e_hypot.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       e_hypot.c (3306B)
       ---
            1 /* @(#)e_hypot.c 5.1 93/09/24 */
            2 /*
            3  * ====================================================
            4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
            5  *
            6  * Developed at SunPro, a Sun Microsystems, Inc. business.
            7  * Permission to use, copy, modify, and distribute this
            8  * software is freely granted, provided that this notice
            9  * is preserved.
           10  * ====================================================
           11  */
           12 
           13 #ifndef lint
           14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_hypot.c,v 1.8 2002/05/28 18:15:03 alfred Exp $";
           15 #endif
           16 
           17 /* __ieee754_hypot(x,y)
           18  *
           19  * Method :
           20  *        If (assume round-to-nearest) z=x*x+y*y
           21  *        has error less than sqrt(2)/2 ulp, than
           22  *        sqrt(z) has error less than 1 ulp (exercise).
           23  *
           24  *        So, compute sqrt(x*x+y*y) with some care as
           25  *        follows to get the error below 1 ulp:
           26  *
           27  *        Assume x>y>0;
           28  *        (if possible, set rounding to round-to-nearest)
           29  *        1. if x > 2y  use
           30  *                x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
           31  *        where x1 = x with lower 32 bits cleared, x2 = x-x1; else
           32  *        2. if x <= 2y use
           33  *                t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
           34  *        where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
           35  *        y1= y with lower 32 bits chopped, y2 = y-y1.
           36  *
           37  *        NOTE: scaling may be necessary if some argument is too
           38  *              large or too tiny
           39  *
           40  * Special cases:
           41  *        hypot(x,y) is INF if x or y is +INF or -INF; else
           42  *        hypot(x,y) is NAN if x or y is NAN.
           43  *
           44  * Accuracy:
           45  *         hypot(x,y) returns sqrt(x^2+y^2) with error less
           46  *         than 1 ulps (units in the last place)
           47  */
           48 
           49 #include "math.h"
           50 #include "math_private.h"
           51 
           52 double
           53 __ieee754_hypot(double x, double y)
           54 {
           55         double a=x,b=y,t1,t2,y1,y2,w;
           56         int32_t j,k,ha,hb;
           57 
           58         GET_HIGH_WORD(ha,x);
           59         ha &= 0x7fffffff;
           60         GET_HIGH_WORD(hb,y);
           61         hb &= 0x7fffffff;
           62         if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
           63         SET_HIGH_WORD(a,ha);        /* a <- |a| */
           64         SET_HIGH_WORD(b,hb);        /* b <- |b| */
           65         if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
           66         k=0;
           67         if(ha > 0x5f300000) {        /* a>2**500 */
           68            if(ha >= 0x7ff00000) {        /* Inf or NaN */
           69                u_int32_t low;
           70                w = a+b;                        /* for sNaN */
           71                GET_LOW_WORD(low,a);
           72                if(((ha&0xfffff)|low)==0) w = a;
           73                GET_LOW_WORD(low,b);
           74                if(((hb^0x7ff00000)|low)==0) w = b;
           75                return w;
           76            }
           77            /* scale a and b by 2**-600 */
           78            ha -= 0x25800000; hb -= 0x25800000;        k += 600;
           79            SET_HIGH_WORD(a,ha);
           80            SET_HIGH_WORD(b,hb);
           81         }
           82         if(hb < 0x20b00000) {        /* b < 2**-500 */
           83             if(hb <= 0x000fffff) {        /* subnormal b or 0 */
           84                 u_int32_t low;
           85                 GET_LOW_WORD(low,b);
           86                 if((hb|low)==0) return a;
           87                 t1=0;
           88                 SET_HIGH_WORD(t1,0x7fd00000);        /* t1=2^1022 */
           89                 b *= t1;
           90                 a *= t1;
           91                 k -= 1022;
           92             } else {                /* scale a and b by 2^600 */
           93                 ha += 0x25800000;         /* a *= 2^600 */
           94                 hb += 0x25800000;        /* b *= 2^600 */
           95                 k -= 600;
           96                 SET_HIGH_WORD(a,ha);
           97                 SET_HIGH_WORD(b,hb);
           98             }
           99         }
          100     /* medium size a and b */
          101         w = a-b;
          102         if (w>b) {
          103             t1 = 0;
          104             SET_HIGH_WORD(t1,ha);
          105             t2 = a-t1;
          106             w  = __ieee754_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
          107         } else {
          108             a  = a+a;
          109             y1 = 0;
          110             SET_HIGH_WORD(y1,hb);
          111             y2 = b - y1;
          112             t1 = 0;
          113             SET_HIGH_WORD(t1,ha+0x00100000);
          114             t2 = a - t1;
          115             w  = __ieee754_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
          116         }
          117         if(k!=0) {
          118             u_int32_t high;
          119             t1 = 1.0;
          120             GET_HIGH_WORD(high,t1);
          121             SET_HIGH_WORD(t1,high+(k<<20));
          122             return t1*w;
          123         } else return w;
          124 }