e_jnf.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       e_jnf.c (4830B)
       ---
            1 /* e_jnf.c -- float version of e_jn.c.
            2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
            3  */
            4 
            5 /*
            6  * ====================================================
            7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
            8  *
            9  * Developed at SunPro, a Sun Microsystems, Inc. business.
           10  * Permission to use, copy, modify, and distribute this
           11  * software is freely granted, provided that this notice
           12  * is preserved.
           13  * ====================================================
           14  */
           15 
           16 #ifndef lint
           17 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_jnf.c,v 1.8 2002/05/28 18:15:04 alfred Exp $";
           18 #endif
           19 
           20 #include "math.h"
           21 #include "math_private.h"
           22 
           23 static const float
           24 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
           25 two   =  2.0000000000e+00, /* 0x40000000 */
           26 one   =  1.0000000000e+00; /* 0x3F800000 */
           27 
           28 static const float zero  =  0.0000000000e+00;
           29 
           30 float
           31 __ieee754_jnf(int n, float x)
           32 {
           33         int32_t i,hx,ix, sgn;
           34         float a, b, temp, di;
           35         float z, w;
           36 
           37     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
           38      * Thus, J(-n,x) = J(n,-x)
           39      */
           40         GET_FLOAT_WORD(hx,x);
           41         ix = 0x7fffffff&hx;
           42     /* if J(n,NaN) is NaN */
           43         if(ix>0x7f800000) return x+x;
           44         if(n<0){
           45                 n = -n;
           46                 x = -x;
           47                 hx ^= 0x80000000;
           48         }
           49         if(n==0) return(__ieee754_j0f(x));
           50         if(n==1) return(__ieee754_j1f(x));
           51         sgn = (n&1)&(hx>>31);        /* even n -- 0, odd n -- sign(x) */
           52         x = fabsf(x);
           53         if(ix==0||ix>=0x7f800000)         /* if x is 0 or inf */
           54             b = zero;
           55         else if((float)n<=x) {
           56                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
           57             a = __ieee754_j0f(x);
           58             b = __ieee754_j1f(x);
           59             for(i=1;i<n;i++){
           60                 temp = b;
           61                 b = b*((float)(i+i)/x) - a; /* avoid underflow */
           62                 a = temp;
           63             }
           64         } else {
           65             if(ix<0x30800000) {        /* x < 2**-29 */
           66     /* x is tiny, return the first Taylor expansion of J(n,x)
           67      * J(n,x) = 1/n!*(x/2)^n  - ...
           68      */
           69                 if(n>33)        /* underflow */
           70                     b = zero;
           71                 else {
           72                     temp = x*(float)0.5; b = temp;
           73                     for (a=one,i=2;i<=n;i++) {
           74                         a *= (float)i;                /* a = n! */
           75                         b *= temp;                /* b = (x/2)^n */
           76                     }
           77                     b = b/a;
           78                 }
           79             } else {
           80                 /* use backward recurrence */
           81                 /*                         x      x^2      x^2
           82                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
           83                  *                        2n  - 2(n+1) - 2(n+2)
           84                  *
           85                  *                         1      1        1
           86                  *  (for large x)   =  ----  ------   ------   .....
           87                  *                        2n   2(n+1)   2(n+2)
           88                  *                        -- - ------ - ------ -
           89                  *                         x     x         x
           90                  *
           91                  * Let w = 2n/x and h=2/x, then the above quotient
           92                  * is equal to the continued fraction:
           93                  *                    1
           94                  *        = -----------------------
           95                  *                       1
           96                  *           w - -----------------
           97                  *                          1
           98                  *                 w+h - ---------
           99                  *                       w+2h - ...
          100                  *
          101                  * To determine how many terms needed, let
          102                  * Q(0) = w, Q(1) = w(w+h) - 1,
          103                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
          104                  * When Q(k) > 1e4        good for single
          105                  * When Q(k) > 1e9        good for double
          106                  * When Q(k) > 1e17        good for quadruple
          107                  */
          108             /* determine k */
          109                 float t,v;
          110                 float q0,q1,h,tmp; int32_t k,m;
          111                 w  = (n+n)/(float)x; h = (float)2.0/(float)x;
          112                 q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
          113                 while(q1<(float)1.0e9) {
          114                         k += 1; z += h;
          115                         tmp = z*q1 - q0;
          116                         q0 = q1;
          117                         q1 = tmp;
          118                 }
          119                 m = n+n;
          120                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
          121                 a = t;
          122                 b = one;
          123                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
          124                  *  Hence, if n*(log(2n/x)) > ...
          125                  *  single 8.8722839355e+01
          126                  *  double 7.09782712893383973096e+02
          127                  *  long double 1.1356523406294143949491931077970765006170e+04
          128                  *  then recurrent value may overflow and the result is
          129                  *  likely underflow to zero
          130                  */
          131                 tmp = n;
          132                 v = two/x;
          133                 tmp = tmp*__ieee754_logf(fabsf(v*tmp));
          134                 if(tmp<(float)8.8721679688e+01) {
          135                         for(i=n-1,di=(float)(i+i);i>0;i--){
          136                         temp = b;
          137                         b *= di;
          138                         b  = b/x - a;
          139                         a = temp;
          140                         di -= two;
          141                          }
          142                 } else {
          143                         for(i=n-1,di=(float)(i+i);i>0;i--){
          144                         temp = b;
          145                         b *= di;
          146                         b  = b/x - a;
          147                         a = temp;
          148                         di -= two;
          149                     /* scale b to avoid spurious overflow */
          150                         if(b>(float)1e10) {
          151                             a /= b;
          152                             t /= b;
          153                             b  = one;
          154                         }
          155                          }
          156                 }
          157                     b = (t*__ieee754_j0f(x)/b);
          158             }
          159         }
          160         if(sgn==1) return -b; else return b;
          161 }
          162 
          163 float
          164 __ieee754_ynf(int n, float x)
          165 {
          166         int32_t i,hx,ix,ib;
          167         int32_t sign;
          168         float a, b, temp;
          169 
          170         GET_FLOAT_WORD(hx,x);
          171         ix = 0x7fffffff&hx;
          172     /* if Y(n,NaN) is NaN */
          173         if(ix>0x7f800000) return x+x;
          174         if(ix==0) return -one/zero;
          175         if(hx<0) return zero/zero;
          176         sign = 1;
          177         if(n<0){
          178                 n = -n;
          179                 sign = 1 - ((n&1)<<1);
          180         }
          181         if(n==0) return(__ieee754_y0f(x));
          182         if(n==1) return(sign*__ieee754_y1f(x));
          183         if(ix==0x7f800000) return zero;
          184 
          185         a = __ieee754_y0f(x);
          186         b = __ieee754_y1f(x);
          187         /* quit if b is -inf */
          188         GET_FLOAT_WORD(ib,b);
          189         for(i=1;i<n&&ib!=0xff800000;i++){
          190             temp = b;
          191             b = ((float)(i+i)/x)*b - a;
          192             GET_FLOAT_WORD(ib,b);
          193             a = temp;
          194         }
          195         if(sign>0) return b; else return -b;
          196 }