adler32.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       adler32.c (4604B)
       ---
            1 /* adler32.c -- compute the Adler-32 checksum of a data stream
            2  * Copyright (C) 1995-2004 Mark Adler
            3  * For conditions of distribution and use, see copyright notice in zlib.h
            4  */
            5 
            6 /* @(#) $Id: adler32.c 1925 2005-10-06 19:32:02Z baford $ */
            7 
            8 #define ZLIB_INTERNAL
            9 #include "zlib.h"
           10 
           11 #define BASE 65521UL    /* largest prime smaller than 65536 */
           12 #define NMAX 5552
           13 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
           14 
           15 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
           16 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
           17 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
           18 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
           19 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
           20 
           21 /* use NO_DIVIDE if your processor does not do division in hardware */
           22 #ifdef NO_DIVIDE
           23 #  define MOD(a) \
           24     do { \
           25         if (a >= (BASE << 16)) a -= (BASE << 16); \
           26         if (a >= (BASE << 15)) a -= (BASE << 15); \
           27         if (a >= (BASE << 14)) a -= (BASE << 14); \
           28         if (a >= (BASE << 13)) a -= (BASE << 13); \
           29         if (a >= (BASE << 12)) a -= (BASE << 12); \
           30         if (a >= (BASE << 11)) a -= (BASE << 11); \
           31         if (a >= (BASE << 10)) a -= (BASE << 10); \
           32         if (a >= (BASE << 9)) a -= (BASE << 9); \
           33         if (a >= (BASE << 8)) a -= (BASE << 8); \
           34         if (a >= (BASE << 7)) a -= (BASE << 7); \
           35         if (a >= (BASE << 6)) a -= (BASE << 6); \
           36         if (a >= (BASE << 5)) a -= (BASE << 5); \
           37         if (a >= (BASE << 4)) a -= (BASE << 4); \
           38         if (a >= (BASE << 3)) a -= (BASE << 3); \
           39         if (a >= (BASE << 2)) a -= (BASE << 2); \
           40         if (a >= (BASE << 1)) a -= (BASE << 1); \
           41         if (a >= BASE) a -= BASE; \
           42     } while (0)
           43 #  define MOD4(a) \
           44     do { \
           45         if (a >= (BASE << 4)) a -= (BASE << 4); \
           46         if (a >= (BASE << 3)) a -= (BASE << 3); \
           47         if (a >= (BASE << 2)) a -= (BASE << 2); \
           48         if (a >= (BASE << 1)) a -= (BASE << 1); \
           49         if (a >= BASE) a -= BASE; \
           50     } while (0)
           51 #else
           52 #  define MOD(a) a %= BASE
           53 #  define MOD4(a) a %= BASE
           54 #endif
           55 
           56 /* ========================================================================= */
           57 uLong ZEXPORT adler32(adler, buf, len)
           58     uLong adler;
           59     const Bytef *buf;
           60     uInt len;
           61 {
           62     unsigned long sum2;
           63     unsigned n;
           64 
           65     /* split Adler-32 into component sums */
           66     sum2 = (adler >> 16) & 0xffff;
           67     adler &= 0xffff;
           68 
           69     /* in case user likes doing a byte at a time, keep it fast */
           70     if (len == 1) {
           71         adler += buf[0];
           72         if (adler >= BASE)
           73             adler -= BASE;
           74         sum2 += adler;
           75         if (sum2 >= BASE)
           76             sum2 -= BASE;
           77         return adler | (sum2 << 16);
           78     }
           79 
           80     /* initial Adler-32 value (deferred check for len == 1 speed) */
           81     if (buf == Z_NULL)
           82         return 1L;
           83 
           84     /* in case short lengths are provided, keep it somewhat fast */
           85     if (len < 16) {
           86         while (len--) {
           87             adler += *buf++;
           88             sum2 += adler;
           89         }
           90         if (adler >= BASE)
           91             adler -= BASE;
           92         MOD4(sum2);             /* only added so many BASE's */
           93         return adler | (sum2 << 16);
           94     }
           95 
           96     /* do length NMAX blocks -- requires just one modulo operation */
           97     while (len >= NMAX) {
           98         len -= NMAX;
           99         n = NMAX / 16;          /* NMAX is divisible by 16 */
          100         do {
          101             DO16(buf);          /* 16 sums unrolled */
          102             buf += 16;
          103         } while (--n);
          104         MOD(adler);
          105         MOD(sum2);
          106     }
          107 
          108     /* do remaining bytes (less than NMAX, still just one modulo) */
          109     if (len) {                  /* avoid modulos if none remaining */
          110         while (len >= 16) {
          111             len -= 16;
          112             DO16(buf);
          113             buf += 16;
          114         }
          115         while (len--) {
          116             adler += *buf++;
          117             sum2 += adler;
          118         }
          119         MOD(adler);
          120         MOD(sum2);
          121     }
          122 
          123     /* return recombined sums */
          124     return adler | (sum2 << 16);
          125 }
          126 
          127 /* ========================================================================= */
          128 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
          129     uLong adler1;
          130     uLong adler2;
          131     z_off_t len2;
          132 {
          133     unsigned long sum1;
          134     unsigned long sum2;
          135     unsigned rem;
          136 
          137     /* the derivation of this formula is left as an exercise for the reader */
          138     rem = (unsigned)(len2 % BASE);
          139     sum1 = adler1 & 0xffff;
          140     sum2 = rem * sum1;
          141     MOD(sum2);
          142     sum1 += (adler2 & 0xffff) + BASE - 1;
          143     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
          144     if (sum1 > BASE) sum1 -= BASE;
          145     if (sum1 > BASE) sum1 -= BASE;
          146     if (sum2 > (BASE << 1)) sum2 -= (BASE << 1);
          147     if (sum2 > BASE) sum2 -= BASE;
          148     return sum1 | (sum2 << 16);
          149 }