e_lgammaf_r.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       e_lgammaf_r.c (7344B)
       ---
            1 /* e_lgammaf_r.c -- float version of e_lgamma_r.c.
            2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
            3  */
            4 
            5 /*
            6  * ====================================================
            7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
            8  *
            9  * Developed at SunPro, a Sun Microsystems, Inc. business.
           10  * Permission to use, copy, modify, and distribute this
           11  * software is freely granted, provided that this notice
           12  * is preserved.
           13  * ====================================================
           14  */
           15 
           16 #ifndef lint
           17 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_lgammaf_r.c,v 1.7 2002/05/28 18:15:04 alfred Exp $";
           18 #endif
           19 
           20 #include "math.h"
           21 #include "math_private.h"
           22 
           23 static const float
           24 two23=  8.3886080000e+06, /* 0x4b000000 */
           25 half=  5.0000000000e-01, /* 0x3f000000 */
           26 one =  1.0000000000e+00, /* 0x3f800000 */
           27 pi  =  3.1415927410e+00, /* 0x40490fdb */
           28 a0  =  7.7215664089e-02, /* 0x3d9e233f */
           29 a1  =  3.2246702909e-01, /* 0x3ea51a66 */
           30 a2  =  6.7352302372e-02, /* 0x3d89f001 */
           31 a3  =  2.0580807701e-02, /* 0x3ca89915 */
           32 a4  =  7.3855509982e-03, /* 0x3bf2027e */
           33 a5  =  2.8905137442e-03, /* 0x3b3d6ec6 */
           34 a6  =  1.1927076848e-03, /* 0x3a9c54a1 */
           35 a7  =  5.1006977446e-04, /* 0x3a05b634 */
           36 a8  =  2.2086278477e-04, /* 0x39679767 */
           37 a9  =  1.0801156895e-04, /* 0x38e28445 */
           38 a10 =  2.5214456400e-05, /* 0x37d383a2 */
           39 a11 =  4.4864096708e-05, /* 0x383c2c75 */
           40 tc  =  1.4616321325e+00, /* 0x3fbb16c3 */
           41 tf  = -1.2148628384e-01, /* 0xbdf8cdcd */
           42 /* tt = -(tail of tf) */
           43 tt  =  6.6971006518e-09, /* 0x31e61c52 */
           44 t0  =  4.8383611441e-01, /* 0x3ef7b95e */
           45 t1  = -1.4758771658e-01, /* 0xbe17213c */
           46 t2  =  6.4624942839e-02, /* 0x3d845a15 */
           47 t3  = -3.2788541168e-02, /* 0xbd064d47 */
           48 t4  =  1.7970675603e-02, /* 0x3c93373d */
           49 t5  = -1.0314224288e-02, /* 0xbc28fcfe */
           50 t6  =  6.1005386524e-03, /* 0x3bc7e707 */
           51 t7  = -3.6845202558e-03, /* 0xbb7177fe */
           52 t8  =  2.2596477065e-03, /* 0x3b141699 */
           53 t9  = -1.4034647029e-03, /* 0xbab7f476 */
           54 t10 =  8.8108185446e-04, /* 0x3a66f867 */
           55 t11 = -5.3859531181e-04, /* 0xba0d3085 */
           56 t12 =  3.1563205994e-04, /* 0x39a57b6b */
           57 t13 = -3.1275415677e-04, /* 0xb9a3f927 */
           58 t14 =  3.3552918467e-04, /* 0x39afe9f7 */
           59 u0  = -7.7215664089e-02, /* 0xbd9e233f */
           60 u1  =  6.3282704353e-01, /* 0x3f2200f4 */
           61 u2  =  1.4549225569e+00, /* 0x3fba3ae7 */
           62 u3  =  9.7771751881e-01, /* 0x3f7a4bb2 */
           63 u4  =  2.2896373272e-01, /* 0x3e6a7578 */
           64 u5  =  1.3381091878e-02, /* 0x3c5b3c5e */
           65 v1  =  2.4559779167e+00, /* 0x401d2ebe */
           66 v2  =  2.1284897327e+00, /* 0x4008392d */
           67 v3  =  7.6928514242e-01, /* 0x3f44efdf */
           68 v4  =  1.0422264785e-01, /* 0x3dd572af */
           69 v5  =  3.2170924824e-03, /* 0x3b52d5db */
           70 s0  = -7.7215664089e-02, /* 0xbd9e233f */
           71 s1  =  2.1498242021e-01, /* 0x3e5c245a */
           72 s2  =  3.2577878237e-01, /* 0x3ea6cc7a */
           73 s3  =  1.4635047317e-01, /* 0x3e15dce6 */
           74 s4  =  2.6642270386e-02, /* 0x3cda40e4 */
           75 s5  =  1.8402845599e-03, /* 0x3af135b4 */
           76 s6  =  3.1947532989e-05, /* 0x3805ff67 */
           77 r1  =  1.3920053244e+00, /* 0x3fb22d3b */
           78 r2  =  7.2193557024e-01, /* 0x3f38d0c5 */
           79 r3  =  1.7193385959e-01, /* 0x3e300f6e */
           80 r4  =  1.8645919859e-02, /* 0x3c98bf54 */
           81 r5  =  7.7794247773e-04, /* 0x3a4beed6 */
           82 r6  =  7.3266842264e-06, /* 0x36f5d7bd */
           83 w0  =  4.1893854737e-01, /* 0x3ed67f1d */
           84 w1  =  8.3333335817e-02, /* 0x3daaaaab */
           85 w2  = -2.7777778450e-03, /* 0xbb360b61 */
           86 w3  =  7.9365057172e-04, /* 0x3a500cfd */
           87 w4  = -5.9518753551e-04, /* 0xba1c065c */
           88 w5  =  8.3633989561e-04, /* 0x3a5b3dd2 */
           89 w6  = -1.6309292987e-03; /* 0xbad5c4e8 */
           90 
           91 static const float zero=  0.0000000000e+00;
           92 
           93         static float sin_pif(float x)
           94 {
           95         float y,z;
           96         int n,ix;
           97 
           98         GET_FLOAT_WORD(ix,x);
           99         ix &= 0x7fffffff;
          100 
          101         if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0);
          102         y = -x;                /* x is assume negative */
          103 
          104     /*
          105      * argument reduction, make sure inexact flag not raised if input
          106      * is an integer
          107      */
          108         z = floorf(y);
          109         if(z!=y) {                                /* inexact anyway */
          110             y  *= (float)0.5;
          111             y   = (float)2.0*(y - floorf(y));        /* y = |x| mod 2.0 */
          112             n   = (int) (y*(float)4.0);
          113         } else {
          114             if(ix>=0x4b800000) {
          115                 y = zero; n = 0;                 /* y must be even */
          116             } else {
          117                 if(ix<0x4b000000) z = y+two23;        /* exact */
          118                 GET_FLOAT_WORD(n,z);
          119                 n &= 1;
          120                 y  = n;
          121                 n<<= 2;
          122             }
          123         }
          124         switch (n) {
          125             case 0:   y =  __kernel_sinf(pi*y,zero,0); break;
          126             case 1:
          127             case 2:   y =  __kernel_cosf(pi*((float)0.5-y),zero); break;
          128             case 3:
          129             case 4:   y =  __kernel_sinf(pi*(one-y),zero,0); break;
          130             case 5:
          131             case 6:   y = -__kernel_cosf(pi*(y-(float)1.5),zero); break;
          132             default:  y =  __kernel_sinf(pi*(y-(float)2.0),zero,0); break;
          133             }
          134         return -y;
          135 }
          136 
          137 
          138 float
          139 __ieee754_lgammaf_r(float x, int *signgamp)
          140 {
          141         float t,y,z,nadj,p,p1,p2,p3,q,r,w;
          142         int i,hx,ix;
          143 
          144         GET_FLOAT_WORD(hx,x);
          145 
          146     /* purge off +-inf, NaN, +-0, and negative arguments */
          147         *signgamp = 1;
          148         ix = hx&0x7fffffff;
          149         if(ix>=0x7f800000) return x*x;
          150         if(ix==0) return one/zero;
          151         if(ix<0x1c800000) {        /* |x|<2**-70, return -log(|x|) */
          152             if(hx<0) {
          153                 *signgamp = -1;
          154                 return -__ieee754_logf(-x);
          155             } else return -__ieee754_logf(x);
          156         }
          157         if(hx<0) {
          158             if(ix>=0x4b000000)         /* |x|>=2**23, must be -integer */
          159                 return one/zero;
          160             t = sin_pif(x);
          161             if(t==zero) return one/zero; /* -integer */
          162             nadj = __ieee754_logf(pi/fabsf(t*x));
          163             if(t<zero) *signgamp = -1;
          164             x = -x;
          165         }
          166 
          167     /* purge off 1 and 2 */
          168         if (ix==0x3f800000||ix==0x40000000) r = 0;
          169     /* for x < 2.0 */
          170         else if(ix<0x40000000) {
          171             if(ix<=0x3f666666) {         /* lgamma(x) = lgamma(x+1)-log(x) */
          172                 r = -__ieee754_logf(x);
          173                 if(ix>=0x3f3b4a20) {y = one-x; i= 0;}
          174                 else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;}
          175                   else {y = x; i=2;}
          176             } else {
          177                   r = zero;
          178                 if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */
          179                 else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */
          180                 else {y=x-one;i=2;}
          181             }
          182             switch(i) {
          183               case 0:
          184                 z = y*y;
          185                 p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
          186                 p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
          187                 p  = y*p1+p2;
          188                 r  += (p-(float)0.5*y); break;
          189               case 1:
          190                 z = y*y;
          191                 w = z*y;
          192                 p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));        /* parallel comp */
          193                 p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
          194                 p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
          195                 p  = z*p1-(tt-w*(p2+y*p3));
          196                 r += (tf + p); break;
          197               case 2:
          198                 p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
          199                 p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
          200                 r += (-(float)0.5*y + p1/p2);
          201             }
          202         }
          203         else if(ix<0x41000000) {                         /* x < 8.0 */
          204             i = (int)x;
          205             t = zero;
          206             y = x-(float)i;
          207             p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
          208             q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
          209             r = half*y+p/q;
          210             z = one;        /* lgamma(1+s) = log(s) + lgamma(s) */
          211             switch(i) {
          212             case 7: z *= (y+(float)6.0);        /* FALLTHRU */
          213             case 6: z *= (y+(float)5.0);        /* FALLTHRU */
          214             case 5: z *= (y+(float)4.0);        /* FALLTHRU */
          215             case 4: z *= (y+(float)3.0);        /* FALLTHRU */
          216             case 3: z *= (y+(float)2.0);        /* FALLTHRU */
          217                     r += __ieee754_logf(z); break;
          218             }
          219     /* 8.0 <= x < 2**58 */
          220         } else if (ix < 0x5c800000) {
          221             t = __ieee754_logf(x);
          222             z = one/x;
          223             y = z*z;
          224             w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
          225             r = (x-half)*(t-one)+w;
          226         } else
          227     /* 2**58 <= x <= inf */
          228             r =  x*(__ieee754_logf(x)-one);
          229         if(hx<0) r = nadj - r;
          230         return r;
          231 }