e_jn.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       e_jn.c (7109B)
       ---
            1 /* @(#)e_jn.c 5.1 93/09/24 */
            2 /*
            3  * ====================================================
            4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
            5  *
            6  * Developed at SunPro, a Sun Microsystems, Inc. business.
            7  * Permission to use, copy, modify, and distribute this
            8  * software is freely granted, provided that this notice
            9  * is preserved.
           10  * ====================================================
           11  */
           12 
           13 #ifndef lint
           14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_jn.c,v 1.8 2002/05/28 18:15:04 alfred Exp $";
           15 #endif
           16 
           17 /*
           18  * __ieee754_jn(n, x), __ieee754_yn(n, x)
           19  * floating point Bessel's function of the 1st and 2nd kind
           20  * of order n
           21  *
           22  * Special cases:
           23  *        y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
           24  *        y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
           25  * Note 2. About jn(n,x), yn(n,x)
           26  *        For n=0, j0(x) is called,
           27  *        for n=1, j1(x) is called,
           28  *        for n<x, forward recursion us used starting
           29  *        from values of j0(x) and j1(x).
           30  *        for n>x, a continued fraction approximation to
           31  *        j(n,x)/j(n-1,x) is evaluated and then backward
           32  *        recursion is used starting from a supposed value
           33  *        for j(n,x). The resulting value of j(0,x) is
           34  *        compared with the actual value to correct the
           35  *        supposed value of j(n,x).
           36  *
           37  *        yn(n,x) is similar in all respects, except
           38  *        that forward recursion is used for all
           39  *        values of n>1.
           40  *
           41  */
           42 
           43 #include "math.h"
           44 #include "math_private.h"
           45 
           46 static const double
           47 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
           48 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
           49 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
           50 
           51 static const double zero  =  0.00000000000000000000e+00;
           52 
           53 double
           54 __ieee754_jn(int n, double x)
           55 {
           56         int32_t i,hx,ix,lx, sgn;
           57         double a, b, temp, di;
           58         double z, w;
           59 
           60     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
           61      * Thus, J(-n,x) = J(n,-x)
           62      */
           63         EXTRACT_WORDS(hx,lx,x);
           64         ix = 0x7fffffff&hx;
           65     /* if J(n,NaN) is NaN */
           66         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
           67         if(n<0){
           68                 n = -n;
           69                 x = -x;
           70                 hx ^= 0x80000000;
           71         }
           72         if(n==0) return(__ieee754_j0(x));
           73         if(n==1) return(__ieee754_j1(x));
           74         sgn = (n&1)&(hx>>31);        /* even n -- 0, odd n -- sign(x) */
           75         x = fabs(x);
           76         if((ix|lx)==0||ix>=0x7ff00000)         /* if x is 0 or inf */
           77             b = zero;
           78         else if((double)n<=x) {
           79                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
           80             if(ix>=0x52D00000) { /* x > 2**302 */
           81     /* (x >> n**2)
           82      *            Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
           83      *            Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
           84      *            Let s=sin(x), c=cos(x),
           85      *                xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
           86      *
           87      *                   n        sin(xn)*sqt2        cos(xn)*sqt2
           88      *                ----------------------------------
           89      *                   0         s-c                 c+s
           90      *                   1        -s-c                 -c+s
           91      *                   2        -s+c                -c-s
           92      *                   3         s+c                 c-s
           93      */
           94                 switch(n&3) {
           95                     case 0: temp =  cos(x)+sin(x); break;
           96                     case 1: temp = -cos(x)+sin(x); break;
           97                     case 2: temp = -cos(x)-sin(x); break;
           98                     case 3: temp =  cos(x)-sin(x); break;
           99                 }
          100                 b = invsqrtpi*temp/sqrt(x);
          101             } else {
          102                 a = __ieee754_j0(x);
          103                 b = __ieee754_j1(x);
          104                 for(i=1;i<n;i++){
          105                     temp = b;
          106                     b = b*((double)(i+i)/x) - a; /* avoid underflow */
          107                     a = temp;
          108                 }
          109             }
          110         } else {
          111             if(ix<0x3e100000) {        /* x < 2**-29 */
          112     /* x is tiny, return the first Taylor expansion of J(n,x)
          113      * J(n,x) = 1/n!*(x/2)^n  - ...
          114      */
          115                 if(n>33)        /* underflow */
          116                     b = zero;
          117                 else {
          118                     temp = x*0.5; b = temp;
          119                     for (a=one,i=2;i<=n;i++) {
          120                         a *= (double)i;                /* a = n! */
          121                         b *= temp;                /* b = (x/2)^n */
          122                     }
          123                     b = b/a;
          124                 }
          125             } else {
          126                 /* use backward recurrence */
          127                 /*                         x      x^2      x^2
          128                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
          129                  *                        2n  - 2(n+1) - 2(n+2)
          130                  *
          131                  *                         1      1        1
          132                  *  (for large x)   =  ----  ------   ------   .....
          133                  *                        2n   2(n+1)   2(n+2)
          134                  *                        -- - ------ - ------ -
          135                  *                         x     x         x
          136                  *
          137                  * Let w = 2n/x and h=2/x, then the above quotient
          138                  * is equal to the continued fraction:
          139                  *                    1
          140                  *        = -----------------------
          141                  *                       1
          142                  *           w - -----------------
          143                  *                          1
          144                  *                 w+h - ---------
          145                  *                       w+2h - ...
          146                  *
          147                  * To determine how many terms needed, let
          148                  * Q(0) = w, Q(1) = w(w+h) - 1,
          149                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
          150                  * When Q(k) > 1e4        good for single
          151                  * When Q(k) > 1e9        good for double
          152                  * When Q(k) > 1e17        good for quadruple
          153                  */
          154             /* determine k */
          155                 double t,v;
          156                 double q0,q1,h,tmp; int32_t k,m;
          157                 w  = (n+n)/(double)x; h = 2.0/(double)x;
          158                 q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
          159                 while(q1<1.0e9) {
          160                         k += 1; z += h;
          161                         tmp = z*q1 - q0;
          162                         q0 = q1;
          163                         q1 = tmp;
          164                 }
          165                 m = n+n;
          166                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
          167                 a = t;
          168                 b = one;
          169                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
          170                  *  Hence, if n*(log(2n/x)) > ...
          171                  *  single 8.8722839355e+01
          172                  *  double 7.09782712893383973096e+02
          173                  *  long double 1.1356523406294143949491931077970765006170e+04
          174                  *  then recurrent value may overflow and the result is
          175                  *  likely underflow to zero
          176                  */
          177                 tmp = n;
          178                 v = two/x;
          179                 tmp = tmp*__ieee754_log(fabs(v*tmp));
          180                 if(tmp<7.09782712893383973096e+02) {
          181                         for(i=n-1,di=(double)(i+i);i>0;i--){
          182                         temp = b;
          183                         b *= di;
          184                         b  = b/x - a;
          185                         a = temp;
          186                         di -= two;
          187                          }
          188                 } else {
          189                         for(i=n-1,di=(double)(i+i);i>0;i--){
          190                         temp = b;
          191                         b *= di;
          192                         b  = b/x - a;
          193                         a = temp;
          194                         di -= two;
          195                     /* scale b to avoid spurious overflow */
          196                         if(b>1e100) {
          197                             a /= b;
          198                             t /= b;
          199                             b  = one;
          200                         }
          201                          }
          202                 }
          203                     b = (t*__ieee754_j0(x)/b);
          204             }
          205         }
          206         if(sgn==1) return -b; else return b;
          207 }
          208 
          209 double
          210 __ieee754_yn(int n, double x)
          211 {
          212         int32_t i,hx,ix,lx;
          213         int32_t sign;
          214         double a, b, temp;
          215 
          216         EXTRACT_WORDS(hx,lx,x);
          217         ix = 0x7fffffff&hx;
          218     /* if Y(n,NaN) is NaN */
          219         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
          220         if((ix|lx)==0) return -one/zero;
          221         if(hx<0) return zero/zero;
          222         sign = 1;
          223         if(n<0){
          224                 n = -n;
          225                 sign = 1 - ((n&1)<<1);
          226         }
          227         if(n==0) return(__ieee754_y0(x));
          228         if(n==1) return(sign*__ieee754_y1(x));
          229         if(ix==0x7ff00000) return zero;
          230         if(ix>=0x52D00000) { /* x > 2**302 */
          231     /* (x >> n**2)
          232      *            Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
          233      *            Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
          234      *            Let s=sin(x), c=cos(x),
          235      *                xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
          236      *
          237      *                   n        sin(xn)*sqt2        cos(xn)*sqt2
          238      *                ----------------------------------
          239      *                   0         s-c                 c+s
          240      *                   1        -s-c                 -c+s
          241      *                   2        -s+c                -c-s
          242      *                   3         s+c                 c-s
          243      */
          244                 switch(n&3) {
          245                     case 0: temp =  sin(x)-cos(x); break;
          246                     case 1: temp = -sin(x)-cos(x); break;
          247                     case 2: temp = -sin(x)+cos(x); break;
          248                     case 3: temp =  sin(x)+cos(x); break;
          249                 }
          250                 b = invsqrtpi*temp/sqrt(x);
          251         } else {
          252             u_int32_t high;
          253             a = __ieee754_y0(x);
          254             b = __ieee754_y1(x);
          255         /* quit if b is -inf */
          256             GET_HIGH_WORD(high,b);
          257             for(i=1;i<n&&high!=0xfff00000;i++){
          258                 temp = b;
          259                 b = ((double)(i+i)/x)*b - a;
          260                 GET_HIGH_WORD(high,b);
          261                 a = temp;
          262             }
          263         }
          264         if(sign>0) return b; else return -b;
          265 }