e_j1.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       e_j1.c (14305B)
       ---
            1 /* @(#)e_j1.c 5.1 93/09/24 */
            2 /*
            3  * ====================================================
            4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
            5  *
            6  * Developed at SunPro, a Sun Microsystems, Inc. business.
            7  * Permission to use, copy, modify, and distribute this
            8  * software is freely granted, provided that this notice
            9  * is preserved.
           10  * ====================================================
           11  */
           12 
           13 #ifndef lint
           14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_j1.c,v 1.7 2002/05/28 18:15:04 alfred Exp $";
           15 #endif
           16 
           17 /* __ieee754_j1(x), __ieee754_y1(x)
           18  * Bessel function of the first and second kinds of order zero.
           19  * Method -- j1(x):
           20  *        1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
           21  *        2. Reduce x to |x| since j1(x)=-j1(-x),  and
           22  *           for x in (0,2)
           23  *                j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
           24  *           (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
           25  *           for x in (2,inf)
           26  *                 j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
           27  *                 y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
           28  *            where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
           29  *           as follow:
           30  *                cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
           31  *                        =  1/sqrt(2) * (sin(x) - cos(x))
           32  *                sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
           33  *                        = -1/sqrt(2) * (sin(x) + cos(x))
           34  *            (To avoid cancellation, use
           35  *                sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
           36  *             to compute the worse one.)
           37  *
           38  *        3 Special cases
           39  *                j1(nan)= nan
           40  *                j1(0) = 0
           41  *                j1(inf) = 0
           42  *
           43  * Method -- y1(x):
           44  *        1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
           45  *        2. For x<2.
           46  *           Since
           47  *                y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
           48  *           therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
           49  *           We use the following function to approximate y1,
           50  *                y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
           51  *           where for x in [0,2] (abs err less than 2**-65.89)
           52  *                U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
           53  *                V(z) = 1  + v0[0]*z + ... + v0[4]*z^5
           54  *           Note: For tiny x, 1/x dominate y1 and hence
           55  *                y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
           56  *        3. For x>=2.
           57  *                 y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
           58  *            where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
           59  *           by method mentioned above.
           60  */
           61 
           62 #include "math.h"
           63 #include "math_private.h"
           64 
           65 static double pone(double), qone(double);
           66 
           67 static const double
           68 huge    = 1e300,
           69 one        = 1.0,
           70 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
           71 tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
           72         /* R0/S0 on [0,2] */
           73 r00  = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
           74 r01  =  1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
           75 r02  = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
           76 r03  =  4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */
           77 s01  =  1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
           78 s02  =  1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
           79 s03  =  1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
           80 s04  =  5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
           81 s05  =  1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
           82 
           83 static const double zero    = 0.0;
           84 
           85 double
           86 __ieee754_j1(double x)
           87 {
           88         double z, s,c,ss,cc,r,u,v,y;
           89         int32_t hx,ix;
           90 
           91         GET_HIGH_WORD(hx,x);
           92         ix = hx&0x7fffffff;
           93         if(ix>=0x7ff00000) return one/x;
           94         y = fabs(x);
           95         if(ix >= 0x40000000) {        /* |x| >= 2.0 */
           96                 s = sin(y);
           97                 c = cos(y);
           98                 ss = -s-c;
           99                 cc = s-c;
          100                 if(ix<0x7fe00000) {  /* make sure y+y not overflow */
          101                     z = cos(y+y);
          102                     if ((s*c)>zero) cc = z/ss;
          103                     else             ss = z/cc;
          104                 }
          105         /*
          106          * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
          107          * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
          108          */
          109                 if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(y);
          110                 else {
          111                     u = pone(y); v = qone(y);
          112                     z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
          113                 }
          114                 if(hx<0) return -z;
          115                 else           return  z;
          116         }
          117         if(ix<0x3e400000) {        /* |x|<2**-27 */
          118             if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
          119         }
          120         z = x*x;
          121         r =  z*(r00+z*(r01+z*(r02+z*r03)));
          122         s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
          123         r *= x;
          124         return(x*0.5+r/s);
          125 }
          126 
          127 static const double U0[5] = {
          128  -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
          129   5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
          130  -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
          131   2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
          132  -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
          133 };
          134 static const double V0[5] = {
          135   1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
          136   2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
          137   1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
          138   6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
          139   1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
          140 };
          141 
          142 double
          143 __ieee754_y1(double x)
          144 {
          145         double z, s,c,ss,cc,u,v;
          146         int32_t hx,ix,lx;
          147 
          148         EXTRACT_WORDS(hx,lx,x);
          149         ix = 0x7fffffff&hx;
          150     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
          151         if(ix>=0x7ff00000) return  one/(x+x*x);
          152         if((ix|lx)==0) return -one/zero;
          153         if(hx<0) return zero/zero;
          154         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
          155                 s = sin(x);
          156                 c = cos(x);
          157                 ss = -s-c;
          158                 cc = s-c;
          159                 if(ix<0x7fe00000) {  /* make sure x+x not overflow */
          160                     z = cos(x+x);
          161                     if ((s*c)>zero) cc = z/ss;
          162                     else            ss = z/cc;
          163                 }
          164         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
          165          * where x0 = x-3pi/4
          166          *      Better formula:
          167          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
          168          *                      =  1/sqrt(2) * (sin(x) - cos(x))
          169          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
          170          *                      = -1/sqrt(2) * (cos(x) + sin(x))
          171          * To avoid cancellation, use
          172          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
          173          * to compute the worse one.
          174          */
          175                 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);
          176                 else {
          177                     u = pone(x); v = qone(x);
          178                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
          179                 }
          180                 return z;
          181         }
          182         if(ix<=0x3c900000) {    /* x < 2**-54 */
          183             return(-tpi/x);
          184         }
          185         z = x*x;
          186         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
          187         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
          188         return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x));
          189 }
          190 
          191 /* For x >= 8, the asymptotic expansions of pone is
          192  *        1 + 15/128 s^2 - 4725/2^15 s^4 - ...,        where s = 1/x.
          193  * We approximate pone by
          194  *         pone(x) = 1 + (R/S)
          195  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
          196  *           S = 1 + ps0*s^2 + ... + ps4*s^10
          197  * and
          198  *        | pone(x)-1-R/S | <= 2  ** ( -60.06)
          199  */
          200 
          201 static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
          202   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
          203   1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
          204   1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
          205   4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
          206   3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
          207   7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
          208 };
          209 static const double ps8[5] = {
          210   1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
          211   3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
          212   3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
          213   9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
          214   3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
          215 };
          216 
          217 static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
          218   1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
          219   1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
          220   6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
          221   1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
          222   5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
          223   5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
          224 };
          225 static const double ps5[5] = {
          226   5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
          227   9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
          228   5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
          229   7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
          230   1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
          231 };
          232 
          233 static const double pr3[6] = {
          234   3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
          235   1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
          236   3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
          237   3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
          238   9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
          239   4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
          240 };
          241 static const double ps3[5] = {
          242   3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
          243   3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
          244   1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
          245   8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
          246   1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
          247 };
          248 
          249 static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
          250   1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
          251   1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
          252   2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
          253   1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
          254   1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
          255   5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
          256 };
          257 static const double ps2[5] = {
          258   2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
          259   1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
          260   2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
          261   1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
          262   8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
          263 };
          264 
          265         static double pone(double x)
          266 {
          267         const double *p,*q;
          268         double z,r,s;
          269         int32_t ix;
          270         GET_HIGH_WORD(ix,x);
          271         ix &= 0x7fffffff;
          272         if(ix>=0x40200000)     {p = pr8; q= ps8;}
          273         else if(ix>=0x40122E8B){p = pr5; q= ps5;}
          274         else if(ix>=0x4006DB6D){p = pr3; q= ps3;}
          275         else if(ix>=0x40000000){p = pr2; q= ps2;}
          276         z = one/(x*x);
          277         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
          278         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
          279         return one+ r/s;
          280 }
          281 
          282 
          283 /* For x >= 8, the asymptotic expansions of qone is
          284  *        3/8 s - 105/1024 s^3 - ..., where s = 1/x.
          285  * We approximate pone by
          286  *         qone(x) = s*(0.375 + (R/S))
          287  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
          288  *           S = 1 + qs1*s^2 + ... + qs6*s^12
          289  * and
          290  *        | qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
          291  */
          292 
          293 static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
          294   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
          295  -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
          296  -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
          297  -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
          298  -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
          299  -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
          300 };
          301 static const double qs8[6] = {
          302   1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
          303   7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
          304   1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
          305   7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
          306   6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
          307  -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
          308 };
          309 
          310 static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
          311  -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
          312  -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
          313  -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
          314  -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
          315  -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
          316  -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
          317 };
          318 static const double qs5[6] = {
          319   8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
          320   1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
          321   1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
          322   4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
          323   2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
          324  -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
          325 };
          326 
          327 static const double qr3[6] = {
          328  -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
          329  -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
          330  -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
          331  -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
          332  -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
          333  -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
          334 };
          335 static const double qs3[6] = {
          336   4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
          337   6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
          338   3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
          339   5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
          340   1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
          341  -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
          342 };
          343 
          344 static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
          345  -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
          346  -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
          347  -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
          348  -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
          349  -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
          350  -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
          351 };
          352 static const double qs2[6] = {
          353   2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
          354   2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
          355   7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
          356   7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
          357   1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
          358  -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
          359 };
          360 
          361         static double qone(double x)
          362 {
          363         const double *p,*q;
          364         double  s,r,z;
          365         int32_t ix;
          366         GET_HIGH_WORD(ix,x);
          367         ix &= 0x7fffffff;
          368         if(ix>=0x40200000)     {p = qr8; q= qs8;}
          369         else if(ix>=0x40122E8B){p = qr5; q= qs5;}
          370         else if(ix>=0x4006DB6D){p = qr3; q= qs3;}
          371         else if(ix>=0x40000000){p = qr2; q= qs2;}
          372         z = one/(x*x);
          373         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
          374         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
          375         return (.375 + r/s)/x;
          376 }