e_log.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       e_log.c (4400B)
       ---
            1 /* @(#)e_log.c 5.1 93/09/24 */
            2 /*
            3  * ====================================================
            4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
            5  *
            6  * Developed at SunPro, a Sun Microsystems, Inc. business.
            7  * Permission to use, copy, modify, and distribute this
            8  * software is freely granted, provided that this notice
            9  * is preserved.
           10  * ====================================================
           11  */
           12 
           13 #ifndef lint
           14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_log.c,v 1.9 2003/07/23 04:53:46 peter Exp $";
           15 #endif
           16 
           17 /* __ieee754_log(x)
           18  * Return the logrithm of x
           19  *
           20  * Method :
           21  *   1. Argument Reduction: find k and f such that
           22  *                        x = 2^k * (1+f),
           23  *           where  sqrt(2)/2 < 1+f < sqrt(2) .
           24  *
           25  *   2. Approximation of log(1+f).
           26  *        Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
           27  *                 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
           28  *                      = 2s + s*R
           29  *      We use a special Reme algorithm on [0,0.1716] to generate
           30  *         a polynomial of degree 14 to approximate R The maximum error
           31  *        of this polynomial approximation is bounded by 2**-58.45. In
           32  *        other words,
           33  *                        2      4      6      8      10      12      14
           34  *            R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
           35  *          (the values of Lg1 to Lg7 are listed in the program)
           36  *        and
           37  *            |      2          14          |     -58.45
           38  *            | Lg1*s +...+Lg7*s    -  R(z) | <= 2
           39  *            |                             |
           40  *        Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
           41  *        In order to guarantee error in log below 1ulp, we compute log
           42  *        by
           43  *                log(1+f) = f - s*(f - R)        (if f is not too large)
           44  *                log(1+f) = f - (hfsq - s*(hfsq+R)).        (better accuracy)
           45  *
           46  *        3. Finally,  log(x) = k*ln2 + log(1+f).
           47  *                            = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
           48  *           Here ln2 is split into two floating point number:
           49  *                        ln2_hi + ln2_lo,
           50  *           where n*ln2_hi is always exact for |n| < 2000.
           51  *
           52  * Special cases:
           53  *        log(x) is NaN with signal if x < 0 (including -INF) ;
           54  *        log(+INF) is +INF; log(0) is -INF with signal;
           55  *        log(NaN) is that NaN with no signal.
           56  *
           57  * Accuracy:
           58  *        according to an error analysis, the error is always less than
           59  *        1 ulp (unit in the last place).
           60  *
           61  * Constants:
           62  * The hexadecimal values are the intended ones for the following
           63  * constants. The decimal values may be used, provided that the
           64  * compiler will convert from decimal to binary accurately enough
           65  * to produce the hexadecimal values shown.
           66  */
           67 
           68 #include "math.h"
           69 #include "math_private.h"
           70 
           71 static const double
           72 ln2_hi  =  6.93147180369123816490e-01,        /* 3fe62e42 fee00000 */
           73 ln2_lo  =  1.90821492927058770002e-10,        /* 3dea39ef 35793c76 */
           74 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
           75 Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
           76 Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
           77 Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
           78 Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
           79 Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
           80 Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
           81 Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
           82 
           83 static const double zero   =  0.0;
           84 
           85 double
           86 __ieee754_log(double x)
           87 {
           88         double hfsq,f,s,z,R,w,t1,t2,dk;
           89         int32_t k,hx,i,j;
           90         u_int32_t lx;
           91 
           92         EXTRACT_WORDS(hx,lx,x);
           93 
           94         k=0;
           95         if (hx < 0x00100000) {                        /* x < 2**-1022  */
           96             if (((hx&0x7fffffff)|lx)==0)
           97                 return -two54/zero;                /* log(+-0)=-inf */
           98             if (hx<0) return (x-x)/zero;        /* log(-#) = NaN */
           99             k -= 54; x *= two54; /* subnormal number, scale up x */
          100             GET_HIGH_WORD(hx,x);
          101         }
          102         if (hx >= 0x7ff00000) return x+x;
          103         k += (hx>>20)-1023;
          104         hx &= 0x000fffff;
          105         i = (hx+0x95f64)&0x100000;
          106         SET_HIGH_WORD(x,hx|(i^0x3ff00000));        /* normalize x or x/2 */
          107         k += (i>>20);
          108         f = x-1.0;
          109         if((0x000fffff&(2+hx))<3) {        /* |f| < 2**-20 */
          110             if(f==zero) if(k==0) return zero;  else {dk=(double)k;
          111                                  return dk*ln2_hi+dk*ln2_lo;}
          112             R = f*f*(0.5-0.33333333333333333*f);
          113             if(k==0) return f-R; else {dk=(double)k;
          114                          return dk*ln2_hi-((R-dk*ln2_lo)-f);}
          115         }
          116          s = f/(2.0+f);
          117         dk = (double)k;
          118         z = s*s;
          119         i = hx-0x6147a;
          120         w = z*z;
          121         j = 0x6b851-hx;
          122         t1= w*(Lg2+w*(Lg4+w*Lg6));
          123         t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
          124         i |= j;
          125         R = t2+t1;
          126         if(i>0) {
          127             hfsq=0.5*f*f;
          128             if(k==0) return f-(hfsq-s*(hfsq+R)); else
          129                      return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
          130         } else {
          131             if(k==0) return f-s*(f-R); else
          132                      return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
          133         }
          134 }