jidctred.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       jidctred.c (13528B)
       ---
            1 /*
            2  * jidctred.c
            3  *
            4  * Copyright (C) 1994-1998, Thomas G. Lane.
            5  * This file is part of the Independent JPEG Group's software.
            6  * For conditions of distribution and use, see the accompanying README file.
            7  *
            8  * This file contains inverse-DCT routines that produce reduced-size output:
            9  * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
           10  *
           11  * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
           12  * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
           13  * with an 8-to-4 step that produces the four averages of two adjacent outputs
           14  * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
           15  * These steps were derived by computing the corresponding values at the end
           16  * of the normal LL&M code, then simplifying as much as possible.
           17  *
           18  * 1x1 is trivial: just take the DC coefficient divided by 8.
           19  *
           20  * See jidctint.c for additional comments.
           21  */
           22 
           23 #define JPEG_INTERNALS
           24 #include "jinclude.h"
           25 #include "jpeglib.h"
           26 #include "jdct.h"                /* Private declarations for DCT subsystem */
           27 
           28 #ifdef IDCT_SCALING_SUPPORTED
           29 
           30 
           31 /*
           32  * This module is specialized to the case DCTSIZE = 8.
           33  */
           34 
           35 #if DCTSIZE != 8
           36   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
           37 #endif
           38 
           39 
           40 /* Scaling is the same as in jidctint.c. */
           41 
           42 #if BITS_IN_JSAMPLE == 8
           43 #define CONST_BITS  13
           44 #define PASS1_BITS  2
           45 #else
           46 #define CONST_BITS  13
           47 #define PASS1_BITS  1                /* lose a little precision to avoid overflow */
           48 #endif
           49 
           50 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
           51  * causing a lot of useless floating-point operations at run time.
           52  * To get around this we use the following pre-calculated constants.
           53  * If you change CONST_BITS you may want to add appropriate values.
           54  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
           55  */
           56 
           57 #if CONST_BITS == 13
           58 #define FIX_0_211164243  ((INT32)  1730)        /* FIX(0.211164243) */
           59 #define FIX_0_509795579  ((INT32)  4176)        /* FIX(0.509795579) */
           60 #define FIX_0_601344887  ((INT32)  4926)        /* FIX(0.601344887) */
           61 #define FIX_0_720959822  ((INT32)  5906)        /* FIX(0.720959822) */
           62 #define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */
           63 #define FIX_0_850430095  ((INT32)  6967)        /* FIX(0.850430095) */
           64 #define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */
           65 #define FIX_1_061594337  ((INT32)  8697)        /* FIX(1.061594337) */
           66 #define FIX_1_272758580  ((INT32)  10426)        /* FIX(1.272758580) */
           67 #define FIX_1_451774981  ((INT32)  11893)        /* FIX(1.451774981) */
           68 #define FIX_1_847759065  ((INT32)  15137)        /* FIX(1.847759065) */
           69 #define FIX_2_172734803  ((INT32)  17799)        /* FIX(2.172734803) */
           70 #define FIX_2_562915447  ((INT32)  20995)        /* FIX(2.562915447) */
           71 #define FIX_3_624509785  ((INT32)  29692)        /* FIX(3.624509785) */
           72 #else
           73 #define FIX_0_211164243  FIX(0.211164243)
           74 #define FIX_0_509795579  FIX(0.509795579)
           75 #define FIX_0_601344887  FIX(0.601344887)
           76 #define FIX_0_720959822  FIX(0.720959822)
           77 #define FIX_0_765366865  FIX(0.765366865)
           78 #define FIX_0_850430095  FIX(0.850430095)
           79 #define FIX_0_899976223  FIX(0.899976223)
           80 #define FIX_1_061594337  FIX(1.061594337)
           81 #define FIX_1_272758580  FIX(1.272758580)
           82 #define FIX_1_451774981  FIX(1.451774981)
           83 #define FIX_1_847759065  FIX(1.847759065)
           84 #define FIX_2_172734803  FIX(2.172734803)
           85 #define FIX_2_562915447  FIX(2.562915447)
           86 #define FIX_3_624509785  FIX(3.624509785)
           87 #endif
           88 
           89 
           90 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
           91  * For 8-bit samples with the recommended scaling, all the variable
           92  * and constant values involved are no more than 16 bits wide, so a
           93  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
           94  * For 12-bit samples, a full 32-bit multiplication will be needed.
           95  */
           96 
           97 #if BITS_IN_JSAMPLE == 8
           98 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
           99 #else
          100 #define MULTIPLY(var,const)  ((var) * (const))
          101 #endif
          102 
          103 
          104 /* Dequantize a coefficient by multiplying it by the multiplier-table
          105  * entry; produce an int result.  In this module, both inputs and result
          106  * are 16 bits or less, so either int or short multiply will work.
          107  */
          108 
          109 #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
          110 
          111 
          112 /*
          113  * Perform dequantization and inverse DCT on one block of coefficients,
          114  * producing a reduced-size 4x4 output block.
          115  */
          116 
          117 GLOBAL(void)
          118 jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
          119                JCOEFPTR coef_block,
          120                JSAMPARRAY output_buf, JDIMENSION output_col)
          121 {
          122   INT32 tmp0, tmp2, tmp10, tmp12;
          123   INT32 z1, z2, z3, z4;
          124   JCOEFPTR inptr;
          125   ISLOW_MULT_TYPE * quantptr;
          126   int * wsptr;
          127   JSAMPROW outptr;
          128   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
          129   int ctr;
          130   int workspace[DCTSIZE*4];        /* buffers data between passes */
          131   SHIFT_TEMPS
          132 
          133   /* Pass 1: process columns from input, store into work array. */
          134 
          135   inptr = coef_block;
          136   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
          137   wsptr = workspace;
          138   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
          139     /* Don't bother to process column 4, because second pass won't use it */
          140     if (ctr == DCTSIZE-4)
          141       continue;
          142     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
          143         inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
          144         inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
          145       /* AC terms all zero; we need not examine term 4 for 4x4 output */
          146       int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
          147       
          148       wsptr[DCTSIZE*0] = dcval;
          149       wsptr[DCTSIZE*1] = dcval;
          150       wsptr[DCTSIZE*2] = dcval;
          151       wsptr[DCTSIZE*3] = dcval;
          152       
          153       continue;
          154     }
          155     
          156     /* Even part */
          157     
          158     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
          159     tmp0 <<= (CONST_BITS+1);
          160     
          161     z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
          162     z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
          163 
          164     tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
          165     
          166     tmp10 = tmp0 + tmp2;
          167     tmp12 = tmp0 - tmp2;
          168     
          169     /* Odd part */
          170     
          171     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
          172     z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
          173     z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
          174     z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
          175     
          176     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
          177          + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
          178          + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
          179          + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
          180     
          181     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
          182          + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
          183          + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
          184          + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
          185 
          186     /* Final output stage */
          187     
          188     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
          189     wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
          190     wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
          191     wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
          192   }
          193   
          194   /* Pass 2: process 4 rows from work array, store into output array. */
          195 
          196   wsptr = workspace;
          197   for (ctr = 0; ctr < 4; ctr++) {
          198     outptr = output_buf[ctr] + output_col;
          199     /* It's not clear whether a zero row test is worthwhile here ... */
          200 
          201 #ifndef NO_ZERO_ROW_TEST
          202     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
          203         wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
          204       /* AC terms all zero */
          205       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
          206                                   & RANGE_MASK];
          207       
          208       outptr[0] = dcval;
          209       outptr[1] = dcval;
          210       outptr[2] = dcval;
          211       outptr[3] = dcval;
          212       
          213       wsptr += DCTSIZE;                /* advance pointer to next row */
          214       continue;
          215     }
          216 #endif
          217     
          218     /* Even part */
          219     
          220     tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
          221     
          222     tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
          223          + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
          224     
          225     tmp10 = tmp0 + tmp2;
          226     tmp12 = tmp0 - tmp2;
          227     
          228     /* Odd part */
          229     
          230     z1 = (INT32) wsptr[7];
          231     z2 = (INT32) wsptr[5];
          232     z3 = (INT32) wsptr[3];
          233     z4 = (INT32) wsptr[1];
          234     
          235     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
          236          + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
          237          + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
          238          + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
          239     
          240     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
          241          + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
          242          + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
          243          + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
          244 
          245     /* Final output stage */
          246     
          247     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
          248                                           CONST_BITS+PASS1_BITS+3+1)
          249                             & RANGE_MASK];
          250     outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
          251                                           CONST_BITS+PASS1_BITS+3+1)
          252                             & RANGE_MASK];
          253     outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
          254                                           CONST_BITS+PASS1_BITS+3+1)
          255                             & RANGE_MASK];
          256     outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
          257                                           CONST_BITS+PASS1_BITS+3+1)
          258                             & RANGE_MASK];
          259     
          260     wsptr += DCTSIZE;                /* advance pointer to next row */
          261   }
          262 }
          263 
          264 
          265 /*
          266  * Perform dequantization and inverse DCT on one block of coefficients,
          267  * producing a reduced-size 2x2 output block.
          268  */
          269 
          270 GLOBAL(void)
          271 jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
          272                JCOEFPTR coef_block,
          273                JSAMPARRAY output_buf, JDIMENSION output_col)
          274 {
          275   INT32 tmp0, tmp10, z1;
          276   JCOEFPTR inptr;
          277   ISLOW_MULT_TYPE * quantptr;
          278   int * wsptr;
          279   JSAMPROW outptr;
          280   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
          281   int ctr;
          282   int workspace[DCTSIZE*2];        /* buffers data between passes */
          283   SHIFT_TEMPS
          284 
          285   /* Pass 1: process columns from input, store into work array. */
          286 
          287   inptr = coef_block;
          288   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
          289   wsptr = workspace;
          290   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
          291     /* Don't bother to process columns 2,4,6 */
          292     if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
          293       continue;
          294     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
          295         inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
          296       /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
          297       int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
          298       
          299       wsptr[DCTSIZE*0] = dcval;
          300       wsptr[DCTSIZE*1] = dcval;
          301       
          302       continue;
          303     }
          304     
          305     /* Even part */
          306     
          307     z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
          308     tmp10 = z1 << (CONST_BITS+2);
          309     
          310     /* Odd part */
          311 
          312     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
          313     tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
          314     z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
          315     tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
          316     z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
          317     tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
          318     z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
          319     tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
          320 
          321     /* Final output stage */
          322     
          323     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
          324     wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
          325   }
          326   
          327   /* Pass 2: process 2 rows from work array, store into output array. */
          328 
          329   wsptr = workspace;
          330   for (ctr = 0; ctr < 2; ctr++) {
          331     outptr = output_buf[ctr] + output_col;
          332     /* It's not clear whether a zero row test is worthwhile here ... */
          333 
          334 #ifndef NO_ZERO_ROW_TEST
          335     if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
          336       /* AC terms all zero */
          337       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
          338                                   & RANGE_MASK];
          339       
          340       outptr[0] = dcval;
          341       outptr[1] = dcval;
          342       
          343       wsptr += DCTSIZE;                /* advance pointer to next row */
          344       continue;
          345     }
          346 #endif
          347     
          348     /* Even part */
          349     
          350     tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
          351     
          352     /* Odd part */
          353 
          354     tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
          355          + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
          356          + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
          357          + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
          358 
          359     /* Final output stage */
          360     
          361     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
          362                                           CONST_BITS+PASS1_BITS+3+2)
          363                             & RANGE_MASK];
          364     outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
          365                                           CONST_BITS+PASS1_BITS+3+2)
          366                             & RANGE_MASK];
          367     
          368     wsptr += DCTSIZE;                /* advance pointer to next row */
          369   }
          370 }
          371 
          372 
          373 /*
          374  * Perform dequantization and inverse DCT on one block of coefficients,
          375  * producing a reduced-size 1x1 output block.
          376  */
          377 
          378 GLOBAL(void)
          379 jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
          380                JCOEFPTR coef_block,
          381                JSAMPARRAY output_buf, JDIMENSION output_col)
          382 {
          383   int dcval;
          384   ISLOW_MULT_TYPE * quantptr;
          385   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
          386   SHIFT_TEMPS
          387 
          388   /* We hardly need an inverse DCT routine for this: just take the
          389    * average pixel value, which is one-eighth of the DC coefficient.
          390    */
          391   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
          392   dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
          393   dcval = (int) DESCALE((INT32) dcval, 3);
          394 
          395   output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
          396 }
          397 
          398 #endif /* IDCT_SCALING_SUPPORTED */