SUBROUTINE TRIS4 (N,A,B,C,D,U,Z) C C THIS SUBROUTINE SOLVES FOR A NON-ZERO EIGENVECTOR CORRESPONDING C TO THE ZERO EIGENVALUE OF THE TRANSPOSE OF THE RANK C DEFICIENT ONE MATRIX WITH SUBDIAGONAL A, DIAGONAL B, AND C SUPERDIAGONAL C , WITH A(1) IN THE (1,N) POSITION, WITH C C(N) IN THE (N,1) POSITION, AND ALL OTHER ELEMENTS ZERO. C DIMENSION A(N) ,B(N) ,C(N) ,D(N) , 1 U(N) ,Z(N) BN = B(N) D(1) = A(2)/B(1) V = A(1) U(1) = C(N)/B(1) NM2 = N-2 DO 10 J=2,NM2 DEN = B(J)-C(J-1)*D(J-1) D(J) = A(J+1)/DEN U(J) = -C(J-1)*U(J-1)/DEN BN = BN-V*U(J-1) V = -V*D(J-1) 10 CONTINUE DEN = B(N-1)-C(N-2)*D(N-2) D(N-1) = (A(N)-C(N-2)*U(N-2))/DEN AN = C(N-1)-V*D(N-2) BN = BN-V*U(N-2) DEN = BN-AN*D(N-1) C C SET LAST COMPONENT EQUAL TO ONE C Z(N) = 1.0 Z(N-1) = -D(N-1) NM1 = N-1 DO 20 J=2,NM1 K = N-J Z(K) = -D(K)*Z(K+1)-U(K)*Z(N) 20 CONTINUE RETURN END .