lsp.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       lsp.c (12341B)
       ---
            1 /********************************************************************
            2  *                                                                  *
            3  * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE.   *
            4  * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
            5  * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
            6  * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
            7  *                                                                  *
            8  * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2002             *
            9  * by the XIPHOPHORUS Company http://www.xiph.org/                  *
           10  *                                                                  *
           11  ********************************************************************
           12 
           13   function: LSP (also called LSF) conversion routines
           14   last mod: $Id: lsp.c 1919 2005-07-24 14:18:04Z baford $
           15 
           16   The LSP generation code is taken (with minimal modification and a
           17   few bugfixes) from "On the Computation of the LSP Frequencies" by
           18   Joseph Rothweiler (see http://www.rothweiler.us for contact info).
           19   The paper is available at:
           20 
           21   http://www.myown1.com/joe/lsf
           22 
           23  ********************************************************************/
           24 
           25 /* Note that the lpc-lsp conversion finds the roots of polynomial with
           26    an iterative root polisher (CACM algorithm 283).  It *is* possible
           27    to confuse this algorithm into not converging; that should only
           28    happen with absurdly closely spaced roots (very sharp peaks in the
           29    LPC f response) which in turn should be impossible in our use of
           30    the code.  If this *does* happen anyway, it's a bug in the floor
           31    finder; find the cause of the confusion (probably a single bin
           32    spike or accidental near-float-limit resolution problems) and
           33    correct it. */
           34 
           35 #include <math.h>
           36 #include <string.h>
           37 #include <stdlib.h>
           38 #include "lsp.h"
           39 #include "os.h"
           40 #include "misc.h"
           41 #include "lookup.h"
           42 #include "scales.h"
           43 
           44 /* three possible LSP to f curve functions; the exact computation
           45    (float), a lookup based float implementation, and an integer
           46    implementation.  The float lookup is likely the optimal choice on
           47    any machine with an FPU.  The integer implementation is *not* fixed
           48    point (due to the need for a large dynamic range and thus a
           49    seperately tracked exponent) and thus much more complex than the
           50    relatively simple float implementations. It's mostly for future
           51    work on a fully fixed point implementation for processors like the
           52    ARM family. */
           53 
           54 /* undefine both for the 'old' but more precise implementation */
           55 #define   FLOAT_LOOKUP
           56 #undef    INT_LOOKUP
           57 
           58 #ifdef FLOAT_LOOKUP
           59 #include "lookup.c" /* catch this in the build system; we #include for
           60                        compilers (like gcc) that can't inline across
           61                        modules */
           62 
           63 /* side effect: changes *lsp to cosines of lsp */
           64 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
           65                             float amp,float ampoffset){
           66   int i;
           67   float wdel=M_PI/ln;
           68   vorbis_fpu_control fpu;
           69   
           70   vorbis_fpu_setround(&fpu);
           71   for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]);
           72 
           73   i=0;
           74   while(i<n){
           75     int k=map[i];
           76     int qexp;
           77     float p=.7071067812f;
           78     float q=.7071067812f;
           79     float w=vorbis_coslook(wdel*k);
           80     float *ftmp=lsp;
           81     int c=m>>1;
           82 
           83     do{
           84       q*=ftmp[0]-w;
           85       p*=ftmp[1]-w;
           86       ftmp+=2;
           87     }while(--c);
           88 
           89     if(m&1){
           90       /* odd order filter; slightly assymetric */
           91       /* the last coefficient */
           92       q*=ftmp[0]-w;
           93       q*=q;
           94       p*=p*(1.f-w*w);
           95     }else{
           96       /* even order filter; still symmetric */
           97       q*=q*(1.f+w);
           98       p*=p*(1.f-w);
           99     }
          100 
          101     q=frexp(p+q,&qexp);
          102     q=vorbis_fromdBlook(amp*             
          103                         vorbis_invsqlook(q)*
          104                         vorbis_invsq2explook(qexp+m)- 
          105                         ampoffset);
          106 
          107     do{
          108       curve[i++]*=q;
          109     }while(map[i]==k);
          110   }
          111   vorbis_fpu_restore(fpu);
          112 }
          113 
          114 #else
          115 
          116 #ifdef INT_LOOKUP
          117 #include "lookup.c" /* catch this in the build system; we #include for
          118                        compilers (like gcc) that can't inline across
          119                        modules */
          120 
          121 static int MLOOP_1[64]={
          122    0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13,
          123   14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14,
          124   15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
          125   15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
          126 };
          127 
          128 static int MLOOP_2[64]={
          129   0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7,
          130   8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8,
          131   9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
          132   9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
          133 };
          134 
          135 static int MLOOP_3[8]={0,1,2,2,3,3,3,3};
          136 
          137 
          138 /* side effect: changes *lsp to cosines of lsp */
          139 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
          140                             float amp,float ampoffset){
          141 
          142   /* 0 <= m < 256 */
          143 
          144   /* set up for using all int later */
          145   int i;
          146   int ampoffseti=rint(ampoffset*4096.f);
          147   int ampi=rint(amp*16.f);
          148   long *ilsp=alloca(m*sizeof(*ilsp));
          149   for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f);
          150 
          151   i=0;
          152   while(i<n){
          153     int j,k=map[i];
          154     unsigned long pi=46341; /* 2**-.5 in 0.16 */
          155     unsigned long qi=46341;
          156     int qexp=0,shift;
          157     long wi=vorbis_coslook_i(k*65536/ln);
          158 
          159     qi*=labs(ilsp[0]-wi);
          160     pi*=labs(ilsp[1]-wi);
          161 
          162     for(j=3;j<m;j+=2){
          163       if(!(shift=MLOOP_1[(pi|qi)>>25]))
          164         if(!(shift=MLOOP_2[(pi|qi)>>19]))
          165           shift=MLOOP_3[(pi|qi)>>16];
          166       qi=(qi>>shift)*labs(ilsp[j-1]-wi);
          167       pi=(pi>>shift)*labs(ilsp[j]-wi);
          168       qexp+=shift;
          169     }
          170     if(!(shift=MLOOP_1[(pi|qi)>>25]))
          171       if(!(shift=MLOOP_2[(pi|qi)>>19]))
          172         shift=MLOOP_3[(pi|qi)>>16];
          173 
          174     /* pi,qi normalized collectively, both tracked using qexp */
          175 
          176     if(m&1){
          177       /* odd order filter; slightly assymetric */
          178       /* the last coefficient */
          179       qi=(qi>>shift)*labs(ilsp[j-1]-wi);
          180       pi=(pi>>shift)<<14;
          181       qexp+=shift;
          182 
          183       if(!(shift=MLOOP_1[(pi|qi)>>25]))
          184         if(!(shift=MLOOP_2[(pi|qi)>>19]))
          185           shift=MLOOP_3[(pi|qi)>>16];
          186       
          187       pi>>=shift;
          188       qi>>=shift;
          189       qexp+=shift-14*((m+1)>>1);
          190 
          191       pi=((pi*pi)>>16);
          192       qi=((qi*qi)>>16);
          193       qexp=qexp*2+m;
          194 
          195       pi*=(1<<14)-((wi*wi)>>14);
          196       qi+=pi>>14;
          197 
          198     }else{
          199       /* even order filter; still symmetric */
          200 
          201       /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't
          202          worth tracking step by step */
          203       
          204       pi>>=shift;
          205       qi>>=shift;
          206       qexp+=shift-7*m;
          207 
          208       pi=((pi*pi)>>16);
          209       qi=((qi*qi)>>16);
          210       qexp=qexp*2+m;
          211       
          212       pi*=(1<<14)-wi;
          213       qi*=(1<<14)+wi;
          214       qi=(qi+pi)>>14;
          215       
          216     }
          217     
          218 
          219     /* we've let the normalization drift because it wasn't important;
          220        however, for the lookup, things must be normalized again.  We
          221        need at most one right shift or a number of left shifts */
          222 
          223     if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */
          224       qi>>=1; qexp++; 
          225     }else
          226       while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/
          227         qi<<=1; qexp--; 
          228       }
          229 
          230     amp=vorbis_fromdBlook_i(ampi*                     /*  n.4         */
          231                             vorbis_invsqlook_i(qi,qexp)- 
          232                                                       /*  m.8, m+n<=8 */
          233                             ampoffseti);              /*  8.12[0]     */
          234 
          235     curve[i]*=amp;
          236     while(map[++i]==k)curve[i]*=amp;
          237   }
          238 }
          239 
          240 #else 
          241 
          242 /* old, nonoptimized but simple version for any poor sap who needs to
          243    figure out what the hell this code does, or wants the other
          244    fraction of a dB precision */
          245 
          246 /* side effect: changes *lsp to cosines of lsp */
          247 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
          248                             float amp,float ampoffset){
          249   int i;
          250   float wdel=M_PI/ln;
          251   for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]);
          252 
          253   i=0;
          254   while(i<n){
          255     int j,k=map[i];
          256     float p=.5f;
          257     float q=.5f;
          258     float w=2.f*cos(wdel*k);
          259     for(j=1;j<m;j+=2){
          260       q *= w-lsp[j-1];
          261       p *= w-lsp[j];
          262     }
          263     if(j==m){
          264       /* odd order filter; slightly assymetric */
          265       /* the last coefficient */
          266       q*=w-lsp[j-1];
          267       p*=p*(4.f-w*w);
          268       q*=q;
          269     }else{
          270       /* even order filter; still symmetric */
          271       p*=p*(2.f-w);
          272       q*=q*(2.f+w);
          273     }
          274 
          275     q=fromdB(amp/sqrt(p+q)-ampoffset);
          276 
          277     curve[i]*=q;
          278     while(map[++i]==k)curve[i]*=q;
          279   }
          280 }
          281 
          282 #endif
          283 #endif
          284 
          285 static void cheby(float *g, int ord) {
          286   int i, j;
          287 
          288   g[0] *= .5f;
          289   for(i=2; i<= ord; i++) {
          290     for(j=ord; j >= i; j--) {
          291       g[j-2] -= g[j];
          292       g[j] += g[j]; 
          293     }
          294   }
          295 }
          296 
          297 static int comp(const void *a,const void *b){
          298   return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b);
          299 }
          300 
          301 /* Newton-Raphson-Maehly actually functioned as a decent root finder,
          302    but there are root sets for which it gets into limit cycles
          303    (exacerbated by zero suppression) and fails.  We can't afford to
          304    fail, even if the failure is 1 in 100,000,000, so we now use
          305    Laguerre and later polish with Newton-Raphson (which can then
          306    afford to fail) */
          307 
          308 #define EPSILON 10e-7
          309 static int Laguerre_With_Deflation(float *a,int ord,float *r){
          310   int i,m;
          311   double lastdelta=0.f;
          312   double *defl=alloca(sizeof(*defl)*(ord+1));
          313   for(i=0;i<=ord;i++)defl[i]=a[i];
          314 
          315   for(m=ord;m>0;m--){
          316     double new=0.f,delta;
          317 
          318     /* iterate a root */
          319     while(1){
          320       double p=defl[m],pp=0.f,ppp=0.f,denom;
          321       
          322       /* eval the polynomial and its first two derivatives */
          323       for(i=m;i>0;i--){
          324         ppp = new*ppp + pp;
          325         pp  = new*pp  + p;
          326         p   = new*p   + defl[i-1];
          327       }
          328       
          329       /* Laguerre's method */
          330       denom=(m-1) * ((m-1)*pp*pp - m*p*ppp);
          331       if(denom<0)
          332         return(-1);  /* complex root!  The LPC generator handed us a bad filter */
          333 
          334       if(pp>0){
          335         denom = pp + sqrt(denom);
          336         if(denom<EPSILON)denom=EPSILON;
          337       }else{
          338         denom = pp - sqrt(denom);
          339         if(denom>-(EPSILON))denom=-(EPSILON);
          340       }
          341 
          342       delta  = m*p/denom;
          343       new   -= delta;
          344 
          345       if(delta<0.f)delta*=-1;
          346 
          347       if(fabs(delta/new)<10e-12)break; 
          348       lastdelta=delta;
          349     }
          350 
          351     r[m-1]=new;
          352 
          353     /* forward deflation */
          354     
          355     for(i=m;i>0;i--)
          356       defl[i-1]+=new*defl[i];
          357     defl++;
          358 
          359   }
          360   return(0);
          361 }
          362 
          363 
          364 /* for spit-and-polish only */
          365 static int Newton_Raphson(float *a,int ord,float *r){
          366   int i, k, count=0;
          367   double error=1.f;
          368   double *root=alloca(ord*sizeof(*root));
          369 
          370   for(i=0; i<ord;i++) root[i] = r[i];
          371   
          372   while(error>1e-20){
          373     error=0;
          374     
          375     for(i=0; i<ord; i++) { /* Update each point. */
          376       double pp=0.,delta;
          377       double rooti=root[i];
          378       double p=a[ord];
          379       for(k=ord-1; k>= 0; k--) {
          380 
          381         pp= pp* rooti + p;
          382         p = p * rooti + a[k];
          383       }
          384 
          385       delta = p/pp;
          386       root[i] -= delta;
          387       error+= delta*delta;
          388     }
          389     
          390     if(count>40)return(-1);
          391      
          392     count++;
          393   }
          394 
          395   /* Replaced the original bubble sort with a real sort.  With your
          396      help, we can eliminate the bubble sort in our lifetime. --Monty */
          397 
          398   for(i=0; i<ord;i++) r[i] = root[i];
          399   return(0);
          400 }
          401 
          402 
          403 /* Convert lpc coefficients to lsp coefficients */
          404 int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){
          405   int order2=(m+1)>>1;
          406   int g1_order,g2_order;
          407   float *g1=alloca(sizeof(*g1)*(order2+1));
          408   float *g2=alloca(sizeof(*g2)*(order2+1));
          409   float *g1r=alloca(sizeof(*g1r)*(order2+1));
          410   float *g2r=alloca(sizeof(*g2r)*(order2+1));
          411   int i;
          412 
          413   /* even and odd are slightly different base cases */
          414   g1_order=(m+1)>>1;
          415   g2_order=(m)  >>1;
          416 
          417   /* Compute the lengths of the x polynomials. */
          418   /* Compute the first half of K & R F1 & F2 polynomials. */
          419   /* Compute half of the symmetric and antisymmetric polynomials. */
          420   /* Remove the roots at +1 and -1. */
          421   
          422   g1[g1_order] = 1.f;
          423   for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i];
          424   g2[g2_order] = 1.f;
          425   for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i];
          426   
          427   if(g1_order>g2_order){
          428     for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2];
          429   }else{
          430     for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1];
          431     for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1];
          432   }
          433 
          434   /* Convert into polynomials in cos(alpha) */
          435   cheby(g1,g1_order);
          436   cheby(g2,g2_order);
          437 
          438   /* Find the roots of the 2 even polynomials.*/
          439   if(Laguerre_With_Deflation(g1,g1_order,g1r) ||
          440      Laguerre_With_Deflation(g2,g2_order,g2r))
          441     return(-1);
          442 
          443   Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */
          444   Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */
          445 
          446   qsort(g1r,g1_order,sizeof(*g1r),comp);
          447   qsort(g2r,g2_order,sizeof(*g2r),comp);
          448 
          449   for(i=0;i<g1_order;i++)
          450     lsp[i*2] = acos(g1r[i]);
          451 
          452   for(i=0;i<g2_order;i++)
          453     lsp[i*2+1] = acos(g2r[i]);
          454   return(0);
          455 }