# to unbundle, sh this file (in an empty directory) echo madsen.out 1>&2 sed >madsen.out <<'//GO.SYSIN DD madsen.out' 's/^-//' - DGLG ON PROBLEM MADSEN... - - I INITIAL X(I) D(I) - - 1 .300000E+01 .707E+01 - 2 .100000E+01 .507E+01 - - IT NF F RELDF PRELDF RELDX MODEL STPPAR D*STEP NPRELDF - - 0 1 .847E+02 - 1 3 .365E+02 .57E+00 .62E+00 .7E-01 G .3E+01 .4E+01 .98E+00 - 2 4 .443E+01 .88E+00 .95E+00 .2E+00 G .0E+00 .6E+01 .95E+00 - 3 6 .128E+01 .71E+00 .67E+00 .3E+00 G-S .0E+00 .5E+01 .67E+00 - 4 7 .593E+00 .54E+00 .59E+00 .1E+01 S .0E+00 .3E+01 .59E+00 - 5 8 .415E+00 .30E+00 .24E+00 .1E+00 S .0E+00 .5E+00 .24E+00 - 6 9 .390E+00 .60E-01 .87E-01 .7E-01 G .0E+00 .3E+00 .87E-01 - 7 10 .387E+00 .89E-02 .89E-02 .4E-01 S .0E+00 .1E+00 .89E-02 - 8 11 .387E+00 .24E-04 .23E-04 .2E-02 S .0E+00 .5E-02 .23E-04 - 9 12 .387E+00 .30E-07 .30E-07 .8E-04 S .0E+00 .2E-03 .30E-07 - 10 13 .387E+00 .36E-11 .48E-11 .1E-05 S .0E+00 .2E-05 .48E-11 - - ***** RELATIVE FUNCTION CONVERGENCE ***** - - FUNCTION .386600E+00 RELDX .105E-05 - FUNC. EVALS 13 GRAD. EVALS 11 - PRELDF .484E-11 NPRELDF .484E-11 - - I FINAL X(I) D(I) G(I) - - 1 -.155437E+00 .124E+01 .600E-06 - 2 .694564E+00 .146E+01 .124E-06 - - 3 EXTRA FUNC. EVALS FOR COVARIANCE AND DIAGNOSTICS. - 3 EXTRA GRAD. EVALS FOR COVARIANCE AND DIAGNOSTICS. - - SQRT(RECIPROCAL CONDITION OF F.D. HESSIAN) = AT MOST .64 - - COVARIANCE = H**-1, WHERE H = FINITE-DIFFERENCE HESSIAN - - ROW 1 .649 - ROW 2 -.265 .575 - REGRESSION DIAGNOSTIC = 0.5 * G(I)**T * H(I)**-1 * H * H(I)**-1 * G(I)... - .735 .565E-01 .119 - DGLG NEEDED LIV .GE. ,I3,12H AND LV .GE. 92 - DGLG NEEDED LIV .GE. ,I3,12H AND LV .GE. 173 - - DGLF ON PROBLEM MADSEN... - - I INITIAL X(I) D(I) - - 1 .300000E+01 .707E+01 - 2 .100000E+01 .507E+01 - - IT NF F RELDF PRELDF RELDX MODEL STPPAR D*STEP NPRELDF - - 0 1 .847E+02 - 1 3 .365E+02 .57E+00 .62E+00 .7E-01 G .3E+01 .4E+01 .98E+00 - 2 4 .443E+01 .88E+00 .95E+00 .2E+00 G .0E+00 .6E+01 .95E+00 - 3 6 .128E+01 .71E+00 .67E+00 .3E+00 G-S .0E+00 .5E+01 .67E+00 - 4 7 .593E+00 .54E+00 .59E+00 .1E+01 S .0E+00 .3E+01 .59E+00 - 5 8 .415E+00 .30E+00 .24E+00 .1E+00 S .0E+00 .5E+00 .24E+00 - 6 9 .390E+00 .60E-01 .87E-01 .7E-01 G .0E+00 .3E+00 .87E-01 - 7 10 .387E+00 .89E-02 .89E-02 .4E-01 S .0E+00 .1E+00 .89E-02 - 8 11 .387E+00 .24E-04 .23E-04 .2E-02 S .0E+00 .5E-02 .23E-04 - 9 12 .387E+00 .30E-07 .30E-07 .8E-04 S .0E+00 .2E-03 .30E-07 - 10 13 .387E+00 .36E-11 .48E-11 .1E-05 S .0E+00 .2E-05 .48E-11 - - ***** RELATIVE FUNCTION CONVERGENCE ***** - - FUNCTION .386600E+00 RELDX .105E-05 - FUNC. EVALS 13 GRAD. EVALS 24 - PRELDF .484E-11 NPRELDF .484E-11 - - I FINAL X(I) D(I) G(I) - - 1 -.155437E+00 .124E+01 .594E-06 - 2 .694564E+00 .146E+01 .117E-06 - - 6 EXTRA FUNC. EVALS FOR COVARIANCE AND DIAGNOSTICS. - - SQRT(RECIPROCAL CONDITION OF F.D. HESSIAN) = AT MOST .64 - - COVARIANCE = H**-1, WHERE H = FINITE-DIFFERENCE HESSIAN - - ROW 1 .649 - ROW 2 -.265 .575 - REGRESSION DIAGNOSTIC = 0.5 * G(I)**T * H(I)**-1 * H * H(I)**-1 * G(I)... - .735 .565E-01 .119 - - DGLF ON PROBLEM MADSEN AGAIN... - - NONDEFAULT VALUES.... - - LMAX0..... V(35) = .1000000E+00 - - I INITIAL X(I) D(I) - - 1 .300000E+01 .707E+01 - 2 .100000E+01 .507E+01 - - IT NF F RELDF PRELDF RELDX MODEL STPPAR D*STEP NPRELDF - - 0 1 .847E+02 - 1 6 .521E+02 .38E+00 .41E+00 .4E-01 G .6E+01 .2E+01 .98E+00 - 2 7 .783E+01 .85E+00 .95E+00 .1E+00 G .3E+00 .6E+01 .97E+00 - 3 9 .215E+01 .72E+00 .78E+00 .5E+00 G-S .0E+00 .9E+01 .78E+00 - 4 10 .103E+01 .52E+00 .96E+00 .5E+00 G .0E+00 .4E+01 .96E+00 - 5 11 .425E+00 .59E+00 .66E+00 .2E+00 G .0E+00 .2E+01 .66E+00 - 6 12 .393E+00 .77E-01 .12E+00 .1E+00 G .0E+00 .5E+00 .12E+00 - 7 13 .387E+00 .15E-01 .14E-01 .5E-01 S .0E+00 .1E+00 .14E-01 - 8 14 .387E+00 .34E-03 .30E-03 .7E-02 S .0E+00 .2E-01 .30E-03 - 9 15 .387E+00 .75E-05 .81E-05 .1E-02 G .0E+00 .3E-02 .81E-05 - 10 16 .387E+00 .13E-06 .42E-06 .3E-03 G .0E+00 .6E-03 .42E-06 - 11 17 .387E+00 .12E-06 .12E-06 .1E-03 S .0E+00 .3E-03 .12E-06 - 12 18 .387E+00 .33E-14 .37E-14 .2E-07 S .0E+00 .5E-07 .37E-14 - - ***** RELATIVE FUNCTION CONVERGENCE ***** - - FUNCTION .386600E+00 RELDX .203E-07 - FUNC. EVALS 18 GRAD. EVALS 26 - PRELDF .368E-14 NPRELDF .368E-14 - - I FINAL X(I) D(I) G(I) - - 1 -.155437E+00 .138E+01 .351E-08 - 2 .694564E+00 .144E+01 .125E-07 //GO.SYSIN DD madsen.out echo madsenb.out 1>&2 sed >madsenb.out <<'//GO.SYSIN DD madsenb.out' 's/^-//' - DGLGB ON PROBLEM MADSEN... - - I INITIAL X(I) D(I) - - 1 .300000E+01 .707E+01 - 2 .100000E+01 .507E+01 - - IT NF F RELDF PRELDF RELDX MODEL STPPAR D*STEP NPRELDF - - 0 1 .847E+02 - 1 3 .365E+02 .57E+00 .62E+00 .7E-01 G .3E+01 .4E+01 .98E+00 - 2 4 .579E+01 .84E+00 .10E+01 .2E+00 G .2E+01 .5E+01 .95E+00 - 3 5 .177E+01 .70E+00 .57E+00 .2E+00 S .0E+00 .3E+01 .57E+00 - 4 6 .660E+00 .63E+00 .59E+00 .4E+00 G .0E+00 .2E+01 .59E+00 - 5 7 .509E+00 .23E+00 .21E+00 .6E+00 G .0E+00 .7E+00 .21E+00 - 6 8 .500E+00 .17E-01 .17E-01 .9E+00 G .0E+00 .1E+00 .17E-01 - 7 9 .500E+00 .13E-04 .13E-04 .1E+01 S .0E+00 .4E-02 .13E-04 - 8 10 .500E+00 .50E-12 .50E-12 .1E+01 G .0E+00 .7E-06 .50E-12 - - ***** RELATIVE FUNCTION CONVERGENCE ***** - - FUNCTION .500000E+00 RELDX .100E+01 - FUNC. EVALS 10 GRAD. EVALS 9 - PRELDF .496E-12 NPRELDF .496E-12 - - I FINAL X(I) D(I) G(I) - - 1 -.581806E-18 .100E+01 -.582E-18 - 2 .000000E+00 .188E+00 .000E+00 - DGLGB NEEDED LIV .GE. ,I3,12H AND LV .GE. 92 - DGLGB NEEDED LIV .GE. ,I3,12H AND LV .GE. 179 - - DGLFB ON PROBLEM MADSEN... - - I INITIAL X(I) D(I) - - 1 .300000E+01 .707E+01 - 2 .100000E+01 .507E+01 - - IT NF F RELDF PRELDF RELDX MODEL STPPAR D*STEP NPRELDF - - 0 1 .847E+02 - 1 3 .365E+02 .57E+00 .62E+00 .7E-01 G .3E+01 .4E+01 .98E+00 - 2 4 .579E+01 .84E+00 .10E+01 .2E+00 G .2E+01 .5E+01 .95E+00 - 3 5 .177E+01 .70E+00 .57E+00 .2E+00 S .0E+00 .3E+01 .57E+00 - 4 6 .660E+00 .63E+00 .59E+00 .4E+00 G .0E+00 .2E+01 .59E+00 - 5 7 .509E+00 .23E+00 .21E+00 .6E+00 G .0E+00 .7E+00 .21E+00 - 6 8 .500E+00 .17E-01 .17E-01 .9E+00 G .0E+00 .1E+00 .17E-01 - 7 9 .500E+00 .13E-04 .13E-04 .1E+01 S .0E+00 .4E-02 .13E-04 - 8 11 .481E+00 .38E-01 .22E-08 .1E+01 G .3E-06 .6E-01 .65E-04 - 9 12 .402E+00 .16E+00 .12E+00 .5E+00 G .1E+01 .2E+00 .17E+00 - 10 13 .389E+00 .32E-01 .34E-01 .6E-01 G .0E+00 .1E+00 .49E-01 - 11 14 .389E+00 .17E-03 .19E-03 .7E-02 G .0E+00 .1E-01 .19E-03 - 12 15 .389E+00 .16E-05 .18E-05 .6E-03 G .0E+00 .1E-02 .18E-05 - 13 16 .389E+00 .13E-07 .13E-07 .5E-04 S .0E+00 .1E-03 .13E-07 - 14 17 .389E+00 -.29E-15 .14E-15 .5E-08 S .0E+00 .1E-07 .14E-15 - - ***** X- AND RELATIVE FUNCTION CONVERGENCE ***** - - FUNCTION .388964E+00 RELDX .533E-08 - FUNC. EVALS 17 GRAD. EVALS 28 - PRELDF .137E-15 NPRELDF .137E-15 - - I FINAL X(I) D(I) G(I) - - 1 -.100000E+00 .140E+01 .852E-01 - 2 .670375E+00 .145E+01 .150E-07 - - DGLFB ON PROBLEM MADSEN AGAIN... - - NONDEFAULT VALUES.... - - LMAX0..... V(35) = .1000000E+00 - - I INITIAL X(I) D(I) - - 1 .300000E+01 .707E+01 - 2 .100000E+01 .507E+01 - - IT NF F RELDF PRELDF RELDX MODEL STPPAR D*STEP NPRELDF - - 0 1 .847E+02 - 1 6 .521E+02 .38E+00 .41E+00 .4E-01 G .6E+01 .2E+01 .98E+00 - 2 7 .752E+01 .86E+00 .10E+01 .2E+00 G .4E+00 .6E+01 .11E+01 - 3 8 .131E+01 .83E+00 .83E+00 .3E+00 G .0E+00 .5E+01 .83E+00 - 4 9 .596E+00 .54E+00 .51E+00 .4E+00 G .0E+00 .2E+01 .51E+00 - 5 10 .503E+00 .16E+00 .14E+00 .7E+00 G .0E+00 .6E+00 .14E+00 - 6 11 .500E+00 .64E-02 .63E-02 .1E+01 G .0E+00 .9E-01 .63E-02 - 7 12 .500E+00 .69E-06 .69E-06 .1E+01 S .0E+00 .8E-03 .69E-06 - 8 14 .481E+00 .38E-01 .25E-08 .1E+01 G .2E-06 .7E-01 .38E+00 - 9 15 .402E+00 .16E+00 .12E+00 .5E+00 G .1E+01 .2E+00 .17E+00 - 10 16 .389E+00 .32E-01 .34E-01 .6E-01 G .0E+00 .1E+00 .49E-01 - 11 17 .389E+00 .17E-03 .19E-03 .7E-02 G .0E+00 .1E-01 .19E-03 - 12 18 .389E+00 .16E-05 .18E-05 .6E-03 G .0E+00 .1E-02 .18E-05 - 13 19 .389E+00 .13E-07 .13E-07 .5E-04 S .0E+00 .1E-03 .13E-07 - 14 20 .389E+00 .29E-15 .19E-16 .2E-08 S .0E+00 .4E-08 .19E-16 - 15 21 .389E+00 .00E+00 .19E-16 .1E-08 S .0E+00 .2E-08 .19E-16 - - ***** X- AND RELATIVE FUNCTION CONVERGENCE ***** - - FUNCTION .388964E+00 RELDX .123E-08 - FUNC. EVALS 21 GRAD. EVALS 30 - PRELDF .194E-16 NPRELDF .194E-16 - - I FINAL X(I) D(I) G(I) - - 1 -.100000E+00 .140E+01 .852E-01 - 2 .670375E+00 .145E+01 .912E-08 //GO.SYSIN DD madsenb.out .