e_lgamma_r.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       e_lgamma_r.c (10941B)
       ---
            1 /* @(#)er_lgamma.c 5.1 93/09/24 */
            2 /*
            3  * ====================================================
            4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
            5  *
            6  * Developed at SunPro, a Sun Microsystems, Inc. business.
            7  * Permission to use, copy, modify, and distribute this
            8  * software is freely granted, provided that this notice
            9  * is preserved.
           10  * ====================================================
           11  */
           12 
           13 #ifndef lint
           14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_lgamma_r.c,v 1.7 2002/05/28 18:15:04 alfred Exp $";
           15 #endif
           16 
           17 /* __ieee754_lgamma_r(x, signgamp)
           18  * Reentrant version of the logarithm of the Gamma function
           19  * with user provide pointer for the sign of Gamma(x).
           20  *
           21  * Method:
           22  *   1. Argument Reduction for 0 < x <= 8
           23  *         Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
           24  *         reduce x to a number in [1.5,2.5] by
           25  *                 lgamma(1+s) = log(s) + lgamma(s)
           26  *        for example,
           27  *                lgamma(7.3) = log(6.3) + lgamma(6.3)
           28  *                            = log(6.3*5.3) + lgamma(5.3)
           29  *                            = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
           30  *   2. Polynomial approximation of lgamma around its
           31  *        minimun ymin=1.461632144968362245 to maintain monotonicity.
           32  *        On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
           33  *                Let z = x-ymin;
           34  *                lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
           35  *        where
           36  *                poly(z) is a 14 degree polynomial.
           37  *   2. Rational approximation in the primary interval [2,3]
           38  *        We use the following approximation:
           39  *                s = x-2.0;
           40  *                lgamma(x) = 0.5*s + s*P(s)/Q(s)
           41  *        with accuracy
           42  *                |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
           43  *        Our algorithms are based on the following observation
           44  *
           45  *                             zeta(2)-1    2    zeta(3)-1    3
           46  * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
           47  *                                 2                 3
           48  *
           49  *        where Euler = 0.5771... is the Euler constant, which is very
           50  *        close to 0.5.
           51  *
           52  *   3. For x>=8, we have
           53  *        lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
           54  *        (better formula:
           55  *           lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
           56  *        Let z = 1/x, then we approximation
           57  *                f(z) = lgamma(x) - (x-0.5)(log(x)-1)
           58  *        by
           59  *                                      3       5             11
           60  *                w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
           61  *        where
           62  *                |w - f(z)| < 2**-58.74
           63  *
           64  *   4. For negative x, since (G is gamma function)
           65  *                -x*G(-x)*G(x) = pi/sin(pi*x),
           66  *         we have
           67  *                 G(x) = pi/(sin(pi*x)*(-x)*G(-x))
           68  *        since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
           69  *        Hence, for x<0, signgam = sign(sin(pi*x)) and
           70  *                lgamma(x) = log(|Gamma(x)|)
           71  *                          = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
           72  *        Note: one should avoid compute pi*(-x) directly in the
           73  *              computation of sin(pi*(-x)).
           74  *
           75  *   5. Special Cases
           76  *                lgamma(2+s) ~ s*(1-Euler) for tiny s
           77  *                lgamma(1)=lgamma(2)=0
           78  *                lgamma(x) ~ -log(x) for tiny x
           79  *                lgamma(0) = lgamma(inf) = inf
           80  *                 lgamma(-integer) = +-inf
           81  *
           82  */
           83 
           84 #include "math.h"
           85 #include "math_private.h"
           86 
           87 static const double
           88 two52=  4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
           89 half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
           90 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
           91 pi  =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
           92 a0  =  7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
           93 a1  =  3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
           94 a2  =  6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
           95 a3  =  2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
           96 a4  =  7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
           97 a5  =  2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
           98 a6  =  1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
           99 a7  =  5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
          100 a8  =  2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
          101 a9  =  1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
          102 a10 =  2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
          103 a11 =  4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
          104 tc  =  1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
          105 tf  = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
          106 /* tt = -(tail of tf) */
          107 tt  = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
          108 t0  =  4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
          109 t1  = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
          110 t2  =  6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
          111 t3  = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
          112 t4  =  1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
          113 t5  = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
          114 t6  =  6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
          115 t7  = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
          116 t8  =  2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
          117 t9  = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
          118 t10 =  8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
          119 t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
          120 t12 =  3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
          121 t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
          122 t14 =  3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
          123 u0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
          124 u1  =  6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
          125 u2  =  1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
          126 u3  =  9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
          127 u4  =  2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
          128 u5  =  1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
          129 v1  =  2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
          130 v2  =  2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
          131 v3  =  7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
          132 v4  =  1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
          133 v5  =  3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
          134 s0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
          135 s1  =  2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
          136 s2  =  3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
          137 s3  =  1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
          138 s4  =  2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
          139 s5  =  1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
          140 s6  =  3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
          141 r1  =  1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
          142 r2  =  7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
          143 r3  =  1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
          144 r4  =  1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
          145 r5  =  7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
          146 r6  =  7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
          147 w0  =  4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
          148 w1  =  8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
          149 w2  = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
          150 w3  =  7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
          151 w4  = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
          152 w5  =  8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
          153 w6  = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
          154 
          155 static const double zero=  0.00000000000000000000e+00;
          156 
          157         static double sin_pi(double x)
          158 {
          159         double y,z;
          160         int n,ix;
          161 
          162         GET_HIGH_WORD(ix,x);
          163         ix &= 0x7fffffff;
          164 
          165         if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);
          166         y = -x;                /* x is assume negative */
          167 
          168     /*
          169      * argument reduction, make sure inexact flag not raised if input
          170      * is an integer
          171      */
          172         z = floor(y);
          173         if(z!=y) {                                /* inexact anyway */
          174             y  *= 0.5;
          175             y   = 2.0*(y - floor(y));                /* y = |x| mod 2.0 */
          176             n   = (int) (y*4.0);
          177         } else {
          178             if(ix>=0x43400000) {
          179                 y = zero; n = 0;                 /* y must be even */
          180             } else {
          181                 if(ix<0x43300000) z = y+two52;        /* exact */
          182                 GET_LOW_WORD(n,z);
          183                 n &= 1;
          184                 y  = n;
          185                 n<<= 2;
          186             }
          187         }
          188         switch (n) {
          189             case 0:   y =  __kernel_sin(pi*y,zero,0); break;
          190             case 1:
          191             case 2:   y =  __kernel_cos(pi*(0.5-y),zero); break;
          192             case 3:
          193             case 4:   y =  __kernel_sin(pi*(one-y),zero,0); break;
          194             case 5:
          195             case 6:   y = -__kernel_cos(pi*(y-1.5),zero); break;
          196             default:  y =  __kernel_sin(pi*(y-2.0),zero,0); break;
          197             }
          198         return -y;
          199 }
          200 
          201 
          202 double
          203 __ieee754_lgamma_r(double x, int *signgamp)
          204 {
          205         double t,y,z,nadj,p,p1,p2,p3,q,r,w;
          206         int i,hx,lx,ix;
          207 
          208         EXTRACT_WORDS(hx,lx,x);
          209 
          210     /* purge off +-inf, NaN, +-0, and negative arguments */
          211         *signgamp = 1;
          212         ix = hx&0x7fffffff;
          213         if(ix>=0x7ff00000) return x*x;
          214         if((ix|lx)==0) return one/zero;
          215         if(ix<0x3b900000) {        /* |x|<2**-70, return -log(|x|) */
          216             if(hx<0) {
          217                 *signgamp = -1;
          218                 return -__ieee754_log(-x);
          219             } else return -__ieee754_log(x);
          220         }
          221         if(hx<0) {
          222             if(ix>=0x43300000)         /* |x|>=2**52, must be -integer */
          223                 return one/zero;
          224             t = sin_pi(x);
          225             if(t==zero) return one/zero; /* -integer */
          226             nadj = __ieee754_log(pi/fabs(t*x));
          227             if(t<zero) *signgamp = -1;
          228             x = -x;
          229         }
          230 
          231     /* purge off 1 and 2 */
          232         if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
          233     /* for x < 2.0 */
          234         else if(ix<0x40000000) {
          235             if(ix<=0x3feccccc) {         /* lgamma(x) = lgamma(x+1)-log(x) */
          236                 r = -__ieee754_log(x);
          237                 if(ix>=0x3FE76944) {y = one-x; i= 0;}
          238                 else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
          239                   else {y = x; i=2;}
          240             } else {
          241                   r = zero;
          242                 if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
          243                 else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
          244                 else {y=x-one;i=2;}
          245             }
          246             switch(i) {
          247               case 0:
          248                 z = y*y;
          249                 p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
          250                 p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
          251                 p  = y*p1+p2;
          252                 r  += (p-0.5*y); break;
          253               case 1:
          254                 z = y*y;
          255                 w = z*y;
          256                 p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));        /* parallel comp */
          257                 p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
          258                 p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
          259                 p  = z*p1-(tt-w*(p2+y*p3));
          260                 r += (tf + p); break;
          261               case 2:
          262                 p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
          263                 p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
          264                 r += (-0.5*y + p1/p2);
          265             }
          266         }
          267         else if(ix<0x40200000) {                         /* x < 8.0 */
          268             i = (int)x;
          269             t = zero;
          270             y = x-(double)i;
          271             p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
          272             q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
          273             r = half*y+p/q;
          274             z = one;        /* lgamma(1+s) = log(s) + lgamma(s) */
          275             switch(i) {
          276             case 7: z *= (y+6.0);        /* FALLTHRU */
          277             case 6: z *= (y+5.0);        /* FALLTHRU */
          278             case 5: z *= (y+4.0);        /* FALLTHRU */
          279             case 4: z *= (y+3.0);        /* FALLTHRU */
          280             case 3: z *= (y+2.0);        /* FALLTHRU */
          281                     r += __ieee754_log(z); break;
          282             }
          283     /* 8.0 <= x < 2**58 */
          284         } else if (ix < 0x43900000) {
          285             t = __ieee754_log(x);
          286             z = one/x;
          287             y = z*z;
          288             w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
          289             r = (x-half)*(t-one)+w;
          290         } else
          291     /* 2**58 <= x <= inf */
          292             r =  x*(__ieee754_log(x)-one);
          293         if(hx<0) r = nadj - r;
          294         return r;
          295 }