jidctint.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       jidctint.c (14815B)
       ---
            1 /*
            2  * jidctint.c
            3  *
            4  * Copyright (C) 1991-1998, Thomas G. Lane.
            5  * This file is part of the Independent JPEG Group's software.
            6  * For conditions of distribution and use, see the accompanying README file.
            7  *
            8  * This file contains a slow-but-accurate integer implementation of the
            9  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
           10  * must also perform dequantization of the input coefficients.
           11  *
           12  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
           13  * on each row (or vice versa, but it's more convenient to emit a row at
           14  * a time).  Direct algorithms are also available, but they are much more
           15  * complex and seem not to be any faster when reduced to code.
           16  *
           17  * This implementation is based on an algorithm described in
           18  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
           19  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
           20  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
           21  * The primary algorithm described there uses 11 multiplies and 29 adds.
           22  * We use their alternate method with 12 multiplies and 32 adds.
           23  * The advantage of this method is that no data path contains more than one
           24  * multiplication; this allows a very simple and accurate implementation in
           25  * scaled fixed-point arithmetic, with a minimal number of shifts.
           26  */
           27 
           28 #define JPEG_INTERNALS
           29 #include "jinclude.h"
           30 #include "jpeglib.h"
           31 #include "jdct.h"                /* Private declarations for DCT subsystem */
           32 
           33 #ifdef DCT_ISLOW_SUPPORTED
           34 
           35 
           36 /*
           37  * This module is specialized to the case DCTSIZE = 8.
           38  */
           39 
           40 #if DCTSIZE != 8
           41   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
           42 #endif
           43 
           44 
           45 /*
           46  * The poop on this scaling stuff is as follows:
           47  *
           48  * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
           49  * larger than the true IDCT outputs.  The final outputs are therefore
           50  * a factor of N larger than desired; since N=8 this can be cured by
           51  * a simple right shift at the end of the algorithm.  The advantage of
           52  * this arrangement is that we save two multiplications per 1-D IDCT,
           53  * because the y0 and y4 inputs need not be divided by sqrt(N).
           54  *
           55  * We have to do addition and subtraction of the integer inputs, which
           56  * is no problem, and multiplication by fractional constants, which is
           57  * a problem to do in integer arithmetic.  We multiply all the constants
           58  * by CONST_SCALE and convert them to integer constants (thus retaining
           59  * CONST_BITS bits of precision in the constants).  After doing a
           60  * multiplication we have to divide the product by CONST_SCALE, with proper
           61  * rounding, to produce the correct output.  This division can be done
           62  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
           63  * as long as possible so that partial sums can be added together with
           64  * full fractional precision.
           65  *
           66  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
           67  * they are represented to better-than-integral precision.  These outputs
           68  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
           69  * with the recommended scaling.  (To scale up 12-bit sample data further, an
           70  * intermediate INT32 array would be needed.)
           71  *
           72  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
           73  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
           74  * shows that the values given below are the most effective.
           75  */
           76 
           77 #if BITS_IN_JSAMPLE == 8
           78 #define CONST_BITS  13
           79 #define PASS1_BITS  2
           80 #else
           81 #define CONST_BITS  13
           82 #define PASS1_BITS  1                /* lose a little precision to avoid overflow */
           83 #endif
           84 
           85 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
           86  * causing a lot of useless floating-point operations at run time.
           87  * To get around this we use the following pre-calculated constants.
           88  * If you change CONST_BITS you may want to add appropriate values.
           89  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
           90  */
           91 
           92 #if CONST_BITS == 13
           93 #define FIX_0_298631336  ((INT32)  2446)        /* FIX(0.298631336) */
           94 #define FIX_0_390180644  ((INT32)  3196)        /* FIX(0.390180644) */
           95 #define FIX_0_541196100  ((INT32)  4433)        /* FIX(0.541196100) */
           96 #define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */
           97 #define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */
           98 #define FIX_1_175875602  ((INT32)  9633)        /* FIX(1.175875602) */
           99 #define FIX_1_501321110  ((INT32)  12299)        /* FIX(1.501321110) */
          100 #define FIX_1_847759065  ((INT32)  15137)        /* FIX(1.847759065) */
          101 #define FIX_1_961570560  ((INT32)  16069)        /* FIX(1.961570560) */
          102 #define FIX_2_053119869  ((INT32)  16819)        /* FIX(2.053119869) */
          103 #define FIX_2_562915447  ((INT32)  20995)        /* FIX(2.562915447) */
          104 #define FIX_3_072711026  ((INT32)  25172)        /* FIX(3.072711026) */
          105 #else
          106 #define FIX_0_298631336  FIX(0.298631336)
          107 #define FIX_0_390180644  FIX(0.390180644)
          108 #define FIX_0_541196100  FIX(0.541196100)
          109 #define FIX_0_765366865  FIX(0.765366865)
          110 #define FIX_0_899976223  FIX(0.899976223)
          111 #define FIX_1_175875602  FIX(1.175875602)
          112 #define FIX_1_501321110  FIX(1.501321110)
          113 #define FIX_1_847759065  FIX(1.847759065)
          114 #define FIX_1_961570560  FIX(1.961570560)
          115 #define FIX_2_053119869  FIX(2.053119869)
          116 #define FIX_2_562915447  FIX(2.562915447)
          117 #define FIX_3_072711026  FIX(3.072711026)
          118 #endif
          119 
          120 
          121 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
          122  * For 8-bit samples with the recommended scaling, all the variable
          123  * and constant values involved are no more than 16 bits wide, so a
          124  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
          125  * For 12-bit samples, a full 32-bit multiplication will be needed.
          126  */
          127 
          128 #if BITS_IN_JSAMPLE == 8
          129 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
          130 #else
          131 #define MULTIPLY(var,const)  ((var) * (const))
          132 #endif
          133 
          134 
          135 /* Dequantize a coefficient by multiplying it by the multiplier-table
          136  * entry; produce an int result.  In this module, both inputs and result
          137  * are 16 bits or less, so either int or short multiply will work.
          138  */
          139 
          140 #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
          141 
          142 
          143 /*
          144  * Perform dequantization and inverse DCT on one block of coefficients.
          145  */
          146 
          147 GLOBAL(void)
          148 jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
          149                  JCOEFPTR coef_block,
          150                  JSAMPARRAY output_buf, JDIMENSION output_col)
          151 {
          152   INT32 tmp0, tmp1, tmp2, tmp3;
          153   INT32 tmp10, tmp11, tmp12, tmp13;
          154   INT32 z1, z2, z3, z4, z5;
          155   JCOEFPTR inptr;
          156   ISLOW_MULT_TYPE * quantptr;
          157   int * wsptr;
          158   JSAMPROW outptr;
          159   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
          160   int ctr;
          161   int workspace[DCTSIZE2];        /* buffers data between passes */
          162   SHIFT_TEMPS
          163 
          164   /* Pass 1: process columns from input, store into work array. */
          165   /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
          166   /* furthermore, we scale the results by 2**PASS1_BITS. */
          167 
          168   inptr = coef_block;
          169   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
          170   wsptr = workspace;
          171   for (ctr = DCTSIZE; ctr > 0; ctr--) {
          172     /* Due to quantization, we will usually find that many of the input
          173      * coefficients are zero, especially the AC terms.  We can exploit this
          174      * by short-circuiting the IDCT calculation for any column in which all
          175      * the AC terms are zero.  In that case each output is equal to the
          176      * DC coefficient (with scale factor as needed).
          177      * With typical images and quantization tables, half or more of the
          178      * column DCT calculations can be simplified this way.
          179      */
          180     
          181     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
          182         inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
          183         inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
          184         inptr[DCTSIZE*7] == 0) {
          185       /* AC terms all zero */
          186       int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
          187       
          188       wsptr[DCTSIZE*0] = dcval;
          189       wsptr[DCTSIZE*1] = dcval;
          190       wsptr[DCTSIZE*2] = dcval;
          191       wsptr[DCTSIZE*3] = dcval;
          192       wsptr[DCTSIZE*4] = dcval;
          193       wsptr[DCTSIZE*5] = dcval;
          194       wsptr[DCTSIZE*6] = dcval;
          195       wsptr[DCTSIZE*7] = dcval;
          196       
          197       inptr++;                        /* advance pointers to next column */
          198       quantptr++;
          199       wsptr++;
          200       continue;
          201     }
          202     
          203     /* Even part: reverse the even part of the forward DCT. */
          204     /* The rotator is sqrt(2)*c(-6). */
          205     
          206     z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
          207     z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
          208     
          209     z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
          210     tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
          211     tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
          212     
          213     z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
          214     z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
          215 
          216     tmp0 = (z2 + z3) << CONST_BITS;
          217     tmp1 = (z2 - z3) << CONST_BITS;
          218     
          219     tmp10 = tmp0 + tmp3;
          220     tmp13 = tmp0 - tmp3;
          221     tmp11 = tmp1 + tmp2;
          222     tmp12 = tmp1 - tmp2;
          223     
          224     /* Odd part per figure 8; the matrix is unitary and hence its
          225      * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
          226      */
          227     
          228     tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
          229     tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
          230     tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
          231     tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
          232     
          233     z1 = tmp0 + tmp3;
          234     z2 = tmp1 + tmp2;
          235     z3 = tmp0 + tmp2;
          236     z4 = tmp1 + tmp3;
          237     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
          238     
          239     tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
          240     tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
          241     tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
          242     tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
          243     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
          244     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
          245     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
          246     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
          247     
          248     z3 += z5;
          249     z4 += z5;
          250     
          251     tmp0 += z1 + z3;
          252     tmp1 += z2 + z4;
          253     tmp2 += z2 + z3;
          254     tmp3 += z1 + z4;
          255     
          256     /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
          257     
          258     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
          259     wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
          260     wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
          261     wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
          262     wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
          263     wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
          264     wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
          265     wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
          266     
          267     inptr++;                        /* advance pointers to next column */
          268     quantptr++;
          269     wsptr++;
          270   }
          271   
          272   /* Pass 2: process rows from work array, store into output array. */
          273   /* Note that we must descale the results by a factor of 8 == 2**3, */
          274   /* and also undo the PASS1_BITS scaling. */
          275 
          276   wsptr = workspace;
          277   for (ctr = 0; ctr < DCTSIZE; ctr++) {
          278     outptr = output_buf[ctr] + output_col;
          279     /* Rows of zeroes can be exploited in the same way as we did with columns.
          280      * However, the column calculation has created many nonzero AC terms, so
          281      * the simplification applies less often (typically 5% to 10% of the time).
          282      * On machines with very fast multiplication, it's possible that the
          283      * test takes more time than it's worth.  In that case this section
          284      * may be commented out.
          285      */
          286     
          287 #ifndef NO_ZERO_ROW_TEST
          288     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
          289         wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
          290       /* AC terms all zero */
          291       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
          292                                   & RANGE_MASK];
          293       
          294       outptr[0] = dcval;
          295       outptr[1] = dcval;
          296       outptr[2] = dcval;
          297       outptr[3] = dcval;
          298       outptr[4] = dcval;
          299       outptr[5] = dcval;
          300       outptr[6] = dcval;
          301       outptr[7] = dcval;
          302 
          303       wsptr += DCTSIZE;                /* advance pointer to next row */
          304       continue;
          305     }
          306 #endif
          307     
          308     /* Even part: reverse the even part of the forward DCT. */
          309     /* The rotator is sqrt(2)*c(-6). */
          310     
          311     z2 = (INT32) wsptr[2];
          312     z3 = (INT32) wsptr[6];
          313     
          314     z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
          315     tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
          316     tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
          317     
          318     tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
          319     tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
          320     
          321     tmp10 = tmp0 + tmp3;
          322     tmp13 = tmp0 - tmp3;
          323     tmp11 = tmp1 + tmp2;
          324     tmp12 = tmp1 - tmp2;
          325     
          326     /* Odd part per figure 8; the matrix is unitary and hence its
          327      * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
          328      */
          329     
          330     tmp0 = (INT32) wsptr[7];
          331     tmp1 = (INT32) wsptr[5];
          332     tmp2 = (INT32) wsptr[3];
          333     tmp3 = (INT32) wsptr[1];
          334     
          335     z1 = tmp0 + tmp3;
          336     z2 = tmp1 + tmp2;
          337     z3 = tmp0 + tmp2;
          338     z4 = tmp1 + tmp3;
          339     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
          340     
          341     tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
          342     tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
          343     tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
          344     tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
          345     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
          346     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
          347     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
          348     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
          349     
          350     z3 += z5;
          351     z4 += z5;
          352     
          353     tmp0 += z1 + z3;
          354     tmp1 += z2 + z4;
          355     tmp2 += z2 + z3;
          356     tmp3 += z1 + z4;
          357     
          358     /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
          359     
          360     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
          361                                           CONST_BITS+PASS1_BITS+3)
          362                             & RANGE_MASK];
          363     outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
          364                                           CONST_BITS+PASS1_BITS+3)
          365                             & RANGE_MASK];
          366     outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
          367                                           CONST_BITS+PASS1_BITS+3)
          368                             & RANGE_MASK];
          369     outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
          370                                           CONST_BITS+PASS1_BITS+3)
          371                             & RANGE_MASK];
          372     outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
          373                                           CONST_BITS+PASS1_BITS+3)
          374                             & RANGE_MASK];
          375     outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
          376                                           CONST_BITS+PASS1_BITS+3)
          377                             & RANGE_MASK];
          378     outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
          379                                           CONST_BITS+PASS1_BITS+3)
          380                             & RANGE_MASK];
          381     outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
          382                                           CONST_BITS+PASS1_BITS+3)
          383                             & RANGE_MASK];
          384     
          385     wsptr += DCTSIZE;                /* advance pointer to next row */
          386   }
          387 }
          388 
          389 #endif /* DCT_ISLOW_SUPPORTED */