s_erf.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       s_erf.c (11154B)
       ---
            1 /* @(#)s_erf.c 5.1 93/09/24 */
            2 /*
            3  * ====================================================
            4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
            5  *
            6  * Developed at SunPro, a Sun Microsystems, Inc. business.
            7  * Permission to use, copy, modify, and distribute this
            8  * software is freely granted, provided that this notice
            9  * is preserved.
           10  * ====================================================
           11  */
           12 
           13 #ifndef lint
           14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_erf.c,v 1.7 2002/05/28 18:15:04 alfred Exp $";
           15 #endif
           16 
           17 /* double erf(double x)
           18  * double erfc(double x)
           19  *                             x
           20  *                      2      |\
           21  *     erf(x)  =  ---------  | exp(-t*t)dt
           22  *                    sqrt(pi) \|
           23  *                             0
           24  *
           25  *     erfc(x) =  1-erf(x)
           26  *  Note that
           27  *                erf(-x) = -erf(x)
           28  *                erfc(-x) = 2 - erfc(x)
           29  *
           30  * Method:
           31  *        1. For |x| in [0, 0.84375]
           32  *            erf(x)  = x + x*R(x^2)
           33  *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
           34  *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
           35  *           where R = P/Q where P is an odd poly of degree 8 and
           36  *           Q is an odd poly of degree 10.
           37  *                                                 -57.90
           38  *                        | R - (erf(x)-x)/x | <= 2
           39  *
           40  *
           41  *           Remark. The formula is derived by noting
           42  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
           43  *           and that
           44  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
           45  *           is close to one. The interval is chosen because the fix
           46  *           point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
           47  *           near 0.6174), and by some experiment, 0.84375 is chosen to
           48  *            guarantee the error is less than one ulp for erf.
           49  *
           50  *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
           51  *         c = 0.84506291151 rounded to single (24 bits)
           52  *                 erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
           53  *                 erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
           54  *                          1+(c+P1(s)/Q1(s))    if x < 0
           55  *                 |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
           56  *           Remark: here we use the taylor series expansion at x=1.
           57  *                erf(1+s) = erf(1) + s*Poly(s)
           58  *                         = 0.845.. + P1(s)/Q1(s)
           59  *           That is, we use rational approximation to approximate
           60  *                        erf(1+s) - (c = (single)0.84506291151)
           61  *           Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
           62  *           where
           63  *                P1(s) = degree 6 poly in s
           64  *                Q1(s) = degree 6 poly in s
           65  *
           66  *      3. For x in [1.25,1/0.35(~2.857143)],
           67  *                 erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
           68  *                 erf(x)  = 1 - erfc(x)
           69  *           where
           70  *                R1(z) = degree 7 poly in z, (z=1/x^2)
           71  *                S1(z) = degree 8 poly in z
           72  *
           73  *      4. For x in [1/0.35,28]
           74  *                 erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
           75  *                        = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
           76  *                        = 2.0 - tiny                (if x <= -6)
           77  *                 erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
           78  *                 erf(x)  = sign(x)*(1.0 - tiny)
           79  *           where
           80  *                R2(z) = degree 6 poly in z, (z=1/x^2)
           81  *                S2(z) = degree 7 poly in z
           82  *
           83  *      Note1:
           84  *           To compute exp(-x*x-0.5625+R/S), let s be a single
           85  *           precision number and s := x; then
           86  *                -x*x = -s*s + (s-x)*(s+x)
           87  *                exp(-x*x-0.5626+R/S) =
           88  *                        exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
           89  *      Note2:
           90  *           Here 4 and 5 make use of the asymptotic series
           91  *                          exp(-x*x)
           92  *                erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
           93  *                          x*sqrt(pi)
           94  *           We use rational approximation to approximate
           95  *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
           96  *           Here is the error bound for R1/S1 and R2/S2
           97  *              |R1/S1 - f(x)|  < 2**(-62.57)
           98  *              |R2/S2 - f(x)|  < 2**(-61.52)
           99  *
          100  *      5. For inf > x >= 28
          101  *                 erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
          102  *                 erfc(x) = tiny*tiny (raise underflow) if x > 0
          103  *                        = 2 - tiny if x<0
          104  *
          105  *      7. Special case:
          106  *                 erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
          107  *                 erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
          108  *                   erfc/erf(NaN) is NaN
          109  */
          110 
          111 
          112 #include "math.h"
          113 #include "math_private.h"
          114 
          115 static const double
          116 tiny            = 1e-300,
          117 half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
          118 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
          119 two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
          120         /* c = (float)0.84506291151 */
          121 erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
          122 /*
          123  * Coefficients for approximation to  erf on [0,0.84375]
          124  */
          125 efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
          126 efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
          127 pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
          128 pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
          129 pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
          130 pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
          131 pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
          132 qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
          133 qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
          134 qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
          135 qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
          136 qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
          137 /*
          138  * Coefficients for approximation to  erf  in [0.84375,1.25]
          139  */
          140 pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
          141 pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
          142 pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
          143 pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
          144 pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
          145 pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
          146 pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
          147 qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
          148 qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
          149 qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
          150 qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
          151 qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
          152 qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
          153 /*
          154  * Coefficients for approximation to  erfc in [1.25,1/0.35]
          155  */
          156 ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
          157 ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
          158 ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
          159 ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
          160 ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
          161 ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
          162 ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
          163 ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
          164 sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
          165 sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
          166 sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
          167 sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
          168 sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
          169 sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
          170 sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
          171 sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
          172 /*
          173  * Coefficients for approximation to  erfc in [1/.35,28]
          174  */
          175 rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
          176 rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
          177 rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
          178 rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
          179 rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
          180 rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
          181 rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
          182 sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
          183 sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
          184 sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
          185 sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
          186 sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
          187 sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
          188 sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
          189 
          190 double
          191 erf(double x)
          192 {
          193         int32_t hx,ix,i;
          194         double R,S,P,Q,s,y,z,r;
          195         GET_HIGH_WORD(hx,x);
          196         ix = hx&0x7fffffff;
          197         if(ix>=0x7ff00000) {                /* erf(nan)=nan */
          198             i = ((u_int32_t)hx>>31)<<1;
          199             return (double)(1-i)+one/x;        /* erf(+-inf)=+-1 */
          200         }
          201 
          202         if(ix < 0x3feb0000) {                /* |x|<0.84375 */
          203             if(ix < 0x3e300000) {         /* |x|<2**-28 */
          204                 if (ix < 0x00800000)
          205                     return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
          206                 return x + efx*x;
          207             }
          208             z = x*x;
          209             r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
          210             s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
          211             y = r/s;
          212             return x + x*y;
          213         }
          214         if(ix < 0x3ff40000) {                /* 0.84375 <= |x| < 1.25 */
          215             s = fabs(x)-one;
          216             P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
          217             Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
          218             if(hx>=0) return erx + P/Q; else return -erx - P/Q;
          219         }
          220         if (ix >= 0x40180000) {                /* inf>|x|>=6 */
          221             if(hx>=0) return one-tiny; else return tiny-one;
          222         }
          223         x = fabs(x);
          224          s = one/(x*x);
          225         if(ix< 0x4006DB6E) {        /* |x| < 1/0.35 */
          226             R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
          227                                 ra5+s*(ra6+s*ra7))))));
          228             S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
          229                                 sa5+s*(sa6+s*(sa7+s*sa8)))))));
          230         } else {        /* |x| >= 1/0.35 */
          231             R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
          232                                 rb5+s*rb6)))));
          233             S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
          234                                 sb5+s*(sb6+s*sb7))))));
          235         }
          236         z  = x;
          237         SET_LOW_WORD(z,0);
          238         r  =  __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
          239         if(hx>=0) return one-r/x; else return  r/x-one;
          240 }
          241 
          242 double
          243 erfc(double x)
          244 {
          245         int32_t hx,ix;
          246         double R,S,P,Q,s,y,z,r;
          247         GET_HIGH_WORD(hx,x);
          248         ix = hx&0x7fffffff;
          249         if(ix>=0x7ff00000) {                        /* erfc(nan)=nan */
          250                                                 /* erfc(+-inf)=0,2 */
          251             return (double)(((u_int32_t)hx>>31)<<1)+one/x;
          252         }
          253 
          254         if(ix < 0x3feb0000) {                /* |x|<0.84375 */
          255             if(ix < 0x3c700000)          /* |x|<2**-56 */
          256                 return one-x;
          257             z = x*x;
          258             r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
          259             s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
          260             y = r/s;
          261             if(hx < 0x3fd00000) {          /* x<1/4 */
          262                 return one-(x+x*y);
          263             } else {
          264                 r = x*y;
          265                 r += (x-half);
          266                 return half - r ;
          267             }
          268         }
          269         if(ix < 0x3ff40000) {                /* 0.84375 <= |x| < 1.25 */
          270             s = fabs(x)-one;
          271             P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
          272             Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
          273             if(hx>=0) {
          274                 z  = one-erx; return z - P/Q;
          275             } else {
          276                 z = erx+P/Q; return one+z;
          277             }
          278         }
          279         if (ix < 0x403c0000) {                /* |x|<28 */
          280             x = fabs(x);
          281              s = one/(x*x);
          282             if(ix< 0x4006DB6D) {        /* |x| < 1/.35 ~ 2.857143*/
          283                 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
          284                                 ra5+s*(ra6+s*ra7))))));
          285                 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
          286                                 sa5+s*(sa6+s*(sa7+s*sa8)))))));
          287             } else {                        /* |x| >= 1/.35 ~ 2.857143 */
          288                 if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
          289                 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
          290                                 rb5+s*rb6)))));
          291                 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
          292                                 sb5+s*(sb6+s*sb7))))));
          293             }
          294             z  = x;
          295             SET_LOW_WORD(z,0);
          296             r  =  __ieee754_exp(-z*z-0.5625)*
          297                         __ieee754_exp((z-x)*(z+x)+R/S);
          298             if(hx>0) return r/x; else return two-r/x;
          299         } else {
          300             if(hx>0) return tiny*tiny; else return two-tiny;
          301         }
          302 }