e_j1f.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       e_j1f.c (10208B)
       ---
            1 /* e_j1f.c -- float version of e_j1.c.
            2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
            3  */
            4 
            5 /*
            6  * ====================================================
            7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
            8  *
            9  * Developed at SunPro, a Sun Microsystems, Inc. business.
           10  * Permission to use, copy, modify, and distribute this
           11  * software is freely granted, provided that this notice
           12  * is preserved.
           13  * ====================================================
           14  */
           15 
           16 #ifndef lint
           17 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_j1f.c,v 1.7 2002/05/28 18:15:04 alfred Exp $";
           18 #endif
           19 
           20 #include "math.h"
           21 #include "math_private.h"
           22 
           23 static float ponef(float), qonef(float);
           24 
           25 static const float
           26 huge    = 1e30,
           27 one        = 1.0,
           28 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
           29 tpi      =  6.3661974669e-01, /* 0x3f22f983 */
           30         /* R0/S0 on [0,2] */
           31 r00  = -6.2500000000e-02, /* 0xbd800000 */
           32 r01  =  1.4070566976e-03, /* 0x3ab86cfd */
           33 r02  = -1.5995563444e-05, /* 0xb7862e36 */
           34 r03  =  4.9672799207e-08, /* 0x335557d2 */
           35 s01  =  1.9153760746e-02, /* 0x3c9ce859 */
           36 s02  =  1.8594678841e-04, /* 0x3942fab6 */
           37 s03  =  1.1771846857e-06, /* 0x359dffc2 */
           38 s04  =  5.0463624390e-09, /* 0x31ad6446 */
           39 s05  =  1.2354227016e-11; /* 0x2d59567e */
           40 
           41 static const float zero    = 0.0;
           42 
           43 float
           44 __ieee754_j1f(float x)
           45 {
           46         float z, s,c,ss,cc,r,u,v,y;
           47         int32_t hx,ix;
           48 
           49         GET_FLOAT_WORD(hx,x);
           50         ix = hx&0x7fffffff;
           51         if(ix>=0x7f800000) return one/x;
           52         y = fabsf(x);
           53         if(ix >= 0x40000000) {        /* |x| >= 2.0 */
           54                 s = sinf(y);
           55                 c = cosf(y);
           56                 ss = -s-c;
           57                 cc = s-c;
           58                 if(ix<0x7f000000) {  /* make sure y+y not overflow */
           59                     z = cosf(y+y);
           60                     if ((s*c)>zero) cc = z/ss;
           61                     else             ss = z/cc;
           62                 }
           63         /*
           64          * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
           65          * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
           66          */
           67                 if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(y);
           68                 else {
           69                     u = ponef(y); v = qonef(y);
           70                     z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
           71                 }
           72                 if(hx<0) return -z;
           73                 else           return  z;
           74         }
           75         if(ix<0x32000000) {        /* |x|<2**-27 */
           76             if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
           77         }
           78         z = x*x;
           79         r =  z*(r00+z*(r01+z*(r02+z*r03)));
           80         s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
           81         r *= x;
           82         return(x*(float)0.5+r/s);
           83 }
           84 
           85 static const float U0[5] = {
           86  -1.9605709612e-01, /* 0xbe48c331 */
           87   5.0443872809e-02, /* 0x3d4e9e3c */
           88  -1.9125689287e-03, /* 0xbafaaf2a */
           89   2.3525259166e-05, /* 0x37c5581c */
           90  -9.1909917899e-08, /* 0xb3c56003 */
           91 };
           92 static const float V0[5] = {
           93   1.9916731864e-02, /* 0x3ca3286a */
           94   2.0255257550e-04, /* 0x3954644b */
           95   1.3560879779e-06, /* 0x35b602d4 */
           96   6.2274145840e-09, /* 0x31d5f8eb */
           97   1.6655924903e-11, /* 0x2d9281cf */
           98 };
           99 
          100 float
          101 __ieee754_y1f(float x)
          102 {
          103         float z, s,c,ss,cc,u,v;
          104         int32_t hx,ix;
          105 
          106         GET_FLOAT_WORD(hx,x);
          107         ix = 0x7fffffff&hx;
          108     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
          109         if(ix>=0x7f800000) return  one/(x+x*x);
          110         if(ix==0) return -one/zero;
          111         if(hx<0) return zero/zero;
          112         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
          113                 s = sinf(x);
          114                 c = cosf(x);
          115                 ss = -s-c;
          116                 cc = s-c;
          117                 if(ix<0x7f000000) {  /* make sure x+x not overflow */
          118                     z = cosf(x+x);
          119                     if ((s*c)>zero) cc = z/ss;
          120                     else            ss = z/cc;
          121                 }
          122         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
          123          * where x0 = x-3pi/4
          124          *      Better formula:
          125          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
          126          *                      =  1/sqrt(2) * (sin(x) - cos(x))
          127          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
          128          *                      = -1/sqrt(2) * (cos(x) + sin(x))
          129          * To avoid cancellation, use
          130          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
          131          * to compute the worse one.
          132          */
          133                 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x);
          134                 else {
          135                     u = ponef(x); v = qonef(x);
          136                     z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
          137                 }
          138                 return z;
          139         }
          140         if(ix<=0x24800000) {    /* x < 2**-54 */
          141             return(-tpi/x);
          142         }
          143         z = x*x;
          144         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
          145         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
          146         return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
          147 }
          148 
          149 /* For x >= 8, the asymptotic expansions of pone is
          150  *        1 + 15/128 s^2 - 4725/2^15 s^4 - ...,        where s = 1/x.
          151  * We approximate pone by
          152  *         pone(x) = 1 + (R/S)
          153  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
          154  *           S = 1 + ps0*s^2 + ... + ps4*s^10
          155  * and
          156  *        | pone(x)-1-R/S | <= 2  ** ( -60.06)
          157  */
          158 
          159 static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
          160   0.0000000000e+00, /* 0x00000000 */
          161   1.1718750000e-01, /* 0x3df00000 */
          162   1.3239480972e+01, /* 0x4153d4ea */
          163   4.1205184937e+02, /* 0x43ce06a3 */
          164   3.8747453613e+03, /* 0x45722bed */
          165   7.9144794922e+03, /* 0x45f753d6 */
          166 };
          167 static const float ps8[5] = {
          168   1.1420736694e+02, /* 0x42e46a2c */
          169   3.6509309082e+03, /* 0x45642ee5 */
          170   3.6956207031e+04, /* 0x47105c35 */
          171   9.7602796875e+04, /* 0x47bea166 */
          172   3.0804271484e+04, /* 0x46f0a88b */
          173 };
          174 
          175 static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
          176   1.3199052094e-11, /* 0x2d68333f */
          177   1.1718749255e-01, /* 0x3defffff */
          178   6.8027510643e+00, /* 0x40d9b023 */
          179   1.0830818176e+02, /* 0x42d89dca */
          180   5.1763616943e+02, /* 0x440168b7 */
          181   5.2871520996e+02, /* 0x44042dc6 */
          182 };
          183 static const float ps5[5] = {
          184   5.9280597687e+01, /* 0x426d1f55 */
          185   9.9140142822e+02, /* 0x4477d9b1 */
          186   5.3532670898e+03, /* 0x45a74a23 */
          187   7.8446904297e+03, /* 0x45f52586 */
          188   1.5040468750e+03, /* 0x44bc0180 */
          189 };
          190 
          191 static const float pr3[6] = {
          192   3.0250391081e-09, /* 0x314fe10d */
          193   1.1718686670e-01, /* 0x3defffab */
          194   3.9329774380e+00, /* 0x407bb5e7 */
          195   3.5119403839e+01, /* 0x420c7a45 */
          196   9.1055007935e+01, /* 0x42b61c2a */
          197   4.8559066772e+01, /* 0x42423c7c */
          198 };
          199 static const float ps3[5] = {
          200   3.4791309357e+01, /* 0x420b2a4d */
          201   3.3676245117e+02, /* 0x43a86198 */
          202   1.0468714600e+03, /* 0x4482dbe3 */
          203   8.9081134033e+02, /* 0x445eb3ed */
          204   1.0378793335e+02, /* 0x42cf936c */
          205 };
          206 
          207 static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
          208   1.0771083225e-07, /* 0x33e74ea8 */
          209   1.1717621982e-01, /* 0x3deffa16 */
          210   2.3685150146e+00, /* 0x401795c0 */
          211   1.2242610931e+01, /* 0x4143e1bc */
          212   1.7693971634e+01, /* 0x418d8d41 */
          213   5.0735230446e+00, /* 0x40a25a4d */
          214 };
          215 static const float ps2[5] = {
          216   2.1436485291e+01, /* 0x41ab7dec */
          217   1.2529022980e+02, /* 0x42fa9499 */
          218   2.3227647400e+02, /* 0x436846c7 */
          219   1.1767937469e+02, /* 0x42eb5bd7 */
          220   8.3646392822e+00, /* 0x4105d590 */
          221 };
          222 
          223         static float ponef(float x)
          224 {
          225         const float *p,*q;
          226         float z,r,s;
          227         int32_t ix;
          228         GET_FLOAT_WORD(ix,x);
          229         ix &= 0x7fffffff;
          230         if(ix>=0x41000000)     {p = pr8; q= ps8;}
          231         else if(ix>=0x40f71c58){p = pr5; q= ps5;}
          232         else if(ix>=0x4036db68){p = pr3; q= ps3;}
          233         else if(ix>=0x40000000){p = pr2; q= ps2;}
          234         z = one/(x*x);
          235         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
          236         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
          237         return one+ r/s;
          238 }
          239 
          240 
          241 /* For x >= 8, the asymptotic expansions of qone is
          242  *        3/8 s - 105/1024 s^3 - ..., where s = 1/x.
          243  * We approximate pone by
          244  *         qone(x) = s*(0.375 + (R/S))
          245  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
          246  *           S = 1 + qs1*s^2 + ... + qs6*s^12
          247  * and
          248  *        | qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
          249  */
          250 
          251 static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
          252   0.0000000000e+00, /* 0x00000000 */
          253  -1.0253906250e-01, /* 0xbdd20000 */
          254  -1.6271753311e+01, /* 0xc1822c8d */
          255  -7.5960174561e+02, /* 0xc43de683 */
          256  -1.1849806641e+04, /* 0xc639273a */
          257  -4.8438511719e+04, /* 0xc73d3683 */
          258 };
          259 static const float qs8[6] = {
          260   1.6139537048e+02, /* 0x43216537 */
          261   7.8253862305e+03, /* 0x45f48b17 */
          262   1.3387534375e+05, /* 0x4802bcd6 */
          263   7.1965775000e+05, /* 0x492fb29c */
          264   6.6660125000e+05, /* 0x4922be94 */
          265  -2.9449025000e+05, /* 0xc88fcb48 */
          266 };
          267 
          268 static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
          269  -2.0897993405e-11, /* 0xadb7d219 */
          270  -1.0253904760e-01, /* 0xbdd1fffe */
          271  -8.0564479828e+00, /* 0xc100e736 */
          272  -1.8366960144e+02, /* 0xc337ab6b */
          273  -1.3731937256e+03, /* 0xc4aba633 */
          274  -2.6124443359e+03, /* 0xc523471c */
          275 };
          276 static const float qs5[6] = {
          277   8.1276550293e+01, /* 0x42a28d98 */
          278   1.9917987061e+03, /* 0x44f8f98f */
          279   1.7468484375e+04, /* 0x468878f8 */
          280   4.9851425781e+04, /* 0x4742bb6d */
          281   2.7948074219e+04, /* 0x46da5826 */
          282  -4.7191835938e+03, /* 0xc5937978 */
          283 };
          284 
          285 static const float qr3[6] = {
          286  -5.0783124372e-09, /* 0xb1ae7d4f */
          287  -1.0253783315e-01, /* 0xbdd1ff5b */
          288  -4.6101160049e+00, /* 0xc0938612 */
          289  -5.7847221375e+01, /* 0xc267638e */
          290  -2.2824453735e+02, /* 0xc3643e9a */
          291  -2.1921012878e+02, /* 0xc35b35cb */
          292 };
          293 static const float qs3[6] = {
          294   4.7665153503e+01, /* 0x423ea91e */
          295   6.7386511230e+02, /* 0x4428775e */
          296   3.3801528320e+03, /* 0x45534272 */
          297   5.5477290039e+03, /* 0x45ad5dd5 */
          298   1.9031191406e+03, /* 0x44ede3d0 */
          299  -1.3520118713e+02, /* 0xc3073381 */
          300 };
          301 
          302 static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
          303  -1.7838172539e-07, /* 0xb43f8932 */
          304  -1.0251704603e-01, /* 0xbdd1f475 */
          305  -2.7522056103e+00, /* 0xc0302423 */
          306  -1.9663616180e+01, /* 0xc19d4f16 */
          307  -4.2325313568e+01, /* 0xc2294d1f */
          308  -2.1371921539e+01, /* 0xc1aaf9b2 */
          309 };
          310 static const float qs2[6] = {
          311   2.9533363342e+01, /* 0x41ec4454 */
          312   2.5298155212e+02, /* 0x437cfb47 */
          313   7.5750280762e+02, /* 0x443d602e */
          314   7.3939318848e+02, /* 0x4438d92a */
          315   1.5594900513e+02, /* 0x431bf2f2 */
          316  -4.9594988823e+00, /* 0xc09eb437 */
          317 };
          318 
          319         static float qonef(float x)
          320 {
          321         const float *p,*q;
          322         float  s,r,z;
          323         int32_t ix;
          324         GET_FLOAT_WORD(ix,x);
          325         ix &= 0x7fffffff;
          326         if(ix>=0x40200000)     {p = qr8; q= qs8;}
          327         else if(ix>=0x40f71c58){p = qr5; q= qs5;}
          328         else if(ix>=0x4036db68){p = qr3; q= qs3;}
          329         else if(ix>=0x40000000){p = qr2; q= qs2;}
          330         z = one/(x*x);
          331         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
          332         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
          333         return ((float).375 + r/s)/x;
          334 }