s_expm1.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       s_expm1.c (7516B)
       ---
            1 /* @(#)s_expm1.c 5.1 93/09/24 */
            2 /*
            3  * ====================================================
            4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
            5  *
            6  * Developed at SunPro, a Sun Microsystems, Inc. business.
            7  * Permission to use, copy, modify, and distribute this
            8  * software is freely granted, provided that this notice
            9  * is preserved.
           10  * ====================================================
           11  */
           12 
           13 #ifndef lint
           14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_expm1.c,v 1.7 2002/05/28 18:15:04 alfred Exp $";
           15 #endif
           16 
           17 /* expm1(x)
           18  * Returns exp(x)-1, the exponential of x minus 1.
           19  *
           20  * Method
           21  *   1. Argument reduction:
           22  *        Given x, find r and integer k such that
           23  *
           24  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
           25  *
           26  *      Here a correction term c will be computed to compensate
           27  *        the error in r when rounded to a floating-point number.
           28  *
           29  *   2. Approximating expm1(r) by a special rational function on
           30  *        the interval [0,0.34658]:
           31  *        Since
           32  *            r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
           33  *        we define R1(r*r) by
           34  *            r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
           35  *        That is,
           36  *            R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
           37  *                     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
           38  *                     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
           39  *      We use a special Reme algorithm on [0,0.347] to generate
           40  *         a polynomial of degree 5 in r*r to approximate R1. The
           41  *        maximum error of this polynomial approximation is bounded
           42  *        by 2**-61. In other words,
           43  *            R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
           44  *        where         Q1  =  -1.6666666666666567384E-2,
           45  *                 Q2  =   3.9682539681370365873E-4,
           46  *                 Q3  =  -9.9206344733435987357E-6,
           47  *                 Q4  =   2.5051361420808517002E-7,
           48  *                 Q5  =  -6.2843505682382617102E-9;
           49  *          (where z=r*r, and the values of Q1 to Q5 are listed below)
           50  *        with error bounded by
           51  *            |                  5           |     -61
           52  *            | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
           53  *            |                              |
           54  *
           55  *        expm1(r) = exp(r)-1 is then computed by the following
           56  *         specific way which minimize the accumulation rounding error:
           57  *                               2     3
           58  *                              r     r    [ 3 - (R1 + R1*r/2)  ]
           59  *              expm1(r) = r + --- + --- * [--------------------]
           60  *                              2     2    [ 6 - r*(3 - R1*r/2) ]
           61  *
           62  *        To compensate the error in the argument reduction, we use
           63  *                expm1(r+c) = expm1(r) + c + expm1(r)*c
           64  *                           ~ expm1(r) + c + r*c
           65  *        Thus c+r*c will be added in as the correction terms for
           66  *        expm1(r+c). Now rearrange the term to avoid optimization
           67  *         screw up:
           68  *                        (      2                                    2 )
           69  *                        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
           70  *         expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
           71  *                        ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
           72  *                      (                                             )
           73  *
           74  *                   = r - E
           75  *   3. Scale back to obtain expm1(x):
           76  *        From step 1, we have
           77  *           expm1(x) = either 2^k*[expm1(r)+1] - 1
           78  *                    = or     2^k*[expm1(r) + (1-2^-k)]
           79  *   4. Implementation notes:
           80  *        (A). To save one multiplication, we scale the coefficient Qi
           81  *             to Qi*2^i, and replace z by (x^2)/2.
           82  *        (B). To achieve maximum accuracy, we compute expm1(x) by
           83  *          (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
           84  *          (ii)  if k=0, return r-E
           85  *          (iii) if k=-1, return 0.5*(r-E)-0.5
           86  *        (iv)        if k=1 if r < -0.25, return 2*((r+0.5)- E)
           87  *                              else             return  1.0+2.0*(r-E);
           88  *          (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
           89  *          (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
           90  *          (vii) return 2^k(1-((E+2^-k)-r))
           91  *
           92  * Special cases:
           93  *        expm1(INF) is INF, expm1(NaN) is NaN;
           94  *        expm1(-INF) is -1, and
           95  *        for finite argument, only expm1(0)=0 is exact.
           96  *
           97  * Accuracy:
           98  *        according to an error analysis, the error is always less than
           99  *        1 ulp (unit in the last place).
          100  *
          101  * Misc. info.
          102  *        For IEEE double
          103  *            if x >  7.09782712893383973096e+02 then expm1(x) overflow
          104  *
          105  * Constants:
          106  * The hexadecimal values are the intended ones for the following
          107  * constants. The decimal values may be used, provided that the
          108  * compiler will convert from decimal to binary accurately enough
          109  * to produce the hexadecimal values shown.
          110  */
          111 
          112 #include "math.h"
          113 #include "math_private.h"
          114 
          115 static const double
          116 one                = 1.0,
          117 huge                = 1.0e+300,
          118 tiny                = 1.0e-300,
          119 o_threshold        = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
          120 ln2_hi                = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
          121 ln2_lo                = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
          122 invln2                = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
          123         /* scaled coefficients related to expm1 */
          124 Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
          125 Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
          126 Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
          127 Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
          128 Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
          129 
          130 double
          131 expm1(double x)
          132 {
          133         double y,hi,lo,c,t,e,hxs,hfx,r1;
          134         int32_t k,xsb;
          135         u_int32_t hx;
          136 
          137         GET_HIGH_WORD(hx,x);
          138         xsb = hx&0x80000000;                /* sign bit of x */
          139         if(xsb==0) y=x; else y= -x;        /* y = |x| */
          140         hx &= 0x7fffffff;                /* high word of |x| */
          141 
          142     /* filter out huge and non-finite argument */
          143         if(hx >= 0x4043687A) {                        /* if |x|>=56*ln2 */
          144             if(hx >= 0x40862E42) {                /* if |x|>=709.78... */
          145                 if(hx>=0x7ff00000) {
          146                     u_int32_t low;
          147                     GET_LOW_WORD(low,x);
          148                     if(((hx&0xfffff)|low)!=0)
          149                          return x+x;          /* NaN */
          150                     else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
          151                 }
          152                 if(x > o_threshold) return huge*huge; /* overflow */
          153             }
          154             if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
          155                 if(x+tiny<0.0)                /* raise inexact */
          156                 return tiny-one;        /* return -1 */
          157             }
          158         }
          159 
          160     /* argument reduction */
          161         if(hx > 0x3fd62e42) {                /* if  |x| > 0.5 ln2 */
          162             if(hx < 0x3FF0A2B2) {        /* and |x| < 1.5 ln2 */
          163                 if(xsb==0)
          164                     {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
          165                 else
          166                     {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
          167             } else {
          168                 k  = invln2*x+((xsb==0)?0.5:-0.5);
          169                 t  = k;
          170                 hi = x - t*ln2_hi;        /* t*ln2_hi is exact here */
          171                 lo = t*ln2_lo;
          172             }
          173             x  = hi - lo;
          174             c  = (hi-x)-lo;
          175         }
          176         else if(hx < 0x3c900000) {          /* when |x|<2**-54, return x */
          177             t = huge+x;        /* return x with inexact flags when x!=0 */
          178             return x - (t-(huge+x));
          179         }
          180         else k = 0;
          181 
          182     /* x is now in primary range */
          183         hfx = 0.5*x;
          184         hxs = x*hfx;
          185         r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
          186         t  = 3.0-r1*hfx;
          187         e  = hxs*((r1-t)/(6.0 - x*t));
          188         if(k==0) return x - (x*e-hxs);                /* c is 0 */
          189         else {
          190             e  = (x*(e-c)-c);
          191             e -= hxs;
          192             if(k== -1) return 0.5*(x-e)-0.5;
          193             if(k==1)
          194                        if(x < -0.25) return -2.0*(e-(x+0.5));
          195                        else               return  one+2.0*(x-e);
          196             if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
          197                 u_int32_t high;
          198                 y = one-(e-x);
          199                 GET_HIGH_WORD(high,y);
          200                 SET_HIGH_WORD(y,high+(k<<20));        /* add k to y's exponent */
          201                 return y-one;
          202             }
          203             t = one;
          204             if(k<20) {
          205                 u_int32_t high;
          206                 SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
          207                        y = t-(e-x);
          208                 GET_HIGH_WORD(high,y);
          209                 SET_HIGH_WORD(y,high+(k<<20));        /* add k to y's exponent */
          210            } else {
          211                 u_int32_t high;
          212                 SET_HIGH_WORD(t,((0x3ff-k)<<20));        /* 2^-k */
          213                        y = x-(e+t);
          214                        y += one;
          215                 GET_HIGH_WORD(high,y);
          216                 SET_HIGH_WORD(y,high+(k<<20));        /* add k to y's exponent */
          217             }
          218         }
          219         return y;
          220 }