k_tan.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       k_tan.c (4269B)
       ---
            1 /* @(#)k_tan.c 5.1 93/09/24 */
            2 /*
            3  * ====================================================
            4  * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
            5  *
            6  * Permission to use, copy, modify, and distribute this
            7  * software is freely granted, provided that this notice
            8  * is preserved.
            9  * ====================================================
           10  */
           11 
           12 #ifndef lint
           13 static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_tan.c,v 1.9 2004/06/02 04:39:29 das Exp $";
           14 #endif
           15 
           16 /* __kernel_tan( x, y, k )
           17  * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
           18  * Input x is assumed to be bounded by ~pi/4 in magnitude.
           19  * Input y is the tail of x.
           20  * Input k indicates whether tan (if k=1) or
           21  * -1/tan (if k= -1) is returned.
           22  *
           23  * Algorithm
           24  *        1. Since tan(-x) = -tan(x), we need only to consider positive x.
           25  *        2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
           26  *        3. tan(x) is approximated by an odd polynomial of degree 27 on
           27  *           [0,0.67434]
           28  *                                   3             27
           29  *                   tan(x) ~ x + T1*x + ... + T13*x
           30  *           where
           31  *
           32  *                 |tan(x)         2     4            26   |     -59.2
           33  *                 |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
           34  *                 |  x                                         |
           35  *
           36  *           Note: tan(x+y) = tan(x) + tan'(x)*y
           37  *                          ~ tan(x) + (1+x*x)*y
           38  *           Therefore, for better accuracy in computing tan(x+y), let
           39  *                     3      2      2       2       2
           40  *                r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
           41  *           then
           42  *                                     3    2
           43  *                tan(x+y) = x + (T1*x + (x *(r+y)+y))
           44  *
           45  *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
           46  *                tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
           47  *                       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
           48  */
           49 
           50 #include "math.h"
           51 #include "math_private.h"
           52 static const double
           53 one   =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
           54 pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
           55 pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
           56 T[] =  {
           57   3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
           58   1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
           59   5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
           60   2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
           61   8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
           62   3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
           63   1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
           64   5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
           65   2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
           66   7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
           67   7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
           68  -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
           69   2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
           70 };
           71 
           72 double
           73 __kernel_tan(double x, double y, int iy)
           74 {
           75         double z,r,v,w,s;
           76         int32_t ix,hx;
           77         GET_HIGH_WORD(hx,x);
           78         ix = hx&0x7fffffff;        /* high word of |x| */
           79         if(ix<0x3e300000) {                        /* x < 2**-28 */
           80                 if ((int) x == 0) {                /* generate inexact */
           81                         u_int32_t low;
           82                         GET_LOW_WORD(low,x);
           83                         if (((ix | low) | (iy + 1)) == 0)
           84                                 return one / fabs(x);
           85                         else {
           86                                 if (iy == 1)
           87                                         return x;
           88                                 else {        /* compute -1 / (x+y) carefully */
           89                                         double a, t;
           90 
           91                                         z = w = x + y;
           92                                         SET_LOW_WORD(z, 0);
           93                                         v = y - (z - x);
           94                                         t = a = -one / w;
           95                                         SET_LOW_WORD(t, 0);
           96                                         s = one + t * z;
           97                                         return t + a * (s + t * v);
           98                                 }
           99                         }
          100                 }
          101         }
          102         if(ix>=0x3FE59428) {                         /* |x|>=0.6744 */
          103             if(hx<0) {x = -x; y = -y;}
          104             z = pio4-x;
          105             w = pio4lo-y;
          106             x = z+w; y = 0.0;
          107         }
          108         z        =  x*x;
          109         w         =  z*z;
          110     /* Break x^5*(T[1]+x^2*T[2]+...) into
          111      *          x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
          112      *          x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
          113      */
          114         r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
          115         v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
          116         s = z*x;
          117         r = y + z*(s*(r+v)+y);
          118         r += T[0]*s;
          119         w = x+r;
          120         if(ix>=0x3FE59428) {
          121             v = (double)iy;
          122             return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
          123         }
          124         if(iy==1) return w;
          125         else {                /* if allow error up to 2 ulp,
          126                            simply return -1.0/(x+r) here */
          127      /*  compute -1.0/(x+r) accurately */
          128             double a,t;
          129             z  = w;
          130             SET_LOW_WORD(z,0);
          131             v  = r-(z - x);         /* z+v = r+x */
          132             t = a  = -1.0/w;        /* a = -1.0/w */
          133             SET_LOW_WORD(t,0);
          134             s  = 1.0+t*z;
          135             return t+a*(s+t*v);
          136         }
          137 }