#[1]alternate [2]Edit this page [3]Wikipedia (en) [4]Wikipedia Atom feed [5]Jump to content [ ] Main menu Main menu (BUTTON) move to sidebar (BUTTON) hide Navigation * [6]Main page * [7]Contents * [8]Current events * [9]Random article * [10]About Wikipedia * [11]Contact us * [12]Donate Contribute * [13]Help * [14]Learn to edit * [15]Community portal * [16]Recent changes * [17]Upload file Languages Language links are at the top of the page across from the title. [18]Wikipedia The Free Encyclopedia [19]Search ____________________ Search Go * [20]Create account * [21]Log in [ ] Personal tools * [22]Create account * [23]Log in Pages for logged out editors [24]learn more * [25]Contributions * [26]Talk [ ] Contents (BUTTON) move to sidebar (BUTTON) hide * [27](Top) * [28]1Escape time algorithm (BUTTON) Toggle Escape time algorithm subsection + [29]1.1Unoptimized naïve escape time algorithm + [30]1.2Optimized escape time algorithms + [31]1.3Derivative Bailout or "derbail" * [32]2Coloring algorithms (BUTTON) Toggle Coloring algorithms subsection + [33]2.1Histogram coloring + [34]2.2Continuous (smooth) coloring + [35]2.3Exponentially mapped and cyclic iterations + [36]2.4Passing iterations into a color directly o [37]2.4.1v refers to a normalized exponentially mapped cyclic iter count o [38]2.4.2f(v) refers to the sRGB transfer function + [39]2.5HSV coloring + [40]2.6LCH coloring * [41]3Advanced plotting algorithms (BUTTON) Toggle Advanced plotting algorithms subsection + [42]3.1Distance estimates o [43]3.1.1Exterior distance estimation o [44]3.1.2Interior distance estimation + [45]3.2Cardioid / bulb checking + [46]3.3Periodicity checking + [47]3.4Border tracing / edge checking + [48]3.5Rectangle checking + [49]3.6Symmetry utilization + [50]3.7Multithreading + [51]3.8Perturbation theory and series approximation * [52]4References Toggle the table of contents [ ] Toggle the table of contents Plotting algorithms for the Mandelbrot set [ ] Add languages [53]Add links * [54]Article * [55]Talk [ ] English * [56]Read * [57]Edit * [58]View history [ ] Tools Tools (BUTTON) move to sidebar (BUTTON) hide Actions * [59]Read * [60]Edit * [61]View history General * [62]What links here * [63]Related changes * [64]Upload file * [65]Special pages * [66]Permanent link * [67]Page information * [68]Cite this page * [69]Wikidata item Print/export * [70]Download as PDF * [71]Printable version From Wikipedia, the free encyclopedia Algorithms and methods of plotting the Mandelbrot set on a computing device This reads like a textbook's tone or style may not reflect the [72]encyclopedic tone used on Wikipedia. See Wikipedia's [73]guide to writing better articles for suggestions. (July 2021) ([74]Learn how and when to remove this template message) [75][220px-Fractal-zoom-1-03-Mandelbrot_Buzzsaw.png] Still image of [76]a movie of increasing magnification on 0.001643721971153 − 0.822467633298876i [77][220px-Mandelbrot_sequence_new_still.png] Still image of [78]an animation of increasing magnification There are many programs and [79]algorithms used to plot the [80]Mandelbrot set and other [81]fractals, some of which are described in [82]fractal-generating software. These programs use a variety of algorithms to determine the color of individual [83]pixels efficiently. Escape time algorithm[[84]edit] The simplest algorithm for generating a representation of the Mandelbrot set is known as the "escape time" algorithm. A repeating calculation is performed for each x, y point in the plot area and based on the behavior of that calculation, a color is chosen for that pixel. Unoptimized naïve escape time algorithm[[85]edit] In both the unoptimized and optimized escape time algorithms, the x and y locations of each point are used as starting values in a repeating, or iterating calculation (described in detail below). The result of each iteration is used as the starting values for the next. The values are checked during each iteration to see whether they have reached a critical "escape" condition, or "bailout". If that condition is reached, the calculation is stopped, the pixel is drawn, and the next x, y point is examined. For some starting values, escape occurs quickly, after only a small number of iterations. For starting values very close to but not in the set, it may take hundreds or thousands of iterations to escape. For values within the Mandelbrot set, escape will never occur. The programmer or user must choose how many iterations–or how much "depth"–they wish to examine. The higher the maximal number of iterations, the more detail and subtlety emerge in the final image, but the longer time it will take to calculate the fractal image. Escape conditions can be simple or complex. Because no complex number with a real or imaginary part greater than 2 can be part of the set, a common bailout is to escape when either coefficient exceeds 2. A more computationally complex method that detects escapes sooner, is to compute distance from the origin using the [86]Pythagorean theorem, i.e., to determine the [87]absolute value, or modulus, of the complex number. If this value exceeds 2, or equivalently, when the sum of the squares of the real and imaginary parts exceed 4, the point has reached escape. More computationally intensive rendering variations include the [88]Buddhabrot method, which finds escaping points and plots their iterated coordinates. The color of each point represents how quickly the values reached the escape point. Often black is used to show values that fail to escape before the iteration limit, and gradually brighter colors are used for points that escape. This gives a visual representation of how many cycles were required before reaching the escape condition. To render such an image, the region of the complex plane we are considering is subdivided into a certain number of [89]pixels. To color any such pixel, let [MATH: c {\displaystyle c} :MATH] c be the midpoint of that pixel. We now iterate the critical point 0 under [MATH: P c {\displaystyle P_{c}} :MATH] P_{c} , checking at each step whether the orbit point has modulus larger than 2. When this is the case, we know that [MATH: c {\displaystyle c} :MATH] c does not belong to the Mandelbrot set, and we color our pixel according to the number of iterations used to find out. Otherwise, we keep iterating up to a fixed number of steps, after which we decide that our parameter is "probably" in the Mandelbrot set, or at least very close to it, and color the pixel black. In [90]pseudocode, this algorithm would look as follows. The algorithm does not use complex numbers and manually simulates complex-number operations using two real numbers, for those who do not have a [91]complex data type. The program may be simplified if the programming language includes complex-data-type operations. for each pixel (Px, Py) on the screen do x0 := scaled x coordinate of pixel (scaled to lie in the Mandelbrot X scale (-2.00, 0.47)) y0 := scaled y coordinate of pixel (scaled to lie in the Mandelbrot Y scale (-1.12, 1.12)) x := 0.0 y := 0.0 iteration := 0 max_iteration := 1000 while (x*x + y*y ≤ 2*2 AND iteration < max_iteration) do xtemp := x*x - y*y + x0 y := 2*x*y + y0 x := xtemp iteration := iteration + 1 color := palette[iteration] plot(Px, Py, color) Here, relating the pseudocode to [MATH: c {\displaystyle c} :MATH] c , [MATH: z {\displaystyle z} :MATH] z and [MATH: P c {\displaystyle P_{c}} :MATH] P_{c} : * [MATH: z = x + i y {\displaystyle z=x+iy\ } :MATH] {\displaystyle z=x+iy\ } * [MATH: z 2 = x 2 + 2 i x y {\displaystyle z^{2}=x^{2}+2ixy} :MATH] {\displaystyle z^{2}=x^{2}+2ixy} - [MATH: y 2 {\displaystyle y^{2}\ } :MATH] {\displaystyle y^{2}\ } * [MATH: c = x 0 + i y 0 {\displaystyle c=x_{0}+iy_{0}\ } :MATH] {\displaystyle c=x_{0}+iy_{0}\ } and so, as can be seen in the pseudocode in the computation of x and y: * [MATH: x = R e ( z 2 + c ) = x 2 y 2 + x 0 {\displaystyle x=\mathop {\mathrm {Re} } (z^{2}+c)=x^{2}-y^{2}+x_{0}} :MATH] x={\mathop {\mathrm {Re} }}(z^{2}+c)=x^{2}-y^{2}+x_{0} and [MATH: y = I m ( z 2 + c ) = 2 x y + y 0 . {\displaystyle y=\mathop {\mathrm {Im} } (z^{2}+c)=2xy+y_{0}.\ } :MATH] y={\mathop {\mathrm {Im} }}(z^{2}+c)=2xy+y_{0}.\ To get colorful images of the set, the assignment of a color to each value of the number of executed iterations can be made using one of a variety of functions (linear, exponential, etc.). One practical way, without slowing down calculations, is to use the number of executed iterations as an entry to a [92]palette initialized at startup. If the color table has, for instance, 500 entries, then the color selection is n mod 500, where n is the number of iterations. Optimized escape time algorithms[[93]edit] The code in the previous section uses an unoptimized inner while loop for clarity. In the unoptimized version, one must perform five multiplications per iteration. To reduce the number of multiplications the following code for the inner while loop may be used instead: x2:= 0 y2:= 0 w:= 0 while (x2 + y2 ≤ 4 and iteration < max_iteration) do x:= x2 - y2 + x0 y:= w - x2 - y2 + y0 x2:= x * x y2:= y * y w:= (x + y) * (x + y) iteration:= iteration + 1 The above code works via some algebraic simplification of the complex multiplication: [MATH: ( i y + x ) 2 = y 2 + 2 i y x + x 2 = x 2 y 2 + 2 i y x {\displaystyle {\begin{aligned}(iy+x)^{2}&=-y^{2}+2iyx+x^{2}\\&=x^{2}-y^{2}+2iyx\end{a ligned}}} :MATH] {\displaystyle {\begin{aligned}(iy+x)^{2}&=-y^{2}+2iyx+x^{2}\\&=x^{2}-y^{2}+2iyx\end{a ligned}}} Using the above identity, the number of multiplications can be reduced to three instead of five. The above inner while loop can be further optimized by expanding w to [MATH: w = x 2 + 2 x y + y 2 {\displaystyle w=x^{2}+2xy+y^{2}} :MATH] {\displaystyle w=x^{2}+2xy+y^{2}} Substituting w into [MATH: y = w x 2 y 2 + y 0 {\displaystyle y=w-x^{2}-y^{2}+y_{0}} :MATH] {\displaystyle y=w-x^{2}-y^{2}+y_{0}} yields [MATH: y = 2 x y + y 0 {\displaystyle y=2xy+y_{0}} :MATH] {\displaystyle y=2xy+y_{0}} and hence calculating w is no longer needed. The further optimized pseudocode for the above is: x2:= 0 y2:= 0 while (x2 + y2 ≤ 4 and iteration < max_iteration) do y:= 2 * x * y + y0 x:= x2 - y2 + x0 x2:= x * x y2:= y * y iteration:= iteration + 1 Note that in the above pseudocode, [MATH: 2 x y {\displaystyle 2xy} :MATH] 2xy seems to increase the number of multiplications by 1, but since 2 is the multiplier the code can be optimized via [MATH: ( x + x ) y {\displaystyle (x+x)y} :MATH] {\displaystyle (x+x)y} . Derivative Bailout or "derbail"[[94]edit] [95][379px-Derbail_method_render.png] An example of the fine detail possible with the usage of derbail, rendered with 1024 samples It is common to check the magnitude of z after every iteration, but there is another method we can use that can converge faster and reveal structure within [96]julia sets. Instead of checking if the [97]magnitude of z after every iteration is larger than a given value, we can instead check if the sum of each [98]derivative of z up to the current iteration step is larger than a given bailout value: [MATH: z n := ( 2 z n 1 z n 1 ) + 1 {\displaystyle z_{n}^{\prime }:=(2*z_{n-1}^{\prime }*z_{n-1})+1} :MATH] {\displaystyle z_{n}^{\prime }:=(2*z_{n-1}^{\prime }*z_{n-1})+1} The size of the dbail value can enhance the detail in the structures revealed within the dbail method with very large values. It is possible to find derivatives automatically by leveraging [99]Automatic differentiation and computing the iterations using [100]Dual numbers. [101][253px-Example_of_derbail_precision_issues.png] Hole caused by precision issues Rendering fractals with the derbail technique can often require a large number of samples per pixel, as there can be [102]precision issues which lead to fine detail and can result in [103]noisy images even with [104]samples in the hundreds or thousands. Python code: [105][255px-Derbail.png] Derbail used on a julia set of the burning ship def pixel(x: int, y: int, w: int, h: int) -> int: def magn(a, b): return a * a + b * b dbail = 1e6 ratio = w / h x0 = (((2 * x) / w) - 1) * ratio y0 = ((2 * y) / h) - 1 dx_sum = 0 dy_sum = 0 iters = 0 limit = 1024 while magn(dx_sum, dy_sum) < dbail and iters < limit: xtemp = x * x - y * y + x0 y = 2 * x * y + y0 x = xtemp dx_sum += (dx * x - dy * y) * 2 + 1 dy_sum += (dy * x + dx * y) * 2 iters += 1 return iters Coloring algorithms[[106]edit] In addition to plotting the set, a variety of algorithms have been developed to * efficiently color the set in an aesthetically pleasing way * show structures of the data (scientific visualisation) Histogram coloring[[107]edit] This section needs additional citations for [108]verification. Relevant discussion may be found on the [109]talk page. Please help [110]improve this article by [111]adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (June 2019) ([112]Learn how and when to remove this template message) A more complex coloring method involves using a [113]histogram which pairs each pixel with said pixel's maximum iteration count before escape/bailout. This method will equally distribute colors to the same overall area, and, importantly, is independent of the maximum number of iterations chosen.^[114][1] This algorithm has four passes. The first pass involves calculating the iteration counts associated with each pixel (but without any pixels being plotted). These are stored in an array: IterationCounts[x][y], where x and y are the x and y coordinates of said pixel on the screen respectively. [115]Mandelbrot-no-histogram-coloring-10000-iterations.png [116]Mandelbrot-no-histogram-coloring-1000-iterations.png [117]Mandelbrot-no-histogram-coloring-100-iterations.png [118]Mandelbrot-histogram-10000-iterations.png [119]Mandelbrot-histogram-1000-iterations.png [120]Mandelbrot-histogram-100-iterations.png The top row is a series of plots using the escape time algorithm for 10000, 1000 and 100 maximum iterations per pixel respectively. The bottom row uses the same maximum iteration values but utilizes the histogram coloring method. Notice how little the coloring changes per different maximum iteration counts for the histogram coloring method plots. The first step of the second pass is to create an array of size n, which is the maximum iteration count: NumIterationsPerPixel. Next, one must iterate over the array of pixel-iteration count pairs, IterationCounts[][], and retrieve each pixel's saved iteration count, i, via e.g. i = IterationCounts[x][y]. After each pixel's iteration count i is retrieved, it is necessary to index the NumIterationsPerPixel by i and increment the indexed value (which is initially zero) -- e.g. NumIterationsPerPixel[i] = NumIterationsPerPixel[i] + 1 . for (x = 0; x < width; x++) do for (y = 0; y < height; y++) do i:= IterationCounts[x][y] NumIterationsPerPixel[i]++ The third pass iterates through the NumIterationsPerPixel array and adds up all the stored values, saving them in total. The array index represents the number of pixels that reached that iteration count before bailout. total: = 0 for (i = 0; i < max_iterations; i++) do total += NumIterationsPerPixel[i] After this, the fourth pass begins and all the values in the IterationCounts array are indexed, and, for each iteration count i, associated with each pixel, the count is added to a global sum of all the iteration counts from 1 to i in the NumIterationsPerPixel array . This value is then normalized by dividing the sum by the total value computed earlier. hue[][]:= 0.0 for (x = 0; x < width; x++) do for (y = 0; y < height; y++) do iteration:= IterationCounts[x][y] for (i = 0; i <= iteration; i++) do hue[x][y] += NumIterationsPerPixel[i] / total /* Must be floating-po int division. */ ... color = palette[hue[m, n]] ... Finally, the computed value is used, e.g. as an index to a color palette. This method may be combined with the smooth coloring method below for more aesthetically pleasing images. Continuous (smooth) coloring[[121]edit] This image was rendered with the escape time algorithm. There are very obvious "bands" of color This image was rendered with the normalized iteration count algorithm. The bands of color have been replaced by a smooth gradient. Also, the colors take on the same pattern that would be observed if the escape time algorithm were used. The escape time algorithm is popular for its simplicity. However, it creates bands of color, which, as a type of [122]aliasing, can detract from an image's aesthetic value. This can be improved using an algorithm known as "normalized iteration count",^[123][2]^[124][3] which provides a smooth transition of colors between iterations. The algorithm associates a real number [MATH: ν {\displaystyle \nu } :MATH] \nu with each value of z by using the connection of the iteration number with the [125]potential function. This function is given by [MATH: ϕ ( z ) = lim n ( log | z n | / P n ) , {\displaystyle \phi (z)=\lim _{n\to \infty }(\log |z_{n}|/P^{n}),} :MATH] {\displaystyle \phi (z)=\lim _{n\to \infty }(\log |z_{n}|/P^{n}),} where z[n] is the value after n iterations and P is the power for which z is raised to in the Mandelbrot set equation (z[n+1] = z[n]^P + c, P is generally 2). If we choose a large bailout radius N (e.g., 10^100), we have that [MATH: log | z n | / P n = log ( N ) / P ν ( z ) {\displaystyle \log |z_{n}|/P^{n}=\log(N)/P^{\nu (z)}} :MATH] {\displaystyle \log |z_{n}|/P^{n}=\log(N)/P^{\nu (z)}} for some real number [MATH: ν ( z ) {\displaystyle \nu (z)} :MATH] \nu (z) , and this is [MATH: ν ( z ) = n log P ( log | z n | / log ( N ) ) , {\displaystyle \nu (z)=n-\log _{P}(\log |z_{n}|/\log(N)),} :MATH] {\displaystyle \nu (z)=n-\log _{P}(\log |z_{n}|/\log(N)),} and as n is the first iteration number such that |z[n]| > N, the number we subtract from n is in the interval [0, 1). For the coloring we must have a cyclic scale of colors (constructed mathematically, for instance) and containing H colors numbered from 0 to H − 1 (H = 500, for instance). We multiply the real number [MATH: ν ( z ) {\displaystyle \nu (z)} :MATH] \nu (z) by a fixed real number determining the density of the colors in the picture, take the integral part of this number modulo H, and use it to look up the corresponding color in the color table. For example, modifying the above pseudocode and also using the concept of [126]linear interpolation would yield for each pixel (Px, Py) on the screen do x0:= scaled x coordinate of pixel (scaled to lie in the Mandelbrot X scale ( -2.5, 1)) y0:= scaled y coordinate of pixel (scaled to lie in the Mandelbrot Y scale ( -1, 1)) x:= 0.0 y:= 0.0 iteration:= 0 max_iteration:= 1000 // Here N = 2^8 is chosen as a reasonable bailout radius. while x*x + y*y ≤ (1 << 16) and iteration < max_iteration do xtemp:= x*x - y*y + x0 y:= 2*x*y + y0 x:= xtemp iteration:= iteration + 1 // Used to avoid floating point issues with points inside the set. if iteration < max_iteration then // sqrt of inner term removed using log simplification rules. log_zn:= log(x*x + y*y) / 2 nu:= log(log_zn / log(2)) / log(2) // Rearranging the potential function. // Dividing log_zn by log(2) instead of log(N = 1<<8) // because we want the entire palette to range from the // center to radius 2, NOT our bailout radius. iteration:= iteration + 1 - nu color1:= palette[floor(iteration)] color2:= palette[floor(iteration) + 1] // iteration % 1 = fractional part of iteration. color:= linear_interpolate(color1, color2, iteration % 1) plot(Px, Py, color) Exponentially mapped and cyclic iterations[[127]edit] [128][220px-CyclicColoringLch.png] Exponential Cyclic Coloring in LCH color space with shading Typically when we render a fractal, the range of where colors from a given palette appear along the fractal is static. If we desire to offset the location from the border of the fractal, or adjust their palette to cycle in a specific way, there are a few simple changes we can make when taking the final iteration count before passing it along to choose an item from our palette. When we have obtained the iteration count, we can make the range of colors non-linear. Raising a value normalized to the range [0,1] to a power n, maps a linear range to an exponential range, which in our case can nudge the appearance of colors along the outside of the fractal, and allow us to bring out other colors, or push in the entire palette closer to the border. [MATH: v = ( ( i / m a x i ) S N ) 1.5 mod N {\displaystyle v=((\mathbf {i} /max_{i})^{\mathbf {S} }\mathbf {N} )^{1.5}{\bmod {\mathbf {N} }}} :MATH] {\displaystyle v=((\mathbf {i} /max_{i})^{\mathbf {S} }\mathbf {N} )^{1.5}{\bmod {\mathbf {N} }}} where i is our iteration count after bailout, max_i is our iteration limit, S is the exponent we are raising iters to, and N is the number of items in our palette. This scales the iter count non-linearly and scales the palette to cycle approximately proportionally to the zoom. We can then plug v into whatever algorithm we desire for generating a color. Passing iterations into a color directly[[129]edit] [130][320px-LCH_COLORING.png] Example of exponentially mapped cyclic LCH coloring without shading One thing we may want to consider is avoiding having to deal with a palette or color blending at all. There are actually a handful of methods we can leverage to generate smooth, consistent coloring by constructing the color on the spot. v refers to a normalized exponentially mapped cyclic iter count[[131]edit] f(v) refers to the [132]sRGB transfer function[[133]edit] A naive method for generating a color in this way is by directly scaling v to 255 and passing it into RGB as such rgb = [v * 255, v * 255, v * 255] One flaw with this is that RGB is non-linear due to gamma; consider linear sRGB instead. Going from RGB to sRGB uses an inverse companding function on the channels. This makes the gamma linear, and allows us to properly sum the colors for sampling. srgb = [v * 255, v * 255, v * 255] [134][320px-HSV_Gradient_Example.png] HSV Gradient HSV coloring[[135]edit] HSV Coloring can be accomplished by mapping iter count from [0,max_iter) to [0,360), taking it to the power of 1.5, and then modulo 360. [136]HSV Hue Calculation.png We can then simply take the exponentially mapped iter count into the value and return hsv = [powf((i / max) * 360, 1.5) % 360, 100, (i / max) * 100] This method applies to HSL as well, except we pass a saturation of 50% instead. hsl = [powf((i / max) * 360, 1.5) % 360, 50, (i / max) * 100] [137][320px-LCH_Gradient_Example.png] LCH Gradient LCH coloring[[138]edit] One of the most perceptually uniform coloring methods involves passing in the processed iter count into LCH. If we utilize the exponentially mapped and cyclic method above, we can take the result of that into the Luma and Chroma channels. We can also exponentially map the iter count and scale it to 360, and pass this modulo 360 into the hue. [MATH: x Q + s i = ( i / m a x i ) x v = 1.0 c o s 2 ( π s i ) L = 75 ( 75 v ) C = 28 + ( 75 75 v ) H = ( 360 s i ) 1.5 mod 3 60 {\textstyle {\begin{array}{lcl}x&\in &\mathbb {Q+} \\s_{i}&=&(i/max_{i})^{\mathbf {x} }\\v&=&1.0-cos^{2}(\pi s_{i})\\L&=&75-(75v)\\C&=&28+(75-75v)\\H&=&(360s_{i})^{1.5}{\bmod {3}}60\end{array}}} :MATH] {\textstyle {\begin{array}{lcl}x&\in &\mathbb {Q+} \\s_{i}&=&(i/max_{i})^{\mathbf {x} }\\v&=&1.0-cos^{2}(\pi s_{i})\\L&=&75-(75v)\\C&=&28+(75-75v)\\H&=&(360s_{i})^{1.5}{\bmod {3}}60\end{array}}} One issue we wish to avoid here is out-of-gamut colors. This can be achieved with a little trick based on the change in in-gamut colors relative to luma and chroma. As we increase luma, we need to decrease chroma to stay within gamut. s = iters/max_i; v = 1.0 - powf(cos(pi * s), 2.0); LCH = [75 - (75 * v), 28 + (75 - (75 * v)), powf(360 * s, 1.5) % 360]; Advanced plotting algorithms[[139]edit] In addition to the simple and slow escape time algorithms already discussed, there are many other more advanced algorithms that can be used to speed up the plotting process. Distance estimates[[140]edit] One can compute the [141]distance from point c (in [142]exterior or [143]interior) to nearest point on the [144]boundary of the Mandelbrot set.^[145][4]^[146][5] Exterior distance estimation[[147]edit] The proof of the [148]connectedness of the Mandelbrot set in fact gives a formula for the [149]uniformizing map of the [150]complement of [MATH: M {\displaystyle M} :MATH] M (and the [151]derivative of this map). By the [152]Koebe quarter theorem, one can then estimate the distance between the midpoint of our [153]pixel and the Mandelbrot set up to a factor of 4. In other words, provided that the maximal number of iterations is sufficiently high, one obtains a picture of the Mandelbrot set with the following properties: 1. Every pixel that contains a point of the Mandelbrot set is colored black. 2. Every pixel that is colored black is close to the Mandelbrot set. [154][220px-Demm_2000_Mandelbrot_set.jpg] Exterior distance estimate may be used to color whole complement of Mandelbrot set The upper bound b for the distance estimate of a pixel c (a complex number) from the Mandelbrot set is given by^[155][6]^[156][7]^[157][8] [MATH: b = lim n 2 | P c n ( c ) | ln | P c n ( c ) | | c P c n ( c ) | , {\displaystyle b=\lim _{n\to \infty }{\frac {2\cdot |{P_{c}^{n}(c)|\cdot \ln |{P_{c}^{n}(c)}}|}{|{\frac {\partial }{\partial {c}}}P_{c}^{n}(c)|}},} :MATH] {\displaystyle b=\lim _{n\to \infty }{\frac {2\cdot |{P_{c}^{n}(c)|\cdot \ln |{P_{c}^{n}(c)}}|}{|{\frac {\partial }{\partial {c}}}P_{c}^{n}(c)|}},} where * [MATH: P c ( z ) {\displaystyle P_{c}(z)\,} :MATH] P_{c}(z)\, stands for [158]complex quadratic polynomial * [MATH: P c n ( c ) {\displaystyle P_{c}^{n}(c)} :MATH] P_{c}^{n}(c) stands for n iterations of [MATH: P c ( z ) z {\displaystyle P_{c}(z)\to z} :MATH] P_{c}(z)\to z or [MATH: z 2 + c z {\displaystyle z^{2}+c\to z} :MATH] z^{2}+c\to z , starting with [MATH: z = c {\displaystyle z=c} :MATH] z=c : [MATH: P c 0 ( c ) = c {\displaystyle P_{c}^{0}(c)=c} :MATH] P_{c}^{0}(c)=c , [MATH: P c n + 1 ( c ) = P c n ( c ) 2 + c {\displaystyle P_{c}^{n+1}(c)=P_{c}^{n}(c)^{2}+c} :MATH] P_{c}^{n+1}(c)=P_{c}^{n}(c)^{2}+c ; * [MATH: c P c n ( c ) {\displaystyle {\frac {\partial }{\partial {c}}}P_{c}^{n}(c)} :MATH] {\frac {\partial }{\partial {c}}}P_{c}^{n}(c) is the derivative of [MATH: P c n ( c ) {\displaystyle P_{c}^{n}(c)} :MATH] P_{c}^{n}(c) with respect to c. This derivative can be found by starting with [MATH: c P c 0 ( c ) = 1 {\displaystyle {\frac {\partial }{\partial {c}}}P_{c}^{0}(c)=1} :MATH] {\frac {\partial }{\partial {c}}}P_{c}^{0}(c)=1 and then [MATH: c P c n + 1 ( c ) = 2 P c n ( c ) c P c n ( c ) + 1 {\displaystyle {\frac {\partial }{\partial {c}}}P_{c}^{n+1}(c)=2\cdot {}P_{c}^{n}(c)\cdot {\frac {\partial }{\partial {c}}}P_{c}^{n}(c)+1} :MATH] {\frac {\partial }{\partial {c}}}P_{c}^{n+1}(c)=2\cdot {}P_{c}^{n}(c)\cdot {\frac {\partial }{\partial {c}}}P_{c}^{n}(c)+1 . This can easily be verified by using the chain rule for the derivative. The idea behind this formula is simple: When the [159]equipotential lines for the potential function [MATH: ϕ ( z ) {\displaystyle \phi (z)} :MATH] \phi (z) lie close, the number [MATH: | ϕ ( z ) | {\displaystyle |\phi '(z)|} :MATH] |\phi '(z)| is large, and conversely, therefore the equipotential lines for the function [MATH: ϕ ( z ) / | ϕ ( z ) | {\displaystyle \phi (z)/|\phi '(z)|} :MATH] \phi (z)/|\phi '(z)| should lie approximately regularly. From a mathematician's point of view, this formula only works in limit where n goes to infinity, but very reasonable estimates can be found with just a few additional iterations after the main loop exits. Once b is found, by the Koebe 1/4-theorem, we know that there is no point of the Mandelbrot set with distance from c smaller than b/4. The distance estimation can be used for drawing of the boundary of the Mandelbrot set, see the article [160]Julia set. In this approach, pixels that are sufficiently close to M are drawn using a different color. This creates drawings where the thin "filaments" of the Mandelbrot set can be easily seen. This technique is used to good effect in the B&W images of Mandelbrot sets in the books "The Beauty of Fractals^[161][9]" and "The Science of Fractal Images".^[162][10] Here is a sample B&W image rendered using Distance Estimates: [163][220px-Mandel_zoom_06_double_hook_B%26W_DE.jpg] This is a B&W image of a portion of the Mandelbrot set rendered using Distance Estimates (DE) Distance Estimation can also be used to render [164]3D images of Mandelbrot and Julia sets Interior distance estimation[[165]edit] [166][220px-Mandelbrot_Interior_600.png] Pixels colored according to the estimated interior distance It is also possible to estimate the distance of a limitly periodic (i.e., [167]hyperbolic) point to the boundary of the Mandelbrot set. The upper bound b for the distance estimate is given by^[168][4] [MATH: b = 1 | z P c p ( z 0 ) | 2 | c z P c p ( z 0 ) + z z P c p ( z 0 ) c P c p ( z 0 ) 1 z P c p ( z 0 ) | , {\displaystyle b={\frac {1-\left|{{\frac {\partial }{\partial {z}}}P_{c}^{p}(z_{0})}\right|^{2}}{\left|{{\frac {\partial }{\partial {c}}}{\frac {\partial }{\partial {z}}}P_{c}^{p}(z_{0})+{\frac {\partial }{\partial {z}}}{\frac {\partial }{\partial {z}}}P_{c}^{p}(z_{0}){\frac {{\frac {\partial }{\partial {c}}}P_{c}^{p}(z_{0})}{1-{\frac {\partial }{\partial {z}}}P_{c}^{p}(z_{0})}}}\right|}},} :MATH] {\displaystyle b={\frac {1-\left|{{\frac {\partial }{\partial {z}}}P_{c}^{p}(z_{0})}\right|^{2}}{\left|{{\frac {\partial }{\partial {c}}}{\frac {\partial }{\partial {z}}}P_{c}^{p}(z_{0})+{\frac {\partial }{\partial {z}}}{\frac {\partial }{\partial {z}}}P_{c}^{p}(z_{0}){\frac {{\frac {\partial }{\partial {c}}}P_{c}^{p}(z_{0})}{1-{\frac {\partial }{\partial {z}}}P_{c}^{p}(z_{0})}}}\right|}},} where * [MATH: p {\displaystyle p} :MATH] p is the period, * [MATH: c {\displaystyle c} :MATH] c is the point to be estimated, * [MATH: P c ( z ) {\displaystyle P_{c}(z)} :MATH] P_{c}(z) is the [169]complex quadratic polynomial [MATH: P c ( z ) = z 2 + c {\displaystyle P_{c}(z)=z^{2}+c} :MATH] P_{c}(z)=z^{2}+c * [MATH: P c p ( z 0 ) {\displaystyle P_{c}^{p}(z_{0})} :MATH] P_{c}^{p}(z_{0}) is the [MATH: p {\displaystyle p} :MATH] p -fold iteration of [MATH: P c ( z ) z {\displaystyle P_{c}(z)\to z} :MATH] P_{c}(z)\to z , starting with [MATH: P c 0 ( z ) = z 0 {\displaystyle P_{c}^{0}(z)=z_{0}} :MATH] P_{c}^{0}(z)=z_{0} * [MATH: z 0 {\displaystyle z_{0}} :MATH] z_{0} is any of the [MATH: p {\displaystyle p} :MATH] p points that make the [170]attractor of the iterations of [MATH: P c ( z ) z {\displaystyle P_{c}(z)\to z} :MATH] P_{c}(z)\to z starting with [MATH: P c 0 ( z ) = c {\displaystyle P_{c}^{0}(z)=c} :MATH] P_{c}^{0}(z)=c ; [MATH: z 0 {\displaystyle z_{0}} :MATH] z_{0} satisfies [MATH: z 0 = P c p ( z 0 ) {\displaystyle z_{0}=P_{c}^{p}(z_{0})} :MATH] z_{0}=P_{c}^{p}(z_{0}) , * [MATH: c z P c p ( z 0 ) {\displaystyle {\frac {\partial }{\partial {c}}}{\frac {\partial }{\partial {z}}}P_{c}^{p}(z_{0})} :MATH] {\frac {\partial }{\partial {c}}}{\frac {\partial }{\partial {z}}}P_{c}^{p}(z_{0}) , [MATH: z z P c p ( z 0 ) {\displaystyle {\frac {\partial }{\partial {z}}}{\frac {\partial }{\partial {z}}}P_{c}^{p}(z_{0})} :MATH] {\frac {\partial }{\partial {z}}}{\frac {\partial }{\partial {z}}}P_{c}^{p}(z_{0}) , [MATH: c P c p ( z 0 ) {\displaystyle {\frac {\partial }{\partial {c}}}P_{c}^{p}(z_{0})} :MATH] {\frac {\partial }{\partial {c}}}P_{c}^{p}(z_{0}) and [MATH: z P c p ( z 0 ) {\displaystyle {\frac {\partial }{\partial {z}}}P_{c}^{p}(z_{0})} :MATH] {\frac {\partial }{\partial {z}}}P_{c}^{p}(z_{0}) are various derivatives of [MATH: P c p ( z ) {\displaystyle P_{c}^{p}(z)} :MATH] P_{c}^{p}(z) , evaluated at [MATH: z 0 {\displaystyle z_{0}} :MATH] z_{0} . Analogous to the exterior case, once b is found, we know that all points within the distance of b/4 from c are inside the Mandelbrot set. There are two practical problems with the interior distance estimate: first, we need to find [MATH: z 0 {\displaystyle z_{0}} :MATH] z_{0} precisely, and second, we need to find [MATH: p {\displaystyle p} :MATH] p precisely. The problem with [MATH: z 0 {\displaystyle z_{0}} :MATH] z_{0} is that the convergence to [MATH: z 0 {\displaystyle z_{0}} :MATH] z_{0} by iterating [MATH: P c ( z ) {\displaystyle P_{c}(z)} :MATH] P_{c}(z) requires, theoretically, an infinite number of operations. The problem with any given [MATH: p {\displaystyle p} :MATH] p is that, sometimes, due to rounding errors, a period is falsely identified to be an integer multiple of the real period (e.g., a period of 86 is detected, while the real period is only 43=86/2). In such case, the distance is overestimated, i.e., the reported radius could contain points outside the Mandelbrot set. [171][220px-MandelbrotOrbitInfimum.png] 3D view: smallest absolute value of the orbit of the interior points of the Mandelbrot set Cardioid / bulb checking[[172]edit] One way to improve calculations is to find out beforehand whether the given point lies within the cardioid or in the period-2 bulb. Before passing the complex value through the escape time algorithm, first check that: [MATH: p = ( x 1 4 ) 2 + y 2 {\displaystyle p={\sqrt {\left(x-{\frac {1}{4}}\right)^{2}+y^{2}}}} :MATH] p={\sqrt {\left(x-{\frac {1}{4}}\right)^{2}+y^{2}}} , [MATH: x p 2 p 2 + 1 4 {\displaystyle x\leq p-2p^{2}+{\frac {1}{4}}} :MATH] {\displaystyle x\leq p-2p^{2}+{\frac {1}{4}}} , [MATH: ( x + 1 ) 2 + y 2 1 16 {\displaystyle (x+1)^{2}+y^{2}\leq {\frac {1}{16}}} :MATH] {\displaystyle (x+1)^{2}+y^{2}\leq {\frac {1}{16}}} , where x represents the real value of the point and y the imaginary value. The first two equations determine that the point is within the cardioid, the last the period-2 bulb. The cardioid test can equivalently be performed without the square root: [MATH: q = ( x 1 4 ) 2 + y 2 , {\displaystyle q=\left(x-{\frac {1}{4}}\right)^{2}+y^{2},} :MATH] {\displaystyle q=\left(x-{\frac {1}{4}}\right)^{2}+y^{2},} [MATH: q ( q + ( x 1 4 ) ) 1 4 y 2 . {\displaystyle q\left(q+\left(x-{\frac {1}{4}}\right)\right)\leq {\frac {1}{4}}y^{2}.} :MATH] {\displaystyle q\left(q+\left(x-{\frac {1}{4}}\right)\right)\leq {\frac {1}{4}}y^{2}.} 3rd- and higher-order buds do not have equivalent tests, because they are not perfectly circular.^[173][11] However, it is possible to find whether the points are within circles inscribed within these higher-order bulbs, preventing many, though not all, of the points in the bulb from being iterated. Periodicity checking[[174]edit] To prevent having to do huge numbers of iterations for points inside the set, one can perform periodicity checking, which checks whether a point reached in iterating a pixel has been reached before. If so, the pixel cannot diverge and must be in the set. Periodicity checking is a trade-off, as the need to remember points costs data management instructions and memory, but saves computational instructions. However, checking against only one previous iteration can detect many periods with little performance overhead. For example, within the while loop of the pseudocode above, make the following modifications: xold:= 0 yold:= 0 period:= 0 while (x*x + y*y ≤ 2*2 and iteration < max_iteration) do xtemp:= x*x - y*y + x0 y:= 2*x*y + y0 x:= xtemp iteration:= iteration + 1 if x ≈ xold and y ≈ yold then iteration:= max_iteration /* Set to max for the color plotting */ break /* We are inside the Mandelbrot set, leave the while loop * / period:= period + 1 if period > 20 then period:= 0 xold:= x yold:= y The above code stores away a new x and y value on every 20^th iteration, thus it can detect periods that are up to 20 points long. Border tracing / edge checking[[175]edit] [176][220px-Mandelbrot_DEM_Sobel.png] Edge detection using Sobel filter of hyperbolic components of Mandelbrot set [177]Copyright-problem paste 2.svg This section may have been [178]copied and pasted from another location, possibly in violation of [179]Wikipedia's copyright policy. Please review [180]http://www.reocities.com/CapeCanaveral/5003/mandel.htm ^([181]Copy Vios) and [182]remedy this by editing this article to remove any non-free copyrighted content and attributing free content correctly, or flagging the content for deletion. Please be sure that the supposed source of the copyright violation is not itself a [183]Wikipedia mirror. (July 2022) Because the Mandelbrot set is a [184]simply connected set,^[185][12] any point enclosed by a closed shape whose borders lie entirely within the Mandelbrot set must itself be in the Mandelbrot set. Border tracing works by following the [186]lemniscates of the various iteration levels (colored bands) all around the set, and then filling the entire band at once. This can be a good speed increase, because it means that large numbers of points can be skipped.^[187][13] Note that border tracing can't be used to identify bands of pixels outside the set if the plot computes DE (Distance Estimate) or potential (fractional iteration) values. Border tracing is especially beneficial for skipping large areas of a plot that are parts of the Mandelbrot set (in M), since determining that a pixel is in M requires computing the maximum number of iterations. Below is an example of a Mandelbrot set rendered using border tracing: This is a 400x400 pixel plot using simple escape-time rendering with a maximum iteration count of 1000 iterations. It only had to compute 6.84% of the total iteration count that would have been required without border tracing. It was rendered using a slowed-down rendering engine to make the rendering process slow enough to watch, and took 6.05 seconds to render. The same plot took 117.0 seconds to render with border tracing turned off with the same slowed-down rendering engine. Note that even when the settings are changed to calculate fractional iteration values (which prevents border tracing from tracing non-Mandelbrot points) the border tracing algorithm still renders this plot in 7.10 seconds because identifying Mandelbrot points always requires the maximum number of iterations. The higher the maximum iteration count, the more costly it is to identify Mandelbrot points, and thus the more benefit border tracing provides. That is, even if the outer area uses smooth/continuous coloring then border tracing will still speed up the costly inner area of the Mandelbrot set. Unless the inner area also uses some smooth coloring method, for instance [188]interior distance estimation. Rectangle checking[[189]edit] An older and simpler to implement method than border tracing is to use rectangles. There are several variations of the rectangle method. All of them are slower than border tracing because they end up calculating more pixels. The basic method is to calculate the border pixels of a box of say 8x8 pixels. If the entire box border has the same color, then just fill in the 36 pixels (6x6) inside the box with the same color, instead of calculating them. (Mariani's algorithm.)^[190][14] A faster and slightly more advanced variant is to first calculate a bigger box, say 25x25 pixels. If the entire box border has the same color, then just fill the box with the same color. If not, then split the box into four boxes of 13x13 pixels, reusing the already calculated pixels as outer border, and sharing the inner "cross" pixels between the inner boxes. Again, fill in those boxes that has only one border color. And split those boxes that don't, now into four 7x7 pixel boxes. And then those that "fail" into 4x4 boxes. (Mariani-Silver algorithm.) Even faster is to split the boxes in half instead of into four boxes. Then it might be optimal to use boxes with a 1.4:1 [191]aspect ratio, so they can be split like [192]how A3 papers are folded into A4 and A5 papers. (The DIN approach.) One variant just calculates the corner pixels of each box. However this causes damaged pictures more often than calculating all box border pixels. Thus it only works reasonably well if only small boxes of say 6x6 pixels are used, and no recursing in from bigger boxes. ([193]Fractint method.) As with border tracing, rectangle checking only works on areas with one discrete color. But even if the outer area uses smooth/continuous coloring then rectangle checking will still speed up the costly inner area of the Mandelbrot set. Unless the inner area also uses some smooth coloring method, for instance [194]interior distance estimation. Symmetry utilization[[195]edit] The horizontal symmetry of the Mandelbrot set allows for portions of the rendering process to be skipped upon the presence of the real axis in the final image. However, regardless of the portion that gets mirrored, the same number of points will be rendered. Julia sets have symmetry around the origin. This means that quadrant 1 and quadrant 3 are symmetric, and quadrants 2 and quadrant 4 are symmetric. Supporting symmetry for both Mandelbrot and Julia sets requires handling symmetry differently for the two different types of graphs. Multithreading[[196]edit] Escape-time rendering of Mandelbrot and Julia sets lends itself extremely well to parallel processing. On multi-core machines the area to be plotted can be divided into a series of rectangular areas which can then be provided as a set of tasks to be rendered by a pool of rendering threads. This is an [197]embarrassingly parallel^[198][15] computing problem. (Note that one gets the best speed-up by first excluding symmetric areas of the plot, and then dividing the remaining unique regions into rectangular areas.)^[199][16] Here is a short video showing the Mandelbrot set being rendered using multithreading and symmetry, but without boundary following: This is a short video showing rendering of a Mandelbrot set using multi-threading and symmetry, but with boundary following turned off. Finally, here is a video showing the same Mandelbrot set image being rendered using multithreading, symmetry, and boundary following: This is a short video showing rendering of a Mandelbrot set using boundary following, multi-threading, and symmetry Perturbation theory and series approximation[[200]edit] Very highly magnified images require more than the standard 64–128 or so bits of precision that most hardware [201]floating-point units provide, requiring renderers to use slow "BigNum" or "[202]arbitrary-precision" math libraries to calculate. However, this can be sped up by the exploitation of [203]perturbation theory. Given [MATH: z n + 1 = z n 2 + c {\displaystyle z_{n+1}=z_{n}^{2}+c} :MATH] z_{n+1}=z_{n}^{2}+c as the iteration, and a small epsilon and delta, it is the case that [MATH: ( z n + ϵ ) 2 + ( c + δ ) = z n 2 + 2 z n ϵ + ϵ 2 + c + δ , {\displaystyle (z_{n}+\epsilon )^{2}+(c+\delta )=z_{n}^{2}+2z_{n}\epsilon +\epsilon ^{2}+c+\delta ,} :MATH] {\displaystyle (z_{n}+\epsilon )^{2}+(c+\delta )=z_{n}^{2}+2z_{n}\epsilon +\epsilon ^{2}+c+\delta ,} or [MATH: = z n + 1 + 2 z n ϵ + ϵ 2 + δ , {\displaystyle =z_{n+1}+2z_{n}\epsilon +\epsilon ^{2}+\delta ,} :MATH] {\displaystyle =z_{n+1}+2z_{n}\epsilon +\epsilon ^{2}+\delta ,} so if one defines [MATH: ϵ n + 1 = 2 z n ϵ n + ϵ n 2 + δ , {\displaystyle \epsilon _{n+1}=2z_{n}\epsilon _{n}+\epsilon _{n}^{2}+\delta ,} :MATH] {\displaystyle \epsilon _{n+1}=2z_{n}\epsilon _{n}+\epsilon _{n}^{2}+\delta ,} one can calculate a single point (e.g. the center of an image) using high-precision arithmetic (z), giving a reference orbit, and then compute many points around it in terms of various initial offsets delta plus the above iteration for epsilon, where epsilon-zero is set to 0. For most iterations, epsilon does not need more than 16 significant figures, and consequently hardware floating-point may be used to get a mostly accurate image.^[204][17] There will often be some areas where the orbits of points diverge enough from the reference orbit that extra precision is needed on those points, or else additional local high-precision-calculated reference orbits are needed. By measuring the orbit distance between the reference point and the point calculated with low precision, it can be detected that it is not possible to calculate the point correctly, and the calculation can be stopped. These incorrect points can later be re-calculated e.g. from another closer reference point. Further, it is possible to approximate the starting values for the low-precision points with a truncated [205]Taylor series, which often enables a significant amount of iterations to be skipped.^[206][18] Renderers implementing these techniques are [207]publicly available and offer speedups for highly magnified images by around two orders of magnitude.^[208][19] An alternate explanation of the above: For the central point in the disc [MATH: c {\displaystyle c} :MATH] c and its iterations [MATH: z n {\displaystyle z_{n}} :MATH] {\displaystyle z_{n}} , and an arbitrary point in the disc [MATH: c + δ {\displaystyle c+\delta } :MATH] {\displaystyle c+\delta } and its iterations [MATH: z n {\displaystyle z'_{n}} :MATH] {\displaystyle z'_{n}} , it is possible to define the following iterative relationship: [MATH: z n = z n + ϵ n {\displaystyle z'_{n}=z_{n}+\epsilon _{n}} :MATH] {\displaystyle z'_{n}=z_{n}+\epsilon _{n}} With [MATH: ϵ 1 = δ {\displaystyle \epsilon _{1}=\delta } :MATH] {\displaystyle \epsilon _{1}=\delta } . Successive iterations of [MATH: ϵ n {\displaystyle \epsilon _{n}} :MATH] \epsilon _{n} can be found using the following: [MATH: z n + 1 = z n 2 + ( c + δ ) {\displaystyle z'_{n+1}={z'_{n}}^{2}+(c+\delta )} :MATH] {\displaystyle z'_{n+1}={z'_{n}}^{2}+(c+\delta )} [MATH: z n + 1 = ( z n + ϵ n ) 2 + c + δ {\displaystyle z'_{n+1}=(z_{n}+\epsilon _{n})^{2}+c+\delta } :MATH] {\displaystyle z'_{n+1}=(z_{n}+\epsilon _{n})^{2}+c+\delta } [MATH: z n + 1 = z n 2 + c + 2 z n ϵ n + ϵ n 2 + δ {\displaystyle z'_{n+1}={z_{n}}^{2}+c+2z_{n}\epsilon _{n}+{\epsilon _{n}}^{2}+\delta } :MATH] {\displaystyle z'_{n+1}={z_{n}}^{2}+c+2z_{n}\epsilon _{n}+{\epsilon _{n}}^{2}+\delta } [MATH: z n + 1 = z n + 1 + 2 z n ϵ n + ϵ n 2 + δ {\displaystyle z'_{n+1}=z_{n+1}+2z_{n}\epsilon _{n}+{\epsilon _{n}}^{2}+\delta } :MATH] {\displaystyle z'_{n+1}=z_{n+1}+2z_{n}\epsilon _{n}+{\epsilon _{n}}^{2}+\delta } Now from the original definition: [MATH: z n + 1 = z n + 1 + ϵ n + 1 {\displaystyle z'_{n+1}=z_{n+1}+\epsilon _{n+1}} :MATH] {\displaystyle z'_{n+1}=z_{n+1}+\epsilon _{n+1}} , It follows that: [MATH: ϵ n + 1 = 2 z n ϵ n + ϵ n 2 + δ {\displaystyle \epsilon _{n+1}=2z_{n}\epsilon _{n}+{\epsilon _{n}}^{2}+\delta } :MATH] {\displaystyle \epsilon _{n+1}=2z_{n}\epsilon _{n}+{\epsilon _{n}}^{2}+\delta } As the iterative relationship relates an arbitrary point to the central point by a very small change [MATH: δ {\displaystyle \delta } :MATH] \delta , then most of the iterations of [MATH: ϵ n {\displaystyle \epsilon _{n}} :MATH] \epsilon _{n} are also small and can be calculated using floating point hardware. However, for every arbitrary point in the disc it is possible to calculate a value for a given [MATH: ϵ n {\displaystyle \epsilon _{n}} :MATH] {\displaystyle \epsilon _{n}} without having to iterate through the sequence from [MATH: ϵ 0 {\displaystyle \epsilon _{0}} :MATH] \epsilon_0 , by expressing [MATH: ϵ n {\displaystyle \epsilon _{n}} :MATH] \epsilon _{n} as a power series of [MATH: δ {\displaystyle \delta } :MATH] \delta . [MATH: ϵ n = A n δ + B n δ 2 + C n δ 3 + {\displaystyle \epsilon _{n}=A_{n}\delta +B_{n}\delta ^{2}+C_{n}\delta ^{3}+\dotsc } :MATH] {\displaystyle \epsilon _{n}=A_{n}\delta +B_{n}\delta ^{2}+C_{n}\delta ^{3}+\dotsc } With [MATH: A 1 = 1 , B 1 = 0 , C 1 = 0 , {\displaystyle A_{1}=1,B_{1}=0,C_{1}=0,\dotsc } :MATH] {\displaystyle A_{1}=1,B_{1}=0,C_{1}=0,\dotsc } . Now given the iteration equation of [MATH: ϵ {\displaystyle \epsilon } :MATH] \epsilon , it is possible to calculate the coefficients of the power series for each [MATH: ϵ n {\displaystyle \epsilon _{n}} :MATH] \epsilon _{n} : [MATH: ϵ n + 1 = 2 z n ϵ n + ϵ n 2 + δ {\displaystyle \epsilon _{n+1}=2z_{n}\epsilon _{n}+{\epsilon _{n}}^{2}+\delta } :MATH] {\displaystyle \epsilon _{n+1}=2z_{n}\epsilon _{n}+{\epsilon _{n}}^{2}+\delta } [MATH: ϵ n + 1 = 2 z n ( A n δ + B n δ 2 + C n δ 3 + ) + ( A n δ + B n δ 2 + C n δ 3 + ) 2 + δ {\displaystyle \epsilon _{n+1}=2z_{n}(A_{n}\delta +B_{n}\delta ^{2}+C_{n}\delta ^{3}+\dotsc )+(A_{n}\delta +B_{n}\delta ^{2}+C_{n}\delta ^{3}+\dotsc )^{2}+\delta } :MATH] {\displaystyle \epsilon _{n+1}=2z_{n}(A_{n}\delta +B_{n}\delta ^{2}+C_{n}\delta ^{3}+\dotsc )+(A_{n}\delta +B_{n}\delta ^{2}+C_{n}\delta ^{3}+\dotsc )^{2}+\delta } [MATH: ϵ n + 1 = ( 2 z n A n + 1 ) δ + ( 2 z n B n + A n 2 ) δ 2 + ( 2 z n C n + 2 A n B n ) δ 3 + {\displaystyle \epsilon _{n+1}=(2z_{n}A_{n}+1)\delta +(2z_{n}B_{n}+{A_{n}}^{2})\delta ^{2}+(2z_{n}C_{n}+2A_{n}B_{n})\delta ^{3}+\dotsc } :MATH] {\displaystyle \epsilon _{n+1}=(2z_{n}A_{n}+1)\delta +(2z_{n}B_{n}+{A_{n}}^{2})\delta ^{2}+(2z_{n}C_{n}+2A_{n}B_{n})\delta ^{3}+\dotsc } Therefore, it follows that: [MATH: A n + 1 = 2 z n A n + 1 {\displaystyle A_{n+1}=2z_{n}A_{n}+1} :MATH] {\displaystyle A_{n+1}=2z_{n}A_{n}+1} [MATH: B n + 1 = 2 z n B n + A n 2 {\displaystyle B_{n+1}=2z_{n}B_{n}+{A_{n}}^{2}} :MATH] {\displaystyle B_{n+1}=2z_{n}B_{n}+{A_{n}}^{2}} [MATH: C n + 1 = 2 z n C n + 2 A n B n {\displaystyle C_{n+1}=2z_{n}C_{n}+2A_{n}B_{n}} :MATH] {\displaystyle C_{n+1}=2z_{n}C_{n}+2A_{n}B_{n}} [MATH: {\displaystyle \vdots } :MATH] \vdots The coefficients in the power series can be calculated as iterative series using only values from the central point's iterations [MATH: z {\displaystyle z} :MATH] z , and do not change for any arbitrary point in the disc. If [MATH: δ {\displaystyle \delta } :MATH] \delta is very small, [MATH: ϵ n {\displaystyle \epsilon _{n}} :MATH] \epsilon _{n} should be calculable to sufficient accuracy using only a few terms of the power series. As the Mandelbrot Escape Contours are 'continuous' over the complex plane, if a points escape time has been calculated, then the escape time of that points neighbours should be similar. Interpolation of the neighbouring points should provide a good estimation of where to start in the [MATH: ϵ n {\displaystyle \epsilon _{n}} :MATH] \epsilon _{n} series. Further, separate interpolation of both real axis points and imaginary axis points should provide both an upper and lower bound for the point being calculated. If both results are the same (i.e. both escape or do not escape) then the difference [MATH: Δ n {\displaystyle \Delta n} :MATH] {\displaystyle \Delta n} can be used to recuse until both an upper and lower bound can be established. If floating point hardware can be used to iterate the [MATH: ϵ {\displaystyle \epsilon } :MATH] \epsilon series, then there exists a relation between how many iterations can be achieved in the time it takes to use BigNum software to compute a given [MATH: ϵ n {\displaystyle \epsilon _{n}} :MATH] \epsilon _{n} . If the difference between the bounds is greater than the number of iterations, it is possible to perform binary search using BigNum software, successively halving the gap until it becomes more time efficient to find the escape value using floating point hardware. References[[209]edit] 1. [210]^ [211]"Newbie: How to map colors in the Mandelbrot set?". www.fractalforums.com. May 2007. [212]Archived from the original on 9 September 2022. Retrieved 11 February 2020. 2. [213]^ García, Francisco; Ángel Fernández; Javier Barrallo; Luis Martín. [214]"Coloring Dynamical Systems in the Complex Plane" (PDF). [215]Archived (PDF) from the original on 30 November 2019. Retrieved 21 January 2008. {{[216]cite journal}}: Cite journal requires |journal= ([217]help) 3. [218]^ Linas Vepstas. [219]"Renormalizing the Mandelbrot Escape". [220]Archived from the original on 14 February 2020. Retrieved 11 February 2020. 4. ^ [221]^a [222]^b Albert Lobo. [223]"Interior and exterior distance bounds for the Mandelbrot set". [224]Archived from the original on 9 September 2022. Retrieved 29 April 2021. 5. [225]^ Wilson, Dr. Lindsay Robert (2012). [226]"Distance estimation method for drawing Mandelbrot and Julia sets" (PDF). [227]Archived (PDF) from the original on 3 May 2021. Retrieved 3 May 2021. 6. [228]^ [229]Chéritat, Arnaud (2016). [230]"Boundary detection methods via distance estimators". [231]Archived from the original on 18 December 2022. Retrieved 2 January 2023. 7. [232]^ Christensen, Mikael Hvidtfeldt (2011). [233]"Distance Estimated 3D Fractals (V): The Mandelbulb & Different DE Approximations". [234]Archived from the original on 13 May 2021. Retrieved 10 May 2021. 8. [235]^ Dang, Yumei; [236]Louis Kauffman; [237]Daniel Sandin (2002). "Chapter 3.3: The Distance Estimation Formula". [238]Hypercomplex Iterations: Distance Estimation and Higher Dimensional Fractals (PDF). World Scientific. pp. 17–18. [239]Archived (PDF) from the original on 23 March 2021. Retrieved 29 April 2021. 9. [240]^ Peitgen, Heinz-Otto; Richter Peter (1986). [241]The Beauty of Fractals. Heidelberg: Springer-Verlag. [242]ISBN [243]0-387-15851-0. 10. [244]^ Peitgen, Heinz-Otto; Saupe Dietmar (1988). [245]The Science of Fractal Images. New York: Springer-Verlag. p. 202. [246]ISBN [247]0-387-96608-0. 11. [248]^ [249]"Mandelbrot Bud Maths". [250]Archived from the original on 14 February 2020. Retrieved 11 February 2020. 12. [251]^ Douady, Adrien; Hubbard, John (2009). [252]"Exploring the Mandelbrot set. Exploring the Mandelbrot set. The Orsay Notes". Retrieved 9 April 2023. {{[253]cite journal}}: Cite journal requires |journal= ([254]help) 13. [255]^ [256]"Boundary Tracing Method". Archived from [257]the original on 20 February 2015. 14. [258]^ Dewdney, A. K. (1989). "Computer Recreations, February 1989; A tour of the Mandelbrot set aboard the Mandelbus". Scientific American. p. 111. [259]JSTOR [260]24987149. (subscription required) 15. [261]^ [262]http://courses.cecs.anu.edu.au/courses/COMP4300/lectures/embPa rallel.4u.pdf [263]Archived 27 January 2020 at the [264]Wayback Machine^[[265]bare URL PDF] 16. [266]^ [267]http://cseweb.ucsd.edu/groups/csag/html/teaching/cse160s05/lec tures/Lecture14.pdf [268]Archived 26 January 2020 at the [269]Wayback Machine^[[270]bare URL PDF] 17. [271]^ [272]"Superfractalthing - Arbitrary Precision Mandelbrot Set Rendering in Java". [273]Archived from the original on 30 June 2020. Retrieved 11 February 2020. 18. [274]^ K. I. Martin. [275]"Superfractalthing Maths" (PDF). Archived from [276]the original (PDF) on 28 June 2014. Retrieved 11 February 2020. {{[277]cite journal}}: Cite journal requires |journal= ([278]help) 19. [279]^ [280]"Kalles Fraktaler 2". [281]Archived from the original on 24 February 2020. Retrieved 11 February 2020. * [282]v * [283]t * [284]e [285]Fractals Characteristics * [286]Fractal dimensions + [287]Assouad + [288]Box-counting o [289]Higuchi + [290]Correlation + [291]Hausdorff + [292]Packing + [293]Topological * [294]Recursion * [295]Self-similarity [296]Iterated function system * [297]Barnsley fern * [298]Cantor set * [299]Koch snowflake * [300]Menger sponge * [301]Sierpinski carpet * [302]Sierpinski triangle * [303]Apollonian gasket * [304]Fibonacci word * [305]Space-filling curve + [306]Blancmange curve + [307]De Rham curve o [308]Minkowski + [309]Dragon curve + [310]Hilbert curve + [311]Koch curve + [312]Lévy C curve + [313]Moore curve + [314]Peano curve + [315]Sierpiński curve + [316]Z-order curve * [317]String * [318]T-square * [319]n-flake * [320]Vicsek fractal * [321]Hexaflake * [322]Gosper curve * [323]Pythagoras tree * [324]Weierstrass function [325]Strange attractor * [326]Multifractal system [327]L-system * [328]Fractal canopy * [329]Space-filling curve + [330]H tree [331]Escape-time fractals * [332]Burning Ship fractal * [333]Julia set + [334]Filled + [335]Newton fractal + [336]Douady rabbit * [337]Lyapunov fractal * [338]Mandelbrot set + [339]Misiurewicz point * [340]Multibrot set * [341]Newton fractal * [342]Tricorn * [343]Mandelbox * [344]Mandelbulb [345]Rendering techniques * [346]Buddhabrot * [347]Orbit trap * [348]Pickover stalk [349]Random fractals * [350]Brownian motion + [351]Brownian tree + [352]Brownian motor * [353]Fractal landscape * [354]Lévy flight * [355]Percolation theory * [356]Self-avoiding walk People * [357]Michael Barnsley * [358]Georg Cantor * [359]Bill Gosper * [360]Felix Hausdorff * [361]Desmond Paul Henry * [362]Gaston Julia * [363]Helge von Koch * [364]Paul Lévy * [365]Aleksandr Lyapunov * [366]Benoit Mandelbrot * [367]Hamid Naderi Yeganeh * [368]Lewis Fry Richardson * [369]Wacław Sierpiński Other * "[370]How Long Is the Coast of Britain?" + [371]Coastline paradox * [372]Fractal art * [373]List of fractals by Hausdorff dimension * [374]The Fractal Geometry of Nature (1982 book) * [375]The Beauty of Fractals (1986 book) * [376]Chaos: Making a New Science (1987 book) * [377]Kaleidoscope * [378]Chaos theory * [379]v * [380]t * [381]e [382]Mathematics and art Concepts * [383]Algorithm * [384]Catenary * [385]Fractal * [386]Golden ratio * [387]Hyperboloid structure * [388]Minimal surface * [389]Paraboloid * [390]Perspective + [391]Camera lucida + [392]Camera obscura * [393]Plastic number * [394]Projective geometry * Proportion + [395]Architecture + [396]Human * [397]Symmetry * [398]Tessellation * [399]Wallpaper group [400]Fibonacci word: detail of artwork by Samuel Monnier, 2009 Forms * [401]Algorithmic art * [402]Anamorphic art * [403]Architecture + [404]Geodesic dome + [405]Islamic + [406]Mughal + [407]Pyramid + [408]Vastu shastra * [409]Computer art * [410]Fiber arts * [411]4D art * [412]Fractal art * [413]Islamic geometric patterns + [414]Girih + [415]Jali + [416]Muqarnas + [417]Zellij * [418]Knotting + [419]Celtic knot + [420]Croatian interlace + [421]Interlace * [422]Music * [423]Origami * [424]Sculpture * [425]String art * [426]Tiling Artworks * [427]List of works designed with the golden ratio * [428]Continuum * [429]Mathemalchemy * [430]Mathematica: A World of Numbers... and Beyond * [431]Octacube * [432]Pi * [433]Pi in the Sky [434]Buildings * [435]Cathedral of Saint Mary of the Assumption * [436]Hagia Sophia * [437]Pantheon * [438]Parthenon * [439]Pyramid of Khufu * [440]Sagrada Família * [441]Sydney Opera House * [442]Taj Mahal [443]Artists Renaissance * [444]Paolo Uccello * [445]Piero della Francesca * [446]Leonardo da Vinci + [447]Vitruvian Man * [448]Albrecht Dürer * [449]Parmigianino + [450]Self-portrait in a Convex Mirror 19th–20th Century * [451]William Blake + [452]The Ancient of Days + [453]Newton * [454]Jean Metzinger + [455]Danseuse au café + [456]L'Oiseau bleu * [457]Giorgio de Chirico * [458]Man Ray * [459]M. C. Escher + [460]Circle Limit III + [461]Print Gallery + [462]Relativity + [463]Reptiles + [464]Waterfall * [465]René Magritte + [466]La condition humaine * [467]Salvador Dalí + [468]Crucifixion + [469]The Swallow's Tail * [470]Crockett Johnson Contemporary * [471]Max Bill * [472]Martin and [473]Erik Demaine * [474]Scott Draves * [475]Jan Dibbets * [476]John Ernest * [477]Helaman Ferguson * [478]Peter Forakis * [479]Susan Goldstine * [480]Bathsheba Grossman * [481]George W. Hart * [482]Desmond Paul Henry * [483]Anthony Hill * [484]Charles Jencks + [485]Garden of Cosmic Speculation * [486]Andy Lomas * [487]Robert Longhurst * [488]Jeanette McLeod * [489]Hamid Naderi Yeganeh * [490]István Orosz * [491]Hinke Osinga * [492]Antoine Pevsner * [493]Tony Robbin * [494]Alba Rojo Cama * [495]Reza Sarhangi * [496]Oliver Sin * [497]Hiroshi Sugimoto * [498]Daina Taimiņa * [499]Roman Verostko * [500]Margaret Wertheim Theorists Ancient * [501]Polykleitos + Canon * [502]Vitruvius + [503]De architectura Renaissance * [504]Filippo Brunelleschi * [505]Leon Battista Alberti + [506]De pictura + [507]De re aedificatoria * [508]Piero della Francesca + [509]De prospectiva pingendi * [510]Luca Pacioli + [511]De divina proportione * [512]Leonardo da Vinci + [513]A Treatise on Painting * [514]Albrecht Dürer + Vier Bücher von Menschlicher Proportion * [515]Sebastiano Serlio + Regole generali d'architettura * [516]Andrea Palladio + [517]I quattro libri dell'architettura Romantic * [518]Samuel Colman + Nature's Harmonic Unity * [519]Frederik Macody Lund + Ad Quadratum * [520]Jay Hambidge + The Greek Vase Modern * [521]Owen Jones + [522]The Grammar of Ornament * [523]Ernest Hanbury Hankin + The Drawing of Geometric Patterns in Saracenic Art * [524]G. H. Hardy + [525]A Mathematician's Apology * [526]George David Birkhoff + Aesthetic Measure * [527]Douglas Hofstadter + [528]Gödel, Escher, Bach * [529]Nikos Salingaros + The 'Life' of a Carpet Publications * [530]Journal of Mathematics and the Arts * [531]Lumen Naturae * [532]Making Mathematics with Needlework * [533]Rhythm of Structure * [534]Viewpoints: Mathematical Perspective and Fractal Geometry in Art Organizations * [535]Ars Mathematica * [536]The Bridges Organization * [537]European Society for Mathematics and the Arts * [538]Goudreau Museum of Mathematics in Art and Science * [539]Institute For Figuring * [540]Mathemalchemy * [541]National Museum of Mathematics Related * [542]Droste effect * [543]Mathematical beauty * [544]Patterns in nature * [545]Sacred geometry * [546]Category * [547]v * [548]t * [549]e [550]Visualization of technical information Fields * [551]Biological data visualization * [552]Chemical imaging * [553]Crime mapping * [554]Data visualization * [555]Educational visualization * [556]Flow visualization * [557]Geovisualization * [558]Information visualization * [559]Mathematical visualization * [560]Medical imaging * [561]Molecular graphics * [562]Product visualization * [563]Scientific visualization * [564]Software visualization * [565]Technical drawing * [566]User interface design * [567]Visual culture * [568]Volume visualization Image types * [569]Chart * [570]Diagram * [571]Engineering drawing * [572]Graph of a function * [573]Ideogram * [574]Map * [575]Photograph * [576]Pictogram * [577]Plot * [578]Sankey diagram * [579]Schematic * [580]Skeletal formula * [581]Statistical graphics * [582]Table * [583]Technical drawings * [584]Technical illustration People Pre-19th century * [585]Edmond Halley * [586]Charles-René de Fourcroy * [587]Joseph Priestley * [588]Gaspard Monge 19th century * [589]Charles Dupin * [590]Adolphe Quetelet * [591]André-Michel Guerry * [592]William Playfair * [593]August Kekulé * [594]Charles Joseph Minard * [595]Luigi Perozzo * [596]Francis Amasa Walker * [597]John Venn * [598]Oliver Byrne * [599]Matthew Sankey * [600]Charles Booth * [601]Georg von Mayr * [602]John Snow * [603]Florence Nightingale * [604]Karl Wilhelm Pohlke * [605]Toussaint Loua * [606]Francis Galton Early 20th century * [607]Edward Walter Maunder * [608]Otto Neurath * [609]W. E. B. Du Bois * [610]Henry Gantt * [611]Arthur Lyon Bowley * [612]Howard G. Funkhouser * [613]John B. Peddle * [614]Ejnar Hertzsprung * [615]Henry Norris Russell * [616]Max O. Lorenz * [617]Fritz Kahn * [618]Harry Beck * [619]Erwin Raisz Mid 20th century * [620]Jacques Bertin * [621]Rudolf Modley * [622]Arthur H. Robinson * [623]John Tukey * [624]Mary Eleanor Spear * [625]Edgar Anderson * [626]Howard T. Fisher Late 20th century * [627]Borden Dent * [628]Nigel Holmes * [629]William S. Cleveland * [630]George G. Robertson * [631]Bruce H. McCormick * [632]Catherine Plaisant * [633]Stuart Card * [634]Pat Hanrahan * [635]Edward Tufte * [636]Ben Shneiderman * [637]Michael Friendly * [638]Howard Wainer * [639]Clifford A. Pickover * [640]Lawrence J. Rosenblum * [641]Thomas A. DeFanti * [642]George Furnas * [643]Sheelagh Carpendale * [644]Cynthia Brewer * [645]Miriah Meyer * [646]Jock D. Mackinlay * [647]Alan MacEachren * [648]David Goodsell * [649]Michael Maltz * [650]Leland Wilkinson * [651]Alfred Inselberg Early 21st century * [652]Ben Fry * [653]Hans Rosling * [654]Christopher R. Johnson * [655]David McCandless * [656]Mauro Martino * [657]John Maeda * [658]Tamara Munzner * [659]Jeffrey Heer * [660]Gordon Kindlmann * [661]Hanspeter Pfister * [662]Manuel Lima * [663]Aaron Koblin * [664]Martin Krzywinski * [665]Bang Wong * [666]Jessica Hullman * [667]Hadley Wickham * [668]Polo Chau * [669]Fernanda Viégas * [670]Martin Wattenberg * [671]Claudio Silva * [672]Ade Olufeko * [673]Moritz Stefaner Related topics * [674]Cartography * [675]Chartjunk * [676]Computer graphics + [677]in computer science * [678]CPK coloring * [679]Graph drawing * [680]Graphic design * [681]Graphic organizer * [682]Imaging science * [683]Information graphics * [684]Information science * [685]Misleading graph * [686]Neuroimaging * [687]Patent drawing * [688]Scientific modelling * [689]Spatial analysis * [690]Visual analytics * [691]Visual perception * [692]Volume cartography * [693]Volume rendering * [694]Information art * [695]v * [696]t * [697]e [698]Computer science Note: This template roughly follows the 2012 [699]ACM Computing Classification System. [700]Hardware * [701]Printed circuit board * [702]Peripheral * [703]Integrated circuit * [704]Very Large Scale Integration * [705]Systems on Chip (SoCs) * [706]Energy consumption (Green computing) * [707]Electronic design automation * [708]Hardware acceleration [709]Computer Retro.svg Computer systems organization * [710]Computer architecture * [711]Embedded system * [712]Real-time computing * [713]Dependability [714]Networks * [715]Network architecture * [716]Network protocol * [717]Network components * [718]Network scheduler * [719]Network performance evaluation * [720]Network service Software organization * [721]Interpreter * [722]Middleware * [723]Virtual machine * [724]Operating system * [725]Software quality [726]Software notations and [727]tools * [728]Programming paradigm * [729]Programming language * [730]Compiler * [731]Domain-specific language * [732]Modeling language * [733]Software framework * [734]Integrated development environment * [735]Software configuration management * [736]Software library * [737]Software repository [738]Software development * [739]Control variable * [740]Software development process * [741]Requirements analysis * [742]Software design * [743]Software construction * [744]Software deployment * [745]Software engineering * [746]Software maintenance * [747]Programming team * [748]Open-source model [749]Theory of computation * [750]Model of computation * [751]Formal language * [752]Automata theory * [753]Computability theory * [754]Computational complexity theory * [755]Logic * [756]Semantics [757]Algorithms * [758]Algorithm design * [759]Analysis of algorithms * [760]Algorithmic efficiency * [761]Randomized algorithm * [762]Computational geometry Mathematics of computing * [763]Discrete mathematics * [764]Probability * [765]Statistics * [766]Mathematical software * [767]Information theory * [768]Mathematical analysis * [769]Numerical analysis * [770]Theoretical computer science [771]Information systems * [772]Database management system * [773]Information storage systems * [774]Enterprise information system * [775]Social information systems * [776]Geographic information system * [777]Decision support system * [778]Process control system * [779]Multimedia information system * [780]Data mining * [781]Digital library * [782]Computing platform * [783]Digital marketing * [784]World Wide Web * [785]Information retrieval [786]Security * [787]Cryptography * [788]Formal methods * [789]Security services * [790]Intrusion detection system * [791]Hardware security * [792]Network security * [793]Information security * [794]Application security [795]Human–computer interaction * [796]Interaction design * [797]Social computing * [798]Ubiquitous computing * [799]Visualization * [800]Accessibility * [801]Synthography [802]Concurrency * [803]Concurrent computing * [804]Parallel computing * [805]Distributed computing * [806]Multithreading * [807]Multiprocessing [808]Artificial intelligence * [809]Natural language processing * [810]Knowledge representation and reasoning * [811]Computer vision * [812]Automated planning and scheduling * [813]Search methodology * [814]Control method * [815]Philosophy of artificial intelligence * [816]Distributed artificial intelligence [817]Machine learning * [818]Supervised learning * [819]Unsupervised learning * [820]Reinforcement learning * [821]Multi-task learning * [822]Cross-validation [823]Graphics * [824]Animation * [825]Rendering * [826]Photograph manipulation * [827]Graphics processing unit * [828]Mixed reality * [829]Virtual reality * [830]Image compression * [831]Solid modeling Applied computing * [832]E-commerce * [833]Enterprise software * [834]Computational mathematics * [835]Computational physics * [836]Computational chemistry * [837]Computational biology * [838]Computational social science * [839]Computational engineering * [840]Computational healthcare * [841]Digital art * [842]Electronic publishing * [843]Cyberwarfare * [844]Electronic voting * [845]Video games * [846]Word processing * [847]Operations research * [848]Educational technology * [849]Document management * [850]Category * [851]Outline * [852]WikiProject * [853]Commons * [854]v * [855]t * [856]e [857]Computer graphics [858]Vector graphics * [859]Diffusion curve * [860]Pixel [861]2D graphics [862]2.5D * [863]Isometric graphics * [864]Mode 7 * [865]Parallax scrolling * [866]Ray casting * [867]Skybox * [868]Alpha compositing * [869]Layers * [870]Text-to-image [871]3D graphics [872]3D projection [873]3D rendering ([874]Image-based [875]Spectral [876]Unbiased) [877]Aliasing [878]Anisotropic filtering [879]Cel shading [880]Lighting * [881]Global illumination [882]Hidden-surface determination [883]Polygon mesh ([884]Triangle mesh) [885]Shading * [886]Deferred [887]Surface triangulation [888]Wire-frame model Concepts * [889]Affine transformation * [890]Back-face culling * [891]Clipping * [892]Collision detection * [893]Planar projection * [894]Rendering * [895]Rotation * [896]Scaling * [897]Shadow mapping * [898]Shadow volume * [899]Shear matrix * [900]Translation Algorithms * [901]List of computer graphics algorithms Retrieved from "[902]https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_fo r_the_Mandelbrot_set&oldid=1148917111" [903]Categories: * [904]Fractals * [905]Complex dynamics * [906]Graphics software * [907]Computer graphics * [908]Algorithms Hidden categories: * [909]CS1 errors: missing periodical * [910]Pages containing links to subscription-only content * [911]Webarchive template wayback links * [912]All articles with bare URLs for citations * [913]Articles with bare URLs for citations from March 2022 * [914]Articles with PDF format bare URLs for citations * [915]Articles with short description * [916]Short description with empty Wikidata description * [917]Wikipedia articles with style issues from July 2021 * [918]All articles with style issues * [919]Use dmy dates from February 2020 * [920]Articles needing additional references from June 2019 * [921]All articles needing additional references * [922]Copied and pasted articles and sections with url provided from July 2022 * [923]All copied and pasted articles and sections * [924]Articles with example pseudocode * [925]Articles containing video clips * This page was last edited on 9 April 2023, at 02:08 (UTC). * Text is available under the [926]Creative Commons Attribution-ShareAlike License 3.0; additional terms may apply. By using this site, you agree to the [927]Terms of Use and [928]Privacy Policy. Wikipedia® is a registered trademark of the [929]Wikimedia Foundation, Inc., a non-profit organization. * [930]Privacy policy * [931]About Wikipedia * [932]Disclaimers * [933]Contact Wikipedia * [934]Mobile view * [935]Developers * [936]Statistics * [937]Cookie statement * [938]Wikimedia Foundation * [939]Powered by MediaWiki (BUTTON) Toggle limited content width References Visible links: 1. https://en.m.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set 2. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit 3. https://en.wikipedia.org/w/opensearch_desc.php 4. https://en.wikipedia.org/w/index.php?title=Special:RecentChanges&feed=atom 5. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#bodyContent 6. https://en.wikipedia.org/wiki/Main_Page 7. https://en.wikipedia.org/wiki/Wikipedia:Contents 8. https://en.wikipedia.org/wiki/Portal:Current_events 9. https://en.wikipedia.org/wiki/Special:Random 10. https://en.wikipedia.org/wiki/Wikipedia:About 11. https://en.wikipedia.org/wiki/Wikipedia:Contact_us 12. https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en 13. https://en.wikipedia.org/wiki/Help:Contents 14. https://en.wikipedia.org/wiki/Help:Introduction 15. https://en.wikipedia.org/wiki/Wikipedia:Community_portal 16. https://en.wikipedia.org/wiki/Special:RecentChanges 17. https://en.wikipedia.org/wiki/Wikipedia:File_upload_wizard 18. https://en.wikipedia.org/wiki/Main_Page 19. https://en.wikipedia.org/wiki/Special:Search 20. https://en.wikipedia.org/w/index.php?title=Special:CreateAccount&returnto=Plotting+algorithms+for+the+Mandelbrot+set 21. https://en.wikipedia.org/w/index.php?title=Special:UserLogin&returnto=Plotting+algorithms+for+the+Mandelbrot+set 22. https://en.wikipedia.org/w/index.php?title=Special:CreateAccount&returnto=Plotting+algorithms+for+the+Mandelbrot+set 23. https://en.wikipedia.org/w/index.php?title=Special:UserLogin&returnto=Plotting+algorithms+for+the+Mandelbrot+set 24. https://en.wikipedia.org/wiki/Help:Introduction 25. https://en.wikipedia.org/wiki/Special:MyContributions 26. https://en.wikipedia.org/wiki/Special:MyTalk 27. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set 28. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Escape_time_algorithm 29. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Unoptimized_naïve_escape_time_algorithm 30. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Optimized_escape_time_algorithms 31. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Derivative_Bailout_or_"derbail" 32. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Coloring_algorithms 33. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Histogram_coloring 34. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Continuous_(smooth)_coloring 35. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Exponentially_mapped_and_cyclic_iterations 36. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Passing_iterations_into_a_color_directly 37. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#v_refers_to_a_normalized_exponentially_mapped_cyclic_iter_count 38. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#f(v)_refers_to_the_sRGB_transfer_function 39. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#HSV_coloring 40. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#LCH_coloring 41. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Advanced_plotting_algorithms 42. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Distance_estimates 43. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Exterior_distance_estimation 44. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Interior_distance_estimation 45. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Cardioid_/_bulb_checking 46. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Periodicity_checking 47. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Border_tracing_/_edge_checking 48. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Rectangle_checking 49. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Symmetry_utilization 50. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Multithreading 51. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Perturbation_theory_and_series_approximation 52. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#References 53. https://www.wikidata.org/wiki/Special:EntityPage/Q85793700#sitelinks-wikipedia 54. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set 55. https://en.wikipedia.org/wiki/Talk:Plotting_algorithms_for_the_Mandelbrot_set 56. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set 57. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit 58. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=history 59. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set 60. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit 61. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=history 62. https://en.wikipedia.org/wiki/Special:WhatLinksHere/Plotting_algorithms_for_the_Mandelbrot_set 63. https://en.wikipedia.org/wiki/Special:RecentChangesLinked/Plotting_algorithms_for_the_Mandelbrot_set 64. https://en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard 65. https://en.wikipedia.org/wiki/Special:SpecialPages 66. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&oldid=1148917111 67. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=info 68. https://en.wikipedia.org/w/index.php?title=Special:CiteThisPage&page=Plotting_algorithms_for_the_Mandelbrot_set&id=1148917111&wpFormIdentifier=titleform 69. https://www.wikidata.org/wiki/Special:EntityPage/Q85793700 70. https://en.wikipedia.org/w/index.php?title=Special:DownloadAsPdf&page=Plotting_algorithms_for_the_Mandelbrot_set&action=show-download-screen 71. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&printable=yes 72. https://en.wikipedia.org/wiki/Wikipedia:Writing_better_articles#Tone 73. https://en.wikipedia.org/wiki/Wikipedia:Writing_better_articles#Tone 74. https://en.wikipedia.org/wiki/Help:Maintenance_template_removal 75. https://en.wikipedia.org/wiki/File:Fractal-zoom-1-03-Mandelbrot_Buzzsaw.png 76. https://upload.wikimedia.org/wikipedia/commons/0/07/Fractal-zoom-1-03-Mandelbrot_Buzzsaw.ogv 77. https://en.wikipedia.org/wiki/File:Mandelbrot_sequence_new_still.png 78. https://upload.wikimedia.org/wikipedia/commons/5/51/Mandelbrot_sequence_new.webm 79. https://en.wikipedia.org/wiki/Algorithm 80. https://en.wikipedia.org/wiki/Mandelbrot_set 81. https://en.wikipedia.org/wiki/Fractal 82. https://en.wikipedia.org/wiki/Fractal-generating_software 83. https://en.wikipedia.org/wiki/Pixel 84. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=1 85. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=2 86. https://en.wikipedia.org/wiki/Pythagorean_theorem 87. https://en.wikipedia.org/wiki/Absolute_value 88. https://en.wikipedia.org/wiki/Buddhabrot 89. https://en.wikipedia.org/wiki/Pixel 90. https://en.wikipedia.org/wiki/Pseudocode 91. https://en.wikipedia.org/wiki/Complex_data_type 92. https://en.wikipedia.org/wiki/Palette_(computing) 93. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=3 94. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=4 95. https://en.wikipedia.org/wiki/File:Derbail_method_render.png 96. https://en.wikipedia.org/wiki/Julia_set 97. https://en.wikipedia.org/wiki/Magnitude_of_a_complex_number 98. https://en.wikipedia.org/wiki/Derivative 99. https://en.wikipedia.org/wiki/Automatic_differentiation 100. https://en.wikipedia.org/wiki/Dual_number 101. https://en.wikipedia.org/wiki/File:Example_of_derbail_precision_issues.png 102. https://en.wikipedia.org/wiki/Floating-point_arithmetic 103. https://en.wikipedia.org/wiki/Image_noise 104. https://en.wikipedia.org/wiki/Multisample_anti-aliasing 105. https://en.wikipedia.org/wiki/File:Derbail.png 106. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=5 107. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=6 108. https://en.wikipedia.org/wiki/Wikipedia:Verifiability 109. https://en.wikipedia.org/wiki/Talk:Plotting_algorithms_for_the_Mandelbrot_set#"Histogram_coloring"_section 110. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit 111. https://en.wikipedia.org/wiki/Help:Referencing_for_beginners 112. https://en.wikipedia.org/wiki/Help:Maintenance_template_removal 113. https://en.wikipedia.org/wiki/Histogram 114. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-1 115. https://en.wikipedia.org/wiki/File:Mandelbrot-no-histogram-coloring-10000-iterations.png 116. https://en.wikipedia.org/wiki/File:Mandelbrot-no-histogram-coloring-1000-iterations.png 117. https://en.wikipedia.org/wiki/File:Mandelbrot-no-histogram-coloring-100-iterations.png 118. https://en.wikipedia.org/wiki/File:Mandelbrot-histogram-10000-iterations.png 119. https://en.wikipedia.org/wiki/File:Mandelbrot-histogram-1000-iterations.png 120. https://en.wikipedia.org/wiki/File:Mandelbrot-histogram-100-iterations.png 121. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=7 122. https://en.wikipedia.org/wiki/Aliasing 123. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-2 124. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-3 125. https://en.wikipedia.org/wiki/Julia_set 126. https://en.wikipedia.org/wiki/Linear_interpolation 127. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=8 128. https://en.wikipedia.org/wiki/File:CyclicColoringLch.png 129. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=9 130. https://en.wikipedia.org/wiki/File:LCH_COLORING.png 131. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=10 132. https://en.wikipedia.org/wiki/SRGB#Transfer_function_("gamma") 133. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=11 134. https://en.wikipedia.org/wiki/File:HSV_Gradient_Example.png 135. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=12 136. https://en.wikipedia.org/wiki/File:HSV_Hue_Calculation.png 137. https://en.wikipedia.org/wiki/File:LCH_Gradient_Example.png 138. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=13 139. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=14 140. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=15 141. https://en.wikipedia.org/wiki/Distance 142. https://en.wikipedia.org/wiki/Exterior_(topology) 143. https://en.wikipedia.org/wiki/Interior_(topology) 144. https://en.wikipedia.org/wiki/Boundary_(topology) 145. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-Albert_Lobo-4 146. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-5 147. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=16 148. https://en.wikipedia.org/wiki/Mandelbrot_set#Basic_properties 149. https://en.wikipedia.org/wiki/External_ray#Uniformization 150. https://en.wikipedia.org/wiki/Complement_(set_theory) 151. https://en.wikipedia.org/wiki/Derivative 152. https://en.wikipedia.org/wiki/Koebe_quarter_theorem 153. https://en.wikipedia.org/wiki/Pixel 154. https://en.wikipedia.org/wiki/File:Demm_2000_Mandelbrot_set.jpg 155. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-Cheritat-6 156. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-Syntopia-7 157. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-8 158. https://en.wikipedia.org/wiki/Complex_quadratic_polynomial 159. https://en.wikipedia.org/wiki/Equipotential 160. https://en.wikipedia.org/wiki/Julia_set 161. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-9 162. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-10 163. https://en.wikipedia.org/wiki/File:Mandel_zoom_06_double_hook_B&W_DE.jpg 164. https://en.wikipedia.org/wiki/Mandelbrot_Set#3D_images_of_Mandelbrot_and_Julia_sets 165. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=17 166. https://en.wikipedia.org/wiki/File:Mandelbrot_Interior_600.png 167. https://en.wikipedia.org/wiki/Mandelbrot_set#Hyperbolic_components 168. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-Albert_Lobo-4 169. https://en.wikipedia.org/wiki/Complex_quadratic_polynomial 170. https://en.wikipedia.org/wiki/Attractor 171. https://en.wikipedia.org/wiki/File:MandelbrotOrbitInfimum.png 172. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=18 173. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-11 174. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=19 175. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=20 176. https://en.wikipedia.org/wiki/File:Mandelbrot_DEM_Sobel.png 177. https://en.wikipedia.org/wiki/File:Copyright-problem_paste_2.svg 178. https://en.wikipedia.org/wiki/Wikipedia:Copying_text_from_other_sources 179. https://en.wikipedia.org/wiki/Wikipedia:Copyrights 180. http://www.reocities.com/CapeCanaveral/5003/mandel.htm 181. https://iw.toolforge.org/copyvios?lang=en&project=wikipedia&title=Plotting_algorithms_for_the_Mandelbrot_set&url=http://www.reocities.com/CapeCanaveral/5003/mandel.htm 182. https://en.wikipedia.org/wiki/Wikipedia:Text_copyright_violations_101 183. https://en.wikipedia.org/wiki/Wikipedia:Mirrors_and_forks 184. https://en.wikipedia.org/wiki/Simply_connected_space 185. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-Proof_of_connectedness-12 186. https://en.wikipedia.org/wiki/Polynomial_lemniscate 187. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-13 188. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Interior_distance_estimation 189. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=21 190. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-14 191. https://en.wikipedia.org/wiki/Aspect_ratio 192. https://en.wikipedia.org/wiki/ISO_216 193. https://en.wikipedia.org/wiki/Fractint 194. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#Interior_distance_estimation 195. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=22 196. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=23 197. https://en.wikipedia.org/wiki/Embarrassingly_parallel 198. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-15 199. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-16 200. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=24 201. https://en.wikipedia.org/wiki/Floating-point_unit 202. https://en.wikipedia.org/wiki/Arbitrary-precision_arithmetic 203. https://en.wikipedia.org/wiki/Perturbation_theory 204. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-17 205. https://en.wikipedia.org/wiki/Taylor_series 206. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-18 207. https://en.wikipedia.org/wiki/Kalles_Fraktaler 208. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_note-19 209. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&action=edit§ion=25 210. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-1 211. http://www.fractalforums.com/programming/newbie-how-to-map-colors-in-the-mandelbrot-set/msg3465/#msg3465 212. https://web.archive.org/web/20220909215450/http://www.fractalforums.com/programming/newbie-how-to-map-colors-in-the-mandelbrot-set/msg3465/#msg3465 213. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-2 214. http://math.unipa.it/~grim/Jbarrallo.PDF 215. https://web.archive.org/web/20191130214645/http://math.unipa.it/~grim/Jbarrallo.PDF 216. https://en.wikipedia.org/wiki/Template:Cite_journal 217. https://en.wikipedia.org/wiki/Help:CS1_errors#missing_periodical 218. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-3 219. http://linas.org/art-gallery/escape/escape.html 220. https://web.archive.org/web/20200214073730/http://linas.org/art-gallery/escape/escape.html 221. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-Albert_Lobo_4-0 222. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-Albert_Lobo_4-1 223. http://www.albertlobo.com/fractals/interior-exterior-distance-bounds-mandelbrot-set 224. https://web.archive.org/web/20220909215805/http://www.albertlobo.com/fractals/interior-exterior-distance-bounds-mandelbrot-set 225. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-5 226. http://www.imajeenyus.com/mathematics/20121112_distance_estimates/distance_estimation_method_for_fractals.pdf 227. https://web.archive.org/web/20210503103652/http://www.imajeenyus.com/mathematics/20121112_distance_estimates/distance_estimation_method_for_fractals.pdf 228. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-Cheritat_6-0 229. https://en.wikipedia.org/wiki/Arnaud_Chéritat 230. https://www.math.univ-toulouse.fr/~cheritat/wiki-draw/index.php/Mandelbrot_set#Boundary_detection_methods_via_distance_estimators 231. https://web.archive.org/web/20221218100822/https://www.math.univ-toulouse.fr/~cheritat/wiki-draw/index.php/Mandelbrot_set 232. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-Syntopia_7-0 233. http://blog.hvidtfeldts.net/index.php/2011/09/distance-estimated-3d-fractals-v-the-mandelbulb-different-de-approximations 234. https://web.archive.org/web/20210513033347/http://blog.hvidtfeldts.net/index.php/2011/09/distance-estimated-3d-fractals-v-the-mandelbulb-different-de-approximations/ 235. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-8 236. https://en.wikipedia.org/wiki/Louis_Kauffman 237. https://en.wikipedia.org/wiki/Daniel_J._Sandin 238. https://www.evl.uic.edu/hypercomplex/html/book/book.pdf 239. https://web.archive.org/web/20210323153331/https://www.evl.uic.edu/hypercomplex/html/book/book.pdf 240. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-9 241. https://en.wikipedia.org/wiki/The_Beauty_of_Fractals 242. https://en.wikipedia.org/wiki/ISBN_(identifier) 243. https://en.wikipedia.org/wiki/Special:BookSources/0-387-15851-0 244. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-10 245. https://en.wikipedia.org/wiki/The_Beauty_of_Fractals 246. https://en.wikipedia.org/wiki/ISBN_(identifier) 247. https://en.wikipedia.org/wiki/Special:BookSources/0-387-96608-0 248. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-11 249. http://linas.org/art-gallery/bud/bud.html 250. https://web.archive.org/web/20200214073800/http://linas.org/art-gallery/bud/bud.html 251. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-Proof_of_connectedness_12-0 252. https://www.researchgate.net/publication/228540477_Exploring_the_Mandelbrot_set_The_Orsay_Notes 253. https://en.wikipedia.org/wiki/Template:Cite_journal 254. https://en.wikipedia.org/wiki/Help:CS1_errors#missing_periodical 255. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-13 256. https://web.archive.org/web/20150220012221/http://www.reocities.com/CapeCanaveral/5003/mandel.htm 257. http://www.reocities.com/CapeCanaveral/5003/mandel.htm 258. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-14 259. https://en.wikipedia.org/wiki/JSTOR_(identifier) 260. https://www.jstor.org/stable/24987149 261. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-15 262. http://courses.cecs.anu.edu.au/courses/COMP4300/lectures/embParallel.4u.pdf 263. https://web.archive.org/web/20200127230256/http://courses.cecs.anu.edu.au/courses/COMP4300/lectures/embParallel.4u.pdf 264. https://en.wikipedia.org/wiki/Wayback_Machine 265. https://en.wikipedia.org/wiki/Wikipedia:Bare_URLs 266. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-16 267. http://cseweb.ucsd.edu/groups/csag/html/teaching/cse160s05/lectures/Lecture14.pdf 268. https://web.archive.org/web/20200126040920/http://cseweb.ucsd.edu/groups/csag/html/teaching/cse160s05/lectures/Lecture14.pdf 269. https://en.wikipedia.org/wiki/Wayback_Machine 270. https://en.wikipedia.org/wiki/Wikipedia:Bare_URLs 271. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-17 272. http://www.fractalforums.com/announcements-and-news/superfractalthing-arbitrary-precision-mandelbrot-set-rendering-in-java/ 273. https://web.archive.org/web/20200630043303/http://www.fractalforums.com/announcements-and-news/superfractalthing-arbitrary-precision-mandelbrot-set-rendering-in-java/ 274. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-18 275. https://web.archive.org/web/20140628114658/http://www.superfractalthing.co.nf/sft_maths.pdf 276. http://www.superfractalthing.co.nf/sft_maths.pdf 277. https://en.wikipedia.org/wiki/Template:Cite_journal 278. https://en.wikipedia.org/wiki/Help:CS1_errors#missing_periodical 279. https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set#cite_ref-19 280. http://www.chillheimer.de/kallesfraktaler/ 281. https://web.archive.org/web/20200224054206/http://www.chillheimer.de/kallesfraktaler/ 282. https://en.wikipedia.org/wiki/Template:Fractals 283. https://en.wikipedia.org/wiki/Template_talk:Fractals 284. https://en.wikipedia.org/w/index.php?title=Template:Fractals&action=edit 285. https://en.wikipedia.org/wiki/Fractal 286. https://en.wikipedia.org/wiki/Fractal_dimension 287. https://en.wikipedia.org/wiki/Assouad_dimension 288. https://en.wikipedia.org/wiki/Minkowski–Bouligand_dimension 289. https://en.wikipedia.org/wiki/Higuchi_dimension 290. https://en.wikipedia.org/wiki/Correlation_dimension 291. https://en.wikipedia.org/wiki/Hausdorff_dimension 292. https://en.wikipedia.org/wiki/Packing_dimension 293. https://en.wikipedia.org/wiki/Lebesgue_covering_dimension 294. https://en.wikipedia.org/wiki/Recursion 295. https://en.wikipedia.org/wiki/Self-similarity 296. https://en.wikipedia.org/wiki/Iterated_function_system 297. https://en.wikipedia.org/wiki/Barnsley_fern 298. https://en.wikipedia.org/wiki/Cantor_set 299. https://en.wikipedia.org/wiki/Koch_snowflake 300. https://en.wikipedia.org/wiki/Menger_sponge 301. https://en.wikipedia.org/wiki/Sierpinski_carpet 302. https://en.wikipedia.org/wiki/Sierpinski_triangle 303. https://en.wikipedia.org/wiki/Apollonian_gasket 304. https://en.wikipedia.org/wiki/Fibonacci_word_fractal 305. https://en.wikipedia.org/wiki/Space-filling_curve 306. https://en.wikipedia.org/wiki/Blancmange_curve 307. https://en.wikipedia.org/wiki/De_Rham_curve 308. https://en.wikipedia.org/wiki/Minkowski_sausage 309. https://en.wikipedia.org/wiki/Dragon_curve 310. https://en.wikipedia.org/wiki/Hilbert_curve 311. https://en.wikipedia.org/wiki/Koch_snowflake 312. https://en.wikipedia.org/wiki/Lévy_C_curve 313. https://en.wikipedia.org/wiki/Moore_curve 314. https://en.wikipedia.org/wiki/Peano_curve 315. https://en.wikipedia.org/wiki/Sierpiński_curve 316. https://en.wikipedia.org/wiki/Z-order_curve 317. https://en.wikipedia.org/wiki/Fractal_string 318. https://en.wikipedia.org/wiki/T-square_(fractal) 319. https://en.wikipedia.org/wiki/N-flake 320. https://en.wikipedia.org/wiki/Vicsek_fractal 321. https://en.wikipedia.org/wiki/Hexaflake 322. https://en.wikipedia.org/wiki/Gosper_curve 323. https://en.wikipedia.org/wiki/Pythagoras_tree_(fractal) 324. https://en.wikipedia.org/wiki/Weierstrass_function 325. https://en.wikipedia.org/wiki/Strange_attractor 326. https://en.wikipedia.org/wiki/Multifractal_system 327. https://en.wikipedia.org/wiki/L-system 328. https://en.wikipedia.org/wiki/Fractal_canopy 329. https://en.wikipedia.org/wiki/Space-filling_curve 330. https://en.wikipedia.org/wiki/H_tree 331. https://en.wikipedia.org/wiki/Fractal#Common_techniques_for_generating_fractals 332. https://en.wikipedia.org/wiki/Burning_Ship_fractal 333. https://en.wikipedia.org/wiki/Julia_set 334. https://en.wikipedia.org/wiki/Filled_Julia_set 335. https://en.wikipedia.org/wiki/Newton_fractal 336. https://en.wikipedia.org/wiki/Douady_rabbit 337. https://en.wikipedia.org/wiki/Lyapunov_fractal 338. https://en.wikipedia.org/wiki/Mandelbrot_set 339. https://en.wikipedia.org/wiki/Misiurewicz_point 340. https://en.wikipedia.org/wiki/Multibrot_set 341. https://en.wikipedia.org/wiki/Newton_fractal 342. https://en.wikipedia.org/wiki/Tricorn_(mathematics) 343. https://en.wikipedia.org/wiki/Mandelbox 344. https://en.wikipedia.org/wiki/Mandelbulb 345. https://en.wikipedia.org/wiki/Rendering_(computer_graphics) 346. https://en.wikipedia.org/wiki/Buddhabrot 347. https://en.wikipedia.org/wiki/Orbit_trap 348. https://en.wikipedia.org/wiki/Pickover_stalk 349. https://en.wikipedia.org/wiki/Chaos_game 350. https://en.wikipedia.org/wiki/Brownian_motion 351. https://en.wikipedia.org/wiki/Diffusion-limited_aggregation 352. https://en.wikipedia.org/wiki/Brownian_motor 353. https://en.wikipedia.org/wiki/Fractal_landscape 354. https://en.wikipedia.org/wiki/Lévy_flight 355. https://en.wikipedia.org/wiki/Percolation_theory 356. https://en.wikipedia.org/wiki/Self-avoiding_walk 357. https://en.wikipedia.org/wiki/Michael_Barnsley 358. https://en.wikipedia.org/wiki/Georg_Cantor 359. https://en.wikipedia.org/wiki/Bill_Gosper 360. https://en.wikipedia.org/wiki/Felix_Hausdorff 361. https://en.wikipedia.org/wiki/Desmond_Paul_Henry 362. https://en.wikipedia.org/wiki/Gaston_Julia 363. https://en.wikipedia.org/wiki/Helge_von_Koch 364. https://en.wikipedia.org/wiki/Paul_Lévy_(mathematician) 365. https://en.wikipedia.org/wiki/Aleksandr_Lyapunov 366. https://en.wikipedia.org/wiki/Benoit_Mandelbrot 367. https://en.wikipedia.org/wiki/Hamid_Naderi_Yeganeh 368. https://en.wikipedia.org/wiki/Lewis_Fry_Richardson 369. https://en.wikipedia.org/wiki/Wacław_Sierpiński 370. https://en.wikipedia.org/wiki/How_Long_Is_the_Coast_of_Britain?_Statistical_Self-Similarity_and_Fractional_Dimension 371. https://en.wikipedia.org/wiki/Coastline_paradox 372. https://en.wikipedia.org/wiki/Fractal_art 373. https://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension 374. https://en.wikipedia.org/wiki/The_Fractal_Geometry_of_Nature 375. https://en.wikipedia.org/wiki/The_Beauty_of_Fractals 376. https://en.wikipedia.org/wiki/Chaos:_Making_a_New_Science 377. https://en.wikipedia.org/wiki/Kaleidoscope 378. https://en.wikipedia.org/wiki/Chaos_theory 379. https://en.wikipedia.org/wiki/Template:Mathematics_and_art 380. https://en.wikipedia.org/wiki/Template_talk:Mathematics_and_art 381. https://en.wikipedia.org/w/index.php?title=Template:Mathematics_and_art&action=edit 382. https://en.wikipedia.org/wiki/Mathematics_and_art 383. https://en.wikipedia.org/wiki/Algorithm 384. https://en.wikipedia.org/wiki/Catenary 385. https://en.wikipedia.org/wiki/Fractal 386. https://en.wikipedia.org/wiki/Golden_ratio 387. https://en.wikipedia.org/wiki/Hyperboloid_structure 388. https://en.wikipedia.org/wiki/Minimal_surface 389. https://en.wikipedia.org/wiki/Paraboloid 390. https://en.wikipedia.org/wiki/Perspective_(graphical) 391. https://en.wikipedia.org/wiki/Camera_lucida 392. https://en.wikipedia.org/wiki/Camera_obscura 393. https://en.wikipedia.org/wiki/Plastic_number 394. https://en.wikipedia.org/wiki/Projective_geometry 395. https://en.wikipedia.org/wiki/Proportion_(architecture) 396. https://en.wikipedia.org/wiki/Body_proportions 397. https://en.wikipedia.org/wiki/Symmetry 398. https://en.wikipedia.org/wiki/Tessellation 399. https://en.wikipedia.org/wiki/Wallpaper_group 400. https://en.wikipedia.org/wiki/File:FWF_Samuel_Monnier_(vertical_detail).jpg 401. https://en.wikipedia.org/wiki/Algorithmic_art 402. https://en.wikipedia.org/wiki/Anamorphosis 403. https://en.wikipedia.org/wiki/Mathematics_and_architecture 404. https://en.wikipedia.org/wiki/Geodesic_dome 405. https://en.wikipedia.org/wiki/Islamic_architecture 406. https://en.wikipedia.org/wiki/Mughal_architecture 407. https://en.wikipedia.org/wiki/Pyramid 408. https://en.wikipedia.org/wiki/Vastu_shastra 409. https://en.wikipedia.org/wiki/Computer_art 410. https://en.wikipedia.org/wiki/Mathematics_and_fiber_arts 411. https://en.wikipedia.org/wiki/Fourth_dimension_in_art 412. https://en.wikipedia.org/wiki/Fractal_art 413. https://en.wikipedia.org/wiki/Islamic_geometric_patterns 414. https://en.wikipedia.org/wiki/Girih 415. https://en.wikipedia.org/wiki/Jali 416. https://en.wikipedia.org/wiki/Muqarnas 417. https://en.wikipedia.org/wiki/Zellij 418. https://en.wikipedia.org/wiki/Knot 419. https://en.wikipedia.org/wiki/Celtic_knot 420. https://en.wikipedia.org/wiki/Croatian_interlace 421. https://en.wikipedia.org/wiki/Interlace_(art) 422. https://en.wikipedia.org/wiki/Music_and_mathematics 423. https://en.wikipedia.org/wiki/Origami 424. https://en.wikipedia.org/wiki/Mathematical_sculpture 425. https://en.wikipedia.org/wiki/String_art 426. https://en.wikipedia.org/wiki/Tessellation 427. https://en.wikipedia.org/wiki/List_of_works_designed_with_the_golden_ratio 428. https://en.wikipedia.org/wiki/Continuum_(sculpture) 429. https://en.wikipedia.org/wiki/Mathemalchemy 430. https://en.wikipedia.org/wiki/Mathematica:_A_World_of_Numbers..._and_Beyond 431. https://en.wikipedia.org/wiki/Octacube_(sculpture) 432. https://en.wikipedia.org/wiki/Pi_(art_project) 433. https://en.wikipedia.org/wiki/Pi_in_the_Sky 434. https://en.wikipedia.org/wiki/Mathematics_and_architecture 435. https://en.wikipedia.org/wiki/Cathedral_of_Saint_Mary_of_the_Assumption_(San_Francisco) 436. https://en.wikipedia.org/wiki/Hagia_Sophia 437. https://en.wikipedia.org/wiki/Pantheon,_Rome 438. https://en.wikipedia.org/wiki/Parthenon 439. https://en.wikipedia.org/wiki/Great_Pyramid_of_Giza 440. https://en.wikipedia.org/wiki/Sagrada_Família 441. https://en.wikipedia.org/wiki/Sydney_Opera_House 442. https://en.wikipedia.org/wiki/Taj_Mahal 443. https://en.wikipedia.org/wiki/List_of_mathematical_artists 444. https://en.wikipedia.org/wiki/Paolo_Uccello 445. https://en.wikipedia.org/wiki/Piero_della_Francesca 446. https://en.wikipedia.org/wiki/Leonardo_da_Vinci 447. https://en.wikipedia.org/wiki/Vitruvian_Man 448. https://en.wikipedia.org/wiki/Albrecht_Dürer 449. https://en.wikipedia.org/wiki/Parmigianino 450. https://en.wikipedia.org/wiki/Self-portrait_in_a_Convex_Mirror 451. https://en.wikipedia.org/wiki/William_Blake 452. https://en.wikipedia.org/wiki/The_Ancient_of_Days 453. https://en.wikipedia.org/wiki/Newton_(Blake) 454. https://en.wikipedia.org/wiki/Jean_Metzinger 455. https://en.wikipedia.org/wiki/Dancer_in_a_Café 456. https://en.wikipedia.org/wiki/L'Oiseau_bleu_(Metzinger) 457. https://en.wikipedia.org/wiki/Giorgio_de_Chirico 458. https://en.wikipedia.org/wiki/Man_Ray 459. https://en.wikipedia.org/wiki/M._C._Escher 460. https://en.wikipedia.org/wiki/Circle_Limit_III 461. https://en.wikipedia.org/wiki/Print_Gallery_(M._C._Escher) 462. https://en.wikipedia.org/wiki/Relativity_(M._C._Escher) 463. https://en.wikipedia.org/wiki/Reptiles_(M._C._Escher) 464. https://en.wikipedia.org/wiki/Waterfall_(M._C._Escher) 465. https://en.wikipedia.org/wiki/René_Magritte 466. https://en.wikipedia.org/wiki/The_Human_Condition_(Magritte) 467. https://en.wikipedia.org/wiki/Salvador_Dalí 468. https://en.wikipedia.org/wiki/Crucifixion_(Corpus_Hypercubus) 469. https://en.wikipedia.org/wiki/The_Swallow's_Tail 470. https://en.wikipedia.org/wiki/Crockett_Johnson 471. https://en.wikipedia.org/wiki/Max_Bill 472. https://en.wikipedia.org/wiki/Martin_Demaine 473. https://en.wikipedia.org/wiki/Erik_Demaine 474. https://en.wikipedia.org/wiki/Scott_Draves 475. https://en.wikipedia.org/wiki/Jan_Dibbets 476. https://en.wikipedia.org/wiki/John_Ernest 477. https://en.wikipedia.org/wiki/Helaman_Ferguson 478. https://en.wikipedia.org/wiki/Peter_Forakis 479. https://en.wikipedia.org/wiki/Susan_Goldstine 480. https://en.wikipedia.org/wiki/Bathsheba_Grossman 481. https://en.wikipedia.org/wiki/George_W._Hart 482. https://en.wikipedia.org/wiki/Desmond_Paul_Henry 483. https://en.wikipedia.org/wiki/Anthony_Hill_(artist) 484. https://en.wikipedia.org/wiki/Charles_Jencks 485. https://en.wikipedia.org/wiki/Garden_of_Cosmic_Speculation 486. https://en.wikipedia.org/wiki/Andy_Lomas 487. https://en.wikipedia.org/wiki/Robert_Longhurst 488. https://en.wikipedia.org/wiki/Jeanette_McLeod 489. https://en.wikipedia.org/wiki/Hamid_Naderi_Yeganeh 490. https://en.wikipedia.org/wiki/István_Orosz 491. https://en.wikipedia.org/wiki/Hinke_Osinga 492. https://en.wikipedia.org/wiki/Antoine_Pevsner 493. https://en.wikipedia.org/wiki/Tony_Robbin 494. https://en.wikipedia.org/wiki/Alba_Rojo_Cama 495. https://en.wikipedia.org/wiki/Reza_Sarhangi 496. https://en.wikipedia.org/wiki/Oliver_Sin 497. https://en.wikipedia.org/wiki/Hiroshi_Sugimoto 498. https://en.wikipedia.org/wiki/Daina_Taimiņa 499. https://en.wikipedia.org/wiki/Roman_Verostko 500. https://en.wikipedia.org/wiki/Margaret_Wertheim 501. https://en.wikipedia.org/wiki/Polykleitos 502. https://en.wikipedia.org/wiki/Vitruvius 503. https://en.wikipedia.org/wiki/De_architectura 504. https://en.wikipedia.org/wiki/Filippo_Brunelleschi 505. https://en.wikipedia.org/wiki/Leon_Battista_Alberti 506. https://en.wikipedia.org/wiki/De_pictura 507. https://en.wikipedia.org/wiki/De_re_aedificatoria 508. https://en.wikipedia.org/wiki/Piero_della_Francesca 509. https://en.wikipedia.org/wiki/De_prospectiva_pingendi 510. https://en.wikipedia.org/wiki/Luca_Pacioli 511. https://en.wikipedia.org/wiki/Divina_proportione 512. https://en.wikipedia.org/wiki/Leonardo_da_Vinci 513. https://en.wikipedia.org/wiki/A_Treatise_on_Painting 514. https://en.wikipedia.org/wiki/Albrecht_Dürer 515. https://en.wikipedia.org/wiki/Sebastiano_Serlio 516. https://en.wikipedia.org/wiki/Andrea_Palladio 517. https://en.wikipedia.org/wiki/I_quattro_libri_dell'architettura 518. https://en.wikipedia.org/wiki/Samuel_Colman 519. https://en.wikipedia.org/wiki/Frederik_Macody_Lund 520. https://en.wikipedia.org/wiki/Jay_Hambidge 521. https://en.wikipedia.org/wiki/Owen_Jones_(architect) 522. https://en.wikipedia.org/wiki/Owen_Jones_(architect)#The_Grammar_of_Ornament 523. https://en.wikipedia.org/wiki/Ernest_Hanbury_Hankin 524. https://en.wikipedia.org/wiki/G._H._Hardy 525. https://en.wikipedia.org/wiki/A_Mathematician's_Apology 526. https://en.wikipedia.org/wiki/George_David_Birkhoff 527. https://en.wikipedia.org/wiki/Douglas_Hofstadter 528. https://en.wikipedia.org/wiki/Gödel,_Escher,_Bach 529. https://en.wikipedia.org/wiki/Nikos_Salingaros 530. https://en.wikipedia.org/wiki/Journal_of_Mathematics_and_the_Arts 531. https://en.wikipedia.org/wiki/Lumen_Naturae 532. https://en.wikipedia.org/wiki/Making_Mathematics_with_Needlework 533. https://en.wikipedia.org/wiki/Rhythm_of_Structure 534. https://en.wikipedia.org/wiki/Viewpoints:_Mathematical_Perspective_and_Fractal_Geometry_in_Art 535. https://en.wikipedia.org/wiki/Ars_Mathematica_(organization) 536. https://en.wikipedia.org/wiki/The_Bridges_Organization 537. https://en.wikipedia.org/wiki/European_Society_for_Mathematics_and_the_Arts 538. https://en.wikipedia.org/wiki/Goudreau_Museum_of_Mathematics_in_Art_and_Science 539. https://en.wikipedia.org/wiki/Institute_For_Figuring 540. https://en.wikipedia.org/wiki/Mathemalchemy 541. https://en.wikipedia.org/wiki/National_Museum_of_Mathematics 542. https://en.wikipedia.org/wiki/Droste_effect 543. https://en.wikipedia.org/wiki/Mathematical_beauty 544. https://en.wikipedia.org/wiki/Patterns_in_nature 545. https://en.wikipedia.org/wiki/Sacred_geometry 546. https://en.wikipedia.org/wiki/Category:Mathematics_and_art 547. https://en.wikipedia.org/wiki/Template:Visualization 548. https://en.wikipedia.org/wiki/Template_talk:Visualization 549. https://en.wikipedia.org/w/index.php?title=Template:Visualization&action=edit 550. https://en.wikipedia.org/wiki/Visualization_(graphics) 551. https://en.wikipedia.org/wiki/Biological_data_visualization 552. https://en.wikipedia.org/wiki/Chemical_imaging 553. https://en.wikipedia.org/wiki/Crime_mapping 554. https://en.wikipedia.org/wiki/Data_visualization 555. https://en.wikipedia.org/wiki/Visualization_(graphics) 556. https://en.wikipedia.org/wiki/Flow_visualization 557. https://en.wikipedia.org/wiki/Geovisualization 558. https://en.wikipedia.org/wiki/Information_visualization 559. https://en.wikipedia.org/wiki/Mathematical_diagram 560. https://en.wikipedia.org/wiki/Medical_imaging 561. https://en.wikipedia.org/wiki/Molecular_graphics 562. https://en.wikipedia.org/wiki/Visualization_(graphics) 563. https://en.wikipedia.org/wiki/Scientific_visualization 564. https://en.wikipedia.org/wiki/Software_visualization 565. https://en.wikipedia.org/wiki/Technical_drawing 566. https://en.wikipedia.org/wiki/User_interface_design 567. https://en.wikipedia.org/wiki/Visual_culture 568. https://en.wikipedia.org/wiki/Volume_rendering 569. https://en.wikipedia.org/wiki/Chart 570. https://en.wikipedia.org/wiki/Diagram 571. https://en.wikipedia.org/wiki/Engineering_drawing 572. https://en.wikipedia.org/wiki/Graph_of_a_function 573. https://en.wikipedia.org/wiki/Ideogram 574. https://en.wikipedia.org/wiki/Map 575. https://en.wikipedia.org/wiki/Photograph 576. https://en.wikipedia.org/wiki/Pictogram 577. https://en.wikipedia.org/wiki/Plot_(graphics) 578. https://en.wikipedia.org/wiki/Sankey_diagram 579. https://en.wikipedia.org/wiki/Schematic 580. https://en.wikipedia.org/wiki/Skeletal_formula 581. https://en.wikipedia.org/wiki/Statistical_graphics 582. https://en.wikipedia.org/wiki/Table_(information) 583. https://en.wikipedia.org/wiki/Technical_drawing 584. https://en.wikipedia.org/wiki/Technical_illustration 585. https://en.wikipedia.org/wiki/Edmond_Halley 586. https://en.wikipedia.org/wiki/Charles-René_de_Fourcroy 587. https://en.wikipedia.org/wiki/Joseph_Priestley 588. https://en.wikipedia.org/wiki/Gaspard_Monge 589. https://en.wikipedia.org/wiki/Charles_Dupin 590. https://en.wikipedia.org/wiki/Adolphe_Quetelet 591. https://en.wikipedia.org/wiki/André-Michel_Guerry 592. https://en.wikipedia.org/wiki/William_Playfair 593. https://en.wikipedia.org/wiki/August_Kekulé 594. https://en.wikipedia.org/wiki/Charles_Joseph_Minard 595. https://en.wikipedia.org/w/index.php?title=Luigi_Perozzo&action=edit&redlink=1 596. https://en.wikipedia.org/wiki/Francis_Amasa_Walker 597. https://en.wikipedia.org/wiki/John_Venn 598. https://en.wikipedia.org/wiki/Oliver_Byrne_(mathematician) 599. https://en.wikipedia.org/wiki/Matthew_Henry_Phineas_Riall_Sankey 600. https://en.wikipedia.org/wiki/Charles_Booth_(social_reformer) 601. https://en.wikipedia.org/w/index.php?title=Georg_von_Mayr&action=edit&redlink=1 602. https://en.wikipedia.org/wiki/John_Snow 603. https://en.wikipedia.org/wiki/Florence_Nightingale 604. https://en.wikipedia.org/wiki/Karl_Wilhelm_Pohlke 605. https://en.wikipedia.org/wiki/Toussaint_Loua 606. https://en.wikipedia.org/wiki/Francis_Galton 607. https://en.wikipedia.org/wiki/Edward_Walter_Maunder 608. https://en.wikipedia.org/wiki/Otto_Neurath 609. https://en.wikipedia.org/wiki/W._E._B._Du_Bois 610. https://en.wikipedia.org/wiki/Henry_Gantt 611. https://en.wikipedia.org/wiki/Arthur_Lyon_Bowley 612. https://en.wikipedia.org/wiki/Howard_G._Funkhouser 613. https://en.wikipedia.org/wiki/John_B._Peddle 614. https://en.wikipedia.org/wiki/Ejnar_Hertzsprung 615. https://en.wikipedia.org/wiki/Henry_Norris_Russell 616. https://en.wikipedia.org/wiki/Max_O._Lorenz 617. https://en.wikipedia.org/wiki/Fritz_Kahn 618. https://en.wikipedia.org/wiki/Harry_Beck 619. https://en.wikipedia.org/wiki/Erwin_Raisz 620. https://en.wikipedia.org/wiki/Jacques_Bertin 621. https://en.wikipedia.org/wiki/Rudolf_Modley 622. https://en.wikipedia.org/wiki/Arthur_H._Robinson 623. https://en.wikipedia.org/wiki/John_Tukey 624. https://en.wikipedia.org/wiki/Mary_Eleanor_Spear 625. https://en.wikipedia.org/wiki/Edgar_Anderson 626. https://en.wikipedia.org/wiki/Howard_T._Fisher 627. https://en.wikipedia.org/wiki/Borden_Dent 628. https://en.wikipedia.org/wiki/Nigel_Holmes 629. https://en.wikipedia.org/wiki/William_S._Cleveland 630. https://en.wikipedia.org/wiki/George_G._Robertson 631. https://en.wikipedia.org/wiki/Bruce_H._McCormick 632. https://en.wikipedia.org/wiki/Catherine_Plaisant 633. https://en.wikipedia.org/wiki/Stuart_Card 634. https://en.wikipedia.org/wiki/Pat_Hanrahan 635. https://en.wikipedia.org/wiki/Edward_Tufte 636. https://en.wikipedia.org/wiki/Ben_Shneiderman 637. https://en.wikipedia.org/wiki/Michael_Friendly 638. https://en.wikipedia.org/wiki/Howard_Wainer 639. https://en.wikipedia.org/wiki/Clifford_A._Pickover 640. https://en.wikipedia.org/wiki/Lawrence_J._Rosenblum 641. https://en.wikipedia.org/wiki/Thomas_A._DeFanti 642. https://en.wikipedia.org/wiki/George_Furnas 643. https://en.wikipedia.org/wiki/Sheelagh_Carpendale 644. https://en.wikipedia.org/wiki/Cynthia_Brewer 645. https://en.wikipedia.org/wiki/Miriah_Meyer 646. https://en.wikipedia.org/wiki/Jock_D._Mackinlay 647. https://en.wikipedia.org/wiki/Alan_MacEachren 648. https://en.wikipedia.org/wiki/David_Goodsell 649. https://en.wikipedia.org/wiki/Michael_Maltz 650. https://en.wikipedia.org/wiki/Leland_Wilkinson 651. https://en.wikipedia.org/wiki/Alfred_Inselberg 652. https://en.wikipedia.org/wiki/Ben_Fry 653. https://en.wikipedia.org/wiki/Hans_Rosling 654. https://en.wikipedia.org/wiki/Christopher_R._Johnson 655. https://en.wikipedia.org/wiki/David_McCandless 656. https://en.wikipedia.org/wiki/Mauro_Martino 657. https://en.wikipedia.org/wiki/John_Maeda 658. https://en.wikipedia.org/wiki/Tamara_Munzner 659. https://en.wikipedia.org/wiki/Jeffrey_Heer 660. https://en.wikipedia.org/wiki/Gordon_Kindlmann 661. https://en.wikipedia.org/wiki/Hanspeter_Pfister 662. https://en.wikipedia.org/wiki/Manuel_Lima 663. https://en.wikipedia.org/wiki/Aaron_Koblin 664. https://en.wikipedia.org/w/index.php?title=Martin_Krzywinski&action=edit&redlink=1 665. https://en.wikipedia.org/wiki/Bang_Wong 666. https://en.wikipedia.org/wiki/Jessica_Hullman 667. https://en.wikipedia.org/wiki/Hadley_Wickham 668. https://en.wikipedia.org/w/index.php?title=Polo_Chau&action=edit&redlink=1 669. https://en.wikipedia.org/wiki/Fernanda_Viégas 670. https://en.wikipedia.org/wiki/Martin_M._Wattenberg 671. https://en.wikipedia.org/wiki/Claudio_Silva_(computer_scientist) 672. https://en.wikipedia.org/wiki/Ade_Olufeko 673. https://en.wikipedia.org/wiki/Moritz_Stefaner 674. https://en.wikipedia.org/wiki/Cartography 675. https://en.wikipedia.org/wiki/Chartjunk 676. https://en.wikipedia.org/wiki/Computer_graphics 677. https://en.wikipedia.org/wiki/Computer_graphics_(computer_science) 678. https://en.wikipedia.org/wiki/CPK_coloring 679. https://en.wikipedia.org/wiki/Graph_drawing 680. https://en.wikipedia.org/wiki/Graphic_design 681. https://en.wikipedia.org/wiki/Graphic_organizer 682. https://en.wikipedia.org/wiki/Imaging_science 683. https://en.wikipedia.org/wiki/Infographic 684. https://en.wikipedia.org/wiki/Information_science 685. https://en.wikipedia.org/wiki/Misleading_graph 686. https://en.wikipedia.org/wiki/Neuroimaging 687. https://en.wikipedia.org/wiki/Patent_drawing 688. https://en.wikipedia.org/wiki/Scientific_modelling 689. https://en.wikipedia.org/wiki/Spatial_analysis 690. https://en.wikipedia.org/wiki/Visual_analytics 691. https://en.wikipedia.org/wiki/Visual_perception 692. https://en.wikipedia.org/wiki/Volume_cartography 693. https://en.wikipedia.org/wiki/Volume_rendering 694. https://en.wikipedia.org/wiki/Information_art 695. https://en.wikipedia.org/wiki/Template:Computer_science 696. https://en.wikipedia.org/wiki/Template_talk:Computer_science 697. https://en.wikipedia.org/w/index.php?title=Template:Computer_science&action=edit 698. https://en.wikipedia.org/wiki/Computer_science 699. https://en.wikipedia.org/wiki/ACM_Computing_Classification_System 700. https://en.wikipedia.org/wiki/Computer_hardware 701. https://en.wikipedia.org/wiki/Printed_circuit_board 702. https://en.wikipedia.org/wiki/Peripheral 703. https://en.wikipedia.org/wiki/Integrated_circuit 704. https://en.wikipedia.org/wiki/Very_Large_Scale_Integration 705. https://en.wikipedia.org/wiki/System_on_a_chip 706. https://en.wikipedia.org/wiki/Green_computing 707. https://en.wikipedia.org/wiki/Electronic_design_automation 708. https://en.wikipedia.org/wiki/Hardware_acceleration 709. https://en.wikipedia.org/wiki/File:Computer_Retro.svg 710. https://en.wikipedia.org/wiki/Computer_architecture 711. https://en.wikipedia.org/wiki/Embedded_system 712. https://en.wikipedia.org/wiki/Real-time_computing 713. https://en.wikipedia.org/wiki/Dependability 714. https://en.wikipedia.org/wiki/Computer_network 715. https://en.wikipedia.org/wiki/Network_architecture 716. https://en.wikipedia.org/wiki/Network_protocol 717. https://en.wikipedia.org/wiki/Networking_hardware 718. https://en.wikipedia.org/wiki/Network_scheduler 719. https://en.wikipedia.org/wiki/Network_performance 720. https://en.wikipedia.org/wiki/Network_service 721. https://en.wikipedia.org/wiki/Interpreter_(computing) 722. https://en.wikipedia.org/wiki/Middleware 723. https://en.wikipedia.org/wiki/Virtual_machine 724. https://en.wikipedia.org/wiki/Operating_system 725. https://en.wikipedia.org/wiki/Software_quality 726. https://en.wikipedia.org/wiki/Programming_language_theory 727. https://en.wikipedia.org/wiki/Programming_tool 728. https://en.wikipedia.org/wiki/Programming_paradigm 729. https://en.wikipedia.org/wiki/Programming_language 730. https://en.wikipedia.org/wiki/Compiler_construction 731. https://en.wikipedia.org/wiki/Domain-specific_language 732. https://en.wikipedia.org/wiki/Modeling_language 733. https://en.wikipedia.org/wiki/Software_framework 734. https://en.wikipedia.org/wiki/Integrated_development_environment 735. https://en.wikipedia.org/wiki/Software_configuration_management 736. https://en.wikipedia.org/wiki/Library_(computing) 737. https://en.wikipedia.org/wiki/Software_repository 738. https://en.wikipedia.org/wiki/Software_development 739. https://en.wikipedia.org/wiki/Control_variable_(programming) 740. https://en.wikipedia.org/wiki/Software_development_process 741. https://en.wikipedia.org/wiki/Requirements_analysis 742. https://en.wikipedia.org/wiki/Software_design 743. https://en.wikipedia.org/wiki/Software_construction 744. https://en.wikipedia.org/wiki/Software_deployment 745. https://en.wikipedia.org/wiki/Software_engineering 746. https://en.wikipedia.org/wiki/Software_maintenance 747. https://en.wikipedia.org/wiki/Programming_team 748. https://en.wikipedia.org/wiki/Open-source_software 749. https://en.wikipedia.org/wiki/Theory_of_computation 750. https://en.wikipedia.org/wiki/Model_of_computation 751. https://en.wikipedia.org/wiki/Formal_language 752. https://en.wikipedia.org/wiki/Automata_theory 753. https://en.wikipedia.org/wiki/Computability_theory 754. https://en.wikipedia.org/wiki/Computational_complexity_theory 755. https://en.wikipedia.org/wiki/Logic_in_computer_science 756. https://en.wikipedia.org/wiki/Semantics_(computer_science) 757. https://en.wikipedia.org/wiki/Algorithm 758. https://en.wikipedia.org/wiki/Algorithm_design 759. https://en.wikipedia.org/wiki/Analysis_of_algorithms 760. https://en.wikipedia.org/wiki/Algorithmic_efficiency 761. https://en.wikipedia.org/wiki/Randomized_algorithm 762. https://en.wikipedia.org/wiki/Computational_geometry 763. https://en.wikipedia.org/wiki/Discrete_mathematics 764. https://en.wikipedia.org/wiki/Probability 765. https://en.wikipedia.org/wiki/Statistics 766. https://en.wikipedia.org/wiki/Mathematical_software 767. https://en.wikipedia.org/wiki/Information_theory 768. https://en.wikipedia.org/wiki/Mathematical_analysis 769. https://en.wikipedia.org/wiki/Numerical_analysis 770. https://en.wikipedia.org/wiki/Theoretical_computer_science 771. https://en.wikipedia.org/wiki/Information_system 772. https://en.wikipedia.org/wiki/Database 773. https://en.wikipedia.org/wiki/Computer_data_storage 774. https://en.wikipedia.org/wiki/Enterprise_information_system 775. https://en.wikipedia.org/wiki/Social_software 776. https://en.wikipedia.org/wiki/Geographic_information_system 777. https://en.wikipedia.org/wiki/Decision_support_system 778. https://en.wikipedia.org/wiki/Process_control 779. https://en.wikipedia.org/wiki/Multimedia_database 780. https://en.wikipedia.org/wiki/Data_mining 781. https://en.wikipedia.org/wiki/Digital_library 782. https://en.wikipedia.org/wiki/Computing_platform 783. https://en.wikipedia.org/wiki/Digital_marketing 784. https://en.wikipedia.org/wiki/World_Wide_Web 785. https://en.wikipedia.org/wiki/Information_retrieval 786. https://en.wikipedia.org/wiki/Computer_security 787. https://en.wikipedia.org/wiki/Cryptography 788. https://en.wikipedia.org/wiki/Formal_methods 789. https://en.wikipedia.org/wiki/Security_service_(telecommunication) 790. https://en.wikipedia.org/wiki/Intrusion_detection_system 791. https://en.wikipedia.org/wiki/Computer_security_compromised_by_hardware_failure 792. https://en.wikipedia.org/wiki/Network_security 793. https://en.wikipedia.org/wiki/Information_security 794. https://en.wikipedia.org/wiki/Application_security 795. https://en.wikipedia.org/wiki/Human–computer_interaction 796. https://en.wikipedia.org/wiki/Interaction_design 797. https://en.wikipedia.org/wiki/Social_computing 798. https://en.wikipedia.org/wiki/Ubiquitous_computing 799. https://en.wikipedia.org/wiki/Visualization_(graphics) 800. https://en.wikipedia.org/wiki/Computer_accessibility 801. https://en.wikipedia.org/wiki/Synthography 802. https://en.wikipedia.org/wiki/Concurrency_(computer_science) 803. https://en.wikipedia.org/wiki/Concurrent_computing 804. https://en.wikipedia.org/wiki/Parallel_computing 805. https://en.wikipedia.org/wiki/Distributed_computing 806. https://en.wikipedia.org/wiki/Multithreading_(computer_architecture) 807. https://en.wikipedia.org/wiki/Multiprocessing 808. https://en.wikipedia.org/wiki/Artificial_intelligence 809. https://en.wikipedia.org/wiki/Natural_language_processing 810. https://en.wikipedia.org/wiki/Knowledge_representation_and_reasoning 811. https://en.wikipedia.org/wiki/Computer_vision 812. https://en.wikipedia.org/wiki/Automated_planning_and_scheduling 813. https://en.wikipedia.org/wiki/Mathematical_optimization 814. https://en.wikipedia.org/wiki/Control_theory 815. https://en.wikipedia.org/wiki/Philosophy_of_artificial_intelligence 816. https://en.wikipedia.org/wiki/Distributed_artificial_intelligence 817. https://en.wikipedia.org/wiki/Machine_learning 818. https://en.wikipedia.org/wiki/Supervised_learning 819. https://en.wikipedia.org/wiki/Unsupervised_learning 820. https://en.wikipedia.org/wiki/Reinforcement_learning 821. https://en.wikipedia.org/wiki/Multi-task_learning 822. https://en.wikipedia.org/wiki/Cross-validation_(statistics) 823. https://en.wikipedia.org/wiki/Computer_graphics 824. https://en.wikipedia.org/wiki/Computer_animation 825. https://en.wikipedia.org/wiki/Rendering_(computer_graphics) 826. https://en.wikipedia.org/wiki/Photograph_manipulation 827. https://en.wikipedia.org/wiki/Graphics_processing_unit 828. https://en.wikipedia.org/wiki/Mixed_reality 829. https://en.wikipedia.org/wiki/Virtual_reality 830. https://en.wikipedia.org/wiki/Image_compression 831. https://en.wikipedia.org/wiki/Solid_modeling 832. https://en.wikipedia.org/wiki/E-commerce 833. https://en.wikipedia.org/wiki/Enterprise_software 834. https://en.wikipedia.org/wiki/Computational_mathematics 835. https://en.wikipedia.org/wiki/Computational_physics 836. https://en.wikipedia.org/wiki/Computational_chemistry 837. https://en.wikipedia.org/wiki/Computational_biology 838. https://en.wikipedia.org/wiki/Computational_social_science 839. https://en.wikipedia.org/wiki/Computational_engineering 840. https://en.wikipedia.org/wiki/Health_informatics 841. https://en.wikipedia.org/wiki/Digital_art 842. https://en.wikipedia.org/wiki/Electronic_publishing 843. https://en.wikipedia.org/wiki/Cyberwarfare 844. https://en.wikipedia.org/wiki/Electronic_voting 845. https://en.wikipedia.org/wiki/Video_game 846. https://en.wikipedia.org/wiki/Word_processor 847. https://en.wikipedia.org/wiki/Operations_research 848. https://en.wikipedia.org/wiki/Educational_technology 849. https://en.wikipedia.org/wiki/Document_management_system 850. https://en.wikipedia.org/wiki/Category:Computer_science 851. https://en.wikipedia.org/wiki/Outline_of_computer_science 852. https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Computer_science 853. https://commons.wikimedia.org/wiki/Category:Computer_science 854. https://en.wikipedia.org/wiki/Template:Computer_graphics 855. https://en.wikipedia.org/wiki/Template_talk:Computer_graphics 856. https://en.wikipedia.org/w/index.php?title=Template:Computer_graphics&action=edit 857. https://en.wikipedia.org/wiki/Computer_graphics_(computer_science) 858. https://en.wikipedia.org/wiki/Vector_graphics 859. https://en.wikipedia.org/wiki/Diffusion_curve 860. https://en.wikipedia.org/wiki/Pixel 861. https://en.wikipedia.org/wiki/2D_computer_graphics 862. https://en.wikipedia.org/wiki/2.5D 863. https://en.wikipedia.org/wiki/Isometric_video_game_graphics 864. https://en.wikipedia.org/wiki/Mode_7 865. https://en.wikipedia.org/wiki/Parallax_scrolling 866. https://en.wikipedia.org/wiki/Ray_casting 867. https://en.wikipedia.org/wiki/Skybox_(video_games) 868. https://en.wikipedia.org/wiki/Alpha_compositing 869. https://en.wikipedia.org/wiki/Layers_(digital_image_editing) 870. https://en.wikipedia.org/wiki/Text-to-image 871. https://en.wikipedia.org/wiki/3D_computer_graphics 872. https://en.wikipedia.org/wiki/3D_projection 873. https://en.wikipedia.org/wiki/3D_rendering 874. https://en.wikipedia.org/wiki/Image-based_modeling_and_rendering 875. https://en.wikipedia.org/wiki/Spectral_rendering 876. https://en.wikipedia.org/wiki/Unbiased_rendering 877. https://en.wikipedia.org/wiki/Aliasing 878. https://en.wikipedia.org/wiki/Anisotropic_filtering 879. https://en.wikipedia.org/wiki/Cel_shading 880. https://en.wikipedia.org/wiki/Computer_graphics_lighting 881. https://en.wikipedia.org/wiki/Global_illumination 882. https://en.wikipedia.org/wiki/Hidden-surface_determination 883. https://en.wikipedia.org/wiki/Polygon_mesh 884. https://en.wikipedia.org/wiki/Triangle_mesh 885. https://en.wikipedia.org/wiki/Shading 886. https://en.wikipedia.org/wiki/Deferred_shading 887. https://en.wikipedia.org/wiki/Surface_triangulation 888. https://en.wikipedia.org/wiki/Wire-frame_model 889. https://en.wikipedia.org/wiki/Affine_transformation 890. https://en.wikipedia.org/wiki/Back-face_culling 891. https://en.wikipedia.org/wiki/Clipping_(computer_graphics) 892. https://en.wikipedia.org/wiki/Collision_detection 893. https://en.wikipedia.org/wiki/Planar_projection 894. https://en.wikipedia.org/wiki/Rendering_(computer_graphics) 895. https://en.wikipedia.org/wiki/Rotation_(mathematics) 896. https://en.wikipedia.org/wiki/Scaling_(geometry) 897. https://en.wikipedia.org/wiki/Shadow_mapping 898. https://en.wikipedia.org/wiki/Shadow_volume 899. https://en.wikipedia.org/wiki/Shear_matrix 900. https://en.wikipedia.org/wiki/Translation_(geometry) 901. https://en.wikipedia.org/wiki/List_of_computer_graphics_algorithms 902. https://en.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&oldid=1148917111 903. https://en.wikipedia.org/wiki/Help:Category 904. https://en.wikipedia.org/wiki/Category:Fractals 905. https://en.wikipedia.org/wiki/Category:Complex_dynamics 906. https://en.wikipedia.org/wiki/Category:Graphics_software 907. https://en.wikipedia.org/wiki/Category:Computer_graphics 908. https://en.wikipedia.org/wiki/Category:Algorithms 909. https://en.wikipedia.org/wiki/Category:CS1_errors:_missing_periodical 910. https://en.wikipedia.org/wiki/Category:Pages_containing_links_to_subscription-only_content 911. https://en.wikipedia.org/wiki/Category:Webarchive_template_wayback_links 912. https://en.wikipedia.org/wiki/Category:All_articles_with_bare_URLs_for_citations 913. https://en.wikipedia.org/wiki/Category:Articles_with_bare_URLs_for_citations_from_March_2022 914. https://en.wikipedia.org/wiki/Category:Articles_with_PDF_format_bare_URLs_for_citations 915. https://en.wikipedia.org/wiki/Category:Articles_with_short_description 916. https://en.wikipedia.org/wiki/Category:Short_description_with_empty_Wikidata_description 917. https://en.wikipedia.org/wiki/Category:Wikipedia_articles_with_style_issues_from_July_2021 918. https://en.wikipedia.org/wiki/Category:All_articles_with_style_issues 919. https://en.wikipedia.org/wiki/Category:Use_dmy_dates_from_February_2020 920. https://en.wikipedia.org/wiki/Category:Articles_needing_additional_references_from_June_2019 921. https://en.wikipedia.org/wiki/Category:All_articles_needing_additional_references 922. https://en.wikipedia.org/wiki/Category:Copied_and_pasted_articles_and_sections_with_url_provided_from_July_2022 923. https://en.wikipedia.org/wiki/Category:All_copied_and_pasted_articles_and_sections 924. https://en.wikipedia.org/wiki/Category:Articles_with_example_pseudocode 925. https://en.wikipedia.org/wiki/Category:Articles_containing_video_clips 926. https://en.wikipedia.org/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License 927. https://foundation.wikimedia.org/wiki/Terms_of_Use 928. https://foundation.wikimedia.org/wiki/Privacy_policy 929. https://www.wikimediafoundation.org/ 930. https://foundation.wikimedia.org/wiki/Privacy_policy 931. https://en.wikipedia.org/wiki/Wikipedia:About 932. https://en.wikipedia.org/wiki/Wikipedia:General_disclaimer 933. https://en.wikipedia.org/wiki/Wikipedia:Contact_us 934. https://en.m.wikipedia.org/w/index.php?title=Plotting_algorithms_for_the_Mandelbrot_set&mobileaction=toggle_view_mobile 935. https://developer.wikimedia.org/ 936. https://stats.wikimedia.org/#/en.wikipedia.org 937. https://foundation.wikimedia.org/wiki/Cookie_statement 938. https://wikimediafoundation.org/ 939. https://www.mediawiki.org/ Hidden links: 941. https://en.wikipedia.org/wiki/File:Fractal-zoom-1-03-Mandelbrot_Buzzsaw.png 942. https://en.wikipedia.org/wiki/File:Mandelbrot_sequence_new_still.png 943. https://en.wikipedia.org/wiki/File:Derbail_method_render.png 944. https://en.wikipedia.org/wiki/File:Example_of_derbail_precision_issues.png 945. https://en.wikipedia.org/wiki/File:Derbail.png 946. https://en.wikipedia.org/wiki/File:Question_book-new.svg 947. https://en.wikipedia.org/wiki/File:Mandelbrot-no-histogram-coloring-10000-iterations.png 948. https://en.wikipedia.org/wiki/File:Mandelbrot-no-histogram-coloring-1000-iterations.png 949. https://en.wikipedia.org/wiki/File:Mandelbrot-no-histogram-coloring-100-iterations.png 950. https://en.wikipedia.org/wiki/File:Mandelbrot-histogram-10000-iterations.png 951. https://en.wikipedia.org/wiki/File:Mandelbrot-histogram-1000-iterations.png 952. https://en.wikipedia.org/wiki/File:Mandelbrot-histogram-100-iterations.png 953. https://en.wikipedia.org/wiki/File:Escape_Time_Algorithm_bands.png 954. https://en.wikipedia.org/wiki/File:Normalized_Iteration_Count_Algorithm_1.png 955. https://en.wikipedia.org/wiki/File:CyclicColoringLch.png 956. https://en.wikipedia.org/wiki/File:LCH_COLORING.png 957. https://en.wikipedia.org/wiki/File:HSV_Gradient_Example.png 958. https://en.wikipedia.org/wiki/File:LCH_Gradient_Example.png 959. https://en.wikipedia.org/wiki/File:Demm_2000_Mandelbrot_set.jpg 960. https://en.wikipedia.org/wiki/File:Mandel_zoom_06_double_hook_B%26W_DE.jpg 961. https://en.wikipedia.org/wiki/File:Mandelbrot_Interior_600.png 962. https://en.wikipedia.org/wiki/File:MandelbrotOrbitInfimum.png 963. https://en.wikipedia.org/wiki/File:Mandelbrot_DEM_Sobel.png 964. https://en.wikipedia.org/wiki/File:Boundary_following_movie.webm 965. https://en.wikipedia.org/wiki/File:Multi-threaded_mandelbrot_render_w_symmetry.webm 966. https://en.wikipedia.org/wiki/File:Multi-threaded_mandelbrot_render_w_bounary_following_%26_symmetry.webm 967. https://creativecommons.org/licenses/by-sa/3.0/