jquant2.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       jquant2.c (48429B)
       ---
            1 /*
            2  * jquant2.c
            3  *
            4  * Copyright (C) 1991-1996, Thomas G. Lane.
            5  * This file is part of the Independent JPEG Group's software.
            6  * For conditions of distribution and use, see the accompanying README file.
            7  *
            8  * This file contains 2-pass color quantization (color mapping) routines.
            9  * These routines provide selection of a custom color map for an image,
           10  * followed by mapping of the image to that color map, with optional
           11  * Floyd-Steinberg dithering.
           12  * It is also possible to use just the second pass to map to an arbitrary
           13  * externally-given color map.
           14  *
           15  * Note: ordered dithering is not supported, since there isn't any fast
           16  * way to compute intercolor distances; it's unclear that ordered dither's
           17  * fundamental assumptions even hold with an irregularly spaced color map.
           18  */
           19 
           20 #define JPEG_INTERNALS
           21 #include "jinclude.h"
           22 #include "jpeglib.h"
           23 
           24 #ifdef QUANT_2PASS_SUPPORTED
           25 
           26 
           27 /*
           28  * This module implements the well-known Heckbert paradigm for color
           29  * quantization.  Most of the ideas used here can be traced back to
           30  * Heckbert's seminal paper
           31  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
           32  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
           33  *
           34  * In the first pass over the image, we accumulate a histogram showing the
           35  * usage count of each possible color.  To keep the histogram to a reasonable
           36  * size, we reduce the precision of the input; typical practice is to retain
           37  * 5 or 6 bits per color, so that 8 or 4 different input values are counted
           38  * in the same histogram cell.
           39  *
           40  * Next, the color-selection step begins with a box representing the whole
           41  * color space, and repeatedly splits the "largest" remaining box until we
           42  * have as many boxes as desired colors.  Then the mean color in each
           43  * remaining box becomes one of the possible output colors.
           44  * 
           45  * The second pass over the image maps each input pixel to the closest output
           46  * color (optionally after applying a Floyd-Steinberg dithering correction).
           47  * This mapping is logically trivial, but making it go fast enough requires
           48  * considerable care.
           49  *
           50  * Heckbert-style quantizers vary a good deal in their policies for choosing
           51  * the "largest" box and deciding where to cut it.  The particular policies
           52  * used here have proved out well in experimental comparisons, but better ones
           53  * may yet be found.
           54  *
           55  * In earlier versions of the IJG code, this module quantized in YCbCr color
           56  * space, processing the raw upsampled data without a color conversion step.
           57  * This allowed the color conversion math to be done only once per colormap
           58  * entry, not once per pixel.  However, that optimization precluded other
           59  * useful optimizations (such as merging color conversion with upsampling)
           60  * and it also interfered with desired capabilities such as quantizing to an
           61  * externally-supplied colormap.  We have therefore abandoned that approach.
           62  * The present code works in the post-conversion color space, typically RGB.
           63  *
           64  * To improve the visual quality of the results, we actually work in scaled
           65  * RGB space, giving G distances more weight than R, and R in turn more than
           66  * B.  To do everything in integer math, we must use integer scale factors.
           67  * The 2/3/1 scale factors used here correspond loosely to the relative
           68  * weights of the colors in the NTSC grayscale equation.
           69  * If you want to use this code to quantize a non-RGB color space, you'll
           70  * probably need to change these scale factors.
           71  */
           72 
           73 #define R_SCALE 2                /* scale R distances by this much */
           74 #define G_SCALE 3                /* scale G distances by this much */
           75 #define B_SCALE 1                /* and B by this much */
           76 
           77 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
           78  * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
           79  * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
           80  * you'll get compile errors until you extend this logic.  In that case
           81  * you'll probably want to tweak the histogram sizes too.
           82  */
           83 
           84 #if RGB_RED == 0
           85 #define C0_SCALE R_SCALE
           86 #endif
           87 #if RGB_BLUE == 0
           88 #define C0_SCALE B_SCALE
           89 #endif
           90 #if RGB_GREEN == 1
           91 #define C1_SCALE G_SCALE
           92 #endif
           93 #if RGB_RED == 2
           94 #define C2_SCALE R_SCALE
           95 #endif
           96 #if RGB_BLUE == 2
           97 #define C2_SCALE B_SCALE
           98 #endif
           99 
          100 
          101 /*
          102  * First we have the histogram data structure and routines for creating it.
          103  *
          104  * The number of bits of precision can be adjusted by changing these symbols.
          105  * We recommend keeping 6 bits for G and 5 each for R and B.
          106  * If you have plenty of memory and cycles, 6 bits all around gives marginally
          107  * better results; if you are short of memory, 5 bits all around will save
          108  * some space but degrade the results.
          109  * To maintain a fully accurate histogram, we'd need to allocate a "long"
          110  * (preferably unsigned long) for each cell.  In practice this is overkill;
          111  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
          112  * and clamping those that do overflow to the maximum value will give close-
          113  * enough results.  This reduces the recommended histogram size from 256Kb
          114  * to 128Kb, which is a useful savings on PC-class machines.
          115  * (In the second pass the histogram space is re-used for pixel mapping data;
          116  * in that capacity, each cell must be able to store zero to the number of
          117  * desired colors.  16 bits/cell is plenty for that too.)
          118  * Since the JPEG code is intended to run in small memory model on 80x86
          119  * machines, we can't just allocate the histogram in one chunk.  Instead
          120  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
          121  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
          122  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
          123  * on 80x86 machines, the pointer row is in near memory but the actual
          124  * arrays are in far memory (same arrangement as we use for image arrays).
          125  */
          126 
          127 #define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
          128 
          129 /* These will do the right thing for either R,G,B or B,G,R color order,
          130  * but you may not like the results for other color orders.
          131  */
          132 #define HIST_C0_BITS  5                /* bits of precision in R/B histogram */
          133 #define HIST_C1_BITS  6                /* bits of precision in G histogram */
          134 #define HIST_C2_BITS  5                /* bits of precision in B/R histogram */
          135 
          136 /* Number of elements along histogram axes. */
          137 #define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
          138 #define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
          139 #define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
          140 
          141 /* These are the amounts to shift an input value to get a histogram index. */
          142 #define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
          143 #define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
          144 #define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
          145 
          146 
          147 typedef UINT16 histcell;        /* histogram cell; prefer an unsigned type */
          148 
          149 typedef histcell FAR * histptr;        /* for pointers to histogram cells */
          150 
          151 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
          152 typedef hist1d FAR * hist2d;        /* type for the 2nd-level pointers */
          153 typedef hist2d * hist3d;        /* type for top-level pointer */
          154 
          155 
          156 /* Declarations for Floyd-Steinberg dithering.
          157  *
          158  * Errors are accumulated into the array fserrors[], at a resolution of
          159  * 1/16th of a pixel count.  The error at a given pixel is propagated
          160  * to its not-yet-processed neighbors using the standard F-S fractions,
          161  *                ...        (here)        7/16
          162  *                3/16        5/16        1/16
          163  * We work left-to-right on even rows, right-to-left on odd rows.
          164  *
          165  * We can get away with a single array (holding one row's worth of errors)
          166  * by using it to store the current row's errors at pixel columns not yet
          167  * processed, but the next row's errors at columns already processed.  We
          168  * need only a few extra variables to hold the errors immediately around the
          169  * current column.  (If we are lucky, those variables are in registers, but
          170  * even if not, they're probably cheaper to access than array elements are.)
          171  *
          172  * The fserrors[] array has (#columns + 2) entries; the extra entry at
          173  * each end saves us from special-casing the first and last pixels.
          174  * Each entry is three values long, one value for each color component.
          175  *
          176  * Note: on a wide image, we might not have enough room in a PC's near data
          177  * segment to hold the error array; so it is allocated with alloc_large.
          178  */
          179 
          180 #if BITS_IN_JSAMPLE == 8
          181 typedef INT16 FSERROR;                /* 16 bits should be enough */
          182 typedef int LOCFSERROR;                /* use 'int' for calculation temps */
          183 #else
          184 typedef INT32 FSERROR;                /* may need more than 16 bits */
          185 typedef INT32 LOCFSERROR;        /* be sure calculation temps are big enough */
          186 #endif
          187 
          188 typedef FSERROR FAR *FSERRPTR;        /* pointer to error array (in FAR storage!) */
          189 
          190 
          191 /* Private subobject */
          192 
          193 typedef struct {
          194   struct jpeg_color_quantizer pub; /* public fields */
          195 
          196   /* Space for the eventually created colormap is stashed here */
          197   JSAMPARRAY sv_colormap;        /* colormap allocated at init time */
          198   int desired;                        /* desired # of colors = size of colormap */
          199 
          200   /* Variables for accumulating image statistics */
          201   hist3d histogram;                /* pointer to the histogram */
          202 
          203   boolean needs_zeroed;                /* TRUE if next pass must zero histogram */
          204 
          205   /* Variables for Floyd-Steinberg dithering */
          206   FSERRPTR fserrors;                /* accumulated errors */
          207   boolean on_odd_row;                /* flag to remember which row we are on */
          208   int * error_limiter;                /* table for clamping the applied error */
          209 } my_cquantizer;
          210 
          211 typedef my_cquantizer * my_cquantize_ptr;
          212 
          213 
          214 /*
          215  * Prescan some rows of pixels.
          216  * In this module the prescan simply updates the histogram, which has been
          217  * initialized to zeroes by start_pass.
          218  * An output_buf parameter is required by the method signature, but no data
          219  * is actually output (in fact the buffer controller is probably passing a
          220  * NULL pointer).
          221  */
          222 
          223 METHODDEF(void)
          224 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
          225                   JSAMPARRAY output_buf, int num_rows)
          226 {
          227   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
          228   register JSAMPROW ptr;
          229   register histptr histp;
          230   register hist3d histogram = cquantize->histogram;
          231   int row;
          232   JDIMENSION col;
          233   JDIMENSION width = cinfo->output_width;
          234 
          235   for (row = 0; row < num_rows; row++) {
          236     ptr = input_buf[row];
          237     for (col = width; col > 0; col--) {
          238       /* get pixel value and index into the histogram */
          239       histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
          240                          [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
          241                          [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
          242       /* increment, check for overflow and undo increment if so. */
          243       if (++(*histp) <= 0)
          244         (*histp)--;
          245       ptr += 3;
          246     }
          247   }
          248 }
          249 
          250 
          251 /*
          252  * Next we have the really interesting routines: selection of a colormap
          253  * given the completed histogram.
          254  * These routines work with a list of "boxes", each representing a rectangular
          255  * subset of the input color space (to histogram precision).
          256  */
          257 
          258 typedef struct {
          259   /* The bounds of the box (inclusive); expressed as histogram indexes */
          260   int c0min, c0max;
          261   int c1min, c1max;
          262   int c2min, c2max;
          263   /* The volume (actually 2-norm) of the box */
          264   INT32 volume;
          265   /* The number of nonzero histogram cells within this box */
          266   long colorcount;
          267 } box;
          268 
          269 typedef box * boxptr;
          270 
          271 
          272 LOCAL(boxptr)
          273 find_biggest_color_pop (boxptr boxlist, int numboxes)
          274 /* Find the splittable box with the largest color population */
          275 /* Returns NULL if no splittable boxes remain */
          276 {
          277   register boxptr boxp;
          278   register int i;
          279   register long maxc = 0;
          280   boxptr which = NULL;
          281   
          282   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
          283     if (boxp->colorcount > maxc && boxp->volume > 0) {
          284       which = boxp;
          285       maxc = boxp->colorcount;
          286     }
          287   }
          288   return which;
          289 }
          290 
          291 
          292 LOCAL(boxptr)
          293 find_biggest_volume (boxptr boxlist, int numboxes)
          294 /* Find the splittable box with the largest (scaled) volume */
          295 /* Returns NULL if no splittable boxes remain */
          296 {
          297   register boxptr boxp;
          298   register int i;
          299   register INT32 maxv = 0;
          300   boxptr which = NULL;
          301   
          302   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
          303     if (boxp->volume > maxv) {
          304       which = boxp;
          305       maxv = boxp->volume;
          306     }
          307   }
          308   return which;
          309 }
          310 
          311 
          312 LOCAL(void)
          313 update_box (j_decompress_ptr cinfo, boxptr boxp)
          314 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
          315 /* and recompute its volume and population */
          316 {
          317   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
          318   hist3d histogram = cquantize->histogram;
          319   histptr histp;
          320   int c0,c1,c2;
          321   int c0min,c0max,c1min,c1max,c2min,c2max;
          322   INT32 dist0,dist1,dist2;
          323   long ccount;
          324   
          325   c0min = boxp->c0min;  c0max = boxp->c0max;
          326   c1min = boxp->c1min;  c1max = boxp->c1max;
          327   c2min = boxp->c2min;  c2max = boxp->c2max;
          328   
          329   if (c0max > c0min)
          330     for (c0 = c0min; c0 <= c0max; c0++)
          331       for (c1 = c1min; c1 <= c1max; c1++) {
          332         histp = & histogram[c0][c1][c2min];
          333         for (c2 = c2min; c2 <= c2max; c2++)
          334           if (*histp++ != 0) {
          335             boxp->c0min = c0min = c0;
          336             goto have_c0min;
          337           }
          338       }
          339  have_c0min:
          340   if (c0max > c0min)
          341     for (c0 = c0max; c0 >= c0min; c0--)
          342       for (c1 = c1min; c1 <= c1max; c1++) {
          343         histp = & histogram[c0][c1][c2min];
          344         for (c2 = c2min; c2 <= c2max; c2++)
          345           if (*histp++ != 0) {
          346             boxp->c0max = c0max = c0;
          347             goto have_c0max;
          348           }
          349       }
          350  have_c0max:
          351   if (c1max > c1min)
          352     for (c1 = c1min; c1 <= c1max; c1++)
          353       for (c0 = c0min; c0 <= c0max; c0++) {
          354         histp = & histogram[c0][c1][c2min];
          355         for (c2 = c2min; c2 <= c2max; c2++)
          356           if (*histp++ != 0) {
          357             boxp->c1min = c1min = c1;
          358             goto have_c1min;
          359           }
          360       }
          361  have_c1min:
          362   if (c1max > c1min)
          363     for (c1 = c1max; c1 >= c1min; c1--)
          364       for (c0 = c0min; c0 <= c0max; c0++) {
          365         histp = & histogram[c0][c1][c2min];
          366         for (c2 = c2min; c2 <= c2max; c2++)
          367           if (*histp++ != 0) {
          368             boxp->c1max = c1max = c1;
          369             goto have_c1max;
          370           }
          371       }
          372  have_c1max:
          373   if (c2max > c2min)
          374     for (c2 = c2min; c2 <= c2max; c2++)
          375       for (c0 = c0min; c0 <= c0max; c0++) {
          376         histp = & histogram[c0][c1min][c2];
          377         for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
          378           if (*histp != 0) {
          379             boxp->c2min = c2min = c2;
          380             goto have_c2min;
          381           }
          382       }
          383  have_c2min:
          384   if (c2max > c2min)
          385     for (c2 = c2max; c2 >= c2min; c2--)
          386       for (c0 = c0min; c0 <= c0max; c0++) {
          387         histp = & histogram[c0][c1min][c2];
          388         for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
          389           if (*histp != 0) {
          390             boxp->c2max = c2max = c2;
          391             goto have_c2max;
          392           }
          393       }
          394  have_c2max:
          395 
          396   /* Update box volume.
          397    * We use 2-norm rather than real volume here; this biases the method
          398    * against making long narrow boxes, and it has the side benefit that
          399    * a box is splittable iff norm > 0.
          400    * Since the differences are expressed in histogram-cell units,
          401    * we have to shift back to JSAMPLE units to get consistent distances;
          402    * after which, we scale according to the selected distance scale factors.
          403    */
          404   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
          405   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
          406   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
          407   boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
          408   
          409   /* Now scan remaining volume of box and compute population */
          410   ccount = 0;
          411   for (c0 = c0min; c0 <= c0max; c0++)
          412     for (c1 = c1min; c1 <= c1max; c1++) {
          413       histp = & histogram[c0][c1][c2min];
          414       for (c2 = c2min; c2 <= c2max; c2++, histp++)
          415         if (*histp != 0) {
          416           ccount++;
          417         }
          418     }
          419   boxp->colorcount = ccount;
          420 }
          421 
          422 
          423 LOCAL(int)
          424 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
          425             int desired_colors)
          426 /* Repeatedly select and split the largest box until we have enough boxes */
          427 {
          428   int n,lb;
          429   int c0,c1,c2,cmax;
          430   register boxptr b1,b2;
          431 
          432   while (numboxes < desired_colors) {
          433     /* Select box to split.
          434      * Current algorithm: by population for first half, then by volume.
          435      */
          436     if (numboxes*2 <= desired_colors) {
          437       b1 = find_biggest_color_pop(boxlist, numboxes);
          438     } else {
          439       b1 = find_biggest_volume(boxlist, numboxes);
          440     }
          441     if (b1 == NULL)                /* no splittable boxes left! */
          442       break;
          443     b2 = &boxlist[numboxes];        /* where new box will go */
          444     /* Copy the color bounds to the new box. */
          445     b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
          446     b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
          447     /* Choose which axis to split the box on.
          448      * Current algorithm: longest scaled axis.
          449      * See notes in update_box about scaling distances.
          450      */
          451     c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
          452     c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
          453     c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
          454     /* We want to break any ties in favor of green, then red, blue last.
          455      * This code does the right thing for R,G,B or B,G,R color orders only.
          456      */
          457 #if RGB_RED == 0
          458     cmax = c1; n = 1;
          459     if (c0 > cmax) { cmax = c0; n = 0; }
          460     if (c2 > cmax) { n = 2; }
          461 #else
          462     cmax = c1; n = 1;
          463     if (c2 > cmax) { cmax = c2; n = 2; }
          464     if (c0 > cmax) { n = 0; }
          465 #endif
          466     /* Choose split point along selected axis, and update box bounds.
          467      * Current algorithm: split at halfway point.
          468      * (Since the box has been shrunk to minimum volume,
          469      * any split will produce two nonempty subboxes.)
          470      * Note that lb value is max for lower box, so must be < old max.
          471      */
          472     switch (n) {
          473     case 0:
          474       lb = (b1->c0max + b1->c0min) / 2;
          475       b1->c0max = lb;
          476       b2->c0min = lb+1;
          477       break;
          478     case 1:
          479       lb = (b1->c1max + b1->c1min) / 2;
          480       b1->c1max = lb;
          481       b2->c1min = lb+1;
          482       break;
          483     case 2:
          484       lb = (b1->c2max + b1->c2min) / 2;
          485       b1->c2max = lb;
          486       b2->c2min = lb+1;
          487       break;
          488     }
          489     /* Update stats for boxes */
          490     update_box(cinfo, b1);
          491     update_box(cinfo, b2);
          492     numboxes++;
          493   }
          494   return numboxes;
          495 }
          496 
          497 
          498 LOCAL(void)
          499 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
          500 /* Compute representative color for a box, put it in colormap[icolor] */
          501 {
          502   /* Current algorithm: mean weighted by pixels (not colors) */
          503   /* Note it is important to get the rounding correct! */
          504   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
          505   hist3d histogram = cquantize->histogram;
          506   histptr histp;
          507   int c0,c1,c2;
          508   int c0min,c0max,c1min,c1max,c2min,c2max;
          509   long count;
          510   long total = 0;
          511   long c0total = 0;
          512   long c1total = 0;
          513   long c2total = 0;
          514   
          515   c0min = boxp->c0min;  c0max = boxp->c0max;
          516   c1min = boxp->c1min;  c1max = boxp->c1max;
          517   c2min = boxp->c2min;  c2max = boxp->c2max;
          518   
          519   for (c0 = c0min; c0 <= c0max; c0++)
          520     for (c1 = c1min; c1 <= c1max; c1++) {
          521       histp = & histogram[c0][c1][c2min];
          522       for (c2 = c2min; c2 <= c2max; c2++) {
          523         if ((count = *histp++) != 0) {
          524           total += count;
          525           c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
          526           c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
          527           c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
          528         }
          529       }
          530     }
          531   
          532   cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
          533   cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
          534   cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
          535 }
          536 
          537 
          538 LOCAL(void)
          539 select_colors (j_decompress_ptr cinfo, int desired_colors)
          540 /* Master routine for color selection */
          541 {
          542   boxptr boxlist;
          543   int numboxes;
          544   int i;
          545 
          546   /* Allocate workspace for box list */
          547   boxlist = (boxptr) (*cinfo->mem->alloc_small)
          548     ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
          549   /* Initialize one box containing whole space */
          550   numboxes = 1;
          551   boxlist[0].c0min = 0;
          552   boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
          553   boxlist[0].c1min = 0;
          554   boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
          555   boxlist[0].c2min = 0;
          556   boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
          557   /* Shrink it to actually-used volume and set its statistics */
          558   update_box(cinfo, & boxlist[0]);
          559   /* Perform median-cut to produce final box list */
          560   numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
          561   /* Compute the representative color for each box, fill colormap */
          562   for (i = 0; i < numboxes; i++)
          563     compute_color(cinfo, & boxlist[i], i);
          564   cinfo->actual_number_of_colors = numboxes;
          565   TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
          566 }
          567 
          568 
          569 /*
          570  * These routines are concerned with the time-critical task of mapping input
          571  * colors to the nearest color in the selected colormap.
          572  *
          573  * We re-use the histogram space as an "inverse color map", essentially a
          574  * cache for the results of nearest-color searches.  All colors within a
          575  * histogram cell will be mapped to the same colormap entry, namely the one
          576  * closest to the cell's center.  This may not be quite the closest entry to
          577  * the actual input color, but it's almost as good.  A zero in the cache
          578  * indicates we haven't found the nearest color for that cell yet; the array
          579  * is cleared to zeroes before starting the mapping pass.  When we find the
          580  * nearest color for a cell, its colormap index plus one is recorded in the
          581  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
          582  * when they need to use an unfilled entry in the cache.
          583  *
          584  * Our method of efficiently finding nearest colors is based on the "locally
          585  * sorted search" idea described by Heckbert and on the incremental distance
          586  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
          587  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
          588  * the distances from a given colormap entry to each cell of the histogram can
          589  * be computed quickly using an incremental method: the differences between
          590  * distances to adjacent cells themselves differ by a constant.  This allows a
          591  * fairly fast implementation of the "brute force" approach of computing the
          592  * distance from every colormap entry to every histogram cell.  Unfortunately,
          593  * it needs a work array to hold the best-distance-so-far for each histogram
          594  * cell (because the inner loop has to be over cells, not colormap entries).
          595  * The work array elements have to be INT32s, so the work array would need
          596  * 256Kb at our recommended precision.  This is not feasible in DOS machines.
          597  *
          598  * To get around these problems, we apply Thomas' method to compute the
          599  * nearest colors for only the cells within a small subbox of the histogram.
          600  * The work array need be only as big as the subbox, so the memory usage
          601  * problem is solved.  Furthermore, we need not fill subboxes that are never
          602  * referenced in pass2; many images use only part of the color gamut, so a
          603  * fair amount of work is saved.  An additional advantage of this
          604  * approach is that we can apply Heckbert's locality criterion to quickly
          605  * eliminate colormap entries that are far away from the subbox; typically
          606  * three-fourths of the colormap entries are rejected by Heckbert's criterion,
          607  * and we need not compute their distances to individual cells in the subbox.
          608  * The speed of this approach is heavily influenced by the subbox size: too
          609  * small means too much overhead, too big loses because Heckbert's criterion
          610  * can't eliminate as many colormap entries.  Empirically the best subbox
          611  * size seems to be about 1/512th of the histogram (1/8th in each direction).
          612  *
          613  * Thomas' article also describes a refined method which is asymptotically
          614  * faster than the brute-force method, but it is also far more complex and
          615  * cannot efficiently be applied to small subboxes.  It is therefore not
          616  * useful for programs intended to be portable to DOS machines.  On machines
          617  * with plenty of memory, filling the whole histogram in one shot with Thomas'
          618  * refined method might be faster than the present code --- but then again,
          619  * it might not be any faster, and it's certainly more complicated.
          620  */
          621 
          622 
          623 /* log2(histogram cells in update box) for each axis; this can be adjusted */
          624 #define BOX_C0_LOG  (HIST_C0_BITS-3)
          625 #define BOX_C1_LOG  (HIST_C1_BITS-3)
          626 #define BOX_C2_LOG  (HIST_C2_BITS-3)
          627 
          628 #define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
          629 #define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
          630 #define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
          631 
          632 #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
          633 #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
          634 #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
          635 
          636 
          637 /*
          638  * The next three routines implement inverse colormap filling.  They could
          639  * all be folded into one big routine, but splitting them up this way saves
          640  * some stack space (the mindist[] and bestdist[] arrays need not coexist)
          641  * and may allow some compilers to produce better code by registerizing more
          642  * inner-loop variables.
          643  */
          644 
          645 LOCAL(int)
          646 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
          647                     JSAMPLE colorlist[])
          648 /* Locate the colormap entries close enough to an update box to be candidates
          649  * for the nearest entry to some cell(s) in the update box.  The update box
          650  * is specified by the center coordinates of its first cell.  The number of
          651  * candidate colormap entries is returned, and their colormap indexes are
          652  * placed in colorlist[].
          653  * This routine uses Heckbert's "locally sorted search" criterion to select
          654  * the colors that need further consideration.
          655  */
          656 {
          657   int numcolors = cinfo->actual_number_of_colors;
          658   int maxc0, maxc1, maxc2;
          659   int centerc0, centerc1, centerc2;
          660   int i, x, ncolors;
          661   INT32 minmaxdist, min_dist, max_dist, tdist;
          662   INT32 mindist[MAXNUMCOLORS];        /* min distance to colormap entry i */
          663 
          664   /* Compute true coordinates of update box's upper corner and center.
          665    * Actually we compute the coordinates of the center of the upper-corner
          666    * histogram cell, which are the upper bounds of the volume we care about.
          667    * Note that since ">>" rounds down, the "center" values may be closer to
          668    * min than to max; hence comparisons to them must be "<=", not "<".
          669    */
          670   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
          671   centerc0 = (minc0 + maxc0) >> 1;
          672   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
          673   centerc1 = (minc1 + maxc1) >> 1;
          674   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
          675   centerc2 = (minc2 + maxc2) >> 1;
          676 
          677   /* For each color in colormap, find:
          678    *  1. its minimum squared-distance to any point in the update box
          679    *     (zero if color is within update box);
          680    *  2. its maximum squared-distance to any point in the update box.
          681    * Both of these can be found by considering only the corners of the box.
          682    * We save the minimum distance for each color in mindist[];
          683    * only the smallest maximum distance is of interest.
          684    */
          685   minmaxdist = 0x7FFFFFFFL;
          686 
          687   for (i = 0; i < numcolors; i++) {
          688     /* We compute the squared-c0-distance term, then add in the other two. */
          689     x = GETJSAMPLE(cinfo->colormap[0][i]);
          690     if (x < minc0) {
          691       tdist = (x - minc0) * C0_SCALE;
          692       min_dist = tdist*tdist;
          693       tdist = (x - maxc0) * C0_SCALE;
          694       max_dist = tdist*tdist;
          695     } else if (x > maxc0) {
          696       tdist = (x - maxc0) * C0_SCALE;
          697       min_dist = tdist*tdist;
          698       tdist = (x - minc0) * C0_SCALE;
          699       max_dist = tdist*tdist;
          700     } else {
          701       /* within cell range so no contribution to min_dist */
          702       min_dist = 0;
          703       if (x <= centerc0) {
          704         tdist = (x - maxc0) * C0_SCALE;
          705         max_dist = tdist*tdist;
          706       } else {
          707         tdist = (x - minc0) * C0_SCALE;
          708         max_dist = tdist*tdist;
          709       }
          710     }
          711 
          712     x = GETJSAMPLE(cinfo->colormap[1][i]);
          713     if (x < minc1) {
          714       tdist = (x - minc1) * C1_SCALE;
          715       min_dist += tdist*tdist;
          716       tdist = (x - maxc1) * C1_SCALE;
          717       max_dist += tdist*tdist;
          718     } else if (x > maxc1) {
          719       tdist = (x - maxc1) * C1_SCALE;
          720       min_dist += tdist*tdist;
          721       tdist = (x - minc1) * C1_SCALE;
          722       max_dist += tdist*tdist;
          723     } else {
          724       /* within cell range so no contribution to min_dist */
          725       if (x <= centerc1) {
          726         tdist = (x - maxc1) * C1_SCALE;
          727         max_dist += tdist*tdist;
          728       } else {
          729         tdist = (x - minc1) * C1_SCALE;
          730         max_dist += tdist*tdist;
          731       }
          732     }
          733 
          734     x = GETJSAMPLE(cinfo->colormap[2][i]);
          735     if (x < minc2) {
          736       tdist = (x - minc2) * C2_SCALE;
          737       min_dist += tdist*tdist;
          738       tdist = (x - maxc2) * C2_SCALE;
          739       max_dist += tdist*tdist;
          740     } else if (x > maxc2) {
          741       tdist = (x - maxc2) * C2_SCALE;
          742       min_dist += tdist*tdist;
          743       tdist = (x - minc2) * C2_SCALE;
          744       max_dist += tdist*tdist;
          745     } else {
          746       /* within cell range so no contribution to min_dist */
          747       if (x <= centerc2) {
          748         tdist = (x - maxc2) * C2_SCALE;
          749         max_dist += tdist*tdist;
          750       } else {
          751         tdist = (x - minc2) * C2_SCALE;
          752         max_dist += tdist*tdist;
          753       }
          754     }
          755 
          756     mindist[i] = min_dist;        /* save away the results */
          757     if (max_dist < minmaxdist)
          758       minmaxdist = max_dist;
          759   }
          760 
          761   /* Now we know that no cell in the update box is more than minmaxdist
          762    * away from some colormap entry.  Therefore, only colors that are
          763    * within minmaxdist of some part of the box need be considered.
          764    */
          765   ncolors = 0;
          766   for (i = 0; i < numcolors; i++) {
          767     if (mindist[i] <= minmaxdist)
          768       colorlist[ncolors++] = (JSAMPLE) i;
          769   }
          770   return ncolors;
          771 }
          772 
          773 
          774 LOCAL(void)
          775 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
          776                   int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
          777 /* Find the closest colormap entry for each cell in the update box,
          778  * given the list of candidate colors prepared by find_nearby_colors.
          779  * Return the indexes of the closest entries in the bestcolor[] array.
          780  * This routine uses Thomas' incremental distance calculation method to
          781  * find the distance from a colormap entry to successive cells in the box.
          782  */
          783 {
          784   int ic0, ic1, ic2;
          785   int i, icolor;
          786   register INT32 * bptr;        /* pointer into bestdist[] array */
          787   JSAMPLE * cptr;                /* pointer into bestcolor[] array */
          788   INT32 dist0, dist1;                /* initial distance values */
          789   register INT32 dist2;                /* current distance in inner loop */
          790   INT32 xx0, xx1;                /* distance increments */
          791   register INT32 xx2;
          792   INT32 inc0, inc1, inc2;        /* initial values for increments */
          793   /* This array holds the distance to the nearest-so-far color for each cell */
          794   INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
          795 
          796   /* Initialize best-distance for each cell of the update box */
          797   bptr = bestdist;
          798   for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
          799     *bptr++ = 0x7FFFFFFFL;
          800   
          801   /* For each color selected by find_nearby_colors,
          802    * compute its distance to the center of each cell in the box.
          803    * If that's less than best-so-far, update best distance and color number.
          804    */
          805   
          806   /* Nominal steps between cell centers ("x" in Thomas article) */
          807 #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
          808 #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
          809 #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
          810   
          811   for (i = 0; i < numcolors; i++) {
          812     icolor = GETJSAMPLE(colorlist[i]);
          813     /* Compute (square of) distance from minc0/c1/c2 to this color */
          814     inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
          815     dist0 = inc0*inc0;
          816     inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
          817     dist0 += inc1*inc1;
          818     inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
          819     dist0 += inc2*inc2;
          820     /* Form the initial difference increments */
          821     inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
          822     inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
          823     inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
          824     /* Now loop over all cells in box, updating distance per Thomas method */
          825     bptr = bestdist;
          826     cptr = bestcolor;
          827     xx0 = inc0;
          828     for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
          829       dist1 = dist0;
          830       xx1 = inc1;
          831       for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
          832         dist2 = dist1;
          833         xx2 = inc2;
          834         for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
          835           if (dist2 < *bptr) {
          836             *bptr = dist2;
          837             *cptr = (JSAMPLE) icolor;
          838           }
          839           dist2 += xx2;
          840           xx2 += 2 * STEP_C2 * STEP_C2;
          841           bptr++;
          842           cptr++;
          843         }
          844         dist1 += xx1;
          845         xx1 += 2 * STEP_C1 * STEP_C1;
          846       }
          847       dist0 += xx0;
          848       xx0 += 2 * STEP_C0 * STEP_C0;
          849     }
          850   }
          851 }
          852 
          853 
          854 LOCAL(void)
          855 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
          856 /* Fill the inverse-colormap entries in the update box that contains */
          857 /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
          858 /* we can fill as many others as we wish.) */
          859 {
          860   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
          861   hist3d histogram = cquantize->histogram;
          862   int minc0, minc1, minc2;        /* lower left corner of update box */
          863   int ic0, ic1, ic2;
          864   register JSAMPLE * cptr;        /* pointer into bestcolor[] array */
          865   register histptr cachep;        /* pointer into main cache array */
          866   /* This array lists the candidate colormap indexes. */
          867   JSAMPLE colorlist[MAXNUMCOLORS];
          868   int numcolors;                /* number of candidate colors */
          869   /* This array holds the actually closest colormap index for each cell. */
          870   JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
          871 
          872   /* Convert cell coordinates to update box ID */
          873   c0 >>= BOX_C0_LOG;
          874   c1 >>= BOX_C1_LOG;
          875   c2 >>= BOX_C2_LOG;
          876 
          877   /* Compute true coordinates of update box's origin corner.
          878    * Actually we compute the coordinates of the center of the corner
          879    * histogram cell, which are the lower bounds of the volume we care about.
          880    */
          881   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
          882   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
          883   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
          884   
          885   /* Determine which colormap entries are close enough to be candidates
          886    * for the nearest entry to some cell in the update box.
          887    */
          888   numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
          889 
          890   /* Determine the actually nearest colors. */
          891   find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
          892                    bestcolor);
          893 
          894   /* Save the best color numbers (plus 1) in the main cache array */
          895   c0 <<= BOX_C0_LOG;                /* convert ID back to base cell indexes */
          896   c1 <<= BOX_C1_LOG;
          897   c2 <<= BOX_C2_LOG;
          898   cptr = bestcolor;
          899   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
          900     for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
          901       cachep = & histogram[c0+ic0][c1+ic1][c2];
          902       for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
          903         *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
          904       }
          905     }
          906   }
          907 }
          908 
          909 
          910 /*
          911  * Map some rows of pixels to the output colormapped representation.
          912  */
          913 
          914 METHODDEF(void)
          915 pass2_no_dither (j_decompress_ptr cinfo,
          916                  JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
          917 /* This version performs no dithering */
          918 {
          919   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
          920   hist3d histogram = cquantize->histogram;
          921   register JSAMPROW inptr, outptr;
          922   register histptr cachep;
          923   register int c0, c1, c2;
          924   int row;
          925   JDIMENSION col;
          926   JDIMENSION width = cinfo->output_width;
          927 
          928   for (row = 0; row < num_rows; row++) {
          929     inptr = input_buf[row];
          930     outptr = output_buf[row];
          931     for (col = width; col > 0; col--) {
          932       /* get pixel value and index into the cache */
          933       c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
          934       c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
          935       c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
          936       cachep = & histogram[c0][c1][c2];
          937       /* If we have not seen this color before, find nearest colormap entry */
          938       /* and update the cache */
          939       if (*cachep == 0)
          940         fill_inverse_cmap(cinfo, c0,c1,c2);
          941       /* Now emit the colormap index for this cell */
          942       *outptr++ = (JSAMPLE) (*cachep - 1);
          943     }
          944   }
          945 }
          946 
          947 
          948 METHODDEF(void)
          949 pass2_fs_dither (j_decompress_ptr cinfo,
          950                  JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
          951 /* This version performs Floyd-Steinberg dithering */
          952 {
          953   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
          954   hist3d histogram = cquantize->histogram;
          955   register LOCFSERROR cur0, cur1, cur2;        /* current error or pixel value */
          956   LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
          957   LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
          958   register FSERRPTR errorptr;        /* => fserrors[] at column before current */
          959   JSAMPROW inptr;                /* => current input pixel */
          960   JSAMPROW outptr;                /* => current output pixel */
          961   histptr cachep;
          962   int dir;                        /* +1 or -1 depending on direction */
          963   int dir3;                        /* 3*dir, for advancing inptr & errorptr */
          964   int row;
          965   JDIMENSION col;
          966   JDIMENSION width = cinfo->output_width;
          967   JSAMPLE *range_limit = cinfo->sample_range_limit;
          968   int *error_limit = cquantize->error_limiter;
          969   JSAMPROW colormap0 = cinfo->colormap[0];
          970   JSAMPROW colormap1 = cinfo->colormap[1];
          971   JSAMPROW colormap2 = cinfo->colormap[2];
          972   SHIFT_TEMPS
          973 
          974   for (row = 0; row < num_rows; row++) {
          975     inptr = input_buf[row];
          976     outptr = output_buf[row];
          977     if (cquantize->on_odd_row) {
          978       /* work right to left in this row */
          979       inptr += (width-1) * 3;        /* so point to rightmost pixel */
          980       outptr += width-1;
          981       dir = -1;
          982       dir3 = -3;
          983       errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
          984       cquantize->on_odd_row = FALSE; /* flip for next time */
          985     } else {
          986       /* work left to right in this row */
          987       dir = 1;
          988       dir3 = 3;
          989       errorptr = cquantize->fserrors; /* => entry before first real column */
          990       cquantize->on_odd_row = TRUE; /* flip for next time */
          991     }
          992     /* Preset error values: no error propagated to first pixel from left */
          993     cur0 = cur1 = cur2 = 0;
          994     /* and no error propagated to row below yet */
          995     belowerr0 = belowerr1 = belowerr2 = 0;
          996     bpreverr0 = bpreverr1 = bpreverr2 = 0;
          997 
          998     for (col = width; col > 0; col--) {
          999       /* curN holds the error propagated from the previous pixel on the
         1000        * current line.  Add the error propagated from the previous line
         1001        * to form the complete error correction term for this pixel, and
         1002        * round the error term (which is expressed * 16) to an integer.
         1003        * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
         1004        * for either sign of the error value.
         1005        * Note: errorptr points to *previous* column's array entry.
         1006        */
         1007       cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
         1008       cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
         1009       cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
         1010       /* Limit the error using transfer function set by init_error_limit.
         1011        * See comments with init_error_limit for rationale.
         1012        */
         1013       cur0 = error_limit[cur0];
         1014       cur1 = error_limit[cur1];
         1015       cur2 = error_limit[cur2];
         1016       /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
         1017        * The maximum error is +- MAXJSAMPLE (or less with error limiting);
         1018        * this sets the required size of the range_limit array.
         1019        */
         1020       cur0 += GETJSAMPLE(inptr[0]);
         1021       cur1 += GETJSAMPLE(inptr[1]);
         1022       cur2 += GETJSAMPLE(inptr[2]);
         1023       cur0 = GETJSAMPLE(range_limit[cur0]);
         1024       cur1 = GETJSAMPLE(range_limit[cur1]);
         1025       cur2 = GETJSAMPLE(range_limit[cur2]);
         1026       /* Index into the cache with adjusted pixel value */
         1027       cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
         1028       /* If we have not seen this color before, find nearest colormap */
         1029       /* entry and update the cache */
         1030       if (*cachep == 0)
         1031         fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
         1032       /* Now emit the colormap index for this cell */
         1033       { register int pixcode = *cachep - 1;
         1034         *outptr = (JSAMPLE) pixcode;
         1035         /* Compute representation error for this pixel */
         1036         cur0 -= GETJSAMPLE(colormap0[pixcode]);
         1037         cur1 -= GETJSAMPLE(colormap1[pixcode]);
         1038         cur2 -= GETJSAMPLE(colormap2[pixcode]);
         1039       }
         1040       /* Compute error fractions to be propagated to adjacent pixels.
         1041        * Add these into the running sums, and simultaneously shift the
         1042        * next-line error sums left by 1 column.
         1043        */
         1044       { register LOCFSERROR bnexterr, delta;
         1045 
         1046         bnexterr = cur0;        /* Process component 0 */
         1047         delta = cur0 * 2;
         1048         cur0 += delta;                /* form error * 3 */
         1049         errorptr[0] = (FSERROR) (bpreverr0 + cur0);
         1050         cur0 += delta;                /* form error * 5 */
         1051         bpreverr0 = belowerr0 + cur0;
         1052         belowerr0 = bnexterr;
         1053         cur0 += delta;                /* form error * 7 */
         1054         bnexterr = cur1;        /* Process component 1 */
         1055         delta = cur1 * 2;
         1056         cur1 += delta;                /* form error * 3 */
         1057         errorptr[1] = (FSERROR) (bpreverr1 + cur1);
         1058         cur1 += delta;                /* form error * 5 */
         1059         bpreverr1 = belowerr1 + cur1;
         1060         belowerr1 = bnexterr;
         1061         cur1 += delta;                /* form error * 7 */
         1062         bnexterr = cur2;        /* Process component 2 */
         1063         delta = cur2 * 2;
         1064         cur2 += delta;                /* form error * 3 */
         1065         errorptr[2] = (FSERROR) (bpreverr2 + cur2);
         1066         cur2 += delta;                /* form error * 5 */
         1067         bpreverr2 = belowerr2 + cur2;
         1068         belowerr2 = bnexterr;
         1069         cur2 += delta;                /* form error * 7 */
         1070       }
         1071       /* At this point curN contains the 7/16 error value to be propagated
         1072        * to the next pixel on the current line, and all the errors for the
         1073        * next line have been shifted over.  We are therefore ready to move on.
         1074        */
         1075       inptr += dir3;                /* Advance pixel pointers to next column */
         1076       outptr += dir;
         1077       errorptr += dir3;                /* advance errorptr to current column */
         1078     }
         1079     /* Post-loop cleanup: we must unload the final error values into the
         1080      * final fserrors[] entry.  Note we need not unload belowerrN because
         1081      * it is for the dummy column before or after the actual array.
         1082      */
         1083     errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
         1084     errorptr[1] = (FSERROR) bpreverr1;
         1085     errorptr[2] = (FSERROR) bpreverr2;
         1086   }
         1087 }
         1088 
         1089 
         1090 /*
         1091  * Initialize the error-limiting transfer function (lookup table).
         1092  * The raw F-S error computation can potentially compute error values of up to
         1093  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
         1094  * much less, otherwise obviously wrong pixels will be created.  (Typical
         1095  * effects include weird fringes at color-area boundaries, isolated bright
         1096  * pixels in a dark area, etc.)  The standard advice for avoiding this problem
         1097  * is to ensure that the "corners" of the color cube are allocated as output
         1098  * colors; then repeated errors in the same direction cannot cause cascading
         1099  * error buildup.  However, that only prevents the error from getting
         1100  * completely out of hand; Aaron Giles reports that error limiting improves
         1101  * the results even with corner colors allocated.
         1102  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
         1103  * well, but the smoother transfer function used below is even better.  Thanks
         1104  * to Aaron Giles for this idea.
         1105  */
         1106 
         1107 LOCAL(void)
         1108 init_error_limit (j_decompress_ptr cinfo)
         1109 /* Allocate and fill in the error_limiter table */
         1110 {
         1111   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
         1112   int * table;
         1113   int in, out;
         1114 
         1115   table = (int *) (*cinfo->mem->alloc_small)
         1116     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
         1117   table += MAXJSAMPLE;                /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
         1118   cquantize->error_limiter = table;
         1119 
         1120 #define STEPSIZE ((MAXJSAMPLE+1)/16)
         1121   /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
         1122   out = 0;
         1123   for (in = 0; in < STEPSIZE; in++, out++) {
         1124     table[in] = out; table[-in] = -out;
         1125   }
         1126   /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
         1127   for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
         1128     table[in] = out; table[-in] = -out;
         1129   }
         1130   /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
         1131   for (; in <= MAXJSAMPLE; in++) {
         1132     table[in] = out; table[-in] = -out;
         1133   }
         1134 #undef STEPSIZE
         1135 }
         1136 
         1137 
         1138 /*
         1139  * Finish up at the end of each pass.
         1140  */
         1141 
         1142 METHODDEF(void)
         1143 finish_pass1 (j_decompress_ptr cinfo)
         1144 {
         1145   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
         1146 
         1147   /* Select the representative colors and fill in cinfo->colormap */
         1148   cinfo->colormap = cquantize->sv_colormap;
         1149   select_colors(cinfo, cquantize->desired);
         1150   /* Force next pass to zero the color index table */
         1151   cquantize->needs_zeroed = TRUE;
         1152 }
         1153 
         1154 
         1155 METHODDEF(void)
         1156 finish_pass2 (j_decompress_ptr cinfo)
         1157 {
         1158   /* no work */
         1159 }
         1160 
         1161 
         1162 /*
         1163  * Initialize for each processing pass.
         1164  */
         1165 
         1166 METHODDEF(void)
         1167 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
         1168 {
         1169   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
         1170   hist3d histogram = cquantize->histogram;
         1171   int i;
         1172 
         1173   /* Only F-S dithering or no dithering is supported. */
         1174   /* If user asks for ordered dither, give him F-S. */
         1175   if (cinfo->dither_mode != JDITHER_NONE)
         1176     cinfo->dither_mode = JDITHER_FS;
         1177 
         1178   if (is_pre_scan) {
         1179     /* Set up method pointers */
         1180     cquantize->pub.color_quantize = prescan_quantize;
         1181     cquantize->pub.finish_pass = finish_pass1;
         1182     cquantize->needs_zeroed = TRUE; /* Always zero histogram */
         1183   } else {
         1184     /* Set up method pointers */
         1185     if (cinfo->dither_mode == JDITHER_FS)
         1186       cquantize->pub.color_quantize = pass2_fs_dither;
         1187     else
         1188       cquantize->pub.color_quantize = pass2_no_dither;
         1189     cquantize->pub.finish_pass = finish_pass2;
         1190 
         1191     /* Make sure color count is acceptable */
         1192     i = cinfo->actual_number_of_colors;
         1193     if (i < 1)
         1194       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
         1195     if (i > MAXNUMCOLORS)
         1196       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
         1197 
         1198     if (cinfo->dither_mode == JDITHER_FS) {
         1199       size_t arraysize = (size_t) ((cinfo->output_width + 2) *
         1200                                    (3 * SIZEOF(FSERROR)));
         1201       /* Allocate Floyd-Steinberg workspace if we didn't already. */
         1202       if (cquantize->fserrors == NULL)
         1203         cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
         1204           ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
         1205       /* Initialize the propagated errors to zero. */
         1206       jzero_far((void FAR *) cquantize->fserrors, arraysize);
         1207       /* Make the error-limit table if we didn't already. */
         1208       if (cquantize->error_limiter == NULL)
         1209         init_error_limit(cinfo);
         1210       cquantize->on_odd_row = FALSE;
         1211     }
         1212 
         1213   }
         1214   /* Zero the histogram or inverse color map, if necessary */
         1215   if (cquantize->needs_zeroed) {
         1216     for (i = 0; i < HIST_C0_ELEMS; i++) {
         1217       jzero_far((void FAR *) histogram[i],
         1218                 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
         1219     }
         1220     cquantize->needs_zeroed = FALSE;
         1221   }
         1222 }
         1223 
         1224 
         1225 /*
         1226  * Switch to a new external colormap between output passes.
         1227  */
         1228 
         1229 METHODDEF(void)
         1230 new_color_map_2_quant (j_decompress_ptr cinfo)
         1231 {
         1232   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
         1233 
         1234   /* Reset the inverse color map */
         1235   cquantize->needs_zeroed = TRUE;
         1236 }
         1237 
         1238 
         1239 /*
         1240  * Module initialization routine for 2-pass color quantization.
         1241  */
         1242 
         1243 GLOBAL(void)
         1244 jinit_2pass_quantizer (j_decompress_ptr cinfo)
         1245 {
         1246   my_cquantize_ptr cquantize;
         1247   int i;
         1248 
         1249   cquantize = (my_cquantize_ptr)
         1250     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
         1251                                 SIZEOF(my_cquantizer));
         1252   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
         1253   cquantize->pub.start_pass = start_pass_2_quant;
         1254   cquantize->pub.new_color_map = new_color_map_2_quant;
         1255   cquantize->fserrors = NULL;        /* flag optional arrays not allocated */
         1256   cquantize->error_limiter = NULL;
         1257 
         1258   /* Make sure jdmaster didn't give me a case I can't handle */
         1259   if (cinfo->out_color_components != 3)
         1260     ERREXIT(cinfo, JERR_NOTIMPL);
         1261 
         1262   /* Allocate the histogram/inverse colormap storage */
         1263   cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
         1264     ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
         1265   for (i = 0; i < HIST_C0_ELEMS; i++) {
         1266     cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
         1267       ((j_common_ptr) cinfo, JPOOL_IMAGE,
         1268        HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
         1269   }
         1270   cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
         1271 
         1272   /* Allocate storage for the completed colormap, if required.
         1273    * We do this now since it is FAR storage and may affect
         1274    * the memory manager's space calculations.
         1275    */
         1276   if (cinfo->enable_2pass_quant) {
         1277     /* Make sure color count is acceptable */
         1278     int desired = cinfo->desired_number_of_colors;
         1279     /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
         1280     if (desired < 8)
         1281       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
         1282     /* Make sure colormap indexes can be represented by JSAMPLEs */
         1283     if (desired > MAXNUMCOLORS)
         1284       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
         1285     cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
         1286       ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
         1287     cquantize->desired = desired;
         1288   } else
         1289     cquantize->sv_colormap = NULL;
         1290 
         1291   /* Only F-S dithering or no dithering is supported. */
         1292   /* If user asks for ordered dither, give him F-S. */
         1293   if (cinfo->dither_mode != JDITHER_NONE)
         1294     cinfo->dither_mode = JDITHER_FS;
         1295 
         1296   /* Allocate Floyd-Steinberg workspace if necessary.
         1297    * This isn't really needed until pass 2, but again it is FAR storage.
         1298    * Although we will cope with a later change in dither_mode,
         1299    * we do not promise to honor max_memory_to_use if dither_mode changes.
         1300    */
         1301   if (cinfo->dither_mode == JDITHER_FS) {
         1302     cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
         1303       ((j_common_ptr) cinfo, JPOOL_IMAGE,
         1304        (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
         1305     /* Might as well create the error-limiting table too. */
         1306     init_error_limit(cinfo);
         1307   }
         1308 }
         1309 
         1310 #endif /* QUANT_2PASS_SUPPORTED */