s_log1p.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       s_log1p.c (5264B)
       ---
            1 /* @(#)s_log1p.c 5.1 93/09/24 */
            2 /*
            3  * ====================================================
            4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
            5  *
            6  * Developed at SunPro, a Sun Microsystems, Inc. business.
            7  * Permission to use, copy, modify, and distribute this
            8  * software is freely granted, provided that this notice
            9  * is preserved.
           10  * ====================================================
           11  */
           12 
           13 #ifndef lint
           14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_log1p.c,v 1.7 2002/05/28 18:15:04 alfred Exp $";
           15 #endif
           16 
           17 /* double log1p(double x)
           18  *
           19  * Method :
           20  *   1. Argument Reduction: find k and f such that
           21  *                        1+x = 2^k * (1+f),
           22  *           where  sqrt(2)/2 < 1+f < sqrt(2) .
           23  *
           24  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
           25  *        may not be representable exactly. In that case, a correction
           26  *        term is need. Let u=1+x rounded. Let c = (1+x)-u, then
           27  *        log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
           28  *        and add back the correction term c/u.
           29  *        (Note: when x > 2**53, one can simply return log(x))
           30  *
           31  *   2. Approximation of log1p(f).
           32  *        Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
           33  *                 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
           34  *                      = 2s + s*R
           35  *      We use a special Reme algorithm on [0,0.1716] to generate
           36  *         a polynomial of degree 14 to approximate R The maximum error
           37  *        of this polynomial approximation is bounded by 2**-58.45. In
           38  *        other words,
           39  *                        2      4      6      8      10      12      14
           40  *            R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
           41  *          (the values of Lp1 to Lp7 are listed in the program)
           42  *        and
           43  *            |      2          14          |     -58.45
           44  *            | Lp1*s +...+Lp7*s    -  R(z) | <= 2
           45  *            |                             |
           46  *        Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
           47  *        In order to guarantee error in log below 1ulp, we compute log
           48  *        by
           49  *                log1p(f) = f - (hfsq - s*(hfsq+R)).
           50  *
           51  *        3. Finally, log1p(x) = k*ln2 + log1p(f).
           52  *                              = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
           53  *           Here ln2 is split into two floating point number:
           54  *                        ln2_hi + ln2_lo,
           55  *           where n*ln2_hi is always exact for |n| < 2000.
           56  *
           57  * Special cases:
           58  *        log1p(x) is NaN with signal if x < -1 (including -INF) ;
           59  *        log1p(+INF) is +INF; log1p(-1) is -INF with signal;
           60  *        log1p(NaN) is that NaN with no signal.
           61  *
           62  * Accuracy:
           63  *        according to an error analysis, the error is always less than
           64  *        1 ulp (unit in the last place).
           65  *
           66  * Constants:
           67  * The hexadecimal values are the intended ones for the following
           68  * constants. The decimal values may be used, provided that the
           69  * compiler will convert from decimal to binary accurately enough
           70  * to produce the hexadecimal values shown.
           71  *
           72  * Note: Assuming log() return accurate answer, the following
           73  *          algorithm can be used to compute log1p(x) to within a few ULP:
           74  *
           75  *                u = 1+x;
           76  *                if(u==1.0) return x ; else
           77  *                           return log(u)*(x/(u-1.0));
           78  *
           79  *         See HP-15C Advanced Functions Handbook, p.193.
           80  */
           81 
           82 #include "math.h"
           83 #include "math_private.h"
           84 
           85 static const double
           86 ln2_hi  =  6.93147180369123816490e-01,        /* 3fe62e42 fee00000 */
           87 ln2_lo  =  1.90821492927058770002e-10,        /* 3dea39ef 35793c76 */
           88 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
           89 Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
           90 Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
           91 Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
           92 Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
           93 Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
           94 Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
           95 Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
           96 
           97 static const double zero = 0.0;
           98 
           99 double
          100 log1p(double x)
          101 {
          102         double hfsq,f,c,s,z,R,u;
          103         int32_t k,hx,hu,ax;
          104 
          105         GET_HIGH_WORD(hx,x);
          106         ax = hx&0x7fffffff;
          107 
          108         k = 1;
          109         if (hx < 0x3FDA827A) {                        /* x < 0.41422  */
          110             if(ax>=0x3ff00000) {                /* x <= -1.0 */
          111                 if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
          112                 else return (x-x)/(x-x);        /* log1p(x<-1)=NaN */
          113             }
          114             if(ax<0x3e200000) {                        /* |x| < 2**-29 */
          115                 if(two54+x>zero                        /* raise inexact */
          116                     &&ax<0x3c900000)                 /* |x| < 2**-54 */
          117                     return x;
          118                 else
          119                     return x - x*x*0.5;
          120             }
          121             if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
          122                 k=0;f=x;hu=1;}        /* -0.2929<x<0.41422 */
          123         }
          124         if (hx >= 0x7ff00000) return x+x;
          125         if(k!=0) {
          126             if(hx<0x43400000) {
          127                 u  = 1.0+x;
          128                 GET_HIGH_WORD(hu,u);
          129                 k  = (hu>>20)-1023;
          130                 c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
          131                 c /= u;
          132             } else {
          133                 u  = x;
          134                 GET_HIGH_WORD(hu,u);
          135                 k  = (hu>>20)-1023;
          136                 c  = 0;
          137             }
          138             hu &= 0x000fffff;
          139             if(hu<0x6a09e) {
          140                 SET_HIGH_WORD(u,hu|0x3ff00000);        /* normalize u */
          141             } else {
          142                 k += 1;
          143                 SET_HIGH_WORD(u,hu|0x3fe00000);        /* normalize u/2 */
          144                 hu = (0x00100000-hu)>>2;
          145             }
          146             f = u-1.0;
          147         }
          148         hfsq=0.5*f*f;
          149         if(hu==0) {        /* |f| < 2**-20 */
          150             if(f==zero) if(k==0) return zero;
          151                         else {c += k*ln2_lo; return k*ln2_hi+c;}
          152             R = hfsq*(1.0-0.66666666666666666*f);
          153             if(k==0) return f-R; else
          154                          return k*ln2_hi-((R-(k*ln2_lo+c))-f);
          155         }
          156          s = f/(2.0+f);
          157         z = s*s;
          158         R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
          159         if(k==0) return f-(hfsq-s*(hfsq+R)); else
          160                  return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
          161 }