jdcoefct.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       jdcoefct.c (25155B)
       ---
            1 /*
            2  * jdcoefct.c
            3  *
            4  * Copyright (C) 1994-1997, Thomas G. Lane.
            5  * This file is part of the Independent JPEG Group's software.
            6  * For conditions of distribution and use, see the accompanying README file.
            7  *
            8  * This file contains the coefficient buffer controller for decompression.
            9  * This controller is the top level of the JPEG decompressor proper.
           10  * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
           11  *
           12  * In buffered-image mode, this controller is the interface between
           13  * input-oriented processing and output-oriented processing.
           14  * Also, the input side (only) is used when reading a file for transcoding.
           15  */
           16 
           17 #define JPEG_INTERNALS
           18 #include "jinclude.h"
           19 #include "jpeglib.h"
           20 
           21 /* Block smoothing is only applicable for progressive JPEG, so: */
           22 #ifndef D_PROGRESSIVE_SUPPORTED
           23 #undef BLOCK_SMOOTHING_SUPPORTED
           24 #endif
           25 
           26 /* Private buffer controller object */
           27 
           28 typedef struct {
           29   struct jpeg_d_coef_controller pub; /* public fields */
           30 
           31   /* These variables keep track of the current location of the input side. */
           32   /* cinfo->input_iMCU_row is also used for this. */
           33   JDIMENSION MCU_ctr;                /* counts MCUs processed in current row */
           34   int MCU_vert_offset;                /* counts MCU rows within iMCU row */
           35   int MCU_rows_per_iMCU_row;        /* number of such rows needed */
           36 
           37   /* The output side's location is represented by cinfo->output_iMCU_row. */
           38 
           39   /* In single-pass modes, it's sufficient to buffer just one MCU.
           40    * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
           41    * and let the entropy decoder write into that workspace each time.
           42    * (On 80x86, the workspace is FAR even though it's not really very big;
           43    * this is to keep the module interfaces unchanged when a large coefficient
           44    * buffer is necessary.)
           45    * In multi-pass modes, this array points to the current MCU's blocks
           46    * within the virtual arrays; it is used only by the input side.
           47    */
           48   JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
           49 
           50 #ifdef D_MULTISCAN_FILES_SUPPORTED
           51   /* In multi-pass modes, we need a virtual block array for each component. */
           52   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
           53 #endif
           54 
           55 #ifdef BLOCK_SMOOTHING_SUPPORTED
           56   /* When doing block smoothing, we latch coefficient Al values here */
           57   int * coef_bits_latch;
           58 #define SAVED_COEFS  6                /* we save coef_bits[0..5] */
           59 #endif
           60 } my_coef_controller;
           61 
           62 typedef my_coef_controller * my_coef_ptr;
           63 
           64 /* Forward declarations */
           65 METHODDEF(int) decompress_onepass
           66         JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
           67 #ifdef D_MULTISCAN_FILES_SUPPORTED
           68 METHODDEF(int) decompress_data
           69         JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
           70 #endif
           71 #ifdef BLOCK_SMOOTHING_SUPPORTED
           72 LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
           73 METHODDEF(int) decompress_smooth_data
           74         JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
           75 #endif
           76 
           77 
           78 LOCAL(void)
           79 start_iMCU_row (j_decompress_ptr cinfo)
           80 /* Reset within-iMCU-row counters for a new row (input side) */
           81 {
           82   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
           83 
           84   /* In an interleaved scan, an MCU row is the same as an iMCU row.
           85    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
           86    * But at the bottom of the image, process only what's left.
           87    */
           88   if (cinfo->comps_in_scan > 1) {
           89     coef->MCU_rows_per_iMCU_row = 1;
           90   } else {
           91     if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
           92       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
           93     else
           94       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
           95   }
           96 
           97   coef->MCU_ctr = 0;
           98   coef->MCU_vert_offset = 0;
           99 }
          100 
          101 
          102 /*
          103  * Initialize for an input processing pass.
          104  */
          105 
          106 METHODDEF(void)
          107 start_input_pass (j_decompress_ptr cinfo)
          108 {
          109   cinfo->input_iMCU_row = 0;
          110   start_iMCU_row(cinfo);
          111 }
          112 
          113 
          114 /*
          115  * Initialize for an output processing pass.
          116  */
          117 
          118 METHODDEF(void)
          119 start_output_pass (j_decompress_ptr cinfo)
          120 {
          121 #ifdef BLOCK_SMOOTHING_SUPPORTED
          122   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
          123 
          124   /* If multipass, check to see whether to use block smoothing on this pass */
          125   if (coef->pub.coef_arrays != NULL) {
          126     if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
          127       coef->pub.decompress_data = decompress_smooth_data;
          128     else
          129       coef->pub.decompress_data = decompress_data;
          130   }
          131 #endif
          132   cinfo->output_iMCU_row = 0;
          133 }
          134 
          135 
          136 /*
          137  * Decompress and return some data in the single-pass case.
          138  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
          139  * Input and output must run in lockstep since we have only a one-MCU buffer.
          140  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
          141  *
          142  * NB: output_buf contains a plane for each component in image,
          143  * which we index according to the component's SOF position.
          144  */
          145 
          146 METHODDEF(int)
          147 decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
          148 {
          149   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
          150   JDIMENSION MCU_col_num;        /* index of current MCU within row */
          151   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
          152   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
          153   int blkn, ci, xindex, yindex, yoffset, useful_width;
          154   JSAMPARRAY output_ptr;
          155   JDIMENSION start_col, output_col;
          156   jpeg_component_info *compptr;
          157   inverse_DCT_method_ptr inverse_DCT;
          158 
          159   /* Loop to process as much as one whole iMCU row */
          160   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
          161        yoffset++) {
          162     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
          163          MCU_col_num++) {
          164       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
          165       jzero_far((void FAR *) coef->MCU_buffer[0],
          166                 (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
          167       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
          168         /* Suspension forced; update state counters and exit */
          169         coef->MCU_vert_offset = yoffset;
          170         coef->MCU_ctr = MCU_col_num;
          171         return JPEG_SUSPENDED;
          172       }
          173       /* Determine where data should go in output_buf and do the IDCT thing.
          174        * We skip dummy blocks at the right and bottom edges (but blkn gets
          175        * incremented past them!).  Note the inner loop relies on having
          176        * allocated the MCU_buffer[] blocks sequentially.
          177        */
          178       blkn = 0;                        /* index of current DCT block within MCU */
          179       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
          180         compptr = cinfo->cur_comp_info[ci];
          181         /* Don't bother to IDCT an uninteresting component. */
          182         if (! compptr->component_needed) {
          183           blkn += compptr->MCU_blocks;
          184           continue;
          185         }
          186         inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
          187         useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
          188                                                     : compptr->last_col_width;
          189         output_ptr = output_buf[compptr->component_index] +
          190           yoffset * compptr->DCT_scaled_size;
          191         start_col = MCU_col_num * compptr->MCU_sample_width;
          192         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
          193           if (cinfo->input_iMCU_row < last_iMCU_row ||
          194               yoffset+yindex < compptr->last_row_height) {
          195             output_col = start_col;
          196             for (xindex = 0; xindex < useful_width; xindex++) {
          197               (*inverse_DCT) (cinfo, compptr,
          198                               (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
          199                               output_ptr, output_col);
          200               output_col += compptr->DCT_scaled_size;
          201             }
          202           }
          203           blkn += compptr->MCU_width;
          204           output_ptr += compptr->DCT_scaled_size;
          205         }
          206       }
          207     }
          208     /* Completed an MCU row, but perhaps not an iMCU row */
          209     coef->MCU_ctr = 0;
          210   }
          211   /* Completed the iMCU row, advance counters for next one */
          212   cinfo->output_iMCU_row++;
          213   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
          214     start_iMCU_row(cinfo);
          215     return JPEG_ROW_COMPLETED;
          216   }
          217   /* Completed the scan */
          218   (*cinfo->inputctl->finish_input_pass) (cinfo);
          219   return JPEG_SCAN_COMPLETED;
          220 }
          221 
          222 
          223 /*
          224  * Dummy consume-input routine for single-pass operation.
          225  */
          226 
          227 METHODDEF(int)
          228 dummy_consume_data (j_decompress_ptr cinfo)
          229 {
          230   return JPEG_SUSPENDED;        /* Always indicate nothing was done */
          231 }
          232 
          233 
          234 #ifdef D_MULTISCAN_FILES_SUPPORTED
          235 
          236 /*
          237  * Consume input data and store it in the full-image coefficient buffer.
          238  * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
          239  * ie, v_samp_factor block rows for each component in the scan.
          240  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
          241  */
          242 
          243 METHODDEF(int)
          244 consume_data (j_decompress_ptr cinfo)
          245 {
          246   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
          247   JDIMENSION MCU_col_num;        /* index of current MCU within row */
          248   int blkn, ci, xindex, yindex, yoffset;
          249   JDIMENSION start_col;
          250   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
          251   JBLOCKROW buffer_ptr;
          252   jpeg_component_info *compptr;
          253 
          254   /* Align the virtual buffers for the components used in this scan. */
          255   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
          256     compptr = cinfo->cur_comp_info[ci];
          257     buffer[ci] = (*cinfo->mem->access_virt_barray)
          258       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
          259        cinfo->input_iMCU_row * compptr->v_samp_factor,
          260        (JDIMENSION) compptr->v_samp_factor, TRUE);
          261     /* Note: entropy decoder expects buffer to be zeroed,
          262      * but this is handled automatically by the memory manager
          263      * because we requested a pre-zeroed array.
          264      */
          265   }
          266 
          267   /* Loop to process one whole iMCU row */
          268   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
          269        yoffset++) {
          270     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
          271          MCU_col_num++) {
          272       /* Construct list of pointers to DCT blocks belonging to this MCU */
          273       blkn = 0;                        /* index of current DCT block within MCU */
          274       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
          275         compptr = cinfo->cur_comp_info[ci];
          276         start_col = MCU_col_num * compptr->MCU_width;
          277         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
          278           buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
          279           for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
          280             coef->MCU_buffer[blkn++] = buffer_ptr++;
          281           }
          282         }
          283       }
          284       /* Try to fetch the MCU. */
          285       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
          286         /* Suspension forced; update state counters and exit */
          287         coef->MCU_vert_offset = yoffset;
          288         coef->MCU_ctr = MCU_col_num;
          289         return JPEG_SUSPENDED;
          290       }
          291     }
          292     /* Completed an MCU row, but perhaps not an iMCU row */
          293     coef->MCU_ctr = 0;
          294   }
          295   /* Completed the iMCU row, advance counters for next one */
          296   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
          297     start_iMCU_row(cinfo);
          298     return JPEG_ROW_COMPLETED;
          299   }
          300   /* Completed the scan */
          301   (*cinfo->inputctl->finish_input_pass) (cinfo);
          302   return JPEG_SCAN_COMPLETED;
          303 }
          304 
          305 
          306 /*
          307  * Decompress and return some data in the multi-pass case.
          308  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
          309  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
          310  *
          311  * NB: output_buf contains a plane for each component in image.
          312  */
          313 
          314 METHODDEF(int)
          315 decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
          316 {
          317   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
          318   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
          319   JDIMENSION block_num;
          320   int ci, block_row, block_rows;
          321   JBLOCKARRAY buffer;
          322   JBLOCKROW buffer_ptr;
          323   JSAMPARRAY output_ptr;
          324   JDIMENSION output_col;
          325   jpeg_component_info *compptr;
          326   inverse_DCT_method_ptr inverse_DCT;
          327 
          328   /* Force some input to be done if we are getting ahead of the input. */
          329   while (cinfo->input_scan_number < cinfo->output_scan_number ||
          330          (cinfo->input_scan_number == cinfo->output_scan_number &&
          331           cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
          332     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
          333       return JPEG_SUSPENDED;
          334   }
          335 
          336   /* OK, output from the virtual arrays. */
          337   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
          338        ci++, compptr++) {
          339     /* Don't bother to IDCT an uninteresting component. */
          340     if (! compptr->component_needed)
          341       continue;
          342     /* Align the virtual buffer for this component. */
          343     buffer = (*cinfo->mem->access_virt_barray)
          344       ((j_common_ptr) cinfo, coef->whole_image[ci],
          345        cinfo->output_iMCU_row * compptr->v_samp_factor,
          346        (JDIMENSION) compptr->v_samp_factor, FALSE);
          347     /* Count non-dummy DCT block rows in this iMCU row. */
          348     if (cinfo->output_iMCU_row < last_iMCU_row)
          349       block_rows = compptr->v_samp_factor;
          350     else {
          351       /* NB: can't use last_row_height here; it is input-side-dependent! */
          352       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
          353       if (block_rows == 0) block_rows = compptr->v_samp_factor;
          354     }
          355     inverse_DCT = cinfo->idct->inverse_DCT[ci];
          356     output_ptr = output_buf[ci];
          357     /* Loop over all DCT blocks to be processed. */
          358     for (block_row = 0; block_row < block_rows; block_row++) {
          359       buffer_ptr = buffer[block_row];
          360       output_col = 0;
          361       for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
          362         (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
          363                         output_ptr, output_col);
          364         buffer_ptr++;
          365         output_col += compptr->DCT_scaled_size;
          366       }
          367       output_ptr += compptr->DCT_scaled_size;
          368     }
          369   }
          370 
          371   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
          372     return JPEG_ROW_COMPLETED;
          373   return JPEG_SCAN_COMPLETED;
          374 }
          375 
          376 #endif /* D_MULTISCAN_FILES_SUPPORTED */
          377 
          378 
          379 #ifdef BLOCK_SMOOTHING_SUPPORTED
          380 
          381 /*
          382  * This code applies interblock smoothing as described by section K.8
          383  * of the JPEG standard: the first 5 AC coefficients are estimated from
          384  * the DC values of a DCT block and its 8 neighboring blocks.
          385  * We apply smoothing only for progressive JPEG decoding, and only if
          386  * the coefficients it can estimate are not yet known to full precision.
          387  */
          388 
          389 /* Natural-order array positions of the first 5 zigzag-order coefficients */
          390 #define Q01_POS  1
          391 #define Q10_POS  8
          392 #define Q20_POS  16
          393 #define Q11_POS  9
          394 #define Q02_POS  2
          395 
          396 /*
          397  * Determine whether block smoothing is applicable and safe.
          398  * We also latch the current states of the coef_bits[] entries for the
          399  * AC coefficients; otherwise, if the input side of the decompressor
          400  * advances into a new scan, we might think the coefficients are known
          401  * more accurately than they really are.
          402  */
          403 
          404 LOCAL(boolean)
          405 smoothing_ok (j_decompress_ptr cinfo)
          406 {
          407   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
          408   boolean smoothing_useful = FALSE;
          409   int ci, coefi;
          410   jpeg_component_info *compptr;
          411   JQUANT_TBL * qtable;
          412   int * coef_bits;
          413   int * coef_bits_latch;
          414 
          415   if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
          416     return FALSE;
          417 
          418   /* Allocate latch area if not already done */
          419   if (coef->coef_bits_latch == NULL)
          420     coef->coef_bits_latch = (int *)
          421       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
          422                                   cinfo->num_components *
          423                                   (SAVED_COEFS * SIZEOF(int)));
          424   coef_bits_latch = coef->coef_bits_latch;
          425 
          426   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
          427        ci++, compptr++) {
          428     /* All components' quantization values must already be latched. */
          429     if ((qtable = compptr->quant_table) == NULL)
          430       return FALSE;
          431     /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
          432     if (qtable->quantval[0] == 0 ||
          433         qtable->quantval[Q01_POS] == 0 ||
          434         qtable->quantval[Q10_POS] == 0 ||
          435         qtable->quantval[Q20_POS] == 0 ||
          436         qtable->quantval[Q11_POS] == 0 ||
          437         qtable->quantval[Q02_POS] == 0)
          438       return FALSE;
          439     /* DC values must be at least partly known for all components. */
          440     coef_bits = cinfo->coef_bits[ci];
          441     if (coef_bits[0] < 0)
          442       return FALSE;
          443     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
          444     for (coefi = 1; coefi <= 5; coefi++) {
          445       coef_bits_latch[coefi] = coef_bits[coefi];
          446       if (coef_bits[coefi] != 0)
          447         smoothing_useful = TRUE;
          448     }
          449     coef_bits_latch += SAVED_COEFS;
          450   }
          451 
          452   return smoothing_useful;
          453 }
          454 
          455 
          456 /*
          457  * Variant of decompress_data for use when doing block smoothing.
          458  */
          459 
          460 METHODDEF(int)
          461 decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
          462 {
          463   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
          464   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
          465   JDIMENSION block_num, last_block_column;
          466   int ci, block_row, block_rows, access_rows;
          467   JBLOCKARRAY buffer;
          468   JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
          469   JSAMPARRAY output_ptr;
          470   JDIMENSION output_col;
          471   jpeg_component_info *compptr;
          472   inverse_DCT_method_ptr inverse_DCT;
          473   boolean first_row, last_row;
          474   JBLOCK workspace;
          475   int *coef_bits;
          476   JQUANT_TBL *quanttbl;
          477   INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
          478   int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
          479   int Al, pred;
          480 
          481   /* Force some input to be done if we are getting ahead of the input. */
          482   while (cinfo->input_scan_number <= cinfo->output_scan_number &&
          483          ! cinfo->inputctl->eoi_reached) {
          484     if (cinfo->input_scan_number == cinfo->output_scan_number) {
          485       /* If input is working on current scan, we ordinarily want it to
          486        * have completed the current row.  But if input scan is DC,
          487        * we want it to keep one row ahead so that next block row's DC
          488        * values are up to date.
          489        */
          490       JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
          491       if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
          492         break;
          493     }
          494     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
          495       return JPEG_SUSPENDED;
          496   }
          497 
          498   /* OK, output from the virtual arrays. */
          499   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
          500        ci++, compptr++) {
          501     /* Don't bother to IDCT an uninteresting component. */
          502     if (! compptr->component_needed)
          503       continue;
          504     /* Count non-dummy DCT block rows in this iMCU row. */
          505     if (cinfo->output_iMCU_row < last_iMCU_row) {
          506       block_rows = compptr->v_samp_factor;
          507       access_rows = block_rows * 2; /* this and next iMCU row */
          508       last_row = FALSE;
          509     } else {
          510       /* NB: can't use last_row_height here; it is input-side-dependent! */
          511       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
          512       if (block_rows == 0) block_rows = compptr->v_samp_factor;
          513       access_rows = block_rows; /* this iMCU row only */
          514       last_row = TRUE;
          515     }
          516     /* Align the virtual buffer for this component. */
          517     if (cinfo->output_iMCU_row > 0) {
          518       access_rows += compptr->v_samp_factor; /* prior iMCU row too */
          519       buffer = (*cinfo->mem->access_virt_barray)
          520         ((j_common_ptr) cinfo, coef->whole_image[ci],
          521          (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
          522          (JDIMENSION) access_rows, FALSE);
          523       buffer += compptr->v_samp_factor;        /* point to current iMCU row */
          524       first_row = FALSE;
          525     } else {
          526       buffer = (*cinfo->mem->access_virt_barray)
          527         ((j_common_ptr) cinfo, coef->whole_image[ci],
          528          (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
          529       first_row = TRUE;
          530     }
          531     /* Fetch component-dependent info */
          532     coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
          533     quanttbl = compptr->quant_table;
          534     Q00 = quanttbl->quantval[0];
          535     Q01 = quanttbl->quantval[Q01_POS];
          536     Q10 = quanttbl->quantval[Q10_POS];
          537     Q20 = quanttbl->quantval[Q20_POS];
          538     Q11 = quanttbl->quantval[Q11_POS];
          539     Q02 = quanttbl->quantval[Q02_POS];
          540     inverse_DCT = cinfo->idct->inverse_DCT[ci];
          541     output_ptr = output_buf[ci];
          542     /* Loop over all DCT blocks to be processed. */
          543     for (block_row = 0; block_row < block_rows; block_row++) {
          544       buffer_ptr = buffer[block_row];
          545       if (first_row && block_row == 0)
          546         prev_block_row = buffer_ptr;
          547       else
          548         prev_block_row = buffer[block_row-1];
          549       if (last_row && block_row == block_rows-1)
          550         next_block_row = buffer_ptr;
          551       else
          552         next_block_row = buffer[block_row+1];
          553       /* We fetch the surrounding DC values using a sliding-register approach.
          554        * Initialize all nine here so as to do the right thing on narrow pics.
          555        */
          556       DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
          557       DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
          558       DC7 = DC8 = DC9 = (int) next_block_row[0][0];
          559       output_col = 0;
          560       last_block_column = compptr->width_in_blocks - 1;
          561       for (block_num = 0; block_num <= last_block_column; block_num++) {
          562         /* Fetch current DCT block into workspace so we can modify it. */
          563         jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
          564         /* Update DC values */
          565         if (block_num < last_block_column) {
          566           DC3 = (int) prev_block_row[1][0];
          567           DC6 = (int) buffer_ptr[1][0];
          568           DC9 = (int) next_block_row[1][0];
          569         }
          570         /* Compute coefficient estimates per K.8.
          571          * An estimate is applied only if coefficient is still zero,
          572          * and is not known to be fully accurate.
          573          */
          574         /* AC01 */
          575         if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
          576           num = 36 * Q00 * (DC4 - DC6);
          577           if (num >= 0) {
          578             pred = (int) (((Q01<<7) + num) / (Q01<<8));
          579             if (Al > 0 && pred >= (1<<Al))
          580               pred = (1<<Al)-1;
          581           } else {
          582             pred = (int) (((Q01<<7) - num) / (Q01<<8));
          583             if (Al > 0 && pred >= (1<<Al))
          584               pred = (1<<Al)-1;
          585             pred = -pred;
          586           }
          587           workspace[1] = (JCOEF) pred;
          588         }
          589         /* AC10 */
          590         if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
          591           num = 36 * Q00 * (DC2 - DC8);
          592           if (num >= 0) {
          593             pred = (int) (((Q10<<7) + num) / (Q10<<8));
          594             if (Al > 0 && pred >= (1<<Al))
          595               pred = (1<<Al)-1;
          596           } else {
          597             pred = (int) (((Q10<<7) - num) / (Q10<<8));
          598             if (Al > 0 && pred >= (1<<Al))
          599               pred = (1<<Al)-1;
          600             pred = -pred;
          601           }
          602           workspace[8] = (JCOEF) pred;
          603         }
          604         /* AC20 */
          605         if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
          606           num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
          607           if (num >= 0) {
          608             pred = (int) (((Q20<<7) + num) / (Q20<<8));
          609             if (Al > 0 && pred >= (1<<Al))
          610               pred = (1<<Al)-1;
          611           } else {
          612             pred = (int) (((Q20<<7) - num) / (Q20<<8));
          613             if (Al > 0 && pred >= (1<<Al))
          614               pred = (1<<Al)-1;
          615             pred = -pred;
          616           }
          617           workspace[16] = (JCOEF) pred;
          618         }
          619         /* AC11 */
          620         if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
          621           num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
          622           if (num >= 0) {
          623             pred = (int) (((Q11<<7) + num) / (Q11<<8));
          624             if (Al > 0 && pred >= (1<<Al))
          625               pred = (1<<Al)-1;
          626           } else {
          627             pred = (int) (((Q11<<7) - num) / (Q11<<8));
          628             if (Al > 0 && pred >= (1<<Al))
          629               pred = (1<<Al)-1;
          630             pred = -pred;
          631           }
          632           workspace[9] = (JCOEF) pred;
          633         }
          634         /* AC02 */
          635         if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
          636           num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
          637           if (num >= 0) {
          638             pred = (int) (((Q02<<7) + num) / (Q02<<8));
          639             if (Al > 0 && pred >= (1<<Al))
          640               pred = (1<<Al)-1;
          641           } else {
          642             pred = (int) (((Q02<<7) - num) / (Q02<<8));
          643             if (Al > 0 && pred >= (1<<Al))
          644               pred = (1<<Al)-1;
          645             pred = -pred;
          646           }
          647           workspace[2] = (JCOEF) pred;
          648         }
          649         /* OK, do the IDCT */
          650         (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
          651                         output_ptr, output_col);
          652         /* Advance for next column */
          653         DC1 = DC2; DC2 = DC3;
          654         DC4 = DC5; DC5 = DC6;
          655         DC7 = DC8; DC8 = DC9;
          656         buffer_ptr++, prev_block_row++, next_block_row++;
          657         output_col += compptr->DCT_scaled_size;
          658       }
          659       output_ptr += compptr->DCT_scaled_size;
          660     }
          661   }
          662 
          663   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
          664     return JPEG_ROW_COMPLETED;
          665   return JPEG_SCAN_COMPLETED;
          666 }
          667 
          668 #endif /* BLOCK_SMOOTHING_SUPPORTED */
          669 
          670 
          671 /*
          672  * Initialize coefficient buffer controller.
          673  */
          674 
          675 GLOBAL(void)
          676 jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
          677 {
          678   my_coef_ptr coef;
          679 
          680   coef = (my_coef_ptr)
          681     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
          682                                 SIZEOF(my_coef_controller));
          683   cinfo->coef = (struct jpeg_d_coef_controller *) coef;
          684   coef->pub.start_input_pass = start_input_pass;
          685   coef->pub.start_output_pass = start_output_pass;
          686 #ifdef BLOCK_SMOOTHING_SUPPORTED
          687   coef->coef_bits_latch = NULL;
          688 #endif
          689 
          690   /* Create the coefficient buffer. */
          691   if (need_full_buffer) {
          692 #ifdef D_MULTISCAN_FILES_SUPPORTED
          693     /* Allocate a full-image virtual array for each component, */
          694     /* padded to a multiple of samp_factor DCT blocks in each direction. */
          695     /* Note we ask for a pre-zeroed array. */
          696     int ci, access_rows;
          697     jpeg_component_info *compptr;
          698 
          699     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
          700          ci++, compptr++) {
          701       access_rows = compptr->v_samp_factor;
          702 #ifdef BLOCK_SMOOTHING_SUPPORTED
          703       /* If block smoothing could be used, need a bigger window */
          704       if (cinfo->progressive_mode)
          705         access_rows *= 3;
          706 #endif
          707       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
          708         ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
          709          (JDIMENSION) jround_up((long) compptr->width_in_blocks,
          710                                 (long) compptr->h_samp_factor),
          711          (JDIMENSION) jround_up((long) compptr->height_in_blocks,
          712                                 (long) compptr->v_samp_factor),
          713          (JDIMENSION) access_rows);
          714     }
          715     coef->pub.consume_data = consume_data;
          716     coef->pub.decompress_data = decompress_data;
          717     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
          718 #else
          719     ERREXIT(cinfo, JERR_NOT_COMPILED);
          720 #endif
          721   } else {
          722     /* We only need a single-MCU buffer. */
          723     JBLOCKROW buffer;
          724     int i;
          725 
          726     buffer = (JBLOCKROW)
          727       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
          728                                   D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
          729     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
          730       coef->MCU_buffer[i] = buffer + i;
          731     }
          732     coef->pub.consume_data = dummy_consume_data;
          733     coef->pub.decompress_data = decompress_onepass;
          734     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
          735   }
          736 }