e_pow.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       e_pow.c (9912B)
       ---
            1 /* @(#)e_pow.c 5.1 93/09/24 */
            2 /*
            3  * ====================================================
            4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
            5  *
            6  * Developed at SunPro, a Sun Microsystems, Inc. business.
            7  * Permission to use, copy, modify, and distribute this
            8  * software is freely granted, provided that this notice
            9  * is preserved.
           10  * ====================================================
           11  */
           12 
           13 #ifndef lint
           14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_pow.c,v 1.10 2004/06/01 19:28:38 bde Exp $";
           15 #endif
           16 
           17 /* __ieee754_pow(x,y) return x**y
           18  *
           19  *                      n
           20  * Method:  Let x =  2   * (1+f)
           21  *        1. Compute and return log2(x) in two pieces:
           22  *                log2(x) = w1 + w2,
           23  *           where w1 has 53-24 = 29 bit trailing zeros.
           24  *        2. Perform y*log2(x) = n+y' by simulating muti-precision
           25  *           arithmetic, where |y'|<=0.5.
           26  *        3. Return x**y = 2**n*exp(y'*log2)
           27  *
           28  * Special cases:
           29  *        1.  (anything) ** 0  is 1
           30  *        2.  (anything) ** 1  is itself
           31  *        3.  (anything) ** NAN is NAN
           32  *        4.  NAN ** (anything except 0) is NAN
           33  *        5.  +-(|x| > 1) **  +INF is +INF
           34  *        6.  +-(|x| > 1) **  -INF is +0
           35  *        7.  +-(|x| < 1) **  +INF is +0
           36  *        8.  +-(|x| < 1) **  -INF is +INF
           37  *        9.  +-1         ** +-INF is NAN
           38  *        10. +0 ** (+anything except 0, NAN)               is +0
           39  *        11. -0 ** (+anything except 0, NAN, odd integer)  is +0
           40  *        12. +0 ** (-anything except 0, NAN)               is +INF
           41  *        13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
           42  *        14. -0 ** (odd integer) = -( +0 ** (odd integer) )
           43  *        15. +INF ** (+anything except 0,NAN) is +INF
           44  *        16. +INF ** (-anything except 0,NAN) is +0
           45  *        17. -INF ** (anything)  = -0 ** (-anything)
           46  *        18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
           47  *        19. (-anything except 0 and inf) ** (non-integer) is NAN
           48  *
           49  * Accuracy:
           50  *        pow(x,y) returns x**y nearly rounded. In particular
           51  *                        pow(integer,integer)
           52  *        always returns the correct integer provided it is
           53  *        representable.
           54  *
           55  * Constants :
           56  * The hexadecimal values are the intended ones for the following
           57  * constants. The decimal values may be used, provided that the
           58  * compiler will convert from decimal to binary accurately enough
           59  * to produce the hexadecimal values shown.
           60  */
           61 
           62 #include "math.h"
           63 #include "math_private.h"
           64 
           65 static const double
           66 bp[] = {1.0, 1.5,},
           67 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
           68 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
           69 zero    =  0.0,
           70 one        =  1.0,
           71 two        =  2.0,
           72 two53        =  9007199254740992.0,        /* 0x43400000, 0x00000000 */
           73 huge        =  1.0e300,
           74 tiny    =  1.0e-300,
           75         /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
           76 L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
           77 L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
           78 L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
           79 L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
           80 L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
           81 L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
           82 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
           83 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
           84 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
           85 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
           86 P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
           87 lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
           88 lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
           89 lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
           90 ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
           91 cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
           92 cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
           93 cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
           94 ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
           95 ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
           96 ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
           97 
           98 double
           99 __ieee754_pow(double x, double y)
          100 {
          101         double z,ax,z_h,z_l,p_h,p_l;
          102         double y1,t1,t2,r,s,sn,t,u,v,w;
          103         int32_t i,j,k,yisint,n;
          104         int32_t hx,hy,ix,iy;
          105         u_int32_t lx,ly;
          106 
          107         EXTRACT_WORDS(hx,lx,x);
          108         EXTRACT_WORDS(hy,ly,y);
          109         ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
          110 
          111     /* y==zero: x**0 = 1 */
          112         if((iy|ly)==0) return one;
          113 
          114     /* +-NaN return x+y */
          115         if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
          116            iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
          117                 return x+y;
          118 
          119     /* determine if y is an odd int when x < 0
          120      * yisint = 0        ... y is not an integer
          121      * yisint = 1        ... y is an odd int
          122      * yisint = 2        ... y is an even int
          123      */
          124         yisint  = 0;
          125         if(hx<0) {
          126             if(iy>=0x43400000) yisint = 2; /* even integer y */
          127             else if(iy>=0x3ff00000) {
          128                 k = (iy>>20)-0x3ff;           /* exponent */
          129                 if(k>20) {
          130                     j = ly>>(52-k);
          131                     if((j<<(52-k))==ly) yisint = 2-(j&1);
          132                 } else if(ly==0) {
          133                     j = iy>>(20-k);
          134                     if((j<<(20-k))==iy) yisint = 2-(j&1);
          135                 }
          136             }
          137         }
          138 
          139     /* special value of y */
          140         if(ly==0) {
          141             if (iy==0x7ff00000) {        /* y is +-inf */
          142                 if(((ix-0x3ff00000)|lx)==0)
          143                     return  y - y;        /* inf**+-1 is NaN */
          144                 else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
          145                     return (hy>=0)? y: zero;
          146                 else                        /* (|x|<1)**-,+inf = inf,0 */
          147                     return (hy<0)?-y: zero;
          148             }
          149             if(iy==0x3ff00000) {        /* y is  +-1 */
          150                 if(hy<0) return one/x; else return x;
          151             }
          152             if(hy==0x40000000) return x*x; /* y is  2 */
          153             if(hy==0x3fe00000) {        /* y is  0.5 */
          154                 if(hx>=0)        /* x >= +0 */
          155                 return __ieee754_sqrt(x);
          156             }
          157         }
          158 
          159         ax   = fabs(x);
          160     /* special value of x */
          161         if(lx==0) {
          162             if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
          163                 z = ax;                        /*x is +-0,+-inf,+-1*/
          164                 if(hy<0) z = one/z;        /* z = (1/|x|) */
          165                 if(hx<0) {
          166                     if(((ix-0x3ff00000)|yisint)==0) {
          167                         z = (z-z)/(z-z); /* (-1)**non-int is NaN */
          168                     } else if(yisint==1)
          169                         z = -z;                /* (x<0)**odd = -(|x|**odd) */
          170                 }
          171                 return z;
          172             }
          173         }
          174 
          175     /* CYGNUS LOCAL + fdlibm-5.3 fix: This used to be
          176         n = (hx>>31)+1;
          177        but ANSI C says a right shift of a signed negative quantity is
          178        implementation defined.  */
          179         n = ((u_int32_t)hx>>31)-1;
          180 
          181     /* (x<0)**(non-int) is NaN */
          182         if((n|yisint)==0) return (x-x)/(x-x);
          183 
          184         sn = one; /* s (sign of result -ve**odd) = -1 else = 1 */
          185         if((n|(yisint-1))==0) sn = -one;/* (-ve)**(odd int) */
          186 
          187     /* |y| is huge */
          188         if(iy>0x41e00000) { /* if |y| > 2**31 */
          189             if(iy>0x43f00000){        /* if |y| > 2**64, must o/uflow */
          190                 if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
          191                 if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
          192             }
          193         /* over/underflow if x is not close to one */
          194             if(ix<0x3fefffff) return (hy<0)? sn*huge*huge:sn*tiny*tiny;
          195             if(ix>0x3ff00000) return (hy>0)? sn*huge*huge:sn*tiny*tiny;
          196         /* now |1-x| is tiny <= 2**-20, suffice to compute
          197            log(x) by x-x^2/2+x^3/3-x^4/4 */
          198             t = ax-1;                /* t has 20 trailing zeros */
          199             w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
          200             u = ivln2_h*t;        /* ivln2_h has 21 sig. bits */
          201             v = t*ivln2_l-w*ivln2;
          202             t1 = u+v;
          203             SET_LOW_WORD(t1,0);
          204             t2 = v-(t1-u);
          205         } else {
          206             double s2,s_h,s_l,t_h,t_l;
          207             n = 0;
          208         /* take care subnormal number */
          209             if(ix<0x00100000)
          210                 {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
          211             n  += ((ix)>>20)-0x3ff;
          212             j  = ix&0x000fffff;
          213         /* determine interval */
          214             ix = j|0x3ff00000;                /* normalize ix */
          215             if(j<=0x3988E) k=0;                /* |x|<sqrt(3/2) */
          216             else if(j<0xBB67A) k=1;        /* |x|<sqrt(3)   */
          217             else {k=0;n+=1;ix -= 0x00100000;}
          218             SET_HIGH_WORD(ax,ix);
          219 
          220         /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
          221             u = ax-bp[k];                /* bp[0]=1.0, bp[1]=1.5 */
          222             v = one/(ax+bp[k]);
          223             s = u*v;
          224             s_h = s;
          225             SET_LOW_WORD(s_h,0);
          226         /* t_h=ax+bp[k] High */
          227             t_h = zero;
          228             SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
          229             t_l = ax - (t_h-bp[k]);
          230             s_l = v*((u-s_h*t_h)-s_h*t_l);
          231         /* compute log(ax) */
          232             s2 = s*s;
          233             r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
          234             r += s_l*(s_h+s);
          235             s2  = s_h*s_h;
          236             t_h = 3.0+s2+r;
          237             SET_LOW_WORD(t_h,0);
          238             t_l = r-((t_h-3.0)-s2);
          239         /* u+v = s*(1+...) */
          240             u = s_h*t_h;
          241             v = s_l*t_h+t_l*s;
          242         /* 2/(3log2)*(s+...) */
          243             p_h = u+v;
          244             SET_LOW_WORD(p_h,0);
          245             p_l = v-(p_h-u);
          246             z_h = cp_h*p_h;                /* cp_h+cp_l = 2/(3*log2) */
          247             z_l = cp_l*p_h+p_l*cp+dp_l[k];
          248         /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
          249             t = (double)n;
          250             t1 = (((z_h+z_l)+dp_h[k])+t);
          251             SET_LOW_WORD(t1,0);
          252             t2 = z_l-(((t1-t)-dp_h[k])-z_h);
          253         }
          254 
          255     /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
          256         y1  = y;
          257         SET_LOW_WORD(y1,0);
          258         p_l = (y-y1)*t1+y*t2;
          259         p_h = y1*t1;
          260         z = p_l+p_h;
          261         EXTRACT_WORDS(j,i,z);
          262         if (j>=0x40900000) {                                /* z >= 1024 */
          263             if(((j-0x40900000)|i)!=0)                        /* if z > 1024 */
          264                 return sn*huge*huge;                        /* overflow */
          265             else {
          266                 if(p_l+ovt>z-p_h) return sn*huge*huge;        /* overflow */
          267             }
          268         } else if((j&0x7fffffff)>=0x4090cc00 ) {        /* z <= -1075 */
          269             if(((j-0xc090cc00)|i)!=0)                         /* z < -1075 */
          270                 return sn*tiny*tiny;                        /* underflow */
          271             else {
          272                 if(p_l<=z-p_h) return sn*tiny*tiny;        /* underflow */
          273             }
          274         }
          275     /*
          276      * compute 2**(p_h+p_l)
          277      */
          278         i = j&0x7fffffff;
          279         k = (i>>20)-0x3ff;
          280         n = 0;
          281         if(i>0x3fe00000) {                /* if |z| > 0.5, set n = [z+0.5] */
          282             n = j+(0x00100000>>(k+1));
          283             k = ((n&0x7fffffff)>>20)-0x3ff;        /* new k for n */
          284             t = zero;
          285             SET_HIGH_WORD(t,n&~(0x000fffff>>k));
          286             n = ((n&0x000fffff)|0x00100000)>>(20-k);
          287             if(j<0) n = -n;
          288             p_h -= t;
          289         }
          290         t = p_l+p_h;
          291         SET_LOW_WORD(t,0);
          292         u = t*lg2_h;
          293         v = (p_l-(t-p_h))*lg2+t*lg2_l;
          294         z = u+v;
          295         w = v-(z-u);
          296         t  = z*z;
          297         t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
          298         r  = (z*t1)/(t1-two)-(w+z*w);
          299         z  = one-(r-z);
          300         GET_HIGH_WORD(j,z);
          301         j += (n<<20);
          302         if((j>>20)<=0) z = scalbn(z,n);        /* subnormal output */
          303         else SET_HIGH_WORD(z,j);
          304         return sn*z;
          305 }