jidctfst.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       jidctfst.c (13170B)
       ---
            1 /*
            2  * jidctfst.c
            3  *
            4  * Copyright (C) 1994-1998, Thomas G. Lane.
            5  * This file is part of the Independent JPEG Group's software.
            6  * For conditions of distribution and use, see the accompanying README file.
            7  *
            8  * This file contains a fast, not so accurate integer implementation of the
            9  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
           10  * must also perform dequantization of the input coefficients.
           11  *
           12  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
           13  * on each row (or vice versa, but it's more convenient to emit a row at
           14  * a time).  Direct algorithms are also available, but they are much more
           15  * complex and seem not to be any faster when reduced to code.
           16  *
           17  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
           18  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
           19  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
           20  * JPEG textbook (see REFERENCES section in file README).  The following code
           21  * is based directly on figure 4-8 in P&M.
           22  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
           23  * possible to arrange the computation so that many of the multiplies are
           24  * simple scalings of the final outputs.  These multiplies can then be
           25  * folded into the multiplications or divisions by the JPEG quantization
           26  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
           27  * to be done in the DCT itself.
           28  * The primary disadvantage of this method is that with fixed-point math,
           29  * accuracy is lost due to imprecise representation of the scaled
           30  * quantization values.  The smaller the quantization table entry, the less
           31  * precise the scaled value, so this implementation does worse with high-
           32  * quality-setting files than with low-quality ones.
           33  */
           34 
           35 #define JPEG_INTERNALS
           36 #include "jinclude.h"
           37 #include "jpeglib.h"
           38 #include "jdct.h"                /* Private declarations for DCT subsystem */
           39 
           40 #ifdef DCT_IFAST_SUPPORTED
           41 
           42 
           43 /*
           44  * This module is specialized to the case DCTSIZE = 8.
           45  */
           46 
           47 #if DCTSIZE != 8
           48   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
           49 #endif
           50 
           51 
           52 /* Scaling decisions are generally the same as in the LL&M algorithm;
           53  * see jidctint.c for more details.  However, we choose to descale
           54  * (right shift) multiplication products as soon as they are formed,
           55  * rather than carrying additional fractional bits into subsequent additions.
           56  * This compromises accuracy slightly, but it lets us save a few shifts.
           57  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
           58  * everywhere except in the multiplications proper; this saves a good deal
           59  * of work on 16-bit-int machines.
           60  *
           61  * The dequantized coefficients are not integers because the AA&N scaling
           62  * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
           63  * so that the first and second IDCT rounds have the same input scaling.
           64  * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
           65  * avoid a descaling shift; this compromises accuracy rather drastically
           66  * for small quantization table entries, but it saves a lot of shifts.
           67  * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
           68  * so we use a much larger scaling factor to preserve accuracy.
           69  *
           70  * A final compromise is to represent the multiplicative constants to only
           71  * 8 fractional bits, rather than 13.  This saves some shifting work on some
           72  * machines, and may also reduce the cost of multiplication (since there
           73  * are fewer one-bits in the constants).
           74  */
           75 
           76 #if BITS_IN_JSAMPLE == 8
           77 #define CONST_BITS  8
           78 #define PASS1_BITS  2
           79 #else
           80 #define CONST_BITS  8
           81 #define PASS1_BITS  1                /* lose a little precision to avoid overflow */
           82 #endif
           83 
           84 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
           85  * causing a lot of useless floating-point operations at run time.
           86  * To get around this we use the following pre-calculated constants.
           87  * If you change CONST_BITS you may want to add appropriate values.
           88  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
           89  */
           90 
           91 #if CONST_BITS == 8
           92 #define FIX_1_082392200  ((INT32)  277)                /* FIX(1.082392200) */
           93 #define FIX_1_414213562  ((INT32)  362)                /* FIX(1.414213562) */
           94 #define FIX_1_847759065  ((INT32)  473)                /* FIX(1.847759065) */
           95 #define FIX_2_613125930  ((INT32)  669)                /* FIX(2.613125930) */
           96 #else
           97 #define FIX_1_082392200  FIX(1.082392200)
           98 #define FIX_1_414213562  FIX(1.414213562)
           99 #define FIX_1_847759065  FIX(1.847759065)
          100 #define FIX_2_613125930  FIX(2.613125930)
          101 #endif
          102 
          103 
          104 /* We can gain a little more speed, with a further compromise in accuracy,
          105  * by omitting the addition in a descaling shift.  This yields an incorrectly
          106  * rounded result half the time...
          107  */
          108 
          109 #ifndef USE_ACCURATE_ROUNDING
          110 #undef DESCALE
          111 #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
          112 #endif
          113 
          114 
          115 /* Multiply a DCTELEM variable by an INT32 constant, and immediately
          116  * descale to yield a DCTELEM result.
          117  */
          118 
          119 #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
          120 
          121 
          122 /* Dequantize a coefficient by multiplying it by the multiplier-table
          123  * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
          124  * multiplication will do.  For 12-bit data, the multiplier table is
          125  * declared INT32, so a 32-bit multiply will be used.
          126  */
          127 
          128 #if BITS_IN_JSAMPLE == 8
          129 #define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
          130 #else
          131 #define DEQUANTIZE(coef,quantval)  \
          132         DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
          133 #endif
          134 
          135 
          136 /* Like DESCALE, but applies to a DCTELEM and produces an int.
          137  * We assume that int right shift is unsigned if INT32 right shift is.
          138  */
          139 
          140 #ifdef RIGHT_SHIFT_IS_UNSIGNED
          141 #define ISHIFT_TEMPS        DCTELEM ishift_temp;
          142 #if BITS_IN_JSAMPLE == 8
          143 #define DCTELEMBITS  16                /* DCTELEM may be 16 or 32 bits */
          144 #else
          145 #define DCTELEMBITS  32                /* DCTELEM must be 32 bits */
          146 #endif
          147 #define IRIGHT_SHIFT(x,shft)  \
          148     ((ishift_temp = (x)) < 0 ? \
          149      (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
          150      (ishift_temp >> (shft)))
          151 #else
          152 #define ISHIFT_TEMPS
          153 #define IRIGHT_SHIFT(x,shft)        ((x) >> (shft))
          154 #endif
          155 
          156 #ifdef USE_ACCURATE_ROUNDING
          157 #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
          158 #else
          159 #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
          160 #endif
          161 
          162 
          163 /*
          164  * Perform dequantization and inverse DCT on one block of coefficients.
          165  */
          166 
          167 GLOBAL(void)
          168 jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
          169                  JCOEFPTR coef_block,
          170                  JSAMPARRAY output_buf, JDIMENSION output_col)
          171 {
          172   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
          173   DCTELEM tmp10, tmp11, tmp12, tmp13;
          174   DCTELEM z5, z10, z11, z12, z13;
          175   JCOEFPTR inptr;
          176   IFAST_MULT_TYPE * quantptr;
          177   int * wsptr;
          178   JSAMPROW outptr;
          179   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
          180   int ctr;
          181   int workspace[DCTSIZE2];        /* buffers data between passes */
          182   SHIFT_TEMPS                        /* for DESCALE */
          183   ISHIFT_TEMPS                        /* for IDESCALE */
          184 
          185   /* Pass 1: process columns from input, store into work array. */
          186 
          187   inptr = coef_block;
          188   quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
          189   wsptr = workspace;
          190   for (ctr = DCTSIZE; ctr > 0; ctr--) {
          191     /* Due to quantization, we will usually find that many of the input
          192      * coefficients are zero, especially the AC terms.  We can exploit this
          193      * by short-circuiting the IDCT calculation for any column in which all
          194      * the AC terms are zero.  In that case each output is equal to the
          195      * DC coefficient (with scale factor as needed).
          196      * With typical images and quantization tables, half or more of the
          197      * column DCT calculations can be simplified this way.
          198      */
          199     
          200     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
          201         inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
          202         inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
          203         inptr[DCTSIZE*7] == 0) {
          204       /* AC terms all zero */
          205       int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
          206 
          207       wsptr[DCTSIZE*0] = dcval;
          208       wsptr[DCTSIZE*1] = dcval;
          209       wsptr[DCTSIZE*2] = dcval;
          210       wsptr[DCTSIZE*3] = dcval;
          211       wsptr[DCTSIZE*4] = dcval;
          212       wsptr[DCTSIZE*5] = dcval;
          213       wsptr[DCTSIZE*6] = dcval;
          214       wsptr[DCTSIZE*7] = dcval;
          215       
          216       inptr++;                        /* advance pointers to next column */
          217       quantptr++;
          218       wsptr++;
          219       continue;
          220     }
          221     
          222     /* Even part */
          223 
          224     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
          225     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
          226     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
          227     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
          228 
          229     tmp10 = tmp0 + tmp2;        /* phase 3 */
          230     tmp11 = tmp0 - tmp2;
          231 
          232     tmp13 = tmp1 + tmp3;        /* phases 5-3 */
          233     tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
          234 
          235     tmp0 = tmp10 + tmp13;        /* phase 2 */
          236     tmp3 = tmp10 - tmp13;
          237     tmp1 = tmp11 + tmp12;
          238     tmp2 = tmp11 - tmp12;
          239     
          240     /* Odd part */
          241 
          242     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
          243     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
          244     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
          245     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
          246 
          247     z13 = tmp6 + tmp5;                /* phase 6 */
          248     z10 = tmp6 - tmp5;
          249     z11 = tmp4 + tmp7;
          250     z12 = tmp4 - tmp7;
          251 
          252     tmp7 = z11 + z13;                /* phase 5 */
          253     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
          254 
          255     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
          256     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
          257     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
          258 
          259     tmp6 = tmp12 - tmp7;        /* phase 2 */
          260     tmp5 = tmp11 - tmp6;
          261     tmp4 = tmp10 + tmp5;
          262 
          263     wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
          264     wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
          265     wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
          266     wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
          267     wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
          268     wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
          269     wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
          270     wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
          271 
          272     inptr++;                        /* advance pointers to next column */
          273     quantptr++;
          274     wsptr++;
          275   }
          276   
          277   /* Pass 2: process rows from work array, store into output array. */
          278   /* Note that we must descale the results by a factor of 8 == 2**3, */
          279   /* and also undo the PASS1_BITS scaling. */
          280 
          281   wsptr = workspace;
          282   for (ctr = 0; ctr < DCTSIZE; ctr++) {
          283     outptr = output_buf[ctr] + output_col;
          284     /* Rows of zeroes can be exploited in the same way as we did with columns.
          285      * However, the column calculation has created many nonzero AC terms, so
          286      * the simplification applies less often (typically 5% to 10% of the time).
          287      * On machines with very fast multiplication, it's possible that the
          288      * test takes more time than it's worth.  In that case this section
          289      * may be commented out.
          290      */
          291     
          292 #ifndef NO_ZERO_ROW_TEST
          293     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
          294         wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
          295       /* AC terms all zero */
          296       JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
          297                                   & RANGE_MASK];
          298       
          299       outptr[0] = dcval;
          300       outptr[1] = dcval;
          301       outptr[2] = dcval;
          302       outptr[3] = dcval;
          303       outptr[4] = dcval;
          304       outptr[5] = dcval;
          305       outptr[6] = dcval;
          306       outptr[7] = dcval;
          307 
          308       wsptr += DCTSIZE;                /* advance pointer to next row */
          309       continue;
          310     }
          311 #endif
          312     
          313     /* Even part */
          314 
          315     tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
          316     tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
          317 
          318     tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
          319     tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
          320             - tmp13;
          321 
          322     tmp0 = tmp10 + tmp13;
          323     tmp3 = tmp10 - tmp13;
          324     tmp1 = tmp11 + tmp12;
          325     tmp2 = tmp11 - tmp12;
          326 
          327     /* Odd part */
          328 
          329     z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
          330     z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
          331     z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
          332     z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
          333 
          334     tmp7 = z11 + z13;                /* phase 5 */
          335     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
          336 
          337     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
          338     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
          339     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
          340 
          341     tmp6 = tmp12 - tmp7;        /* phase 2 */
          342     tmp5 = tmp11 - tmp6;
          343     tmp4 = tmp10 + tmp5;
          344 
          345     /* Final output stage: scale down by a factor of 8 and range-limit */
          346 
          347     outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
          348                             & RANGE_MASK];
          349     outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
          350                             & RANGE_MASK];
          351     outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
          352                             & RANGE_MASK];
          353     outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
          354                             & RANGE_MASK];
          355     outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
          356                             & RANGE_MASK];
          357     outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
          358                             & RANGE_MASK];
          359     outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
          360                             & RANGE_MASK];
          361     outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
          362                             & RANGE_MASK];
          363 
          364     wsptr += DCTSIZE;                /* advance pointer to next row */
          365   }
          366 }
          367 
          368 #endif /* DCT_IFAST_SUPPORTED */