e_j0f.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       e_j0f.c (10517B)
       ---
            1 /* e_j0f.c -- float version of e_j0.c.
            2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
            3  */
            4 
            5 /*
            6  * ====================================================
            7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
            8  *
            9  * Developed at SunPro, a Sun Microsystems, Inc. business.
           10  * Permission to use, copy, modify, and distribute this
           11  * software is freely granted, provided that this notice
           12  * is preserved.
           13  * ====================================================
           14  */
           15 
           16 #ifndef lint
           17 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_j0f.c,v 1.7 2002/05/28 18:15:03 alfred Exp $";
           18 #endif
           19 
           20 #include "math.h"
           21 #include "math_private.h"
           22 
           23 static float pzerof(float), qzerof(float);
           24 
           25 static const float
           26 huge         = 1e30,
           27 one        = 1.0,
           28 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
           29 tpi      =  6.3661974669e-01, /* 0x3f22f983 */
           30                  /* R0/S0 on [0, 2.00] */
           31 R02  =  1.5625000000e-02, /* 0x3c800000 */
           32 R03  = -1.8997929874e-04, /* 0xb947352e */
           33 R04  =  1.8295404516e-06, /* 0x35f58e88 */
           34 R05  = -4.6183270541e-09, /* 0xb19eaf3c */
           35 S01  =  1.5619102865e-02, /* 0x3c7fe744 */
           36 S02  =  1.1692678527e-04, /* 0x38f53697 */
           37 S03  =  5.1354652442e-07, /* 0x3509daa6 */
           38 S04  =  1.1661400734e-09; /* 0x30a045e8 */
           39 
           40 static const float zero = 0.0;
           41 
           42 float
           43 __ieee754_j0f(float x)
           44 {
           45         float z, s,c,ss,cc,r,u,v;
           46         int32_t hx,ix;
           47 
           48         GET_FLOAT_WORD(hx,x);
           49         ix = hx&0x7fffffff;
           50         if(ix>=0x7f800000) return one/(x*x);
           51         x = fabsf(x);
           52         if(ix >= 0x40000000) {        /* |x| >= 2.0 */
           53                 s = sinf(x);
           54                 c = cosf(x);
           55                 ss = s-c;
           56                 cc = s+c;
           57                 if(ix<0x7f000000) {  /* make sure x+x not overflow */
           58                     z = -cosf(x+x);
           59                     if ((s*c)<zero) cc = z/ss;
           60                     else             ss = z/cc;
           61                 }
           62         /*
           63          * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
           64          * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
           65          */
           66                 if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(x);
           67                 else {
           68                     u = pzerof(x); v = qzerof(x);
           69                     z = invsqrtpi*(u*cc-v*ss)/sqrtf(x);
           70                 }
           71                 return z;
           72         }
           73         if(ix<0x39000000) {        /* |x| < 2**-13 */
           74             if(huge+x>one) {        /* raise inexact if x != 0 */
           75                 if(ix<0x32000000) return one;        /* |x|<2**-27 */
           76                 else               return one - (float)0.25*x*x;
           77             }
           78         }
           79         z = x*x;
           80         r =  z*(R02+z*(R03+z*(R04+z*R05)));
           81         s =  one+z*(S01+z*(S02+z*(S03+z*S04)));
           82         if(ix < 0x3F800000) {        /* |x| < 1.00 */
           83             return one + z*((float)-0.25+(r/s));
           84         } else {
           85             u = (float)0.5*x;
           86             return((one+u)*(one-u)+z*(r/s));
           87         }
           88 }
           89 
           90 static const float
           91 u00  = -7.3804296553e-02, /* 0xbd9726b5 */
           92 u01  =  1.7666645348e-01, /* 0x3e34e80d */
           93 u02  = -1.3818567619e-02, /* 0xbc626746 */
           94 u03  =  3.4745343146e-04, /* 0x39b62a69 */
           95 u04  = -3.8140706238e-06, /* 0xb67ff53c */
           96 u05  =  1.9559013964e-08, /* 0x32a802ba */
           97 u06  = -3.9820518410e-11, /* 0xae2f21eb */
           98 v01  =  1.2730483897e-02, /* 0x3c509385 */
           99 v02  =  7.6006865129e-05, /* 0x389f65e0 */
          100 v03  =  2.5915085189e-07, /* 0x348b216c */
          101 v04  =  4.4111031494e-10; /* 0x2ff280c2 */
          102 
          103 float
          104 __ieee754_y0f(float x)
          105 {
          106         float z, s,c,ss,cc,u,v;
          107         int32_t hx,ix;
          108 
          109         GET_FLOAT_WORD(hx,x);
          110         ix = 0x7fffffff&hx;
          111     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
          112         if(ix>=0x7f800000) return  one/(x+x*x);
          113         if(ix==0) return -one/zero;
          114         if(hx<0) return zero/zero;
          115         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
          116         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
          117          * where x0 = x-pi/4
          118          *      Better formula:
          119          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
          120          *                      =  1/sqrt(2) * (sin(x) + cos(x))
          121          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
          122          *                      =  1/sqrt(2) * (sin(x) - cos(x))
          123          * To avoid cancellation, use
          124          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
          125          * to compute the worse one.
          126          */
          127                 s = sinf(x);
          128                 c = cosf(x);
          129                 ss = s-c;
          130                 cc = s+c;
          131         /*
          132          * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
          133          * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
          134          */
          135                 if(ix<0x7f000000) {  /* make sure x+x not overflow */
          136                     z = -cosf(x+x);
          137                     if ((s*c)<zero) cc = z/ss;
          138                     else            ss = z/cc;
          139                 }
          140                 if(ix>0x80000000) z = (invsqrtpi*ss)/sqrtf(x);
          141                 else {
          142                     u = pzerof(x); v = qzerof(x);
          143                     z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
          144                 }
          145                 return z;
          146         }
          147         if(ix<=0x32000000) {        /* x < 2**-27 */
          148             return(u00 + tpi*__ieee754_logf(x));
          149         }
          150         z = x*x;
          151         u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
          152         v = one+z*(v01+z*(v02+z*(v03+z*v04)));
          153         return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
          154 }
          155 
          156 /* The asymptotic expansions of pzero is
          157  *        1 - 9/128 s^2 + 11025/98304 s^4 - ...,        where s = 1/x.
          158  * For x >= 2, We approximate pzero by
          159  *         pzero(x) = 1 + (R/S)
          160  * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
          161  *           S = 1 + pS0*s^2 + ... + pS4*s^10
          162  * and
          163  *        | pzero(x)-1-R/S | <= 2  ** ( -60.26)
          164  */
          165 static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
          166   0.0000000000e+00, /* 0x00000000 */
          167  -7.0312500000e-02, /* 0xbd900000 */
          168  -8.0816707611e+00, /* 0xc1014e86 */
          169  -2.5706311035e+02, /* 0xc3808814 */
          170  -2.4852163086e+03, /* 0xc51b5376 */
          171  -5.2530439453e+03, /* 0xc5a4285a */
          172 };
          173 static const float pS8[5] = {
          174   1.1653436279e+02, /* 0x42e91198 */
          175   3.8337448730e+03, /* 0x456f9beb */
          176   4.0597855469e+04, /* 0x471e95db */
          177   1.1675296875e+05, /* 0x47e4087c */
          178   4.7627726562e+04, /* 0x473a0bba */
          179 };
          180 static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
          181  -1.1412546255e-11, /* 0xad48c58a */
          182  -7.0312492549e-02, /* 0xbd8fffff */
          183  -4.1596107483e+00, /* 0xc0851b88 */
          184  -6.7674766541e+01, /* 0xc287597b */
          185  -3.3123129272e+02, /* 0xc3a59d9b */
          186  -3.4643338013e+02, /* 0xc3ad3779 */
          187 };
          188 static const float pS5[5] = {
          189   6.0753936768e+01, /* 0x42730408 */
          190   1.0512523193e+03, /* 0x44836813 */
          191   5.9789707031e+03, /* 0x45bad7c4 */
          192   9.6254453125e+03, /* 0x461665c8 */
          193   2.4060581055e+03, /* 0x451660ee */
          194 };
          195 
          196 static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
          197  -2.5470459075e-09, /* 0xb12f081b */
          198  -7.0311963558e-02, /* 0xbd8fffb8 */
          199  -2.4090321064e+00, /* 0xc01a2d95 */
          200  -2.1965976715e+01, /* 0xc1afba52 */
          201  -5.8079170227e+01, /* 0xc2685112 */
          202  -3.1447946548e+01, /* 0xc1fb9565 */
          203 };
          204 static const float pS3[5] = {
          205   3.5856033325e+01, /* 0x420f6c94 */
          206   3.6151397705e+02, /* 0x43b4c1ca */
          207   1.1936077881e+03, /* 0x44953373 */
          208   1.1279968262e+03, /* 0x448cffe6 */
          209   1.7358093262e+02, /* 0x432d94b8 */
          210 };
          211 
          212 static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
          213  -8.8753431271e-08, /* 0xb3be98b7 */
          214  -7.0303097367e-02, /* 0xbd8ffb12 */
          215  -1.4507384300e+00, /* 0xbfb9b1cc */
          216  -7.6356959343e+00, /* 0xc0f4579f */
          217  -1.1193166733e+01, /* 0xc1331736 */
          218  -3.2336456776e+00, /* 0xc04ef40d */
          219 };
          220 static const float pS2[5] = {
          221   2.2220300674e+01, /* 0x41b1c32d */
          222   1.3620678711e+02, /* 0x430834f0 */
          223   2.7047027588e+02, /* 0x43873c32 */
          224   1.5387539673e+02, /* 0x4319e01a */
          225   1.4657617569e+01, /* 0x416a859a */
          226 };
          227 
          228         static float pzerof(float x)
          229 {
          230         const float *p,*q;
          231         float z,r,s;
          232         int32_t ix;
          233         GET_FLOAT_WORD(ix,x);
          234         ix &= 0x7fffffff;
          235         if(ix>=0x41000000)     {p = pR8; q= pS8;}
          236         else if(ix>=0x40f71c58){p = pR5; q= pS5;}
          237         else if(ix>=0x4036db68){p = pR3; q= pS3;}
          238         else if(ix>=0x40000000){p = pR2; q= pS2;}
          239         z = one/(x*x);
          240         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
          241         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
          242         return one+ r/s;
          243 }
          244 
          245 
          246 /* For x >= 8, the asymptotic expansions of qzero is
          247  *        -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
          248  * We approximate pzero by
          249  *         qzero(x) = s*(-1.25 + (R/S))
          250  * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
          251  *           S = 1 + qS0*s^2 + ... + qS5*s^12
          252  * and
          253  *        | qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
          254  */
          255 static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
          256   0.0000000000e+00, /* 0x00000000 */
          257   7.3242187500e-02, /* 0x3d960000 */
          258   1.1768206596e+01, /* 0x413c4a93 */
          259   5.5767340088e+02, /* 0x440b6b19 */
          260   8.8591972656e+03, /* 0x460a6cca */
          261   3.7014625000e+04, /* 0x471096a0 */
          262 };
          263 static const float qS8[6] = {
          264   1.6377603149e+02, /* 0x4323c6aa */
          265   8.0983447266e+03, /* 0x45fd12c2 */
          266   1.4253829688e+05, /* 0x480b3293 */
          267   8.0330925000e+05, /* 0x49441ed4 */
          268   8.4050156250e+05, /* 0x494d3359 */
          269  -3.4389928125e+05, /* 0xc8a7eb69 */
          270 };
          271 
          272 static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
          273   1.8408595828e-11, /* 0x2da1ec79 */
          274   7.3242180049e-02, /* 0x3d95ffff */
          275   5.8356351852e+00, /* 0x40babd86 */
          276   1.3511157227e+02, /* 0x43071c90 */
          277   1.0272437744e+03, /* 0x448067cd */
          278   1.9899779053e+03, /* 0x44f8bf4b */
          279 };
          280 static const float qS5[6] = {
          281   8.2776611328e+01, /* 0x42a58da0 */
          282   2.0778142090e+03, /* 0x4501dd07 */
          283   1.8847289062e+04, /* 0x46933e94 */
          284   5.6751113281e+04, /* 0x475daf1d */
          285   3.5976753906e+04, /* 0x470c88c1 */
          286  -5.3543427734e+03, /* 0xc5a752be */
          287 };
          288 
          289 static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
          290   4.3774099900e-09, /* 0x3196681b */
          291   7.3241114616e-02, /* 0x3d95ff70 */
          292   3.3442313671e+00, /* 0x405607e3 */
          293   4.2621845245e+01, /* 0x422a7cc5 */
          294   1.7080809021e+02, /* 0x432acedf */
          295   1.6673394775e+02, /* 0x4326bbe4 */
          296 };
          297 static const float qS3[6] = {
          298   4.8758872986e+01, /* 0x42430916 */
          299   7.0968920898e+02, /* 0x44316c1c */
          300   3.7041481934e+03, /* 0x4567825f */
          301   6.4604252930e+03, /* 0x45c9e367 */
          302   2.5163337402e+03, /* 0x451d4557 */
          303  -1.4924745178e+02, /* 0xc3153f59 */
          304 };
          305 
          306 static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
          307   1.5044444979e-07, /* 0x342189db */
          308   7.3223426938e-02, /* 0x3d95f62a */
          309   1.9981917143e+00, /* 0x3fffc4bf */
          310   1.4495602608e+01, /* 0x4167edfd */
          311   3.1666231155e+01, /* 0x41fd5471 */
          312   1.6252708435e+01, /* 0x4182058c */
          313 };
          314 static const float qS2[6] = {
          315   3.0365585327e+01, /* 0x41f2ecb8 */
          316   2.6934811401e+02, /* 0x4386ac8f */
          317   8.4478375244e+02, /* 0x44533229 */
          318   8.8293585205e+02, /* 0x445cbbe5 */
          319   2.1266638184e+02, /* 0x4354aa98 */
          320  -5.3109550476e+00, /* 0xc0a9f358 */
          321 };
          322 
          323         static float qzerof(float x)
          324 {
          325         const float *p,*q;
          326         float s,r,z;
          327         int32_t ix;
          328         GET_FLOAT_WORD(ix,x);
          329         ix &= 0x7fffffff;
          330         if(ix>=0x41000000)     {p = qR8; q= qS8;}
          331         else if(ix>=0x40f71c58){p = qR5; q= qS5;}
          332         else if(ix>=0x4036db68){p = qR3; q= qS3;}
          333         else if(ix>=0x40000000){p = qR2; q= qS2;}
          334         z = one/(x*x);
          335         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
          336         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
          337         return (-(float).125 + r/s)/x;
          338 }