jidctflt.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       jidctflt.c (8451B)
       ---
            1 /*
            2  * jidctflt.c
            3  *
            4  * Copyright (C) 1994-1998, Thomas G. Lane.
            5  * This file is part of the Independent JPEG Group's software.
            6  * For conditions of distribution and use, see the accompanying README file.
            7  *
            8  * This file contains a floating-point implementation of the
            9  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
           10  * must also perform dequantization of the input coefficients.
           11  *
           12  * This implementation should be more accurate than either of the integer
           13  * IDCT implementations.  However, it may not give the same results on all
           14  * machines because of differences in roundoff behavior.  Speed will depend
           15  * on the hardware's floating point capacity.
           16  *
           17  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
           18  * on each row (or vice versa, but it's more convenient to emit a row at
           19  * a time).  Direct algorithms are also available, but they are much more
           20  * complex and seem not to be any faster when reduced to code.
           21  *
           22  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
           23  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
           24  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
           25  * JPEG textbook (see REFERENCES section in file README).  The following code
           26  * is based directly on figure 4-8 in P&M.
           27  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
           28  * possible to arrange the computation so that many of the multiplies are
           29  * simple scalings of the final outputs.  These multiplies can then be
           30  * folded into the multiplications or divisions by the JPEG quantization
           31  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
           32  * to be done in the DCT itself.
           33  * The primary disadvantage of this method is that with a fixed-point
           34  * implementation, accuracy is lost due to imprecise representation of the
           35  * scaled quantization values.  However, that problem does not arise if
           36  * we use floating point arithmetic.
           37  */
           38 
           39 #define JPEG_INTERNALS
           40 #include "jinclude.h"
           41 #include "jpeglib.h"
           42 #include "jdct.h"                /* Private declarations for DCT subsystem */
           43 
           44 #ifdef DCT_FLOAT_SUPPORTED
           45 
           46 
           47 /*
           48  * This module is specialized to the case DCTSIZE = 8.
           49  */
           50 
           51 #if DCTSIZE != 8
           52   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
           53 #endif
           54 
           55 
           56 /* Dequantize a coefficient by multiplying it by the multiplier-table
           57  * entry; produce a float result.
           58  */
           59 
           60 #define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))
           61 
           62 
           63 /*
           64  * Perform dequantization and inverse DCT on one block of coefficients.
           65  */
           66 
           67 GLOBAL(void)
           68 jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
           69                  JCOEFPTR coef_block,
           70                  JSAMPARRAY output_buf, JDIMENSION output_col)
           71 {
           72   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
           73   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
           74   FAST_FLOAT z5, z10, z11, z12, z13;
           75   JCOEFPTR inptr;
           76   FLOAT_MULT_TYPE * quantptr;
           77   FAST_FLOAT * wsptr;
           78   JSAMPROW outptr;
           79   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
           80   int ctr;
           81   FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
           82   SHIFT_TEMPS
           83 
           84   /* Pass 1: process columns from input, store into work array. */
           85 
           86   inptr = coef_block;
           87   quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
           88   wsptr = workspace;
           89   for (ctr = DCTSIZE; ctr > 0; ctr--) {
           90     /* Due to quantization, we will usually find that many of the input
           91      * coefficients are zero, especially the AC terms.  We can exploit this
           92      * by short-circuiting the IDCT calculation for any column in which all
           93      * the AC terms are zero.  In that case each output is equal to the
           94      * DC coefficient (with scale factor as needed).
           95      * With typical images and quantization tables, half or more of the
           96      * column DCT calculations can be simplified this way.
           97      */
           98     
           99     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
          100         inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
          101         inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
          102         inptr[DCTSIZE*7] == 0) {
          103       /* AC terms all zero */
          104       FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
          105       
          106       wsptr[DCTSIZE*0] = dcval;
          107       wsptr[DCTSIZE*1] = dcval;
          108       wsptr[DCTSIZE*2] = dcval;
          109       wsptr[DCTSIZE*3] = dcval;
          110       wsptr[DCTSIZE*4] = dcval;
          111       wsptr[DCTSIZE*5] = dcval;
          112       wsptr[DCTSIZE*6] = dcval;
          113       wsptr[DCTSIZE*7] = dcval;
          114       
          115       inptr++;                        /* advance pointers to next column */
          116       quantptr++;
          117       wsptr++;
          118       continue;
          119     }
          120     
          121     /* Even part */
          122 
          123     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
          124     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
          125     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
          126     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
          127 
          128     tmp10 = tmp0 + tmp2;        /* phase 3 */
          129     tmp11 = tmp0 - tmp2;
          130 
          131     tmp13 = tmp1 + tmp3;        /* phases 5-3 */
          132     tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
          133 
          134     tmp0 = tmp10 + tmp13;        /* phase 2 */
          135     tmp3 = tmp10 - tmp13;
          136     tmp1 = tmp11 + tmp12;
          137     tmp2 = tmp11 - tmp12;
          138     
          139     /* Odd part */
          140 
          141     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
          142     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
          143     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
          144     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
          145 
          146     z13 = tmp6 + tmp5;                /* phase 6 */
          147     z10 = tmp6 - tmp5;
          148     z11 = tmp4 + tmp7;
          149     z12 = tmp4 - tmp7;
          150 
          151     tmp7 = z11 + z13;                /* phase 5 */
          152     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
          153 
          154     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
          155     tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
          156     tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
          157 
          158     tmp6 = tmp12 - tmp7;        /* phase 2 */
          159     tmp5 = tmp11 - tmp6;
          160     tmp4 = tmp10 + tmp5;
          161 
          162     wsptr[DCTSIZE*0] = tmp0 + tmp7;
          163     wsptr[DCTSIZE*7] = tmp0 - tmp7;
          164     wsptr[DCTSIZE*1] = tmp1 + tmp6;
          165     wsptr[DCTSIZE*6] = tmp1 - tmp6;
          166     wsptr[DCTSIZE*2] = tmp2 + tmp5;
          167     wsptr[DCTSIZE*5] = tmp2 - tmp5;
          168     wsptr[DCTSIZE*4] = tmp3 + tmp4;
          169     wsptr[DCTSIZE*3] = tmp3 - tmp4;
          170 
          171     inptr++;                        /* advance pointers to next column */
          172     quantptr++;
          173     wsptr++;
          174   }
          175   
          176   /* Pass 2: process rows from work array, store into output array. */
          177   /* Note that we must descale the results by a factor of 8 == 2**3. */
          178 
          179   wsptr = workspace;
          180   for (ctr = 0; ctr < DCTSIZE; ctr++) {
          181     outptr = output_buf[ctr] + output_col;
          182     /* Rows of zeroes can be exploited in the same way as we did with columns.
          183      * However, the column calculation has created many nonzero AC terms, so
          184      * the simplification applies less often (typically 5% to 10% of the time).
          185      * And testing floats for zero is relatively expensive, so we don't bother.
          186      */
          187     
          188     /* Even part */
          189 
          190     tmp10 = wsptr[0] + wsptr[4];
          191     tmp11 = wsptr[0] - wsptr[4];
          192 
          193     tmp13 = wsptr[2] + wsptr[6];
          194     tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
          195 
          196     tmp0 = tmp10 + tmp13;
          197     tmp3 = tmp10 - tmp13;
          198     tmp1 = tmp11 + tmp12;
          199     tmp2 = tmp11 - tmp12;
          200 
          201     /* Odd part */
          202 
          203     z13 = wsptr[5] + wsptr[3];
          204     z10 = wsptr[5] - wsptr[3];
          205     z11 = wsptr[1] + wsptr[7];
          206     z12 = wsptr[1] - wsptr[7];
          207 
          208     tmp7 = z11 + z13;
          209     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
          210 
          211     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
          212     tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
          213     tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
          214 
          215     tmp6 = tmp12 - tmp7;
          216     tmp5 = tmp11 - tmp6;
          217     tmp4 = tmp10 + tmp5;
          218 
          219     /* Final output stage: scale down by a factor of 8 and range-limit */
          220 
          221     outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
          222                             & RANGE_MASK];
          223     outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
          224                             & RANGE_MASK];
          225     outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
          226                             & RANGE_MASK];
          227     outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
          228                             & RANGE_MASK];
          229     outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
          230                             & RANGE_MASK];
          231     outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
          232                             & RANGE_MASK];
          233     outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
          234                             & RANGE_MASK];
          235     outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
          236                             & RANGE_MASK];
          237     
          238     wsptr += DCTSIZE;                /* advance pointer to next row */
          239   }
          240 }
          241 
          242 #endif /* DCT_FLOAT_SUPPORTED */