jquant1.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       jquant1.c (31294B)
       ---
            1 /*
            2  * jquant1.c
            3  *
            4  * Copyright (C) 1991-1996, Thomas G. Lane.
            5  * This file is part of the Independent JPEG Group's software.
            6  * For conditions of distribution and use, see the accompanying README file.
            7  *
            8  * This file contains 1-pass color quantization (color mapping) routines.
            9  * These routines provide mapping to a fixed color map using equally spaced
           10  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
           11  */
           12 
           13 #define JPEG_INTERNALS
           14 #include "jinclude.h"
           15 #include "jpeglib.h"
           16 
           17 #ifdef QUANT_1PASS_SUPPORTED
           18 
           19 
           20 /*
           21  * The main purpose of 1-pass quantization is to provide a fast, if not very
           22  * high quality, colormapped output capability.  A 2-pass quantizer usually
           23  * gives better visual quality; however, for quantized grayscale output this
           24  * quantizer is perfectly adequate.  Dithering is highly recommended with this
           25  * quantizer, though you can turn it off if you really want to.
           26  *
           27  * In 1-pass quantization the colormap must be chosen in advance of seeing the
           28  * image.  We use a map consisting of all combinations of Ncolors[i] color
           29  * values for the i'th component.  The Ncolors[] values are chosen so that
           30  * their product, the total number of colors, is no more than that requested.
           31  * (In most cases, the product will be somewhat less.)
           32  *
           33  * Since the colormap is orthogonal, the representative value for each color
           34  * component can be determined without considering the other components;
           35  * then these indexes can be combined into a colormap index by a standard
           36  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
           37  * can be precalculated and stored in the lookup table colorindex[].
           38  * colorindex[i][j] maps pixel value j in component i to the nearest
           39  * representative value (grid plane) for that component; this index is
           40  * multiplied by the array stride for component i, so that the
           41  * index of the colormap entry closest to a given pixel value is just
           42  *    sum( colorindex[component-number][pixel-component-value] )
           43  * Aside from being fast, this scheme allows for variable spacing between
           44  * representative values with no additional lookup cost.
           45  *
           46  * If gamma correction has been applied in color conversion, it might be wise
           47  * to adjust the color grid spacing so that the representative colors are
           48  * equidistant in linear space.  At this writing, gamma correction is not
           49  * implemented by jdcolor, so nothing is done here.
           50  */
           51 
           52 
           53 /* Declarations for ordered dithering.
           54  *
           55  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
           56  * dithering is described in many references, for instance Dale Schumacher's
           57  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
           58  * In place of Schumacher's comparisons against a "threshold" value, we add a
           59  * "dither" value to the input pixel and then round the result to the nearest
           60  * output value.  The dither value is equivalent to (0.5 - threshold) times
           61  * the distance between output values.  For ordered dithering, we assume that
           62  * the output colors are equally spaced; if not, results will probably be
           63  * worse, since the dither may be too much or too little at a given point.
           64  *
           65  * The normal calculation would be to form pixel value + dither, range-limit
           66  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
           67  * We can skip the separate range-limiting step by extending the colorindex
           68  * table in both directions.
           69  */
           70 
           71 #define ODITHER_SIZE  16        /* dimension of dither matrix */
           72 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
           73 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)        /* # cells in matrix */
           74 #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
           75 
           76 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
           77 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
           78 
           79 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
           80   /* Bayer's order-4 dither array.  Generated by the code given in
           81    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
           82    * The values in this array must range from 0 to ODITHER_CELLS-1.
           83    */
           84   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
           85   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
           86   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
           87   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
           88   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
           89   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
           90   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
           91   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
           92   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
           93   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
           94   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
           95   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
           96   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
           97   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
           98   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
           99   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
          100 };
          101 
          102 
          103 /* Declarations for Floyd-Steinberg dithering.
          104  *
          105  * Errors are accumulated into the array fserrors[], at a resolution of
          106  * 1/16th of a pixel count.  The error at a given pixel is propagated
          107  * to its not-yet-processed neighbors using the standard F-S fractions,
          108  *                ...        (here)        7/16
          109  *                3/16        5/16        1/16
          110  * We work left-to-right on even rows, right-to-left on odd rows.
          111  *
          112  * We can get away with a single array (holding one row's worth of errors)
          113  * by using it to store the current row's errors at pixel columns not yet
          114  * processed, but the next row's errors at columns already processed.  We
          115  * need only a few extra variables to hold the errors immediately around the
          116  * current column.  (If we are lucky, those variables are in registers, but
          117  * even if not, they're probably cheaper to access than array elements are.)
          118  *
          119  * The fserrors[] array is indexed [component#][position].
          120  * We provide (#columns + 2) entries per component; the extra entry at each
          121  * end saves us from special-casing the first and last pixels.
          122  *
          123  * Note: on a wide image, we might not have enough room in a PC's near data
          124  * segment to hold the error array; so it is allocated with alloc_large.
          125  */
          126 
          127 #if BITS_IN_JSAMPLE == 8
          128 typedef INT16 FSERROR;                /* 16 bits should be enough */
          129 typedef int LOCFSERROR;                /* use 'int' for calculation temps */
          130 #else
          131 typedef INT32 FSERROR;                /* may need more than 16 bits */
          132 typedef INT32 LOCFSERROR;        /* be sure calculation temps are big enough */
          133 #endif
          134 
          135 typedef FSERROR FAR *FSERRPTR;        /* pointer to error array (in FAR storage!) */
          136 
          137 
          138 /* Private subobject */
          139 
          140 #define MAX_Q_COMPS 4                /* max components I can handle */
          141 
          142 typedef struct {
          143   struct jpeg_color_quantizer pub; /* public fields */
          144 
          145   /* Initially allocated colormap is saved here */
          146   JSAMPARRAY sv_colormap;        /* The color map as a 2-D pixel array */
          147   int sv_actual;                /* number of entries in use */
          148 
          149   JSAMPARRAY colorindex;        /* Precomputed mapping for speed */
          150   /* colorindex[i][j] = index of color closest to pixel value j in component i,
          151    * premultiplied as described above.  Since colormap indexes must fit into
          152    * JSAMPLEs, the entries of this array will too.
          153    */
          154   boolean is_padded;                /* is the colorindex padded for odither? */
          155 
          156   int Ncolors[MAX_Q_COMPS];        /* # of values alloced to each component */
          157 
          158   /* Variables for ordered dithering */
          159   int row_index;                /* cur row's vertical index in dither matrix */
          160   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
          161 
          162   /* Variables for Floyd-Steinberg dithering */
          163   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
          164   boolean on_odd_row;                /* flag to remember which row we are on */
          165 } my_cquantizer;
          166 
          167 typedef my_cquantizer * my_cquantize_ptr;
          168 
          169 
          170 /*
          171  * Policy-making subroutines for create_colormap and create_colorindex.
          172  * These routines determine the colormap to be used.  The rest of the module
          173  * only assumes that the colormap is orthogonal.
          174  *
          175  *  * select_ncolors decides how to divvy up the available colors
          176  *    among the components.
          177  *  * output_value defines the set of representative values for a component.
          178  *  * largest_input_value defines the mapping from input values to
          179  *    representative values for a component.
          180  * Note that the latter two routines may impose different policies for
          181  * different components, though this is not currently done.
          182  */
          183 
          184 
          185 LOCAL(int)
          186 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
          187 /* Determine allocation of desired colors to components, */
          188 /* and fill in Ncolors[] array to indicate choice. */
          189 /* Return value is total number of colors (product of Ncolors[] values). */
          190 {
          191   int nc = cinfo->out_color_components; /* number of color components */
          192   int max_colors = cinfo->desired_number_of_colors;
          193   int total_colors, iroot, i, j;
          194   boolean changed;
          195   long temp;
          196   static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
          197 
          198   /* We can allocate at least the nc'th root of max_colors per component. */
          199   /* Compute floor(nc'th root of max_colors). */
          200   iroot = 1;
          201   do {
          202     iroot++;
          203     temp = iroot;                /* set temp = iroot ** nc */
          204     for (i = 1; i < nc; i++)
          205       temp *= iroot;
          206   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
          207   iroot--;                        /* now iroot = floor(root) */
          208 
          209   /* Must have at least 2 color values per component */
          210   if (iroot < 2)
          211     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
          212 
          213   /* Initialize to iroot color values for each component */
          214   total_colors = 1;
          215   for (i = 0; i < nc; i++) {
          216     Ncolors[i] = iroot;
          217     total_colors *= iroot;
          218   }
          219   /* We may be able to increment the count for one or more components without
          220    * exceeding max_colors, though we know not all can be incremented.
          221    * Sometimes, the first component can be incremented more than once!
          222    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
          223    * In RGB colorspace, try to increment G first, then R, then B.
          224    */
          225   do {
          226     changed = FALSE;
          227     for (i = 0; i < nc; i++) {
          228       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
          229       /* calculate new total_colors if Ncolors[j] is incremented */
          230       temp = total_colors / Ncolors[j];
          231       temp *= Ncolors[j]+1;        /* done in long arith to avoid oflo */
          232       if (temp > (long) max_colors)
          233         break;                        /* won't fit, done with this pass */
          234       Ncolors[j]++;                /* OK, apply the increment */
          235       total_colors = (int) temp;
          236       changed = TRUE;
          237     }
          238   } while (changed);
          239 
          240   return total_colors;
          241 }
          242 
          243 
          244 LOCAL(int)
          245 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
          246 /* Return j'th output value, where j will range from 0 to maxj */
          247 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
          248 {
          249   /* We always provide values 0 and MAXJSAMPLE for each component;
          250    * any additional values are equally spaced between these limits.
          251    * (Forcing the upper and lower values to the limits ensures that
          252    * dithering can't produce a color outside the selected gamut.)
          253    */
          254   return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
          255 }
          256 
          257 
          258 LOCAL(int)
          259 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
          260 /* Return largest input value that should map to j'th output value */
          261 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
          262 {
          263   /* Breakpoints are halfway between values returned by output_value */
          264   return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
          265 }
          266 
          267 
          268 /*
          269  * Create the colormap.
          270  */
          271 
          272 LOCAL(void)
          273 create_colormap (j_decompress_ptr cinfo)
          274 {
          275   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
          276   JSAMPARRAY colormap;                /* Created colormap */
          277   int total_colors;                /* Number of distinct output colors */
          278   int i,j,k, nci, blksize, blkdist, ptr, val;
          279 
          280   /* Select number of colors for each component */
          281   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
          282 
          283   /* Report selected color counts */
          284   if (cinfo->out_color_components == 3)
          285     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
          286              total_colors, cquantize->Ncolors[0],
          287              cquantize->Ncolors[1], cquantize->Ncolors[2]);
          288   else
          289     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
          290 
          291   /* Allocate and fill in the colormap. */
          292   /* The colors are ordered in the map in standard row-major order, */
          293   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
          294 
          295   colormap = (*cinfo->mem->alloc_sarray)
          296     ((j_common_ptr) cinfo, JPOOL_IMAGE,
          297      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
          298 
          299   /* blksize is number of adjacent repeated entries for a component */
          300   /* blkdist is distance between groups of identical entries for a component */
          301   blkdist = total_colors;
          302 
          303   for (i = 0; i < cinfo->out_color_components; i++) {
          304     /* fill in colormap entries for i'th color component */
          305     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
          306     blksize = blkdist / nci;
          307     for (j = 0; j < nci; j++) {
          308       /* Compute j'th output value (out of nci) for component */
          309       val = output_value(cinfo, i, j, nci-1);
          310       /* Fill in all colormap entries that have this value of this component */
          311       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
          312         /* fill in blksize entries beginning at ptr */
          313         for (k = 0; k < blksize; k++)
          314           colormap[i][ptr+k] = (JSAMPLE) val;
          315       }
          316     }
          317     blkdist = blksize;                /* blksize of this color is blkdist of next */
          318   }
          319 
          320   /* Save the colormap in private storage,
          321    * where it will survive color quantization mode changes.
          322    */
          323   cquantize->sv_colormap = colormap;
          324   cquantize->sv_actual = total_colors;
          325 }
          326 
          327 
          328 /*
          329  * Create the color index table.
          330  */
          331 
          332 LOCAL(void)
          333 create_colorindex (j_decompress_ptr cinfo)
          334 {
          335   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
          336   JSAMPROW indexptr;
          337   int i,j,k, nci, blksize, val, pad;
          338 
          339   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
          340    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
          341    * This is not necessary in the other dithering modes.  However, we
          342    * flag whether it was done in case user changes dithering mode.
          343    */
          344   if (cinfo->dither_mode == JDITHER_ORDERED) {
          345     pad = MAXJSAMPLE*2;
          346     cquantize->is_padded = TRUE;
          347   } else {
          348     pad = 0;
          349     cquantize->is_padded = FALSE;
          350   }
          351 
          352   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
          353     ((j_common_ptr) cinfo, JPOOL_IMAGE,
          354      (JDIMENSION) (MAXJSAMPLE+1 + pad),
          355      (JDIMENSION) cinfo->out_color_components);
          356 
          357   /* blksize is number of adjacent repeated entries for a component */
          358   blksize = cquantize->sv_actual;
          359 
          360   for (i = 0; i < cinfo->out_color_components; i++) {
          361     /* fill in colorindex entries for i'th color component */
          362     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
          363     blksize = blksize / nci;
          364 
          365     /* adjust colorindex pointers to provide padding at negative indexes. */
          366     if (pad)
          367       cquantize->colorindex[i] += MAXJSAMPLE;
          368 
          369     /* in loop, val = index of current output value, */
          370     /* and k = largest j that maps to current val */
          371     indexptr = cquantize->colorindex[i];
          372     val = 0;
          373     k = largest_input_value(cinfo, i, 0, nci-1);
          374     for (j = 0; j <= MAXJSAMPLE; j++) {
          375       while (j > k)                /* advance val if past boundary */
          376         k = largest_input_value(cinfo, i, ++val, nci-1);
          377       /* premultiply so that no multiplication needed in main processing */
          378       indexptr[j] = (JSAMPLE) (val * blksize);
          379     }
          380     /* Pad at both ends if necessary */
          381     if (pad)
          382       for (j = 1; j <= MAXJSAMPLE; j++) {
          383         indexptr[-j] = indexptr[0];
          384         indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
          385       }
          386   }
          387 }
          388 
          389 
          390 /*
          391  * Create an ordered-dither array for a component having ncolors
          392  * distinct output values.
          393  */
          394 
          395 LOCAL(ODITHER_MATRIX_PTR)
          396 make_odither_array (j_decompress_ptr cinfo, int ncolors)
          397 {
          398   ODITHER_MATRIX_PTR odither;
          399   int j,k;
          400   INT32 num,den;
          401 
          402   odither = (ODITHER_MATRIX_PTR)
          403     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
          404                                 SIZEOF(ODITHER_MATRIX));
          405   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
          406    * Hence the dither value for the matrix cell with fill order f
          407    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
          408    * On 16-bit-int machine, be careful to avoid overflow.
          409    */
          410   den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
          411   for (j = 0; j < ODITHER_SIZE; j++) {
          412     for (k = 0; k < ODITHER_SIZE; k++) {
          413       num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
          414             * MAXJSAMPLE;
          415       /* Ensure round towards zero despite C's lack of consistency
          416        * about rounding negative values in integer division...
          417        */
          418       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
          419     }
          420   }
          421   return odither;
          422 }
          423 
          424 
          425 /*
          426  * Create the ordered-dither tables.
          427  * Components having the same number of representative colors may 
          428  * share a dither table.
          429  */
          430 
          431 LOCAL(void)
          432 create_odither_tables (j_decompress_ptr cinfo)
          433 {
          434   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
          435   ODITHER_MATRIX_PTR odither;
          436   int i, j, nci;
          437 
          438   for (i = 0; i < cinfo->out_color_components; i++) {
          439     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
          440     odither = NULL;                /* search for matching prior component */
          441     for (j = 0; j < i; j++) {
          442       if (nci == cquantize->Ncolors[j]) {
          443         odither = cquantize->odither[j];
          444         break;
          445       }
          446     }
          447     if (odither == NULL)        /* need a new table? */
          448       odither = make_odither_array(cinfo, nci);
          449     cquantize->odither[i] = odither;
          450   }
          451 }
          452 
          453 
          454 /*
          455  * Map some rows of pixels to the output colormapped representation.
          456  */
          457 
          458 METHODDEF(void)
          459 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
          460                 JSAMPARRAY output_buf, int num_rows)
          461 /* General case, no dithering */
          462 {
          463   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
          464   JSAMPARRAY colorindex = cquantize->colorindex;
          465   register int pixcode, ci;
          466   register JSAMPROW ptrin, ptrout;
          467   int row;
          468   JDIMENSION col;
          469   JDIMENSION width = cinfo->output_width;
          470   register int nc = cinfo->out_color_components;
          471 
          472   for (row = 0; row < num_rows; row++) {
          473     ptrin = input_buf[row];
          474     ptrout = output_buf[row];
          475     for (col = width; col > 0; col--) {
          476       pixcode = 0;
          477       for (ci = 0; ci < nc; ci++) {
          478         pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
          479       }
          480       *ptrout++ = (JSAMPLE) pixcode;
          481     }
          482   }
          483 }
          484 
          485 
          486 METHODDEF(void)
          487 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
          488                  JSAMPARRAY output_buf, int num_rows)
          489 /* Fast path for out_color_components==3, no dithering */
          490 {
          491   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
          492   register int pixcode;
          493   register JSAMPROW ptrin, ptrout;
          494   JSAMPROW colorindex0 = cquantize->colorindex[0];
          495   JSAMPROW colorindex1 = cquantize->colorindex[1];
          496   JSAMPROW colorindex2 = cquantize->colorindex[2];
          497   int row;
          498   JDIMENSION col;
          499   JDIMENSION width = cinfo->output_width;
          500 
          501   for (row = 0; row < num_rows; row++) {
          502     ptrin = input_buf[row];
          503     ptrout = output_buf[row];
          504     for (col = width; col > 0; col--) {
          505       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
          506       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
          507       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
          508       *ptrout++ = (JSAMPLE) pixcode;
          509     }
          510   }
          511 }
          512 
          513 
          514 METHODDEF(void)
          515 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
          516                      JSAMPARRAY output_buf, int num_rows)
          517 /* General case, with ordered dithering */
          518 {
          519   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
          520   register JSAMPROW input_ptr;
          521   register JSAMPROW output_ptr;
          522   JSAMPROW colorindex_ci;
          523   int * dither;                        /* points to active row of dither matrix */
          524   int row_index, col_index;        /* current indexes into dither matrix */
          525   int nc = cinfo->out_color_components;
          526   int ci;
          527   int row;
          528   JDIMENSION col;
          529   JDIMENSION width = cinfo->output_width;
          530 
          531   for (row = 0; row < num_rows; row++) {
          532     /* Initialize output values to 0 so can process components separately */
          533     jzero_far((void FAR *) output_buf[row],
          534               (size_t) (width * SIZEOF(JSAMPLE)));
          535     row_index = cquantize->row_index;
          536     for (ci = 0; ci < nc; ci++) {
          537       input_ptr = input_buf[row] + ci;
          538       output_ptr = output_buf[row];
          539       colorindex_ci = cquantize->colorindex[ci];
          540       dither = cquantize->odither[ci][row_index];
          541       col_index = 0;
          542 
          543       for (col = width; col > 0; col--) {
          544         /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
          545          * select output value, accumulate into output code for this pixel.
          546          * Range-limiting need not be done explicitly, as we have extended
          547          * the colorindex table to produce the right answers for out-of-range
          548          * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
          549          * required amount of padding.
          550          */
          551         *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
          552         input_ptr += nc;
          553         output_ptr++;
          554         col_index = (col_index + 1) & ODITHER_MASK;
          555       }
          556     }
          557     /* Advance row index for next row */
          558     row_index = (row_index + 1) & ODITHER_MASK;
          559     cquantize->row_index = row_index;
          560   }
          561 }
          562 
          563 
          564 METHODDEF(void)
          565 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
          566                       JSAMPARRAY output_buf, int num_rows)
          567 /* Fast path for out_color_components==3, with ordered dithering */
          568 {
          569   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
          570   register int pixcode;
          571   register JSAMPROW input_ptr;
          572   register JSAMPROW output_ptr;
          573   JSAMPROW colorindex0 = cquantize->colorindex[0];
          574   JSAMPROW colorindex1 = cquantize->colorindex[1];
          575   JSAMPROW colorindex2 = cquantize->colorindex[2];
          576   int * dither0;                /* points to active row of dither matrix */
          577   int * dither1;
          578   int * dither2;
          579   int row_index, col_index;        /* current indexes into dither matrix */
          580   int row;
          581   JDIMENSION col;
          582   JDIMENSION width = cinfo->output_width;
          583 
          584   for (row = 0; row < num_rows; row++) {
          585     row_index = cquantize->row_index;
          586     input_ptr = input_buf[row];
          587     output_ptr = output_buf[row];
          588     dither0 = cquantize->odither[0][row_index];
          589     dither1 = cquantize->odither[1][row_index];
          590     dither2 = cquantize->odither[2][row_index];
          591     col_index = 0;
          592 
          593     for (col = width; col > 0; col--) {
          594       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
          595                                         dither0[col_index]]);
          596       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
          597                                         dither1[col_index]]);
          598       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
          599                                         dither2[col_index]]);
          600       *output_ptr++ = (JSAMPLE) pixcode;
          601       col_index = (col_index + 1) & ODITHER_MASK;
          602     }
          603     row_index = (row_index + 1) & ODITHER_MASK;
          604     cquantize->row_index = row_index;
          605   }
          606 }
          607 
          608 
          609 METHODDEF(void)
          610 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
          611                     JSAMPARRAY output_buf, int num_rows)
          612 /* General case, with Floyd-Steinberg dithering */
          613 {
          614   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
          615   register LOCFSERROR cur;        /* current error or pixel value */
          616   LOCFSERROR belowerr;                /* error for pixel below cur */
          617   LOCFSERROR bpreverr;                /* error for below/prev col */
          618   LOCFSERROR bnexterr;                /* error for below/next col */
          619   LOCFSERROR delta;
          620   register FSERRPTR errorptr;        /* => fserrors[] at column before current */
          621   register JSAMPROW input_ptr;
          622   register JSAMPROW output_ptr;
          623   JSAMPROW colorindex_ci;
          624   JSAMPROW colormap_ci;
          625   int pixcode;
          626   int nc = cinfo->out_color_components;
          627   int dir;                        /* 1 for left-to-right, -1 for right-to-left */
          628   int dirnc;                        /* dir * nc */
          629   int ci;
          630   int row;
          631   JDIMENSION col;
          632   JDIMENSION width = cinfo->output_width;
          633   JSAMPLE *range_limit = cinfo->sample_range_limit;
          634   SHIFT_TEMPS
          635 
          636   for (row = 0; row < num_rows; row++) {
          637     /* Initialize output values to 0 so can process components separately */
          638     jzero_far((void FAR *) output_buf[row],
          639               (size_t) (width * SIZEOF(JSAMPLE)));
          640     for (ci = 0; ci < nc; ci++) {
          641       input_ptr = input_buf[row] + ci;
          642       output_ptr = output_buf[row];
          643       if (cquantize->on_odd_row) {
          644         /* work right to left in this row */
          645         input_ptr += (width-1) * nc; /* so point to rightmost pixel */
          646         output_ptr += width-1;
          647         dir = -1;
          648         dirnc = -nc;
          649         errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
          650       } else {
          651         /* work left to right in this row */
          652         dir = 1;
          653         dirnc = nc;
          654         errorptr = cquantize->fserrors[ci]; /* => entry before first column */
          655       }
          656       colorindex_ci = cquantize->colorindex[ci];
          657       colormap_ci = cquantize->sv_colormap[ci];
          658       /* Preset error values: no error propagated to first pixel from left */
          659       cur = 0;
          660       /* and no error propagated to row below yet */
          661       belowerr = bpreverr = 0;
          662 
          663       for (col = width; col > 0; col--) {
          664         /* cur holds the error propagated from the previous pixel on the
          665          * current line.  Add the error propagated from the previous line
          666          * to form the complete error correction term for this pixel, and
          667          * round the error term (which is expressed * 16) to an integer.
          668          * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
          669          * for either sign of the error value.
          670          * Note: errorptr points to *previous* column's array entry.
          671          */
          672         cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
          673         /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
          674          * The maximum error is +- MAXJSAMPLE; this sets the required size
          675          * of the range_limit array.
          676          */
          677         cur += GETJSAMPLE(*input_ptr);
          678         cur = GETJSAMPLE(range_limit[cur]);
          679         /* Select output value, accumulate into output code for this pixel */
          680         pixcode = GETJSAMPLE(colorindex_ci[cur]);
          681         *output_ptr += (JSAMPLE) pixcode;
          682         /* Compute actual representation error at this pixel */
          683         /* Note: we can do this even though we don't have the final */
          684         /* pixel code, because the colormap is orthogonal. */
          685         cur -= GETJSAMPLE(colormap_ci[pixcode]);
          686         /* Compute error fractions to be propagated to adjacent pixels.
          687          * Add these into the running sums, and simultaneously shift the
          688          * next-line error sums left by 1 column.
          689          */
          690         bnexterr = cur;
          691         delta = cur * 2;
          692         cur += delta;                /* form error * 3 */
          693         errorptr[0] = (FSERROR) (bpreverr + cur);
          694         cur += delta;                /* form error * 5 */
          695         bpreverr = belowerr + cur;
          696         belowerr = bnexterr;
          697         cur += delta;                /* form error * 7 */
          698         /* At this point cur contains the 7/16 error value to be propagated
          699          * to the next pixel on the current line, and all the errors for the
          700          * next line have been shifted over. We are therefore ready to move on.
          701          */
          702         input_ptr += dirnc;        /* advance input ptr to next column */
          703         output_ptr += dir;        /* advance output ptr to next column */
          704         errorptr += dir;        /* advance errorptr to current column */
          705       }
          706       /* Post-loop cleanup: we must unload the final error value into the
          707        * final fserrors[] entry.  Note we need not unload belowerr because
          708        * it is for the dummy column before or after the actual array.
          709        */
          710       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
          711     }
          712     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
          713   }
          714 }
          715 
          716 
          717 /*
          718  * Allocate workspace for Floyd-Steinberg errors.
          719  */
          720 
          721 LOCAL(void)
          722 alloc_fs_workspace (j_decompress_ptr cinfo)
          723 {
          724   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
          725   size_t arraysize;
          726   int i;
          727 
          728   arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
          729   for (i = 0; i < cinfo->out_color_components; i++) {
          730     cquantize->fserrors[i] = (FSERRPTR)
          731       (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
          732   }
          733 }
          734 
          735 
          736 /*
          737  * Initialize for one-pass color quantization.
          738  */
          739 
          740 METHODDEF(void)
          741 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
          742 {
          743   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
          744   size_t arraysize;
          745   int i;
          746 
          747   /* Install my colormap. */
          748   cinfo->colormap = cquantize->sv_colormap;
          749   cinfo->actual_number_of_colors = cquantize->sv_actual;
          750 
          751   /* Initialize for desired dithering mode. */
          752   switch (cinfo->dither_mode) {
          753   case JDITHER_NONE:
          754     if (cinfo->out_color_components == 3)
          755       cquantize->pub.color_quantize = color_quantize3;
          756     else
          757       cquantize->pub.color_quantize = color_quantize;
          758     break;
          759   case JDITHER_ORDERED:
          760     if (cinfo->out_color_components == 3)
          761       cquantize->pub.color_quantize = quantize3_ord_dither;
          762     else
          763       cquantize->pub.color_quantize = quantize_ord_dither;
          764     cquantize->row_index = 0;        /* initialize state for ordered dither */
          765     /* If user changed to ordered dither from another mode,
          766      * we must recreate the color index table with padding.
          767      * This will cost extra space, but probably isn't very likely.
          768      */
          769     if (! cquantize->is_padded)
          770       create_colorindex(cinfo);
          771     /* Create ordered-dither tables if we didn't already. */
          772     if (cquantize->odither[0] == NULL)
          773       create_odither_tables(cinfo);
          774     break;
          775   case JDITHER_FS:
          776     cquantize->pub.color_quantize = quantize_fs_dither;
          777     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
          778     /* Allocate Floyd-Steinberg workspace if didn't already. */
          779     if (cquantize->fserrors[0] == NULL)
          780       alloc_fs_workspace(cinfo);
          781     /* Initialize the propagated errors to zero. */
          782     arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
          783     for (i = 0; i < cinfo->out_color_components; i++)
          784       jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
          785     break;
          786   default:
          787     ERREXIT(cinfo, JERR_NOT_COMPILED);
          788     break;
          789   }
          790 }
          791 
          792 
          793 /*
          794  * Finish up at the end of the pass.
          795  */
          796 
          797 METHODDEF(void)
          798 finish_pass_1_quant (j_decompress_ptr cinfo)
          799 {
          800   /* no work in 1-pass case */
          801 }
          802 
          803 
          804 /*
          805  * Switch to a new external colormap between output passes.
          806  * Shouldn't get to this module!
          807  */
          808 
          809 METHODDEF(void)
          810 new_color_map_1_quant (j_decompress_ptr cinfo)
          811 {
          812   ERREXIT(cinfo, JERR_MODE_CHANGE);
          813 }
          814 
          815 
          816 /*
          817  * Module initialization routine for 1-pass color quantization.
          818  */
          819 
          820 GLOBAL(void)
          821 jinit_1pass_quantizer (j_decompress_ptr cinfo)
          822 {
          823   my_cquantize_ptr cquantize;
          824 
          825   cquantize = (my_cquantize_ptr)
          826     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
          827                                 SIZEOF(my_cquantizer));
          828   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
          829   cquantize->pub.start_pass = start_pass_1_quant;
          830   cquantize->pub.finish_pass = finish_pass_1_quant;
          831   cquantize->pub.new_color_map = new_color_map_1_quant;
          832   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
          833   cquantize->odither[0] = NULL;        /* Also flag odither arrays not allocated */
          834 
          835   /* Make sure my internal arrays won't overflow */
          836   if (cinfo->out_color_components > MAX_Q_COMPS)
          837     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
          838   /* Make sure colormap indexes can be represented by JSAMPLEs */
          839   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
          840     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
          841 
          842   /* Create the colormap and color index table. */
          843   create_colormap(cinfo);
          844   create_colorindex(cinfo);
          845 
          846   /* Allocate Floyd-Steinberg workspace now if requested.
          847    * We do this now since it is FAR storage and may affect the memory
          848    * manager's space calculations.  If the user changes to FS dither
          849    * mode in a later pass, we will allocate the space then, and will
          850    * possibly overrun the max_memory_to_use setting.
          851    */
          852   if (cinfo->dither_mode == JDITHER_FS)
          853     alloc_fs_workspace(cinfo);
          854 }
          855 
          856 #endif /* QUANT_1PASS_SUPPORTED */