k_rem_pio2.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       k_rem_pio2.c (8327B)
       ---
            1 /* @(#)k_rem_pio2.c 5.1 93/09/24 */
            2 /*
            3  * ====================================================
            4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
            5  *
            6  * Developed at SunPro, a Sun Microsystems, Inc. business.
            7  * Permission to use, copy, modify, and distribute this
            8  * software is freely granted, provided that this notice
            9  * is preserved.
           10  * ====================================================
           11  */
           12 
           13 #ifndef lint
           14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_rem_pio2.c,v 1.6 2002/05/28 17:51:46 alfred Exp $";
           15 #endif
           16 
           17 /*
           18  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
           19  * double x[],y[]; int e0,nx,prec; int ipio2[];
           20  *
           21  * __kernel_rem_pio2 return the last three digits of N with
           22  *                y = x - N*pi/2
           23  * so that |y| < pi/2.
           24  *
           25  * The method is to compute the integer (mod 8) and fraction parts of
           26  * (2/pi)*x without doing the full multiplication. In general we
           27  * skip the part of the product that are known to be a huge integer (
           28  * more accurately, = 0 mod 8 ). Thus the number of operations are
           29  * independent of the exponent of the input.
           30  *
           31  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
           32  *
           33  * Input parameters:
           34  *         x[]        The input value (must be positive) is broken into nx
           35  *                pieces of 24-bit integers in double precision format.
           36  *                x[i] will be the i-th 24 bit of x. The scaled exponent
           37  *                of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
           38  *                match x's up to 24 bits.
           39  *
           40  *                Example of breaking a double positive z into x[0]+x[1]+x[2]:
           41  *                        e0 = ilogb(z)-23
           42  *                        z  = scalbn(z,-e0)
           43  *                for i = 0,1,2
           44  *                        x[i] = floor(z)
           45  *                        z    = (z-x[i])*2**24
           46  *
           47  *
           48  *        y[]        ouput result in an array of double precision numbers.
           49  *                The dimension of y[] is:
           50  *                        24-bit  precision        1
           51  *                        53-bit  precision        2
           52  *                        64-bit  precision        2
           53  *                        113-bit precision        3
           54  *                The actual value is the sum of them. Thus for 113-bit
           55  *                precison, one may have to do something like:
           56  *
           57  *                long double t,w,r_head, r_tail;
           58  *                t = (long double)y[2] + (long double)y[1];
           59  *                w = (long double)y[0];
           60  *                r_head = t+w;
           61  *                r_tail = w - (r_head - t);
           62  *
           63  *        e0        The exponent of x[0]
           64  *
           65  *        nx        dimension of x[]
           66  *
           67  *          prec        an integer indicating the precision:
           68  *                        0        24  bits (single)
           69  *                        1        53  bits (double)
           70  *                        2        64  bits (extended)
           71  *                        3        113 bits (quad)
           72  *
           73  *        ipio2[]
           74  *                integer array, contains the (24*i)-th to (24*i+23)-th
           75  *                bit of 2/pi after binary point. The corresponding
           76  *                floating value is
           77  *
           78  *                        ipio2[i] * 2^(-24(i+1)).
           79  *
           80  * External function:
           81  *        double scalbn(), floor();
           82  *
           83  *
           84  * Here is the description of some local variables:
           85  *
           86  *         jk        jk+1 is the initial number of terms of ipio2[] needed
           87  *                in the computation. The recommended value is 2,3,4,
           88  *                6 for single, double, extended,and quad.
           89  *
           90  *         jz        local integer variable indicating the number of
           91  *                terms of ipio2[] used.
           92  *
           93  *        jx        nx - 1
           94  *
           95  *        jv        index for pointing to the suitable ipio2[] for the
           96  *                computation. In general, we want
           97  *                        ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
           98  *                is an integer. Thus
           99  *                        e0-3-24*jv >= 0 or (e0-3)/24 >= jv
          100  *                Hence jv = max(0,(e0-3)/24).
          101  *
          102  *        jp        jp+1 is the number of terms in PIo2[] needed, jp = jk.
          103  *
          104  *         q[]        double array with integral value, representing the
          105  *                24-bits chunk of the product of x and 2/pi.
          106  *
          107  *        q0        the corresponding exponent of q[0]. Note that the
          108  *                exponent for q[i] would be q0-24*i.
          109  *
          110  *        PIo2[]        double precision array, obtained by cutting pi/2
          111  *                into 24 bits chunks.
          112  *
          113  *        f[]        ipio2[] in floating point
          114  *
          115  *        iq[]        integer array by breaking up q[] in 24-bits chunk.
          116  *
          117  *        fq[]        final product of x*(2/pi) in fq[0],..,fq[jk]
          118  *
          119  *        ih        integer. If >0 it indicates q[] is >= 0.5, hence
          120  *                it also indicates the *sign* of the result.
          121  *
          122  */
          123 
          124 
          125 /*
          126  * Constants:
          127  * The hexadecimal values are the intended ones for the following
          128  * constants. The decimal values may be used, provided that the
          129  * compiler will convert from decimal to binary accurately enough
          130  * to produce the hexadecimal values shown.
          131  */
          132 
          133 #include "math.h"
          134 #include "math_private.h"
          135 
          136 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
          137 
          138 static const double PIo2[] = {
          139   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
          140   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
          141   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
          142   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
          143   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
          144   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
          145   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
          146   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
          147 };
          148 
          149 static const double
          150 zero   = 0.0,
          151 one    = 1.0,
          152 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
          153 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
          154 
          155         int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
          156 {
          157         int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
          158         double z,fw,f[20],fq[20],q[20];
          159 
          160     /* initialize jk*/
          161         jk = init_jk[prec];
          162         jp = jk;
          163 
          164     /* determine jx,jv,q0, note that 3>q0 */
          165         jx =  nx-1;
          166         jv = (e0-3)/24; if(jv<0) jv=0;
          167         q0 =  e0-24*(jv+1);
          168 
          169     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
          170         j = jv-jx; m = jx+jk;
          171         for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
          172 
          173     /* compute q[0],q[1],...q[jk] */
          174         for (i=0;i<=jk;i++) {
          175             for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
          176         }
          177 
          178         jz = jk;
          179 recompute:
          180     /* distill q[] into iq[] reversingly */
          181         for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
          182             fw    =  (double)((int32_t)(twon24* z));
          183             iq[i] =  (int32_t)(z-two24*fw);
          184             z     =  q[j-1]+fw;
          185         }
          186 
          187     /* compute n */
          188         z  = scalbn(z,q0);                /* actual value of z */
          189         z -= 8.0*floor(z*0.125);                /* trim off integer >= 8 */
          190         n  = (int32_t) z;
          191         z -= (double)n;
          192         ih = 0;
          193         if(q0>0) {        /* need iq[jz-1] to determine n */
          194             i  = (iq[jz-1]>>(24-q0)); n += i;
          195             iq[jz-1] -= i<<(24-q0);
          196             ih = iq[jz-1]>>(23-q0);
          197         }
          198         else if(q0==0) ih = iq[jz-1]>>23;
          199         else if(z>=0.5) ih=2;
          200 
          201         if(ih>0) {        /* q > 0.5 */
          202             n += 1; carry = 0;
          203             for(i=0;i<jz ;i++) {        /* compute 1-q */
          204                 j = iq[i];
          205                 if(carry==0) {
          206                     if(j!=0) {
          207                         carry = 1; iq[i] = 0x1000000- j;
          208                     }
          209                 } else  iq[i] = 0xffffff - j;
          210             }
          211             if(q0>0) {                /* rare case: chance is 1 in 12 */
          212                 switch(q0) {
          213                 case 1:
          214                        iq[jz-1] &= 0x7fffff; break;
          215                     case 2:
          216                        iq[jz-1] &= 0x3fffff; break;
          217                 }
          218             }
          219             if(ih==2) {
          220                 z = one - z;
          221                 if(carry!=0) z -= scalbn(one,q0);
          222             }
          223         }
          224 
          225     /* check if recomputation is needed */
          226         if(z==zero) {
          227             j = 0;
          228             for (i=jz-1;i>=jk;i--) j |= iq[i];
          229             if(j==0) { /* need recomputation */
          230                 for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
          231 
          232                 for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
          233                     f[jx+i] = (double) ipio2[jv+i];
          234                     for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
          235                     q[i] = fw;
          236                 }
          237                 jz += k;
          238                 goto recompute;
          239             }
          240         }
          241 
          242     /* chop off zero terms */
          243         if(z==0.0) {
          244             jz -= 1; q0 -= 24;
          245             while(iq[jz]==0) { jz--; q0-=24;}
          246         } else { /* break z into 24-bit if necessary */
          247             z = scalbn(z,-q0);
          248             if(z>=two24) {
          249                 fw = (double)((int32_t)(twon24*z));
          250                 iq[jz] = (int32_t)(z-two24*fw);
          251                 jz += 1; q0 += 24;
          252                 iq[jz] = (int32_t) fw;
          253             } else iq[jz] = (int32_t) z ;
          254         }
          255 
          256     /* convert integer "bit" chunk to floating-point value */
          257         fw = scalbn(one,q0);
          258         for(i=jz;i>=0;i--) {
          259             q[i] = fw*(double)iq[i]; fw*=twon24;
          260         }
          261 
          262     /* compute PIo2[0,...,jp]*q[jz,...,0] */
          263         for(i=jz;i>=0;i--) {
          264             for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
          265             fq[jz-i] = fw;
          266         }
          267 
          268     /* compress fq[] into y[] */
          269         switch(prec) {
          270             case 0:
          271                 fw = 0.0;
          272                 for (i=jz;i>=0;i--) fw += fq[i];
          273                 y[0] = (ih==0)? fw: -fw;
          274                 break;
          275             case 1:
          276             case 2:
          277                 fw = 0.0;
          278                 for (i=jz;i>=0;i--) fw += fq[i];
          279                 y[0] = (ih==0)? fw: -fw;
          280                 fw = fq[0]-fw;
          281                 for (i=1;i<=jz;i++) fw += fq[i];
          282                 y[1] = (ih==0)? fw: -fw;
          283                 break;
          284             case 3:        /* painful */
          285                 for (i=jz;i>0;i--) {
          286                     fw      = fq[i-1]+fq[i];
          287                     fq[i]  += fq[i-1]-fw;
          288                     fq[i-1] = fw;
          289                 }
          290                 for (i=jz;i>1;i--) {
          291                     fw      = fq[i-1]+fq[i];
          292                     fq[i]  += fq[i-1]-fw;
          293                     fq[i-1] = fw;
          294                 }
          295                 for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
          296                 if(ih==0) {
          297                     y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
          298                 } else {
          299                     y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
          300                 }
          301         }
          302         return n&7;
          303 }