_BLOCK
         1045     /* Try to guess if it is profitable to stop the current block here */
         1046     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
         1047         /* Compute an upper bound for the compressed length */
         1048         ulg out_length = (ulg)s->last_lit*8L;
         1049         ulg in_length = (ulg)((long)s->strstart - s->block_start);
         1050         int dcode;
         1051         for (dcode = 0; dcode < D_CODES; dcode++) {
         1052             out_length += (ulg)s->dyn_dtree[dcode].Freq *
         1053                 (5L+extra_dbits[dcode]);
         1054         }
         1055         out_length >>= 3;
         1056         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
         1057                s->last_lit, in_length, out_length,
         1058                100L - out_length*100L/in_length));
         1059         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
         1060     }
         1061 #endif
         1062     return (s->last_lit == s->lit_bufsize-1);
         1063     /* We avoid equality with lit_bufsize because of wraparound at 64K
         1064      * on 16 bit machines and because stored blocks are restricted to
         1065      * 64K-1 bytes.
         1066      */
         1067 }
         1068 
         1069 /* ===========================================================================
         1070  * Send the block data compressed using the given Huffman trees
         1071  */
         1072 local void compress_block(s, ltree, dtree)
         1073     deflate_state *s;
         1074     ct_data *ltree; /* literal tree */
         1075     ct_data *dtree; /* distance tree */
         1076 {
         1077     unsigned dist;      /* distance of matched string */
         1078     int lc;             /* match length or unmatched char (if dist == 0) */
         1079     unsigned lx = 0;    /* running index in l_buf */
         1080     unsigned code;      /* the code to send */
         1081     int extra;          /* number of extra bits to send */
         1082 
         1083     if (s->last_lit != 0) do {
         1084         dist = s->d_buf[lx];
         1085         lc = s->l_buf[lx++];
         1086         if (dist == 0) {
         1087             send_code(s, lc, ltree); /* send a literal byte */
         1088             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
         1089         } else {
         1090             /* Here, lc is the match length - MIN_MATCH */
         1091             code = _length_code[lc];
         1092             send_code(s, code+LITERALS+1, ltree); /* send the length code */
         1093             extra = extra_lbits[code];
         1094             if (extra != 0) {
         1095                 lc -= base_length[code];
         1096                 send_bits(s, lc, extra);       /* send the extra length bits */
         1097             }
         1098             dist--; /* dist is now the match distance - 1 */
         1099             code = d_code(dist);
         1100             Assert (code < D_CODES, "bad d_code");
         1101 
         1102             send_code(s, code, dtree);       /* send the distance code */
         1103             extra = extra_dbits[code];
         1104             if (extra != 0) {
         1105                 dist -= base_dist[code];
         1106                 send_bits(s, dist, extra);   /* send the extra distance bits */
         1107             }
         1108         } /* literal or match pair ? */
         1109 
         1110         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
         1111         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
         1112                "pendingBuf overflow");
         1113 
         1114     } while (lx < s->last_lit);
         1115 
         1116     send_code(s, END_BLOCK, ltree);
         1117     s->last_eob_len = ltree[END_BLOCK].Len;
         1118 }
         1119 
         1120 /* ===========================================================================
         1121  * Set the data type to BINARY or TEXT, using a crude approximation:
         1122  * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
         1123  * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
         1124  * IN assertion: the fields Freq of dyn_ltree are set.
         1125  */
         1126 local void set_data_type(s)
         1127     deflate_state *s;
         1128 {
         1129     int n;
         1130 
         1131     for (n = 0; n < 9; n++)
         1132         if (s->dyn_ltree[n].Freq != 0)
         1133             break;
         1134     if (n == 9)
         1135         for (n = 14; n < 32; n++)
         1136             if (s->dyn_ltree[n].Freq != 0)
         1137                 break;
         1138     s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
         1139 }
         1140 
         1141 /* ===========================================================================
         1142  * Reverse the first len bits of a code, using straightforward code (a faster
         1143  * method would use a table)
         1144  * IN assertion: 1 <= len <= 15
         1145  */
         1146 local unsigned bi_reverse(code, len)
         1147     unsigned code; /* the value to invert */
         1148     int len;       /* its bit length */
         1149 {
         1150     register unsigned res = 0;
         1151     do {
         1152         res |= code & 1;
         1153         code >>= 1, res <<= 1;
         1154     } while (--len > 0);
         1155     return res >> 1;
         1156 }
         1157 
         1158 /* ===========================================================================
         1159  * Flush the bit buffer, keeping at most 7 bits in it.
         1160  */
         1161 local void bi_flush(s)
         1162     deflate_state *s;
         1163 {
         1164     if (s->bi_valid == 16) {
         1165         put_short(s, s->bi_buf);
         1166         s->bi_buf = 0;
         1167         s->bi_valid = 0;
         1168     } else if (s->bi_valid >= 8) {
         1169         put_byte(s, (Byte)s->bi_buf);
         1170         s->bi_buf >>= 8;
         1171         s->bi_valid -= 8;
         1172     }
         1173 }
         1174 
         1175 /* ===========================================================================
         1176  * Flush the bit buffer and align the output on a byte boundary
         1177  */
         1178 local void bi_windup(s)
         1179     deflate_state *s;
         1180 {
         1181     if (s->bi_valid > 8) {
         1182         put_short(s, s->bi_buf);
         1183     } else if (s->bi_valid > 0) {
         1184         put_byte(s, (Byte)s->bi_buf);
         1185     }
         1186     s->bi_buf = 0;
         1187     s->bi_valid = 0;
         1188 #ifdef DEBUG
         1189     s->bits_sent = (s->bits_sent+7) & ~7;
         1190 #endif
         1191 }
         1192 
         1193 /* ===========================================================================
         1194  * Copy a stored block, storing first the length and its
         1195  * one's complement if requested.
         1196  */
         1197 local void copy_block(s, buf, len, header)
         1198     deflate_state *s;
         1199     charf    *buf;    /* the input data */
         1200     unsigned len;     /* its length */
         1201     int      header;  /* true if block header must be written */
         1202 {
         1203     bi_windup(s);        /* align on byte boundary */
         1204     s->last_eob_len = 8; /* enough lookahead for inflate */
         1205 
         1206     if (header) {
         1207         put_short(s, (ush)len);
         1208         put_short(s, (ush)~len);
         1209 #ifdef DEBUG
         1210         s->bits_sent += 2*16;
         1211 #endif
         1212     }
         1213 #ifdef DEBUG
         1214     s->bits_sent += (ulg)len<<3;
         1215 #endif
         1216     while (len--) {
         1217         put_byte(s, *buf++);
         1218     }
         1219 }