jdhuff.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       jdhuff.c (20866B)
       ---
            1 /*
            2  * jdhuff.c
            3  *
            4  * Copyright (C) 1991-1997, Thomas G. Lane.
            5  * This file is part of the Independent JPEG Group's software.
            6  * For conditions of distribution and use, see the accompanying README file.
            7  *
            8  * This file contains Huffman entropy decoding routines.
            9  *
           10  * Much of the complexity here has to do with supporting input suspension.
           11  * If the data source module demands suspension, we want to be able to back
           12  * up to the start of the current MCU.  To do this, we copy state variables
           13  * into local working storage, and update them back to the permanent
           14  * storage only upon successful completion of an MCU.
           15  */
           16 
           17 #define JPEG_INTERNALS
           18 #include "jinclude.h"
           19 #include "jpeglib.h"
           20 #include "jdhuff.h"                /* Declarations shared with jdphuff.c */
           21 
           22 
           23 /*
           24  * Expanded entropy decoder object for Huffman decoding.
           25  *
           26  * The savable_state subrecord contains fields that change within an MCU,
           27  * but must not be updated permanently until we complete the MCU.
           28  */
           29 
           30 typedef struct {
           31   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
           32 } savable_state;
           33 
           34 /* This macro is to work around compilers with missing or broken
           35  * structure assignment.  You'll need to fix this code if you have
           36  * such a compiler and you change MAX_COMPS_IN_SCAN.
           37  */
           38 
           39 #ifndef NO_STRUCT_ASSIGN
           40 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
           41 #else
           42 #if MAX_COMPS_IN_SCAN == 4
           43 #define ASSIGN_STATE(dest,src)  \
           44         ((dest).last_dc_val[0] = (src).last_dc_val[0], \
           45          (dest).last_dc_val[1] = (src).last_dc_val[1], \
           46          (dest).last_dc_val[2] = (src).last_dc_val[2], \
           47          (dest).last_dc_val[3] = (src).last_dc_val[3])
           48 #endif
           49 #endif
           50 
           51 
           52 typedef struct {
           53   struct jpeg_entropy_decoder pub; /* public fields */
           54 
           55   /* These fields are loaded into local variables at start of each MCU.
           56    * In case of suspension, we exit WITHOUT updating them.
           57    */
           58   bitread_perm_state bitstate;        /* Bit buffer at start of MCU */
           59   savable_state saved;                /* Other state at start of MCU */
           60 
           61   /* These fields are NOT loaded into local working state. */
           62   unsigned int restarts_to_go;        /* MCUs left in this restart interval */
           63 
           64   /* Pointers to derived tables (these workspaces have image lifespan) */
           65   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
           66   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
           67 
           68   /* Precalculated info set up by start_pass for use in decode_mcu: */
           69 
           70   /* Pointers to derived tables to be used for each block within an MCU */
           71   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
           72   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
           73   /* Whether we care about the DC and AC coefficient values for each block */
           74   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
           75   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
           76 } huff_entropy_decoder;
           77 
           78 typedef huff_entropy_decoder * huff_entropy_ptr;
           79 
           80 
           81 /*
           82  * Initialize for a Huffman-compressed scan.
           83  */
           84 
           85 METHODDEF(void)
           86 start_pass_huff_decoder (j_decompress_ptr cinfo)
           87 {
           88   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
           89   int ci, blkn, dctbl, actbl;
           90   jpeg_component_info * compptr;
           91 
           92   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
           93    * This ought to be an error condition, but we make it a warning because
           94    * there are some baseline files out there with all zeroes in these bytes.
           95    */
           96   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
           97       cinfo->Ah != 0 || cinfo->Al != 0)
           98     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
           99 
          100   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
          101     compptr = cinfo->cur_comp_info[ci];
          102     dctbl = compptr->dc_tbl_no;
          103     actbl = compptr->ac_tbl_no;
          104     /* Compute derived values for Huffman tables */
          105     /* We may do this more than once for a table, but it's not expensive */
          106     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
          107                             & entropy->dc_derived_tbls[dctbl]);
          108     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
          109                             & entropy->ac_derived_tbls[actbl]);
          110     /* Initialize DC predictions to 0 */
          111     entropy->saved.last_dc_val[ci] = 0;
          112   }
          113 
          114   /* Precalculate decoding info for each block in an MCU of this scan */
          115   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
          116     ci = cinfo->MCU_membership[blkn];
          117     compptr = cinfo->cur_comp_info[ci];
          118     /* Precalculate which table to use for each block */
          119     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
          120     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
          121     /* Decide whether we really care about the coefficient values */
          122     if (compptr->component_needed) {
          123       entropy->dc_needed[blkn] = TRUE;
          124       /* we don't need the ACs if producing a 1/8th-size image */
          125       entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
          126     } else {
          127       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
          128     }
          129   }
          130 
          131   /* Initialize bitread state variables */
          132   entropy->bitstate.bits_left = 0;
          133   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
          134   entropy->pub.insufficient_data = FALSE;
          135 
          136   /* Initialize restart counter */
          137   entropy->restarts_to_go = cinfo->restart_interval;
          138 }
          139 
          140 
          141 /*
          142  * Compute the derived values for a Huffman table.
          143  * This routine also performs some validation checks on the table.
          144  *
          145  * Note this is also used by jdphuff.c.
          146  */
          147 
          148 GLOBAL(void)
          149 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
          150                          d_derived_tbl ** pdtbl)
          151 {
          152   JHUFF_TBL *htbl;
          153   d_derived_tbl *dtbl;
          154   int p, i, l, si, numsymbols;
          155   int lookbits, ctr;
          156   char huffsize[257];
          157   unsigned int huffcode[257];
          158   unsigned int code;
          159 
          160   /* Note that huffsize[] and huffcode[] are filled in code-length order,
          161    * paralleling the order of the symbols themselves in htbl->huffval[].
          162    */
          163 
          164   /* Find the input Huffman table */
          165   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
          166     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
          167   htbl =
          168     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
          169   if (htbl == NULL)
          170     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
          171 
          172   /* Allocate a workspace if we haven't already done so. */
          173   if (*pdtbl == NULL)
          174     *pdtbl = (d_derived_tbl *)
          175       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
          176                                   SIZEOF(d_derived_tbl));
          177   dtbl = *pdtbl;
          178   dtbl->pub = htbl;                /* fill in back link */
          179   
          180   /* Figure C.1: make table of Huffman code length for each symbol */
          181 
          182   p = 0;
          183   for (l = 1; l <= 16; l++) {
          184     i = (int) htbl->bits[l];
          185     if (i < 0 || p + i > 256)        /* protect against table overrun */
          186       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
          187     while (i--)
          188       huffsize[p++] = (char) l;
          189   }
          190   huffsize[p] = 0;
          191   numsymbols = p;
          192   
          193   /* Figure C.2: generate the codes themselves */
          194   /* We also validate that the counts represent a legal Huffman code tree. */
          195   
          196   code = 0;
          197   si = huffsize[0];
          198   p = 0;
          199   while (huffsize[p]) {
          200     while (((int) huffsize[p]) == si) {
          201       huffcode[p++] = code;
          202       code++;
          203     }
          204     /* code is now 1 more than the last code used for codelength si; but
          205      * it must still fit in si bits, since no code is allowed to be all ones.
          206      */
          207     if (((INT32) code) >= (((INT32) 1) << si))
          208       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
          209     code <<= 1;
          210     si++;
          211   }
          212 
          213   /* Figure F.15: generate decoding tables for bit-sequential decoding */
          214 
          215   p = 0;
          216   for (l = 1; l <= 16; l++) {
          217     if (htbl->bits[l]) {
          218       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
          219        * minus the minimum code of length l
          220        */
          221       dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
          222       p += htbl->bits[l];
          223       dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
          224     } else {
          225       dtbl->maxcode[l] = -1;        /* -1 if no codes of this length */
          226     }
          227   }
          228   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
          229 
          230   /* Compute lookahead tables to speed up decoding.
          231    * First we set all the table entries to 0, indicating "too long";
          232    * then we iterate through the Huffman codes that are short enough and
          233    * fill in all the entries that correspond to bit sequences starting
          234    * with that code.
          235    */
          236 
          237   MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
          238 
          239   p = 0;
          240   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
          241     for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
          242       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
          243       /* Generate left-justified code followed by all possible bit sequences */
          244       lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
          245       for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
          246         dtbl->look_nbits[lookbits] = l;
          247         dtbl->look_sym[lookbits] = htbl->huffval[p];
          248         lookbits++;
          249       }
          250     }
          251   }
          252 
          253   /* Validate symbols as being reasonable.
          254    * For AC tables, we make no check, but accept all byte values 0..255.
          255    * For DC tables, we require the symbols to be in range 0..15.
          256    * (Tighter bounds could be applied depending on the data depth and mode,
          257    * but this is sufficient to ensure safe decoding.)
          258    */
          259   if (isDC) {
          260     for (i = 0; i < numsymbols; i++) {
          261       int sym = htbl->huffval[i];
          262       if (sym < 0 || sym > 15)
          263         ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
          264     }
          265   }
          266 }
          267 
          268 
          269 /*
          270  * Out-of-line code for bit fetching (shared with jdphuff.c).
          271  * See jdhuff.h for info about usage.
          272  * Note: current values of get_buffer and bits_left are passed as parameters,
          273  * but are returned in the corresponding fields of the state struct.
          274  *
          275  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
          276  * of get_buffer to be used.  (On machines with wider words, an even larger
          277  * buffer could be used.)  However, on some machines 32-bit shifts are
          278  * quite slow and take time proportional to the number of places shifted.
          279  * (This is true with most PC compilers, for instance.)  In this case it may
          280  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
          281  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
          282  */
          283 
          284 #ifdef SLOW_SHIFT_32
          285 #define MIN_GET_BITS  15        /* minimum allowable value */
          286 #else
          287 #define MIN_GET_BITS  (BIT_BUF_SIZE-7)
          288 #endif
          289 
          290 
          291 GLOBAL(boolean)
          292 jpeg_fill_bit_buffer (bitread_working_state * state,
          293                       register bit_buf_type get_buffer, register int bits_left,
          294                       int nbits)
          295 /* Load up the bit buffer to a depth of at least nbits */
          296 {
          297   /* Copy heavily used state fields into locals (hopefully registers) */
          298   register const JOCTET * next_input_byte = state->next_input_byte;
          299   register size_t bytes_in_buffer = state->bytes_in_buffer;
          300   j_decompress_ptr cinfo = state->cinfo;
          301 
          302   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
          303   /* (It is assumed that no request will be for more than that many bits.) */
          304   /* We fail to do so only if we hit a marker or are forced to suspend. */
          305 
          306   if (cinfo->unread_marker == 0) {        /* cannot advance past a marker */
          307     while (bits_left < MIN_GET_BITS) {
          308       register int c;
          309 
          310       /* Attempt to read a byte */
          311       if (bytes_in_buffer == 0) {
          312         if (! (*cinfo->src->fill_input_buffer) (cinfo))
          313           return FALSE;
          314         next_input_byte = cinfo->src->next_input_byte;
          315         bytes_in_buffer = cinfo->src->bytes_in_buffer;
          316       }
          317       bytes_in_buffer--;
          318       c = GETJOCTET(*next_input_byte++);
          319 
          320       /* If it's 0xFF, check and discard stuffed zero byte */
          321       if (c == 0xFF) {
          322         /* Loop here to discard any padding FF's on terminating marker,
          323          * so that we can save a valid unread_marker value.  NOTE: we will
          324          * accept multiple FF's followed by a 0 as meaning a single FF data
          325          * byte.  This data pattern is not valid according to the standard.
          326          */
          327         do {
          328           if (bytes_in_buffer == 0) {
          329             if (! (*cinfo->src->fill_input_buffer) (cinfo))
          330               return FALSE;
          331             next_input_byte = cinfo->src->next_input_byte;
          332             bytes_in_buffer = cinfo->src->bytes_in_buffer;
          333           }
          334           bytes_in_buffer--;
          335           c = GETJOCTET(*next_input_byte++);
          336         } while (c == 0xFF);
          337 
          338         if (c == 0) {
          339           /* Found FF/00, which represents an FF data byte */
          340           c = 0xFF;
          341         } else {
          342           /* Oops, it's actually a marker indicating end of compressed data.
          343            * Save the marker code for later use.
          344            * Fine point: it might appear that we should save the marker into
          345            * bitread working state, not straight into permanent state.  But
          346            * once we have hit a marker, we cannot need to suspend within the
          347            * current MCU, because we will read no more bytes from the data
          348            * source.  So it is OK to update permanent state right away.
          349            */
          350           cinfo->unread_marker = c;
          351           /* See if we need to insert some fake zero bits. */
          352           goto no_more_bytes;
          353         }
          354       }
          355 
          356       /* OK, load c into get_buffer */
          357       get_buffer = (get_buffer << 8) | c;
          358       bits_left += 8;
          359     } /* end while */
          360   } else {
          361   no_more_bytes:
          362     /* We get here if we've read the marker that terminates the compressed
          363      * data segment.  There should be enough bits in the buffer register
          364      * to satisfy the request; if so, no problem.
          365      */
          366     if (nbits > bits_left) {
          367       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
          368        * the data stream, so that we can produce some kind of image.
          369        * We use a nonvolatile flag to ensure that only one warning message
          370        * appears per data segment.
          371        */
          372       if (! cinfo->entropy->insufficient_data) {
          373         WARNMS(cinfo, JWRN_HIT_MARKER);
          374         cinfo->entropy->insufficient_data = TRUE;
          375       }
          376       /* Fill the buffer with zero bits */
          377       get_buffer <<= MIN_GET_BITS - bits_left;
          378       bits_left = MIN_GET_BITS;
          379     }
          380   }
          381 
          382   /* Unload the local registers */
          383   state->next_input_byte = next_input_byte;
          384   state->bytes_in_buffer = bytes_in_buffer;
          385   state->get_buffer = get_buffer;
          386   state->bits_left = bits_left;
          387 
          388   return TRUE;
          389 }
          390 
          391 
          392 /*
          393  * Out-of-line code for Huffman code decoding.
          394  * See jdhuff.h for info about usage.
          395  */
          396 
          397 GLOBAL(int)
          398 jpeg_huff_decode (bitread_working_state * state,
          399                   register bit_buf_type get_buffer, register int bits_left,
          400                   d_derived_tbl * htbl, int min_bits)
          401 {
          402   register int l = min_bits;
          403   register INT32 code;
          404 
          405   /* HUFF_DECODE has determined that the code is at least min_bits */
          406   /* bits long, so fetch that many bits in one swoop. */
          407 
          408   CHECK_BIT_BUFFER(*state, l, return -1);
          409   code = GET_BITS(l);
          410 
          411   /* Collect the rest of the Huffman code one bit at a time. */
          412   /* This is per Figure F.16 in the JPEG spec. */
          413 
          414   while (code > htbl->maxcode[l]) {
          415     code <<= 1;
          416     CHECK_BIT_BUFFER(*state, 1, return -1);
          417     code |= GET_BITS(1);
          418     l++;
          419   }
          420 
          421   /* Unload the local registers */
          422   state->get_buffer = get_buffer;
          423   state->bits_left = bits_left;
          424 
          425   /* With garbage input we may reach the sentinel value l = 17. */
          426 
          427   if (l > 16) {
          428     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
          429     return 0;                        /* fake a zero as the safest result */
          430   }
          431 
          432   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
          433 }
          434 
          435 
          436 /*
          437  * Figure F.12: extend sign bit.
          438  * On some machines, a shift and add will be faster than a table lookup.
          439  */
          440 
          441 #ifdef AVOID_TABLES
          442 
          443 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
          444 
          445 #else
          446 
          447 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
          448 
          449 static const int extend_test[16] =   /* entry n is 2**(n-1) */
          450   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
          451     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
          452 
          453 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
          454   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
          455     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
          456     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
          457     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
          458 
          459 #endif /* AVOID_TABLES */
          460 
          461 
          462 /*
          463  * Check for a restart marker & resynchronize decoder.
          464  * Returns FALSE if must suspend.
          465  */
          466 
          467 LOCAL(boolean)
          468 process_restart (j_decompress_ptr cinfo)
          469 {
          470   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
          471   int ci;
          472 
          473   /* Throw away any unused bits remaining in bit buffer; */
          474   /* include any full bytes in next_marker's count of discarded bytes */
          475   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
          476   entropy->bitstate.bits_left = 0;
          477 
          478   /* Advance past the RSTn marker */
          479   if (! (*cinfo->marker->read_restart_marker) (cinfo))
          480     return FALSE;
          481 
          482   /* Re-initialize DC predictions to 0 */
          483   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
          484     entropy->saved.last_dc_val[ci] = 0;
          485 
          486   /* Reset restart counter */
          487   entropy->restarts_to_go = cinfo->restart_interval;
          488 
          489   /* Reset out-of-data flag, unless read_restart_marker left us smack up
          490    * against a marker.  In that case we will end up treating the next data
          491    * segment as empty, and we can avoid producing bogus output pixels by
          492    * leaving the flag set.
          493    */
          494   if (cinfo->unread_marker == 0)
          495     entropy->pub.insufficient_data = FALSE;
          496 
          497   return TRUE;
          498 }
          499 
          500 
          501 /*
          502  * Decode and return one MCU's worth of Huffman-compressed coefficients.
          503  * The coefficients are reordered from zigzag order into natural array order,
          504  * but are not dequantized.
          505  *
          506  * The i'th block of the MCU is stored into the block pointed to by
          507  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
          508  * (Wholesale zeroing is usually a little faster than retail...)
          509  *
          510  * Returns FALSE if data source requested suspension.  In that case no
          511  * changes have been made to permanent state.  (Exception: some output
          512  * coefficients may already have been assigned.  This is harmless for
          513  * this module, since we'll just re-assign them on the next call.)
          514  */
          515 
          516 METHODDEF(boolean)
          517 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
          518 {
          519   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
          520   int blkn;
          521   BITREAD_STATE_VARS;
          522   savable_state state;
          523 
          524   /* Process restart marker if needed; may have to suspend */
          525   if (cinfo->restart_interval) {
          526     if (entropy->restarts_to_go == 0)
          527       if (! process_restart(cinfo))
          528         return FALSE;
          529   }
          530 
          531   /* If we've run out of data, just leave the MCU set to zeroes.
          532    * This way, we return uniform gray for the remainder of the segment.
          533    */
          534   if (! entropy->pub.insufficient_data) {
          535 
          536     /* Load up working state */
          537     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
          538     ASSIGN_STATE(state, entropy->saved);
          539 
          540     /* Outer loop handles each block in the MCU */
          541 
          542     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
          543       JBLOCKROW block = MCU_data[blkn];
          544       d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
          545       d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
          546       register int s, k, r;
          547 
          548       /* Decode a single block's worth of coefficients */
          549 
          550       /* Section F.2.2.1: decode the DC coefficient difference */
          551       HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
          552       if (s) {
          553         CHECK_BIT_BUFFER(br_state, s, return FALSE);
          554         r = GET_BITS(s);
          555         s = HUFF_EXTEND(r, s);
          556       }
          557 
          558       if (entropy->dc_needed[blkn]) {
          559         /* Convert DC difference to actual value, update last_dc_val */
          560         int ci = cinfo->MCU_membership[blkn];
          561         s += state.last_dc_val[ci];
          562         state.last_dc_val[ci] = s;
          563         /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
          564         (*block)[0] = (JCOEF) s;
          565       }
          566 
          567       if (entropy->ac_needed[blkn]) {
          568 
          569         /* Section F.2.2.2: decode the AC coefficients */
          570         /* Since zeroes are skipped, output area must be cleared beforehand */
          571         for (k = 1; k < DCTSIZE2; k++) {
          572           HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
          573       
          574           r = s >> 4;
          575           s &= 15;
          576       
          577           if (s) {
          578             k += r;
          579             CHECK_BIT_BUFFER(br_state, s, return FALSE);
          580             r = GET_BITS(s);
          581             s = HUFF_EXTEND(r, s);
          582             /* Output coefficient in natural (dezigzagged) order.
          583              * Note: the extra entries in jpeg_natural_order[] will save us
          584              * if k >= DCTSIZE2, which could happen if the data is corrupted.
          585              */
          586             (*block)[jpeg_natural_order[k]] = (JCOEF) s;
          587           } else {
          588             if (r != 15)
          589               break;
          590             k += 15;
          591           }
          592         }
          593 
          594       } else {
          595 
          596         /* Section F.2.2.2: decode the AC coefficients */
          597         /* In this path we just discard the values */
          598         for (k = 1; k < DCTSIZE2; k++) {
          599           HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
          600       
          601           r = s >> 4;
          602           s &= 15;
          603       
          604           if (s) {
          605             k += r;
          606             CHECK_BIT_BUFFER(br_state, s, return FALSE);
          607             DROP_BITS(s);
          608           } else {
          609             if (r != 15)
          610               break;
          611             k += 15;
          612           }
          613         }
          614 
          615       }
          616     }
          617 
          618     /* Completed MCU, so update state */
          619     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
          620     ASSIGN_STATE(entropy->saved, state);
          621   }
          622 
          623   /* Account for restart interval (no-op if not using restarts) */
          624   entropy->restarts_to_go--;
          625 
          626   return TRUE;
          627 }
          628 
          629 
          630 /*
          631  * Module initialization routine for Huffman entropy decoding.
          632  */
          633 
          634 GLOBAL(void)
          635 jinit_huff_decoder (j_decompress_ptr cinfo)
          636 {
          637   huff_entropy_ptr entropy;
          638   int i;
          639 
          640   entropy = (huff_entropy_ptr)
          641     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
          642                                 SIZEOF(huff_entropy_decoder));
          643   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
          644   entropy->pub.start_pass = start_pass_huff_decoder;
          645   entropy->pub.decode_mcu = decode_mcu;
          646 
          647   /* Mark tables unallocated */
          648   for (i = 0; i < NUM_HUFF_TBLS; i++) {
          649     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
          650   }
          651 }