1 NON-LINEAR LEAST SQUARES PROBLEM NUMBER OF OBSERVATIONS = 33 NUMBER OF LINEAR PARAMETERS = 3 NUMBER OF NONLINEAR PARAMETERS = 2 NUMBER OF NONVANISHING PARTIAL DERIVATIVES = 2 NUMBER OF INDEPENDENT VARIABLES = 1 I T(I) Y(I) 1 .0000000e+00 .8440000e+00 2 .1000000e+02 .9080000e+00 3 .2000000e+02 .9320000e+00 4 .3000000e+02 .9360000e+00 5 .4000000e+02 .9250000e+00 6 .5000000e+02 .9080000e+00 7 .6000000e+02 .8810000e+00 8 .7000000e+02 .8500000e+00 9 .8000000e+02 .8180000e+00 10 .9000000e+02 .7840000e+00 11 .1000000e+03 .7510000e+00 12 .1100000e+03 .7180000e+00 13 .1200000e+03 .6850000e+00 14 .1300000e+03 .6580000e+00 15 .1400000e+03 .6280000e+00 16 .1500000e+03 .6030000e+00 17 .1600000e+03 .5800000e+00 18 .1700000e+03 .5580000e+00 19 .1800000e+03 .5380000e+00 20 .1900000e+03 .5220000e+00 21 .2000000e+03 .5060000e+00 22 .2100000e+03 .4900000e+00 23 .2200000e+03 .4780000e+00 24 .2300000e+03 .4670000e+00 25 .2400000e+03 .4570000e+00 26 .2500000e+03 .4480000e+00 27 .2600000e+03 .4380000e+00 28 .2700000e+03 .4310000e+00 29 .2800000e+03 .4240000e+00 30 .2900000e+03 .4200000e+00 31 .3000000e+03 .4140000e+00 32 .3100000e+03 .4110000e+00 33 .3200000e+03 .4060000e+00 0 INITIAL NONLINEAR PARAMETERS .1000000e-01 .2000000e-01 0************************************************** 0 NUMBER OF CONSTANT FUNCTIONS = 1 0 0 NORM OF RESIDUAL = .7012746e-01 NU = .1000000e+01 0 ITERATION 1 NONLINEAR PARAMETERS 0 .1127396e-01 .2304597e-01 0 1 NORM OF RESIDUAL = .2347806e-01 NU = .5000000e+00 NORM(DELTA-ALF) / NORM(ALF) = .129e+00 0 ITERATION 2 NONLINEAR PARAMETERS 0 .1185148e-01 .2411646e-01 0 1 NORM OF RESIDUAL = .8501084e-02 NU = .2500000e+00 NORM(DELTA-ALF) / NORM(ALF) = .453e-01 0 ITERATION 3 NONLINEAR PARAMETERS 0 .1213711e-01 .2368091e-01 0 1 NORM OF RESIDUAL = .7833385e-02 NU = .1250000e+00 NORM(DELTA-ALF) / NORM(ALF) = .196e-01 0 ITERATION 4 NONLINEAR PARAMETERS 0 .1250873e-01 .2283212e-01 0 1 NORM OF RESIDUAL = .7489091e-02 NU = .6250000e-01 NORM(DELTA-ALF) / NORM(ALF) = .356e-01 0 ITERATION 5 NONLINEAR PARAMETERS 0 .1278089e-01 .2228172e-01 0 1 NORM OF RESIDUAL = .7398365e-02 NU = .3125000e-01 NORM(DELTA-ALF) / NORM(ALF) = .239e-01 0 ITERATION 6 NONLINEAR PARAMETERS 0 .1285971e-01 .2213731e-01 0 1 NORM OF RESIDUAL = .7392535e-02 NU = .1562500e-01 NORM(DELTA-ALF) / NORM(ALF) = .643e-02 0 ITERATION 7 NONLINEAR PARAMETERS 0 .1286723e-01 .2212332e-01 0 1 NORM OF RESIDUAL = .7392493e-02 NU = .7812500e-02 NORM(DELTA-ALF) / NORM(ALF) = .621e-03 0 ITERATION 8 NONLINEAR PARAMETERS 0 .1286753e-01 .2212272e-01 0 1 NORM OF RESIDUAL = .7392493e-02 NU = .3906250e-02 NORM(DELTA-ALF) / NORM(ALF) = .263e-04 0'''''''''''''''''''''''''''''''''''''''''''''''''' 0 LINEAR PARAMETERS .3754100e+00 .1935842e+01 -.1464682e+01 0 NONLINEAR PARAMETERS .1286753e-01 .2212272e-01 0 NORM OF RESIDUAL = .7392493e-02 EXPECTED ERROR OF OBSERVATIONS = .2053413e-20 ESTIMATED VARIANCE OF OBSERVATIONS = .1951748e-05 0'''''''''''''''''''''''''''''''''''''''''''''''''' COVARIANCE MATRIX .4294491e-05 .4169178e-03 .4853854e-01 -.4205890e-03 -.4885460e-01 .4917530e-01 .8751959e-06 .9847199e-04 -.9915891e-04 .2012526e-06 -.1636144e-05 -.1963048e-03 .1974799e-03 -.3953801e-06 .8005209e-06 0 STANDARD DEVIATIONS OF PARAMETER ESTIMATES .2072315e-02 .2203146e+00 .2217550e+00 .4486118e-03 .8947183e-03 CORRELATION MATRIX .1000000e+01 .9131691e+00 .1000000e+01 -.9152265e+00 -.9999738e+00 .1000000e+01 .9414098e+00 .9963196e+00 -.9967530e+00 .1000000e+01 -.8824283e+00 -.9958668e+00 .9953207e+00 -.9850489e+00 .1000000e+01 I W(I) T(I) Y(I) PREDICTED Y WEIGHTED RESIDUAL 1 .1000000e+01 .0000000e+00 .8440000e+00 .8465698e+00 -.2569815e-02 2 .1000000e+01 .1000000e+02 .9080000e+00 .9035240e+00 .4475984e-02 3 .1000000e+01 .2000000e+02 .9320000e+00 .9310078e+00 .9922255e-03 4 .1000000e+01 .3000000e+02 .9360000e+00 .9370634e+00 -.1063449e-02 5 .1000000e+01 .4000000e+02 .9250000e+00 .9278724e+00 -.2872424e-02 6 .1000000e+01 .5000000e+02 .9080000e+00 .9081564e+00 -.1564263e-03 7 .1000000e+01 .6000000e+02 .8810000e+00 .8814953e+00 -.4953326e-03 8 .1000000e+01 .7000000e+02 .8500000e+00 .8505785e+00 -.5785104e-03 9 .1000000e+01 .8000000e+02 .8180000e+00 .8174033e+00 .5967112e-03 10 .1000000e+01 .9000000e+02 .7840000e+00 .7834314e+00 .5685831e-03 11 .1000000e+01 .1000000e+03 .7510000e+00 .7497122e+00 .1287838e-02 12 .1000000e+01 .1100000e+03 .7180000e+00 .7169789e+00 .1021050e-02 13 .1000000e+01 .1200000e+03 .6850000e+00 .6857250e+00 -.7250378e-03 14 .1000000e+01 .1300000e+03 .6580000e+00 .6562626e+00 .1737395e-02 15 .1000000e+01 .1400000e+03 .6280000e+00 .6287687e+00 -.7687322e-03 16 .1000000e+01 .1500000e+03 .6030000e+00 .6033210e+00 -.3210467e-03 17 .1000000e+01 .1600000e+03 .5800000e+00 .5799252e+00 .7477596e-04 18 .1000000e+01 .1700000e+03 .5580000e+00 .5585361e+00 -.5360958e-03 19 .1000000e+01 .1800000e+03 .5380000e+00 .5390737e+00 -.1073743e-02 20 .1000000e+01 .1900000e+03 .5220000e+00 .5214357e+00 .5643285e-03 21 .1000000e+01 .2000000e+03 .5060000e+00 .5055059e+00 .4940674e-03 22 .1000000e+01 .2100000e+03 .4900000e+00 .4911619e+00 -.1161874e-02 23 .1000000e+01 .2200000e+03 .4780000e+00 .4782791e+00 -.2790598e-03 24 .1000000e+01 .2300000e+03 .4670000e+00 .4667348e+00 .2652250e-03 25 .1000000e+01 .2400000e+03 .4570000e+00 .4564105e+00 .5895379e-03 26 .1000000e+01 .2500000e+03 .4480000e+00 .4471933e+00 .8066676e-03 27 .1000000e+01 .2600000e+03 .4380000e+00 .4389774e+00 -.9773661e-03 28 .1000000e+01 .2700000e+03 .4310000e+00 .4316639e+00 -.6638543e-03 29 .1000000e+01 .2800000e+03 .4240000e+00 .4251616e+00 -.1161606e-02 30 .1000000e+01 .2900000e+03 .4200000e+00 .4193869e+00 .6130869e-03 31 .1000000e+01 .3000000e+03 .4140000e+00 .4142633e+00 -.2633482e-03 32 .1000000e+01 .3100000e+03 .4110000e+00 .4097214e+00 .1278555e-02 33 .1000000e+01 .3200000e+03 .4060000e+00 .4056983e+00 .3016910e-03 .