e_exp.c - vx32 - Local 9vx git repository for patches.
 (HTM) git clone git://r-36.net/vx32
 (DIR) Log
 (DIR) Files
 (DIR) Refs
       ---
       e_exp.c (5189B)
       ---
            1 /* @(#)e_exp.c 5.1 93/09/24 */
            2 /*
            3  * ====================================================
            4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
            5  *
            6  * Developed at SunPro, a Sun Microsystems, Inc. business.
            7  * Permission to use, copy, modify, and distribute this
            8  * software is freely granted, provided that this notice
            9  * is preserved.
           10  * ====================================================
           11  */
           12 
           13 #ifndef lint
           14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_exp.c,v 1.9 2003/07/23 04:53:46 peter Exp $";
           15 #endif
           16 
           17 /* __ieee754_exp(x)
           18  * Returns the exponential of x.
           19  *
           20  * Method
           21  *   1. Argument reduction:
           22  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
           23  *        Given x, find r and integer k such that
           24  *
           25  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
           26  *
           27  *      Here r will be represented as r = hi-lo for better
           28  *        accuracy.
           29  *
           30  *   2. Approximation of exp(r) by a special rational function on
           31  *        the interval [0,0.34658]:
           32  *        Write
           33  *            R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
           34  *      We use a special Reme algorithm on [0,0.34658] to generate
           35  *         a polynomial of degree 5 to approximate R. The maximum error
           36  *        of this polynomial approximation is bounded by 2**-59. In
           37  *        other words,
           38  *            R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
           39  *          (where z=r*r, and the values of P1 to P5 are listed below)
           40  *        and
           41  *            |                  5          |     -59
           42  *            | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
           43  *            |                             |
           44  *        The computation of exp(r) thus becomes
           45  *                             2*r
           46  *                exp(r) = 1 + -------
           47  *                              R - r
           48  *                                 r*R1(r)
           49  *                       = 1 + r + ----------- (for better accuracy)
           50  *                                  2 - R1(r)
           51  *        where
           52  *                                 2       4             10
           53  *                R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
           54  *
           55  *   3. Scale back to obtain exp(x):
           56  *        From step 1, we have
           57  *           exp(x) = 2^k * exp(r)
           58  *
           59  * Special cases:
           60  *        exp(INF) is INF, exp(NaN) is NaN;
           61  *        exp(-INF) is 0, and
           62  *        for finite argument, only exp(0)=1 is exact.
           63  *
           64  * Accuracy:
           65  *        according to an error analysis, the error is always less than
           66  *        1 ulp (unit in the last place).
           67  *
           68  * Misc. info.
           69  *        For IEEE double
           70  *            if x >  7.09782712893383973096e+02 then exp(x) overflow
           71  *            if x < -7.45133219101941108420e+02 then exp(x) underflow
           72  *
           73  * Constants:
           74  * The hexadecimal values are the intended ones for the following
           75  * constants. The decimal values may be used, provided that the
           76  * compiler will convert from decimal to binary accurately enough
           77  * to produce the hexadecimal values shown.
           78  */
           79 
           80 #include "math.h"
           81 #include "math_private.h"
           82 
           83 static const double
           84 one        = 1.0,
           85 halF[2]        = {0.5,-0.5,},
           86 huge        = 1.0e+300,
           87 twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
           88 o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
           89 u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
           90 ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
           91              -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
           92 ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
           93              -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
           94 invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
           95 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
           96 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
           97 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
           98 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
           99 P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
          100 
          101 
          102 double
          103 __ieee754_exp(double x)        /* default IEEE double exp */
          104 {
          105         double y,hi=0.0,lo=0.0,c,t;
          106         int32_t k=0,xsb;
          107         u_int32_t hx;
          108 
          109         GET_HIGH_WORD(hx,x);
          110         xsb = (hx>>31)&1;                /* sign bit of x */
          111         hx &= 0x7fffffff;                /* high word of |x| */
          112 
          113     /* filter out non-finite argument */
          114         if(hx >= 0x40862E42) {                        /* if |x|>=709.78... */
          115             if(hx>=0x7ff00000) {
          116                 u_int32_t lx;
          117                 GET_LOW_WORD(lx,x);
          118                 if(((hx&0xfffff)|lx)!=0)
          119                      return x+x;                 /* NaN */
          120                 else return (xsb==0)? x:0.0;        /* exp(+-inf)={inf,0} */
          121             }
          122             if(x > o_threshold) return huge*huge; /* overflow */
          123             if(x < u_threshold) return twom1000*twom1000; /* underflow */
          124         }
          125 
          126     /* argument reduction */
          127         if(hx > 0x3fd62e42) {                /* if  |x| > 0.5 ln2 */
          128             if(hx < 0x3FF0A2B2) {        /* and |x| < 1.5 ln2 */
          129                 hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
          130             } else {
          131                 k  = invln2*x+halF[xsb];
          132                 t  = k;
          133                 hi = x - t*ln2HI[0];        /* t*ln2HI is exact here */
          134                 lo = t*ln2LO[0];
          135             }
          136             x  = hi - lo;
          137         }
          138         else if(hx < 0x3e300000)  {        /* when |x|<2**-28 */
          139             if(huge+x>one) return one+x;/* trigger inexact */
          140         }
          141         else k = 0;
          142 
          143     /* x is now in primary range */
          144         t  = x*x;
          145         c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
          146         if(k==0)         return one-((x*c)/(c-2.0)-x);
          147         else                 y = one-((lo-(x*c)/(2.0-c))-hi);
          148         if(k >= -1021) {
          149             u_int32_t hy;
          150             GET_HIGH_WORD(hy,y);
          151             SET_HIGH_WORD(y,hy+(k<<20));        /* add k to y's exponent */
          152             return y;
          153         } else {
          154             u_int32_t hy;
          155             GET_HIGH_WORD(hy,y);
          156             SET_HIGH_WORD(y,hy+((k+1000)<<20));        /* add k to y's exponent */
          157             return y*twom1000;
          158         }
          159 }