jmemmgr.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       jmemmgr.c (40988B)
       ---
            1 /*
            2  * jmemmgr.c
            3  *
            4  * Copyright (C) 1991-1997, Thomas G. Lane.
            5  * This file is part of the Independent JPEG Group's software.
            6  * For conditions of distribution and use, see the accompanying README file.
            7  *
            8  * This file contains the JPEG system-independent memory management
            9  * routines.  This code is usable across a wide variety of machines; most
           10  * of the system dependencies have been isolated in a separate file.
           11  * The major functions provided here are:
           12  *   * pool-based allocation and freeing of memory;
           13  *   * policy decisions about how to divide available memory among the
           14  *     virtual arrays;
           15  *   * control logic for swapping virtual arrays between main memory and
           16  *     backing storage.
           17  * The separate system-dependent file provides the actual backing-storage
           18  * access code, and it contains the policy decision about how much total
           19  * main memory to use.
           20  * This file is system-dependent in the sense that some of its functions
           21  * are unnecessary in some systems.  For example, if there is enough virtual
           22  * memory so that backing storage will never be used, much of the virtual
           23  * array control logic could be removed.  (Of course, if you have that much
           24  * memory then you shouldn't care about a little bit of unused code...)
           25  */
           26 
           27 #define JPEG_INTERNALS
           28 #define AM_MEMORY_MANAGER        /* we define jvirt_Xarray_control structs */
           29 #include "jinclude.h"
           30 #include "jpeglib.h"
           31 #include "jmemsys.h"                /* import the system-dependent declarations */
           32 
           33 #ifndef NO_GETENV
           34 #ifndef HAVE_STDLIB_H                /* <stdlib.h> should declare getenv() */
           35 extern char * getenv JPP((const char * name));
           36 #endif
           37 #endif
           38 
           39 
           40 /*
           41  * Some important notes:
           42  *   The allocation routines provided here must never return NULL.
           43  *   They should exit to error_exit if unsuccessful.
           44  *
           45  *   It's not a good idea to try to merge the sarray and barray routines,
           46  *   even though they are textually almost the same, because samples are
           47  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
           48  *   in machines where byte pointers have a different representation from
           49  *   word pointers, the resulting machine code could not be the same.
           50  */
           51 
           52 
           53 /*
           54  * Many machines require storage alignment: longs must start on 4-byte
           55  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
           56  * always returns pointers that are multiples of the worst-case alignment
           57  * requirement, and we had better do so too.
           58  * There isn't any really portable way to determine the worst-case alignment
           59  * requirement.  This module assumes that the alignment requirement is
           60  * multiples of sizeof(ALIGN_TYPE).
           61  * By default, we define ALIGN_TYPE as double.  This is necessary on some
           62  * workstations (where doubles really do need 8-byte alignment) and will work
           63  * fine on nearly everything.  If your machine has lesser alignment needs,
           64  * you can save a few bytes by making ALIGN_TYPE smaller.
           65  * The only place I know of where this will NOT work is certain Macintosh
           66  * 680x0 compilers that define double as a 10-byte IEEE extended float.
           67  * Doing 10-byte alignment is counterproductive because longwords won't be
           68  * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
           69  * such a compiler.
           70  */
           71 
           72 #ifndef ALIGN_TYPE                /* so can override from jconfig.h */
           73 #define ALIGN_TYPE  double
           74 #endif
           75 
           76 
           77 /*
           78  * We allocate objects from "pools", where each pool is gotten with a single
           79  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
           80  * overhead within a pool, except for alignment padding.  Each pool has a
           81  * header with a link to the next pool of the same class.
           82  * Small and large pool headers are identical except that the latter's
           83  * link pointer must be FAR on 80x86 machines.
           84  * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
           85  * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
           86  * of the alignment requirement of ALIGN_TYPE.
           87  */
           88 
           89 typedef union small_pool_struct * small_pool_ptr;
           90 
           91 typedef union small_pool_struct {
           92   struct {
           93     small_pool_ptr next;        /* next in list of pools */
           94     size_t bytes_used;                /* how many bytes already used within pool */
           95     size_t bytes_left;                /* bytes still available in this pool */
           96   } hdr;
           97   ALIGN_TYPE dummy;                /* included in union to ensure alignment */
           98 } small_pool_hdr;
           99 
          100 typedef union large_pool_struct FAR * large_pool_ptr;
          101 
          102 typedef union large_pool_struct {
          103   struct {
          104     large_pool_ptr next;        /* next in list of pools */
          105     size_t bytes_used;                /* how many bytes already used within pool */
          106     size_t bytes_left;                /* bytes still available in this pool */
          107   } hdr;
          108   ALIGN_TYPE dummy;                /* included in union to ensure alignment */
          109 } large_pool_hdr;
          110 
          111 
          112 /*
          113  * Here is the full definition of a memory manager object.
          114  */
          115 
          116 typedef struct {
          117   struct jpeg_memory_mgr pub;        /* public fields */
          118 
          119   /* Each pool identifier (lifetime class) names a linked list of pools. */
          120   small_pool_ptr small_list[JPOOL_NUMPOOLS];
          121   large_pool_ptr large_list[JPOOL_NUMPOOLS];
          122 
          123   /* Since we only have one lifetime class of virtual arrays, only one
          124    * linked list is necessary (for each datatype).  Note that the virtual
          125    * array control blocks being linked together are actually stored somewhere
          126    * in the small-pool list.
          127    */
          128   jvirt_sarray_ptr virt_sarray_list;
          129   jvirt_barray_ptr virt_barray_list;
          130 
          131   /* This counts total space obtained from jpeg_get_small/large */
          132   long total_space_allocated;
          133 
          134   /* alloc_sarray and alloc_barray set this value for use by virtual
          135    * array routines.
          136    */
          137   JDIMENSION last_rowsperchunk;        /* from most recent alloc_sarray/barray */
          138 } my_memory_mgr;
          139 
          140 typedef my_memory_mgr * my_mem_ptr;
          141 
          142 
          143 /*
          144  * The control blocks for virtual arrays.
          145  * Note that these blocks are allocated in the "small" pool area.
          146  * System-dependent info for the associated backing store (if any) is hidden
          147  * inside the backing_store_info struct.
          148  */
          149 
          150 struct jvirt_sarray_control {
          151   JSAMPARRAY mem_buffer;        /* => the in-memory buffer */
          152   JDIMENSION rows_in_array;        /* total virtual array height */
          153   JDIMENSION samplesperrow;        /* width of array (and of memory buffer) */
          154   JDIMENSION maxaccess;                /* max rows accessed by access_virt_sarray */
          155   JDIMENSION rows_in_mem;        /* height of memory buffer */
          156   JDIMENSION rowsperchunk;        /* allocation chunk size in mem_buffer */
          157   JDIMENSION cur_start_row;        /* first logical row # in the buffer */
          158   JDIMENSION first_undef_row;        /* row # of first uninitialized row */
          159   boolean pre_zero;                /* pre-zero mode requested? */
          160   boolean dirty;                /* do current buffer contents need written? */
          161   boolean b_s_open;                /* is backing-store data valid? */
          162   jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
          163   backing_store_info b_s_info;        /* System-dependent control info */
          164 };
          165 
          166 struct jvirt_barray_control {
          167   JBLOCKARRAY mem_buffer;        /* => the in-memory buffer */
          168   JDIMENSION rows_in_array;        /* total virtual array height */
          169   JDIMENSION blocksperrow;        /* width of array (and of memory buffer) */
          170   JDIMENSION maxaccess;                /* max rows accessed by access_virt_barray */
          171   JDIMENSION rows_in_mem;        /* height of memory buffer */
          172   JDIMENSION rowsperchunk;        /* allocation chunk size in mem_buffer */
          173   JDIMENSION cur_start_row;        /* first logical row # in the buffer */
          174   JDIMENSION first_undef_row;        /* row # of first uninitialized row */
          175   boolean pre_zero;                /* pre-zero mode requested? */
          176   boolean dirty;                /* do current buffer contents need written? */
          177   boolean b_s_open;                /* is backing-store data valid? */
          178   jvirt_barray_ptr next;        /* link to next virtual barray control block */
          179   backing_store_info b_s_info;        /* System-dependent control info */
          180 };
          181 
          182 
          183 #ifdef MEM_STATS                /* optional extra stuff for statistics */
          184 
          185 LOCAL(void)
          186 print_mem_stats (j_common_ptr cinfo, int pool_id)
          187 {
          188   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
          189   small_pool_ptr shdr_ptr;
          190   large_pool_ptr lhdr_ptr;
          191 
          192   /* Since this is only a debugging stub, we can cheat a little by using
          193    * fprintf directly rather than going through the trace message code.
          194    * This is helpful because message parm array can't handle longs.
          195    */
          196   fprintf(stderr, "Freeing pool %d, total space = %ld\n",
          197           pool_id, mem->total_space_allocated);
          198 
          199   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
          200        lhdr_ptr = lhdr_ptr->hdr.next) {
          201     fprintf(stderr, "  Large chunk used %ld\n",
          202             (long) lhdr_ptr->hdr.bytes_used);
          203   }
          204 
          205   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
          206        shdr_ptr = shdr_ptr->hdr.next) {
          207     fprintf(stderr, "  Small chunk used %ld free %ld\n",
          208             (long) shdr_ptr->hdr.bytes_used,
          209             (long) shdr_ptr->hdr.bytes_left);
          210   }
          211 }
          212 
          213 #endif /* MEM_STATS */
          214 
          215 
          216 LOCAL(void)
          217 out_of_memory (j_common_ptr cinfo, int which)
          218 /* Report an out-of-memory error and stop execution */
          219 /* If we compiled MEM_STATS support, report alloc requests before dying */
          220 {
          221 #ifdef MEM_STATS
          222   cinfo->err->trace_level = 2;        /* force self_destruct to report stats */
          223 #endif
          224   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
          225 }
          226 
          227 
          228 /*
          229  * Allocation of "small" objects.
          230  *
          231  * For these, we use pooled storage.  When a new pool must be created,
          232  * we try to get enough space for the current request plus a "slop" factor,
          233  * where the slop will be the amount of leftover space in the new pool.
          234  * The speed vs. space tradeoff is largely determined by the slop values.
          235  * A different slop value is provided for each pool class (lifetime),
          236  * and we also distinguish the first pool of a class from later ones.
          237  * NOTE: the values given work fairly well on both 16- and 32-bit-int
          238  * machines, but may be too small if longs are 64 bits or more.
          239  */
          240 
          241 static const size_t first_pool_slop[JPOOL_NUMPOOLS] = 
          242 {
          243         1600,                        /* first PERMANENT pool */
          244         16000                        /* first IMAGE pool */
          245 };
          246 
          247 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = 
          248 {
          249         0,                        /* additional PERMANENT pools */
          250         5000                        /* additional IMAGE pools */
          251 };
          252 
          253 #define MIN_SLOP  50                /* greater than 0 to avoid futile looping */
          254 
          255 
          256 METHODDEF(void *)
          257 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
          258 /* Allocate a "small" object */
          259 {
          260   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
          261   small_pool_ptr hdr_ptr, prev_hdr_ptr;
          262   char * data_ptr;
          263   size_t odd_bytes, min_request, slop;
          264 
          265   /* Check for unsatisfiable request (do now to ensure no overflow below) */
          266   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
          267     out_of_memory(cinfo, 1);        /* request exceeds malloc's ability */
          268 
          269   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
          270   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
          271   if (odd_bytes > 0)
          272     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
          273 
          274   /* See if space is available in any existing pool */
          275   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
          276     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);        /* safety check */
          277   prev_hdr_ptr = NULL;
          278   hdr_ptr = mem->small_list[pool_id];
          279   while (hdr_ptr != NULL) {
          280     if (hdr_ptr->hdr.bytes_left >= sizeofobject)
          281       break;                        /* found pool with enough space */
          282     prev_hdr_ptr = hdr_ptr;
          283     hdr_ptr = hdr_ptr->hdr.next;
          284   }
          285 
          286   /* Time to make a new pool? */
          287   if (hdr_ptr == NULL) {
          288     /* min_request is what we need now, slop is what will be leftover */
          289     min_request = sizeofobject + SIZEOF(small_pool_hdr);
          290     if (prev_hdr_ptr == NULL)        /* first pool in class? */
          291       slop = first_pool_slop[pool_id];
          292     else
          293       slop = extra_pool_slop[pool_id];
          294     /* Don't ask for more than MAX_ALLOC_CHUNK */
          295     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
          296       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
          297     /* Try to get space, if fail reduce slop and try again */
          298     for (;;) {
          299       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
          300       if (hdr_ptr != NULL)
          301         break;
          302       slop /= 2;
          303       if (slop < MIN_SLOP)        /* give up when it gets real small */
          304         out_of_memory(cinfo, 2); /* jpeg_get_small failed */
          305     }
          306     mem->total_space_allocated += min_request + slop;
          307     /* Success, initialize the new pool header and add to end of list */
          308     hdr_ptr->hdr.next = NULL;
          309     hdr_ptr->hdr.bytes_used = 0;
          310     hdr_ptr->hdr.bytes_left = sizeofobject + slop;
          311     if (prev_hdr_ptr == NULL)        /* first pool in class? */
          312       mem->small_list[pool_id] = hdr_ptr;
          313     else
          314       prev_hdr_ptr->hdr.next = hdr_ptr;
          315   }
          316 
          317   /* OK, allocate the object from the current pool */
          318   data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
          319   data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
          320   hdr_ptr->hdr.bytes_used += sizeofobject;
          321   hdr_ptr->hdr.bytes_left -= sizeofobject;
          322 
          323   return (void *) data_ptr;
          324 }
          325 
          326 
          327 /*
          328  * Allocation of "large" objects.
          329  *
          330  * The external semantics of these are the same as "small" objects,
          331  * except that FAR pointers are used on 80x86.  However the pool
          332  * management heuristics are quite different.  We assume that each
          333  * request is large enough that it may as well be passed directly to
          334  * jpeg_get_large; the pool management just links everything together
          335  * so that we can free it all on demand.
          336  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
          337  * structures.  The routines that create these structures (see below)
          338  * deliberately bunch rows together to ensure a large request size.
          339  */
          340 
          341 METHODDEF(void FAR *)
          342 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
          343 /* Allocate a "large" object */
          344 {
          345   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
          346   large_pool_ptr hdr_ptr;
          347   size_t odd_bytes;
          348 
          349   /* Check for unsatisfiable request (do now to ensure no overflow below) */
          350   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
          351     out_of_memory(cinfo, 3);        /* request exceeds malloc's ability */
          352 
          353   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
          354   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
          355   if (odd_bytes > 0)
          356     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
          357 
          358   /* Always make a new pool */
          359   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
          360     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);        /* safety check */
          361 
          362   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
          363                                             SIZEOF(large_pool_hdr));
          364   if (hdr_ptr == NULL)
          365     out_of_memory(cinfo, 4);        /* jpeg_get_large failed */
          366   mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
          367 
          368   /* Success, initialize the new pool header and add to list */
          369   hdr_ptr->hdr.next = mem->large_list[pool_id];
          370   /* We maintain space counts in each pool header for statistical purposes,
          371    * even though they are not needed for allocation.
          372    */
          373   hdr_ptr->hdr.bytes_used = sizeofobject;
          374   hdr_ptr->hdr.bytes_left = 0;
          375   mem->large_list[pool_id] = hdr_ptr;
          376 
          377   return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
          378 }
          379 
          380 
          381 /*
          382  * Creation of 2-D sample arrays.
          383  * The pointers are in near heap, the samples themselves in FAR heap.
          384  *
          385  * To minimize allocation overhead and to allow I/O of large contiguous
          386  * blocks, we allocate the sample rows in groups of as many rows as possible
          387  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
          388  * NB: the virtual array control routines, later in this file, know about
          389  * this chunking of rows.  The rowsperchunk value is left in the mem manager
          390  * object so that it can be saved away if this sarray is the workspace for
          391  * a virtual array.
          392  */
          393 
          394 METHODDEF(JSAMPARRAY)
          395 alloc_sarray (j_common_ptr cinfo, int pool_id,
          396               JDIMENSION samplesperrow, JDIMENSION numrows)
          397 /* Allocate a 2-D sample array */
          398 {
          399   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
          400   JSAMPARRAY result;
          401   JSAMPROW workspace;
          402   JDIMENSION rowsperchunk, currow, i;
          403   long ltemp;
          404 
          405   /* Calculate max # of rows allowed in one allocation chunk */
          406   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
          407           ((long) samplesperrow * SIZEOF(JSAMPLE));
          408   if (ltemp <= 0)
          409     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
          410   if (ltemp < (long) numrows)
          411     rowsperchunk = (JDIMENSION) ltemp;
          412   else
          413     rowsperchunk = numrows;
          414   mem->last_rowsperchunk = rowsperchunk;
          415 
          416   /* Get space for row pointers (small object) */
          417   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
          418                                     (size_t) (numrows * SIZEOF(JSAMPROW)));
          419 
          420   /* Get the rows themselves (large objects) */
          421   currow = 0;
          422   while (currow < numrows) {
          423     rowsperchunk = MIN(rowsperchunk, numrows - currow);
          424     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
          425         (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
          426                   * SIZEOF(JSAMPLE)));
          427     for (i = rowsperchunk; i > 0; i--) {
          428       result[currow++] = workspace;
          429       workspace += samplesperrow;
          430     }
          431   }
          432 
          433   return result;
          434 }
          435 
          436 
          437 /*
          438  * Creation of 2-D coefficient-block arrays.
          439  * This is essentially the same as the code for sample arrays, above.
          440  */
          441 
          442 METHODDEF(JBLOCKARRAY)
          443 alloc_barray (j_common_ptr cinfo, int pool_id,
          444               JDIMENSION blocksperrow, JDIMENSION numrows)
          445 /* Allocate a 2-D coefficient-block array */
          446 {
          447   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
          448   JBLOCKARRAY result;
          449   JBLOCKROW workspace;
          450   JDIMENSION rowsperchunk, currow, i;
          451   long ltemp;
          452 
          453   /* Calculate max # of rows allowed in one allocation chunk */
          454   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
          455           ((long) blocksperrow * SIZEOF(JBLOCK));
          456   if (ltemp <= 0)
          457     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
          458   if (ltemp < (long) numrows)
          459     rowsperchunk = (JDIMENSION) ltemp;
          460   else
          461     rowsperchunk = numrows;
          462   mem->last_rowsperchunk = rowsperchunk;
          463 
          464   /* Get space for row pointers (small object) */
          465   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
          466                                      (size_t) (numrows * SIZEOF(JBLOCKROW)));
          467 
          468   /* Get the rows themselves (large objects) */
          469   currow = 0;
          470   while (currow < numrows) {
          471     rowsperchunk = MIN(rowsperchunk, numrows - currow);
          472     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
          473         (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
          474                   * SIZEOF(JBLOCK)));
          475     for (i = rowsperchunk; i > 0; i--) {
          476       result[currow++] = workspace;
          477       workspace += blocksperrow;
          478     }
          479   }
          480 
          481   return result;
          482 }
          483 
          484 
          485 /*
          486  * About virtual array management:
          487  *
          488  * The above "normal" array routines are only used to allocate strip buffers
          489  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
          490  * are handled as "virtual" arrays.  The array is still accessed a strip at a
          491  * time, but the memory manager must save the whole array for repeated
          492  * accesses.  The intended implementation is that there is a strip buffer in
          493  * memory (as high as is possible given the desired memory limit), plus a
          494  * backing file that holds the rest of the array.
          495  *
          496  * The request_virt_array routines are told the total size of the image and
          497  * the maximum number of rows that will be accessed at once.  The in-memory
          498  * buffer must be at least as large as the maxaccess value.
          499  *
          500  * The request routines create control blocks but not the in-memory buffers.
          501  * That is postponed until realize_virt_arrays is called.  At that time the
          502  * total amount of space needed is known (approximately, anyway), so free
          503  * memory can be divided up fairly.
          504  *
          505  * The access_virt_array routines are responsible for making a specific strip
          506  * area accessible (after reading or writing the backing file, if necessary).
          507  * Note that the access routines are told whether the caller intends to modify
          508  * the accessed strip; during a read-only pass this saves having to rewrite
          509  * data to disk.  The access routines are also responsible for pre-zeroing
          510  * any newly accessed rows, if pre-zeroing was requested.
          511  *
          512  * In current usage, the access requests are usually for nonoverlapping
          513  * strips; that is, successive access start_row numbers differ by exactly
          514  * num_rows = maxaccess.  This means we can get good performance with simple
          515  * buffer dump/reload logic, by making the in-memory buffer be a multiple
          516  * of the access height; then there will never be accesses across bufferload
          517  * boundaries.  The code will still work with overlapping access requests,
          518  * but it doesn't handle bufferload overlaps very efficiently.
          519  */
          520 
          521 
          522 METHODDEF(jvirt_sarray_ptr)
          523 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
          524                      JDIMENSION samplesperrow, JDIMENSION numrows,
          525                      JDIMENSION maxaccess)
          526 /* Request a virtual 2-D sample array */
          527 {
          528   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
          529   jvirt_sarray_ptr result;
          530 
          531   /* Only IMAGE-lifetime virtual arrays are currently supported */
          532   if (pool_id != JPOOL_IMAGE)
          533     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);        /* safety check */
          534 
          535   /* get control block */
          536   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
          537                                           SIZEOF(struct jvirt_sarray_control));
          538 
          539   result->mem_buffer = NULL;        /* marks array not yet realized */
          540   result->rows_in_array = numrows;
          541   result->samplesperrow = samplesperrow;
          542   result->maxaccess = maxaccess;
          543   result->pre_zero = pre_zero;
          544   result->b_s_open = FALSE;        /* no associated backing-store object */
          545   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
          546   mem->virt_sarray_list = result;
          547 
          548   return result;
          549 }
          550 
          551 
          552 METHODDEF(jvirt_barray_ptr)
          553 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
          554                      JDIMENSION blocksperrow, JDIMENSION numrows,
          555                      JDIMENSION maxaccess)
          556 /* Request a virtual 2-D coefficient-block array */
          557 {
          558   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
          559   jvirt_barray_ptr result;
          560 
          561   /* Only IMAGE-lifetime virtual arrays are currently supported */
          562   if (pool_id != JPOOL_IMAGE)
          563     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);        /* safety check */
          564 
          565   /* get control block */
          566   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
          567                                           SIZEOF(struct jvirt_barray_control));
          568 
          569   result->mem_buffer = NULL;        /* marks array not yet realized */
          570   result->rows_in_array = numrows;
          571   result->blocksperrow = blocksperrow;
          572   result->maxaccess = maxaccess;
          573   result->pre_zero = pre_zero;
          574   result->b_s_open = FALSE;        /* no associated backing-store object */
          575   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
          576   mem->virt_barray_list = result;
          577 
          578   return result;
          579 }
          580 
          581 
          582 METHODDEF(void)
          583 realize_virt_arrays (j_common_ptr cinfo)
          584 /* Allocate the in-memory buffers for any unrealized virtual arrays */
          585 {
          586   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
          587   long space_per_minheight, maximum_space, avail_mem;
          588   long minheights, max_minheights;
          589   jvirt_sarray_ptr sptr;
          590   jvirt_barray_ptr bptr;
          591 
          592   /* Compute the minimum space needed (maxaccess rows in each buffer)
          593    * and the maximum space needed (full image height in each buffer).
          594    * These may be of use to the system-dependent jpeg_mem_available routine.
          595    */
          596   space_per_minheight = 0;
          597   maximum_space = 0;
          598   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
          599     if (sptr->mem_buffer == NULL) { /* if not realized yet */
          600       space_per_minheight += (long) sptr->maxaccess *
          601                              (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
          602       maximum_space += (long) sptr->rows_in_array *
          603                        (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
          604     }
          605   }
          606   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
          607     if (bptr->mem_buffer == NULL) { /* if not realized yet */
          608       space_per_minheight += (long) bptr->maxaccess *
          609                              (long) bptr->blocksperrow * SIZEOF(JBLOCK);
          610       maximum_space += (long) bptr->rows_in_array *
          611                        (long) bptr->blocksperrow * SIZEOF(JBLOCK);
          612     }
          613   }
          614 
          615   if (space_per_minheight <= 0)
          616     return;                        /* no unrealized arrays, no work */
          617 
          618   /* Determine amount of memory to actually use; this is system-dependent. */
          619   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
          620                                  mem->total_space_allocated);
          621 
          622   /* If the maximum space needed is available, make all the buffers full
          623    * height; otherwise parcel it out with the same number of minheights
          624    * in each buffer.
          625    */
          626   if (avail_mem >= maximum_space)
          627     max_minheights = 1000000000L;
          628   else {
          629     max_minheights = avail_mem / space_per_minheight;
          630     /* If there doesn't seem to be enough space, try to get the minimum
          631      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
          632      */
          633     if (max_minheights <= 0)
          634       max_minheights = 1;
          635   }
          636 
          637   /* Allocate the in-memory buffers and initialize backing store as needed. */
          638 
          639   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
          640     if (sptr->mem_buffer == NULL) { /* if not realized yet */
          641       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
          642       if (minheights <= max_minheights) {
          643         /* This buffer fits in memory */
          644         sptr->rows_in_mem = sptr->rows_in_array;
          645       } else {
          646         /* It doesn't fit in memory, create backing store. */
          647         sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
          648         jpeg_open_backing_store(cinfo, & sptr->b_s_info,
          649                                 (long) sptr->rows_in_array *
          650                                 (long) sptr->samplesperrow *
          651                                 (long) SIZEOF(JSAMPLE));
          652         sptr->b_s_open = TRUE;
          653       }
          654       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
          655                                       sptr->samplesperrow, sptr->rows_in_mem);
          656       sptr->rowsperchunk = mem->last_rowsperchunk;
          657       sptr->cur_start_row = 0;
          658       sptr->first_undef_row = 0;
          659       sptr->dirty = FALSE;
          660     }
          661   }
          662 
          663   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
          664     if (bptr->mem_buffer == NULL) { /* if not realized yet */
          665       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
          666       if (minheights <= max_minheights) {
          667         /* This buffer fits in memory */
          668         bptr->rows_in_mem = bptr->rows_in_array;
          669       } else {
          670         /* It doesn't fit in memory, create backing store. */
          671         bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
          672         jpeg_open_backing_store(cinfo, & bptr->b_s_info,
          673                                 (long) bptr->rows_in_array *
          674                                 (long) bptr->blocksperrow *
          675                                 (long) SIZEOF(JBLOCK));
          676         bptr->b_s_open = TRUE;
          677       }
          678       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
          679                                       bptr->blocksperrow, bptr->rows_in_mem);
          680       bptr->rowsperchunk = mem->last_rowsperchunk;
          681       bptr->cur_start_row = 0;
          682       bptr->first_undef_row = 0;
          683       bptr->dirty = FALSE;
          684     }
          685   }
          686 }
          687 
          688 
          689 LOCAL(void)
          690 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
          691 /* Do backing store read or write of a virtual sample array */
          692 {
          693   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
          694 
          695   bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
          696   file_offset = ptr->cur_start_row * bytesperrow;
          697   /* Loop to read or write each allocation chunk in mem_buffer */
          698   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
          699     /* One chunk, but check for short chunk at end of buffer */
          700     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
          701     /* Transfer no more than is currently defined */
          702     thisrow = (long) ptr->cur_start_row + i;
          703     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
          704     /* Transfer no more than fits in file */
          705     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
          706     if (rows <= 0)                /* this chunk might be past end of file! */
          707       break;
          708     byte_count = rows * bytesperrow;
          709     if (writing)
          710       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
          711                                             (void FAR *) ptr->mem_buffer[i],
          712                                             file_offset, byte_count);
          713     else
          714       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
          715                                            (void FAR *) ptr->mem_buffer[i],
          716                                            file_offset, byte_count);
          717     file_offset += byte_count;
          718   }
          719 }
          720 
          721 
          722 LOCAL(void)
          723 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
          724 /* Do backing store read or write of a virtual coefficient-block array */
          725 {
          726   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
          727 
          728   bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
          729   file_offset = ptr->cur_start_row * bytesperrow;
          730   /* Loop to read or write each allocation chunk in mem_buffer */
          731   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
          732     /* One chunk, but check for short chunk at end of buffer */
          733     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
          734     /* Transfer no more than is currently defined */
          735     thisrow = (long) ptr->cur_start_row + i;
          736     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
          737     /* Transfer no more than fits in file */
          738     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
          739     if (rows <= 0)                /* this chunk might be past end of file! */
          740       break;
          741     byte_count = rows * bytesperrow;
          742     if (writing)
          743       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
          744                                             (void FAR *) ptr->mem_buffer[i],
          745                                             file_offset, byte_count);
          746     else
          747       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
          748                                            (void FAR *) ptr->mem_buffer[i],
          749                                            file_offset, byte_count);
          750     file_offset += byte_count;
          751   }
          752 }
          753 
          754 
          755 METHODDEF(JSAMPARRAY)
          756 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
          757                     JDIMENSION start_row, JDIMENSION num_rows,
          758                     boolean writable)
          759 /* Access the part of a virtual sample array starting at start_row */
          760 /* and extending for num_rows rows.  writable is true if  */
          761 /* caller intends to modify the accessed area. */
          762 {
          763   JDIMENSION end_row = start_row + num_rows;
          764   JDIMENSION undef_row;
          765 
          766   /* debugging check */
          767   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
          768       ptr->mem_buffer == NULL)
          769     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
          770 
          771   /* Make the desired part of the virtual array accessible */
          772   if (start_row < ptr->cur_start_row ||
          773       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
          774     if (! ptr->b_s_open)
          775       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
          776     /* Flush old buffer contents if necessary */
          777     if (ptr->dirty) {
          778       do_sarray_io(cinfo, ptr, TRUE);
          779       ptr->dirty = FALSE;
          780     }
          781     /* Decide what part of virtual array to access.
          782      * Algorithm: if target address > current window, assume forward scan,
          783      * load starting at target address.  If target address < current window,
          784      * assume backward scan, load so that target area is top of window.
          785      * Note that when switching from forward write to forward read, will have
          786      * start_row = 0, so the limiting case applies and we load from 0 anyway.
          787      */
          788     if (start_row > ptr->cur_start_row) {
          789       ptr->cur_start_row = start_row;
          790     } else {
          791       /* use long arithmetic here to avoid overflow & unsigned problems */
          792       long ltemp;
          793 
          794       ltemp = (long) end_row - (long) ptr->rows_in_mem;
          795       if (ltemp < 0)
          796         ltemp = 0;                /* don't fall off front end of file */
          797       ptr->cur_start_row = (JDIMENSION) ltemp;
          798     }
          799     /* Read in the selected part of the array.
          800      * During the initial write pass, we will do no actual read
          801      * because the selected part is all undefined.
          802      */
          803     do_sarray_io(cinfo, ptr, FALSE);
          804   }
          805   /* Ensure the accessed part of the array is defined; prezero if needed.
          806    * To improve locality of access, we only prezero the part of the array
          807    * that the caller is about to access, not the entire in-memory array.
          808    */
          809   if (ptr->first_undef_row < end_row) {
          810     if (ptr->first_undef_row < start_row) {
          811       if (writable)                /* writer skipped over a section of array */
          812         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
          813       undef_row = start_row;        /* but reader is allowed to read ahead */
          814     } else {
          815       undef_row = ptr->first_undef_row;
          816     }
          817     if (writable)
          818       ptr->first_undef_row = end_row;
          819     if (ptr->pre_zero) {
          820       size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
          821       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
          822       end_row -= ptr->cur_start_row;
          823       while (undef_row < end_row) {
          824         jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
          825         undef_row++;
          826       }
          827     } else {
          828       if (! writable)                /* reader looking at undefined data */
          829         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
          830     }
          831   }
          832   /* Flag the buffer dirty if caller will write in it */
          833   if (writable)
          834     ptr->dirty = TRUE;
          835   /* Return address of proper part of the buffer */
          836   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
          837 }
          838 
          839 
          840 METHODDEF(JBLOCKARRAY)
          841 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
          842                     JDIMENSION start_row, JDIMENSION num_rows,
          843                     boolean writable)
          844 /* Access the part of a virtual block array starting at start_row */
          845 /* and extending for num_rows rows.  writable is true if  */
          846 /* caller intends to modify the accessed area. */
          847 {
          848   JDIMENSION end_row = start_row + num_rows;
          849   JDIMENSION undef_row;
          850 
          851   /* debugging check */
          852   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
          853       ptr->mem_buffer == NULL)
          854     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
          855 
          856   /* Make the desired part of the virtual array accessible */
          857   if (start_row < ptr->cur_start_row ||
          858       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
          859     if (! ptr->b_s_open)
          860       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
          861     /* Flush old buffer contents if necessary */
          862     if (ptr->dirty) {
          863       do_barray_io(cinfo, ptr, TRUE);
          864       ptr->dirty = FALSE;
          865     }
          866     /* Decide what part of virtual array to access.
          867      * Algorithm: if target address > current window, assume forward scan,
          868      * load starting at target address.  If target address < current window,
          869      * assume backward scan, load so that target area is top of window.
          870      * Note that when switching from forward write to forward read, will have
          871      * start_row = 0, so the limiting case applies and we load from 0 anyway.
          872      */
          873     if (start_row > ptr->cur_start_row) {
          874       ptr->cur_start_row = start_row;
          875     } else {
          876       /* use long arithmetic here to avoid overflow & unsigned problems */
          877       long ltemp;
          878 
          879       ltemp = (long) end_row - (long) ptr->rows_in_mem;
          880       if (ltemp < 0)
          881         ltemp = 0;                /* don't fall off front end of file */
          882       ptr->cur_start_row = (JDIMENSION) ltemp;
          883     }
          884     /* Read in the selected part of the array.
          885      * During the initial write pass, we will do no actual read
          886      * because the selected part is all undefined.
          887      */
          888     do_barray_io(cinfo, ptr, FALSE);
          889   }
          890   /* Ensure the accessed part of the array is defined; prezero if needed.
          891    * To improve locality of access, we only prezero the part of the array
          892    * that the caller is about to access, not the entire in-memory array.
          893    */
          894   if (ptr->first_undef_row < end_row) {
          895     if (ptr->first_undef_row < start_row) {
          896       if (writable)                /* writer skipped over a section of array */
          897         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
          898       undef_row = start_row;        /* but reader is allowed to read ahead */
          899     } else {
          900       undef_row = ptr->first_undef_row;
          901     }
          902     if (writable)
          903       ptr->first_undef_row = end_row;
          904     if (ptr->pre_zero) {
          905       size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
          906       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
          907       end_row -= ptr->cur_start_row;
          908       while (undef_row < end_row) {
          909         jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
          910         undef_row++;
          911       }
          912     } else {
          913       if (! writable)                /* reader looking at undefined data */
          914         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
          915     }
          916   }
          917   /* Flag the buffer dirty if caller will write in it */
          918   if (writable)
          919     ptr->dirty = TRUE;
          920   /* Return address of proper part of the buffer */
          921   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
          922 }
          923 
          924 
          925 /*
          926  * Release all objects belonging to a specified pool.
          927  */
          928 
          929 METHODDEF(void)
          930 free_pool (j_common_ptr cinfo, int pool_id)
          931 {
          932   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
          933   small_pool_ptr shdr_ptr;
          934   large_pool_ptr lhdr_ptr;
          935   size_t space_freed;
          936 
          937   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
          938     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);        /* safety check */
          939 
          940 #ifdef MEM_STATS
          941   if (cinfo->err->trace_level > 1)
          942     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
          943 #endif
          944 
          945   /* If freeing IMAGE pool, close any virtual arrays first */
          946   if (pool_id == JPOOL_IMAGE) {
          947     jvirt_sarray_ptr sptr;
          948     jvirt_barray_ptr bptr;
          949 
          950     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
          951       if (sptr->b_s_open) {        /* there may be no backing store */
          952         sptr->b_s_open = FALSE;        /* prevent recursive close if error */
          953         (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
          954       }
          955     }
          956     mem->virt_sarray_list = NULL;
          957     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
          958       if (bptr->b_s_open) {        /* there may be no backing store */
          959         bptr->b_s_open = FALSE;        /* prevent recursive close if error */
          960         (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
          961       }
          962     }
          963     mem->virt_barray_list = NULL;
          964   }
          965 
          966   /* Release large objects */
          967   lhdr_ptr = mem->large_list[pool_id];
          968   mem->large_list[pool_id] = NULL;
          969 
          970   while (lhdr_ptr != NULL) {
          971     large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
          972     space_freed = lhdr_ptr->hdr.bytes_used +
          973                   lhdr_ptr->hdr.bytes_left +
          974                   SIZEOF(large_pool_hdr);
          975     jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
          976     mem->total_space_allocated -= space_freed;
          977     lhdr_ptr = next_lhdr_ptr;
          978   }
          979 
          980   /* Release small objects */
          981   shdr_ptr = mem->small_list[pool_id];
          982   mem->small_list[pool_id] = NULL;
          983 
          984   while (shdr_ptr != NULL) {
          985     small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
          986     space_freed = shdr_ptr->hdr.bytes_used +
          987                   shdr_ptr->hdr.bytes_left +
          988                   SIZEOF(small_pool_hdr);
          989     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
          990     mem->total_space_allocated -= space_freed;
          991     shdr_ptr = next_shdr_ptr;
          992   }
          993 }
          994 
          995 
          996 /*
          997  * Close up shop entirely.
          998  * Note that this cannot be called unless cinfo->mem is non-NULL.
          999  */
         1000 
         1001 METHODDEF(void)
         1002 self_destruct (j_common_ptr cinfo)
         1003 {
         1004   int pool;
         1005 
         1006   /* Close all backing store, release all memory.
         1007    * Releasing pools in reverse order might help avoid fragmentation
         1008    * with some (brain-damaged) malloc libraries.
         1009    */
         1010   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
         1011     free_pool(cinfo, pool);
         1012   }
         1013 
         1014   /* Release the memory manager control block too. */
         1015   jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
         1016   cinfo->mem = NULL;                /* ensures I will be called only once */
         1017 
         1018   jpeg_mem_term(cinfo);                /* system-dependent cleanup */
         1019 }
         1020 
         1021 
         1022 /*
         1023  * Memory manager initialization.
         1024  * When this is called, only the error manager pointer is valid in cinfo!
         1025  */
         1026 
         1027 GLOBAL(void)
         1028 jinit_memory_mgr (j_common_ptr cinfo)
         1029 {
         1030   my_mem_ptr mem;
         1031   long max_to_use;
         1032   int pool;
         1033   size_t test_mac;
         1034 
         1035   cinfo->mem = NULL;                /* for safety if init fails */
         1036 
         1037   /* Check for configuration errors.
         1038    * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
         1039    * doesn't reflect any real hardware alignment requirement.
         1040    * The test is a little tricky: for X>0, X and X-1 have no one-bits
         1041    * in common if and only if X is a power of 2, ie has only one one-bit.
         1042    * Some compilers may give an "unreachable code" warning here; ignore it.
         1043    */
         1044   if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
         1045     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
         1046   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
         1047    * a multiple of SIZEOF(ALIGN_TYPE).
         1048    * Again, an "unreachable code" warning may be ignored here.
         1049    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
         1050    */
         1051   test_mac = (size_t) MAX_ALLOC_CHUNK;
         1052   if ((long) test_mac != MAX_ALLOC_CHUNK ||
         1053       (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
         1054     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
         1055 
         1056   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
         1057 
         1058   /* Attempt to allocate memory manager's control block */
         1059   mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
         1060 
         1061   if (mem == NULL) {
         1062     jpeg_mem_term(cinfo);        /* system-dependent cleanup */
         1063     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
         1064   }
         1065 
         1066   /* OK, fill in the method pointers */
         1067   mem->pub.alloc_small = alloc_small;
         1068   mem->pub.alloc_large = alloc_large;
         1069   mem->pub.alloc_sarray = alloc_sarray;
         1070   mem->pub.alloc_barray = alloc_barray;
         1071   mem->pub.request_virt_sarray = request_virt_sarray;
         1072   mem->pub.request_virt_barray = request_virt_barray;
         1073   mem->pub.realize_virt_arrays = realize_virt_arrays;
         1074   mem->pub.access_virt_sarray = access_virt_sarray;
         1075   mem->pub.access_virt_barray = access_virt_barray;
         1076   mem->pub.free_pool = free_pool;
         1077   mem->pub.self_destruct = self_destruct;
         1078 
         1079   /* Make MAX_ALLOC_CHUNK accessible to other modules */
         1080   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
         1081 
         1082   /* Initialize working state */
         1083   mem->pub.max_memory_to_use = max_to_use;
         1084 
         1085   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
         1086     mem->small_list[pool] = NULL;
         1087     mem->large_list[pool] = NULL;
         1088   }
         1089   mem->virt_sarray_list = NULL;
         1090   mem->virt_barray_list = NULL;
         1091 
         1092   mem->total_space_allocated = SIZEOF(my_memory_mgr);
         1093 
         1094   /* Declare ourselves open for business */
         1095   cinfo->mem = & mem->pub;
         1096 
         1097   /* Check for an environment variable JPEGMEM; if found, override the
         1098    * default max_memory setting from jpeg_mem_init.  Note that the
         1099    * surrounding application may again override this value.
         1100    * If your system doesn't support getenv(), define NO_GETENV to disable
         1101    * this feature.
         1102    */
         1103 #ifndef NO_GETENV
         1104   { char * memenv;
         1105 
         1106     if ((memenv = getenv("JPEGMEM")) != NULL) {
         1107       char ch = 'x';
         1108 
         1109       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
         1110         if (ch == 'm' || ch == 'M')
         1111           max_to_use *= 1000L;
         1112         mem->pub.max_memory_to_use = max_to_use * 1000L;
         1113       }
         1114     }
         1115   }
         1116 #endif
         1117 
         1118 }